Central-line intensity optimization with a two-pulse sequence in solid-state MAS NMR using a JDK1.3 applet

Home and Applets > JDK1.3 Java Applet for Two Pulses > Simpson 1

We have simulated the same experiment as that described in Example 1 using SIMPSON version 1.1.0, a general simulation program for solid-state NMR spectroscopy provided by M. Bak, J. T. Rasmussen, and N. C. Nielsen, J. Magn. Reson. 147, 296-330 (2000).

Simpson 1 for two pulses

# twop1.in
# spin-3/2 central-line intensity optimization
# with p1 in two-pulse MAS sequence

spinsys {
  channels 23Na
  nuclei   23Na
  quadrupole 1 1 1e6 0 0 0 0

par {
  spin_rate        10000
  variable tsw     0.5
  sw               1.0e6/tsw
  np               41
  crystal_file     rep320
  gamma_angles     10
  start_operator   I1z
  verbose          1101
  variable rf      100000
  proton_frequency 400e6

proc pulseq {} {
  global par
  maxdt $par(tsw)

  matrix set 1 elements {{1 4} {4 1}}

  matrix set detect elements {{2 3}}


  for {set i 1} {$i < $par(np)} {incr i} {

    pulse $par(tsw) $par(rf) x

    store 2

    filter 1

    pulse 1.5 $par(rf) x

    acq -y


    prop 2

proc main {} {
  global par

  fsave [fsimpson] $par(name).fid
  puts "Larmor frequency (Hz) of 23Na: "
  puts [resfreq 23Na $par(proton_frequency)]


File name.

Spin I = 3/2.
qcc = 1 MHz,
eta = 0.

10 kHz.
0.5 s increment.

1st pulse: 20 s.

100 kHz RF pulse.

0.5 s increment.

3Q and -3Q from
the 1st pulse,
density matrix

Central transition,
fictitious spin-1/2

No pulse,
no signal.

1st x-pulse is
variable pulse.

Save propagator
at the end of
1st x-pulse.

Select -3Q and 3Q

The 2nd x-pulse
has 1.5 s length.

Receiver -y.

Reset propagator to
initial value.

Recall the propagator at the end of the 1st x-pulse.

SIMPSON uses gyromagnetic ratios provided by IUPAC for the determination of the Larmor frequency of a nucleus. For example:

23Na Larmor frequency = Proton Larmor frequency * 23Na gyromagnetic ratio / Proton gyromagnetic ratio;

400 MHz * 7.0808493 / 26.7522128 = 105.8731007 MHz.

This curve represents the simulated central-line intensity versus the first-pulse length p1 with SIMPSON for a spin I = 3/2 system excited by the two-pulse MAS sequence.

Central-line intensity versus p1 simulated with SIMPSON

Correlation curve of SIMPSON versus JDK1.3 Java applet for the two-pulse MAS sequence

This figure represents the correlation curve relating two simulations generated with SIMPSON (Simpson 1) and JDK1.3 Java applet (Example 1) for the two-pulse MAS sequence applied to a spin I = 3/2 system.

[Contact me] - Last updated May 31, 2018
Copyright 2002- pascal-man.com. All rights reserved.