PC7CP2d: 2D cross-polarization/2Q excitation POST_C7 pulse program for TopSpin2.1

Home and Applets > Pulse Program > 2Q/1Q Correlation > 2D Cross-Polarization POST_C7 Pulse Program
2D CP/2Q excitation with PC7 pulse sequence

Since non-phase cycling is applied to the PC7 excitation pulse, four-phase cycling is applied to the detection pulse P1 for selecting the 0Q -> -1Q coherence order jump, and four-phase cycling is applied to the PC7 reconversion pulse for filtering DQ coherences.

Avoid cross-polarization during POST C7 excitation and reconversion.

*** Outline ***

Code for Avance III spectrometers with topSpin2.1 operating system

;pc7cp2d (TopSpin 2.1)

;2D SQ-DQ correlation experiment with POST_C7 sequence and cross polarization
;Hohwy, M. Jakobsen, H.J. Eden, M. Levitt, M.H., Nielsen, N.C., 
;J. Chem. Phys. 108, 2686-2694 (1998)
;revised 09/09/03 JOS  modified by HF 14.5.07

;Avance III version
;d1 : recycle delay
;d0 : incremented delay (2D) [1 usec]

;p1  : detection pulse at pl1
;p3  : 1H excitation pulse @ PL12
;p5  : FSLG 2pi pulse set by lgcalc.incl
;p15 : HH contact pulse

;pl1  : f1 power level
;pl2  : =120dB, not used
;pl7  : for POST C7 recoupling sequence, B1=7*cnst31 in Hz
;pl12 : for 1H excitation and decoupling
;pl13 : for LG decoupling cpdprg1 = cwlg or cw13 or tppm13
;pcpd2  : decoupling pulse f2 @ PL12, pcpd = 2*P3-0.2us used by TPPM and SPINAL
;sp0    : proton power level during contact
;spnam0 : for CP on 1H e.g. ramp.64 
;cpdprg1: decoupling f2 during C7, e.g. cw (or cwlg) or tppm
;cpdprg2: decoupling f2, e.g. tppm15, SPINAL64

;cnst20: LG-RF field as adjusted, in Hz used to calculate cnst22 
;        and cnst23 +and - LG frequency
;cnst21: =0 frequency reset on resonance (set by lgclac.incl)
;cnst22: +LG frequency offset calc. by lgcalc.incl
;cnst23: -LG frequency offset calc. by lgcalc.incl
;cnst24: offset for 1H evol. during FSLG
;cnst31: spinning speed

;l0    : number of composite C7 cycles for DQ excitation 
;        and DQ reconversion (multiple of 7)
;l3    : number of rotorperiods for t1 increment
;in0   : =l3*(1s/cnst31), t1 increment
;FnMode: undefined
;mc2   : STATES-TPPI
;ns    : 32*n
;WDW : F1 QSINE 3,  F2 QSINE 2 or EM
;use "xau xfshear rotate" to shift spectrum suitably along f1

;$COMMENT=SQ-DQ experiment with post-C7 sequence, cp for excitation
;$TYPE=cross polarisation
;$SUBTYPE=homonuclear correlation

define loopcounter count       ;for STATES-TPPI procedure
  "count=td1/2"                ;and STATES cos/sin procedure

define pulse tau1
  "tau1=((0.25s/cnst31)/7)"    ; 90° pulse
define pulse tau4
  "tau4=((1s/cnst31)/7)"       ;360° pulse
define pulse tau3
  "tau3=((0.75s/cnst31)/7)"    ;270° pulse


;cnst11 : to adjust t=0 for acquisition, if digmod = baseopt

#include <lgcalc.incl>
                               ;calculates cnst22 from cnst20, RF field at pl13
#include <rot_prot.incl>


1 d31
2 d1 do:f2                     ;recycle delay, decoupler off

#include <p15_prot.incl>
            ;make sure p15 does not exceed 10 msec
            ;let supervisor change this pulseprogram if 
            ;more is needed
#ifndef lacq
            ;disable protection file for long acquisition change decoupling power !!!
            ;or you risk probe damage
            ;if you set the label lacq (ZGOPTNS -Dlacq), the protection is disabled

#include <aq_prot.incl>
                               ;allows max. 50 msec acquisition time, supervisor
                               ;may change  to max. 1s at less than 5 % duty cycle
                               ;and reduced decoupling field

  1m rpp11                     ;reset the phase ph11 pointer to the first element
  1m rpp12                     ;reset the phase ph12 pointer to the first element
  1m rpp13                     ;reset the phase ph13 pointer to the first element
  1m rpp14                     ;reset the phase ph14 pointer to the first element

  1u fq=cnst22:f2              ;show LG frequencies
  1u fq=cnst23:f2
  1u fq=cnst21:f2

  (p3 pl12 ph1):f2             ;proton 90° pulse
  (p15 pl1 ph2):f1 (p15:sp0 ph10):f2            ;contact pulse with square or 
                                                ;ramp shape ramp.100 on F2

  (p1 pl1 ph4):f1              ;90° pulse putting magnetization back to z-axis 
                               ;for PC7 double-quantum excitation

3 (tau1 pl7 ph11 ipp13 ipp14):f1 (1u cpds1):f2  ;c7 excitation, 1 loop = 2*Tr/7, 
                               ;increment reconversion pulse phase ph13 and ph14 pointers
                                                ;pl13=120 for masr > 15 kHz
                                                ;F2 decoupling cw (or cwlg) or tppm
  (tau4 ph12 ipp12):f1         ;increment phase ph12 pointer
  (tau3 ph11 ipp11):f1         ;increment phase ph11 pointer
                               ;to the next phase in the lists
  lo to 3 times l0             ;l0 DQ excitation block = DQ reconversion block

4 d0 cpds2:f2                                   ;double-quantum evolution time, 
                                                ;F2 decoupling tppm15, SPINAL64

5 (tau1 ph13):f1 (1u cpds1):f2                  ;c7 reconversion, 1 loop = 2*Tr/7,
                                                ;F2 decoupling cw (or cwlg) or tppm
  (tau4 ph14 ipp14):f1         ;increment phase ph14 pointer
  (tau3 ph13 ipp13):f1         ;increment phase ph13 pointer
                               ;to the next phase in the lists
  lo to 5 times l0

  (p1 pl1 ph5):f1 (1u cpds2):f2                 ;F2 decoupling cpdprg2 spinal64, 
                                                ;@ pl12, cnst21=on resonance, 
                                                ;detection pulse
  gosc ph31                    ;gosc does not loop to 1
                               ;start ADC with ph31 signal routing
  1m do:f2                     ;decoupling off
                               ;DQ filtering (four phase cycling):
  ;1m ip13                      ;increments all phases of ph13 by 90°
  ;1m ip14                      ;increments all phases of ph14 by 90°
  1m ip13*16384                ;increments all phases of ph13 by 90°
  1m ip14*16384                ;increments all phases of ph14 by 90°

  lo to 1 times ns             ;next scan

  100m wr #0 if #0 zd          ;save data

  ;1m  ip11                     ;increments all phases of ph11 by 45°, 
                                ;90° phase for DQ coherence
  ;1m  ip12                     ;increments all phases of ph12 by 45°,
                                ;90° phase for DQ coherence
  1m ip11*8192                 ;increments all phases of ph11 by 45°, 
                               ;90° phase for DQ coherence
  1m ip12*8192                 ;increments all phases of ph12 by 45°,
                               ;90° phase for DQ coherence
  lo to 1 times 2              ;t1 quadrature detection

  1m id0

  ;1m rp11                     ;reset all phases of ph11, ph12, ph13, and ph14 
  ;1m rp12                     ;to their original values, i.e. to the values they 
  ;1m rp13                     ;had before the first ip11, ip12, ip13, and ip14
  ;1m rp14                     ;in case of STATES remove semicolon at beginning of the 4 lines

  lo to 1 times count          ;count = td1/2

HaltAcqu, 1m

ph1= 1 1 1 1 3 3 3 3
ph2= 0
ph4= 3 3 3 3 1 1 1 1
ph5= 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3

;ph11 = (float,45.0)   0.00  51.43 102.86 154.29 205.71 257.14 308.57 
;ph12 = (float,45.0) 180.00 231.43 282.86 334.29 385.71 437.14 488.57 
;ph13 = (float,90.0)  90.00 141.43 192.86 244.29 295.71 347.14 398.57 
;ph14 = (float,90.0) 270.00 321.43 372.86 424.29 475.71 527.14 578.57 

ph11=(65536)     0  9362 18725 28087 37449 46811 56174 
ph12=(65536) 32768 42130 51493 60855  4681 14043 23406 
ph13=(65536) 16384 25746 35109 44471 53833 63195  7022 
ph14=(65536) 49152 58514  2341 11703 21065 30427 39790 

ph31= 0 2 0 2 0 2 0 2 2 0 2 0 2 0 2 0 1 3 1 3 1 3 1 3 3 1 3 1 3 1 3 1


  1. N. Chandrakumar
    1D double quantum filter NMR studies,
    in Annual Reports on NMR Spectroscopy, Graham A. Webb (Ed.), Elsevier, Amsterdam, vol. 67, pages 265-329 (2009).
  2. Giuseppe Pileio, Maria Concistrč, Neville McLean, Axel Gansmüller, Richard C. D. Brown, and Malcolm H. Levitt
    Analytical theory of γ-encoded double-quantum recoupling sequences in solid-state nuclear magnetic resonance,
    J. Magn. Reson. 186, 65-74 (2007).
  3. M. J. Potrzebowski, J. Gajda, W. Ciesielski, and I. M. Montesinos
    Distance measurements in disodium ATP hydrates by means of 31P double quantum two-dimensional solid-state NMR spectroscopy, (PC7, asymmetric peaks)
    J. Magn. Reson. 179, 173-181 (2006).
  4. Sebastian Olejniczak, Pawel Napora, Jaroslaw Gajda, Wlodzimierz Ciesielski, Marek J. Potrzebowski
    31P double-quantum solid-state NMR study of phosphoroorganic compounds with (O)P-O-P-(O), (S)P-O-P(S) and (S)P-S-P(O) unit, (PC7)
    Solid State Nucl. Magn. Reson. 30, 141-149 (2006).
  5. Colan E. Hughes and Marc Baldus
    Magic-angle-spinning solid-state NMR applied to polypeptides and proteins,
    in Annual Reports on NMR Spectroscopy, Graham A. Webb (Ed.), Elsevier, Amsterdam, vol. 55, pages 121-158 (2005).
  6. Ingo Schnell
    Dipolar recoupling in fast-MAS solid-state NMR spectroscopy,
    Prog. Nucl. Magn. Reson. Spectrosc. 45, 145-207 (2004).
  7. Yoh Matsuki, Hideo Akutsu, and Toshimichi Fujiwara
    Precision 1H-1H distance measurement via 13C NMR signals: utilization of 1H-1H double-quantum dipolar interactions recoupled under magic angle spinning conditions,
    Magn. Reson. Chem. 42, 291-300 (2004).
  8. T. Karlsson, J. M. Popham, J. R. Long, N. Oyler, and G. P. Drobny
    A study of homonuclear dipolar recoupling pulse sequences in solid-state nuclear magnetic resonance, (DRAWS, PC7, SPC5, R1426, R2246; phase cycling)
    J. Am. Chem. Soc. 125, 7394-7407 (2003).
  9. M. Bjerring, T. Vosegaard, A. Malimendal, and N.C. Nielsen
    Methodological development of solid-state NMR for characterization of membrane proteins, (PC7, C7)
    Concepts Magn. Reson. A 18, 111-129 (2003).
  10. G. P. Drobny, J. R. Long, T. Karlsson, W. Shaw, J. Popham, N. Oyler, P. Bower, J. Stringer, D. Gregory, M. Mehta, and P. S. Stayton
    Structural studies of biomateriaux using double-quantum solid-state NMR spectroscopy,
    Annu. Rev. Phys. Chem. 54, 531-571 (2003).
  11. Wyndham Bolling Blanton
    High Performance Computations in NMR,
    Berkeley, 2002.
  12. Juraj Pivarč
    Application of the Multiple Quantum NMR Spectroscopy for Investigation of the Dipole-Dipole Couplings in Amorphous Polymers,
    Halle, 4 July 2000.
  13. Andreas Brinkmann, Mattias Edén, and Malcolm H. Levitt
    Synchronous helical pulse sequences in magic-angle spinning nuclear magnetic resonance: Double quantum recoupling of multiple-spin systems, (CNnν: C721, C1445, C144-5, SC1445; phase cycling)
    J. Chem. Phys. 112, 8539-8554 (2000).
  14. Mattias Edén, Andreas Brinkmann, Henrik Luthman, Lars Eriksson, and Malcolm H. Levitt
    Determination of molecular geometry by high-order multiple-quantum evolution in solid-state NMR,
    J. Magn. Reson. 144, 266-279 (2000).
  15. T. Karlsson, A. Brinkmann, P. J. E. Verdegem, J. Lugtenburg, and M. H. Levitt
    Multiple-quantum relaxation in the magic-angle-spinning NMR of 13C spin pairs, (C7, phase cycling)
    Solid State Nucl. Magn. Reson. 14, 43-58 (1999).
  16. Mei Hong
    Solid-state dipolar INADEQUATE NMR spectroscopy with a large double-quantum spectral width,
    J. Magn. Reson. 136, 86–91 (1999).
  17. Chad M. Rienstra, Mary E. Hatcher, Leonard J. Mueller, Boqin Sun, Stephen W. Fesik, and Robert G. Griffin
    Efficient multispin homonuclear double-quantum recoupling for magic-angle spinning NMR: 13C-13C correlation spectroscopy of U-13C-erythromycin A, (combined MLEV refocusing and C7: CMR7; dependence of DQF efficiency on 1H CW decoupling field strength during mixing; sample size)
    J. Am. Chem. Soc. 120, 10602-10612 (1998).
  18. M. Edén and M. H. Levitt
    Excitation of carbon-13 triple quantum coherence in magic-angle-spinning NMR,
    Chem. Phys. Lett. 293, 173-179 (1998).
  19. M. Hohwy, H. J. Jakobsen, M. Edén, M. H. Levitt, and N. C. Nielsen
    Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: A compensated C7 pulse sequence,
    J. Chem. Phys. 108, 2686-2694 (1998).
    PC7 pulse sequence

    Definition of PC7 excitation pulse.

  20. Helen Geen, Johannes Gottwald, Robert Graf, Ingo Schnell, Hans W. Spiess, and Jeremy J. Titman
    Elucidation of dipolar coupling networks under magic-angle spinning,
    J. Magn. Reson. 125, 224-227 (1997).
  21. W. A. Dollase, M. Feike, H. Förster, T. Schaller, I. Schnell, A. Sebald, and S. Steuernagel
    A 2D 31P MAS NMR study of polycrystalline Cd3(PO4)2,
    J. Am. Chem. Soc. 119, 3807-3810 (1997).
  22. Y. K. Lee, N. D. Kurur, M. Helmle, O. G. Johannessen, N. C. Nielsen, and M. H. Levitt
    Efficient dipolar recoupling in the NMR of rotating solids. A sevenfold symmetric radiofrequency pulse sequence, (C7, phase cycling)
    Chem. Phys. Lett. 242, 304-309 (1995).
    C7 pulse sequence

    Definition of C7 excitation pulse.

  23. Yoshitaka Ishii, Jun Ashida, and Takehiko Terao
    13C---1H dipolar recoupling dynamics in 13C multiple-pulse solid-state NMR,
    Chem. Phys. Lett. 246, 439-445 (1995).
  24. A. Wokaun and R. R. Ernst
    Selective detection of multiple quantum transitions in NMR by two-dimensional spectroscopy,
    Chem. Phys. Lett. 52, 407-412 (1977).


[Contact me] - Last updated December 16, 2012
Solid-state NMR bibliography for

Copyright © 2002- pascal-man.com. All rights reserved.