SPC52d: 2D double quantum excitation 180°-phase shift supercycled POST-C5 pulse program for TopSpin2.1




Home and Applets > Pulse Program > 2Q/1Q Correlation > 2D SPC5 Pulse Program
Double-quantum excitation with SPC5 pulse sequence

Since non-phase cycling is applied to the SPC5 excitation pulse, four-phase cycling is applied to the detection pulse P1 for selecting the 0Q -> -1Q coherence order jump, and four-phase cycling is applied to the SPC5 reconversion pulse for filtering DQ coherences.


*** Outline ***


Code for Avance III spectrometers with topSpin2.1 operating system

;spc52d  (TopSpin 2.1)
;modified for AVIII by HF, May 14, 07

;2D SQ-DQ correlation experiment with SPC5 sequence
;for the original C7 sequence see: Lee et al. Chem Phys Lett 242, 304-309, 1995
;see Hohwy, Rienstra, Jaroniec and Griffin, JCP 110, 7983, 1999

;Avance III version
;parameters:
;d1 : recycle delay
;d0 : min. delay in t1 evolution

;p1 : f1 presaturation pulses and detection pulse at pl1

;pl2  : =120dB, not used
;pl11 : for SPC5 recoupling sequence B1=5*cnst31 in Hz

;cnst31 : spinning speed
;in0 : =l3*(1s/cnst31), t1 increment multiple of rotor periods
;l0 : number of composite SPC5 cycles multiple of 5 in DQ excitation
;l2 : number of composite SPC5 cycles multiple of 5 in DQ reconversion
;l20 : # of pulses in saturation pulse train
;ns : 16*n
;mc2 : STATES-TPPI
;nd0 : 1
;FnMode : undefined
;WDW : F1 QSINE 3,  F2 QSINE 2 or EM
;use "xau xfshear rotate" to shift spectrum suitably along f1
;zgoptns :-Dpresat or blank

;$COMMENT=SQ-DQ experiment with SPC5 sequence
;$CLASS=Solids
;$DIM=2D
;$TYPE=direct excitation
;$SUBTYPE=homonuclear correlation
;$OWNER=Bruker

define pulse pul360
  "pul360=(1s/cnst31)/5"    ;360° pulse
define pulse pul90
  "pul90=(0.25s/cnst31)/5"  ; 90° pulse
define pulse pul270
  "pul270=(0.75s/cnst31)/5" ;270° pulse

define loopcounter count    ;for STATES-TPPI procedure
  "count=td1/2"             ;and STATES cos/sin procedure

  "d31=(1s/cnst31)"
  "in0=l3*d31"
  "inf1=l3*d31"

;cnst11 : to adjust t=0 for acquisition, if digmod = baseopt
"acqt0=1u*cnst11"

#include <rot_prot.incl>
                            ;protect for too slow rotation

  ze                        ;acquire into a cleared memory
  "d0=1u"                   ;make sure a short d0 is used initially

1 d31

#ifdef presat               ;set with -Dpresat
pres, d20                   ;delay between saturation pulses
  (p1 pl1 ph1):f1           ;saturation loop if required
  lo to pres times l20
#endif /* presat */

2 d1                        ;recycle delay
  1m rpp11                  ;reset the phase ph11 pointer to the first element
  1m rpp12                  ;reset the phase ph12 pointer to the first element
  1m rpp13                  ;reset the phase ph13 pointer to the first element
  1m rpp14                  ;reset the phase ph14 pointer to the first element
  1u pl11:f1                ;switch to SPC5 RF condition

3 pul90  ph11 ipp13 ipp14   ;SPC5 DQ excitation
                            ;increment reconversion phase ph13 and ph14 pointers
  pul360 ph12 ipp12         ;increment phase ph12 pointer
  pul270 ph11 ipp11         ;increment phase ph11 pointer
  lo to 3 times l0          ;l0 = multiple of 5

4 d0                        ;double-quantum evolution period

5 pul90  ph13               ;SPC5 DQ reconversion
  pul360 ph14 ipp14         ;increment phase ph14 pointer
  pul270 ph13 ipp13         ;increment phase ph13 pointer
  lo to 5 times l2          ;l2 = multiple of 5

  (p1 pl1 ph5):f1           ;detection pulse, flip into the xy plane
  2u
  gosc ph31                 ;gosc does not loop to 1
                            ;start ADC with ph31 signal routing

                            ;DQ filtering (four phase cycling):
  40u ip13*16384            ;increments all phases of ph13 by 90°
  40u ip14*16384            ;increments all phases of ph14 by 90°
  lo to 1 times ns          ;next scan

  100m wr #0 if #0 zd       ;delay for disk I/O, store signal,
                            ;increase FID number
                            ;delete memory data
                            ;do not perform dummy scans
                            ;with next acquisition

  1m ip11*8192              ;increments all phases of ph11 by 45°, 
                            ;90° phase for DQ coherence
  1m ip12*8192              ;increments all phases of ph12 by 45°,
                            ;90° phase for DQ coherence
  lo to 1 times 2           ;t1 quadrature detection

  1m id0

  ;1m rp11                  ;reset all phases of ph11, ph12, ph13, and ph14 
  ;1m rp12                  ;to their original values, i.e. to the values they 
  ;1m rp13                  ;had before the first ip11, ip12, ip13, and ip14
  ;1m rp14                  ;in case of STATES remove semicolon at beginning of the 4 lines

  lo to 1 times count       ;count = td1/2

HaltAcqu, 1m
exit

ph1=  0                     ;for saturation pulse

ph11= (65536)     0 13107 26214 39322 52429 32768 45875 58982  6554 19661
ph12= (65536) 32768 45875 58982  6554 19661     0 13107 26214 39322 52429
ph13= (65536) 16384 29491 42598 55706  3277 49152 62259  9830 22937 36044
ph14= (65536) 49152 62259  9830 22937 36044 16384 29491 42598 55706  3277

ph5=   0 0 0 0 2 2 2 2 1 1 1 1 3 3 3 3
ph31 = 0 2 0 2 2 0 2 0 1 3 1 3 3 1 3 1    ;ph31 = ph5 + 2*ph13
  

Example: 31P in VPI-5 zeolite with AV500

31P 2D spectrum acquired with SPC5 pulse sequence

31P 180°-phase shift supercycled POST-C5 (SPC5) DQ-SQ spectrum of VPI-5 zeolite; rotor spinning speed: 14 kHz.


Pulseprogram parameters for spc52d.ppm:

General  
PULPROG spc52d.ppm
TD 1024
NS 64
DS 0
SWH [Hz] 12500.00
AQ [s] 0.0410100
RG 4
DW [µs] 40.000
DE [µs] 6.50
CNST11 0.0000000
CNST31 14000.0000000
d0 [s] 0.00000100
D1 [s] 5.00000000
D20 [s] 0.10000000
d31 [s] 0.00007143
in0 [s] 0.00007143
L0 55
L2 55
L3 1
L20 20
ZGOPTNS -Dpresat
count 84
Channel f1  
NUC1 31P
P1 [µs] 3.50
PL1 [dB] 8.00
PL1W [W] 55.57575989
PL11 [dB] 7.50
PL11 [W] 62.35702896
pul270 [µs] 10.71
pul360 [µs] 14.29
pul90 [µs] 3.57
SFO1 [MHz] 202.4826413

Acquisition parameters:

  F2 F1
Experiment    
PULPROG spc52d.ppm  
AQ_mod DQD  
FnMODE   undefined
TD 1024 168
NS 64  
DS 0  
TD0 1  
Width    
SW [ppm] 61.7336 69.1403
SWH [Hz] 12500.000 13999.720
IN_F [µs]   71.43
AQ [s] 0.0410100 0.0060001
Nucleus1    
NUC1 31P 31P
O1 [Hz] -2029.70 -2029.70
O1P [ppm] -10.024 -10.024
SFO1 [MHz] 202.4826413 202.4826413
BF1 [MHz] 202.4846710 202.4846710


References

  1. Robert Schneider, Karsten Seidel, Manuel Etzkorn, Adam Lange, Stefan Becker, and Marc Baldus
    Probing molecular motion by double-quantum (13C,13C) solid-state NMR spectroscopy: Application to ubiquitin,
    J. Am. Chem. Soc. 132, 223-233 (2010).
    Abstract
     
  2. Mei Hong, Tatiana V. Mishanina, and Sarah D. Cady
    Accurate measurement of methyl 13C chemical shifts by solid-state NMR for the determination of protein side chain conformation: The influenza A M2 transmembrane peptide as an example,
    J. Am. Chem. Soc. 131, 7806-7816 (2009).
    Abstract
     
  3. G. P. Drobny, J. R. Long, T. Karlsson, W. Shaw, J. Popham, N. Oyler, P. Bower, J. Stringer, D. Gregory, M. Mehta, and P. S. Stayton
    Structural studies of biomateriaux using double-quantum solid-state NMR spectroscopy,
    Annu. Rev. Phys. Chem. 54, 531-571 (2003).
    Abstract
     
  4. T. Karlsson, A. Brinkmann, P. J. E. Verdegem, J. Lugtenburg, and M. H. Levitt
    Multiple-quantum relaxation in the magic-angle-spinning NMR of 13C spin pairs,
    Solid State Nucl. Magn. Reson. 14, 43-58 (1999).
    Abstract
     
  5. Mei Hong
    Solid-state dipolar INADEQUATE NMR spectroscopy with a large double-quantum spectral width,
    J. Magn. Reson. 136, 86–91 (1999).
    Abstract
     
  6. M. Hohwy, C. M. Rienstra, C. P. Jaroniec, and R. G. Griffin
    Fivefold symmetric homonuclear dipolar recoupling in rotating solids: Application to double quantum spectroscopy,
    J. Chem. Phys. 110, 7983-7992 (1999).
    Abstract
    SPC5 pulse sequence

    Definition of SPC5 excitation pulse.

     
  7. M. Hohwy, H. J. Jakobsen, M. Edén, M. H. Levitt, and N. C. Nielsen
    Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: A compensated C7 pulse sequence,
    J. Chem. Phys. 108, 2686-2694 (1998).
    Abstract
     
  8. Y. K. Lee, N. D. Kurur, M. Helmle, O. G. Johannessen, N. C. Nielsen, and M. H. Levitt
    Efficient dipolar recoupling in the NMR of rotating solids. A sevenfold symmetric radiofrequency pulse sequence,
    Chem. Phys. Lett. 242, 304-309 (1995).
    Abstract
     

(top)

[Contact me] - Last updated December 16, 2012
Solid-state NMR bibliography for
Aluminum-27
Antimony-121/123
Arsenic-75
Barium-135/137
Beryllium-9
Bismuth-209
Boron-11
Bromine-79/81
Calcium-43
Cesium-133
Chlorine-35/37
Chromium-53
Cobalt-59
Copper-63/65
Deuterium-2
Gallium-69/71
Germanium-73
Gold-197
Hafnium-177/179
Indium-113/115
Iodine-127
Iridium-191/193
Krypton-83
Lanthanum-139
Lithium-7
Magnesium-25
Manganese-55
Mercury-201
Molybdenum-95/97
Neon-21
Nickel-61
Niobium-93
Nitrogen-14
Osmium-189
Oxygen-17
Palladium-105
Potassium-39/41
Rhenium-185/187
Rubidium-85/87
Ruthenium-99/101
Scandium-45
Sodium-23
Strontium-87
Sulfur-33
Tantalum-181
Titanium-47/49
Vanadium-51
Xenon-131
Zinc-67
Zirconium-91



Copyright © 2002- pascal-man.com. All rights reserved.