Reference for MQ-MAS signal enhancement with FAM

Home and Applets > Pulse Sequence > FAM MQ-MAS Reference

FAM MQ-MAS references

Below are provided some NMR references about MQ-MAS with Fast Amplitude Modulation sequence applied to half-integer quadrupole spins. These references contain
(1) the pulse-sequence diagram,
(2) the coherence-transfer pathways,
(3) the phase-cycling,
(4) the receiver-phase relationship.

  1. T. Brauniger and P. K. Madhu
    Fast amplitude-modulated pulse trains with frequency sweep (SW-FAM) in solid-state NMR of spin-7/2 nuclei, (1)(2)
    J. Magn. Reson. 193, 102-109 (2008).
  2. J. Kanellopoulos, D. Freude, and A. Kentgens
    A practical comparison of MQMAS techniques,
    Solid State Nucl. Magn. Reson. 32, 99-108 (2008).
  3. M. Kotecha, S. Chaudhuri, C. P. Grey, and L. Frydman
    Dynamic effects in MAS and MQMAS NMR spectra of half-integer quadrupolar nuclei: Calculations and an application to the double perovskite cryolite,
    J. Am. Chem. Soc. 127, 16701-16712 (2005).
  4. J. Gu and W. P. Power
    Improved quantitation in 3QMAS of spin 5/2 nuclei by RF power modulation of FAM-II, (1)(2)(3)
    Solid State Nucl. Magn. Reson. 27, 192-199 (2005).
  5. F. H. Larsen and I. Farnan
    Site populations and short range order in aluminosilicates investigated by 27Al solid-state NMR, (1)(2)(3)
    J. Phys. Chem. B 108, 9764-9771 (2004).
  6. C. M. Morais, M. Lopes, C. Fernandez, and J. Rocha
    Assessing the potential of fast amplitude modulation pulses for improving triple-quantum magic angle spinning NMR spectra of half-integer quadrupolar nuclei, (1)(2)
    Magn. Reson. Chem. 41, 679-688 (2003).
  7. T. Bräuniger, K. J. Pike, R. K. Harris, and P. K. Madhu
    Efficient 5QMAS NMR of spin-5/2 nuclei: use of fast amplitude-modulated radio-frequency pulses and cogwheel phase cycling, (1)(2)(3)
    J. Magn. Reson. 163, 64-72 (2003).
  8. P. K. Madhu, O. G. Johannessen, K. J. Pike, R. Dupree, M. E. Smith, and M. H. Levitt
    Application of amplitude-modulated radiofrequency fields to the magic-angle spinning NMR of spin-7/2 nuclei, (1)(2)
    J. Magn. Reson. 163, 310-317 (2003).
  9. A. Jerschow and R. Kumar
    Calculation of coherence pathway selection and cogwheel cycles, (1)(2)
    J. Magn. Reson. 160, 59-64 (2003).
  10. A. Goldbourt, M. V. Landau, and S. Vega
    Characterization of aluminum species in alumina multilayer grafted MCM-41 using 27Al FAM(II)-MQMAS NMR, (1)(2)(3)
    J. Phys. Chem. B 107, 724-731 (2003).
  11. M. H. Levitt, P. K. Madhu, and C. E. Hughes
    Cogwheel phase cycling, (1)(2)(3)
    J. Magn. Reson. 155, 300-306 (2002).
  12. A. Goldbourt and P. K. Madhu
    Multiple-Quantum Magic Angle Spinning: High-resolution solid state NMR spectroscopy of half-integer quadrupolar nuclei, (1)(2)
    Monatsh. Chem. 133, 1497-1534 (2002).
  13. P. K. Madhu and M. H. Levitt
    Signal enhancement in the triple-quantum magic-angle spinning NMR of spins-3/2 in solids: the FAM--RIACT--FAM sequence,
    J. Magn. Reson. 155, 150-155 (2002).
  14. A. Goldbourt and S. Vega
    Signal enhancement in 5QMAS spectra of spin-5/2 quadrupolar nuclei, (1)(2)(3)
    J. Magn. Reson. 154, 280-286 (2002).
  15. K. H. Lim, T. Charpentier, and A. Pines
    Efficient triple-quantum excitation in modified RIACT MQMAS NMR for I = 3/2 nuclei, (1)(2)
    J. Magn. Reson. 154, 196-204 (2002).
  16. D. Freude, T. Loeser, D. Michel, U. Pingel, and D. Prochnow
    17O NMR studies of low silicate zeolites, (1)(2)
    Solid State Nucl. Magn. Reson. 20, 46-60 (2001).
  17. P. D. Zhao, P. S. Neuhoff, and J. F. Stebbins
    Comparison of FAM mixing to single-pulse mixing in 17O 3Q- and 5Q-MAS NMR of oxygen sites in zeolites, (1)(2)(4)
    Chem. Phys. Lett. 344, 325-332 (2001).
  18. P. K. Madhu, A. Goldbourt, L. Frydman, and S. Vega
    Fast radio-frequency amplitude modulation in MQMAS NMR: Theory and experiments, (1)(3)
    J. Chem. Phys. 112, 2377-2391 (2000).
  19. A. Goldbourt, P. K. Madhu, S. Kababya, and S. Vega
    The influence of the radiofrequency excitation and conversion pulses on the lineshapes and intensities of the triple-quantum MAS NMR spectra of I = 3/2 nuclei, (1)
    Solid State Nucl. Magn. Reson. 18, 1-16 (2000).
  20. A. Goldbourt, P. K. Madhu, and S. Vega
    Enhanced conversion of triple to single-quantum coherence in the triple-quantum MAS NMR spectroscopy of spin-5/2 nuclei, (1)
    Chem. Phys. Lett. 320, 448-456 (2000).
  21. P. K. Madhu, A. Goldbourt, L. Frydman, and S. Vega
    Sensitivity enhancement of the MQMAS NMR experiment by fast amplitude modulation of the pulses, (1)(3)
    Chem. Phys. Lett. 307, 41-47 (1999).
  22. A. Medek and L. Frydman
    Multiple-Quantum Magic-Angle Spinning NMR: A new technique for probing quadrupolar nuclei in solids, (1)(2)
    J. Braz. Chem. Soc. 10, 263-277 (1999).

Related bibliography

  1. M. Goswami and P. K. Madhu
    Sensitivity enhancement of the central-transition signal of half-integer spin quadrupolar nuclei in solid-state NMR: Features of multiple fast amplitude-modulated pulse transfer,
    J. Magn. Reson. 192, 230-234 (2008).
  2. Thomas Bräuniger, P. K. Madhu, André Pampel, and Detlef Reichert
    Application of fast amplitude-modulated pulse trains for signal enhancement in static and magic-angle-spinning 47,49Ti-NMR spectra,
    Solid State Nucl. Magn. Reson. 26, 114-120 (2004).
  3. T. Bräuniger, K. Ramaswamy, and P. K. Madhu
    Enhancement of the central-transition signal in static and magic-angle-spinning NMR of quadrupolar nuclei by frequency-swept fast amplitude-modulated pulses,
    Chem. Phys. Lett. 383, 403-410 (2004).
  4. S. Vega and Y. Naor
    Triple quantum NMR on spin systems with I = 3/2 in solids,
    J. Chem. Phys. 75, 75-86 (1981).

(top)

Solid-state NMR bibliography for:

Aluminum-27
Antimony-121/123
Arsenic-75
Barium-135/137
Beryllium-9
Bismuth-209
Boron-11
Bromine-79/81
Calcium-43
Cesium-133
Chlorine-35/37
Chromium-53
Cobalt-59
Copper-63/65
Deuterium-2
Gallium-69/71
Germanium-73
Gold-197
Hafnium-177/179
Indium-113/115
Iodine-127
Iridium-191/193
Krypton-83
Lanthanum-139
Lithium-7
Magnesium-25
Manganese-55
Mercury-201
Molybdenum-95/97
Neon-21
Nickel-61
Niobium-93
Nitrogen-14
Osmium-189
Oxygen-17
Palladium-105
Potassium-39/41
Rhenium-185/187
Rubidium-85/87
Ruthenium-99/101
Scandium-45
Sodium-23
Strontium-87
Sulfur-33
Tantalum-181
Titanium-47/49
Vanadium-51
Xenon-131
Zinc-67
Zirconium-91
[Contact me] - Last updated February 10, 2020
Copyright © 2002-2020 pascal-man.com. All rights reserved.