cprfdr: 2D spin diffusion RFDR, CP pulse program for TopSpin2.1




Home and Applets > Pulse Program > Spin Diffusion > 2D Spin Diffusion RFDR CP Pulse Program
Spin diffusion pulse sequence with RFDR

Since non-phase cycling is applied to the preparation pulse (P15), two-phase cycling for the first P1 pulse is applied for filtering SQ coherences, and two-phase cycling is applied to the detection pulse P1 for selecting the 0Q -> -1Q coherence order jump.

Avoid cross-polarization during RFDR excitation.


*** Outline ***


Code for Avance III spectrometers with topSpin2.1 operating system

;cprfdr (TopSpin 2.1)

;2D exchange NMR in rotating solids  
;rotor synchronized, set cnst31=spin rate, spin rate regulation
;recommended
;see Bennet, Ok, Griffin, Vega J. Chem. Phys. 98, 8624 (1992)
;written by HF, 16.9.98 modified by HF 21.5.07
;Proton offset at LG frequency during mix to avoid HH transfer
;use TPPI for transform, phases will be dispersive 

;Avance III version
;parameters:
;d1 : recycle delay
;d0 : =1u, t1 evolution period
;in0 : = 1/swh{F1}
;pl1 : X power level
;pl11 : power level for X pulses
;sp0 : proton power level during contact
;pl2 : =120dB, not used
;pl12 : power level for H 90 and standard proton decoupling 
;pl13 : power level of LG decoupling, 120 dB at high spin rates >15 kHz
;pcpd2 : pulse length in decoupling sequence
;p15 : contact time at pl1 (f1) and pl2 (f2)
;p10 : pulse length for FSLG shape
;p3 : H 90 degree pulse
;p1 : X 90 degree pulse
;p2 : X 180 degree pulse
;cpdprg2 : sequence used for decoupling (tppm15, cw, etc.)
;cpdprg1 : cwlg, using pl13
;spnam0 : file name for variable amplitude CP
;cnst20 : proton RF field to calculate LG parameters
;cnst21 : =0, proton offset
;cnst22 : +ve Lee-Goldburg offset
;cnst23 : -ve Lee-Goldburg offset
;cnst24 : additional Lee-Goldburg offset
;cnst31 : spinning frequency
;l1 : number of rotor cycles for mixing time

;$COMMENT=exchange NMR (RFDR) in rotating solids, rotor synchronized
;$CLASS=Solids
;$DIM=2D
;$TYPE=cross polarisation
;$SUBTYPE=homonuclear correlation
;$OWNER=Bruker

define delay tau
  "tau=0.5s/cnst31-p2/2"
  "d31=1s/cnst31"
define delay mix
  "mix=l1*d31"
  
;cnst11 : to adjust t=0 for acquisition, if digmod = baseopt
"acqt0=1u*cnst11"

"in0=inf1"

#include <lgcalc.incl>
            ;calculates the lg offset cnst22 from cnst20=RF field, RF field at pl13

1 ze

#include <rot_prot.incl>
            ;protect for too slow rotation
#include <p15_prot.incl>
            ;make sure p15 does not exceed 10 msec	
            ;let supervisor change this pulseprogram if 
            ;more is needed
#include <aq_prot.incl>
            ;allows max. 50 msec acquisition time, supervisor
            ;may change  to max. 1s at less than 5 % duty cycle
            ;and reduced decoupling field

  mix
  d31
2 10m do:f2              :F2 decoupler off
  d1 rpp4                ;recycle delay,
                         ;reset the phase ph4 pointer to the first element
  2u fq=cnst21:f2
  (p3 pl12 ph1):f2       ;proton 90° pulse
  (p15 pl1 ph2):f1 (p15:sp0 ph10):f2    ;contact pulse with square or
                                        ;ramp shape ramp.100 on F2
  d0 cpds2:f2            ;F2 decoupling during evolution: tppm15, or SPINAL64

  (p1 pl11 ph3):f1       ;90° pulse putting magnetization back 
                         ;to z-axis for RFDR excitation

  1u cpds1:f2            ;use cwlg to avoid HH match during mixing period
5 tau                    ;mixing period with Gullion sequence
                         ;tau = half rotor period - p2/2
  (p2 ph4^):f1           ;180° pulse, increment phase ph4 pointer
  tau                    ;tau = half rotor period - p2/2
  lo to 5 times l1       ;set l1 for desired mixing period

  (p1 ph5):f1 (1u cpds2):f2    ;90° detection pulse, 
                               ;F2 decoupling during acquisition

  go=2 ph31
  1m do:f2               :F2 decoupler off
  10m mc #0 to 2 F1PH(ip2,id0)
                         ;delay for disk I/O, store signal,
                         ;increase FID number,
                         ;delete memory data,
                         ;do not perform dummy scans
                         ;with next acquisition,
                         ;increment p2 pulse phase by 90° for TPPI procedure,
                         ;increment time d0 by in0,
                         ;loop to 2, td1 times for 2D experiment

HaltAcqu, 1m
6 exit


ph1= 1 3
ph2= 0
ph3= 0 0 0 0 2 2 2 2
ph4= 0 1 0 1 1 0 1 0     ;X Y X Y Y X Y X compensated echo sequence of Gullion et al.
ph5= 0 0 0 0 0 0 0 0
     2 2 2 2 2 2 2 2
ph10=0 0 2 2
ph31=0 2 2 0 2 0 0 2
     2 0 0 2 0 2 2 0
  

References

  1. Ido de Boer, Jörg Matysik, Kees Erkelens, Shin-ichi Sasaki, Tomohiro Miyatake, Shiki Yagai, Hitoshi Tamiaki, Alfred R. Holzwarth, and Huub J. M. de Groot
    MAS NMR structures of aggregated cadmium chlorins reveal molecular control of self-assembly of chlorosomal bacteriochlorophylls,
    J. Phys. Chem. B 108, 16556-16566 (2004).
    Abstract
     
  2. Andrew E. Bennett, Chad M. Rienstra, Janet M. Griffiths, Weiguo Zhen, Peter T. Lansbury, and Robert G. Griffin
    Homonuclear radio frequency-driven recoupling in rotating solids,
    J. Chem. Phys. 108, 9463-9479 (1998).
    Abstract
     
  3. A. E. Bennett, J. H. Ok, and R. G. Griffin
    Chemical shift correlation spectroscopy in rotating solids: Radio frequency-driven dipolar recoupling and longitudinal exchange,
    J. Chem. Phys. 96, 8624-8627 (1992).
    Abstract
     

(top)

[Contact me] - Last updated December 16, 2012
Solid-state NMR bibliography for
Aluminum-27
Antimony-121/123
Arsenic-75
Barium-135/137
Beryllium-9
Bismuth-209
Boron-11
Bromine-79/81
Calcium-43
Cesium-133
Chlorine-35/37
Chromium-53
Cobalt-59
Copper-63/65
Deuterium-2
Gallium-69/71
Germanium-73
Gold-197
Hafnium-177/179
Indium-113/115
Iodine-127
Iridium-191/193
Krypton-83
Lanthanum-139
Lithium-7
Magnesium-25
Manganese-55
Mercury-201
Molybdenum-95/97
Neon-21
Nickel-61
Niobium-93
Nitrogen-14
Osmium-189
Oxygen-17
Palladium-105
Potassium-39/41
Rhenium-185/187
Rubidium-85/87
Ruthenium-99/101
Scandium-45
Sodium-23
Strontium-87
Sulfur-33
Tantalum-181
Titanium-47/49
Vanadium-51
Xenon-131
Zinc-67
Zirconium-91



Copyright © 2002- pascal-man.com. All rights reserved.