R14_2^6-2d: 2D large DQ F1 spectral width R1426 pulse program for TopSpin2.1




Home and Applets > Pulse Program > 2Q/1Q Correlation > 2D Large DQ F1 Spectral Width R14_2^6 Pulse Program
Double-quantum excitation with R14 pulse sequence

Since non-phase cycling is applied to the R14_2^6 excitation pulse, four-phase cycling is applied to the detection pulse P1 for selecting the 0Q -> -1Q coherence order jump, and four-phase cycling is applied to the R14_2^6 reconversion pulse for filtering DQ coherences.


*** Outline ***


Code for Avance III spectrometers with topSpin2.1 operating system

;r14-2-6_2d (TopSpin 2.0)

;2D SQ-DQ correlation experiment with R14_2^6, use r14-2-6_1d for setup
;M. Carravetta, M. Eden, X. Zhao, A. Brinkmann and M.H. Levitt, 
;Symmetry principles for the design of radiofrequency pulse seqeunces in
;the nuclear magnetic resonance of rotating solids, Chem. Phys. Lett 321 (2000) 205-215 
;by JOS 02/28/03

;Avance II+ version
;parameters:
;d1  : recycle delay
;d0  : incremented delay (2D) [3 usec]
;d20 : delay between saturation pulses

;p1  : presaturation pulses and detection pulse at power pl1

;pl1  : f1 power level
;pl11 : for R14_2^6 recoupling sequence B1=7*cnst31 in Hz

;cnst31 : spinning speed
;l0  : 2*number of composite R14_2^6 cycles (pul90 + pul270) for DQ excitation
;l3  : for t1 increment
;l20 : # of pulses in saturation pulse train
;in0 : l3*2*rotorp/7, t1 increment
;ns  : n*16
;FnMode : undefined
;mc2 : STATES-TPPI
;nd0 : 1
;zgoptns :-Dpresat or blank

;$COMMENT=SQ-DQ experiment with R14_2^6
;$CLASS=Solids
;$DIM=2D
;$TYPE=direct excitation
;$SUBTYPE=homonuclear correlation
;$OWNER=Bruker

define loopcounter count    ;for STATES-TPPI procedure
  "count=td1/2"             ;and STATES cos/sin procedure
                            
define pulse pul90
  "pul90=(1.0s/cnst31)/28"
define pulse pul270
  "pul270=((3.0s/cnst31)/28)"

  "d31=1s/cnst31"
  "d0=1u"
  "in0=l3*2*d31/7"

;cnst11 : to adjust t=0 for acquisition, if digmod = baseopt
"acqt0=1u*cnst11"

#include <rot_prot.incl>

  ze                        ;acquire into a cleared memory
1 d31

#ifdef presat               ;set with -Dpresat
pres, d20                   ;delay between saturation pulses
  (p1 ph1):f1               ;saturation loop if required
  lo to pres times l20
#endif /* presat */

2 d1                        ;recycle delay
  1m rpp11                  ;reset the phase ph11 pointer to the first element
  1m rpp12                  ;reset the phase ph12 pointer to the first element
  1m rpp13                  ;reset the phase ph13 pointer to the first element
  1m rpp14                  ;reset the phase ph14 pointer to the first element
  10u reset:f1  
  1u pl11:f1                ;switch to R14_2^6 RF condition

                            ;R14_2^6 DQ excitation
3 (pul90  ph11 ipp11):f1    ;increment phase ph11 pointer
  (pul270 ph12 ipp12):f1    ;increment phase ph12 pointer
  (pul90  ph11 ipp11):f1    ;increment phase ph11 pointer
  (pul270 ph12 ipp12):f1    ;increment phase ph12 pointer
  lo to 3 times l0          ;l0 = multiple of 7

  d0                        ;DQ evolution
                            ;phase correction, due to t1 evolution period,
                            ;is not applied to R14_2^6 DQ reconversion pulse. 
                            ;As a result, the 2D spectrum is shifted from F1=0.

                            ;R14_2^6 DQ reconversion
4 (pul90  ph13 ipp13):f1    ;increment phase ph13 pointer
  (pul270 ph14 ipp14):f1    ;increment phase ph14 pointer
  (pul90  ph13 ipp13):f1    ;increment phase ph13 pointer
  (pul270 ph14 ipp14):f1    ;increment phase ph14 pointer
  lo to 4 times l0          ;l0 = multiple of 7

  (p1 pl1 ph5):f1           ;detection pulse
  gosc ph31                 ;gosc does not loop to 1

                            ;DQ filtering (four phase cycling):
  1m ip13*16384             ;increments all phases of ph13 by 90°
  1m ip14*16384             ;increments all phases of ph14 by 90°

  lo to 1 times ns          ;next scan
  100m wr #0 if #0 zd       ;save data

  1m ip11*8192              ;increments all phases of ph11 by 45°, 
                            ;90° phase for DQ coherence
  1m ip12*8192              ;increments all phases of ph12 by 45°,
                            ;90° phase for DQ coherence
  lo to 1 times 2           ;t1 quadrature detection

  1m id0                    ;increment in l3*2*Tr/7

  ;1m rp11                  ;reset all phases of ph11, ph12, ph13, and ph14 
  ;1m rp12                  ;to their original values, i.e. to the values they 
  ;1m rp13                  ;had before the first ip11, ip12, ip13, and ip14
  ;1m rp14                  ;in case of STATES remove semicolon at beginning of the 4 lines

  lo to 1 times count       ;count=td1/2
HaltAcqu, 1m
exit

ph1=0                       ;for saturation pulse

ph11=(65536) 14043 51493    ; 77.14°  282.86°  or  77.14°        -77.14°
ph12=(65536) 46811 18725    ;257.14°  102.86°  or  77.14°+180°   -77.14°+180°
ph13=(65536) 30427  2341    ;ph11 + 90°
ph14=(65536) 63195 35109    ;ph12 + 90°

ph5= 0 0 0 0 2 2 2 2 1 1 1 1 3 3 3 3
ph31=0 2 0 2 2 0 2 0 1 3 1 3 3 1 3 1
  

Example: 31P in VPI-5 zeolite with AV700

31P 2D spectrum acquired with r14 pulse sequence

31P R1426 DQ-SQ spectrum of VPI-5 zeolite with large DQ F1 spectral width; 3.2 mm-diameter rotor spinning speed: 10 kHz; high frequency Trigamma probehead, P-Al setting.


Pulseprogram parameters for r14_2_2d.ppm:

General  
PULPROG r142d.ppm
TD 2048
NS 32
DS 0
SWH [Hz] 100000.00
AQ [s] 0.0102950
RG 256
DW [µs] 5.000
DE [µs] 5.00
CNST11 0.0000000
CNST31 10000.0000000
d0 [s] 0.00000100
D1 [s] 10.00000000
d31 [s] 0.00010000
in0 [s] 0.00002857
L0 42
L3 1
count 128
Channel f1  
NUC1 31P
P1 [µs] 4.30
PL1 [dB] -1.50
PL11 [dB] -2.00
pul270 [µs] 10.71
pul90 [µs] 3.57
SFO1 [MHz] 283.4113792

Acquisition parameters:

  F2 F1
Experiment    
PULPROG r142d.ppm  
AQ_mod DQD  
FnMODE   undefined
TD 2048 256
NS 32  
DS 0  
TD0 1  
Width    
SW [ppm] 352.8440 123.5016
SWH [Hz] 100000.000 35001.750
IN_F [µs]   28.57
AQ [s] 0.0102950 0.0036570
Nucleus1    
NUC1 31P 31P
O1 [Hz] -6439.85 -6439.85
O1P [ppm] -22.722 -22.722
SFO1 [MHz] 283.4113792 283.4113792
BF1 [MHz] 283.4178190 283.4178190


References

  1. Lena Seyfarth and Jürgen Senker
    An NMR crystallographic approach for the determination of the hydrogen substructure of nitrogen bonded protons,
    Phys. Chem. Chem. Phys. 11, 3522-3531 (2009).
    Abstract
     
  2. M. Carravetta, A. Danquigny, S. Mamone, F. Cuda, O. G. Johannessen, I. Heinmaa, K. Panesar, R. Stern, M. C. Grossel, A. J. Horsewill, A. Samoson, M. Murata, Y. Murata, K. Komatsu, and M. H. Levitt
    Solid-state NMR of endohedral hydrogen-fullerene complexes,
    Phys. Chem. Chem. Phys. 9, 4879-4894 (2007).
    Abstract
     
  3. M. Carravetta, M. Edén, O. G. Johannessen, H. Luthman, P. J. E. Verdegem, J. Lugtenburg, A. Sebald, and M. H. Levitt
    Estimation of carbon-carbon bond lengths and medium-range internuclear distances by solid-state nuclear magnetic resonance,
    J. Am. Chem. Soc. 123, 10628-10638 (2001).
    Abstract
    R14_2^6 pulse sequence

    Definition of R1426 excitation pulse.

     
  4. Marina Carravetta, Mattias Edén, Xin Zhao, Andreas Brinkmann, and Malcolm H. Levitt
    Symmetry principles for the design of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids,
    Chem. Phys. Lett. 321, 205-215 (2000).
    Abstract
     

Other references

  1. Subhradip Paul, Rajendra Singh Thakur, M. H. Levitt, and P. K. Madhu
    1H homonuclear dipolar decoupling using rotor-synchronised pulse sequences: Towards pure absorption phase spectra, (RNnN/2)
    J. Magn. Reson. 205, 269-275 (2010).
    Abstract
     
  2. Mattias Edén
    Two-dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs, (R221; R241)
    J. Magn. Reson. 204, 99-110 (2010).
    Abstract
     
  3. B. Hu, L. Delevoye, O. Lafon, J. Trébosc, and J. P. Amoureux
    Double-quantum NMR spectroscopy of 31P species submitted to very large CSAs, (BR221; BABA-4; SPIP; fp-RFDR)
    J. Magn. Reson. 200, 178-188 (2009).
    Abstract
     
  4. Q. Wang, B. Hu, O. Lafon, J. Trébosc, F. Deng, and J. P. Amoureux
    Double-quantum homonuclear NMR correlation spectroscopy of quadrupolar nuclei subjected to magic-angle spinning and high magnetic field, (BR221; SR221)
    J. Magn. Reson. 200, 251-260 (2009).
    Abstract
     
  5. Mattias Edén and Andy Y. H. Lo
    Supercycled symmetry-based double-quantum dipolar recoupling of quadrupolar spins in MAS NMR: I. Theory, (R221; R241; R442; C120; C241)
    J. Magn. Reson. 200, 267-279 (2009).
    Abstract
     
  6. Jakob J. Lopez, Christoph Kaiser, Sarika Shastri, and Clemens Glaubitz
    Double quantum filtering homonuclear MAS NMR correlation spectra: a tool for membrane protein studies, (R2249)
    J. Biomol. 41, 97-104 (2008).
    Abstract
     
  7. Gregor Mali, Venčeslav Kaučič, and Francis Taulelle
    Measuring distances between half-integer quadrupolar nuclei and detecting relative orientations of quadrupolar and dipolar tensors by double-quantum homonuclear dipolar recoupling nuclear magnetic resonance experiments, (R221)
    J. Chem. Phys. 128, 204503/1-204503/11 (2008).
    Abstract
     
  8. Darren H. Brouwer, Per Eugen Kristiansen, Colin A. Fyfe, and Malcolm H. Levitt
    Symmetry-based 29Si dipolar recoupling magic angle spinning NMR spectroscopy: A new method for investigating three-dimensional structures of zeolite frameworks, (SR26411)
    J. Am. Chem. Soc. 127, 542-543 (2005).
    Abstract
     
  9. Mattias Edén, Hans Annersten, and Ĺsa Zazzi
    Pulse-assisted homonuclear dipolar recoupling of half-integer quadrupolar spins in magic-angle spinning NMR, (R441)
    Chem. Phys. Lett. 410, 24-30 (2005).
    Abstract
     
  10. Per Eugen Kristiansen, Marina Carravetta, Wai Cheu Lai, and Malcolm H. Levitt
    A robust pulse sequence for the determination of small homonuclear dipolar couplings in magic-angle spinning NMR, (SR26411)
    Chem. Phys. Lett. 390, 1-7 (2004).
    Abstract
     
  11. Per Eugen Kristiansen, Dan J. Mitchell, and Jeremy N. S. Evans
    Double-quantum dipolar recoupling at high magic-angle spinning rates, (RN)
    J. Magn. Reson. 157, 253-266 (2002).
    Abstract
     
  12. Andreas Brinkmann, Jörn Schmedt auf der Günne, and Malcolm H. Levitt
    Homonuclear zero-quantum recoupling in fast magic-angle spinning nuclear magnetic resonance, (R662)
    J. Magn. Reson. 156, 79-96 (2002).
    Abstract
     

(top)

[Contact me] - Last updated December 16, 2012
Solid-state NMR bibliography for
Aluminum-27
Antimony-121/123
Arsenic-75
Barium-135/137
Beryllium-9
Bismuth-209
Boron-11
Bromine-79/81
Calcium-43
Cesium-133
Chlorine-35/37
Chromium-53
Cobalt-59
Copper-63/65
Deuterium-2
Gallium-69/71
Germanium-73
Gold-197
Hafnium-177/179
Indium-113/115
Iodine-127
Iridium-191/193
Krypton-83
Lanthanum-139
Lithium-7
Magnesium-25
Manganese-55
Mercury-201
Molybdenum-95/97
Neon-21
Nickel-61
Niobium-93
Nitrogen-14
Osmium-189
Oxygen-17
Palladium-105
Potassium-39/41
Rhenium-185/187
Rubidium-85/87
Ruthenium-99/101
Scandium-45
Sodium-23
Strontium-87
Sulfur-33
Tantalum-181
Titanium-47/49
Vanadium-51
Xenon-131
Zinc-67
Zirconium-91



Copyright © 2002- pascal-man.com. All rights reserved.