PC72dlsw: 2D large double-quantum F1 spectral width POST_C7 pulse program

Home and Applets > Pulse Program > 2Q/1Q Correlation > 2D Large Double-Quantum F1 Spectral Width POST_C7 Pulse Program
Large double-quantum F1 spectral width PC7 pulse sequence

Since non-phase cycling is applied to the PC7 excitation pulse, four-phase cycling is applied to the detection pulse P1 for selecting the 0Q -> -1Q coherence order jump, and four-phase cycling is applied to the PC7 reconversion pulse for filtering DQ coherences.

2*del360 = τ1 + τ4 + τ3

*** Outline ***

Code for Avance III spectrometers with topSpin2.1 operating system

;pc72dlsw  (TopSpin 2.0)

;SQ-DQ experiment using POST_C7 sequence
;for setup use pc71d
;M. Hong ...
;Hohwy, M. Jakobsen, H.J. Eden, M. Levitt, M.H., Nielsen, N.C., 
;J. Chem. Phys. 108, 2686-2694 (1998)
;revised 11/19/03 JOS

;Avance II+ version
;d1  : recycle delay
;d0  : incremented delay (2D) [3 usec]
;d20 : delay between saturation pulses

;pl1 : f1 power level for presaturation pulses and detection pulse
;pl7 : for POST C7 recoupling sequence, B1=7*cnst31 in Hz
;p1  : detection pulse at pl1

;cnst31 : spinning speed
;l0 : number of composite C7 cycles for DQ excitation 
;l1 : number of composite C7 cycles for DQ reconversion 
;l2 : number of 2/7 rotor revolutions for DQ evolution
;l3 : number of 2/7 rotor revolution increments for DQ evolution
;l20: # of pulses in saturation pulse train, 0 if undesired

;inf1: =l3*(2s/cnst31)/7, t1 increment
;FnMode : undefined
;ns  : 16*n
;WDW : F1 QSINE 3,  F2 QSINE 2 or EM

;$COMMENT=SQ-DQ experiment with post-C7 sequence, optimised for large sweep width
;$TYPE=direct excitation
;$SUBTYPE=homonuclear correlation

define loopcounter count       ;for STATES-TPPI procedure
  "count=td1/2"                ;and STATES cos/sin procedure

define pulse tau1
  "tau1=((0.25s/cnst31)/7)"    ; 90° pulse
define pulse tau4
  "tau4=((1s/cnst31)/7)"       ;360° pulse
define pulse tau3
  "tau3=((0.75s/cnst31)/7)"    ;270° pulse

define delay del360


;cnst11 : to adjust t=0 for acquisition, if digmod = baseopt

#include <rot_prot.incl>
#include <Avancesolids.incl>

  ze                           ;acquire into a cleared memory
1 d31

#ifdef presat                  ;set with -Dpresat
pres, d20                      ;delay between saturation pulses
  (p1 pl1 ph1):f1              ;saturation loop if required
  lo to pres times l20
#endif /* presat */

2 d1
  1m rpp11                     ;reset the phase program ph11 pointer to the first element
  1m rpp12                     ;reset the phase program ph12 pointer to the first element
  1m rpp13                     ;reset the phase program ph13 pointer to the first element
  1m rpp14                     ;reset the phase program ph14 pointer to the first element

3 tau1:f1 pl7:f1 ph11 ipp13 ipp14     ;c7 excitation, 1 loop = 2*Tr/7, 
                               ;increment reconversion pulse phase ph13 and ph14 pointers
                               ;to the next phase in the lists
  tau4:f1 ph12 ipp12           ;increment phase ph12 pointer
  tau3:f1 ph11 ipp11           ;increment phase ph11 pointer
                               ;to the next phase in the lists
  lo to 3 times l0             ;l0 must be a multiple of 7

                               ;double-quantum evolution period
4 del360 ipp13 ipp14           ;increment reconversion pulse phase ph13 and ph14 pointers
  del360                       ;to the next phase in the lists
  lo to 4 times l2             ;del360 = (1s/cnst31)/7

6 tau1:f1 ph13                 ;c7 reconversion, 1 loop = 2*Tr/7,
  tau4:f1 ph14 ipp14           ;increment phase ph14 pointer
  tau3:f1 ph13 ipp13           ;increment phase ph13 pointer
                               ;to the next phase in the lists
  lo to 6 times l1             ;l1 must be a multiple of 7

  (p1 pl1 ph5):f1              ;detection pulse

  gosc ph31                    ;gosc does not loop to 1
                               ;start ADC with ph31 signal routing

                               ;DQ filtering (four phase cycling):
  ;1m ip13                      ;increments all phases of ph13 by 90°
  ;1m ip14                      ;increments all phases of ph14 by 90°
  1m ip13*16384                ;increments all phases of ph13 by 90°
  1m ip14*16384                ;increments all phases of ph14 by 90°
  lo to 2 times ns             ;next scan

  100m wr #0 if #0 zd          ;save data

  ;1m  ip11                     ;increments all phases of ph11 by 45°, 
                                ;90° phase for DQ coherence
  ;1m  ip12                     ;increments all phases of ph12 by 45°,
                                ;90° phase for DQ coherence
  1m  ip11*8192                ;increments all phases of ph11 by 45°, 
                               ;90° phase for DQ coherence
  1m  ip12*8192                ;increments all phases of ph12 by 45°,
                               ;90° phase for DQ coherence
  lo to 1 times 2              ;t1 quadrature detection

7 1m iu2                       ;increment counter l2 in 2*Tr/7
  lo to 7 times l3

  ;1m rp11                     ;reset all phases of ph11, ph12, ph13, and ph14 
  ;1m rp12                     ;to their original values, i.e. to the values they 
  ;1m rp13                     ;had before the first ip11, ip12, ip13, and ip14
  ;1m rp14                     ;in case of STATES remove semicolon at beginning of the 4 lines

  lo to 1 times count          ;count = td1/2

HaltAcqu, 1m

ph1= 0                         ;for saturation pulse

;ph11 = (float,45.0)   0.00  51.43 102.86 154.29 205.71 257.14 308.57 
;ph12 = (float,45.0) 180.00 231.43 282.86 334.29 385.71 437.14 488.57 
;ph13 = (float,90.0)  90.00 141.43 192.86 244.29 295.71 347.14 398.57 
;ph14 = (float,90.0) 270.00 321.43 372.86 424.29 475.71 527.14 578.57 

ph11=(65536)     0  9362 18725 28087 37449 46811 56174 
ph12=(65536) 32768 42130 51493 60855  4681 14043 23406 
ph13=(65536) 16384 25746 35109 44471 53833 63195  7022 
ph14=(65536) 49152 58514  2341 11703 21065 30427 39790 

ph5=   0 1 2 3 1 2 3 0 2 3 0 1 3 0 1 2
ph31 = 0 3 2 1 1 0 3 2 2 1 0 3 3 2 1 0    ;ph31 = ph5 + 2*ph13

Example: 31P in VPI-5 zeolite with AV500

31P 2D spectrum of VPI5 obtained with PC7lsw DQ pulse program

31P POST C7 DQ-SQ spectrum with large F1 spectral width of VPI-5 zeolite; rotor spinning speed: 10 kHz.

Pulseprogram parameters for pc72dlsw.ppm:

PULPROG pc72dlsw.ppm
TD 2048
NS 16
DS 0
SWH [Hz] 12500.00
AQ [s] 0.0820100
RG 4
DW [µs] 40.000
DE [µs] 6.50
CNST11 0.0000000
CNST31 10000.0000000
D1 [s] 10.00000000
D20 [s] 0.10000000
d31 [s] 0.00010000
in0 [s] 0.00002857
inf1 [s] 0.00002857
L1 59
l2 0
L3 1
L20 20
ZGOPTNS -Dpresat
count 200
del360 [s] 0.00001429
Channel f1  
NUC1 31P
P1 [µs] 3.00
PL1 [dB] 8.00
PL7 [dB] 7.80
SFO1 [MHz] 202.4830777
tau1 [µs] 3.57
tau2 [µs] 10.71
tau3 [µs] 14.29

Acquisition parameters:

  F2 F1
PULPROG pc72dlsw.ppm  
AQ_mod DQD  
FnMODE   undefined
TD 2048 400
NS 16  
DS 0  
TD0 1  
SW [ppm] 61.7336 172.8626
SWH [Hz] 12500.000 35001.750
IN_F [µs]   28.57
AQ [s] 0.0820100 0.0057140
NUC1 31P 31P
O1 [Hz] -1593.30 -1593.30
O1P [ppm] -7.869 -7.869
SFO1 [MHz] 202.4830777 202.4830777
BF1 [MHz] 202.4846710 202.4846710


  1. N. Chandrakumar
    1D double quantum filter NMR studies,
    in Annual Reports on NMR Spectroscopy, Graham A. Webb (Ed.), Elsevier, Amsterdam, vol. 67, pages 265-329 (2009).
  2. Giuseppe Pileio, Maria Concistrč, Neville McLean, Axel Gansmüller, Richard C. D. Brown, and Malcolm H. Levitt
    Analytical theory of γ-encoded double-quantum recoupling sequences in solid-state nuclear magnetic resonance,
    J. Magn. Reson. 186, 65-74 (2007).
  3. M. J. Potrzebowski, J. Gajda, W. Ciesielski, and I. M. Montesinos
    Distance measurements in disodium ATP hydrates by means of 31P double quantum two-dimensional solid-state NMR spectroscopy, (PC7, asymmetric peaks)
    J. Magn. Reson. 179, 173-181 (2006).
  4. Sebastian Olejniczak, Pawel Napora, Jaroslaw Gajda, Wlodzimierz Ciesielski, Marek J. Potrzebowski
    31P double-quantum solid-state NMR study of phosphoroorganic compounds with (O)P-O-P-(O), (S)P-O-P(S) and (S)P-S-P(O) unit, (PC7)
    Solid State Nucl. Magn. Reson. 30, 141-149 (2006).
  5. Colan E. Hughes and Marc Baldus
    Magic-angle-spinning solid-state NMR applied to polypeptides and proteins,
    in Annual Reports on NMR Spectroscopy, Graham A. Webb (Ed.), Elsevier, Amsterdam, vol. 55, pages 121-158 (2005).
  6. Ingo Schnell
    Dipolar recoupling in fast-MAS solid-state NMR spectroscopy,
    Prog. Nucl. Magn. Reson. Spectrosc. 45, 145-207 (2004).
  7. Yoh Matsuki, Hideo Akutsu, and Toshimichi Fujiwara
    Precision 1H-1H distance measurement via 13C NMR signals: utilization of 1H-1H double-quantum dipolar interactions recoupled under magic angle spinning conditions,
    Magn. Reson. Chem. 42, 291-300 (2004).
  8. T. Karlsson, J. M. Popham, J. R. Long, N. Oyler, and G. P. Drobny
    A study of homonuclear dipolar recoupling pulse sequences in solid-state nuclear magnetic resonance, (DRAWS, PC7, SPC5, R1426, R2246; phase cycling)
    J. Am. Chem. Soc. 125, 7394-7407 (2003).
  9. M. Bjerring, T. Vosegaard, A. Malimendal, and N.C. Nielsen
    Methodological development of solid-state NMR for characterization of membrane proteins, (PC7, C7)
    Concepts Magn. Reson. A 18, 111-129 (2003).
  10. G. P. Drobny, J. R. Long, T. Karlsson, W. Shaw, J. Popham, N. Oyler, P. Bower, J. Stringer, D. Gregory, M. Mehta, and P. S. Stayton
    Structural studies of biomateriaux using double-quantum solid-state NMR spectroscopy,
    Annu. Rev. Phys. Chem. 54, 531-571 (2003).
  11. Wyndham Bolling Blanton
    High Performance Computations in NMR,
    Berkeley, 2002.
  12. Juraj Pivarč
    Application of the Multiple Quantum NMR Spectroscopy for Investigation of the Dipole-Dipole Couplings in Amorphous Polymers,
    Halle, 4 July 2000.
  13. Andreas Brinkmann, Mattias Edén, and Malcolm H. Levitt
    Synchronous helical pulse sequences in magic-angle spinning nuclear magnetic resonance: Double quantum recoupling of multiple-spin systems, (CNnν: C721, C1445, C144-5, SC1445; phase cycling)
    J. Chem. Phys. 112, 8539-8554 (2000).
  14. Mattias Edén, Andreas Brinkmann, Henrik Luthman, Lars Eriksson, and Malcolm H. Levitt
    Determination of molecular geometry by high-order multiple-quantum evolution in solid-state NMR,
    J. Magn. Reson. 144, 266-279 (2000).
  15. T. Karlsson, A. Brinkmann, P. J. E. Verdegem, J. Lugtenburg, and M. H. Levitt
    Multiple-quantum relaxation in the magic-angle-spinning NMR of 13C spin pairs, (C7, phase cycling)
    Solid State Nucl. Magn. Reson. 14, 43-58 (1999).
  16. Mei Hong
    Solid-state dipolar INADEQUATE NMR spectroscopy with a large double-quantum spectral width,
    J. Magn. Reson. 136, 86–91 (1999).
  17. Chad M. Rienstra, Mary E. Hatcher, Leonard J. Mueller, Boqin Sun, Stephen W. Fesik, and Robert G. Griffin
    Efficient multispin homonuclear double-quantum recoupling for magic-angle spinning NMR: 13C-13C correlation spectroscopy of U-13C-erythromycin A, (combined MLEV refocusing and C7: CMR7; dependence of DQF efficiency on 1H CW decoupling field strength during mixing; sample size)
    J. Am. Chem. Soc. 120, 10602-10612 (1998).
  18. M. Edén and M. H. Levitt
    Excitation of carbon-13 triple quantum coherence in magic-angle-spinning NMR,
    Chem. Phys. Lett. 293, 173-179 (1998).
  19. M. Hohwy, H. J. Jakobsen, M. Edén, M. H. Levitt, and N. C. Nielsen
    Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: A compensated C7 pulse sequence,
    J. Chem. Phys. 108, 2686-2694 (1998).
    PC7 pulse sequence

    Definition of PC7 excitation pulse.

  20. Helen Geen, Johannes Gottwald, Robert Graf, Ingo Schnell, Hans W. Spiess, and Jeremy J. Titman
    Elucidation of dipolar coupling networks under magic-angle spinning,
    J. Magn. Reson. 125, 224-227 (1997).
  21. W. A. Dollase, M. Feike, H. Förster, T. Schaller, I. Schnell, A. Sebald, and S. Steuernagel
    A 2D 31P MAS NMR study of polycrystalline Cd3(PO4)2,
    J. Am. Chem. Soc. 119, 3807-3810 (1997).
  22. Y. K. Lee, N. D. Kurur, M. Helmle, O. G. Johannessen, N. C. Nielsen, and M. H. Levitt
    Efficient dipolar recoupling in the NMR of rotating solids. A sevenfold symmetric radiofrequency pulse sequence, (C7, phase cycling)
    Chem. Phys. Lett. 242, 304-309 (1995).
    C7 pulse sequence

    Definition of C7 excitation pulse.

  23. Yoshitaka Ishii, Jun Ashida, and Takehiko Terao
    13C---1H dipolar recoupling dynamics in 13C multiple-pulse solid-state NMR,
    Chem. Phys. Lett. 246, 439-445 (1995).
  24. A. Wokaun and R. R. Ernst
    Selective detection of multiple quantum transitions in NMR by two-dimensional spectroscopy,
    Chem. Phys. Lett. 52, 407-412 (1977).


[Contact me] - Last updated December 16, 2012
Solid-state NMR bibliography for

Copyright © 2002- pascal-man.com. All rights reserved.