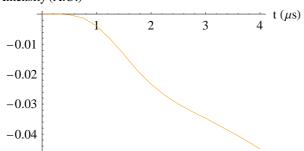
spam_P1_3Qxxx.nb

```
Get["QUADRUPOLE"];
 One-dimensional SPAM MQMAS of a spin I = 5/2,
 Three pulse sequence with three x phases,
 3Q echo amplitude optimization with the second pulse,
 Coherence pathway 0Q \rightarrow 3Q \rightarrow (1Q, 0Q, \text{ and } -1Q) \rightarrow -1Q
 Wolfram Mathematica 5.0,
 Author: R. HAJJAR
 *)
(*----*)
quadrupoleSpin = 2.5;
larmorFrequencyMhz = 208.61889974; (* Al-27 with 800 MHz NMR spectrometer *)
(*---- Quadrupole interaction ----*)
quadrupoleOrder = 2;
QCCMHz = 5;
                \eta = -1;
(*--- Rotor Euler angles in PAS ---*)
          \beta_{PR} = 0;
\alpha_{PR} = 0;
                       \gamma_{PR} = 0;
(*----*)
startOperator = Iz;
ωRFkHz = 90; (* strong RF pulse strength in kHz unit *)
ωRF3kHz = 9.3; (* weak RF pulse strength in kHz unit *)
spinRatekHz = 5;
powderFile = "rep100_simp";
numberOfGammaAngles = 10;
         (* the first-pulse duration in microsecond unit *)
        (* the second-pulse duration in microsecond unit *)
t2 = 4;
        (* the third-pulse duration in microsecond unit *)
t3 = 9;
\Delta t = 0.25;
            (* pulse duration increment in microsecond unit *)
np = t1/\Delta t; (* number increment of the first-pulse duration *)
(*----*)
elements1 = {{2, 5}}; (* 3 Q matrix element *)
coherence2 = \{1, 0, -1\}; (* \pm 1 Q and 0 Q coherences *)
detectelt = {{4, 3}}; (* central-transition matrix element of a spin 5/2 *)
fsimulation := (
  acq0;
  For [p = 1, p \le np, p++, {
    pulse[Δt, ωRFkHz]; (* first pulse with x phase *)
        store[2];
       filterElt[elements1]; (* 3 Q coherence pathway selection *)
    pulse[t2, ωRFkHz]; (* second pulse with x phase *)
        filterCoh[coherence2]; (* ±1 Q and 0 Q coherence pathway selection *)
    pulse[t3, ωRF3kHz]; (* third pulse with x phase *)
       acq[p];
        recall[2];
  }];
 );
```


spam_P1_3Qxxx.nb 2

```
(*--- Execute, plot, and save simulation
  in "spam_P1_3Qxxx" file -----*)
run;
tabgraph["spam_P1_3Qxxx"];
```

(*		*)
----	--	----

Rang	$t\left(\mu s\right)$	intensity
0	0	0.
1	0.25	$-7.255596791 \times 10^{-6}$
2	0.5	-0.000203658701
3	0.75	-0.001237129471
4	1.	-0.00385172575
5	1.25	-0.008141478133
6	1.5	-0.01342723619
7	1.75	-0.01872429868
8	2.	-0.02331784361
9	2.25	-0.02702438877
10	2.5	-0.02998142307
11	2.75	-0.03244765353
12	3.	-0.03475806269
13	3.25	-0.03714699481
14	3.5	-0.03965910557
15	3.75	-0.04225966804
16	4.	-0.04494629298

Intensity (A.U.)

