

TopSpin Guide Book

Basic NMR Experiments
 User Manual
 Version 002

Copyright © by Bruker Corporation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means without the prior consent of the publisher. Product names used are trademarks or registered trademarks of their respective holders.

© April 20, 2017 Bruker Corporation

Document Number: 10000036683

P/N: H147755

Contents

1	About Th	nis Manual	7
	1.1	Policy Statement	7
	1.2	Symbols and Conventions	7
	1.3	Font and Format Conventions	9
2	Introduct	tiontion	11
	2.1	Limitation of Liability	11
	2.2	Copyright	11
	2.3	Warranty Terms	11
	2.4	Customer Service	11
3	Spectron	neter Basics	13
	3.1	Magnetic Safety	13
	3.2	Cryogenic Safety	13
	3.3	Electrical Safety	13
	3.4	Chemical Safety	13
	3.5	CE Certification	13
	3.6	AVANCE Architecture Overview	14
	3.7	Sample Preparation	14
	3.8	Inserting the Sample Plus Spinner into the Magnet	15
	3.9	Spinning the Sample	15
	3.10	Tuning and Matching the Probe	15
	3.10.1	Probes Equipped with ATM	16
	3.10.1.1	Automatic Tuning	16
	3.10.1.2	Manual Tuning	16
	3.11	Locking the Sample	18
	3.12	Shimming the Sample	18
	3.12.1	Shimming on the Lock Signal	19
	3.12.2	Shimming on the FID (Free Induction Decay)	19
	3.12.3	Shimming Using the Tune File	19
	3.12.4	Shimming Using TopShim	19
	3.13	Optimizing Resolution and Line Shape	19
4	The TopS	Spin Interface	21
	4.1	The TopSpin Window Layout	21
	4.2	Setup User Preferences	22
5	1D Proto	n Experiment	25
	5.1	Sample	25
	5.2	1D Proton Experiment	25
	5.2.1	Introduction	25
	5.2.2	Experiment Setup	25
	5.2.3	Acquisition	29
	5.2.4	Processing	30
	5.2.5	Integration	33

Contents

	5.2.6	Plotting the 1D Proton Spectra	. ა၁
6	1D Selec	tive Experiments	. 37
	6.1	Sample	. 37
	6.2	1D Selective COSY	. 37
	6.2.1	Introduction	. 37
	6.2.2	Reference Spectrum	. 38
	6.2.3	Selective Excitation Region Setup	. 39
	6.2.4	Setup the Selective COSY	. 40
	6.2.5	Acquisition	. 42
	6.2.6	Processing	. 43
	6.2.7	Plotting Two Spectra on the Same Page	. 45
	6.3	1D Selective NOESY	. 46
	6.3.1	Introduction	. 46
	6.3.2	Reference Spectrum	. 47
	6.3.3	Selective Excitation Region Setup	. 47
	6.3.4	Processing	. 51
	6.3.5	Plotting Two Spectra on the Same Page	. 52
	6.4	1D Selective TOCSY	. 52
	6.4.1	Introduction	. 52
	6.4.2	Reference Spectrum	. 53
	6.4.3	Selective Excitation Region Set Up	. 53
	6.4.4	Processing	. 55
	6.4.5	Plotting Two Spectra on the Same Page	. 56
_	2D Home	onuclear Experiments	. 57
7	שוווט מב	mucical Experiments	
1	7.1	Sample	
1		•	. 57
1	7.1	Sample	. 57 . 57
1	7.1 7.2	Sample 2D Gradient COSY	. 57 . 57 . 57
,	7.1 7.2 7.2.1	Sample	. 57 . 57 . 57 . 58
•	7.1 7.2 7.2.1 7.2.2	Sample	. 57 . 57 . 57 . 58 . 58
,	7.1 7.2 7.2.1 7.2.2 7.2.3	Sample	. 57 . 57 . 57 . 58 . 58
,	7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4	Sample	. 57 . 57 . 58 . 58 . 60
,	7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5	Sample	. 57 . 57 . 58 . 58 . 60 . 62
,	7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6	Sample	. 57 . 57 . 58 . 58 . 60 . 62 . 63
,	7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7	Sample	. 57 . 57 . 58 . 58 . 60 . 62 . 63 . 65
,	7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.3	Sample	. 57 . 57 . 58 . 58 . 60 . 62 . 63 . 65
,	7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.3 7.3.1	Sample	. 57 . 57 . 58 . 58 . 60 . 62 . 63 . 65
,	7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.3 7.3.1 7.3.2	Sample	. 57 . 57 . 58 . 58 . 60 . 62 . 63 . 65 . 65
,	7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.3 7.3.1 7.3.2 7.3.3	Sample 2D Gradient COSY Introduction Preparation Experiment Setting up the COSY Experiment Limit Setting Acquisition Processing Plotting the COSY Spectrum 2D Gradient NOESY Experiment Introduction Preparation Experiment Setting up the NOESY Experiment Setting up the NOESY Experiment	. 57 . 57 . 58 . 58 . 60 . 62 . 63 . 65 . 65 . 66
,	7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.3 7.3.1 7.3.2 7.3.3 7.3.4	Sample	. 57 . 57 . 58 . 58 . 60 . 62 . 63 . 65 . 65 . 66 . 68
,	7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.3 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5	Sample	. 57 . 57 . 58 . 58 . 60 . 62 . 63 . 65 . 65 . 66 . 68 . 68
,	7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.3 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5 7.3.6 7.4 7.4.1	Sample	. 57 . 57 . 58 . 58 . 60 . 62 . 63 . 65 . 65 . 65 . 66 . 68 . 68 . 69 . 70
,	7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.3 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5 7.3.6 7.4 7.4.1 7.4.2	Sample. 2D Gradient COSY	. 57 . 57 . 58 . 58 . 60 . 62 . 63 . 65 . 65 . 65 . 68 . 68 . 69 . 70
	7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.3 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5 7.3.6 7.4 7.4.1 7.4.2 7.4.3	Sample. 2D Gradient COSY	. 57 . 57 . 58 . 58 . 60 . 62 . 63 . 65 . 65 . 66 . 68 . 68 . 70 . 70
,	7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.3 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5 7.3.6 7.4 7.4.1 7.4.2	Sample. 2D Gradient COSY	. 57 . 57 . 58 . 58 . 60 . 62 . 63 . 65 . 65 . 65 . 66 . 68 . 69 . 70 . 70 . 71

	7.4.6	Plotting the TOCSY Spectrum	. 74
8	1D Carbo	n Experiments	. 75
	8.1	Sample	. 75
	8.2	1D Carbon Experiment	. 75
	8.2.1	Introduction	. 75
	8.2.2	Experiment Setup	. 75
	8.2.3	Acquisition	. 79
	8.2.4	Processing	. 79
	8.2.5	Peak Picking	. 81
	8.2.6	Plotting the 1D Carbon Spectrum	. 84
	8.3	DEPT-135 Experiment	
	8.3.1	Introduction	. 85
	8.3.2	Experiment Setup	. 85
	8.3.3	Acquisition	. 87
	8.3.4	Processing	
	8.3.5	Plotting the DEPT-135 Spectrum	
	8.4	DEPT-90 Experiment	
	8.4.1	Introduction	
	8.4.2	Experiment Setup	
	8.4.3	Acquisition	
	8.4.4	Processing	
	8.4.5	Plotting the DEPT-90 Spectrum	
_			
9		onuclear Experiments	
	9.1	Sample	
	9.2	2D Edited HSQC	
	9.2.1	Introduction	
	9.2.2	Preparation Experiment	
	9.2.3	The HSQC Experiment Setup	
	9.2.4	Limit Setting	
	9.2.5	Acquisition	
	9.2.6	3	101
	9.2.7	Plotting the 2D HSQC Spectrum	
	9.3	2D HMBC Experiment	
	9.3.1	Introduction	
	9.3.2	Preparation Experiment	
	9.3.3	The HMBC Experiment Setup	
	9.3.4	Limit Setting	
	9.3.5	Acquisition	108
	9.3.6	Processing	
	9.3.7	Plotting the 2D HMBC Spectrum	110
10	Determin	ation of 90 Degree Pulses	111
	10.1	Introduction	
	10.2	Proton 90 Degree Transmitter Pulse	111
	10.2.1	Parameter Setup	111
	10.2.2	Acquisition	
	10.2.3	Processing	115

Contents

	10.2.4	Determine the 90 Degree Pulse	118
	10.3	Carbon 90 Degree Transmitter Pulse	122
	10.3.1	Parameter Setup	122
	10.3.2	Acquisition	125
	10.3.3	Processing	126
	10.3.4	Determine the 90 Degree Pulse	130
11	Sensitivit	y Tests	133
	11.1	Introduction	133
	11.2	¹ H Sensitivity Test	133
	11.2.1	Experiment Setup	133
	11.2.2	Acquisition	135
	11.2.3	Processing	135
	11.2.4	Calculating the Signal to Noise Ratio	136
	11.2.5	¹³ C Sensitivity Test with ¹ H Decoupling	138
	11.2.5.1	Experiment Setup	138
	11.2.5.2	Acquisition	139
	11.2.5.3	Processing	140
	11.2.5.4	Calculating the Signal to Noise Ratio	140
	11.2.6	¹³ C Sensitivity Test without ¹ H Decoupling	143
	11.2.6.1	Experiment Setup	143
	11.2.6.2	Acquisition	145
	11.2.6.3	Processing	145
	11.2.6.4	Calculating the Signal to Noise Ratio	145
12	Additiona	ıl Information	149
	12.1	Standard Parameter Set List	149
	12.2	Pulse Program Information	151
	12.3	Standard Test Samples	156
13	Troubles	nooting	159
14	Contact		161
	Jointuot		.01

vi H147755_1_002

1 About This Manual

This manual enables safe and efficient handling of the device.

This manual is an integral part of the device, and must be kept in close proximity to the device where it is permanently accessible to personnel. In addition, instructions concerning labor protection laws, operator regulations tools and supplies must be available and adhered to.

Before starting any work, personnel must read the manual thoroughly and understand its contents. Compliance with all specified safety and operating instructions, as well as local work safety regulations, are vital to ensure safe operation.

The figures shown in this manual are designed to be general and informative and may not represent the specific Bruker model, component or software/firmware version you are working with. Options and accessories may or may not be illustrated in each figure.

1.1 Policy Statement

It is Bruker's policy to improve products as new techniques and components become available. Bruker reserves the right to change specifications at any time.

Every effort has been made to avoid errors in text and Figure presentation in this publication. In order to produce useful and appropriate documentation, we welcome your comments on this publication. Field Service Engineers are advised to check regularly with Bruker for updated information.

Bruker is committed to providing customers with inventive, high-quality, environmentally-sound products and services.

1.2 Symbols and Conventions

Safety instructions in this manual and labels of devices are marked with symbols. .

The safety instructions are introduced using indicative words which express the extent of the hazard.

In order to avoid accidents, personal injury or damage to property, always observe safety instructions and proceed with care.

DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.

This is the consequence of not following the warning.

- 1. This is the safety condition.
- ▶ This is the safety instruction.

MARNING

WARNING indicates a hazardous situation, which, if not avoided, could result in death or serious injury.

This is the consequence of not following the warning.

- 1. This is the safety condition.
- ▶ This is the safety instruction.

⚠ CAUTION

CAUTION indicates a hazardous situation, which, if not avoided, may result in minor or moderate injury or severe material or property damage.

This is the consequence of not following the warning.

- 1. This is the safety condition.
- ▶ This is the safety instruction.

NOTICE

NOTICE indicates a property damage message.

This is the consequence of not following the notice.

- 1. This is a safety condition.
- ► This is a safety instruction.

SAFETY INSTRUCTIONS

SAFETY INSTRUCTIONS are used for control flow and shutdowns in the event of an error or emergency.

This is the consequence of not following the safety instructions.

- 1. This is a safety condition.
- ► This is a safety instruction.

This symbol highlights useful tips and recommendations as well as information designed to ensure efficient and smooth operation.

1.3 Font and Format Conventions

Type of Information	Font	Examples	
Shell Command, Commands, "All what you can enter"	Arial bold	Type or enter fromjdx zg	
Button, Tab, Pane and Menu Names "All what you can click"	Arial bold, initial letters capitalized	Use the Export To File button. Click OK. Click Processing	
Windows, Dialog Windows, Pop-up Windows Names	Arial, initial letters capitalized	The Stacked Plot Edit dialog will be displayed.	
Path, File, Dataset and Experiment Names Data Path Variables Table Column Names Field Names (within Dialog Windows)	Arial Italics	\$tshome/exp/stan/nmr/ lists expno, procno,	
Parameters	Arial in Capital Letters	VCLIST	
Program Code Pulse and AU Program Names Macros Functions Arguments Variables	Courier	go=2 au_zgte edmac CalcExpTime() XAU(prog, arg) disk2, user2	
AU Macro	Courier in Capital Letters	REX PNO	

Table 1.1: Font and Format Conventions

About This Manual

2 Introduction

2.1 Limitation of Liability

All specifications and instructions in this manual have been compiled taking account of applicable standards and regulations, the current state of technology and the experience and insights we have gained over the years.

The manufacturer accepts no liability for damage due to:

- · Failure to observe this manual.
- · Improper use.
- · Deployment of untrained personnel.
- · Unauthorized modifications.
- · Technical modifications.
- · Use of unauthorized spare parts.

The actual scope of supply may differ from the explanations and depictions in this manual in the case of special designs, take-up of additional ordering options, or as a result of the latest technical modifications.

The undertakings agreed in the supply contract, as well as the manufacturer's Terms and Conditions and Terms of Delivery, and the legal regulations applicable at the time of the conclusion of the contract shall apply.

2.2 Copyright

All rights reserved. This manual is protected by copyright and intended solely for internal use by customers.

This manual must not be made available to third parties, duplicated in any manner or form – whether in whole or in part – and the content must not be used and/or communicated, except for internal purposes, without the written consent of the manufacturer.

Product names used are trademarksTM or registered trademarks[®] of their respective holders.

Violation of the copyright will result in legal action for damages. We reserve the right to assert further claims.

2.3 Warranty Terms

The warranty terms are included in the manufacturer's Terms and Conditions.

2.4 Customer Service

Our customer service division is available to provide technical information. See the chapter *Contact* [> 161] for contact information.

In addition, our employees are always interested in acquiring new information and experience gained from practical application; such information and experience may help improve our products.

Introduction

3 Spectrometer Basics

3.1 Magnetic Safety

A Magnetic Field surrounds the magnet in all directions. This field (known as the stray field) is invisible, hence the need to post warning signs at appropriate locations. Objects made of ferromagnetic materials, e.g. iron, steel etc. will be attracted to the magnet. If a ferromagnetic object is brought too close, it may suddenly be drawn into the magnet with surprising force. This may damage the magnet, or cause personal injury to anybody in the way! Of critical importance is that people fitted with cardiac pacemakers or metallic implants should never be allowed near the magnet.

Because the strength of the stray field drops significantly as one moves away from the magnet, it is still useful to discuss safety to work around magnets. Details of stray fields for various magnets can be found in the Site Planning Guides delivered with the BASH CD.

3.2 Cryogenic Safety

The magnet contains relatively large quantities of liquid Helium and Nitrogen. These liquids, referred to as cryogens, serve to keep the magnet core at a very low temperature.

Because of the very low temperatures involved, **gloves**, **a long sleeved shirt or lab coat and safety goggles** should always be worn when handling cryogens. Direct contact with these liquids can cause frostbite. The system manager should regularly check and make sure that evaporating gases are free to escape from the magnet, i.e. the release valves must not be blocked. Do not attempt to refill the magnet with Helium or Nitrogen unless you have been trained in the correct procedure.

Helium and Nitrogen are non-toxic gases. However, because of a possible **magnet quench**, whereupon the room may suddenly fill with evaporated gases, adequate ventilation must always be provided.

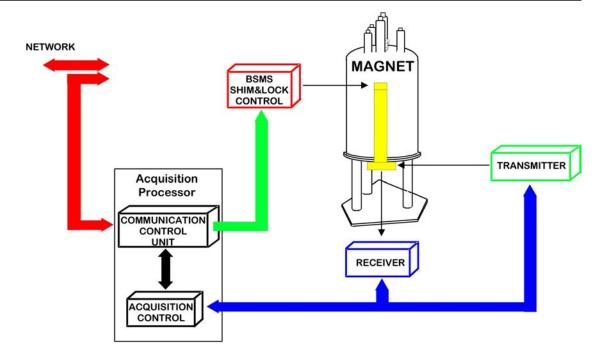
3.3 Electrical Safety

The spectrometer hardware is no more or less hazardous than any typical electronic or pneumatic hardware and should be treated accordingly. Do not remove any of the protective panels from the various units. They are fitted to protect you and should be opened by qualified service personnel only. The main panel at the rear of the console is designed to be removed using two quick release screws, but again, this should only be done by trained personnel.

3.4 Chemical Safety

Users should be fully aware of any hazards associated with the samples they are working with. Organic compounds may be highly flammable, corrosive, carcinogenic etc.

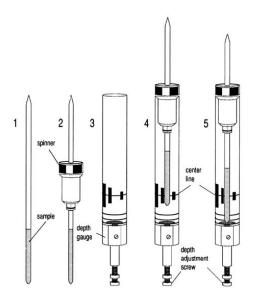
3.5 CE Certification


All major hardware units housed in the AVANCE with SGU consoles as well as peripheral units such as the HPPR, shim systems, probe and BSMS keyboards comply with the CE Declaration of Conformity. This includes the level of any stray electromagnetic radiation that might be emitted as well as standard electrical hazards.

Spectrometer Basics

To minimize electromagnetic radiation leakage, the doors of the console should be closed and the rear paneling mounted.

3.6 AVANCE Architecture Overview



Please use the BASH (**B**ruker **A**dvanced **S**ervice **H**andbook) for further information about the AVANCE system and hardware.

3.7 Sample Preparation

- · Use clean and dry sample tubes.
- · Use medium to high quality sample tubes.
- · Always filter the sample solution.
- Always use the same sample volume or solution height.
- Filling volume of a 5 mm tubes is 0.6 ml or 5 cm.
- Filling volume of a 10 mm tubes is 4 ml or 5 cm.
- Use the sample depth gauge to adjust the sample depth (1.8 cm for older style probes, 2.0 cm for newer style probes).

- The sample tube should sit tightly inside the spinner.
- Wipe the sample tube clean before inserting into magnet.
- Turn on lift air to insert the sample into the magnet.

3.8 Inserting the Sample Plus Spinner into the Magnet

The raising and lowering of the sample is controlled by a stream of pressurized air. Make sure that the air flow is present (it is quite audible) before placing a sample onto the top of the bore.

3.9 Spinning the Sample

A second function of pressurized air is to enable the sample to rotate. The spinning of the sample serves to *even-out* some of the inhomogeneities that may exist in the magnetic field at the center of the magnet.

Sample tubes with a diameter of less then 5mm and samples to be investigated using inverse probes are normally not rotated.

Suggested spin rates are:

- 20 Hz for a 5 mm probe
- 12 Hz for a 10 mm probe

3.10 Tuning and Matching the Probe

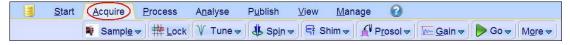
The sensitivity of any probe will vary with the frequency of the signal transmitted to it and there exists a frequency at which the probe is most sensitive. Furthermore this frequency may be adjusted over a certain range using tuning capacitors built into the probe circuitry.

Spectrometer Basics

Tuning involves adjusting the probe circuitry so that the frequency at which it is most sensitive is the relevant transmission frequency (SFO1, SFO2 etc.) Each coil in the probe will be tuned (and matched) separately.

If the probe has been changed or the transmission frequency altered significantly, it may be necessary to retune the probe. For routine work in organic solvents with selective probes, the value of the transmitted frequencies are unlikely to vary greatly. Hence, once the probe has been initially tuned, slight variations in frequency will not warrant retuning. Typically the transmitted frequency would need to be altered by at least 100kHz to warrant retuning. However for broadband probes the frequencies transmitted will vary greatly from nucleus to nucleus and so the probe will need to be tuned each time the selected nucleus is altered.

Whenever a probe is tuned it should also be matched. **Matching** involves ensuring that the maximum amount of the power arriving at the probe base is transmitted up to the coil which lies towards the top of the probe. This ensures that the minimum amount of the power arriving at the probe base is reflected back towards the amplifiers (and consequently wasted).



Bruker offers two different types of Tuning and Matching adjustments. In addition to the manual adjustments of the tuning and matching capacitors, the probes can be equipped with an Automatic Tuning Module (ATM). Follow the steps below for either option.

3.10.1 Probes Equipped with ATM

3.10.1.1 Automatic Tuning

- Create a new data set, see also Experiment Setup [▶ 25].
- · On the menu bar, click Acquire.

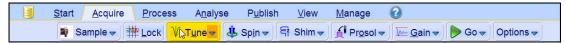
· On the Workflow button bar, click Tune.

or

At the command prompt, type atma.

The display will switch automatically to the acquisition window and displays the wobble curve. The tuning and matching is performed automatically. If multiple frequencies are used in a parameter set such as C13CPD, HNCACOGP3D etc., ATMA will start adjusting the lowest frequency first and will switch in the order of increasing frequency automatically.

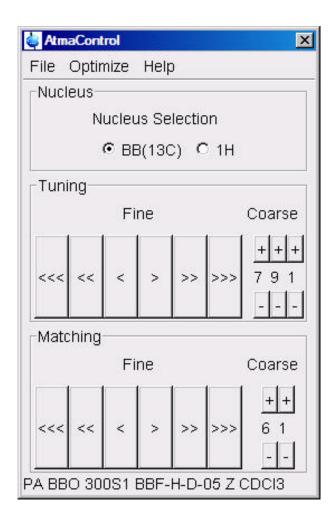
3.10.1.2 Manual Tuning


- Create a new data set, see also Experiment Setup [▶ 25].
- On the menu bar, click Acquire.

At the command prompt, type atmm.

or

• On the **Tune** button, click the **drop-down** arrow to see more options.



In the list, select Tune/match ATM probe manually.

Tune/match ATM probe manually (atmm)

Display wobble curve (wobb)

The Atmacontrol window appears and the display will switch automatically to the acquisition window and displays the wobble curve, see the next figure.

- In the Atmacontrol window, click the **Tuning** buttons to move and display the wobble curve centered.
- In the Atmacontrol window, click the **Matching** buttons to adjust the dip of the wobble curve to the lowest position.

Since the Tuning and Matching adjustment interact with each other, a repeat of all steps are necessary for a perfect tune and match, see the next figure. If multiple frequencies are used in a parameter set such as C¹³CPD, use the **Nucleus Selection** radio buttons in the Atmacontrol window to switch to another nucleus and repeat the tuning and matching.

3.11 Locking the Sample

Deuterated solvents are used to generate the signal to be detected and monitored by the lock system. The frequency and strength of this signal will depend on the solvent used. The main feature of the Topspin lock routine is that it sets parameters such as the lock power, gain and frequency to a value appropriate to the solvent. With these default values set close to that which would be expected for that solvent, the BSMS can quickly locate and lock onto the solvent signal by sweeping through a range of frequencies or magnetic field values. The solvent dependent parameters are taken from the **edlock** table.

3.12 Shimming the Sample

Shimming is a process in which minor adjustments are made to the magnetic field until the field homogeneity (uniformity) is optimized. Improving the homogeneity will result in better spectral resolution. It will be necessary to re-shim each time a probe or sample is changed. The system manager has stored appropriate shim values (in so called shim files) for each probe that will greatly reduce the shimming time required whenever a probe is changed.

3.12.1 Shimming on the Lock Signal

When the spectrometer is locked, the vertical offset of the lock trace on the graphics display corresponds to the amplitude of the lock substance signal, assuming constant lock DC, gain, and power levels. The lock level, then, serves as useful guide for basic shim adjustment. The goal in shimming on the lock signal is to adjust the shims so that the lock trace appears as high on the graphics display as possible. This lock level corresponds to the highest possible lock substance signal amplitude.

3.12.2 Shimming on the FID (Free Induction Decay)

The shape of the FID, and especially the beginning of the FID, indicates the shape of the transformed signal line, while the length of the FID tail is important to the overall resolution. For good line shape and high resolution, the shim controls must be adjusted so that the FID envelope is truly exponential with the longest possible decay time.

3.12.3 Shimming Using the Tune File

This method of shimming is useful when gradients are not available. A simple text file is edited to give the BSMS the instructions to shim the sample automatically. A default shim file <code>example_bsms</code> can be edited using the **edtune** command and then stored with a new name in

<TopSpin-home>/exp/stan/nmr/lists/group.

The file can be executed with the command **tune**. The figure shows an example of a tune file.

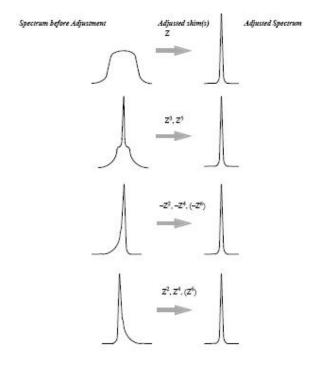
3.12.4 Shimming Using TopShim

This is routine shimming and should be carried out at the beginning of every NMR session, and whenever the sample in the magnet is changed. Routine shimming involves making fine adjustments to the Z, Z2, Z3, Z4 and Z5 shims. Some higher field magnets may require higher order Z shims. The system administrator has programed TopShim to achieve the best homogeneity on each sample and it is fully automatically.

The core method of TopShim is gradient shimming. A quality criterion for the final line-shape ensures best results for all situations.

TopShim is using for all deuterated solvents the ²H gradient shimming method and for other solvents especially H²O, the ¹H gradient shimming method.

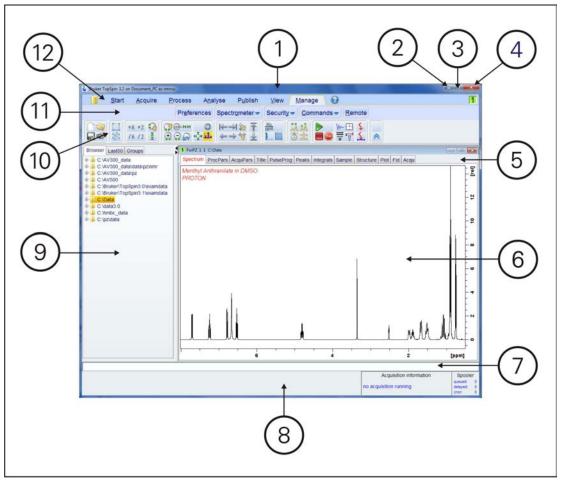
3.13 Optimizing Resolution and Line Shape


The standard sample for measuring the proton line shape and resolution specifications is, $CHCL_3$ in Acetone-d6. The concentration of $CHCL_3$ depends on the field strength of the magnet and the probe and can vary from 3% down to 0.1%.

Spectrometer Basics

For measuring the 13 C resolution and line shape test the standard sample ASTM (60% Dioxane in 40% C6D6) sample may be used.

For both tests the line shape is measured at 50%, 0.55% and 0.11% of the peak. The Bruker standard parameter sets to use for this tests are PRORESOL and C13RESOL.


The figure below illustrates the influence of the On-axis shims on the line shape.

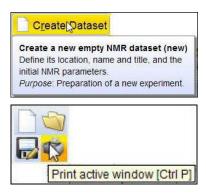
4 The TopSpin Interface

4.1 The TopSpin Window Layout

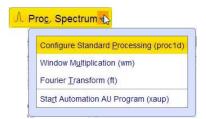
Per default the workflow user interface is activated, but the old user interface can be enabled in the User Preferences.

1	Title bar	7	Command line
2	Minimize button	8	Status display bar
3	Maximize button	9	Browser window
4	Close button	10	Toolbar
5	Dataset tabs bar	11	Workflow button bar
6	Dataset window	12	Menu bar

Depending on which Dataset tab is selected, some Dataset window tabs provide a Dataset toolbar:



The TopSpin Interface

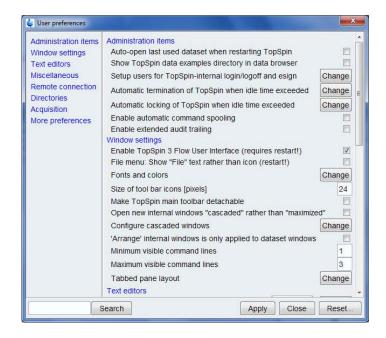

The workflow-based interface with its arrangement of all working processes allows the user to control the work flow intuitively.

Clicking one of the menu buttons opens the corresponding workflow. It contains an horizontal feature list which stays open and provides all functionality for this workflow with one mouse-click.

Pointing to a button with the mouse in the various menus opens a tooltip that describes the button functionality (see the next example figures).

Furthermore, some of the buttons on the Workflow button bar include a **drop-down** arrow. Click the **drop-down** arrow to see more options.

4.2 Setup User Preferences


TopSpin can be tailored to your preference in many respects. This ranges from startup options to spectrum objects, menu settings, remote connections etc. Every standard user can create their own set of preferences.

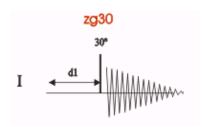
Setting user preferences

- On the menu bar, click Manage.
- · On the Workflow button bar, click Preferences.

A dialog box will appear with, at the left side, the categories that can be tailored. Click the category of which you want to view/change certain objects. It will become high-lighted and the corresponding objects will be displayed at the right part of the dialog box.

The TopSpin Interface

5 1D Proton Experiment


5.1 Sample

30 mg Menthyl Anthranilate in DMSO-d6

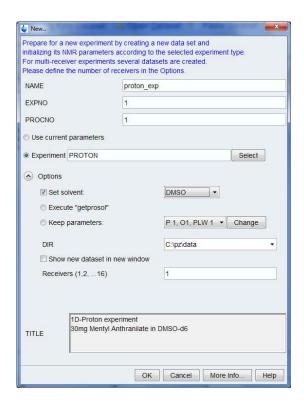
5.2 1D Proton Experiment

5.2.1 Introduction

This chapter describes the acquisition and processing of a one-dimensional ¹H NMR spectrum using the standard Bruker parameter set **PROTON**. The pulse sequence **zg30** consists of the recycling delay, the radio-frequency (RF) pulse, and the acquisition time during which the signal is recorded. The pulse angle is shown to be 30°. The two parameters, D1 and P1, correspond to the length of the recycle delay and the length of the 90° RF pulse, respectively.

The time intervals depicted in the pulse sequence diagrams are not drawn to scale. For example, d1 is typically a few seconds while p1 is typically a few microseconds in length.

5.2.2 Experiment Setup


• On the menu bar, click **Start** and on the Workflow button bar, click **Create Dataset**.

• In the New Dataset window, enter or select:

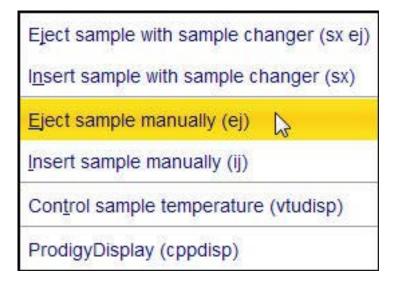
NAME = proton_exp EXPNO = 1 PROCNO = 1

Experiment: select **PROTON**Set Solvent: select **DMSO**

DIR

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click the drop-down arrow to browse for a specific directory.

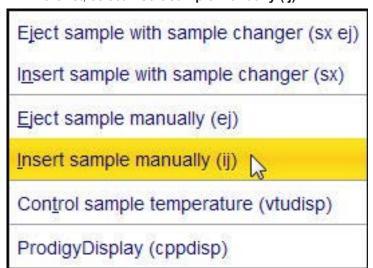
Title


In the TITLE window enter a text stating the experiment, sample, the solvent and any other useful information. The title information can be used to search for a dataset.

- · In the New Dataset window, click OK.
- · On the menu bar, click Acquire.

To aquire a spectrum, use the Workflow buttons in the Workflow button bar from left to right (see steps below. Alternatively commands which are displayed in brackets of the various popup windows, can also be typed at the TopSpin command prompt (e.g. **ej**, **ij**, **edte** etc.).

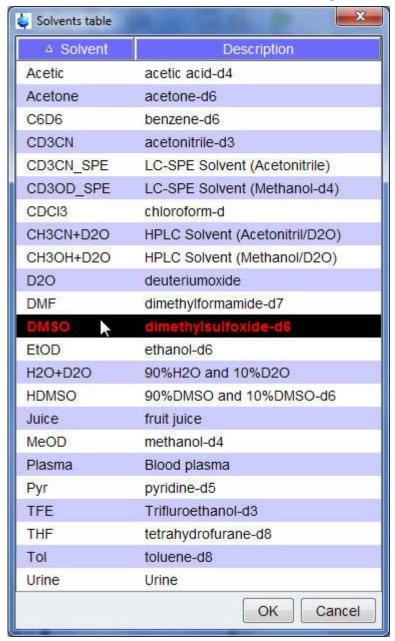
- On the **Sample** button, click the **drop-down** arrow to see more options.
- In the list, select Eject sample manually (ej).



Wait until the sample lift air is turned on and remove the sample which may be in the magnet.

- Place the sample with the spinner onto the top of the magnet.
- On the **Sample** button, click the **drop-down** arrow to see more options.

• In the list, select Insert sample manually (ij).

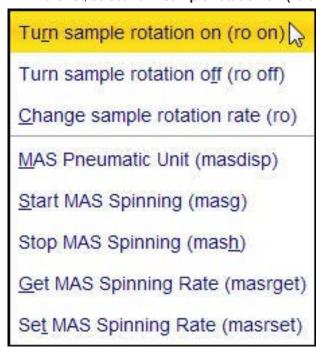


Wait until the sample is lowered down into the probe and the lift air is turned off. A clicking sound may be heard.

On the Workflow button bar, click Lock.

• In the Solvents table window, select the solvent, e.g. **DMSO**. Click **OK**.

• On the Workflow button bar, click Tune.



This performs an **atma (automatic tuning)** and requires a probe equipped with an automatic tuning module. For more options, click the **drop-down** arrow on the **Tune** button.

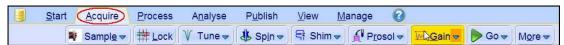
• On the **Spin** button, click the **drop-down** arrow to see more options.

• In the list, select Turn sample rotation on (ro on).

Rotation may be turned off for probes such as BBI, TXI, TBI and for small sample probes.

· On the Workflow button bar, click Shim.

This executes the command **topshim**. The shimming starts momentarily and should take less then a minute. On the **Shim** button, click the **drop-down** arrow to see more options.


On the Workflow button bar, click Prosol.

This will load the pulse width and power levels into the parameter set.

5.2.3 Acquisition

· On the Workflow button bar, click Gain.

1D Proton Experiment

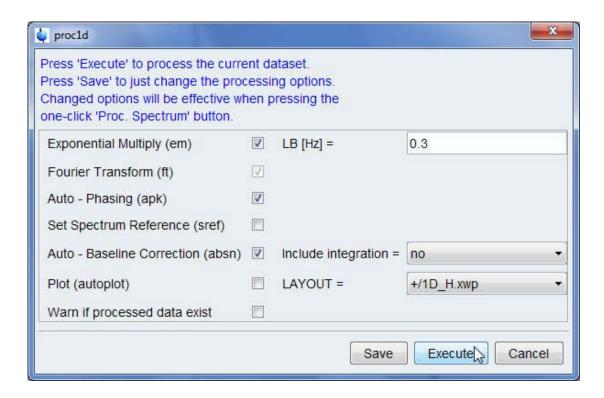
or

- On the Gain button, click the drop-down arrow to adjust the receiver gain manually.
- On the Workflow button bar, click Go.

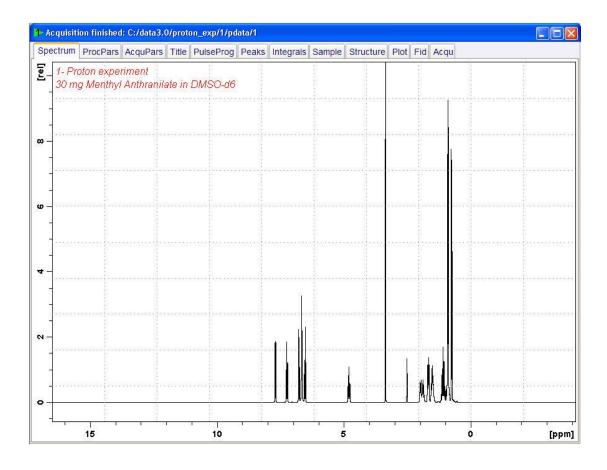
or

• On the **Go** button, click the **drop-down** arrow to see more options.

5.2.4 Processing


- When the acquisition has finished, click **Process** on the menu bar.
- On the **Proc Spectrum** button, click the **drop-down** arrow to see more options.

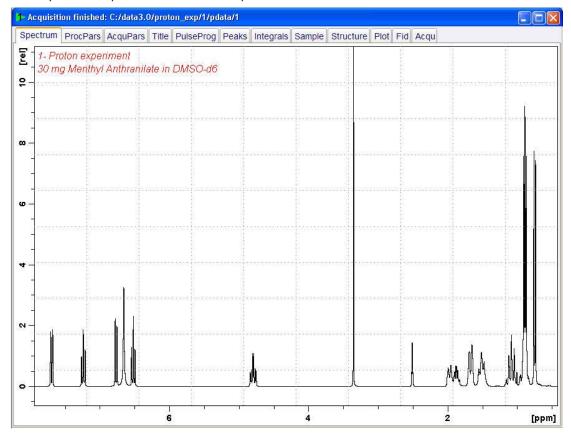
• In the list, select Configure Standard Processing (proc1d).


- In the proc1d window, enable the following options:
 - Exponential Multiply (em)
 - Auto Phasing (apk)
 - Auto Baseline Correction (absn)

- If TMS is added to the sample for referencing, enable Set Spectrum Reference (sref),.
- In the proc1d window, click Execute and then click Save to save the selected processing settings.

Now all future datasets can be processed with the defined actions with a click on ${f Proc}$ ${f Spectrum}.$

1D Proton Experiment



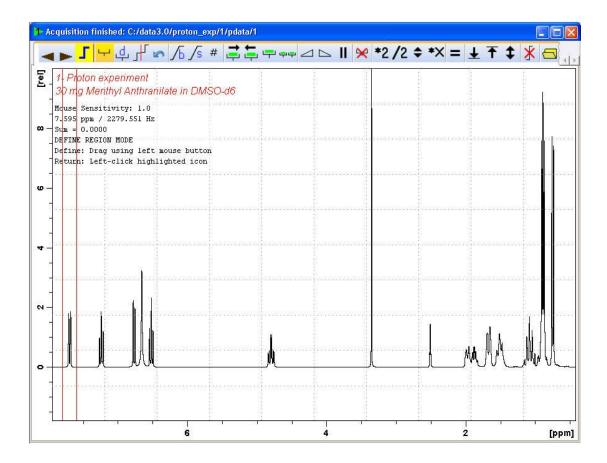
5.2.5 Integration

To quantitatively analyze an observed Proton signal, the integrated intensity of the peaks is compared within each other. It is common to integrate a Proton spectrum to account for the number of protons in the analyzed molecule.

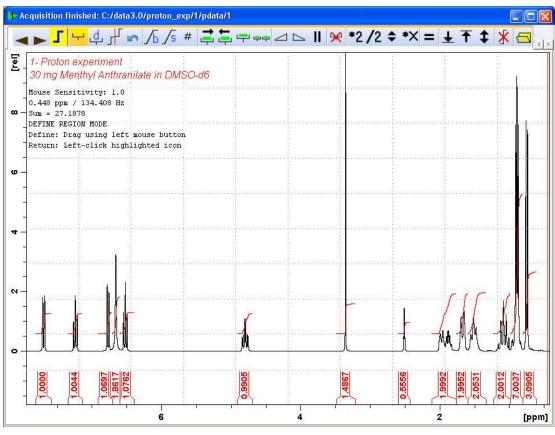
To get more precise quantitative integration results, please refer to the **Quantitative analysis** of 1D spectra (nmrq) manual.

· Expand the spectrum to include all peaks.

· On the Workflow button bar, click Integrate.



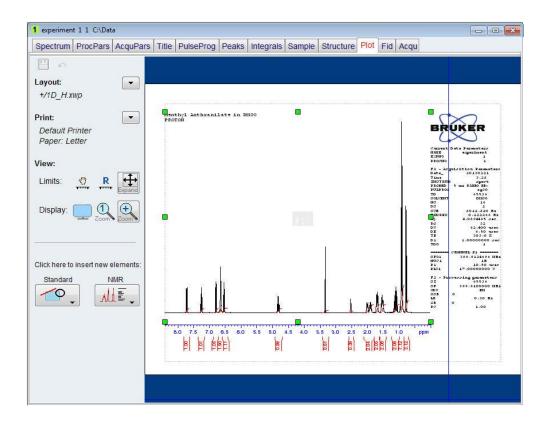
This enters the manual Integration mode. **The Dataset** tabs bar is replaced by the **Integration Tool** bar.



• Select the **Define new region using cursor** button. It should be highlighted in yellow.

• Set the cursor line to the left of the first peak to be integrated. Click the left mouse button and drag the cursor line to the right of the peak and then release the mouse button.

· Repeat the last step for all peaks of interest.


• On the Integration Tool bar, click **Return**, save region to save the integration regions.

5.2.6 Plotting the 1D Proton Spectra


- · Expand the spectrum to include all peaks.
- On the toolbar, click **Retain expansion and scale**.
- · On the menu bar, click Publish.
- On the Workflow button bar, click Plot Layout.

If desired, any changes can be administered by using the tools on the left side of the Plot Layout window.

- In the Print section left of the Plot Layout window, click the **Print drop-down arrow**.
- In the list, select Print.

1D Proton Experiment

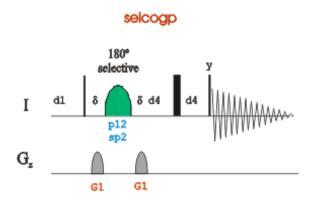
6 1D Selective Experiments

6.1 Sample

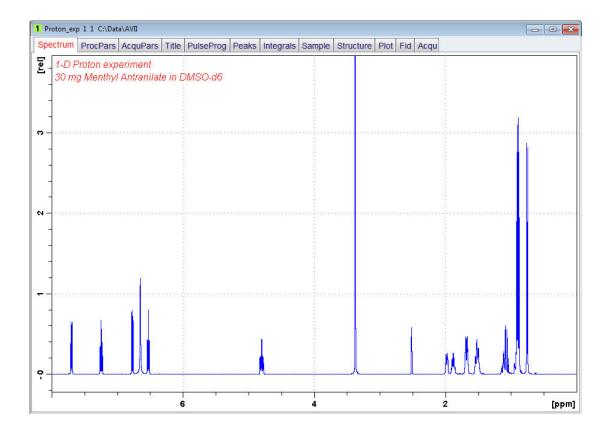
The sample of 30 mg Menthyl Anthranilate in DMSO-d₆ is used for all experiments in this chapter.

6.2 1D Selective COSY

6.2.1 Introduction


The hard pulses used in all the experiments from the previous chapters are used to uniformly excite the entire spectral width. This chapter introduces soft pulses which selectively excite only one multiplet of a ¹H spectrum. Important characteristics of a soft pulse include the shape, the amplitude, and the length. The selectivity of a pulse is measured by its ability to excite a certain resonance (or group of resonances) without affecting near neighbors. Since the length of the selective pulse affects its selectivity, the length is selected based on the selectivity desired and then the pulse amplitude (i.e., power level) is adjusted to give a 90° (or 270°) flip angle.

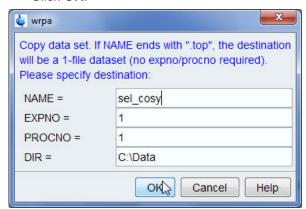
The transmitter offset frequency of the selective pulse must be set to the frequency of the desired resonance. This transmitter frequency does not have to be the same as **o1p** (the offset frequency of the hard pulse), but for reasons of simplicity, they are often chosen to be identical.


Most selective excitation experiments rely on phase cycling, and thus subtraction of spectra, to eliminate large unwanted signals. It is important to minimize possible sources of subtraction artifacts, and for this reason it is generally suggested to run selective experiments using pulse field gradients and non-spinning.

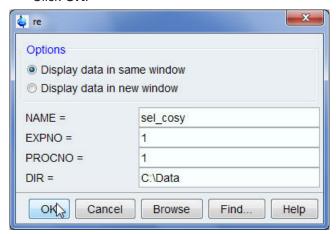
This chapter describes the acquisition and processing of a one-dimensional ¹H selective gradient COSY experiment. The standard Bruker parameter set is SELCOGP and includes the pulse sequence **selcogp** shown in the next figure. It consists of the recycling delay, four radio-frequency (RF) pulses and the acquisition time during which the signal is recorded. The first RF pulse is a 90° pulse, followed by a 180° shaped pulse, a 180° hard pulse and finally a 90°. The delay between the 180° and 90° pulse is 1/4*J(H,H). The gradient pulses are applied before and after the shape pulse.

6.2.2 Reference Spectrum

• Run a **1D Proton** spectrum, following the instructions in Chapter 1D Proton Experiment, Experiment Setup [▶ 25] through Processing [▶ 30].

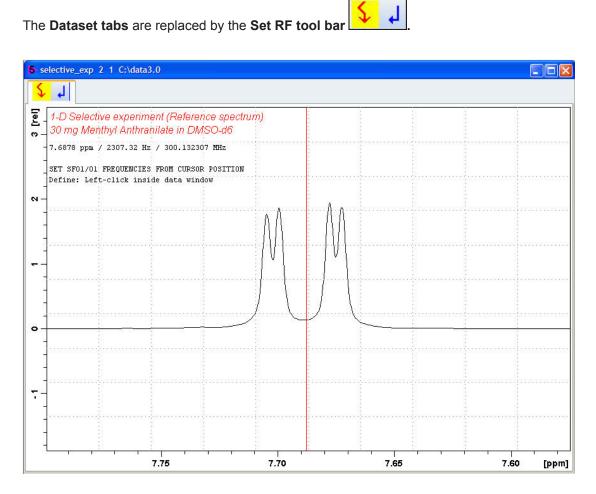


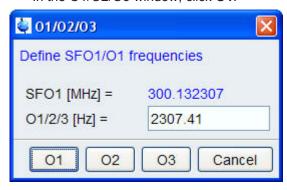
6.2.3 Selective Excitation Region Setup



In this example, the power and duration of the shape pulse are not calculated and rather being taken from the stored values in the prosol table. To calculate the power and duration of the shape pulse for the selective COSY you can use the same procedures as for the selective NOESY and TOCSY experiments in this chapter. Make sure that the SW is large enough to cover the entire Spectrum accounting for the position of O1. The shaped pulse is applied on resonance (at the O1 position) The power level and width of the excitation pulse will be taken from the Prosol parameter table.

- At the command prompt, type
- In the wrpa window, change NAME = sel_cosy
- · Click OK.

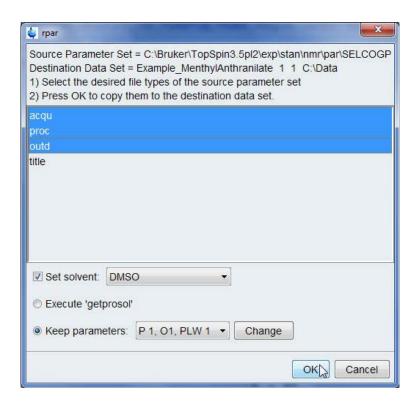

- At the command prompt, type
 re
- In the re window, change NAME = sel_cosy
- · Click OK.


• Expand the peak at 7.7 ppm.

- Move the cursor line into the center of the multiplet.
- · Click to set the frequency.
- In the O1/O2/O3 window, click O1.

6.2.4 **Setup the Selective COSY**

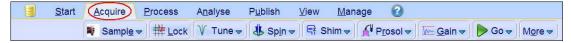
• On the menu bar, click Start.


- On the Workflow button bar, click Read Pars.
- In the Parameter Sets:rpar window, select the Bruker parameter directory.

Source = C:\Bruker\TopSpin3.0\exp\stan\nmr\par -

- In the Find file names field, enter SEL* and click Return to display all selective parameter sets.
- · Select SELCOGP.

- In the Parameter Sets:rpar window, click Read.
- In the rpar window, select the acqu, proc and outd parameter options only.
- Enable Keep parameters and in the next field, click the drop-down arrow to see more options.
- In the list, select P1, O1, PLW1.
- · In the rpar window, click OK.



1D Selective Experiments

- In the Dataset window, select the **Title** tab.
- Change the title to:
 - 1D Selective gradient COSY experiment
 - 30 mg Menthyl Anthranilate in DMSO-d6

- In the Dataset window, select the **Spectrum** tab.
- · On the menu bar, click Acquire.

- On the **Spin** button, click the **drop-down** arrow to see more options.
- In the list, select Turn sample rotation off.

1D selective experiments should be run non-spinning.

• On the Workflow button bar, click **Prosol**.

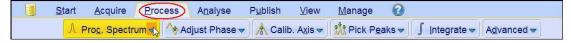
This will load the pulse width and power levels in to the parameter set.

6.2.5 Acquisition

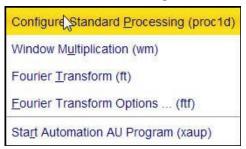
• On the Workflow button bar, click Gain.

or

- On the **Gain** button, click the **drop-down** arrow to adjust **rg** manually.
- On the Workflow button bar, click Go.

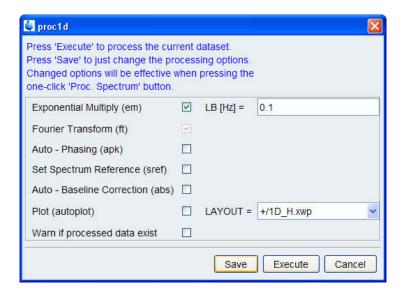

or

• On the Go button, click the drop-down arrow to see more options..

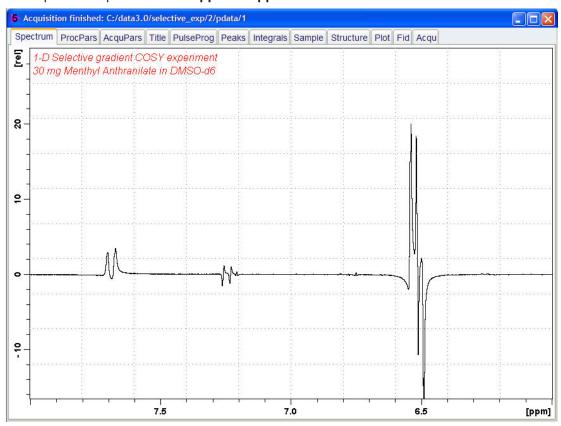

6.2.6 Processing

When the acquisition is finished:

On the menu bar, click Process.



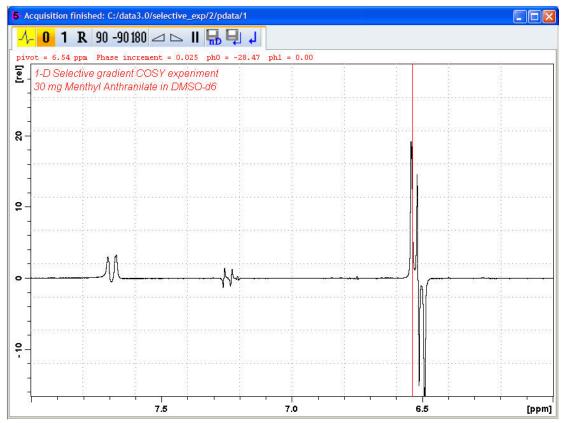
- On the **Proc Spectrum** button, click the **drop-down** arrow to see more options.
- In the list, select Configure Standard Processing (proc1d).


- In the proc1d window, deselect the following options:
 - Auto-Phasing (apk)
 - Set Spectrum Reference (sref)
 - Auto-Baseline correction (abs)
 - Warn if Processed data exist

1D Selective Experiments

Step 5:

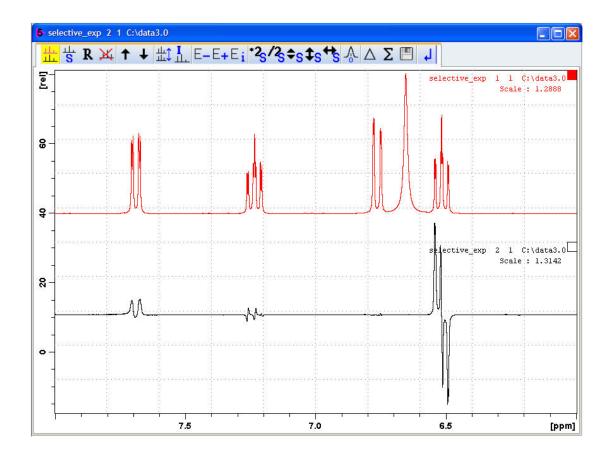
- In the proc1d window, click Execute.
- Expand the spectrum from 8 ppm to 6 ppm.


• On the Workflow button bar, click Adjust Phase.

The **Dataset tabs** are replaced by the **Adjust Phase** tool bar.

• Adjust the **0** order correction on the peak at **6.5 ppm** to display an antiphase pattern.

On the toolbar, click Return & save phased spectrum.

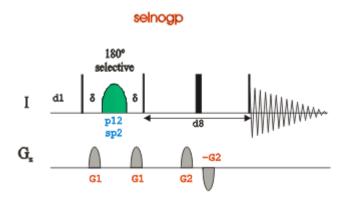


6.2.7 **Plotting Two Spectra on the Same Page**

· Display the selective COSY spectrum.

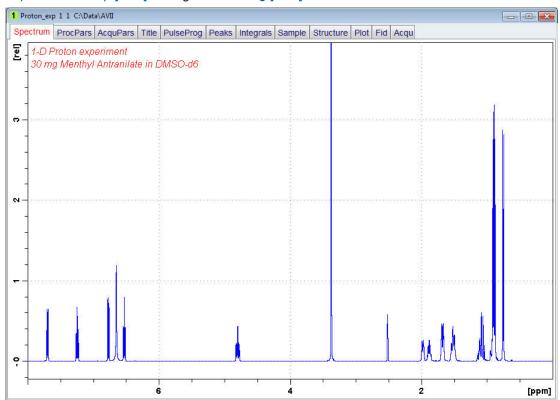
- On the toolbar, click Multiple display.
- Drag the **Reference spectrum** (1D Proton) into the spectral window.

- Click the small box in the upper right corner of the spectrum display to select the reference spectrum.
- Adjust the spectra for best fit with the tools:
- · On the menu bar, click Publish.
- · On the Workflow button bar, click Print.



This will print the active window with the colors displayed in the TopSpin window.

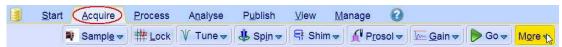
6.3 1D Selective NOESY


6.3.1 Introduction

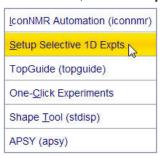
This chapter describes the acquisition and processing of a one-dimensional ¹H selective gradient NOESY experiment. The standard Bruker parameter set is SELNOGP and includes the pulse sequence **selnogp** shown in the next figure. It consists of the recycling delay, five radio-frequency (RF) pulses and the acquisition time during which the signal is recorded. The first RF pulse is a 90° pulse, followed by a 180° shaped pulse, a 90 degree pulse, a 180 degree pulse and finally a 90 degree pulse. The mixing time **D8** is applied before and after the 180° pulse. There are four gradient pulses applied, one each between the RF pulses.

6.3.2 Reference Spectrum

Run a **1D Proton** spectrum, following the instructions in Chapter 1D Proton Experiment, *Experiment Setup* [25] through *Processing* [30].



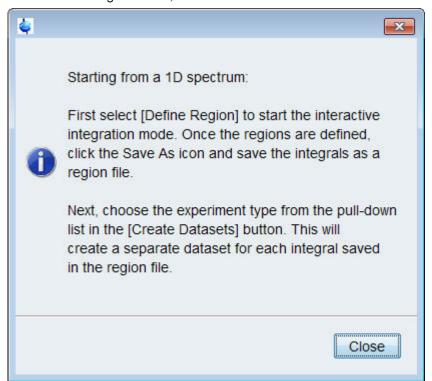
6.3.3 Selective Excitation Region Setup


The selective pulse regions are set up using the integration tools. Power and duration of the shape pulses are calculated using the hard 90° pulse in the prosol table.

· On the menu bar, click Acquire.

1D Selective Experiments

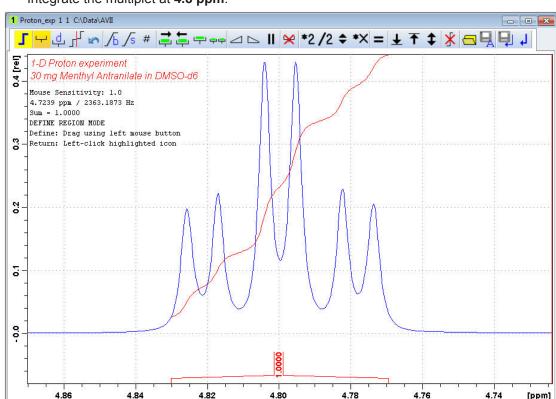
- On the **More** button, click the **drop-down** arrow to see more options.
- In the list, select Setup Selective 1D Expts.



The Workflow button bar changes for setting up the 1D selective experiment.

• On the Workflow button bar, click 1D Selective Experiment Setup.

• In the message window, click Close.



- Expand the peak at **4.8 ppm**.
- On the Workflow button bar, click **Define Regions**.

4.74

[ppm]

• Integrate the multiplet at 4.8 ppm.

If desired, other peaks can be integrated and a separate dataset will be created for each saved integral.

• On the toolbar, click **Save Region as**.

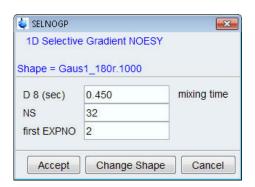
On the toolbar, click **Return do NOT save regions!** to exit the integration mode.

Step 12:

· In the message window, click No.

On the Create Dataset button, click the drop-down arrow to see more options.

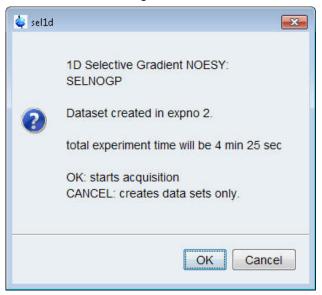
· In the list, select Selective gradient NOESY.



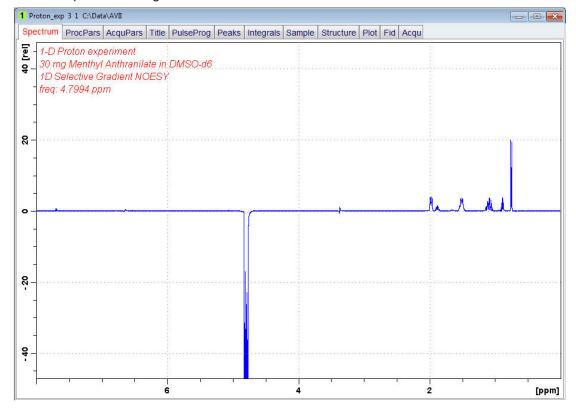
The default parameters are taken from the standard parameter set SELNOGP. The mixing time **D8** is dependent on the size of the Molecule and the magnetic strength. It can vary from a large Molecule to a small one from **100 ms** to **800 ms**.

- To change the Gaus1_180r.1000 pulse, in the SELNOGP window click Change Shape.
- · In the SELNOGP window, enter

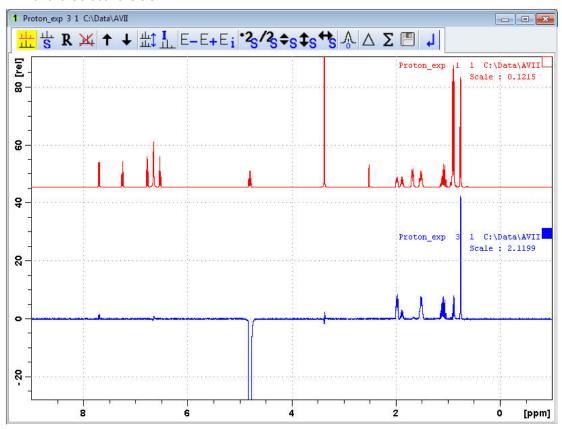
D8 = 0.450


NS = **32**

• In the SELNOGP message window, click Accept.

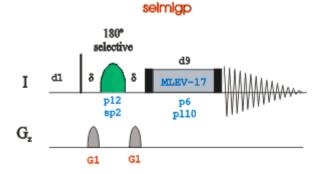

The new dataset is created and all parameters are automatically calculated and set.

• In the sel1d message window, click **OK** to start the acquisition.

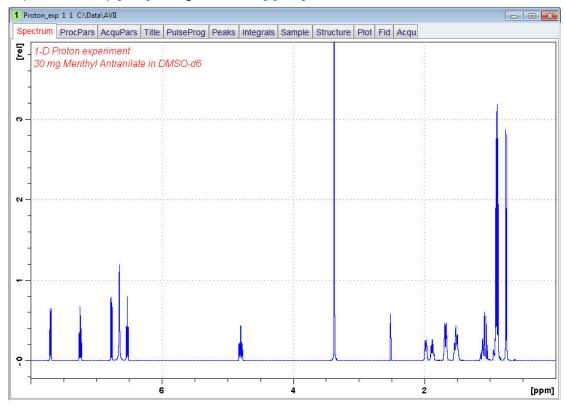

6.3.4 Processing

- Follow the first processing instructions in the chapter *Processing* [▶ 43] up to step **5** *Processing* [▶ 44].
- Manually adjust the phase of the irradiation peak at 4.8 ppm to show negative absorption
 and phase the peaks between 3 ppm and 1 ppm dependent on the field strength, to be
 either positive or negative.

6.3.5 Plotting Two Spectra on the Same Page


- · Display the selective NOESY spectrum.
- Follow the plotting instructions in chapter *Plotting Two Spectra on the Same Page* [▶ 45] for the Selective COSY.

6.4 1D Selective TOCSY


6.4.1 Introduction

This section describes the acquisition and processing of a one-dimensional ¹H selective gradient TOCSY experiment. The standard Bruker parameter set is SELMLGP and includes the pulse sequence **selmlgp** shown in the figure below. It consists of the recycling delay, a radio-frequency (RF) pulse, a MLEV17 sequence for mixing and the acquisition time during which the signal is recorded.

6.4.2 Reference Spectrum

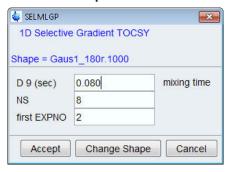
Run a **1D Proton** spectrum, following the instructions in Chapter 1D Proton Experiment, *Experiment Setup* [25] through *Processing* [30].

6.4.3 Selective Excitation Region Set Up

The selective pulse regions are set up using the integration tools. Power and duration of the shape pulses are calculated using the hard 90° pulse in the prosol table.

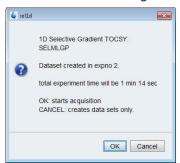
- On the Workflow button bar, click **Define Regions** to define the excitation region. See detailed instructions in chapter *Selective Excitation Region Setup* [▶ 47] up to step **12** *Selective Excitation Region Setup* [▶ 49].
- On the Create Dataset button, click the drop-down arrow to see more options.

• In the list, select Selective gradient TOCSY.


The default parameters are taken from the standard parameter set SELMLGP. If desired, click **Change Shape** to modify the **Gaus1_180r.1000** pulse. A mixing time of **0.06 s** to **0.08 s** is typical for the TOCSY experiment.

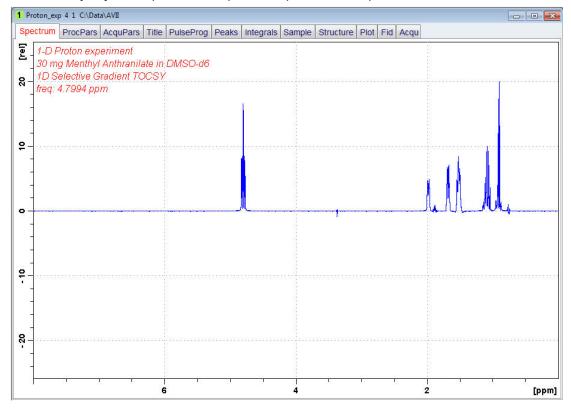
· In the SELMLGP window, enter

D9 = 0.08

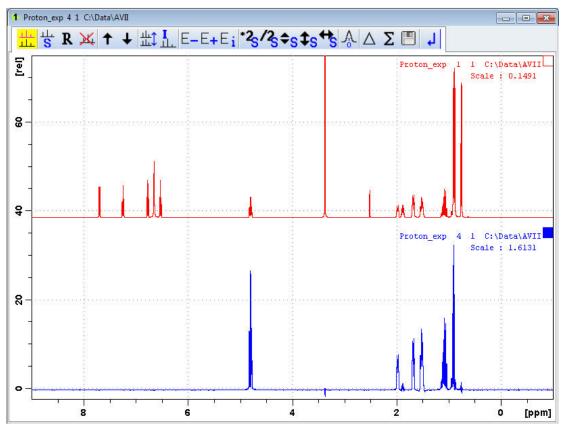

NS = 8

· Click Accept.

The new dataset is created and all parameters are automatically calculated and set.


• In the sel1d message window, click **OK** to start the acquisition.

6.4.4 Processing


Follow the first processing instructions in the chapter *Selective Cosy Processing* [> 43] up to step **5** *Processing* [> 44].

• Manually adjust the phase on all peaks for positive absorption.

6.4.5 Plotting Two Spectra on the Same Page

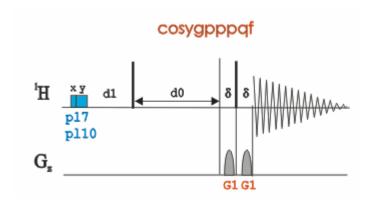
- Display the selective TOCSY spectrum.
- Follow the plotting instructions in chapter *Plotting Two Spectra on the Same Page* [45] for the Selective COSY.

7 2D Homonuclear Experiments

7.1 Sample

The sample of **30 mg Menthyl Anthranilate in DMSO-d6** is used for all experiments in this chapter.

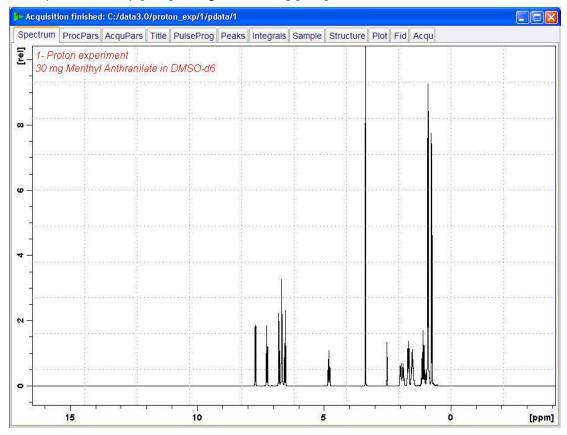
7.2 2D Gradient COSY


7.2.1 Introduction

The COSY experiment relies on the J-couplings to provide spin-spin correlations, and its cross peaks indicate which 1H atoms are close to other 1H atoms through the bonds of the molecule. Typically, protons that are separated by up to 3 bonds can be observed.

The signals acquired with one of these experiments have absorptive and dispersive line shape contributions in both F1 and F2 dimensions. This means that it is impossible to phase the spectrum with all peaks purely absorptive, and, as a consequence, the spectrum must be displayed in magnitude mode. A typical spectral resolution of 3 Hz/pt is sufficient for resolving large scalar couplings. In order to resolve small J-couplings fine digital resolution is required, which significantly increases the experimental time. In general, the DQF-COSY experiment is recommended if a higher resolution is desired.

Using pulsed field gradients (PFG), the coherence pathway selection and the axial peak suppression can be achieved with only one scan per time increment. Thus, if enough substance is available, a typical gradient COSY experiment with 128 time increments can be recorded in 5 minutes.


This chapter describes the acquisition and processing of a two-dimensional 1H gradient COSY. The standard Bruker parameter set is COSYGPSW and includes the pulse sequence **cosygpppqf** shown in the next figure. It consists of the recycling delay, two radio-frequency (RF) pulses, separated by the increment delay D0 and the acquisition time during which the signal is recorded. Both pulses have a 90° angle. Two gradient pulses are applied before and after the second pulse in the sequence. Purge pulses are applied before d1.

The time intervals depicted in the pulse sequence diagrams are not drawn to scale. For example, d1 is typically a few seconds while p1 is typically a few microseconds in length.

7.2.2 Preparation Experiment

• Run a **1D Proton** spectrum, following the instructions in Chapter 1D Proton Experiment, Experiment Setup [25] through Processing [30].

7.2.3 Setting up the COSY Experiment

• On the menu bar, click Start and on the Workflow button bar, click Create Dataset.

· In the New Dataset window, enter or select:

NAME = cosy_exp

EXPNO = 1

PROCNO = 1

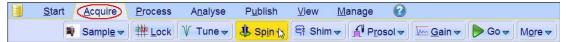
Experiment: select COSYGPSW

Set Solvent: select DMSO

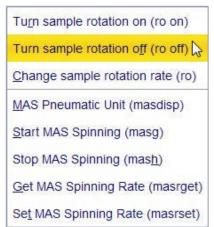
Click the down\up arrow left of **Options** to expand\collapse the Options group.

DIR

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click the drop-down arrow to browse for a specific directory.


Title

In the TITLE window enter a text stating the experiment, sample, the solvent and any other useful information. The title information can be used to search for a dataset.


- In the New Dataset window, click **OK**.
- · On the menu bar, click Aquire.

• On the **Spin** button, click the **drop-down** arrow to see more options.

• In the list, select Turn sample rotation off.

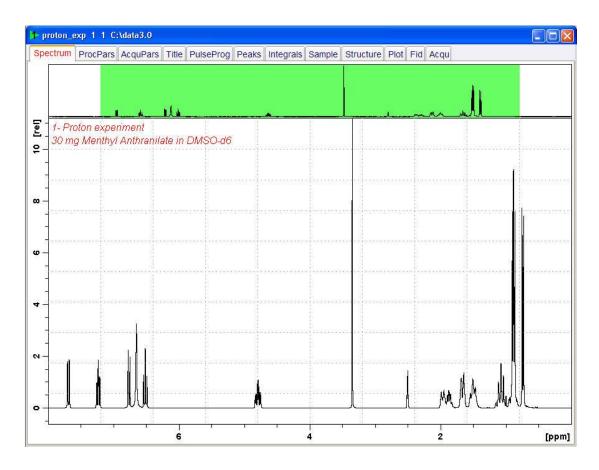
2D experiments should be run non-spinning.

• On the Workflow button bar, click **Prosol**.

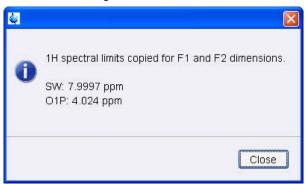


This will load the pulse width and power levels into the parameter set.

7.2.4 Limit Setting


On the Workflow button bar, click SetLimits.

- To open the 1D Proton spectrum, right click on the dataset name in the browser window (e.g. proton_exp) and select **Display** or drag the 1D Proton dataset to the spectrum window.
- Expand the spectrum to display all peaks, leaving ca. **0.2 ppm** of baseline on either side of the spectrum.


The solvent peak may be excluded if it falls outside of the region of interest. Digital filtering however is only applied in F2 and the solvent peak will be folding in F1.

· In the setlimits message window, click **OK** to assign the new limit.

2D Homonuclear Experiments

· In the message window, click Close.

The display changes back to the 2D dataset.

7.2.5 Acquisition

On the Workflow button bar, click Gain.

or

On the Gain button, click the drop-down arrow to adjust the receiver gain manually.

Set <u>receiver gain manually (rg)</u>

• On the Workflow button bar, click Go.

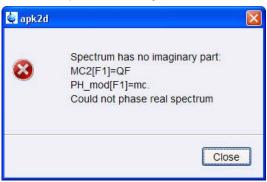
or

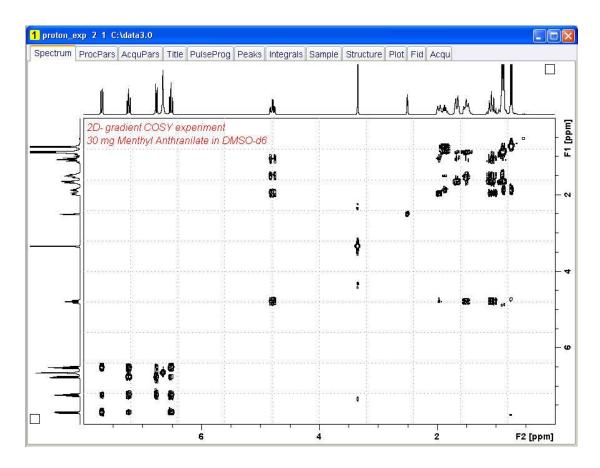
• On the **Go** button, click the **drop-down** arrow to see more options.

7.2.6 Processing

When the acquisition is finished:

· On the menu bar, click Process.


• On the Workflow button bar, click **Proc Spectrum**.


This executes a standard processing program proc2d.

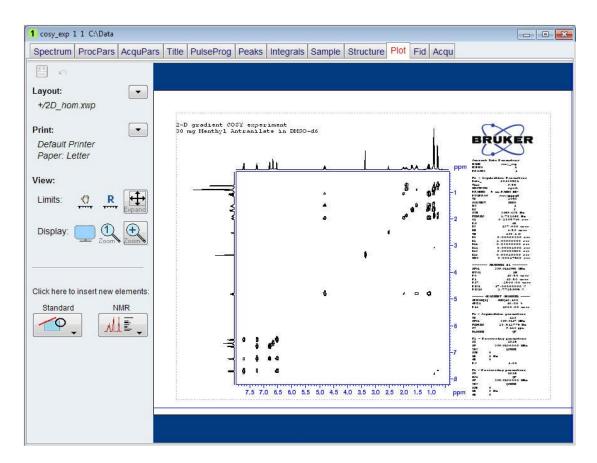
The apk2d message window is displayed in case of a magnitude 2D experiment and when the **apk2d** option is enabled and the processing of the magnitude COSY it not affected.

• In the apk2d window, just click Close.

To disable the **apk2d** option, on the **Proc. Spectrum** button click the **drop-down** arrow to configure the Standard Processing (**proc2d**) program.

7.2.7 Plotting the COSY Spectrum

• Use the Smaller/larger buttons to adjust for a suitable contour level.



2D Homonuclear Experiments

- Type .ls or click Contour levels to disk.
- · On the menu bar, click Publish.
- On the Workflow button bar, click Plot Layout.



i

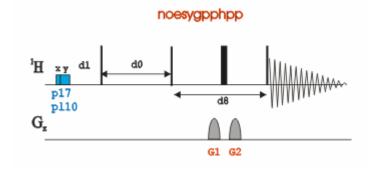
If desired, any changes can be administered by using the tools on the left side of the display.

Click the down arrow button in the left Print section.

• In the list, select Print ...

7.3 2D Gradient NOESY Experiment

7.3.1 Introduction

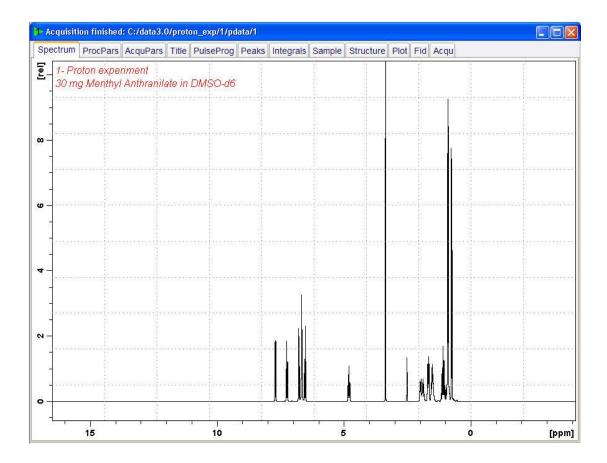

NOESY (Nuclear Overhauser Effect Spectroscopy) is a 2D spectroscopy method used to identify spins undergoing cross-relaxation and to measure the cross-relaxation rates. Most commonly, NOESY is used as a homonuclear 1H technique. In NOESY, direct dipolar couplings provide the primary means of cross-relaxation, and so spins undergoing cross-relaxation are those which are close to one another in space. Thus, the cross peaks of a NOESY spectrum indicate which protons are close to each other in space. This can be distinguished from COSY, for example, which relies on J-coupling to provide spin-spin correlation, and its cross peaks indicate which 1H atoms are close to other 1H atoms through the bonds of the molecule.

The basic NOESY sequence consists of three p/2 pulses. The first pulse creates transverse spin magnetization. This precesses during the evolution time t1, which is incremented during the course of the 2D experiment. The second pulse produces longitudinal magnetization equal to the transverse magnetization component orthogonal to the pulse direction. Thus, the basic idea is to produce an initial situation for the mixing period d8. Note that, for the basic NOESY experiment, d8 is kept constant throughout the 2D experiment. The third pulse creates transverse magnetization from the remaining longitudinal magnetization. Acquisition begins immediately following the third pulse, and the transverse magnetization is observed as a function of the time t2. The NOESY spectrum is generated by a 2D Fourier transform with respect to t1 and t2.

Axial peaks, which originate from magnetization that has relaxed during tm, can be removed by the appropriate phase cycling.

NOESY spectra can be obtained in 2D absorption mode. Occasionally, COSY-type artifacts appear in the NOESY spectrum; however, these are easy to identify by their anti-phase multiplet structure.

This section describes the acquisition and processing of a two-dimensional 1H phase sensitive NOESY. The standard Bruker parameter set is NOESYPHSW and includes the pulse sequence **noesygpphpp** shown in the next figure. It consists of the recycling delay, three radio-frequency (RF) pulses, separated by the increment delay D0 between the first and second pulse, a mixing time D8 between the second and third pulse and the acquisition time during which the signal is recorded. All three pulses are of 90°.



The time intervals depicted in the pulse sequence diagrams are not drawn to scale. For example, d1 is typically a few seconds while p1 is typically a few microseconds in length.

7.3.2 Preparation Experiment

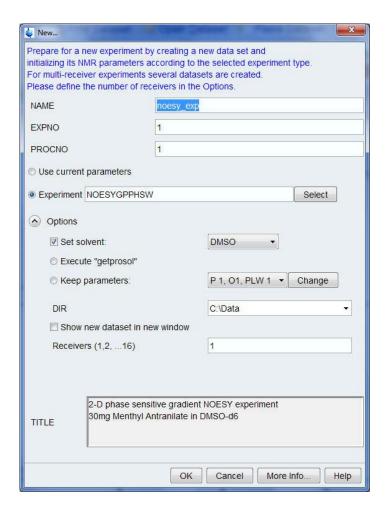
 Run a 1D Proton spectrum, following the instructions in Chapter 1D Proton Experiment, Experiment Setup [> 25] through Processing [> 30].

2D Homonuclear Experiments

7.3.3 Setting up the NOESY Experiment

• On the menu bar, click **Start** and on the Workflow button bar, click **Create Dataset**.

• In the New window, enter or select:


NAME = noesy_exp

EXPNO = 1

PROCNO = 1

Experiment = NOESYGPPHSW

Set Solvent = DMSO

DIR

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click the drop-down arrow to browse for a specific directory.

Title

In the TITLE window enter a text stating the experiment, sample, the solvent and any other useful information. The title information can be used to search for a dataset.

In the New Dataset window, click OK.

Follow the instructions in the chapter Setting up the COSY Experiment [▶ 58] for performing Prosol and SetLimits. If you know what you're doing, this should give you all the necessary information. If you need more details, you're referred to those details from the COSY experiment.

• In the Dataset window, select the **AcquPars** tab.

• In the Field D8[sec] enter 0.450.

2D Homonuclear Experiments

The mixing time depends on the size of the Molecule. The range for Bio-molecules is typically from **0.05** s to **0.2** s, medium size molecules from **0.1** s to **0.5** s and for small molecules **0.5** s to **0.9** s.

• In the Dataset window, select the **Spectrum** tab.

7.3.4 Acquisition

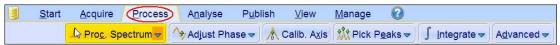
· On the Workflow button bar, click Gain.

or

On the Gain button, click the drop-down arrow to adjust the receiver gain manually.

Set receiver gain manually (rg)

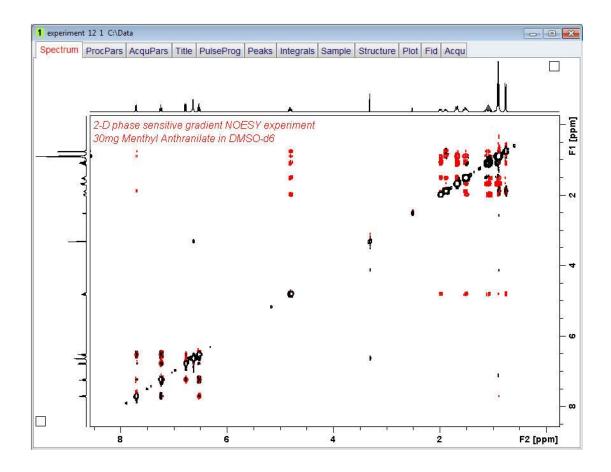
· On the Workflow button bar, click Go.


or

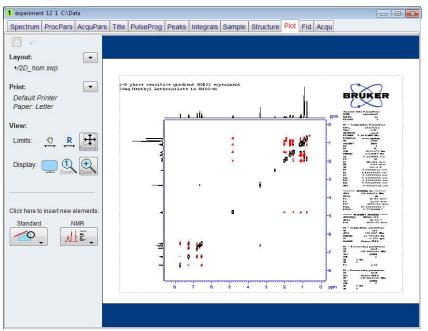
• On the **Go** button, click the **drop-down** arrow to see more options.

7.3.5 Processing

When the acquisition is finished:


· On the menu bar, click Process.

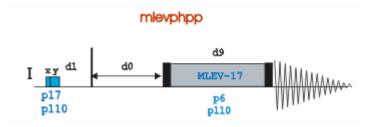
On the Workflow button bar, click Proc Spectrum.



This executes a standard processing program **proc2d**. The **apk2d** option has to be enabled. To enable the **apk2d** option, on the **Proc. Spectrum** button click the **drop-down** arrow and configure the **Standard Processing (proc2d)** program.

7.3.6 Plotting the NOESY Spectrum

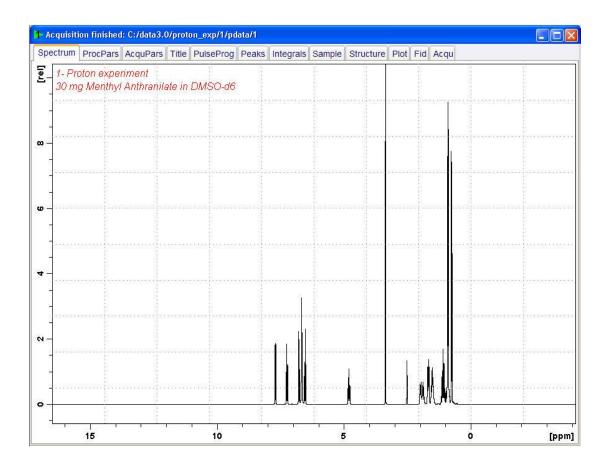
• Follow the plotting instructions in chapter *Plotting the COSY Spectrum* [▶ 63] in this chapter.


7.4 2D Phase Sensitive TOCSY Experiment

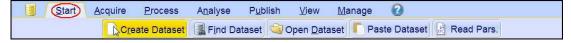
7.4.1 Introduction

TOCSY (TOtal Correlation Spectroscopy) provides a different mechanism of coherence transfer than COSY for 2D correlation spectroscopy in liquids. In TOCSY, cross peaks are generated between all members of a coupled spin network. An advantage is that pure absorption mode spectra with positive intensity peaks are created. In traditional COSY, cross peaks have zero integrated intensity and the coherence transfer is restricted to directly spincoupled nuclei. In TOCSY, oscillatory exchange is established which proceeds through the entire coupling network so that there can be net magnetization transfer from one spin to another even without direct coupling. The isotropic mixing which occurs during the spin-lock period of the TOCSY sequence exchanges all in-phase as well as antiphase coherence.

The coherence transfer period of the TOCSY sequence occurs during a multiple-pulse spin-lock period. The multiple-pulse spin-lock sequence most commonly used is MLEV-17. The length of the spin-lock period determines how far the spin coupling network will be probed. A general rule of thumb is that 1/(10 JHH) should be allowed for each transfer step, and five transfer steps are typically desired for the TOCSY spectrum.


This section describes the acquisition and processing of a two-dimensional ¹H phase sensitive TOCSY. The standard Bruker parameter set is MLEVPHSW and includes the pulse sequence **mlevphpp** shown in the next figure. It consists of the recycling delay, two radio-frequency (RF) pulses, separated by the increment delay **D0** and the acquisition time during which the signal is recorded. The first RF pulse is a 90° pulse, the second pulse is the mlev spinlock pulse.

The time intervals depicted in the pulse sequence diagrams are not drawn to scale. For example, **d1** is typically a few seconds while **p1** is typically a few microseconds in length.


7.4.2 Preparation Experiment

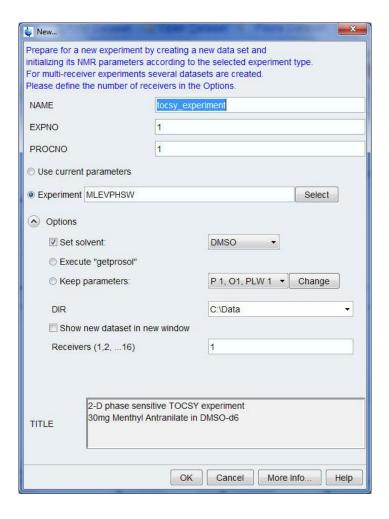
 Run a 1D Proton spectrum, following the instructions in Chapter 1D Proton Experiment, Experiment Setup [25] through Processing [30].

7.4.3 Setting up the TOCSY Experiment

• On the menu bar, click **Start** and on the Workflow button bar, click **Create Dataset**.

• In the New window, enter or select:

NAME = tocsy_experiment


EXPNO = 1

PROCNO = 1

Experiment = MLEVPHSW

Set Solvent = **DMSO**

2D Homonuclear Experiments

DIR

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click the drop-down arrow to browse for a specific directory.

Title

In the TITLE window enter a text stating the experiment, sample, the solvent and any other useful information. The title information can be used to search for a dataset.

· In the New Dataset window, click OK.

Follow the instructions in the chapter Setting up the COSY Experiment [▶ 58] for performing Prosol and SetLimits. If you know what you're doing, this should give you all the necessary information. If you need more details, you're referred to those details from the COSY experiment.

• In the Dataset window, select the **AcquPars** tab.

• In the AcquPars tab toolbar click **Show pulse program parameters**.

• In the Field D9[sec] enter 0.08000000.

D9 [sec] 0.08000000 TOCSY mixing time

A mixing time of **0.06 s** to **0.08 s** is typical for the TOCSY experiment.

In the Dataset window, select the Spectrum tab.

7.4.4 Acquisition

On the Workflow button bar, click Gain.

or

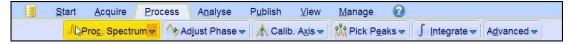
On the Gain button, click the drop-down arrow to adjust the receiver gain manually.

Set <u>receiver gain manually (rg)</u>

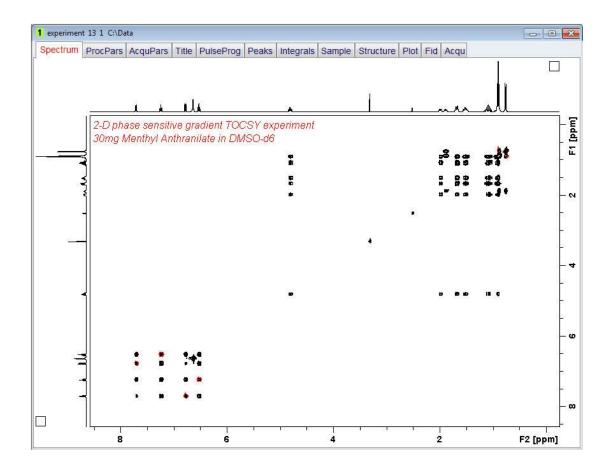
On the Workflow button bar, click Go.

or

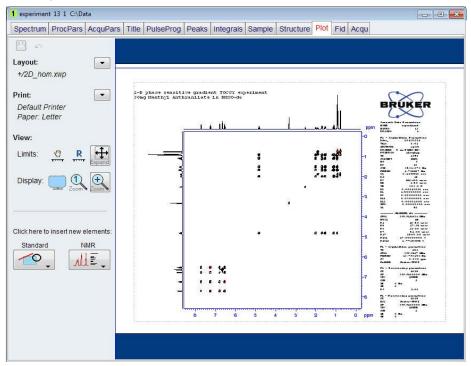
• On the **Go** button, click the **drop-down** arrow to see more options.


7.4.5 Processing

When the acquisition is finished:


• On the menu bar, click **Process**.

• On the Workflow button bar, click **Proc Spectrum**.

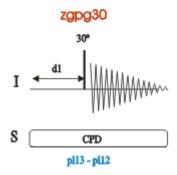


This executes a standard processing program **proc2d**. The **apk2d** option has to be enabled. To enable the **apk2d** option, on the **Proc. Spectrum** button click the **drop-down** arrow and configure the **Standard Processing (proc2d)** program.

7.4.6 Plotting the TOCSY Spectrum

• Follow the plotting instructions in chapter *Plotting the COSY Spectrum* [▶ 63] in this chapter.

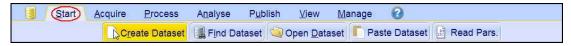
8 1D Carbon Experiments


8.1 Sample

The sample of **30 mg Menthyl Anthranilate in DMSO-d6** is used for all experiments in this chapter.

8.2 1D Carbon Experiment

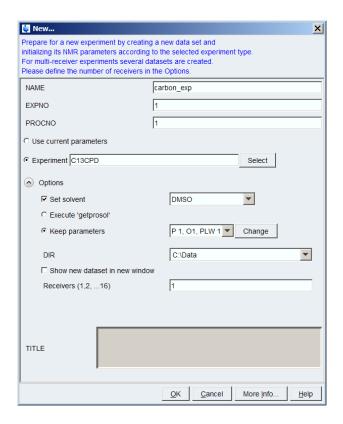
8.2.1 Introduction


This chapter describes the acquisition and processing of a one-dimensional 13C NMR spectrum. The standard Bruker parameter set C13CPD, includes the pulse sequence **zgpg30**, shown in the figure below. The ¹³C channel consists of the recycling delay, a RF pulse, and the acquisition time during which the signal is recorded. The pulse angle is shown to be 30°. The two parameters, D1 and P1, correspond to the length of the recycle delay, and the length of the 90° RF pulse, respectively. The ¹H channel consists of two decoupling pulses which can be power gated. The first pulse, an NOE build up pulse during the recycle delay may be of lower power then the second pulse on during the acquisition which is the true decoupling pulse. This can be useful to avoid RF heating on salty samples or probes where a higher decoupling power can be problematic.

The time intervals depicted in the pulse sequence diagrams are not drawn to scale. For example, d1 is typically a few seconds while p1 is typically a few microseconds in length.

8.2.2 Experiment Setup

• On the menu bar, click Start and on the Workflow button bar, click Create Dataset.


1D Carbon Experiments

· In the New Dataset window, enter or select:

NAME = carbon_exp

EXPNO = 1 PROCNO = 1

Experiment: select C13CPD Set Solvent: select DMSO

DIR

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click the drop-down arrow to browse for a specific directory.

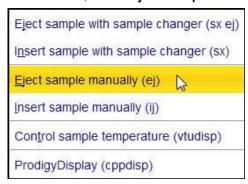
Title

In the TITLE window enter a text stating the experiment, sample, the solvent and any other useful information. The title information can be used to search for a dataset.

- · In the New Dataset window, click **OK**.
- In the Dataset window, select the **AcquPars** tab.
- · Make the following change:

NS = 128

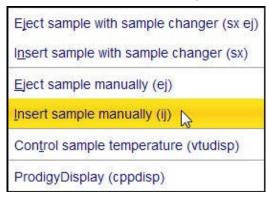
· On the menu bar, click Acquire.



To aquire a spectrum, use the Workflow buttons from left to right.

• On the **Sample** button, click the **drop-down** arrow to see more options.

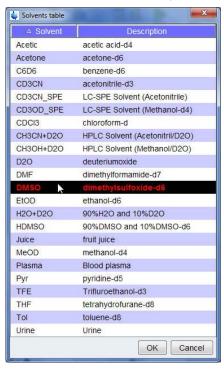
• In the list, select **Eject sample manally (ej)**. The sample lift is turned on.



Wait until the sample lift air is turned on and remove any sample which may have been in the magnet.

- · Place the sample plus the spinner on top of the magnet bore.
- On the **Sample** button, click the **drop-down** arrow to see more options.

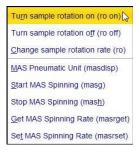
· In the list, select Insert sample manually (ij).



Wait until the sample is lowered down into the probe and the lift air is turned off. A clicking sound may be heard.

· On the Workflow button bar, click Lock.

• In the Solvents table list, select **DMSO** and click **OK**.


On the Workflow button bar, click Tune.

This performs an **atma** (automatic tuning and matching) and requires a probe equipped with an automatic tuning and matching module. The tuning always starts with the lowest frequency, in this case carbon, and then switches over to tune the higher frequencies, in this case proton. On the **Tune** button, click the **drop-down** arrow to see more options.

- On the **Spin** button, click the **drop-down** arrow to see more options.
- In the list, select Turn sample rotation on (ro on).

Rotation may be turned off for probes such as **BBI**, **TXI**, **TBI** and for small sample probes.

On the Workflow button bar, click Shim.

This executes the command **topshim**. On the **Shim** button click the **drop-down** arrow to see more options.

• On the Workflow button bar, click **Prosol**.

This will load the pulse width and power levels into the parameter set.

8.2.3 Acquisition

· On the Workflow button bar, click Gain.

or

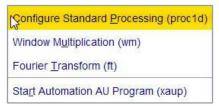
• On the **Gain** button, click the **drop-down** arrow to adjust the receiver gain manually.

Set receiver gain manually (rg)

· On the Workflow button bar, click Go.

or

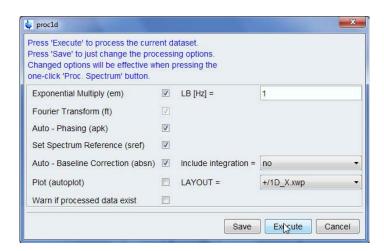
• On the **Go** button, click the **drop-down** arrow to see more options.


8.2.4 Processing

When the acquisition is finished:

- · On the menu bar, click Process.
- On the **Proc Spectrum** button, click the **drop-down** arrow to see more options.

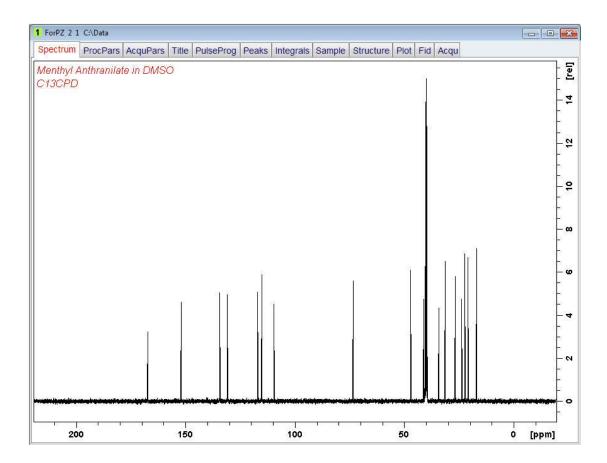
• In the list, select Configure Standard Processing (proc1d).


• In the proc1d window, select the options:

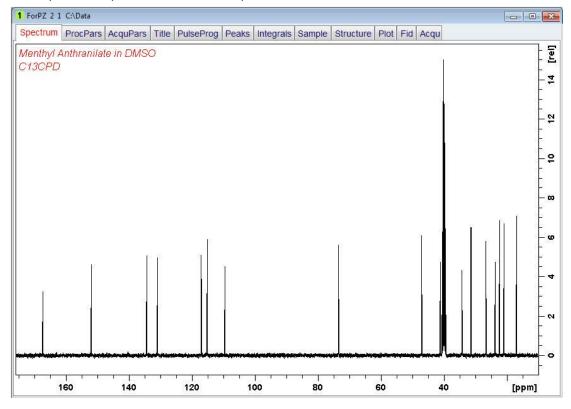
Exponential Multiply (em)

Auto - Phasing (apk)

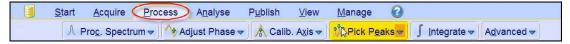
Set Spectrum Reference (sref)


Auto - Baseline Correction (absn)

- In the proc1d window, click **Execute**.
- In the proc1d window, click **Save** to save the selected processing settings.



Now all future datasets can be processed with the defined actions with a click on **Proc Spectrum**.



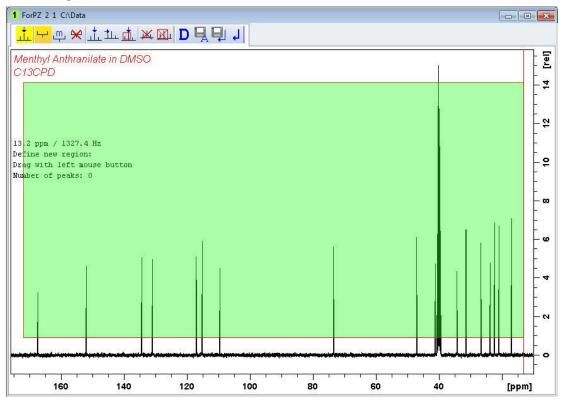
8.2.5 Peak Picking

• Expand the spectrum to include all peaks.

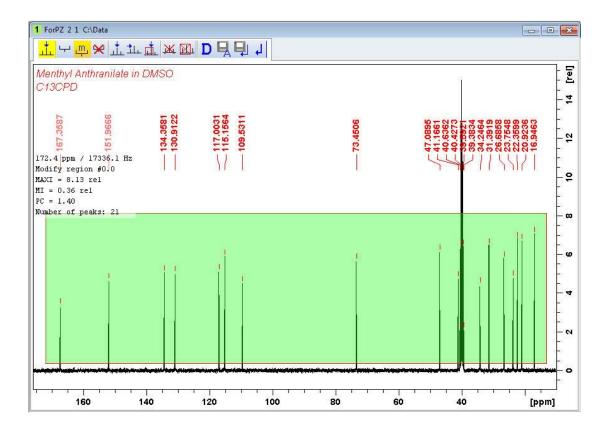
· On the Workflow button bar, click Peak Peaks.

or

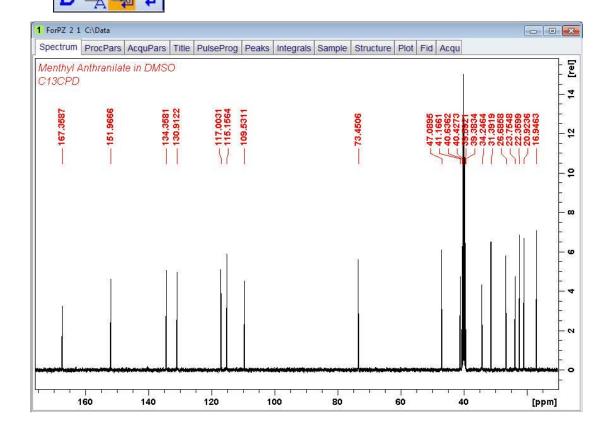
• On the Pick Peaks button, click the drop-down arrow to see more options.


This enters the manual peak picking mode.

The **Dataset** tabs are replaced by the **Peak Picking** toolbar.

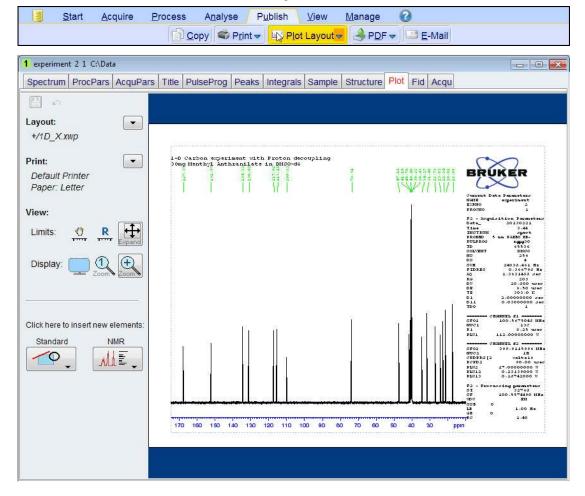


By default the **Define new peak picking range** button is enabled.


 Click left and drag the cursor line from left to the right side of the spectrum, drawing a rectangular box.

- On the Peak Picking tool bar, click **Modify existing peak picking range** to manually adjust the minimum and maximum intensity levels.
- Click left on the bottom line of the region box and drag the line above the noise level to set the minimum peak picking level.
- Click left on the top line of the region box and drag the line below unwanted peaks e.g. solvent peaks to set the maximum peak picking level.

• On the Peak Picking toolbar, click **Return, save region** to store the peak values.



1D Carbon Experiments

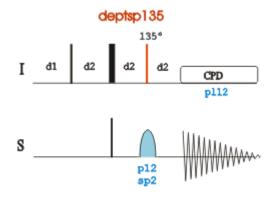
 To display the peak picking labels, right click in the spectrum window and select Spectra Display Preferences. In the Spectrum components enable Peak labels and Peak annotations. Click Apply and Close.

8.2.6 Plotting the 1D Carbon Spectrum

- · Expand the spectrum to include all peaks.
- On the toolbar, click **Retain expansion and scale**.
- · On the menu bar, click Publish.
- · On the Workflow button bar, click Plot Layout.

If desired, any changes can be administered with the tools on the left side of the display.

- In the left **Print** section, click the **drop-down** arrow to see more options.
- · In the list, select Print.

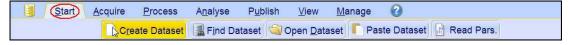


8.3 DEPT-135 Experiment

8.3.1 Introduction

DEPT (Distortion less Enhancement by Polarization Transfer) is a polarization transfer technique used for the observation of nuclei with a small gyro magnetic ratio, which are J-coupled to 1H (most commonly 13C). DEPT is a spectral editing sequence, that is, it can be used to generate separate 13C sub spectra for methyl (CH3), methylene (CH2), and methine (CH) signals. DEPT makes use of the generation and manipulation of multiple quantum coherence to differentiate between the different types of 13C signals. Quaternary carbons are missing a direct bond proton, and as a result are absent from all DEPT spectra.

This chapter describes the acquisition and processing of a one-dimensional 13C-DEPT135 NMR spectrum. The standard Bruker parameter set C13DEPT135, includes the pulse sequence **deptsp135**, shown in the figure below. The 13C channel consists of the recycling delay, a 90° RF pulse, an editing delay D2 followed by a 180° shaped pulse and the acquisition time during which the signal is recorded. The editing delay D2 is 1/2*J(XH). The 1H channel consists of three pulses, a 90°, a 180°, followed by a 135° RF pulse and are separated by the editing delay D2. The final 135° 1H pulse selects the CH3, CH2 or CH signals. The protons are decoupled during the acquisition period.

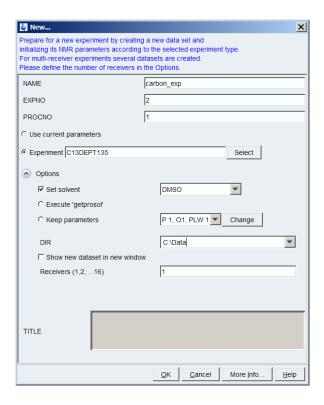


The time intervals depicted in the pulse sequence diagrams are not drawn to scale. For example, d1 is typically a few seconds while p1 is typically a few microseconds in length.

8.3.2 Experiment Setup

This experiment usually follows a regular ^{1}H decoupled ^{13}C experiment. The result of a DEPT-135 experiment shows only the protonated carbons with the CH and CH_3 as positive and the CH_2 as negative signals.

On the menu bar, click Start and on the Workflow button bar, click Create Dataset.


• In the New Dataset window, enter or select:

NAME = carbon_exp EXPNO = 2

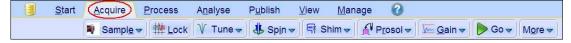
PROCNO = 1

Experiment: select C13DEPT135

Set Solvent: select DMSO

DIR

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click the drop-down arrow to browse for a specific directory.


Title

In the TITLE window enter a text stating the experiment, sample, the solvent and any other useful information. The title information can be used to search for a dataset.

- In the New Dataset window, click OK.
- In the Dataset window, select the **AcquPars** tab.
- · Enter:

NS = 64

· On the menu bar, click Acquire.

On the Workflow button bar, click Prosol.

This will load the pulse width and power levels in to the parameter set.

8.3.3 Acquisition

· On the Workflow button bar, click Gain.

or

- To adjust the receiver gain manually, on the **Gain** button click the **drop-down** arrow.
- On the Workflow button bar, click Go.


or

• On the **Go** button, click the **drop-down** arrow to see more options.

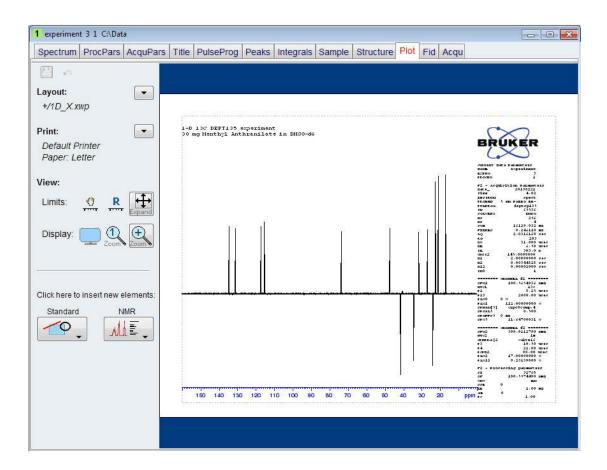
8.3.4 Processing

When the acquisition is finished:


- · On the menu bar, click Process.
- · On the Workflow button bar, click Proc Spectrum.

Proc. Spectrum executes a processing program including commands such as an exponential window function **em**, Fourier transformation **ft**, an automatic phase correction **apk** and a baseline correction **abs**. On the **Proc. Spectrum** button, click the **drop-down** arrow to see more options. In the list, select **Configure Standard Processing (proc1d)**. Do to the fact that a DEPT135 spectrum contains negative and positive peaks, there is the possibility of getting phase results that are 180 degrees off. In this case, click **Adjust Phase** to enter the manual phase routine and reverse the spectrum by clicking on the **180** icon.

1D Carbon Experiments

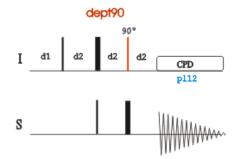

8.3.5 Plotting the DEPT-135 Spectrum

• Expand the spectrum to include all peaks.

- On the toolbar, click Retain expansion and scale.
- On the menu bar, click Publish.
- On the Workflow button bar, click Plot Layout.

If desired, any changes can be administered with the tools on the left side of the display.

- In the left **Print** section, click the **drop-down** arrow to see more options.
- · In the list, select Print.



8.4 DEPT-90 Experiment

8.4.1 Introduction

This section describes the acquisition and processing of a one-dimensional 13C-DEPT90 NMR spectrum. The standard Bruker parameter set C13DEPT90, includes the pulse sequence **dept90**, shown in the next figure. The 13C channel consists of the recycling delay, a 90° RF pulse, an editing delay D2 followed by a 180° RF pulse and the acquisition time during which the signal is recorded. The editing delay D2 is 1/2*J(XH). The 1H channel consists of three pulses, a 90 degree, a 180 degree, followed by a 90° RF pulse and are separated by the editing delay D2. The final 90° 1H pulse selects the CH signals only. The protons are decoupled during the acquisition period.

1D Carbon Experiments

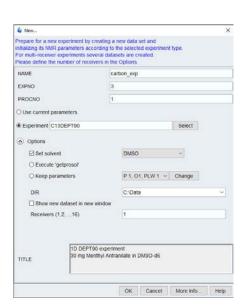

The time intervals depicted in the pulse sequence diagrams are not drawn to scale. For example, d1 is typically a few seconds while p1 is typically a few microseconds in length.

8.4.2 Experiment Setup

The DEPT90 experiment usually follows a regular ¹H decoupled ¹³C experiment and a DEPT-135 experiment. It is used to assign the methine (CH) signals.

• On the menu bar, click Start and on the Workflow button bar, click Create Dataset.

In the New Dataset window, enter or select:


NAME = carbon_exp

EXPNO = 3

PROCNO = 1

Experiment: select C13DEPT90

Set Solvent: select DMSO

DIR

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click the drop-down arrow to browse for a specific directory.

Title

In the TITLE window enter a text stating the experiment, sample, the solvent and any other useful information. The title information can be used to search for a dataset.

- · In the New Dataset window, click OK.
- In the Dataset window, select the AcquPars tab.
- · Make the following change:

NS = 64

· On the menu bar, click Acquire.

On the Workflow button bar, click Prosol.

This will load the pulse width and power levels into the parameter set.

8.4.3 Acquisition

· On the Workflow button bar, click Gain.

or

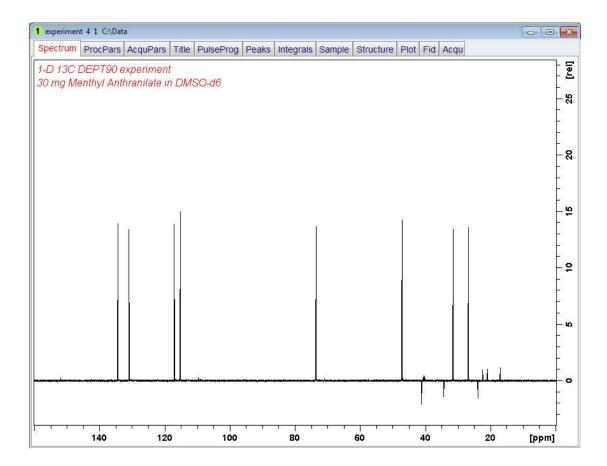
- To adjust the receiver gain manually, on the **Gain** button click the **drop-down** arrow.
- · On the Workflow button bar, click Go.

or

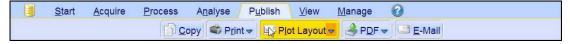
• On the **Go** button, click the **drop-down** arrow to see more options.

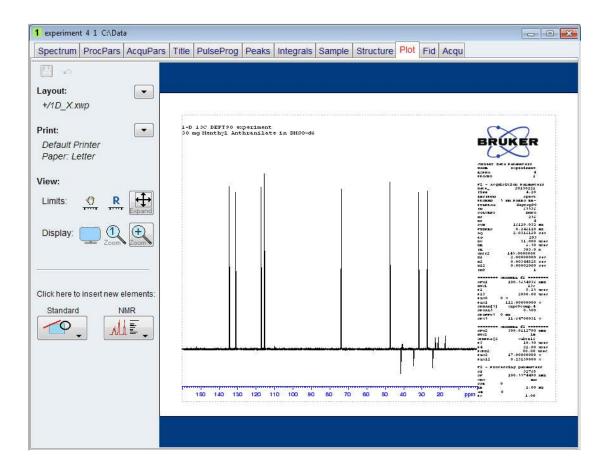
8.4.4 Processing

When the acquisition is finished:


- · On the menu bar, click Process.
- On the Workflow button bar, click **Proc Spectrum**.

1D Carbon Experiments




Proc. Spectrum executes a processing program including commands such as an exponential window function **em**, Fourier transformation **ft**, an automatic phase correction **apk** and a baseline correction **abs**. On the **Proc. Spectrum** button, click the **drop-down** arrow to see more options. In the list, select **Configure Standard Processing (proc1d)**.

8.4.5 Plotting the DEPT-90 Spectrum

- · Expand the spectrum to include all peaks.
- On the toolbar, click **Retain expansion and scale**.
- · On the menu bar, click Publish.
- · On the Workflow button bar, click Plot Layout.

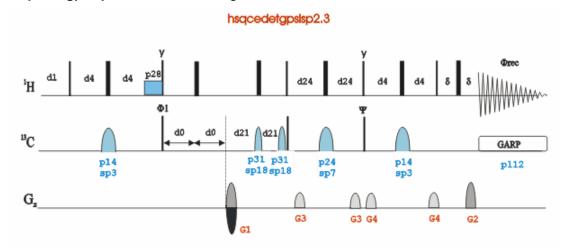
If desired, any changes can be administered with the tools on the left side of the display.

- In the left **Print** section, click the **drop-down** arrow to see more options.
- In the list, select Print.

1D Carbon Experiments

9 2D Heteronuclear Experiments

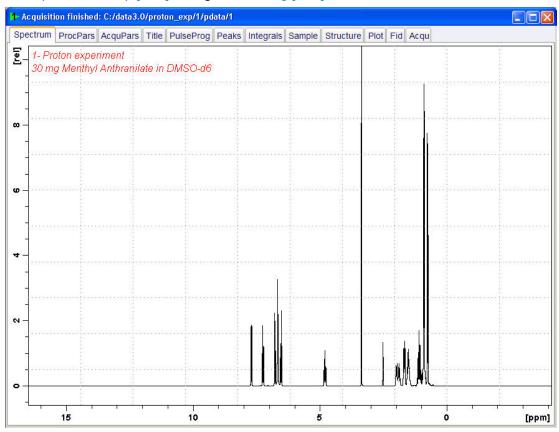
9.1 Sample


The sample of **30 mg Menthyl Anthranilate in DMSO-d6** is used for all experiments in this chapter.

9.2 2D Edited HSQC

9.2.1 Introduction

The **HSQC** (Heteronuclear Single Quantum Coherence) experiment performs an H,C-correlation via the ¹³C chemical shift evolution of the double-quantum coherence. This method is superior to other heteronuclear experiments in the case of a crowded ¹³C NMR spectrum.


In the sequence shown the next figure, the signals are not broadened by homonuclear H,H coupling in F1. It is possible to obtain a complete editing of inverse recorded 1D H,X correlation spectra. This kind of multiplicity determination has been achieved by including an editing period within HSQC. In the experiment shown here the standard Bruker parameter set HSQCEDETGPSISP2.3_ADIA is used and the graphical display of the pulse program hsqcedetgpsisp2.3 is shown in the figure below.

The time intervals depicted in the pulse sequence diagrams are not drawn to scale. For example, d1 is typically a few seconds while p1 is typically a few microseconds in length.

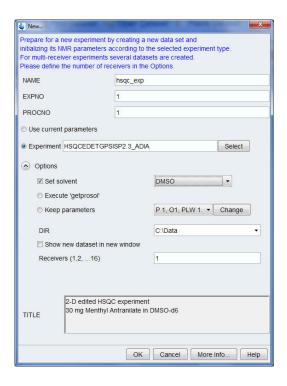
9.2.2 Preparation Experiment

• Run a **1D Proton** spectrum, following the instructions in Chapter 1D Proton Experiment, Experiment Setup [25] through Processing [30].

9.2.3 The HSQC Experiment Setup

• On the menu bar, click **Start** and on the Workflow button bar, click **Create Dataset**.

• In the New Dataset window, enter or select:


NAME = hsqc_exp

EXPNO = 1

PROCNO = 1

Experiment: select HSQCEDETGPSISP2.3_ADIA

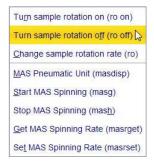
Set Solvent: select DMSO

DIR

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click the drop-down arrow to browse for a specific directory.

Title

In the TITLE window enter a text stating the experiment, sample, the solvent and any other useful information. The title information can be used to search for a dataset.


- In the New Dataset window, click OK.
- On the menu bar, click Aquire.

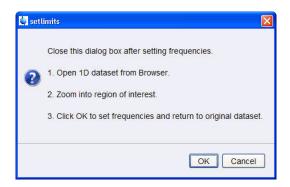
• On the **Spin** button, click the **drop-down** arrow to see more options.

In the list, select Turn sample rotation off.

2D Heteronuclear Experiments

2D experiments should be run non-spinning.

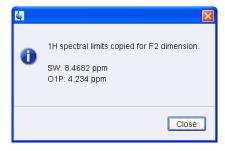
• On the Workflow button bar, click **Prosol**.



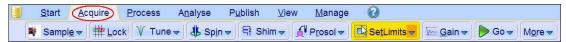
This will load the pulse width and power levels into the parameter set.


9.2.4 Limit Setting

· On the Workflow button bar, click SetLimits.



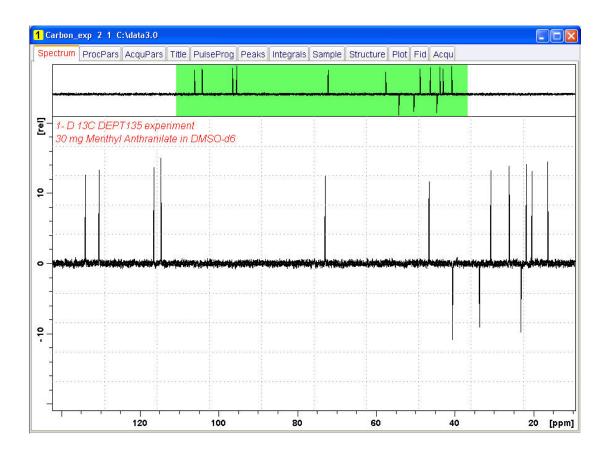
- To open the 1D Proton spectrum, right click on the dataset name in the browser window (e.g. proton_exp) and select **Display** or drag the 1D Proton dataset to the spectrum window.
- Expand the spectrum to display all peaks, leaving ca. **0.2 ppm** of baseline on either side of the spectrum.


- In the setlimits message window, click **OK** to assign the new limit.
- · In the message window, click Close.

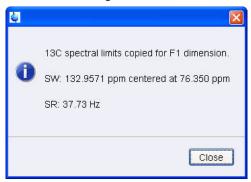
The display changes back to the 2D dataset.

The parameter set HSQCEDETGPSISP2.3_ADIA has a fixed F1 sweep width of **160 ppm** and it is big enough to cover the protonated resonances for a broad range of samples. If desired, changes to the F1 sweep width can be done by using the **SetLimits** button for a second time. In this case a 1-D **C13DEPT45** or **C13DEPT135** experiment on the same sample has to be observed. Be aware, if the acquisition time is increased do to making the sweep width smaller (e.g. no aromatic peaks), there may be a risk of heating the sample. As an example to set the F1 limit, follow the steps below.

On the Workflow button bar, click SetLimits.


2D Heteronuclear Experiments

- To open the 1D C13DEPT135 spectrum, right click on the dataset name in the browser window (e.g. carbon_exp 2) and select Display or drag the 1D C13DEPT135 dataset to the spectrum window.
- Expand the spectrum to display all peaks, leaving ca. **5 ppm** of baseline on either side of the spectrum.



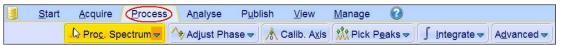
The solvent peak may be excluded if it falls outside of the region of interest. Digital filtering however is only applied in F2 and the solvent peak will be folding in F1.

• In the setlimits message window, click **OK** to assign the new limit.

· In the message window, click Close.

9.2.5 Acquisition

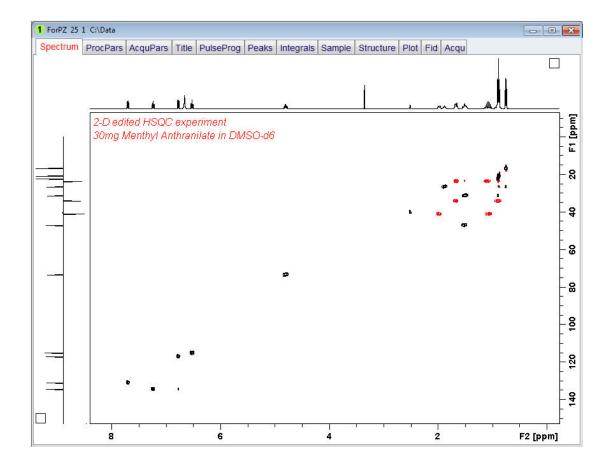
· On the Workflow button bar, click Gain.


On the Workflow button bar, click Go.

9.2.6 Processing

When the acquisition is finished:

· On the menu bar, click Process.



· On the Workflow button bar, click Proc Spectrum.

This executes a standard processing program proc2d.

The **apk2d** option has to be enabled. To enable **the apk2d** option, on the Workflow button bar click the **drop-down** arrow in the Proc. Spectrum button and configure the **Standard Processing (proc2d)** program. By default, the baseline of the F1 projection will be at the bottom, cutting off the negative peaks of the DEPT135 spectrum. Right click inside the F1 projection window and change the setting to display the baseline at the center.

9.2.7 Plotting the 2D HSQC Spectrum

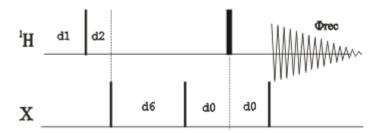
• Use the Smaller/larger buttons to adjust for a suitable contour level.

- Type .ls or click on the Contour levels to disk button.
- · On the menu bar, click Publish.
- · On the Workflow button bar, click Print.

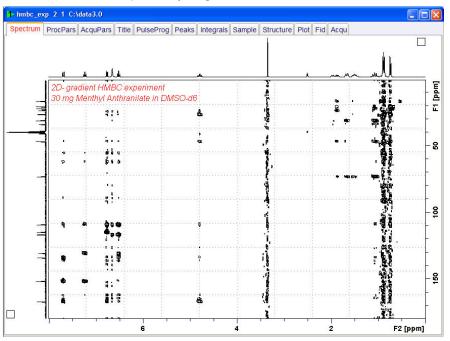
This will print the active window with the colors displayed in the TopSpin window showing both the F2 and F1 projections.

With the **plot** option starting the plot editor, the default layout is designed not to show the F1 projection. A new layout has to be created to add the F1 projection.

9.3 2D HMBC Experiment

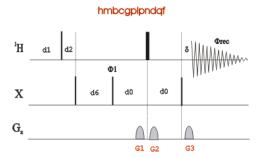

9.3.1 Introduction

The basic 2D HMBC pulse sequence (see the figure below) is closely related to the HMQC pulse sequence but incorporating the following modifications:


- An optional low-pass J-filter (consisting of a delay-90°(13C) cluster) can be included after the initial 90° 1H pulse to minimize direct response.
- The de focusing period is optimized to 1/2*nJ(CH) (5-10Hz).
- · The refocusing period is usually omitted.
- Proton acquisition is performed without X decoupling.

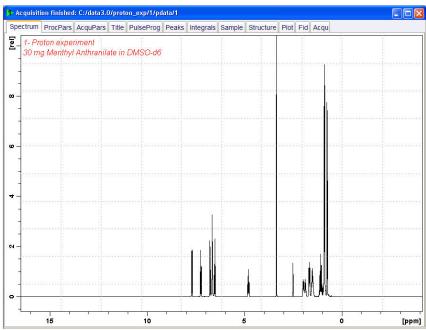
Using this experiment qualitative heteronuclear long-range connectivity, including quaternary carbons or through heteronuclei can be extracted.

The non gradient 2D HMBC spectrum of Menthyl Anthranilate in DMSO-d6 is illustrated in the figure below showing considerable artifacts. Additionally a minimum number of 8 scans had to be used for the full phase cycling.



2D Heteronuclear Experiments

The main advantages of using gradients in high resolution NMR experiments include:


- Coherence selection and frequency-discrimination in the indirect dimension (F1) can achieved with a single scan per T1 increment.
- A reduction in the number of required phase cycle steps for the suppression of undesired artifacts.
- · An important decrease in the total acquisition times for sufficiently concentrated samples.
- The obtaining of higher quality spectra with an important reduction in T1 noise.
- An efficient suppression of undesired signals such as, for instance, the intense solvent signal in H2O solution and the 1H-12C (1H-14N) magnetization in proton detected heteronuclear experiments at natural abundance. In these inverse experiments, the starting BIRD cluster or spin-lock pulse are no longer needed.
- A much easier data processing and therefore more accurate spectral analysis.
- · A decrease of dynamic-range limitation.

The figure below shows the gradient HMBC pulse sequence.

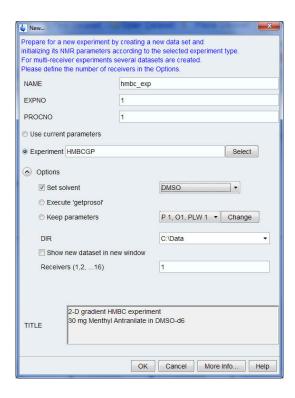
9.3.2 Preparation Experiment

 Run a 1D Proton spectrum, following the instructions in Chapter 1D Proton Experiment, Experiment Setup [≥ 25] through Processing [≥ 30].

9.3.3 The HMBC Experiment Setup

· On the menu bar, click Start and on the Workflow button bar, click Create Dataset.

· In the New window, enter or select:


NAME = hmbc_exp

EXPNO = 1

PROCNO = 1

Experiment = HMBCGP

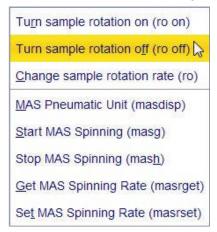
Set Solvent = DMSO

DIR

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click the drop-down arrow to browse for a specific directory.

Title

In the TITLE window enter a text stating the experiment, sample, the solvent and any other useful information. The title information can be used to search for a dataset.

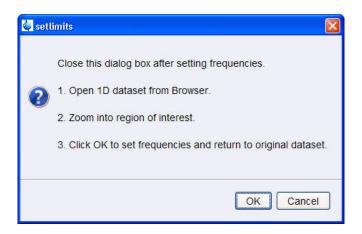

- · In the New Dataset window, click OK.
- · On the menu bar, click Acquire.

• On the **Spin** button, click the **drop-down** arrow to see more options.

• In the list, select Turn sample rotation off.

2D experiments should be run non-spinning.

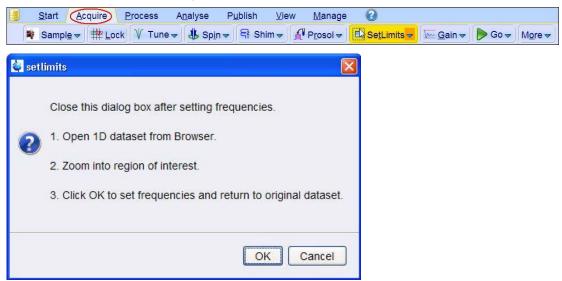
• On the Workflow button bar, click **Prosol**.

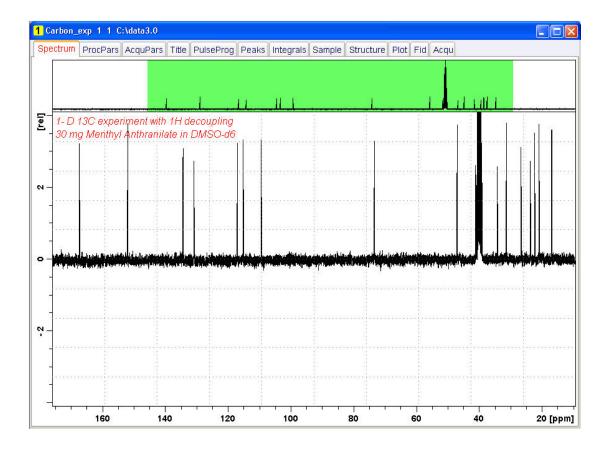


This will load the pulse width and power levels in to the parameter set.

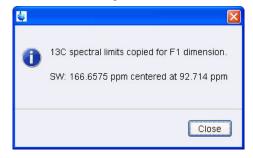
9.3.4 Limit Setting

· On the Workflow button bar, click SetLimits.



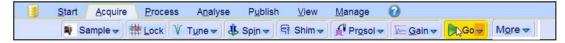

- To open the 1D Proton spectrum, right click on the dataset name in the browser window (e.g. proton_exp) and select Display or drag the 1D Proton dataset into the spectrum window.
- Expand the spectrum to display all peaks, leaving ca. **0.2 ppm** of baseline on either side of the spectrum.
- Click **OK** in the setlimits message window to assign the new limit.

The display changes back to the 2D data set. The parameter set HMBCGP has a fixed F1 sweep width of 222 ppm and it is big enough to cover all Carbon resonances for a broad range of samples. If desired, changes to the F1 sweep width can be done with the **Set_limits** button for a second time. In this case a 1D C13CPD experiment on the same sample has to be observed. As an example to set the F1 limit, follow the steps below.


· On the Workflow button bar, click SetLimits.

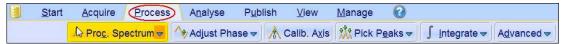
- To open the 1D C13 spectrum, right click on the dataset name in the browser window (e.g. **carbon exp 1**) and select **Display** or drag the 1D C13 dataset in to the spectrum window.
- Expand the spectrum to display all peaks, leaving ca. **5 ppm** of baseline on either side of the spectrum.

- · Click **OK** in the setlimits message window to assign the new limit.
- In the message window, click Close.

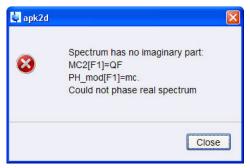


9.3.5 Acquisition

· On the Workflow button bar, click Gain.

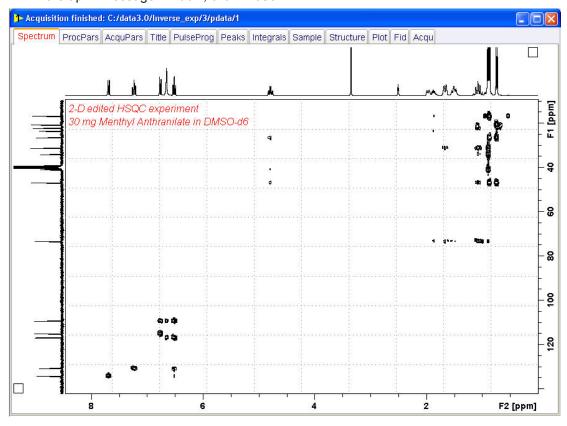


• On the Workflow button bar, click **Go**.



9.3.6 Processing

· On the menu bar, click Process.


• On the Workflow button bar, click **Proc Spectrum**.

This executes a standard processing program **proc2d**. The message shown in the figure above pops up in case of a magnitude 2D experiment and the **apk2d** option is enabled. To disable the **apk2d** option, on the **Proc. Spectrum** button click the **drop-down** arrow and configure the **Standard Processing (proc2d)** program.

· In the apk2 message window, click Close.

2D Heteronuclear Experiments

9.3.7 Plotting the 2D HMBC Spectrum

Follow the instructions in chapter *Plotting the 2D HSQC Spectrum* [102].

10.1 Introduction

This chapter describes pulse calibration procedures for 1H and 13C. It is assumed that the user is already familiar with acquisition and processing of simple 1D NMR spectra, see chapter 1D Proton Experiment | 25| and chapter 1D Carbon Experiments | 75|.

This chapter is intended as a guide for calibrating the 90° pulse of a probe or verifying the values observed using ATP.

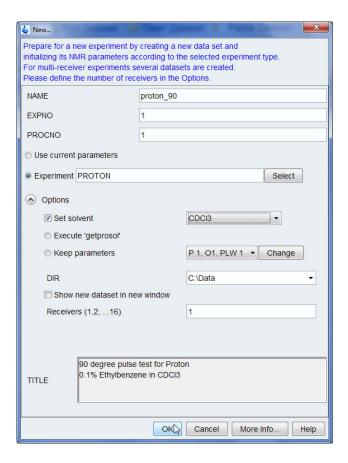
10.2 Proton 90 Degree Transmitter Pulse

Standard Test Sample:

0.1% Ethylbenzene in CDCI3

10.2.1 Parameter Setup

• On the menu bar, click **Start** and on the Workflow button bar, click **Create Dataset**.

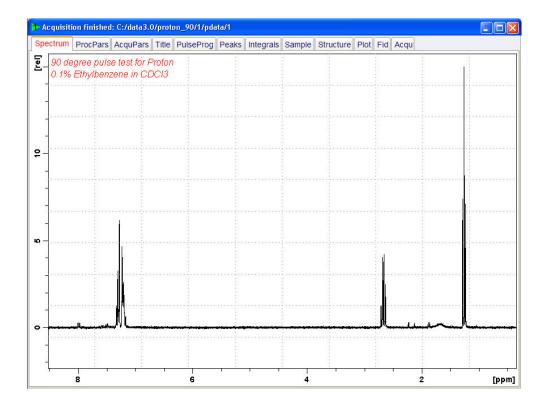

· In the New Dataset window, enter or select:

NAME = proton_90

EXPNO = 1 PROCNO = 1

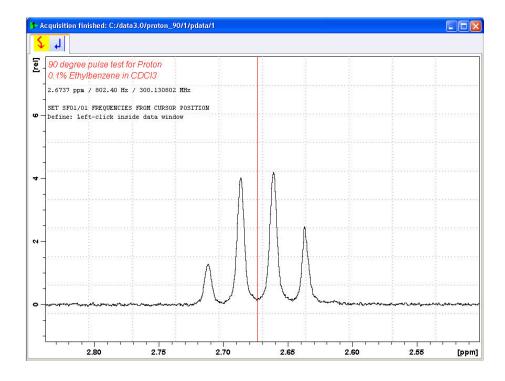
Experiment: select PROTON

Set Solvent: select CDCI3

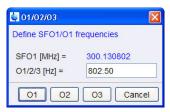

DIR

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click the drop-down arrow to browse for a specific directory.

Title


In the TITLE window enter a text stating the experiment, sample, the solvent and any other useful information. The title information can be used to search for a dataset.

- · In the New Dataset window, click OK.
- Run a 1D Proton spectrum, following the step Parameter Setup [> 114] in chapter 1D Proton Experiment through Processing Processing [> 30] described in this manual.



- Expand the peak at 2.7 ppm.
- On the toolbar, click **Set RF from cursor**.

The Dataset tabs are replaced by the Set RF tool bar.

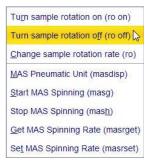
- · Move the cursor line to the center of the multiplet.
- · Click to set the frequency.
- In the O1/O2/O3 window, click O1.

- In the Dataset window, select the **AcquPars** tab.
- Enter:

```
PULPROG = zg
TD = 4048
SW [Hz] =1000
D1 [sec] = 30
DS = 0
NS = 1
```

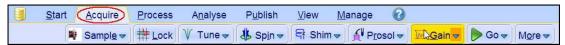
- In the Dataset window, select the **ProcPars** tab.
- · Enter or select:

```
SI = 2024
LB [Hz] = 1
PH_mod = select pk
```


· On the menu bar, click Acquire.

• On the **Spin** button, click the **drop-down** arrow to see more options.

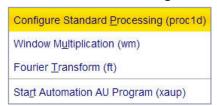
• In the list, select Turn sample rotation off.

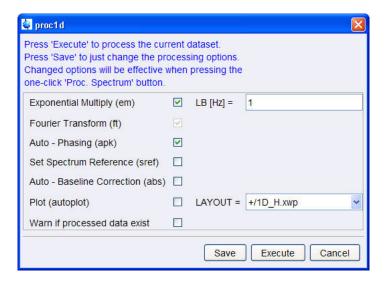

This test should be run non spinning.

10.2.2 Acquisition

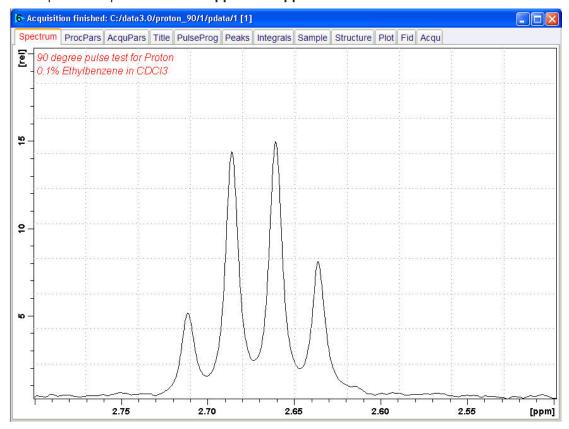
· On the menu bar, click Acquire.

• On the Workflow button bar, click Gain.


· On the Workflow button bar, click Go.

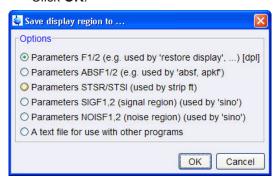

10.2.3 Processing

When the acquisition is finished:


- On the menu bar, click Process.
- On the **Proc Spectrum** button, click the **drop-down** arrow to see more options.
- In the list, select Configure Standard Processing (proc1d).

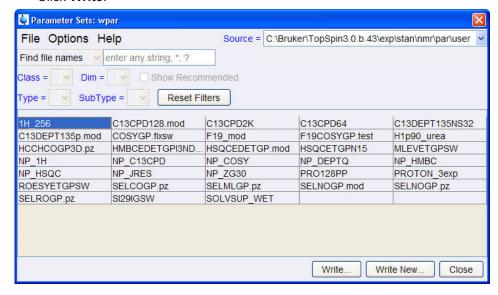
- · Enter or select the following options:
 - Exponential Multiplay (em)
 - LB [Hz] = 1
 - Auto Phasing (apk)
- Deselect the following options:
 - Set Spectrum Reference (sref)
 - Auto-Baseline correction (abs)
 - Warn if Processed data exist

- In the proc1d window, click Execute.
- Expand the spectrum from 2.8 ppm to 2.5 ppm.



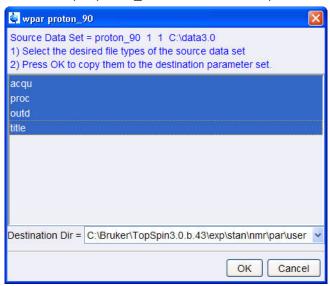
· Right-Click in the spectral window.

• In the list, select Save Display Region to...


- In the Save Display Region to... window, select Parameters F1/2.
- · Click OK.

- In the command line, type **wpar** to store the parameter for future use.
- In the Parameter Sets: wpar window, select the user parameter directory.

Source = C:\Bruker\TopSpin3.0.b.43\exp\stan\nmr\par\user \


· Click Write.


• In the popup window, type proton_90. Click OK.

• In the wpar proton_90 window, select all parameter options. Click **OK**.

• In the Parameter Sets: wpar window, click Close.

10.2.4 Determine the 90 Degree Pulse

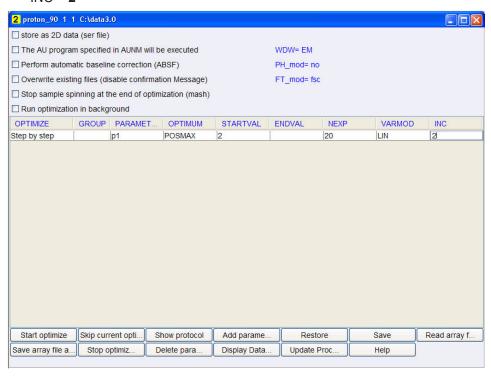
• On the menu bar, click **Acquire**.

- On the **Go** button, click the **drop-down** arrow to see more options.
- · In the list, select Optimize Acquisition Params (popt).

• In the proton_90 window, enter:

OPTIMIZE = Step by step

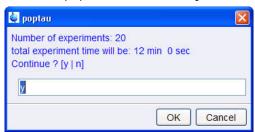
PARAMETER = p1


OPTIMUM = POSMAX

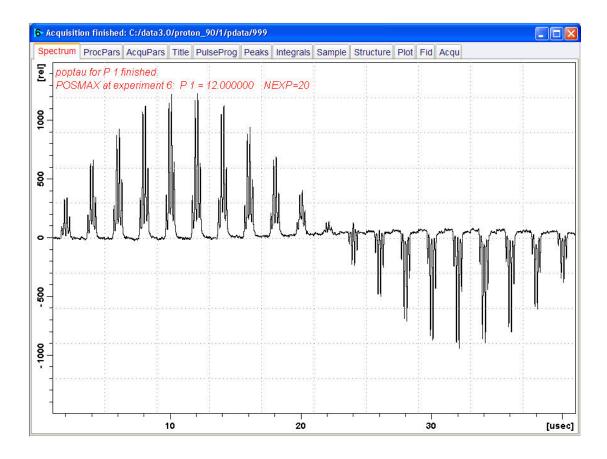
STARTVAL = 2

NEXP = **20**

VARMOD = LIN


INC = 2

Click Save.


The ENDVAL parameter has been updated.

• In the poptau window, enter y and click **OK**.

The parameter optimization starts. The spectrometer acquires and processes 20 spectra with incrementing the parameter p1 from 2 usec by 2 usec to a final value of 40 usec. For each of the 20 spectra, only the spectral region defined above is plotted, and all the spectra are plotted side-by-side in the file proton_90/1/999 as shown in the figure below.

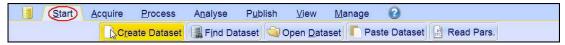
The POSMAX value of **p1** is displayed in the title window which is the 90° pulse, along with the experiment number and the NEXP value. Write this value down. To obtain a more accurate 90° pulse measurement, follow the steps below.

- Close the popt setup window. At the command prompt:
- Enter rep 1. Note, that there is a space between rep and 1.

- Enter **p1**.
- Enter the value which corresponds to a 360° pulse (four times the POSMAX value).
- Enter zg.
- Enter efp.
- Change **p1** slightly and repeat the last 2 steps, until the quartet undergoes a zero crossing as expected for an exact 360° pulse.

The quartet signal is negative for a pulse angle slightly less then 360° and positive when the pulse angle is slightly more then 360°.

• Simply divide the determined 360° pulse value by 4. This will be the exact 90° pulse length for the proton transmitter on the current probe.

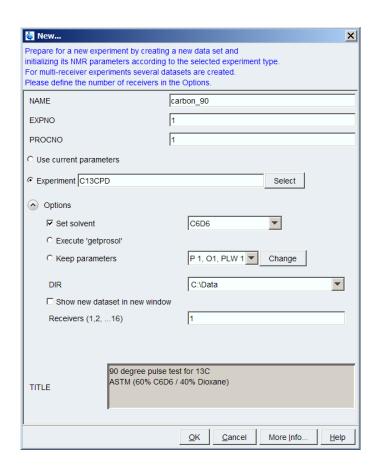

10.3 Carbon 90 Degree Transmitter Pulse

Standard Test Sample:

ASTM (60% C6D6 / 40% p-Dioxane)

10.3.1 Parameter Setup

On the menu bar, click Start and on the Workflow button bar, click Create Dataset.

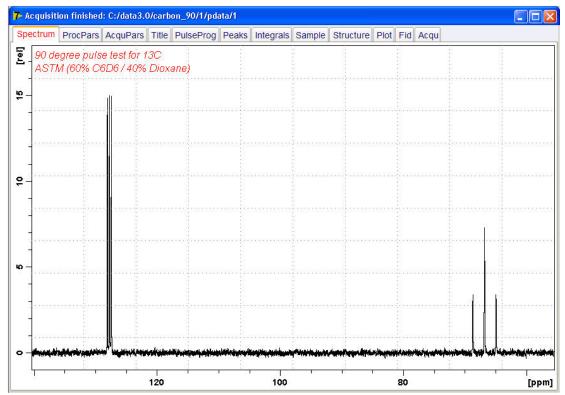

· In the New Dataset window, enter or select:

NAME = carbon_90

EXPNO = 1

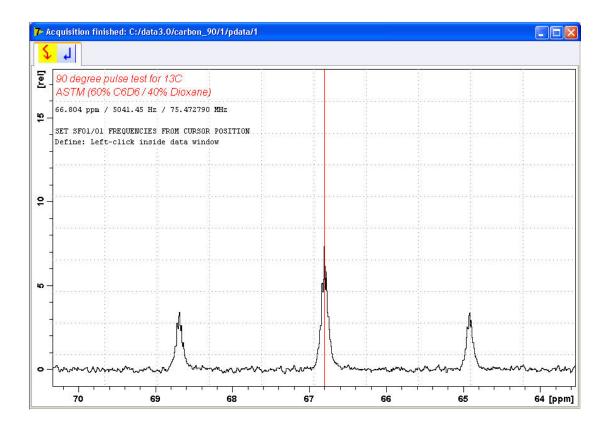
PROCNO = 1

Experiment: select C13CPD Set Solvent: select C6D6

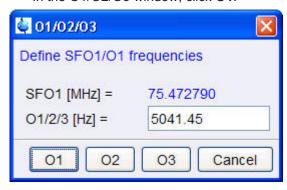

DIR

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click the drop-down arrow to browse for a specific directory.

Title


In the TITLE window enter a text stating the experiment, sample, the solvent and any other useful information. The title information can be used to search for a dataset.

- · In the New Dataset window, click OK.
- Run a 1D Carbon spectrum, following the instructions in chapter 1-D Carbon Experiment Setup Experiment Setup [▶ 75] and chapter Acquisition [▶ 79]. But you need to change three parameters in step Experiment Setup [▶ 76]. Enter the following acquisition parameters:
 - PULPROG = zg
 - DS = 0
 - -NS=1
- Continue with chapter Processing *Processing* [> 79].



- Expand the peak at 67 ppm.
- On the toolbar, click **Set RF from cursor**.

- Move the cursor line into the center peak of the triplet.
- Click to set the frequency.
- In the O1/O2/O3 window, click O1.

• In the Dataset window, select the **AcquPars** tab.

• Enter:

TD = 4048

SW [Hz] **=20**

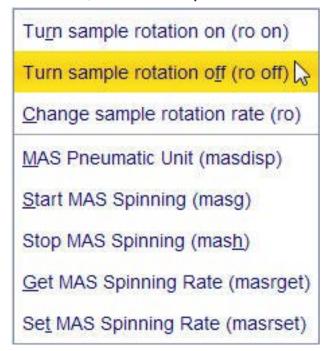
D1 [sec] = 60

- In the Dataset window, select the **ProcPars** tab.
- Enter or select:

SI = 2024

LB [Hz] = 3.5

PH_mod = select pk


· On the menu bar, click Acquire.

• On the **Spin** button, click the **drop-down** arrow to see more options.

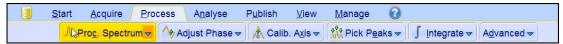
• In the list, select Turn sample rotation off.

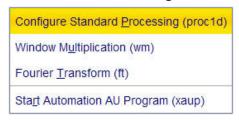
This test should be run non spinning.

10.3.2 Acquisition

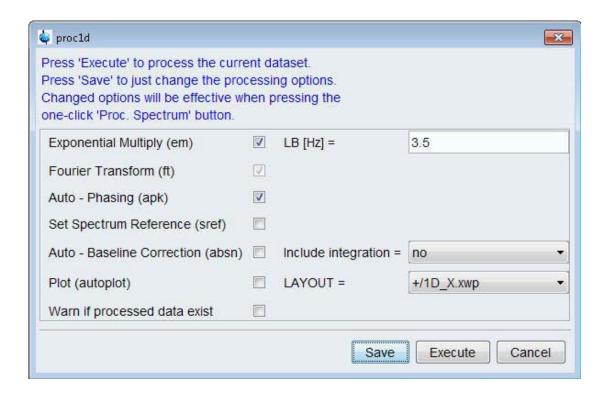
· On the menu bar, click Acquire.

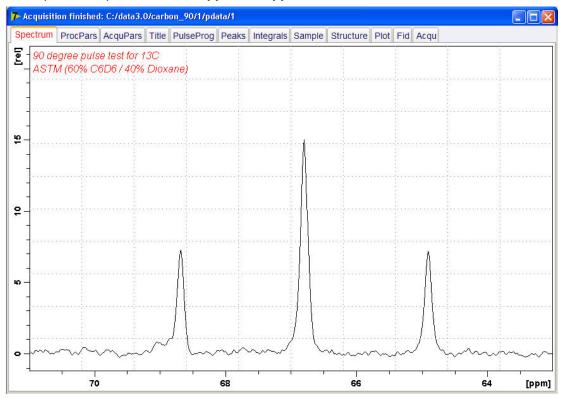
On the Workflow button bar, click Gain.


• On the Workflow button bar, click Go.

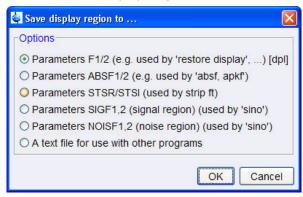

10.3.3 Processing

When the acquisition is finished:

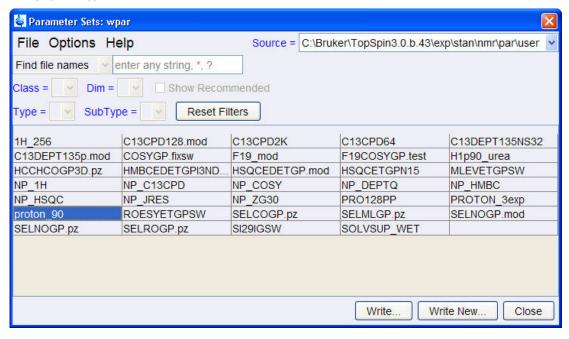

- · On the menu bar, click Process.
- On the **Proc Spectrum** button, click the **drop-down** arrow to see more options.


• In the list, select Configure Standard Processing (proc1d).

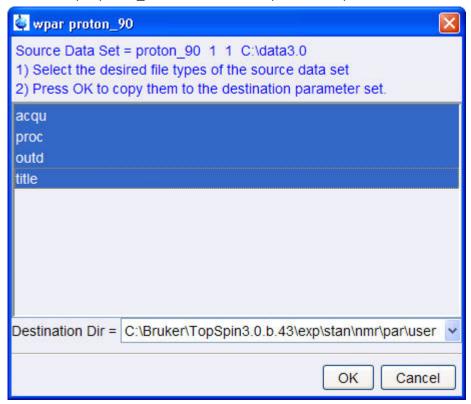
- Select the following options:
 - Exponential Multiplay (em)
 - LB [Hz] = 3.5
 - Auto Phasing (apk)
- · Deselect the following options:
 - Set Spectrum Reference (sref)
 - Auto-Baseline correction (abs)
 - Warn if Processed data exist

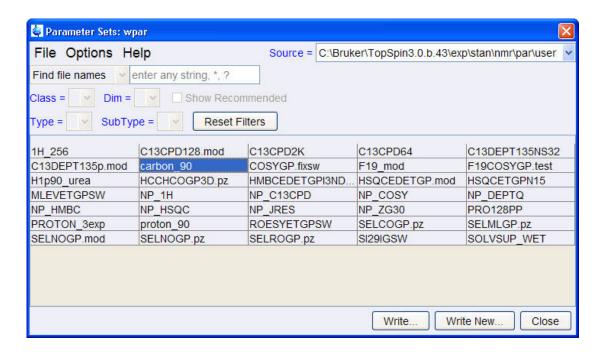

- · Click Execute.
- Expand the spectrum from 71 ppm to 63 ppm.

- · In the spectral window click right.
- In the list select Save Display Region To...


• In the Save Display Region To... window, enable Parameters F1/2 and click OK.

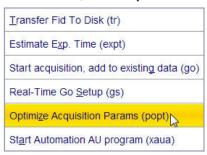
- In the command line, type **wpar** to store the parameter for future use.
- In the Parameter Sets: wpar window, select the user source parameter directory.


· Click Write.


In the popup window, enter carbon_90 and click OK.

• In the wpar proton_90 window, select all parameter options and click **OK**.

• In the Parameter Sets: wpar window click Close.



10.3.4 Determine the 90 Degree Pulse

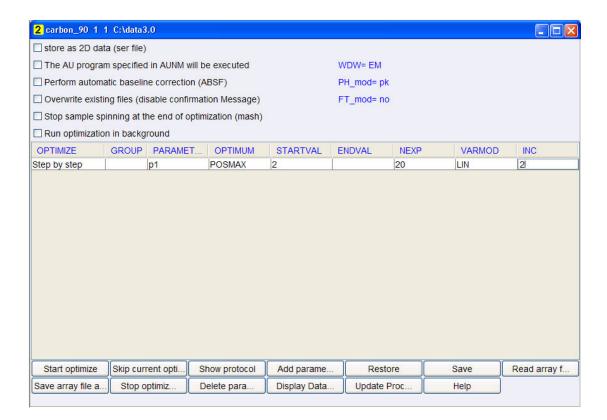
· On the menu bar, click Acquire.

- On the **Go** button, click the **drop-down** arrow to see more options.
- In the list, select Optimize Acquisition Params (popt).

• In the carbon 90 window, enter:

OPTIMIZE = Step by step

PARAMETER = p1


OPTIMUM = POSMAX

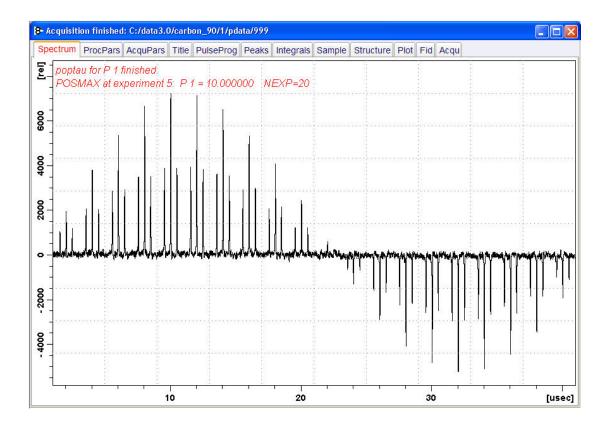
STARTVAL = 2

NEXP = 20

VARMOD = LIN


INC = 2

· Click Save.


The ENDVAL parameter has been updated.

• In the poptau window, enter y and click **OK**.

The parameter optimization starts. The spectrometer acquires and processes 20 spectra with incrementing the parameter p1 from 2 usec by 2 usec to a final value of 40 usec. For each of the 20 spectra, only the spectral region defined above is plotted, and all the spectra are plotted side-by-side in the file carbon_90/1/999 as shown in the figure below.

The POSMAX value of **p1** is displayed in the title window which is the 90° pulse, along with the experiment number and the NEXP value. Write this value down. To obtain a more accurate 90° pulse measurement, follow the steps below.

- Close the popt setup window. At the command prompt:
- Enter rep 1. Note, that there is a space between rep and 1.
- Enter **p1**.
- Enter the value which corresponds to a 360° pulse (four times the POSMAX value).
- Enter zg.
- Enter efp.
- Change **p1** slightly and repeat the last 2 steps, until the quartet undergoes a zero crossing as expected for an exact 360° pulse.

The quartet signal is negative for a pulse angle slightly less then 360° and positive when the pulse angle is slightly more then 360°.

• Simply divide the determined 360° pulse value by 4. This will be the exact 90° pulse length for the proton transmitter on the current probe.

11 Sensitivity Tests

11.1 Introduction

This chapter describes the sensitivity test procedures for 1H and 13C. It is assumed that the user is already familiar with acquisition and processing of simple 1D NMR spectra, see chapter 1D Proton Experiment [> 25] and chapter 1D Carbon Experiments [> 75] in this manual.

Also the 90° pulses have to be properly calibrated, see chapter *Determination of 90 Degree Pulses* [> 111].

This chapter is intended as a guide for running the 1H and 13C Signal to Noise test on a probe or verifying the values observed using ATP.

11.2 ¹H Sensitivity Test

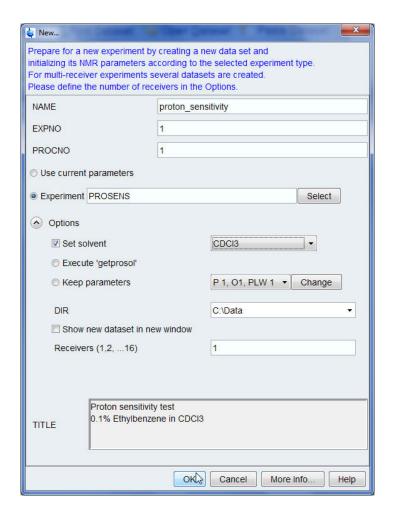
Standard Test Sample:

0.1% Ethylbenzene in CDCI3

11.2.1 Experiment Setup

On the menu bar, click Start and on the Workflow button bar, click Create Dataset.

• In the New Dataset window, enter or select:


NAME = proton_sensitivity

EXPNO = 1

PROCNO = 1

Experiment: select PROSENS

Set Solvent: select CDCI3

DIR

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click the drop-down arrow to browse for a specific directory.

Title

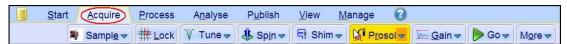
In the TITLE window enter a text stating the experiment, sample, the solvent and any other useful information. The title information can be used to search for a dataset.

- In the New Dataset window, click OK.
- On the menu bar, click Acquire.

For the following steps, use the Workflow button bar.

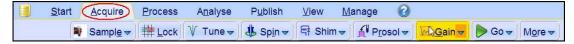
- Click Sample and eject the sample, if there is one inserted, and insert the new sample.
- · Click Lock and select CDCL3 solvent.
- To tune the probe, click Tune.
- Click Spin and select Turn sample rotation on.

The Proton sensitivity test should be run with the sample spinning. Rotation may be turned off for probes such as **BBI**, **TXI**, **TBI** and for small sample probes.


· On the Workflow button bar, click Shim.

· For best homogeneity use TopShim.

To load the probehead/solvent depended parameters:


· On the Workflow button bar, click Prosol.

11.2.2 Acquisition

To adjust the receiver gain:

On the Workflow button bar, click Gain.

The relaxation time **D1** is by default in this parameter set **60 s** and therefore the adjustment of the receiver gain will take some time.

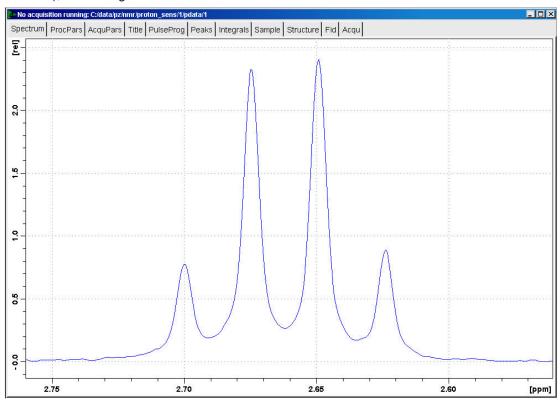
To start the acquisition:

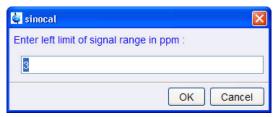
• On the Workflow button bar, click Go.

11.2.3 Processing

When the acquisition has finished:

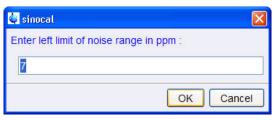
· On the menu bar, click Process.

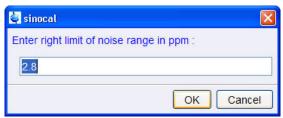

On the Workflow button bar, click Proc Spectrum.


Proc. Spectrum executes a processing program including commands such as an exponential window function **em**, Fourier transformation **ft**, an automatic phase correction **apk** and a baseline correction **abs**. On the **Proc. Spectrum** button, click the **drop-down** arrow to see more options. In the list, select **Configure Standard Processing (proc1d)**.

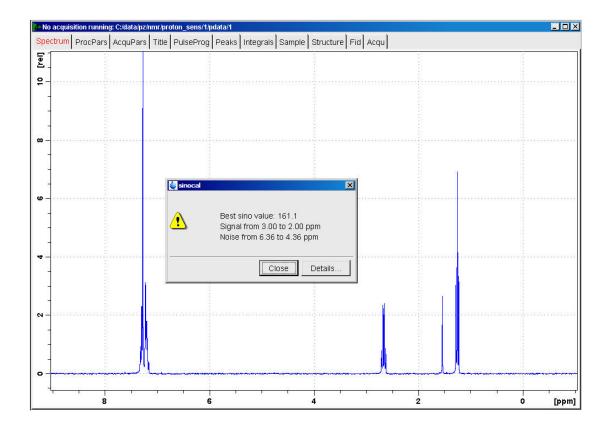
11.2.4 Calculating the Signal to Noise Ratio

The signal to noise ratio is determined on the intensity of the **quartet** lines between **2 ppm** and **3 ppm**. It is calculated by AU-program sinocal over a range of **2 ppm** between **2.8 ppm** and **7 ppm**. The s/n ratio is strongly dependant on good resolution and line shape. The splitting between the two central lines of the methylquartet should go lower than 15% (with LB=1Hz), see the figure below.


- At the command prompt, type **sinocal**.
- In the sinocal window, enter 3 for the left limit of the signal range. Click OK.


• In the sinocal window, enter 2 for the right limit of the signal range. Click OK.


• In the sinocal window, enter 7 for the left limit of the noise range. Click OK.



• In the sinocal window, enter 2.8 for the right limit of the noise range. Click OK.

• In the sinocal window, enter 2 for the noise width. Click OK.

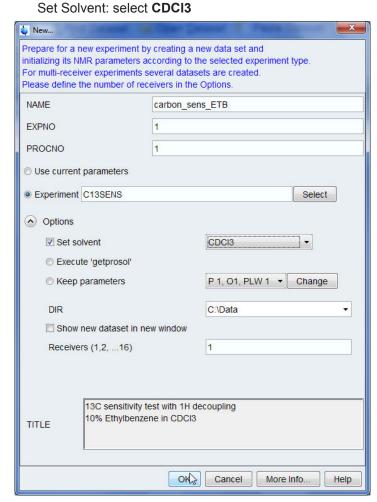
11.2.5 ¹³C Sensitivity Test with ¹H Decoupling

Standard Test Sample:

10% Ethylbenzene in CDCI3

11.2.5.1 Experiment Setup

• On the menu bar, click Start and on the Workflow button bar, click Create Dataset.


In the New Dataset window, enter or select:

NAME = Carbon_sensitivity_ETB

EXPNO = 1

PROCNO = 1

Experiment: select C13SENS

DIR

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click the drop-down arrow to browse for a specific directory.

Title

In the TITLE window enter a text stating the experiment, sample, the solvent and any other useful information. The title information can be used to search for a dataset.

- In the New Dataset window, click OK.
- · On the menu bar, click Aquire.

For the following steps, use the Workflow button bar.

- Click **Sample** and eject the sample, if there is one inserted, and insert the new sample.
- · Click Lock and select CDCL3 solvent.
- To tune the probe, click **Tune**.
- Click Spin and select Turn sample rotation on.

The Carbon sensitivity test should be run with the sample spinning. Rotation may be turned off for probes such as **BBI**, **TXI**, **TBI** and for small sample probes.

On the Workflow button bar, click Shim.

· For best homogeneity use TopShim.

To load the probehead/solvent depended parameters:

• On the Workflow button bar, click **Prosol**.

11.2.5.2 Acquisition

To adjust the receiver gain:

· On the Workflow button bar, click Gain.

The relaxation time **D1** is by default in this parameter set **300 s** and therefore the adjustment of the receiver gain will take some time.

Sensitivity Tests

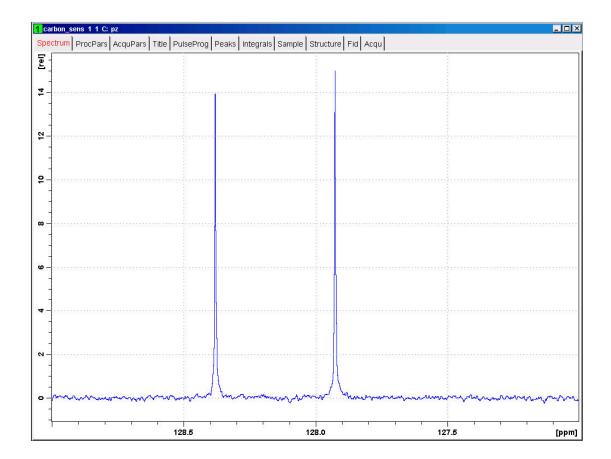
To start the acquisition:

· On the Workflow button bar, click Go.

11.2.5.3 Processing

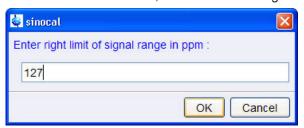
When the acquisition has finished:

· On the menu bar, click Process.

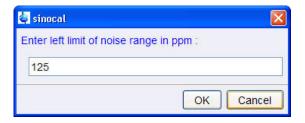

• On the Workflow button bar, click Proc Spectrum.

Proc. Spectrum executes a processing program including commands such as an exponential window function **em**, Fourier transformation **ft**, an automatic phase correction **apk** and a baseline correction **abs**. On the **Proc. Spectrum** button, click the **drop-down** arrow to see more options. In the list, select **Configure Standard Processing (proc1d)**.

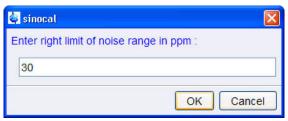
11.2.5.4 Calculating the Signal to Noise Ratio


The signal to noise ratio is determined on the highest peak of the **aromatic** part between **127 ppm** and **129 ppm**, see the figure below. It is calculated by AU-program sinocal over a range of **40 ppm** between **30 ppm** and **125 ppm**. The s/n ratio is strongly dependant on good resolution and line shape.

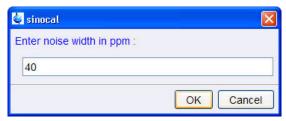
- At the command prompt, type **sinocal**.
- In the sinocal window, enter 128 for the left limit of the signal range. Click OK.

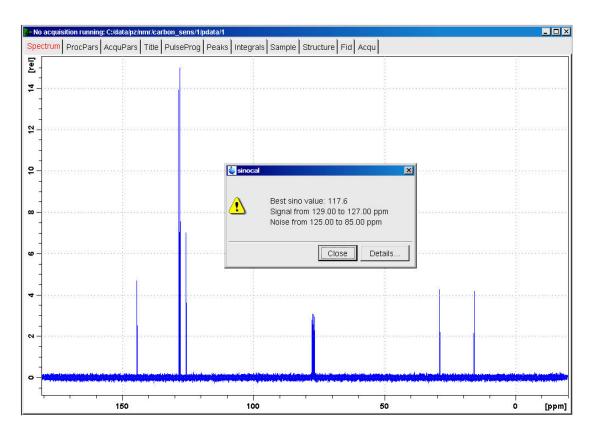


• In the sinocal window, enter 127 for the right limit of the signal range. Click OK.



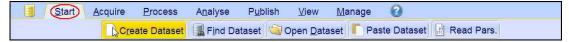
• In the sinocal window, enter 125 for the left limit of the noise range. Click OK.


Sensitivity Tests



• In the sinocal window, enter **30** for the right limit of the noise range. Click **OK**.

• In the sinocal window, enter 40 for the noise width. Click OK.


11.2.6 ¹³C Sensitivity Test without ¹H Decoupling

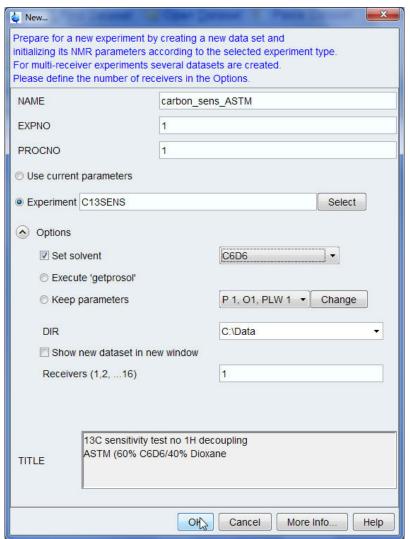
Standard Test Sample:

ASTM (60% C6D6 / 40% p-Dioxane)

11.2.6.1 Experiment Setup

• On the menu bar, click Start and on the Workflow button bar, click Create Dataset.

· In the New Dataset window, enter or select:


NAME = Carbon_sensitivity_ASTM

EXPNO = 1

PROCNO = 1

Experiment: select C13SENS

Set Solvent: select C6D6

DIR

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click the drop-down arrow to browse for a specific directory.

Title

In the TITLE window enter a text stating the experiment, sample, the solvent and any other useful information. The title information can be used to search for a dataset.

- In the New Dataset window, click OK.
- · On the menu bar, click Aquire.

For the following steps, use the Workflow button bar.

- Click Sample and eject the sample, if there is one inserted, and insert the new sample.
- Click Lock and select C6D6 solvent.
- To tune the probe, click **Tune**.
- Click Spin and select Turn sample rotation on.

The Carbon sensitivity test should be run with the sample spinning. Rotation may be turned off for probes such as BBI, TXI, TBI and for small sample probes.

On the Workflow button bar, click Shim.

· For best homogeneity use TopShim.

To load the probehead/solvent depended parameters:

On the Workflow button bar, click Prosol.

- In the Dataset window, select the AcquPars tab.
- · Make the following changes:

```
PULPROG = zg
```

TD = 65536

SW [ppm] = 200

O1p = 100

- In the Dataset window, select the ProcPars tab.
- · Make the following changes:

SI = 32768

LB [Hz] = 3.5

• In the Dataset window, select the **Spectrum** tab.

11.2.6.2 Acquisition

To adjust the receiver gain:

On the Workflow button bar, click Gain.

The relaxation time **D1** is by default in this parameter set **300 s** and therefore the adjustment of the receiver gain will take some time.

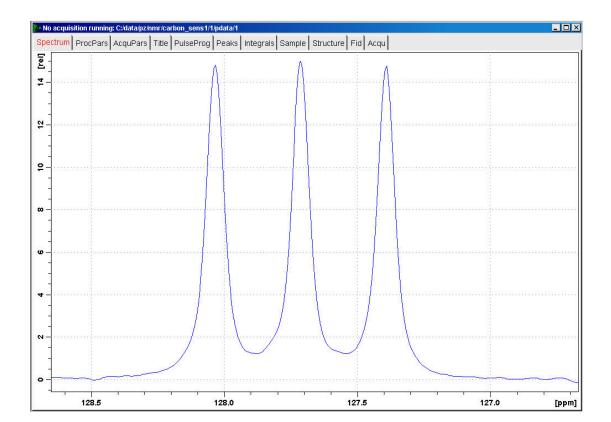
To start the acquisition:

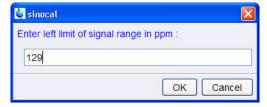
On the Workflow button bar, click Go.

11.2.6.3 Processing

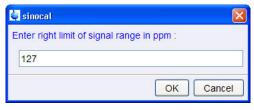
When the acquisition has finished:

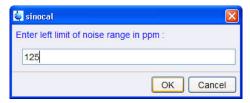
· On the menu bar, click Process.

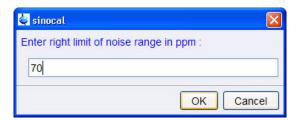

• On the Workflow button bar, click **Proc Spectrum**.

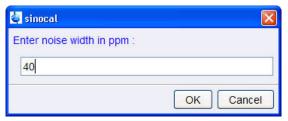

Proc. Spectrum executes a processing program including commands such as an exponential window function **em**, Fourier transformation **ft**, an automatic phase correction **apk** and a baseline correction **abs**. On the **Proc. Spectrum** button, click the **drop-down** arrow to see more options. In the list, select **Configure Standard Processing (proc1d)**.

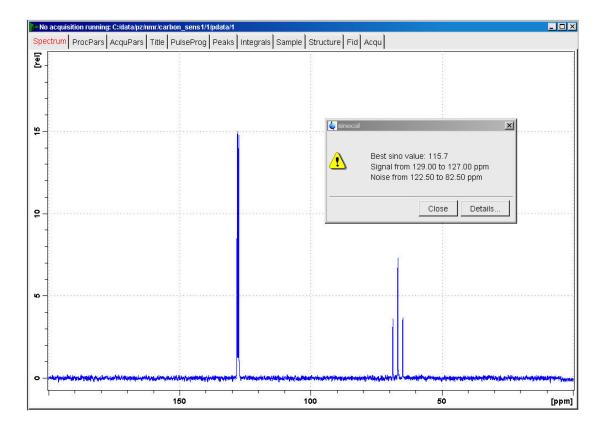
11.2.6.4 Calculating the Signal to Noise Ratio


The signal to noise ratio is determined on the triplet of the **deuterated benzene** between **127 ppm** and **129 ppm**. It is calculated by AU-program sinocal over a range of **40 ppm** between **70 ppm** and **125 ppm**. The s/n ratio is strongly dependant on good resolution and line shape. The splitting of the 1:1:1 triplet should go lower than 9% for **5mm** probes and 10% for **10mm** probes, see the figure below.


- At the command prompt, type **sinocal**.
- In the sinocal window, enter 129 for the left limit of the signal range. Click OK.


• In the sinocal window, enter **127** for the right limit of the signal range. Click **OK**.


• In the sinocal window, enter 125 for the left limit of the noise range. Click OK.



- In the sinocal window, enter ${\bf 70}$ for the right limit of the noise range. Click ${\bf OK}.$

• In the sinocal window, enter 40 for the noise width. Click OK.

Sensitivity Tests

12.1 Standard Parameter Set List

27Al exp. no decoupling
11B exp. no decoupling
13C Attached Proton Test, CH3/CH positive, CH2/C negative (jmod)
13C experiment with decoupling, 32 scans, 235 ppm
C13 exp. comp. pulse dec. with signal-to-noise calc.
C13 dept all positive with signal-to-noise calc.
13C DEPT45, all positive, 235 ppm
13C DEPT90, CH only, 235 ppm
13C DEPT135, , 235 ppm, with phase of previous 13C
13C experiment, no decoupling
13C experiment, with decoupling, no NOE (inverse gated decoupling)
13C automatic multiplicity determination
C13 exp. off resonance
C13 exp. with peak picking in title
13C hump (lineshape) test
13C resolution (half width) test
13C sensitivity (SINO) test
111Cd exp. no decoupling
113Cd exp. no decoupling
35Cl exp. no decoupling
37Cl exp. no decoupling
1H experiment for use with Fast Lane NMR
COSY TPPI, multiple presat.
COSY TPPI, WET suppr., 13C decoupling
19F exp. no decoupling
19F exp. comp. pulse decoupling
71Ga exp. no decoupling
199Hg exp. comp. pulse decoupling
1D version of the HMQC
HSQC e/a TPPE, WET suppr. 1 solvent
1H, multiple presaturation

LC1D12	1H, double presaturation
LC1DCWPS	1H, multiple presaturation
LC1DWTDC	1H, mult. WET suppr., 13C decoupling
LCML12	TOCSY double presaturation
LCMLCWPS	TOCSY TPPI, mult. presat., 13C decoupling
LCZG	1H test spectrum for protonated solvents
MLEVDCPHWT	TOCSY TPPI, WET suppr., 13C decoupling
N15	15N exp. no decoupling
N15IG	15N exp. inverse gated
N15INEPT	15N exp. inept
NA23ZG	23Na exp. no decoupling
NOEDIFF	1H noe difference
O17ZG	17O exp. no decoupling
P31	31P exp. no decoupling
P31CPD	31P exp. comp. pulse decoupling
PROB11DEC	1H with B11 decoupling
PROF19DEC	1H with F19 decoupling
PROP31DEC	1H with P31 decoupling
PROTON128	1H experiment 128 scans
PROTONinfo	1H experiment with info table
PROTONCONLF	1H exp. with conditional low field plot
PROTONEXP	1H exp. non spinning + expansions
PROTONLF	1H exp. non spinning + low field plot
PROTONLFEXP	1H exp. non spinning + low field plot + expansions
PROTONRO	1H exp. with spinning
PROHOMODEC	1H homo decoupling experiment
PROTONT1	1H T1 Relaxation measurement
PROHUMP	1H hump (lineshape) test
PRORESOL	1H resolution (half width) test
PROSENS	1H sensitivity (SINO) test
PT195ZG	195Pt exp. no decoupling
RH103ZG	103Rh exp. no decoupling
SE77ZG	77Se exp. no decoupling
SELCO1H	1D COSY using sel. excitation w/a shaped pulse
SELMLZF1H	1D TOCSY using sel. exc. w/a shaped pulse
SELNO1H	1D NOESY using sel. exc. w/a shaped pulse
SELRO1H	1D ROESY using sel. exc. w/a shaped pulse
SELZG1H	1D sequence using sel. exc. w/a shaped pulse

SI29IG	29Si exp. inverse gated decoupling
SN119IG	119Sn exp. inverse gated decoupling
WATER	water supression
C13MULT	C13 Multiplicity Analysis
COSY45SW	sw opt. COSY45 (magn. mode)
COSY90SW	sw opt. COSY90 (magn. mode)
COSYDQFPHSW	sw opt. COSY with dq filter (States-TPPI)
COSYGPMFSW	sw opt. COSY with gradients and mq filter (magn. mode)
HMQCGP	sw opt. HMQC with gradients (magn. mode)
HSQCGP	sw opt. HSQC sens. improved with gradients (e/a TPPI)
HSQCEDETGP	sw opt. edited HSQC with gradients (e/a TPPI)
HMQCGPML	sw opt. HMQC-TOCSY with gradients (magn. mode)
HMQCBI	sw opt. HMQC using BIRD pulse (magn. mode)
HMQCBIPH	sw opt. HMQC using BIRD pulse (States-TPPI)
HMQC	sw opt. HMQC (magn. mode)
HMQCPH	sw opt. HMQC (States-TPPI)
HMBCGPND	sw opt. HMBC with gradients
HMBCLPND	sw opt. HMBC with low pass J-filter (magn. mode)
HSQCETGPML	sw opt. HSQC-TOCSY with gradients (e/a TPPI)
HSQCETGP	sw opt. HSQC with gradients (e/a TPPI)
HCCOSW	sw opt. CH-correlation
HCCOLOCSW	sw opt. COLOC
SELCOGP	selective COSY experiment w/gradients
SELNOGP	selective NOESY experiment w/gradients
SELMLGP	selective TOCSY experiment w/gradients
SELROGP	selective ROESY experiment w/gradients

12.2 Pulse Program Information

Pulprog.info avance-version (13/08/21) \$CLASS=HighRes Info

For a pulse program the first characters (usually up to 6, but sometimes more) specify the type of experiment, e.g. DEPT, COSY, NOESY etc.. Further properties of the pulse program are indicated by a two-character code, which is added to the name in alphabetical order. For 2D experiments the mode (absolute value, phase sensitive or echo-antischo) is always indicated. H- or X-decoupling is assumed to be default for heteronuclear experiments, but not for homonuclear ones (except inad).

In case of redundant information some two-character codes may be omitted.

The following two-character codes are used:

ac	accordion type experiment
ad	using adiabatic spinlock
ar	experiment for aromatic residues
at	adiabatic TOCSY
bi	with bird pulse for homonuclear J-decoupling
bp	using bipolar gradients
СС	cross correlation experiment
cn	C13 and N15 dependent information in different indirect dimensions
со	with COSY transfer
ср	with composite pulse
ct	constant time
cv	convection compensated
cw	decoupling using cw command
сх	using CLEANEX_PM
dc	decoupling using cpd command
df	double quantum filter
di	with DIPSI mixing sequence
dh	homonuclear decoupling in indirect dimension
dw	decoupling using cpd command only during wet sequence
dq	double quantum coherence
ea	phase sensitive using Echo/Antiecho method
ec	with E.COSY transfer
ed	with multiplicity editing
es	excitation sculpting
et	phase sensitive using Echo/Antiecho-TPPI method
fb	using f2 - and f3 - channel
fd	using f1 - and f3 - channel (for presaturation)
fr	with presaturation using a frequency list
ft	using f1 -, f2 - and f3 - channel (for presaturation)
fh	F-19 observe with H-1 decoupling
fp	using a flip-back pulse
fl	for F-19 ecoupler
fw	forward directed type experiment
f2	using f2 - channel (for presaturation)
f3	using f3 - instead of f2 - channel
f4	using f4 - instead of f2 - channel
gd	gated decoupling using cpd command

ge	gradient echo experiment
gp	using gradients with ":gp" syntax
gr	using gradients
gs	using shaped gradients
hb	hydrogen bond experiment
hc	homodecoupling of a region using a cpd-sequence
hd	homodecoupling
hf	H-1 observe with F-19 decoupling
hs	with homospoil pulse
ia	InPhase-AntiPhase (IPAP) experiment
id	IDIS - isotopically discriminated spectroscopy
ig	inverse gated
ii	using inverse (invi/HSQC) sequence
im	with incremented mixing time
in	with INEPT transfer
ip	in phase
i4	using inverse (inv4/HMQC) sequence
jc	for determination of J coupling constant
jd	homonuclear J-decoupled
jr	with jump-return pulse
js	jump symmetrized (roesy)
ld	low power cpd decoupling
lp	with low-pass J-filter
Iq	with Q-switching (low Q)
Ir	for long-range couplings
12	with two-fold low-pass J-filter
13	with three-fold low-pass J-filter
mf	multiple quantum filter
ml	with MLEV mixing sequence
mq	using multiple quantum
nc	N15 and C13 dependent information in different indirect dimensions
nd	no decoupling
no	with NOESY mixing sequence
рс	with presaturation and composite pulse
ре	using perfect echo
pg	power-gated
ph	phase sensitive using States-TPPI, TPPI, States or QSEQ
pl	preparing a frequency list

pn	with presaturation using a 1D NOESY sequence
pp	using purge pulses
pr	with presaturation
ps	with presaturation using a shaped pulse
qf	absolute value mode
qn	for QNP-operation
qs	phase sensitive using qseq-mode
rc	for determination of residual dipolar couplings (RDC)/ J couplings
rd	refocussed
re	relaxation optimised (H-flip)
rl	with relay transfer
ro	with ROESY mixing sequence
rs	with radiation damping suppression using gradients
rt	real time
ru	using radiation damping compensation unit
rv	with random variation
r2	with 2 step relay transfer
r3	with 3 step relay transfer
se	spin echo experiment
sh	phase sensitive using States et al. method
si	sensitivity improved
sm	simultaneous evolution of X and Y chemical shift
sp	using a shaped pulse
sq	using single quantum
ss	spin-state selective experiment
st	phase sensitive using States-TPPI method
sy	symmetric sequence
s3	S3E experiment
tc	temperature compensation
tf	triple quantum filter
tp I	phase sensitive using TPP
tr	using TROSY sequence
tz	zeroquantum (ZQ) TROSY
ul	using a frequency list
us	updating shapes
wg	watergate using a soft-hard-soft sequence
wt	with WET watersuppression
w5	watergate using W5 pulse

xf	x-filter experiments
ху	with XY CPMG sequence
x1	x-filter in F1
x2	x-filter in F2
х3	x-filter in F3
zf	with z-filter
zq	zero quantum coherence
zs	using a gradient/rf spoil pulse
1d	1D version
1s	using 1 spoil gradients
11	using 1-1 pulse
19	using 3-9-19 pulse
19f	for F19
2h	using 2H lockswitch unit
2s	using 2 spoil gradients
3d	3D sequence
3n	for E.COSY (3 spins, negative correlation)
3р	for E.COSY (3 spins, positive correlation)
3s	using 3 spoil gradients
30	using a 30 degree flip angle
45	using a 45 degree flip angle
90	using a 90 degree flip angle
135	using a 135 degree flip angle
180	using a 180 degree pulse

Typical experiment names would be:

cosy, dept, dipsi2, hmbc, hmqc, hoesy, hsqc, inad, inept, mlev, noesy, roesy or trosy.

Inverse correlations are denoted as hmbc, hmqc or hsqc.

Experiments with a BIRD sequence in the beginning also contain a bi in the name.

1D experiments, which are analogues of 2D experiments by virtue of a selective pulse, start with sel.

Semiselective 2D experiments have the same name as the unselective version but with an s at the beginning:

scosyph <-> cosyph.

A phase-sensitive (States-TPPI, TPPI etc.) NOESY experiment with presaturation would then be:

```
noesy + ph + pr = noesyphpr.
```

In the other direction the pulseprogram hmbcgplpndqf would be

```
hmbc + gp + lp + nd + qf
```

and therefore an:

inverse correlation for long-range couplings (HMBC) with

- coherence selection using gradients with :gp syntax,
- low-pass J-filter,
- · no decoupling

Comments like:

· in absolute value mode.

The nomenclature of parameters is described in Pulprog.info.

;avance-version ;begin _____;

with (____ = MLEV17, DIPSI2, ...)

are evaluated by NMRSIM for the pulse program display and should therefore not be removed. The syntax for begin/end statements allows characters, numbers and '_'. Arithmetic operators must not be used.

The comments:

;preprocessor-flags-start

;preprocessor-flags-end

are also evaluated to identify flags used in the pulse program and must also not be removed.

\$Id: Pulprog.info,v 1.35.2.1 2013/08/30 09:43:33 ber Exp \$

12.3 Standard Test Samples

1H Lineshape

0.3% Chloroform in Acetone-d6 (CRYO-probes)

1% Chloroform in Acetone-d6 (500MHz and up)

3% Chloroform in Acetone-d6 (up to 500MHz)

1H Sensitivity

0.1% Ethyl benzene in CDCl31H Solvent Suppression2 mM Sucrose in 90% H2O, 10% D2O2 mM Lisozyme in 90% H2O, 10% D2O

13C Sensitivity

10% Ethyl benzene in CDCl3 40% p-Dioxane in 60% C6D6

31P Sensitivity

0.0485 M Triphenylphosphate in CDCl3d

15N Sensitivity

90% Formamide in DMSO-d6

Calibration of the 13C and 15N 90 degree pulses

0.1 M 15N-Urea, 0.1 M 13C-Methanol in DMSO-d6

19F Sensitivity

0.05% Trifluorotoluene in CDCl3

Temperature Calibration

80% Ethylene Glycol in DMSOd6 (High Temperature) 4% Methanol in 96% Methanol-d (Low Temperature)

1D and 2D Experiments

100 mg/mL Cholesteryl Acetate in CDCl310 mg Strychnine in CDCl350 mM Gramicidine in DMSO-d625 mM Cyclosporin in C6D6

13 Troubleshooting

Power Up Procedure for an AV-III Console

- · The console and computer are both off.
- · First power up the console and just turn on the IPSO unit.
- Then boot the computer. This is necessary for Windows computers so the DHCP service is started correctly. If there is no Ethernet device on the router when the computer is booted, the Bruker DHCP service will not start correctly.
- Once the computer is booted, and you have logged on, reset the IPSO unit so that it boots.
- When the POST code gets past the stop at C0 and starts to load the IPSO operating system, turn the AQS, BSMS, and amplifiers on. The parts of the console that do not have Ethernet connections like VT units, MAS controllers, etc., can be turned on anytime.
- If you have the smaller AQS IPSO, then have to turn the AQS on to turn the IPSO on. This seems to work fine too.
- When you are finished, the sync lights on all SGU/2 should be green. If not, then go into the DRU with the **ha** screen, and reset the DRU. This will take about a minute.
- Start TopSpin and do an ii. If the sync leds are on for all of the SGU/2, then you don't need to initialize the DRU again.

Troubleshooting

14 Contact

Manufacturer

Bruker BioSpin GmbH Silberstreifen 4 D-76287 Rheinstetten Germany http://www.bruker.com

WEEE DE43181702

NMR Hotlines

Contact our NMR service centers.

Bruker BioSpin NMR provides dedicated hotlines and service centers, so that our specialists can respond as quickly as possible to all your service requests, applications questions, software or technical needs.

Please select the NMR service center or hotline you wish to contact from our list available at: https://www.bruker.com/service/information-communication/helpdesk.html

Phone: +49 721-5161-6155

E-mail: nmr-support@bruker.com

Contact

