# al-shifted-echo-amplitude-80-cycling-p3.in # approach: 80-phase cycling the first and the third pulses and the receiver # spin-5/2 echo and antiecho amplitude optimization # versus the first-pulse duration # in three-pulse shifted-echo amplitude-modulated 5Q-MAS sequence, # the first-pulse duration p1 = 4 micro seconds # the third-pulse duration p2 = 4 micro seconds spinsys { channels 27Al nuclei 27Al quadrupole 1 2 3e6 0 0 0 0 } par { spin_rate 5000 variable tsw 0.25 sw 1.0e6/tsw np 17 crystal_file rep10 gamma_angles 10 proton_frequency 800e6 start_operator I1z detect_operator I1c verbose 1101 variable rf 90000 variable rf3 93000 variable p1 4 variable p2 4 variable NA 10 variable NC 8 variable deltapA -5 variable deltapC 2 } proc pulseq {} { global par maxdt $par(tsw) acq $par(phREC) pulse $par(p1) $par(rf) $par(phA) pulse $par(p2) $par(rf) $par(phB) for {set i 1} {$i < $par(np)} {incr i} { pulse $par(tsw) $par(rf3) $par(phC) acq [expr $par(phREC) - 90] } } proc main {} { global par set par(phB) 0 for {set jC 0} {$jC < $par(NC)} {incr jC} { set par(phC) [expr $jC*360./$par(NC)] for {set jA 0} {$jA < $par(NA)} {incr jA} { set par(phA) [expr $jA*360./$par(NA)] set par(phREC) [expr $par(deltapA)*$par(phA) + $par(deltapC)*$par(phC)] set g [fsimpson] if [info exists f] { fadd $f $g funload $g } else { set f $g } } } fsave $f $par(name).fid funload $f puts "Larmor frequency (Hz) of 27Al: " puts [resfreq 27Al $par(proton_frequency)] } # SIMP # NP=17 # SW=4000000 # TYPE=FID # DATA # 0 0 # 0.051427886 0.002709269 # 0.198816033 0.00950478756 # 0.397062211 0.0170613413 # 0.573585254 0.021409775 # 0.656413587 0.0199019429 # 0.596559192 0.0129529309 # 0.385093368 0.00422656076 # 0.0651817992 -0.00124818717 # -0.274346597 3.62668158e-05 # -0.536445746 0.0080823175 # -0.669574487 0.0195039557 # -0.69813275 0.0294763322 # -0.702560592 0.0342884559 # -0.764620248 0.0332050802 # -0.921220149 0.0288143524 # -1.15403842 0.025670525 # END