
Intro to Jython, Part 1: Java
programming made easier

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial... 2
2. Getting started .. 5
3. Basic concepts and advantages of Jython......................... 8
4. Working with Jython ... 11
5. Jython basic data types ... 15
6. Jython collections .. 20
7. Jython program structure ... 29
8. Modules and importing .. 35
9. Jython exceptions .. 39
10. Jython procedural statements 44
11. Jython functions... 55
12. Wrap-up and resourcesFeedback 66
13. Appendices .. 68

Intro to Jython, Part 1: Java programming made easier Page 1 of 82

Section 1. About this tutorial

What is this tutorial about?

This two-part tutorial will introduce you to the Jython scripting language, and provide
you with enough knowledge to begin developing your own Jython-based applications.
Jython is an implementation of Python that has been seamlessly integrated with the
Java platform. Python is a powerful object-oriented scripting language used primarily in
UNIX environments.

Jython is extremely useful because it provides the productivity features of a mature
scripting language while running on a JVM. Unlike a Python program, a Jython
program can run in any environment that supports a JVM. Today, this means most
major computing systems, including Microsoft Windows, Mac OS, most UNIX variants
including all Linux systems, and all IBM systems.

This tutorial covers Jython in progressive detail. In this first half of the tutorial, we'll
cover the concepts and programming basics of working with Jython, including access
options and file compilation, syntax and data types, program structure, procedural
statements, and functions. The second half of the tutorial will start with a conceptual
introduction to object-oriented programming in Jython. From there, we'll move on to a
more hands-on discussion, encompassing class statements, attributes, and methods,
abstract classes, and operator overloading. This advanced discussion will also include
debugging, string processing, file I/O, and Java support in Jython. The tutorial will
conclude with a step-by-step demonstration of how to build a working GUI app in
Jython.

The example code will be very simple in the beginning of the tutorial, but by the end of
the second half you will be up and running with complete functions, classes, and
programs. Included with the tutorial is a set of appendices detailing the inner workings
of Jython.

Should I take this tutorial?

This tutorial is oriented towards software developers at all levels, from casual dabblers
to professionals. It is especially oriented towards Java developers who want to
leverage the productivity advantages of a scripting language. It is also targeted towards
Visual Basic and C++/C# programmers who want an easier entry into the Java
development world.

Together, we will cover the following aspects of scripting with Jython:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 82 Intro to Jython, Part 1: Java programming made easier

http://www-106.ibm.com/developerworks/edu/j-dw-java-jython2-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython2-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython2-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython2-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython2-i.html

Part 1

• Download and installation

• A conceptual introduction to Jython

• Working from the command-line vs source files

• Syntax and data types

• Program structure

• Procedural statements

• Functions

Part 2

• Object-oriented programming with Jython

• Debugging

• Java support

• String processing

• File IO

• Building a GUI application in Jython

To benefit from the discussion, you should be familiar with at least one procedural
programming language and the basic concepts of computer programming, including
command-line processing. To fully utilize Jython's features you should also be familiar
with the basic concepts of object-oriented programming. It will also be helpful to have a
working knowledge of the Java platform, as Jython runs on a JVM; although this is not
a requirement of the tutorial.

Note that this tutorial is oriented towards Windows systems. All command examples
will employ Windows syntax. In most cases similar commands perform the same
functions on UNIX systems, although these commands will not be demonstrated.

Tools, code, and installation requirements

You must have Jython 2.1 or higher installed on your development system to complete
this tutorial. Your development system may be any ASCII text editor (such as Windows
Notepad) combined with the command prompt. The tutorial includes detailed
instructions for getting and installing Jython on your system.

To use Jython you must also have a Java Runtime Environment (JRE) installed on
your system. It is recommended that you use the latest JRE available (1.4.2 at the time
of writing), but any version at or beyond Java 1.2 should work fine. If you are going to
use Jython from a browser (that is, as an applet), you must have at least a JRE 1.1
available to the browser. See Resources and feedback on page 66 to download the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 3 of 82

latest version of the Java development kit (JDK).

All code examples in this tutorial have been tested on Jython running on the Sun Java
1.4.1 JRE on Windows 2000. Examples should work without change on any similar
configuration on other operating systems.

About the author

Dr. Barry Feigenbaum is a member of the IBM Worldwide Accessibility Center, where
he is part of team that helps IBM make its own products accessible to people with
disabilities. Dr. Feigenbaum has published several books and articles, holds several
patents, and has spoken at industry conferences such as JavaOne. He serves as an
Adjunct Assistant Professor of Computer Science at the University of Texas, Austin.

Dr. Feigenbaum has more than 10 years of experience using object-oriented
languages like C++, Smalltalk, the Java programming language, and Jython. He uses
the Java language and Jython frequently in his work. Dr. Feigenbaum is a Sun Certified
Java Programmer, Developer, and Architect. You can reach him at
feigenba@us.ibm.com.

Acknowledgements

I would like to acknowledge Mike Squillace and Roy Feigel for their excellent technical
reviews of this tutorial.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 82 Intro to Jython, Part 1: Java programming made easier

mailto:feigenba@us.ibm.com

Section 2. Getting started

Installation instructions

In this section we'll walk through each of the steps for downloading, installing, and
verifying Jython on your development system.

Download Jython

You can download Jython 2.1 from the Jython home page. You'll find easy-to-follow
download instructions on the download page.

As previously mentioned, this tutorial is based on the current stable Jython level, which
is version 2.1. More advanced development levels may also be available from the
Jython home page.

Install Jython

Installing Jython is simple: just execute the class file you've downloaded from the
Jython homepage. Assuming that you have a JRE installed and have the downloaded
class file in your current directory (C:\ in the examples below) the following command
will install Jython (note that <java_home> is the directory the JRE is installed in):

C:\><java_home>\bin\java jython-21

Please follow the install application's prompts. I recommend you select the defaults,
and that you select c:\Jython-2.1 as the destination directory.

Verify the install

To verify that Jython is installed, enter the command:

C:\>dir c:\Jython-2.1

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 5 of 82

http://www.jython.org
http://www.jython.org
http://www.jython.org

The result should be a listing like this one:

Volume in drive C is C_DRIVE
Volume Serial Number is ????-????

Directory of C:\Jython-2.1

--/--/---- --:--- <DIR> .
--/--/---- --:--- <DIR> ..
--/--/---- --:--- 1,873 ACKNOWLEDGMENTS
--/--/---- --:--- <DIR> cachedir
--/--/---- --:--- <DIR> com
--/--/---- --:--- <DIR> Demo
--/--/---- --:--- <DIR> Doc
--/--/---- --:--- <DIR> installer
--/--/---- --:--- 428 jython.bat
--/--/---- --:--- 719,950 jython.jar
--/--/---- --:--- 272 jythonc.bat
--/--/---- --:--- <DIR> Lib
--/--/---- --:--- 7,184 LICENSE.txt
--/--/---- --:--- 18,178 NEWS
--/--/---- --:--- <DIR> org
--/--/---- --:--- 651 README.txt
--/--/---- --:--- 4,958 registry
--/--/---- --:--- <DIR> Tools
--/--/---- --:--- 224,493 Uninstall.class

9 File(s) 977,987 bytes
? Dir(s) ??? bytes free

A test run

The final step is to ensure that Jython is configured. To run Jython, start by entering the
command:

C:\>c:\jython-2.1\jython

The command should result in an introduction similar to this one:

Jython 2.1 on java1.4.1_01 (JIT: null)
Type "copyright", "credits" or "license" for more information.

Finally, we'll exit Jython. At the Jython prompt, enter the following command:

>>> import sys; sys.exit()

Alternatively, you could just press Ctrl+C two times.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 82 Intro to Jython, Part 1: Java programming made easier

Making life more convenient

There is just one last thing you should know before we close this section on getting
started. You can eliminate the need to specify the Jython command path
(<d>:\jython-2.1) by adding it to your PATH variable. Now you can just type jython
at the command prompt.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 7 of 82

Section 3. Basic concepts and advantages of Jython

What is Jython?

As previously mentioned, Jython is an implementation of Python written in the Java
language and integrated with the Java platform. Python is a scripting language often
used in UNIX-based systems, including Linux. Python was invented by Guido van
Rossum and introduced to the developer community in 1991. Jython currently supports
the Python syntax at level 2.1.

What is a scripting language?

Unlike the Java programming language, Jython is a scripting language. A scripting
language is generally defined as follows:

• Very easy to learn and code

• Expressive and concise, yet powerful

• Has minimal required structure to create a running "program"

• Supports interactive (command-at-a-time) execution

• Does not require a compile step

• Supports reflective programming

• Supports functional programming

• Supports dynamic execution of source (that is, an eval function)

• Runs external programs

In general, it can be said that scripting languages value programmer efficiency over
machine efficiency and performance. Compared to a programming language such as
the Java language, Jython is easy to learn and efficient to code.

Jython can also be described as an agile language. Agile languages are generally
thought of as being capable of performing a wide variety of tasks and useful for many
different types of problems, easy-to-use and yet powerful and expressive. They are
also ideal rapid prototyping languages.

Advantages of Jython

Like its C-based cousin Python, Jython is most at home when used to develop small

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 82 Intro to Jython, Part 1: Java programming made easier

programs and scripts; it has many features that allow simple but functional programs to
be created in a few minutes. This does not mean Jython cannot be used for large-scale
programming. In fact, Jython supports a sophisticated packaging scheme, similar to
that of the Java language. By virtue of its object-oriented nature, Jython is highly
extendable and provides the latest constructs for effective software engineering.

Like the Java language and unlike some other scripting languages such as Perl and
Rexx, Jython was designed to be an object-oriented language from the start. Thus, it
offers powerful object-oriented programming (OOP) features that are easy to
understand and use.

One of Jython's biggest advantages is that it runs on any JVM, so applications coded in
Jython can run on almost any computing system.

Jython and the Java platform

Jython is built on the Java platform. From the platform's point of view, the Jython
runtime is just another Java class. This is quite apparent if you look into the
JYTHON.BAT file, which launches the Java runtime with the Jython interpreter as its
main class, as shown below:

@echo off
rem This file generated by Jython installer
rem
JAVA_HOME=<java_home>
rem
rem collect all arguments into %ARGS%
set ARGS=
:loop
if [%1] == [] goto end

set ARGS=%ARGS% %1
shift
goto loop

:end

%JAVA_HOME%\bin\java.exe
-Dpython.home=C:\jython-2.1
-cp "C:\jython-2.1\jython.jar;%CLASSPATH%"
org.python.util.jython %ARGS%

Everything is interpreted

At its heart Jython is an interpreted language. In Jython, there is no pre-compile step

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 9 of 82

as there is in Java and C++; each time Jython code is run it is interpreted afresh. As
such, code changes can be very quickly made and tested. Jython code can also be
entered interactively (that is, one line at a time). Furthermore, you can dynamically
construct Jython code (that is, as a string) and execute it directly. This enables coding
flexibility not possible in Java coding.

The Jython interpreter converts Jython source into an internal form for more efficient
processing. It does this during a first pass that verifies syntax. Once this pass is
complete the internalized source is interpreted. Jython also caches this internalized
form on disk. In a Java class file for the Jython module <name>.py, the cached file
would be <name>$py.class.

Interpretation does have its disadvantages, although most are minor. For example, use
of an undefined variable is not a compiler error, so it will be detected only if (and when)
the statement in which the variable is used is executed. While this can seem a
disadvantage when compared to compiled languages, the fact that you can edit and
then immediately run a program and experience the error (if it exists) makes up for it. A
simple test-and-debug procedure takes about as much time as repeated edit-compile
steps do to remove an error.

About performance

Because Jython is interpreted, it can be slower than a compiled language such as
Java. In most applications, such as scripts or GUIs, this difference is hardly noticeable.
In most cases, Jython's increased design and coding flexibility more than makes up for
any small performance loss.

Because Jython code is dynamically converted to Java byte code, the latest
enhancements to the Java platform (such as JITs and Sun's HotSpot JVM) can also
eliminate many performance issues.

For an additional performance boost it is possible to implement code sections in the
Java language and call them from Jython. For example, you could prototype your
programs in Jython, test them out, and (in the case of performance issues) convert the
critical sections to Java code. This technique is a good combination of the powers of
Jython and the Java language, as prototyping is much easier in Jython than in Java.
We'll talk more about combining the Java language and Jython in Part 2 of this tutorial.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 82 Intro to Jython, Part 1: Java programming made easier

http://www-106.ibm.com/developerworks/edu/j-dw-java-jython2-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython2-i.html

Section 4. Working with Jython

Using Jython as a command-line interpreter

One of the easiest ways to use Jython is as a command-line interpreter. In this manner,
lines of code are entered one line at a time and you can see the results immediately.
This is an ideal way to learn Jython and to try out new coding techniques with minimal
overhead.

We'll start with a brief Jython interactive session. Enter the following commands after
the ">>>" or "..." prompts:

C:\>c:\jython-2.1\jython
You should receive output that looks something like this:

Jython 2.1 on java1.4.1_01 (JIT: null)
Type "copyright", "credits" or "license" for more information.
>>> 1 + 2
3
>>> "Hello" + "Goodbye"
'HelloGoodbye'
>>> def fac(x):
... if x <= 1: return 1
... return long(x) * fac(x-1)
...
>>> fac(3)
6L
>>> fac(100)
93326215443944152681699238856266700490715968264381621468592963895217599
99322991560894146397615651828625369792082722375825118521091686400000000
0000000000000000L
>>> import sys; sys.exit(0)
C:\>

With this example you can see how input is immediately executed. This includes simple
expressions and more complex actions such as function definitions (that is, the fac
function). Defined values and functions are available for immediate use. Notice, also,
that Jython supports very large integers via the long type.

Note that in the above example the indentation of the fac function is critical. You'll
learn more about this requirement later in the tutorial (see Blocks on page 31).

Using Jython via source files

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 11 of 82

If Jython accepted only command-line input it wouldn't be all that useful; thus, it also
accepts source files. Jython source files end in the extension .py. A Jython file must
contain a sequence of Jython statements. Expressions, such as 1 + 2, are not valid
statements (they execute but produce no displayed output).

To display expressions, you must place them in a print statement. Thus, the
sequence from the previous section could be coded in a source file as follows:

print 1 + 2
print "Hello" + "Goodbye"
def fac(x):
if x <= 1: return 1
return long(x) * fac(x-1)

print fac(3)
print fac(100)

The above code would produce the same output as the examples in Using Jython as a
command-line interpreter on page 11 . In fact, the statements could have been entered
interactively (with the addition of a blank line after the fac function) and would result in
the same output.

The print statement

As shown in the previous panel, we use the print statement to print expressions. The
statement has the following forms:

print expression {, expression}... {,}

-- or --

print

The print statement above can also contain a list of expressions separated by
commas. Each such expression is output with a space automatically added between
them. So that print "Hello", "Goodbye" outputs Hello Goodbye.

If a print statement ends in comma, no new-line is output. The line print by itself
outputs a new-line.

A "Hello World" example

In Jython, the quintessential example program -- Hello World -- is a single-line file (say,

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 82 Intro to Jython, Part 1: Java programming made easier

hello.py), as shown here:

print "Hello World!"

To run the program you would enter the command: C:\>c:\jython-2.1\jython
hello.py

Note that the .py extension is required; otherwise, a "file not found" error will occur. The
jython command has several options. See the Jython home page (in Resources and
feedback on page 66) for more information.

Jython source files are modules

Jython source files can contain more than a sequence of statements to execute. They
can also contain function (see Jython functions on page 55) and class definitions (we'll
talk more about class definitions in Part 2 of this tutorial). In fact, Jython source files
can be modules (more on these later, in Modules and packages on page 35) that may
not be used directly but instead imported by other programs. A single source file can
perform both roles. Consider this variant of the file in the previous panel:

def fac(x):
if x <= 1: return 1
return long(x) * fac(x-1)

if __name__ == "__main__":
print 1 + 2
print "Hello" + "Goodbye"
print fac(3)
print fac(100)

Again, running this file results in the same output as before. But if the file were
imported into another program that only wanted to reuse the fac function, then none of
the statements under the if (see The if statement on page 48) test would be executed.

Note also that each module has a name; the one directly executed from the
command-line is called "__main__". This feature can be used to create a test case for
each module.

Compiled Jython

Jython source files can be compiled to Java source code (which is automatically
compiled into byte-code) to produce standalone class or Java Archive Files (JAR) files.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 13 of 82

This step is necessary to create Jython code that is called directly from the Java
platform, such as when creating an applet or a servlet. It is also useful to provide
Jython applications without releasing the Jython source.

Jython can be compiled into a pure Java class that can run directly on any JVM by use
of the jythonc command (that is, assuming you have the necessary Jython JAR in
the Java CLASSPATH). For more details on using jythonc see the Jython home page
(Resources and feedback on page 66).

A compilation example

We'll use the factor.py file (see Resources and feedback on page 66) as our example
standalone program. To compile it, use the command:

c:\>c:\jython-2.1\jythonc factor.py

If there are no errors, Java class files factor.class and
factor$_PyInner.class will be created. You'll find the actual generated Java
source code in Resources and feedback on page 66 . To run this (now Java) application
use the command:

c:\><java_home>\bin\java -cp .;c:\jython-2.1\jython.jar factor

The resulting output should look something like this:

factor running...
For -1 result = Exception - only positive integers supported: -1
For 0 result = 1
For 1 result = 1
For 10 result = 3628800
For 100 result =
93326215443944152681699238856266700490715968264381621468592963895217599
99322991560894146397615651828625369792082722375825118521091686400000000
0000000000000000
For 1000 result = 4023872600770937735437024

... many digits removed ...
00000000000000000000

Note that the output is identical to that generated by using the factor.py program
directly.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 82 Intro to Jython, Part 1: Java programming made easier

Section 5. Jython basic data types

Everything is an object

Unlike the Java language, Jython sees everything, including all data and code, as an
object. This means you can manipulate these objects using Jython code, making
reflective and functional programming very easy to do in Jython. See Appendix G:
Jython types summary on page 80 for more information.

Some select types, such as numbers and strings, are more conveniently considered as
values, not objects. Jython supports this notion as well.

Jython supports only one null value, with the reserved name of None.

Common operators

All Jython data types support the following fundamental operations:

Operation Test usage Comment(s)

x and y Boolean and x with y y is not evaluated if x is false

Returns x or y as the result

x or y Boolean or x with y y is not evaluated if x is true

Returns x or y as the result

not x Boolean negation of x Returns 0 or 1

x < y Comparison strictly less than Returns 0 or 1

x > y Comparison strictly greater
than

Returns 0 or 1

x <= y Comparison less than or
equal

Returns 0 or 1

x >= y Comparison greater than or
equal

Returns 0 or 1

x == y Comparison equal Returns 0 or 1

x != y

x <> y

Comparison not equal Returns 0 or 1

x is y Sameness Returns 1 if x is the same

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 15 of 82

object as y; else 0

x is not y Distinctness Returns 1 if x is not the same
object as y; else 0

Note that unlike in the Java language, all types are comparable. In general, if the types
of the operands do not match, the result is unequal. The less-than or greater-than
relations on complex types are consistent but arbitrary.

Boolean types

Jython has no separate boolean type. All the other types described in the following
sections can be used as booleans. For numeric types, zero is considered to be false
and all other values true. For structured types (that is, sequences and maps), an empty
structure is considered to be false and others true. The None value is always false.

Numeric types

Numbers are immutable (that is, unchangeable after creation) objects treated as
values. Jython supports three numeric types, as follows:

• Integers have no fractional part. Integers come in two subforms:
• Normal: small values in the range -2**31 to 2**31 - 1 (like Java ints).

Examples: -1, 0, 1, 10000

• Long: large values limited only by the JVM's available memory (like Java
BigIntegers).

Examples: -1L, 0L, 1L, 10000000000000000000000000000000L

• Floating point values may have fractional parts. Floats support values identical to
the Java double type.

Examples: 0.0, -1.01, 2.5004E-100, -35e100

• Complex values are a pair of floating point values, called the real and imaginary
part. If x is a complex value, then x.real is the real part and x.imag is the
imaginary part. Either part may be 0.0. The method x.conjugate produces a new

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 82 Intro to Jython, Part 1: Java programming made easier

complex with +x.real and -x.imag.

Examples: 1J, -1j, 1+2j, -3.7+2e5j

Additional numeric type operations and functions

Numeric types support the following additional operations and functions:

Operation/Function Usage

-x Negate x (that is, 0 - x)

+x Posate - no change (that is, 0 + x)

x + y Add y to x

x - y Subtract y from x

x * y Multiply x by y

x / y Divide x by y

x % y

divmod(x, y)

Take modulus of x by y

Return (x / y, x % y)

x ** y

pow(x, y)

Raise x to the y power

Raise x to the y power

abs(x) If x < 0, then -x; else x

int(x) Convert x to an integer

long(x) Convert x to a long

float(x) Convert x to a float

complex(r, i)

complex(x)

Convert r and i to a complex

Convert x to a complex

Note: For numeric types, the operands are promoted to the next higher type. For
integer operands /, %, and ** result in integer results. For the int, long, float, and
complex conversion functions, x may be a string or any number.

Additional integer type operations

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 17 of 82

Integer types support the following additional operations:

Operation Usage Comment(s)

x << y Shift x bits left by y Similar to x * pow(2, y)

x >> y Shift x bits right by y Similar to x / pow(2, y)

x & y And x and y bits Clears the bits in x that are 0
in y.

x | y Or x and y bits Sets the bits in x that are 1 in
y.

x ^ y XOR x and y bits Flips the bits in x that are 1
in y

~x Invert x bits Flips all bits

Additional floating type functions

Floating point types support the following additional functions (in module math):

Function Comment(s)

ceil(v)

floor(v)

Computes the ceiling and floor of v.

sin(v)

cos(v)

tan(v)

Computes the sine, cosine, and tangent of v.

acos(v)

asin(v)

atan(v)

atan2(v, w)

Computes the arcsine, arccosine, and arctangent of v (or v /
w).

sinh(v)

cosh(v)

tanh(v)

Computes the hyperbolic sine, cosine, and tangent of v.

exp(v)

pow(v, w)

Computes the powers and logarithms of v.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 82 Intro to Jython, Part 1: Java programming made easier

sqrt(v)

log(v)

log10(v)

fabs(v) Computes the absolute value of v.

fmod(v, w) Computes the modulus of v and w. May not be the same as
v % w.

modf(v) Returns (as the tuple (i, f)) the integer and fractional parts of
v (both as floats).

frexp(v) Returns (as the tuple (m, e)) the float mantissa and integer
exponent of v. The result is such that v == m * 2 ** e.

ldexp(v, w) Computes v * 2 ** w (w must be an integer).

hypot(v, w) Computes the hypotenuse of v and w (that is, sqrt(v * v
+ w * w)).

Math module examples

We'll run an example to demonstrate the functions in the math module from the
previous panel. See The import statement on page 35 andFormatting strings and values
on page 24 for more information.

from math import *

print "PI = %f, e = %f" % (pi, e)

print "Sine of %f = %f" % (0.5, sin(0.5))
print "Cosine of %f = %f" % (0.5, cos(0.5))
print "Tangent of %f = %f" % (0.5, tan(0.5))

The example code results in the following output:

PI = 3.141593, e = 2.718282
Sine of 0.500000 = 0.479426
Cosine of 0.500000 = 0.877583
Tangent of 0.500000 = 0.546302

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 19 of 82

Section 6. Jython collections

Collection types

Frequently, you will need to create collections of other data items. Jython supports two
major collection types. The most basic is the sequence type which is an ordered
collection of items. Sequences support several subtypes such as strings, lists, and
tuples. The other is the map type. Maps support associative lookup via a key value.
You'll learn about both types in this section.

Sequence types

A sequence is an ordered collection of items. All sequences are zero-indexed, which
means the first element is element zero (0). Indices are consecutive (that is, 0, 1, 2, 3,
...) to the length (less one) of the sequence. Thus sequences are similar to C and Java
arrays.

All sequences support indexing (or subscripting) to select sub-elements. If x is a
sequence then the expression x[n] selects the nth value of the sequence. Mutable
sequences such as lists support indexing on assignment, which causes elements to be
replaced. For these sequences the expression x[n] = y replaces the nth element of
x with y.

Sequences support an extension of indexing, called slicing, which selects a range of
elements. For example, x[1:3] selects the second through third elements of x (the
end index is one past the selection). Like indexing, slicing can be used on assignment
to replace multiple elements.

In Jython, a sequence is an abstract concept, in that you do not create sequences
directly, only instances of subtypes derived from sequences. Any sequence subtype
has all the functions described for sequences.

A slice of life

The many valid forms of slicing are summarized below. Assume x is a sequence
containing 10 elements (indexes 0 through 9).

Sample
expression

Resulting action Comments

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 82 Intro to Jython, Part 1: Java programming made easier

x[1] Selects index 1 Same as indexing

x[1:2] Selects index 1 The end value is one past the
selected value

x[1:] Selects index 1 through 9 Missing value implies the
sequence length

x[:7] Selects index 0 through 6 Missing value implies zero

x[:-1] Selects index 0 through 8 Negative indexes are adjusted by
the sequence length

x[-6:-3] Selects index 3 through 6 Reverse ranges are supported

x[:] Selects index 0 through 9 The whole sequence; This makes
a copy of the sequence

x[:1000] Selects index 0 through 9 A reference off the end of the
sequence is the end

x[-100:] Selects index 0 through 9 A reference off the start of the
sequence is the start

x[::2] Selects index 0, 2, 4, 6, 8 The third value skips over
selections

Sequence operators

Jython supports several operations between sequences (x and y), as summarized
below:

Operator Usage Example

x + y Join (or concatenate)
sequences

[1,2,3] + [4,5,6] -->
[1,2,3,4,5,6]

i * x

x * i

Repeat sequence [1,2,3] * 3 -->
[1,2,3,1,2,3,1,2,3]

o in x

o not in x

Contains test 2 in (1,2,3) --> 1 (true)

7 not in (1,2,3) --> 1 (true)

Sequence functions

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 21 of 82

In addition, several functions can be applied to any sequence (x), as summarized
below:

Function Usage Example

len(x) Length (number of
elements) of the
sequence

len(1,2,3) --> 3

min(x) Smallest value in the
sequence

min(1,2,3) --> 1

max(x) Largest value in the
sequence

max(1,2,3) --> 3

A final note about sequences

As I mentioned earlier, a sequence in Jython is an abstract concept, in that you do not
create sequences directly, only instances of subtypes derived from sequences. Any
sequence subtype has all the functions described for sequences. There are several
sequences subtypes, as follows:

• strings are immutable sequences of characters (see Strings on page 22)

• tuples are immutable sequences of any data type (see Tuples on page 25)

• ranges are immutable sequences of integers (see Ranges on page 25)

• lists are mutable sequences of any data type (see Lists on page 26)

Strings

A string is an immutable sequence of characters treated as a value. As such, strings
support all of the immutable sequence functions and operators that result in a new
string. For example, "abcdef"[1:4] is the new string "bcd". For more information
on string functions see Appendix B: String methods on page 68 .

Jython does not have a character type. Characters are represented by strings of length
one (that is, one character).

Strings literals are defined by the use of single or triple quoting. Strings defined using
single quotes cannot span lines while strings using triple quotes can. A string may be
enclosed in double quotes (") or single ones ('). A quoting character may contain the
other quoting character un-escaped or the quoting character escaped (proceeded by

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 82 Intro to Jython, Part 1: Java programming made easier

the backslash (\) character). See Appendix A: Escape characters on page 68 for more on
this.

String examples

Following are some example strings:

• "This is a string"

• 'This is also a string'

• "This is Barry's string"

• 'Barry wrote "Introduction to Jython"!'

• "This is an escaped quote (\") in a quoted string"

• r"\s*xyx\s*" - equivalent to"\\s*xyx\\s"

• u"the number one is \u0031" (vs. "the number one is \x31")

Note that the next-to-last example shows a raw string. In raw strings the backslash
characters are taken literally (that is, there is no need to double the backslash to get a
backslash character). This raw form is especially useful for strings rich in escapes,
such as regular expressions. We'll talk more about regular expressions in Part 2 of this
tutorial.

The last example shows a Unicode string and how to create Unicode escaped values.
Note that all strings are stored using Unicode character values (as provided by the
JVM); this format just lets you enter Unicode character values.

Mixed and long strings

For convenience, multiple strings separated by only white space are automatically
concatenated (as if the + operator was present) by the Jython parser. This makes it
easy to enter long strings and to mix quote types in a single string. For example the
sequential literals here:

"This string uses ' and " 'that string uses ".'
becomes this string:

This string uses ' and that string uses ".

Triple quoting is used to enter long strings that include new-lines. Strings defined using
single quotes cannot span lines while strings using triple quotes can. They can also be
used to enter short (single-line) strings that mix quote types. For example, the following

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 23 of 82

is one long multi-line string:

r"""Strings literals are defined by the use
single or triple quoting.
Strings defined using single quotes cannot span
lines while strings using triple quotes can.
A string may be enclosed in quotes (") or apostrophes (').
They may contain the other character un-escaped
or the quoting character escaped
(proceeded by the backslash (\) character."""

While this is a short mixed-quote string: '''This string uses ' and that
string uses ".'''

Formatting strings and values

Jython strings supports a special formatting operation similar to C's printf, but using
the modulo (%) operator. The right-hand set of items is substituted into the left-hand
string at the matching %x locations in the string. The set value is usually a single value,
a tuple of values, or a dictionary of values.

The general format of the format specification is:

%{(key)}{width}{.precision}x

Here's a guide to the format items:

• key: Optional key to lookup in a supplied dictionary

• width: Minimum width of the field (will be longer for large values)

• precision: Number of digits after any decimal point

• x: Format code as described (in Appendix H: Format codes on page 81)

For example

print "%s is %i %s %s than %s!" % ("John", 5, "years", "older", "Mark")

print "Name: %(last)s, %(first)s" % {'first':"Barry", 'last':"Feigenbaum", 'age':18}

prints

John is 5 years older than Mark!
Name: Feigenbaum, Barry

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 82 Intro to Jython, Part 1: Java programming made easier

Tuples

Tuples are immutable lists of any type. Once created they cannot be changed. Tuples
can be of any length and can contain any type of object. Some examples are shown
here:

Example Comment(s)

() An empty tuple

(1,) A tuple with one element, an integer;
the comma is needed to distinguish the
tuple from an expression like (1)

(1, 'abc', 2, "def") A tuple with four elements, two integers
and two strings

((), (1,), (1,2), (1,2,3)) A tuple of tuples; Each sub-list contains
integers

(1, "hello", ['a','b','c'],
"goodbye")

A mixed tuple of integers, strings and a
sub-list of strings

v1 = 1; v2 = 10

(1, v1, v2, v1 + v2)

A tuple of integers; variable references
and expressions are supported

Note that although a tuple is immutable, the elements in it may not be. In particular,
nested lists (see Lists on page 26) and maps (seeMaps and dictionaries on page 27) can
be changed.

Ranges

To implement iteration (see the The for statement on page 51) Jython uses immutable
sequences of increasing integers. These sequences are called ranges. Ranges are
easily created by two built-in functions:

• range({start,} end {,inc}) creates a small range.

All elements of the range exist.

• xrange({start,} end {,inc}) creates a large range.

Elements are created only as needed.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 25 of 82

Ranges run from start (defaults to 0), up to but not including end, stepping by inc
(defaults to 1). For example:

print range(10) # prints [0,1,2,3,4,5,6,7,8,9]
print range(2,20,2) # prints [2,4,6,8,10,12,14,16,18]
print range(10,0,-1) # prints [10,9,8,7,6,5,4,3,2,1]

Lists

Lists are mutable sequences of any type. They can grow or shrink in length and
elements in the list can be replaced or removed. Lists can be of any length and can
contain any type of object. For more information on list functions see Appendix C: List
methods on page 71 . Some examples are shown below.

Example Comment(s)

[] An empty list

[1] A list with one element, an integer

[1, 'abc', 2, "def"] A list with four elements, two integers
and two strings

[[],[1],[1,2],[1,2,3]] A list of lists; Each sub-list contains
integers

[1, "hello", ['a','b','c'],
"goodbye"]

A mixed list of integers, strings and a
sub-list of strings

v1 = 1; v2 = 10

[1, v1, v2, v1 + v2]

A list of integers; variable references
and expressions are supported

Stacks and queues

Lists support the notion of Last-In/First-Out (LIFO) stacks and First-in/First-out
(FIFO) queues. Using list x to create a stack, remove items with x.pop() (or the
equivalent x.pop(-1)). Using list x to create a queue, remove items with x.pop(0).
To add elements to the list use x.append(item). For example:

l = [1,2,3,4,5] # define a list

l.append(6) # l is [1,2,3,4,5,6]

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 82 Intro to Jython, Part 1: Java programming made easier

w = l.pop() # w is 6, l is [1,2,3,4,5]
x = l.pop(-1) # x is 5, l is [1,2,3,4]
y = l.pop(0) # y is 1, l is [2,3,4]
z = l.pop(0) # z is 2, l is [3,4]

List comprehensions

Lists can also be created via an advanced notation, called list comprehensions. List
comprehensions are lists combined with for and if statements to create the elements
of the list. For more information see The for statement on page 51 andThe if statement
on page 48 . Some example list comprehensions follow:

Example Resulting list

[x for x in range(10)] [0,1,2,3,4,5,6,7,8,9]

Same as range(10)

[x for x in xrange(1000)] [0,1,2,..., 997, 998, 999]

Same as range(1000)

[(x < y) for x in range(3)
for y in range(3)]

[0,1,1,0,0,1,0,0,0]

[x for x in range(10) if x >
5]

[6,7,8,9]

[x ** 2 + 1 for x in
range(5)]

[1,2,5,10,17]

[x for x in range(10) if x %
2 == 0]

[0,2,4,6,8]

Maps and dictionaries

Mapping types support a mutable set of key-value pairs (called items). Maps are
distinct from sequences although they support many similar operations. They are
similar to sequences in that they are abstract; you work only with map subtypes, of
which the most commonly used type is the dictionary. For more information on map
functions see Appendix D: Map methods on page 72 .

Maps support associative lookup via the key value. A key can be any immutable type.
Keys must be immutable as they are hashed (see Appendix E: Built-in functions on
page 72) and the hash value must stay stable. Common key types are numbers, strings,

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 27 of 82

and tuples with immutable elements. Values may be of any type (including None). If m
is a map, function len(m) returns the number of items in the map.

Maps, like sequences, support subscripting, but by key instead of index. For example,
if m is a map, x = m["x"] gets a value from the map and m["x"] = x adds a new
value to or replaces a value in the map.

Example dictionaries

Some example dictionary literals are below:

Example Comment(s)

{} An empty dictionary

{1:"one", 2:"two", 3:"three"} A dictionary with three elements that
map integers to names

{"one":1, "two":2, "three":3} A dictionary with three elements that
map names to integers

{"first':'Barry", "mi":"A",
"last":"Feigenbaum"}

A dictionary that maps a name

{"init":(1,2,3),
"term":['x','y','z'],
"data":{1:10,2:100.5}}

A dictionary containing a tuple, a list,
and another dictionary

t = (1,2,3); l =
['x','y','z']; d =
{1:10,2:100.5}

{"init":t, "term":l,
"data":d}

A dictionary containing a tuple, a list,
and another dictionary; variable
references and expressions are
supported

As shown in Formatting strings and values on page 24 , dictionaries are convenient for
format mapping.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 82 Intro to Jython, Part 1: Java programming made easier

Section 7. Jython program structure

File structure

As explained in the introduction, Jython programs are simply text files. These files
contain statements that are interpreted as they are input (after a quick parsing for
syntax errors). Other files can be effectively included into Jython programs by use of
the import (see Modules and packages on page 35) andexec statements (see
Dynamic code evaluation on page 32).

Commentary

Jython has two forms of comments:

• Remarks are comments introduced with the sharp (#) character. All text on the same
line after the sharp is ignored. Remarks can start in any column.

• Documentation comments are a string literal located immediately after the start of
an externalized block, such as a module, class, or function. The string does not
change the behavior of the block; yet the comment can be accessed via the special
attribute __doc__ to create descriptions of the block.

A commentary example

The following example shows a function (fac) that has a documentation comment and
two remarks. It also demonstrates how to access the documentation comment
programmatically.

The code sequence

def fac(x):
"The fac function computes the value x! (x factorial)"
if x <= 1: return 1 # base case
return long(x) * fac(x-1) # use recursion on reduced case

:
print fac.__doc__

results in the output

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 29 of 82

The fac function computes the value x! (x factorial)

Statement syntax

As you likely have gathered from the previous sections, Jython has a simple syntax. It
more closely resembles English than languages like C and Java language. In
particular, each source line is (generally) a single statement. Except for expression
and assignment statements, each statement is introduced by a keyword name, such
as if or for. You may have blank or remark lines between any statements.

You don't need to end each line with a semicolon but you may do so if desired. If you
wish to include multiple statements per line, then a semicolon is needed to separate
statements.

If required, statements may continue beyond one line. You may continue any line by
ending it with the backslash character, as shown below:

x = "A looooooooooooooooooooooooooooooooong string " + \
"another looooooooooooooooooooooooooooooooong string"

If you are in the middle of a structure enclosed in parenthesis (()), brackets ([]) or curly
braces ({}), you may continue the line after any comma in the structure without using a
backslash. Here's an example:

x = (1, 2, 3, "hello",
"goodbye", 4, 5, 6)

Identifiers and reserved words

Jython supports identifiers similar to C++ and Java names. Identifiers are used to name
variables, functions, and classes, and also as keywords. Identifiers can be of any
length. They must start with a letter (upper- or lowercase) or the underscore (_)
character. They may contain any combination of letters, decimal digits, and the
underscore. Some valid identifiers are abc, abc123, _x, x_, myName, and ONE. Some
invalid identifiers are 123abc, $xyz, and abc pqr.

Note that names starting with underscore are generally reserved for internal or private
names.

Jython also has several reserved words (or keywords) which cannot be used as
variable, function, or class names. They fall under the following categories:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 82 Intro to Jython, Part 1: Java programming made easier

• Statement introducers: assert, break, class, continue, def, del, elif, else, except,
exec, finally, for, from, global, if, import, pass, print, raise, return, try, and while.

• Parameter introducers: as, import, and in.

• Operators: and, in, is, lambda, not, and or.

Note that keywords can be used in special circumstances, such as names of methods.
For instance, you might use a keyword to call a Java method with the same name as a
Jython keyword. Improper keyword use will generally cause a SyntaxError.

Blocks

Blocks (or suites) are groups of statements that are used where single statements are
expected. All statements that can take a block of statements as a target introduce the
block with the colon character. The following statements (or statement clauses) can
take a block as their target: if, elif, else, for, while, try, except, def, and class. Either a
single statement or small group of statements, separated by semicolons, may follow
the colon on the same line, or a block may follow the statement indented on
subsequent lines.

I highly recommend that you use spaces to indent. Using tabs can cause problems
when moving between systems (or editors) with different tab stops. Do not mix tabs
and spaces in the same source file. By convention, four spaces are used per level.

Note: All the lines in the outermost block of a module must start at column one;
otherwise, a SyntaxError is created.

Example blocks

Unlike with C and the Java language, in Jython curly braces are not used to delimit
blocks; indentation is used instead. For example

the following prints 0 through 10 on one line
for i in range(10):

print next value
print i,

print # new line

outputs the line: 0 1 2 3 4 5 6 7 8 9.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 31 of 82

The block that is the body of the for-loop is indicated by the indented code. All lines in
the body (except for comments) must be indented to the same position. The same loop
could be written as:

the following prints 0 through 10 on one line
for i in range(10): print i, # print next value
print # new line

Visibility and scopes

Jython supports the following scopes:

• Built-in symbols defined by the Jython runtime are always available unless
redefined in another scope.

• Global variables are visible to the an entire module, including functions and classes
declared in the module. A dictionary of the variables in the current global scope can
be accessed via the globals function.

• Local function arguments and variables declared in a function body are visible to
that block. A dictionary of the variable names in the current local scope can be
accessed via the locals function. In a module and outside of any function, the local
and global scopes are the same.

In general, variables are visible in the scope of the block they are declared in and in
any function (see Jython functions on page 55) defined in that scope. Variables can be
declared only once per scope; subsequent use re-binds that variable. Unlike in C++
and the Java language, nested blocks inside functions do not start new scopes.

Dynamic code evaluation

Jython is distinguished from typical languages in its ability to dynamically create code
and then execute it. For example, in a calculator application, the user can enter an
expression in text form and Jython can directly execute the expression (assuming it
follows Jython source rules).

To better understand how Jython interprets/evaluates dynamic code, consider the
following:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 32 of 82 Intro to Jython, Part 1: Java programming made easier

v1 = 100; v2 = 200
l1 = [1, 2, v1, v2]
d1 = {"simple":123, "complex":(v1, v2, l1)}
expr = raw_input("Enter an expression:")
print eval(expr) # evaluate and print the expression

Below are some sample expressions to evaluate using the code above and the results
of those evaluations:

Input expression (entered as a
string)

Result

'1234.56' 1234.56

'v1+v2' 300

'd1["simple"]' 123

'v1**2 + len(l1)' 10004

Eval, exec and execfile

The eval function is used to execute an expression that returns a value. The exec
statement is used to evaluate a code block (one or more statements) that does not
return a value. It takes a file, a string (often read from a file), or a function as its source
operand. The execfile function executes a code block from a file. In effect it runs a
subprogram.

The exec statement has the following form:

exec source {in globals {, locals}}

The execfile and eval functions have the following form:

execfile(filename, {globals {, locals}})

eval(expression, {globals {, locals}})

All three forms optionally take two dictionaries that define the global and local
namespaces. See Visibility and scopes on page 32 for more details on namespaces. If
these dictionaries are omitted, the current local namespace (as provided by the
locals function) and the current global namespace (as provided by the globals
function) are used.

For example, if the dictionaries gd = {"one":1, "two":2} and ld = {"x":100,
"y":-1} are used as namespaces, then this: print eval("one + two * 2 + x

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 33 of 82

+ y", gd, ld)

prints: 104.

More details on the use of the eval function and exec statement are available in the
Python Library Reference (see Resources and feedback on page 66).

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 34 of 82 Intro to Jython, Part 1: Java programming made easier

Section 8. Modules and importing

About modules and imports

Jython breaks programs down into separate files, called modules. Modules are reused
by importing them into your code. Jython provides many modules for you to reuse (see
Appendix F: Jython library summary on page 76). Jython also allows you to reuse any
Java class and API.

Modules and packages

A module is an executable Jython file that contains definitions (for variables, functions
and/or classes). Modules are imported (executed and bound) into other
programs/scripts or modules. It is necessary to import a module when the importing
program or module needs to use some or all of the definitions in the imported module.

Jython packages are conceptually hierarchically structured sets of modules. They are
implemented as directories that contain one or more modules and a special file,
__init__.py, that is executed before the first module of the package is executed.

Modules and packages enable reuse of the extensive standard Jython and Java
libraries. You can also create modules and packages for reuse in you own Jython
applications. For more information on the available Jython modules see Appendix F:
Jython library summary on page 76 . For more information on the available Java libraries
visit the Sun Microsystems' Java technology home page (in Resources and feedback
on page 66).

The import statement

The import statement executes another file and adds some or all of the names bound
in it to the current namespace (see Visibility and scopes on page 32). The current
namespace will generally be the global namespace in the importing file. All statements,
including assignments, in the module are executed. The import statement comes in
several forms:

import module {as alias}

-- or --

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 35 of 82

from module import name {as alias}

-- or --

from module import *

The module value names a Jython (.py) file or dotted-path to a Jython package. The
name value selects specific names from the module. Module names are case sensitive.
These arguments can be repeated. The optional alias value allows imported objects
to be renamed.

Example imports

Below are some example import statements:

Example Comment(s)

import sys Import the sys module. All names in
sys can be referenced by the prefix
sys.

from sys import exc_info Imports the exc_info function from
the sys module. No prefix is needed.

from sys import * Imports all the names and functions in
the sys module. No prefix is needed.

from sys import exc_info as
einfo

Imports the exc_info function from
the sys module and names it einfo.
No prefix is needed.

from string import uppercase
as uc, lowercase as lc

Imports the uppercase and
lowercase functions from module
string. No prefix is needed.

import sys, string Imports modules sys and string

import com.ibm.tools.compiler
as compiler

Imports the compiler module from
the com.ibm.tools package giving it
the short name compiler.

Importing modules and packages

To import a module or package, Jython must be able to find the associated source (.py)
file. Jython uses the python.path (very similar to the Java language's CLASSPATH)

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 36 of 82 Intro to Jython, Part 1: Java programming made easier

and python.prepath variables in the Jython registry to search for these files. You
can use any text editor to add to or update the registry file in the Jython home
directory (usually c:\jython-2.1). For more information, see the Jython registry (in
Resources and feedback on page 66) or theregistry file itself.

By default, Jython will search the directory containing the executing source file; thus,
modules located in the same directory as the importing Jython program can be found.
Frequently the current directory is also on the path. Simply enter the following
command to examine the current search paths:

import sys
print sys.path

On my machine, when running in the C:\Articles directory, the above command
produces the following output:

['', 'C:\\Articles\\.', 'C:\\jython-2.1\\Lib', 'C:\\jython-2.1']

To find Java class files, Jython searches both the Java CLASSPATH and the sys.path
values.

Import is executable

Unlike in the Java language, the import statement is executable and is not a compiler
directive in Jython. Thus, imports do not need to be done at the start of a module; just
sometime before the imported symbols are used. In fact importing can be done
conditionally, as in the following example.

:
lots of other stuff

:
if __name__ == "__main__":

:
from sys import exit
exit(0)

Imports can also be undone, as shown here:

import sys
:

lots of other stuff
:

del sys

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 37 of 82

Subsetting imports

When you import modules, all values assigned or functions created in the module are
usually available for reference by the module importer. You can prevent this by altering
the code within the module. Either start the name with an underscore (_) or define a
special variable, __all__, at the start of the module, listing only the names of the
variables or functions you want to be imported. For example, the __all__ definition
below:

__all__ = ["getline","clearcache","checkcache"]

would only import the names getline, clearcache, and checkcache.

A similar strategy can be used at the module directory level. Defining the variable
__all__ in a file called __init__.py instructs the interpreter as to which modules to
import from the package if the wildcard (*) is used in the import statement. For
instance, if the line __all__ = ['mod1', 'mod3', 'globals'] is in a file called
__init__.py in a directory named modules, it will cause the statement from
modules import * to import the modules mod1, mod3, and globals from the
modules directory.

Running native applications

Using the os.system function, Jython can also run any external program that can be
found on the current host PATH, such as a host operating system application. For
example, to compile a Java program you could use

import os
import sys

cmd = "javac %(name)s.java 1>%(name)s.out 2>%(name)s.err" % \
{'name': sys.argv[1]})

rc = os.system(cmd)
if rc == 0:

print "Successful"
else:

print "Failed: return code=%i..." % rc
read and process the .err file...

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 38 of 82 Intro to Jython, Part 1: Java programming made easier

Section 9. Jython exceptions

About exceptions

Regardless of how much care a programmer takes in designing and testing his or her
code, unexpected errors, or exceptions, can occur. Jython provides excellent support
for recovering from these errors,

Exceptions are generally subclasses of the Jython type exceptions.Exception or
the Java class java.lang.Exception. Most Jython exception names end in "Error"
(such as IOError or IndexError) or "Warning." Java exceptions end in either "Error"
(for critical exceptions) or "Exception" (for generally recoverable exceptions). For more
information see The Jython exception hierarchy on page 39 or the Python Library
Reference (see Resources and feedback on page 66 for a link).

The Jython exception hierarchy

Here is Jython's principle exception hierarchy subset.

• 1 Exception
• 1.1 SystemExit

• 1.2 StopIteration

• 1.3 StandardError
• 1.3.1 KeyboardInterrupt

• 1.3.2 ImportError

• 1.3.3 EnvironmentError
• 1.3.3.1 IOError

• 1.3.3.2 OSError

• 1.3.4 EOFError

• 1.3.5 RuntimeError
• 1.3.5.1 NotImplementedError

• 1.3.6 NameError
• 1.3.6.1 UnboundLocalError

• 1.3.7 AttributeError

• 1.3.8 SyntaxError
• 1.3.8.1 IndentationError

• 1.3.8.2 TabError

• 1.3.9 TypeError

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 39 of 82

• 1.3.10 AssertionError

• 1.3.11 LookupError
• 1.3.11.1 IndexError

• 1.3.11.2 KeyError

• 1.3.12 ArithmeticError
• 1.3.12.1 OverflowError

• 1.3.12.2 ZeroDivisionError

• 1.3.12.3 FloatingPointError

• 1.3.13 ValueError

• 1.3.14 ReferenceError

• 1.3.15 SystemError

• 1.3.16 MemoryError

• 2 Warning
• 2.1 UserWarning

• 2.2 DeprecationWarning

• 2.3 PendingDeprecationWarning

• 2.4 SyntaxWarning

• 2.5 OverflowWarning

• 2.6 RuntimeWarning

• 2.7 FutureWarning

This hierarchy is a subset of the Python Library Reference (see Resources and
feedback on page 66). These exceptions may be subclassed.

The try-except-else statement

Like C++ and the Java language, Jython supports exception handlers. These handlers
are defined by the try-except-else statement, which has the following form:

try: statement
except type, var: statement
:

else: statement

-- or --

try:
block

except type, var:
block

:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 40 of 82 Intro to Jython, Part 1: Java programming made easier

else:
block

The except clause may be repeated with different type values. If so, the exceptions
either must not overlap hierarchically (that is, be siblings) or they must be ordered from
child to root exceptions. The optional type value is an exception type (either a
subclass of exceptions.Exception or java.lang.Throwable). If type is
missing, then the except clause catches all Jython and Java exceptions. The optional
var value receives the actual exception object. If var is missing, then the exception
object is not directly accessible. The else clause is optional. It is executed only if no
exception occurs.

If an exception occurs in the try clause, the clause is exited and the first matching
except clause (if any) is entered. If no exception matches, the block containing the
try-except-else is exited and the exception is re-raised.

If an exception is raised in the except or else clause, the clause will exit and the new
exception will be processed in the containing block.

Accessing exception information

To access information about an exception, you may use the value provided in the
except clause as described previously or the sys.exc_info function. For example,
you can use the following function, in which type is the class of the exception, value
is the exception object (use str(value) to get the message), and traceback is the
execution trace back, which is a linked list of execution stack frames.

import sys
:

try:
:

except:
type, value, traceback = sys.exc_info()

More details on the exceptions and trace backs is available in the Python Reference
Manual (see Resources and feedback on page 66).

The try-finally statement

Like C++ and the Java language, Jython supports an additional construct,
try-finally, which makes it easy to do required cleanup activities such as closing
open files, releasing resources, etc. Any code in the finally clause is guaranteed to

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 41 of 82

be executed once the try clause is entered, even if it is exited via a return statement
(see The return statement on page 57) or an exception. Thetry-finally statement
has the following forms:

try: statement
finally: statement

-- or --

try:
block

finally:
block

Note that try-except-else statements may nest in try-finally statements and
vice versa.

A try statement example

Here is an example of using both try-except and try-finally statements
together. We'll talk more about Jython file I/O in Part 2 of this tutorial.

def readfile (name):
"return the lines in a file or None if the file cannot be read"
try:

file = open(name, 'r') # access the file
try:

return file.readlines()
finally:

file.close() # ensure file is closed
except IOError, ioe: # report the error

print "Exception -", ioe

:

prints Exception - File not found - nofile (...)
then None
print readfile("nofile")

prints a list of the lines in the file
print readfile("realfile")

The raise statement

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 42 of 82 Intro to Jython, Part 1: Java programming made easier

http://www-106.ibm.com/developerworks/edu/j-dw-java-jython2-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython2-i.html

Exceptions are generated by called functions or built-in services. You can also
generate one by using the raise statement. The raise statement has the following
forms:

raise exception

-- or --

raise exception_class {, message}

-- or --

raise

Below are some example raise statements.

Example Comment(s)

raise Re-raise the current exception; used in
an except block to regenerate the
exception

raise IOError Create and raise an IOError with no
message

raise anIOError Re-raise an existing IOError object

raise IOError, "End of File" Create and raise an IOError with a
explanatory message

from java import io

raise io.IOException, "End of
File"

Create and raise a Java exception with
a explanatory message

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 43 of 82

Section 10. Jython procedural statements

A statement for every procedure

Jython has a number of statements that perform computation or control program flow,
including the expression, assignment, pass, if, while, for, break,
continues, and del statements. You'll learn about these procedural statements in
the panels that follow.

The pass statement

The pass statement is used where a Jython statement is required syntactically but
when no action is required programmatically. pass can be useful to create empty loops
or to provide a temporary implementation of a block. The statement has the following
form:

pass

The expression statement

In Jython, any expression can serve as a statement; the resulting value is simply
discarded. Most often any such expression statement calls a function or method
(discussed further in Part 2). For example, the following code invokes three functions in
sequence:

performAction(1)
performAction(2)
performAction(3)

Operators and precedence

Jython expressions consist of any valid combination of the operators described in
Summary of operator precedence on page 45 . They are similar to the expressions of
most languages, especially C/C++ and the Java language.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 44 of 82 Intro to Jython, Part 1: Java programming made easier

1 + 1 # add 1 and 1 yielding 2

(1 + 2) ** 3 # add 1 and 2 and raise the result by 3 yielding 27

1 + 2 ** 3 # raise 2 by 3 and add 1 yielding 9

x % y == 0 # tests to see if x is divisible by y

x & 1 # extracts the low-order bit of x

below is the same as: "(0 <= x) and (x < 100)" but is more concise
0 <= x < 100 # tests a range

the use of (...) below is not required but it improves readability
(x > 0) and (y < 0) # tests the relation of 2 values

1 + 2 * 3 ** 4 << 2 # complex expression yielding 652
(1 + (2 * (3 ** 4))) << 2 # Equivalent fully parenthesized expression

Summary of operator precedence

Jython operator precedence is summarized in the table below. Use parentheses to
change the order or to improve readability. Unless otherwise noted, within the same
precedence level operations are evaluated left-to-right. Higher priority operations are at
the top of the list.

Operation Comment

(expression)

(expr1, ..., exprN)

[expr1, ...,exprN]

{ key1:value1, ...,
keyN:valueN }

`expression`

Nested expression or grouping

Tuple constructor

List constructor

Dictionary constructor

repr (representation) expression

x.name

x[i], x[i:j], x[i:j:k]

x(...)

Member (attribute or method) selection

Subscripting or slicing

Function call

** Raise to power (right associative)

+

-

~

Posate

Negate

Bit-wise not

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 45 of 82

*

/

%

Times

Divide

Modulo

+

-

Plus

Minus

<<, >> Bit-wise shifts

& Bit-wise and

^ Bit-wise xor

| Bit-wise or

is, is not

in, not in

<, <=, >, >=, ==, !=, <>

Sameness test

Containment test

Relational test

not Logical not

and Logical and

or Logical or

lambda Declare a lambda function

The assignment statement

The assignment statement is used to bind (or re-bind) a value to a variable. If not
already defined, binding creates the variable and assigns it the value. In Jython all data
are objects, so variables actually store references to objects, not values. Variables are
not typed, thus an assignment can change the type of the value a variable references.

More than one variable can have a reference to the same object; this is called aliasing.
For this reason, Jython supports the is and is not operators to test whether or not
two variables refer to the same object.

A variable can only be declared once in a block. This means that it is declared (by the
parser) in the block even if the flow in the block does not execute the assignment
statement that creates it. The variables will have an undefined value until the first
assignment is actually executed.

Note that like the assignment statement other statements can bind variables. Some
examples are the class, def, for, and except statements.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 46 of 82 Intro to Jython, Part 1: Java programming made easier

Parallel assignment

The assignment statement supports sequence unpacking. This can achieve a form of
parallel assignment. For example, the following sets a to 1, b to 2, and c to 3:

(a, b, c) = (1, 2, 3)

-- or --

x = (1, 2, 3)
(a, b, c) = x

The same number of variables must be on the left side as on the right side. This
unpacking can be very useful if you are provided with a sequence variable (say as an
argument to a function) and want to access the values within it. For convenience, the
enclosing parentheses are not required, so the above assignment could also be written
as a, b, c = 1, 2, 3.

Multiple assignment

Jython supports the use of multiple assignment. For example, the following sets c to 1,
b to c (or 1), and a to b (also 1).

a = b = c = 1

Thus, assignment is unusual in that it is right-associative.

Augmented assignment

Jython supports augmented assignment, which combines operators with assignment.
The general form is v <op>= expression, which is equivalent to v = v <op>
expression, except that v is evaluated only once (which can be important in a
subscripted variable).

The following augmented assignment operators are available:

+=

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 47 of 82

-=
*=
/=
%=
**=
<<=
>>=
&=
|=
^=

The if statement

The if, elif, and else statements provide basic decision capability. The test
expressions evaluate to false (None, 0 or empty) or true (not-0 or not-empty).

This form is used to execute a statement or block conditionally:

if expression: statement

-- or --

if expression:
block

Here's an example:

if x < 0: x = -x # ensure x is positive

The if-else statement

The following form is used to choose between two alternative statements and/or
blocks:

if expression: statement
else: statement

-- or --

if expression:
block

else:
block

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 48 of 82 Intro to Jython, Part 1: Java programming made easier

Here's an example:

if x >= 0:
result = fac(x)

else:
print x, "is invalid for a factorial"

The if-elif-else statement

The following form is used to choose between a set of alternative statements and/or
blocks:

if expression: statement
elif expression: statement
:
else: statement

-- or --

if expression:
block

elif expression:
block

:
else:

block

The elif clause can repeat. The else clause is optional. Here's an example:

if x == 0:
doThis()

elif x == 1:
doThat()

elif x == 2:
doTheOtherThing()

else:
print x, "is invalid"

Conditional expressions

Most languages based on C, including C++ and the Java language, support a
conditional expression. These expressions return a choice of sub-expressions. They
are especially useful to avoid the use of repeated targets. This is important if the target
contains complex expressions, such as subscripts. Conditional expressions have the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 49 of 82

form

target = expression ? true_expression : false_expression

Jython does not support conditional expressions directly; instead it employs this form:

if expression: target = true_expression; else: target = false_expression

-- or --

if expression: target = true_expression
else: target = false_expression

You can approximate the Java conditional expression form in Jython using the and,
and or operators, as shown here:

target = (expression) and (true_expression) or (false_expression)

Note that this form works only if true_expression and false_expression do not
themselves evaluate to false values (such as None, 0, or an empty sequence or map).
If that is the case, use the if-else form.

Implementing a switch statement

Jython does not support a switch or case statement like many other languages do.
The if-elif-else form can be used to do similar tests for a limited number of
cases. For more cases, you can use sequences or maps to functions (see Jython
functions on page 55), as follows:

:
define the function to handle each unique case
def case1(...): return ...
def case2(...): return ...

:
def caseN(...): return ...

defines cases in a dictionary; access by key
cases = {key1:case1, key2:case2, ..., keyN:caseN}
:
result = cases[key](...) # get the selected case result

-- or --

defines cases in a list or tuple; access by index
cases = (case1, case2, ..., caseN)
:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 50 of 82 Intro to Jython, Part 1: Java programming made easier

result = cases[x](...) # get the xth case result

The while statement

The while statement is used to perform conditional looping. As long as the expression
evaluates to true the loop is executed. The while statement has the following forms:

while expression: statement
else: statement

-- or --

while expression:
block

else:
block

The else clause, which is optional, is executed only if the while clause ends normally
(that is, not with a break statement). It is not typically used.

Example:

x = 10
while x > 0:

process(x)
x -= 1

The following is an infinite loop:

while 1: print "Hello!"

The for statement

The for statement is used to perform iterative looping. It processes a sequence
returned from the supplied expression, taking each element in turn. As long as
elements remain in the sequence, the loop is executed. The for statement has the
following forms:

for vars in expression: statement
else: statement

-- or --

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 51 of 82

for vars in expression:
block

else:
block

The else clause, which is optional, is executed only if the for clause ends normally
(that is, not with a break statement). It is not typically used.

Example:

for c in "String":
processCharacter(c) # process the chars in turn

-- or --

values = (1,2,5,7,9,-1)
for v in values:

process(v) # process the values supplied

-- or --

for i in range(10):
print i # print the values 0 to 9 on separate lines

-- or --

for k, v in {"one":1, "two":2, "three":3}.items():
print k, '=', v # print the keys and values of a dictionary

In the above code, the use of for i in range(limit) provides for the typical
for-loop or do-loop iteration of most languages. Note also that the keys will not
necessarily come out in the order supplied.

The break and continue statements

It is sometimes necessary to exit a while or for loop in the middle. Often this is the
result of some unusual condition that cannot be tested in the loop mechanism itself.
The break statement provides this behavior. The statement has the following form:

break

Here's an example:

for i in range(100):
d = getData(i)
if not valid(d): break # can't continue

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 52 of 82 Intro to Jython, Part 1: Java programming made easier

processData(d)

Likewise, it may be occasionally necessary to skip the rest of the loop body and begin
the next iteration early. The continue statement provides this behavior. The
statement has the following form:

continue

Here's an example:

for i in range(100):
: # *** some preliminary work ***
if not valid(i): continue # can't process this one
: # *** some other stuff ***

In general, the break and continue statements occur as the target of an if
statement. Only the most closely contained loop can be controlled.

Updating a sequence

You must take special care when updating (that is, inserting or deleting entries from) a
sequence while iterating over it, as this can cause the iteration indexes to change
unpredictably. I recommend you make a copy of the sequence to iterate over, as
shown below:

for i in x[:]: # iterate over a copy
if i > 0: # remove all positive values

x.remove(i)

The del statement

Mutable sequences (see Sequence types on page 20), maps (see Maps and
dictionaries on page 27), and classes support the del statement, which removes an
element or attribute from the collection or class, respectively. For sequences, removal
is by index; for maps it is by key value; and for classes it is by attribute name. We'll talk
more about class support for the del statement in Part 2 of this tutorial.

Local or global variables can be deleted; this removes the variable from the
namespace (it does not delete the object the variable refers to). The del statement
also supports the slice notation.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 53 of 82

http://www-106.ibm.com/developerworks/edu/j-dw-java-jython2-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython2-i.html

Assuming "l" is the list [1,2,3,4,5], d is the dictionary {1:"one", 2:"two", 3:"three"} and x
is some class instance, some example del statements are as follows:

Example Comment(s)

del l[0] Removes the first element

del l[1:3] Removes the second through third elements

del l[::2] Removes the even elements

del l[:] Removes all the elements

del d[1] Removes the element with key 1

del x.attr1 Removes the attribute attr1

var = [1,2,3]

:

del var

Removes the variable var from its namespace

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 54 of 82 Intro to Jython, Part 1: Java programming made easier

Section 11. Jython functions

What are functions?

One of the most important features of any programming language is code reuse. There
are two principle methods of code reuse: blocks of code that return values (called
functions) and blocks that do not return values (called subroutines). Jython fully
supports code reuse via functions.

Jython provides many built-in and library functions for you to use (see Appendix E:
Built-in functions on page 72 andAppendix F: Jython library summary on page 76). Built-in
functions can be used without importing them; library function must first be imported.

Jython goes beyond many languages, including the Java language, by making
functions first-class objects that can be manipulated just like other objects (and most
specifically, objects that can be stored in collections and passed as arguments to other
functions).

The def statement

In Jython, functions are declared by the def statement, which has the following form:

def name (args): statement

-- or --

def name (args):
block

Within a given scope (module, function, or class), each function name should be
unique. The function name is really a variable bound to the function body (similar to
any other assignment). In fact, multiple variables can be defined to reference the same
function. The function body can be a single (frequently a return) statement or (more
commonly) a block of statements.

Specifying function arguments

The optional args in the def statement is a comma-separated list of argument
definitions. Some examples follow:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 55 of 82

Example Comment(s)

def x(a, b, c) Defines a function with three required positional arguments.

def x(a, b,
c=1)

Defines a function with three arguments, the last of which is
optional with a default value of 1.

def x(a=3,
b=2, c=1)

Defines a function with three arguments, all of which are
optional and have default values.

def x(p1, p2,
kw1=1, kw2=2)

Defines a function with two positional parameters and two
keyword (optional) parameters. When declared, all optional
(=value) parameters must follow all non-optional
parameters. When this function is called, the keyword
parameters, if provided, can be specified by name and in
any order after positional parameters.

def x(p1, p2,
*v)

Defines a function with two required positional parameters
and an indeterminate number of variable parameters. The v
variable will be a tuple.

def x(p1, p2,
**kw)

Defines a function with two required positional parameters
and an indeterminate number of keyword parameters. The
kw variable will be a dictionary.

def x(p1, p2,
*v, **kw)

Defines a function with two required positional parameters
and an indeterminate number of positional and keyword
parameters. The v variable will be a tuple. The kw variable
will be a dictionary.

Handling mutable arguments

If an argument accepts a default value of a mutable object (such as a list or dictionary)
it's best to use the this form:

def x(p1, p2, p3=None)
if p3 is None: p3 = []
:

rather than the simple one:

def x(p1, p2, p3=[])
:

Because the value after the equals sign is evaluated only when the function is defined
(not each time it is called), the list in the second example above will be shared across
all calls to the function. This is usually not the desired behavior. The first example gets

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 56 of 82 Intro to Jython, Part 1: Java programming made easier

a distinct list for each call.

Anonymous functions

You can define anonymous functions, called lambda functions. Anonymous functions
are one-line functions that are typically used as arguments to other functions. These
functions are declared using the following form:

lambda args: expression

The args list is the same as the one described in Specifying function arguments on
page 55 . You should have at least one argument per lambda function. The expression
value is returned by the function.

The return statement

Functions return values via the return statement, which also exits a function. The
return statement may or may not return an explicit value; if no value is specified, then
None is used. If the last statement of a function body is not a return statement, then
a value-less return is assumed. The return statement has the following forms:

return expression

-- or --

return

Alternatively, this form lets you return multiple values as a tuple:

return expression1, expression2, ..., expressionN

Function calls

Functions are called by use of the call operator, which is a parenthesized list
following a function reference. For example, if f is a function, then f(...) calls the
function. If the function definition supports arguments, then the call may include
parameters, as shown in the examples below:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 57 of 82

Function
definition

Example call(s) Comment(s)

def x(a, b, c) x(1,2,3)

x("1", "2",
"3")

Actual arguments can be of any type.

def x(a, b,
c=1)

x(1,2,3)

x(1,2)

Parameter c can be omitted

def x(a=3,
b=2, c=1)

x()

x(1,2,3)

x(c=10, a="d")

x(1,c=5)

Named parameters can be treated as
positional, keyword, or mixed. If
keyword, order is not important.

def x(p1, p2,
kw1=1, kw2=2)

x(1,2)

x(1,3,kw2=5)

Both positional and keyword
parameters can be used.

def x(p1, p2,
*v)

x(1,2)

x(1,2,3)

x(1,2,3,4)

The v tuple gets the third and
subsequent parameters.

def
x(p1,p2,**kw)

x(1,2, aaa=1,
mmm=2, zzz=3)

Keywords can have any name.

def
x(p1,p2,*v,
**kw)

x(1,2,3,4,
aaa=1,
xxx="yyy")

The v tuple gets the third and
subsequent positional parameters
while the dictionary kw gets the aaa
and xxx keys with values.

Note that spaces are optional between parameter declarations and arguments. Adding
a space between each is recommended for increased readability.

Example function definitions and calls

Below are some example function definitions with example calls.

def k(): return 1 # return the constant 1
print k() # prints 1

below replaces the built-in abs definition
def abs(x): # calc the absolute value

if x < 0: return -x

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 58 of 82 Intro to Jython, Part 1: Java programming made easier

return x
print abs(-10) # prints 10

sum = lambda x, y: x + y # define sum function
print sum(1,2) # prints 3

prod = lambda x, y: x * y # define prod function
print prod(1,2) # prints 2

fully equivalent to the above,
but the above binding of prod is replaced
def prod(x, y): return x * y # define the prod function
print prod(1,2) # prints 2

make an alias of prod
xy = prod
print xy(1,2) # prints 2

a function that takes a function
similar to the built-in function apply
def applyer (func, args):

return func(*args)

print applyer(xy, (1,2)) # prints 2
print applyer(lambda x,y: x ** y, (2,16)) # prints 65536

def factorial(x):
"calculate the factorial of a number"
if x < 0:

raise ValueError, "negative factorial not supported"
if x < 2:

return 1
return long(x) * factorial(x-1)

print factorial(3) # prints 6

The global statement

Occasionally, you may want to declare (that is, assign to) a variable in a local context
(such as in a function) but reference a variable in the global scope. To do this, use the
global statement before the first use of the variable. Here's an example:

x = 10; y = 20; z = 30 # three global variables

def f1(p, q, r):
x = p # local x, y & z variables
y = q
z = r

def f2(a, b, c):
global x, y
x = a # global x & y variables

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 59 of 82

y = b
z = c # local z variable

print x, y, z # prints: 10, 20, 30

f1(1, 2, 3)
print x, y, z # prints: 10, 20, 30

f2(-1, -2, -3)
print x, y, z # prints: -1, -2, 30

Note that as long as it is not re-bound locally, a global variable can be read without first
declaring it to be a global. Thus the global statement is only required to assign to a
global variable.

Generic functions

Similar to in Smalltalk functions, Jython functions are generic in that any type can be
passed in for each argument. This makes functions extremely flexible. Generic
functions work as long as the operations performed on the arguments in the function
are valid for the argument's actual type. For example, with these functions' definitions

def sum (x, y):
return x + y

def prod (x, y):
return x * y

the following function calls are valid:

print sum(1, 2) # prints 3

print sum('123', '456') # prints 123456

print sum([1,2,3], [4,5,6]) # prints [1,2,3,4,5,6]

print prod(2, 3) # prints 6

print prod('123', 2) # prints 123123

Dynamic type testing

You can use dynamic type testing (that is, using the isinstance function or
comparing the results of the type function) for even more flexibility. See Appendix G:
Jython types summary on page 80 for more information. Here's an example:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 60 of 82 Intro to Jython, Part 1: Java programming made easier

See Part 2 of this tutorial for the definition of the UserList class
from UserList import *
:

data = None # undefined until setData called
prevdata = []

def setData (values=None):
""" Set global data. """
global data, prevdata # use the global data
if not data is None: # save any prior versions

prevdata.append(data)
data = [] # create default empty data space
if not values is None: # some initial values supplied

if isinstance(values, UserList): # values is a UserList
data = values.data[:] # set to copy of UserList's values

else: # values is some other sequence
this will fail if values is not some form of sequence
data = list(values) # convert to a list

:
print data # prints None
:

setData("123456")
print data # prints ['1',2','3','4','5','6']
:

setData((1,2,3,4,5,6))
print data # prints [1,2,3,4,5,6]
:

xdata = data[:]; xdata.reverse()
setData(xdata)
print data # prints [6,5,4,3,2,1]
:

print prevdata # prints [['1',2','3','4','5','6'],[1,2,3,4,5,6]]

Nested functions

Unlike many other languages, including the Java language, Jython allows functions to
be defined inside of other functions. The nested (or local) functions can help to reduce
the scope of functions. Here's an example:

def x(a, b, c):
y = a * b

def square(x):
return x ** 2 # this x is different from function x

y *= square(c)
return x

The nested function has no visibility into the variables in the containing function. If the
nested function must use these values, pass them into the function as arguments. For

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 61 of 82

example, the following function

def calc(a, b, c):
x = a * b * c

def sum(data):
cannot access calc's namespace (x, a, b, c, or sum) here
print locals()
return data['a'] + data['b'] + data['c']

x += sum(locals())
return x

print calc(10,20,30)

prints

{'data': {'x': 6000, 'c': 30, 'b': 20, 'sum': \
<function sum at 32308441>, 'a': 10}}

6060

Nested functions can also be used to conveniently create (preconfigured) functions to
return as a result, as shown here:

def makeSq(n):
def sq(x=n): # n's value is saved as the parameter x value

return x ** 2
return sq

The above function can be used like this:

sq2 = makeSq(2)
print "2*2=%i" % sq2() # prints: 2*2=4

sq10 = makeSq(10)
print "10*10=%i" % sq10() # prints: 10*10=100

Functional programming

Like Lisp and Smalltalk, Jython supports a limited form of functional programming.
Functional programming uses the first-class nature of Jython functions and performs
operations on functions and data structures. The built-in functional programming
services are shown below:

Syntax Use/Comment(s) Example(s)

apply(func, Execute the function apply(lambda x, y: x*y,

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 62 of 82 Intro to Jython, Part 1: Java programming made easier

pargs {,
kargs})

func(*pargs {,
**kargs})

with the supplied
positional arguments
and optional keyword
arguments.

(10, 20)) --> 200

map(func,
list, ...)

Creates a new list from
the results of applying
func to each element
of each list. There must
be one list per
argument to the
function.

map(lambda x, y: x+y,
[1,2],[3,4]) --> [4,6]

map(None, [1,2],[3,4])
--> [[1,3],[2,4]]

reduce(func,
list {,init})

Applies func to each
pair of items in turn.
The results are
accumulated.

reduce(lambda x, y: x+y,
[1,2,3,4],5) --> 15

reduce(lambda x, y: x&y,
[1,0,1]) --> 0

reduce(None, [], 1) --> 1

filter(func,
seq)

Creates a new list from
seq selecting the items
for which func returns
true. func is a
one-argument function.

filter(lambda x: x>0,
[1,-1,2,0,3]) --> [1,2,3]

Using functions like map, reduce, and filter can make processing sequences (that
is, strings, lists, and tuples) much easier. These functions are higher-order functions
because they either take functions as arguments or return them as results.

Functional programming examples

We'll close this section on Jython functions, and the first half of the "Introduction to
Jython" tutorial, with some functional programming examples.

A factorial calculator can be implemented using reduce:

def fac(x):
return reduce(lambda m,n: long(m)*n, range(1,x))

print fac(10) # prints 362880L

List modification can be done using map:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 63 of 82

l = [1, -2, 7, -3, 0, -11]
l = map(abs, l)

print l # prints [1, 2, 7, 3, 0, 11]

A set of functions can be executed in a sequence using map:

def f1(x): return ...
def f2(x): return ...
def f3(x): return ...
:

def fM(x): return ...
:

def fN(x): return ...

x=(5) is an example of a parameter for each function,
any expression is allowed, each function will get it
the list determines the order of the functions
the result of each function is returned in a list.
results = map(lambda f,x=(5): f(x), [fN,f3,f2,f3,...,fM,...,f1])

Looping can be achieved using map:

def body1(count):
any body here
:

do body 10 times, passing the loop count
map(body1, range(10))

def body2(x,y,z):
any body here
:

do body with multiple parameters
calls body2(1, 'a', "xxx")
then body2(2, 'b', "yyy")
then body2(3, 'c', "zzz")
map(body2, [1,2,3], "abc", ["xxx", "yyy", "zzz"])

Selection can be achieved using filter:

Assume a class Employee exists with attributes
name, age, sex, title, spouse and children (among others)
and that instances such as John, Mary and Jose exist.
See Part 2 of this tutorial for more information on using classes.

John = Employee('John', 35, 'm', title='Sr. Engineer')
Mary = Employee('Mary', 22, 'f', title='Staff Programmer')
Jose = Employee('Jose', 50, 'm', title='Dept. Manager', children=[...])
employees = [John, Jose, Mary]

Here's an example of how we'd use the above filter to select some employees:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 64 of 82 Intro to Jython, Part 1: Java programming made easier

returns: [Jose]
hasChildren = filter(lambda e: e.children, employees)

returns: []
over65 = filter(lambda e: e.age>65, employees)

returns: [Mary]
isProgrammer = filter(lambda e: \

e.title and e.title.lower().find('prog') >= 0, employees)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 65 of 82

Section 12. Wrap-up and resources

Summary

In this first half of the two-part "Introduction to Jython" tutorial, you've learned the
concepts and programming basics of working with Jython, including access options
and file compilation, syntax and data types, program structure, procedural statements,
and functional programming with Jython.

In the second half of this tutorial, we will begin to wrestle with some of the more
advanced aspects of the language, starting with a conceptual and hands-on
introduction to object-oriented programming in Jython. You'll also learn about
debugging, string processing, file I/O, and Java support in Jython. The tutorial will
conclude with an exciting, hands-on demonstration of how to build a working GUI app
in Jython.

It's a good idea to take the second part of the tutorial as soon as you can, while the
concepts from Part 1 are still fresh in your mind. If you prefer to take a break in your
studies, you might want to use the time to explore the appendices included with Part 1
(Appendices on page 68), or check out some of the references included in the
Resources and feedback on page 66 section.

Resources and feedback

• Download the jython1-source.zip for this tutorial.

• Visit the Jython home page to download Jython.

• Take the second part of this tutorial "Introduction to Jython, Part 2: Programming
essentials" (developerWorks, April 2004).

• Learn more about adding to or updating the Jython registry file.

• Jython modules and packages enable reuse of the extensive standard Java libraries.
Learn more about the Java libraries (and download the current version of the JDK)
on the Sun Microsystems Java technology homepage.

• You'll find the Python Library Reference, Python docs, and Python tutorials on the
Python home page.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 66 of 82 Intro to Jython, Part 1: Java programming made easier

jython1-source.zip
http://www.jython.org
http://www.jython.org
http://www.jython.org
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython2-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython2-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython2-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython2-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython2-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython2-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython2-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython2-i.html
http://www.jython.org/docs/registry.html
http://www.jython.org/docs/registry.html
http://java.sun.com
http://java.sun.com
http://java.sun.com
http://www.python.org
http://www.python.org
http://www.python.org

• In "Charming Jython" (developerWorks, May 2003) regular developerWorks
contributor Uche Ogbuji offers a short introduction to Jython.

• Try your hand at using Jython to build a read-eval-print-loop, with Eric Allen's "Repls
provide interactive evaluation" (developerWorks, March 2002).

• Charming Python is a regular developerWorks column devoted to programming with
Python.

• For a solid introduction to Jython, see Samuele Pedroni and Noel Rappin's Jython
Essentials (O'Reilly, March 2002).

• Jython for Java Programmers focuses on application development, deployment, and
optimization with Jython (Robert W. Bill, New Riders, December 2001).

• Python Programming with the Java Class Libraries is a good introduction to building
Web and enterprise applications with Jython (Richard Hightower, Addison Wesley,
2003).

• You'll find articles about every aspect of Java programming in the developerWorks
Java technology zone.

• Visit the Developer Bookstore for a comprehensive listing of technical books,
including hundreds ofJava-related titles.

• Also see the Java technology zone tutorials page for a complete listing of free
Java-focused tutorials from developerWorks.

Feedback

Please send us your feedback on this tutorial!

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 67 of 82

http://www-106.ibm.com/developerworks/java/library/j-jython/
http://www-106.ibm.com/developerworks/java/library/j-jython/
http://www-106.ibm.com/developerworks/java/library/j-jython/
http://www-106.ibm.com/developerworks/java/library/j-diag0312/
http://www-106.ibm.com/developerworks/java/library/j-diag0312/
http://www-106.ibm.com/developerworks/java/library/j-diag0312/
http://www-106.ibm.com/developerworks/java/library/j-diag0312/
http://www-106.ibm.com/developerworks/java/library/j-diag0312/
http://www-106.ibm.com/developerworks/views/linux/articles.jsp?sort_order=desc&expand=&sort_by=Date&show_abstract=true&view_by=Search&search_by=charming+python
http://www-106.ibm.com/developerworks/views/linux/articles.jsp?sort_order=desc&expand=&sort_by=Date&show_abstract=true&view_by=Search&search_by=charming+python
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0596002475
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0596002475
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0735711119
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0735711119
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0735711119
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0735711119
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0201616165
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0201616165
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0201616165
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0201616165
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0201616165
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0201616165
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0201616165
http://www-136.ibm.com/developerworks/java/
http://www-136.ibm.com/developerworks/java/
http://www-136.ibm.com/developerworks/java/
http://devworks.krcinfo.com/
http://devworks.krcinfo.com/
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www.ibm.com/developerWorks/

Section 13. Appendices

Appendix A: Escape characters

Several special characters have backslash versions:

Backslash Representation Character

\t Tab

\v Vertical-Tab

\n New-Line

\r Return

\f Form-Feed

\" Quote

\' Apostrophe

\\ Backslash

\b Backspace

\a Bell

\000 Octal value (3 base-8 digits in range 0-377
8
)

\xXX... Hex value (2 base 16-digits in range 0-FF
16

) used
in strings (that is, "\x31" --> '1')

\uXXXX... Hex value (4 base 16-digits in range 0-FFFF
16

);
used in unicode strings (that is, u"\u0031" --> '1')

Appendix B: String methods

Strings support several useful methods:

Method Usage Example

s.capitalize() Initial capitalize s "abc".capitalize() --> "Abc"

s.count(ss {,start
{,end}})

Count the
occurrences of ss
in s[start:end]

"aaabbccc".count("ab") --> 1

s.startswith(str {, Test to see if s "xxxyyyzzz".startswith("xx") -->

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 68 of 82 Intro to Jython, Part 1: Java programming made easier

start {, end}})

s.endswith(str {, start {,
end}})

starts/ends with str 1

s.expandtabs({size}) Replace tabs with
spaces, default
size: 8

"x\ty".expandtabs(4) --> "x y"

s.find(str {, start
{, end}})

s.rfind(str {,
start {, end}})

Finds first index of
str in s; if not
found: -1, rfind
searches
right-to-left

"12345".find('23') --> 1

s.index(str {,
start {, end}})

s.rindex(str {,
start {, end}})

Finds first index of
str in s; if not
found: raise
ValueError. rindex
searches
right-to-left

"12345".index('23') --> 1

s.isalnum Test to see if the
string is
alphanumeric

"12345abc".isalnum() --> 1

s.isalpha Test to see if the
string is alphabetic

"12345abc".isalpha() --> 0

s.isnum Test to see if the
string is numeric

"12345abc".isnum() --> 0

s.isupper Test to see if the
string is all
uppercase

"abc".isupper() --> 0

s.islower Test to see if the
string is all
lowercase

"abc".islower() --> 1

s.isspace Test to see if the
string is all
whitespace

"12345 abc".isspace() --> 0

s.istitle Test to see if the
string is a
sequence of initial
cap alphanumeric
strings

"Abc Pqr".istitle() --> 1

s.lower()

s.upper()

s.swapcase()

Convert to all
lower, upper,
opposite, or title
case

"abcXYZ".lower() --> "abcxyz"

"abc def ghi".title() --> "Abc Def
Ghi"

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 69 of 82

s.title()

s.join(seq) Join the strings in
seq with s as the
separator

" ".join(("hello", "goodbye") -->
"hello goodbye"

s.splitlines({keep}) Split s into lines, if
keep true, keep
the newlines

"one\ntwo\nthree".splitlines() -->
["one", "two", "three"]

s.split({sep {,
max}})

Split s into "words"
using sep (default
of white space) for
up to max times

"one two three".split() --> ["one",
"two", "three"]

s.ljust(width)

s.rjust(width)

s.center(width)

s.zfill(width)

Left, right or center
justify the string in
a field width wide.
Fill with 0.

"xxx".rjust(8) --> " xxx"

"xxx".center(8) --> " xxx "

str(10).zfill(10) -->
"0000000010"

s.lstrip()

s.rstrip()

s.strip()

Remove leading
(and/or trailing)
white space

" xxx ".strip() --> "xxx"

s.translate(str
{,delc})

Translate s using
table, after
removing any
characters in delc.
str should be a
string with length
== 256

"ab12c".translate(reversealpha,
"0123456789") --> "cba"

s.replace(old, new
{, max})

Replaces all or
max occurrences
old string old with
string new

"11111".replace('1', 'a', 2) -->
"aa111"

Note: other methods are supported, for a complete list see the Python Library
Reference (Resources and feedback on page 66). Also note that by including the
string module, many (but not all) of these methods can also be called as functions, i.e.-
string.center(s, 10) is the same as s.center(10).

The string module has some important variables:

Variable Comment(s)

digits The decimal, octal, and hexadecimal digits

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 70 of 82 Intro to Jython, Part 1: Java programming made easier

octdigits

hexdigits

lowercase

uppercase

letters

The lowercase alphabet, the uppercase alphabet,
and the union of them

whitespace The legal white space characters

Appendix C: List methods

Lists support several useful methods.

Function Comment(s) Example

x in l

x not in l

Test for containment 1 in [1,2,3,4] --> 1

l.count(x) Count the occurrences of x. Uses
"==" to test.

[1,2,3,3].count(3) --> 2

l.append(x)

-- or --

l = l + [x]

Append x to the list [1,2].append([3,4]) -->
[1,2,[3,4]]

[1,2] + [3] --> [1,2,3]

l.extend(list) Appends the elements of list [1,2].extend([3,4]) -->
[1,2,3,4]

l.index(item) Finds the index of item in list; if
not present, raise ValueError

[1,2,3,4].index(3) --> 2

l.insert(index, x)

-- or --

l[i:i] = [x]

Insert x into the list before the
index

[1,2,3].insert(1, 4) -->
[1,4,2,3]

l.pop({index}) Removes the nth (default last)
item

[1,2,3,4].pop(0) -->
[2,3,4], 1

[1,2,3,4].pop() -->
[1,2,3], 4

l.remove(x) Removes the item from the list [1,2,3,4].remove(3) -->
[1,2,4]

l.reverse() Reverses the list (in-place) [1,2,3].reverse() -->

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 71 of 82

[3,2,1]

l.sort({cmp}) Sorts the list (in-place); The cmp
function is used to sort the items.
The cmp function takes two
argument and returns <0, 0, >0

[1,4,3,2].sort() -->
[1,2,3,4]

Appendix D: Map methods

Maps support several useful methods.

Method Comment(s)

m.clear() Empty the map

m.copy() Make a shallow copy of the map

m.has_key(k)

-- or --

k in m

Test to see if a key is present

m.items() Get a list of the key/value tuples

m.keys() Get a list of the keys

m.values() Get a list of the values (may have duplicates)

m1.update(m2) add all the items in m2 to m1

m.get(k{, default})

m.setdefault(k, default)

Get the value of k, return default/KeyError if
missing; same as get, but set a persistent default
value

m.popitem() Get and remove some item, used during iteration
over the map. Example:

m = {1:1, 2:2, 3:3}
while len(m) > 0:

i = m.popitem()
print i

Appendix E: Built-in functions

Jython provides very useful built-in functions that can be used without any imports. The

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 72 of 82 Intro to Jython, Part 1: Java programming made easier

most commonly used ones are summarized below:

Syntax Use/Comment(s) Example(s)

abs(x) Absolute value abs(-1) --> 1

apply(func, pargs
{, kargs})

-- or --

func(*pargs {,
**kargs})

Execute the function with the
supplied positional arguments and
optional keyword arguments

apply(lambda x, y: x * y, (10, 20)) -->
200

callable(x) Tests to see if the object is callable
(i.e, is a function, class or
implements __call__)

callable(MyClass) --> 1

chr(x) Converts the integer (0 - 65535) to
a 1-character string

chr(9) --> "\t"

cmp(x, y) Compares x to y: returns: negative
if x < y; 0 if x == y; positive if x > y

cmp("Hello", "Goodbye") --> > 0

coerce(x, y) Returns the tuple of x and y
coerced to a common type

coerce(-1, 10.2) --> (-1.0, 10.2)

compile(text,
name, kind)

Compile the text string from the
source name. Kind is: "exec",
"eval" or "single"

x = 2
c = compile("x * 2",

"<string>", "eval")
eval(c) --> 4

complex(r, i) Create a complex number complex(1, 2) --> 1.0+2.0j

complex("1.0-0.1j") --> 1.0-0.1j

dir({namespace}) Returns a list of the keys in a
namespace (local if omitted)

dir() --> [n1, ..., nN]

vars({namespace}) Returns the namespace (local if
omitted); do not change it

vars() --> {n1:v1, ..., nN:vN}

divmod(x, y) Returns the tuple (x /y, x % y) divmod(100, 33) --> (3, 1)

eval(expr {,
globals {, locals}})

Evaluate the expression in the
supplied namespaces myvalues = {'x':1, 'y':2}

eval("x + y", myvalues) --> 3

execfile(name
{,globals {,
locals}})

Read and execute the named file
in the supplied namespaces

execfile("myfile.py")

filter(func, list) Creates a list of items for which
func returns true

filter(lambda x: x > 0, [-1, 0, 1, -5, 10])
--> [1, 10]

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 73 of 82

float(x) Converts x to a float float(10) --> 10.0

float("10.3") --> 10.3

getattr(object,
name {, default})

Gets the value of the object's
attribute; if not defined return
default (or an exception if no
default)

getattr(myObj, "size", 0) --> 0

setattr(object,
name, value)

Creates/sets the value of the
object's attribute

setattr(myObj, "size", 10)

hasattr(object,
name)

Test to see if the object has an
attribute

hasattr(myObj, "size") --> 0

globals() Returns the current global
namespace dictionary

{n1:v1, ..., nN:vN}

locals() Returns the current local
namespace dictionary

{n1:v1, ..., nN:vN}

hash(object) Returns the object's hash value.
Similar to
java.lang.Object.hashCode()

hash(x) --> 10030939

hex(x) Returns a hex string of x hex(-2) --> "FFFFFFFE"

id(object) Returns a unique stable integer id
for the object

id(myObj) --> 39839888

input(prompt) Prompts and evaluates the
supplied input expression;
equivalent to
eval(raw_input(prompt))

input("Enter expression:")

with "1 + 2" --> 3

raw_input(prompt) Prompts for and inputs a string raw_input("Enter value:")

with "1 + 2" --> "1 + 2"

int(x{, radix}) Converts to an integer; radix: 0,
2..36; 0 implies guess

int(10.2) --> 10

int("10") --> 10

int("1ff", 16) --> 511

isinstance(object,
class)

Tests to see if object is an instance
of class or a subclass of class;
class may be a tuple of classes to
test multiple types

isinstance(myObj, MyObject) --> 0

isinstance(x, (Class1, Class2)) --> 1

issubclass(xclass,
clsss)

Tests to see if xclass is a sub-(or
same) class of class; class may be
a tuple of classes to test multiple
types

issubclass(MyObject, (Class1, Class2))
--> 0

len(x) Returns the length (number of len("Hello") --> 5

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 74 of 82 Intro to Jython, Part 1: Java programming made easier

items) in the sequence or map

list(seq) Converts the sequence into a list list((1, 2, 3)) --> [1,2,3]

list("Hello") --> ['H','e','l','l','o']

tuple(seq) Converts the sequence into a tuple tuple((1, 2, 3)) --> (1,2,3)
tuple("Hello")--> ('H','e','l','l','o')

long(x {, radix}) Converts to a long integer; radix: 0,
2..36; 0 implies guess

long(10) --> 10L

long("10000000000") -->

10000000000L

map(func, list, ...) Creates a new list from the results
of applying func to each element of
each list

map(lambda x,y: x+y, [1,2],[3,4]) -->
[4,6]

map(None, [1,2],[3,4]) --> [[1,3],[2,4]]

max(x) Returns the maximum value max(1,2,3) --> 3

max([1,2,3]) --> 3

min(x) Returns the minimum value min(1,2,3) --> 1

min([1,2,3]) --> 1

oct(x) Converts to an octal string oct(10) --> "012

oct(-1) --> "037777777777"

open(name,
mode {, bufsize})

Returns an open file. Mode
is:(r|w|a){+}{b}

open("useful.dat", "wb", 2048)

ord(x) Returns the integer value of the
character

ord('\t') --> 9

pow(x,y)

pow(x,y,z)

Computes x ** y

Computes x ** y % z

pow(2,3) --> 8

range({start,} stop
{, inc})

xrange({start,}
stop {, inc})

Returns a sequence ranging from
start to stop in steps of inc; start
defaults to 0; inc defaults to 1. Use
xrange for large sequences (say
more than 20 items)

range(10) --> [0,1,2,3,4,5,6,7,8,9]

range(9,-1,-1) --> [9,8,7,6,5,4,3,2,1,0]

reduce(func, list {,
init})

Applies func to each pair of items
in turn accumulating a result

reduce(lambda x,y:x+y, [1,2,3,4],5) -->
15

reduce(lambda x,y:x&y, [1,0,1]) --> 0

reduce(None, [], 1) --> 1

repr(object)

-- or --

Convert to a string from which it
can be recreated, if possible

repr(10 * 2) --> "20"

repr('xxx') --> "'xxx'"

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 75 of 82

`object` x = 10; `x` --> "10'"

round(x {, digits}) Rounds the number round(10.009, 2) --> 10.01

round(1.5) --> 2

str(object) Converts to human-friendly string str(10 * 2) --> "20"

str('xxx') --> 'xxx'

type(object) Returns the type (not the same as
class) of the object. To get the
class use object.__class__.
Module types has symbolic names
for all Jython types

x = "1"; type(x) is type('') --> 1

zip(seq, ...) Zips sequences together; results is
only as long as the shortest input
sequence

zip([1,2,3],"abc") --> [(1,'a'),(2,'b'),(3,'c')]

Appendix F: Jython library summary

Jython supports a large number of Python libraries. By using only these libraries it is
possible to write Jython programs that will work in any Python environment. Many of
these libraries provide similar function to those provided by the Java APIs. Jython also
has access to all Java libraries. This means it can do anything a Java program can do
but then it is no longer possible to run the program in a Python environment.

Most libraries that are written in Python and do not depend on operating system
specific services are supported without change. Many of these libraries are shipped
with Jtyhon. Libraries written in C must be converted; many of the core C libraries have
been converted and are shipped with Jython.

Jython also has a few unique libraries of its own. These libraries supplement the
extensive API libraries provided by Java itself. For more details on these libraries, read
the source files (in <jython_install_dir>/Lib/<lib_name>.py) or see the Python Library
Reference (Resources and feedback on page 66).

Some of the more interesting external libraries supplied with Jython include:

Library Comment (often from the library prolog)

atexit Allows a programmer to define multiple exit functions
to be executed upon normal program termination

base64 Conversions to/from base64 transport encoding as per
RFC-1521

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 76 of 82 Intro to Jython, Part 1: Java programming made easier

BaseHTTPServer HTTP server base class (abstract)

bdb Generic Python debugger base class

bisect Some Bisection algorithms

calendar Calendar printing functions (in English)

cgi Support module for CGI (Common Gateway Interface)
scripts

CGIHTTPServer CGI-savvy SimpleHTTPServer

cmd A generic class to build line-oriented command
interpreters

code Utilities needed to emulate Python's interactive
interpreter

codecs Python Codec Registry, API and helpers (abstract)

colorsys Conversion functions between RGB and other color
systems

ConfigParser Configuration file parser

Cookie Cookie is a module for the handling of HTTP cookies
as a dictionary

copy Generic (shallow and deep) copying operations

difflib Utilities for computing deltas between objects

dircache Read and cache directory listings

doctest A framework for running examples in document strings
(sort of like JUnit); I recommend unittest below

dumbdbm A dumb and slow but simple dbm clone

fileinput Class to quickly write a loop over all standard input
files

fnmatch Filename matching with shell patterns

formatter Generic output formatting framework (abstract)

fpformat General floating point formatting functions

ftplib An FTP client class and some helper functions

getopt Parser for command line options (UNIX style)

glob Filename globbing (a list of paths matching a
pathname pattern) utility

gopherlib Gopher protocol client interface

gzip Functions that read and write gzipped files

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 77 of 82

htmlentitydefs HTML character entity references

httplib HTTP/1.1 client library

imaplib IMAP4 client

imghdr Recognize selected image file formats based on their
first few bytes

isql Provides an interactive environment for database work

linecache Cache lines from files

mailcap Mailcap file handling. See RFC 1524

mimetools Various tools used by MIME-reading or MIME-writing
programs

mimetypes Guess the MIME type of a file

MimeWriter Generic MIME writer

mimify Mimification and unmimification of mail messages

multifile A readline()-style interface to the parts of a multipart
message

nntplib An NNTP client class based on RFC 977: Network
News Transfer Protocol

nturl2path Convert a NT pathname to a file URL and vice versa

pdb A Python debugger

pickle Create portable serialized representations of Jython
(not Java) objects

pipes Conversion pipeline templates

poplib A POP3 client class

posixfile Extended file operations available in POSIX

pprint Support to pretty-print lists, tuples, & dictionaries
recursively

profile Class for profiling python code

pstats Class for printing reports on profiled python code

pyclbr Parse a Python file and retrieve classes and methods

Queue A multi-producer, multi-consumer queue

quopri Conversions to/from quoted-printable transport
encoding as per RFC-1521

random Random variable generators

re Regular Expression Engine (clone of sre)

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 78 of 82 Intro to Jython, Part 1: Java programming made easier

repr Redo the '...' (representation) but with limits on most
sizes

rfc822 RFC-822 message manipulation class

sched A generally useful event scheduler class

sgmllib A SAX-like parser for SGML (subset as used by
HTML), using the derived class as a static DTD
(abstract)

shelve Manage shelves (persistent, dictionary) of pickled
objects

shutil Utility functions for copying files and directory trees

SimpleHTTPServer A Simple HTTP Server (text HEAD and GET only)

smtplib SMTP/ESMTP client class that follows RFC-821
(SMTP) and RFC-1869 (ESMTP)

sndhdr Routines to help recognizing select sound files

socket Basic socket support

SocketServer Generic socket server classes

sre Regular Expression Engine

stat Constants/functions for interpreting results of os.stat()
and os.lstat()

string Common string manipulations; a (very useful)
collection of string operations. The string type also
supports most of these functions as methods.

StringIO File-like object that reads from or writes to a string
buffer

telnetlib TELNET client class based on RFC-854

tempfile Temporary files and filenames

threading New threading module, emulating a subset of the Java
platform's threading model

tokenize Tokenization help for Python programs

traceback Extract, format and print information about Python
stack traces

unittest Python unit testing framework, based on Erich
Gamma's JUnit and Kent Beck's Smalltalk testing
framework

urllib Open an arbitrary URL

urlparse Parse (absolute and relative) URLs

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 79 of 82

user Hook to allow user-specified customization code to run
at start-up

UserDict A more or less complete user-defined wrapper around
dictionary objects

UserList A more or less complete user-defined wrapper around
list objects

UserString A user-defined wrapper around string objects

whrandom Wichman-Hill random number generator

xmllib A SA-like parser for XML, using the derived class as
static DTD (abstract)

zipfile Read and write ZIP files

__future__ Used to access features from future versions that are
available (potentially in less than finished form) today

Note: I do not claim the above library modules work or are error free on Jython,
especially when you are not running on a UNIX system. Try them interactively before
you decide to code to them.

Appendix G: Jython types summary

Jython supports many object types. The module types defines symbols for these types.
The function type gets the type of any object. The type value can be tested (see
Dynamic type testing on page 60). The table below summarizes the most often used
types.

Type symbol Jython runtime type Comment(s)

ArrayType PyArray Any array object

BuiltinFunctionType PyReflectedFunction Any built-in function object

BuiltinMethodType PyMethod Any built-in method object

ClassType PyClass Any Jython class object

ComplexType PyComplex Any complex object

DictType

-- or --

DictionaryType

PyDictionary Any dictionary object

FileType PyFile Any file object

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 80 of 82 Intro to Jython, Part 1: Java programming made easier

FloatType PyFloat Any float object

FunctionType PyFunction Any function object

InstanceType PyInstance Any class instance object

-- none -- PyJavaInstance Any Java class instance
object

IntType PyInteger Any integer object

LambdaType PyFunction Any lambda function
expression object

ListType PyList Any list object

LongType PyLong Any long object

MethodType PyMethod Any non-built-in method
object

ModuleType PyModule Any module object

NoneType PyNone Any None (only one) object

StringType PyString Any ASCII string object

TracebackType PyTraceback Any exception traceback
object

TupleType PyTuple Any tuple object

TypeType PyJavaClass Any type object

UnboundMethodType PyMethod Any method (without a
bound instancee) object

UnicodeType PyString Any Unicode string object

XRangeType PyXRange Any extended range object

Note: several types map to the same Java runtime type.

For more information on types see the Python Library Reference (Resources and
feedback on page 66).

Appendix H: Format codes

The format operator (see Formatting strings and values on page 24 supports the
following format characters:

Character(s) Result Format Comment(s)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Intro to Jython, Part 1: Java programming made easier Page 81 of 82

%s, %r String %s does str(x), %r does repr(x)

%i, %d Integer Decimal Basically the same format

%o, %u, %x, %X Unsigned Value In octal, unsigned decimal,
hexadecimal

%f, %F Floating Decimal Shows fraction after decimal point

%e, %E, %g, %G Exponential %g is %f unless the value is small; else
%e

%c Character Must be a single character or integer

%% Character The % character

Note: more details on the structure and options of the format item can be found in the
Python Library Reference (Resources and feedback on page 66). Use of case in
format characters (for example, X vs x causes the symbol to show in matching case.

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 82 of 82 Intro to Jython, Part 1: Java programming made easier

http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	What is this tutorial about?
	Should I take this tutorial?
	Tools, code, and installation requirements
	About the author

	Getting started
	Installation instructions
	Download Jython
	Install Jython
	Verify the install
	A test run
	Making life more convenient

	Basic concepts and advantages of Jython
	What is Jython?
	What is a scripting language?
	Advantages of Jython
	Jython and the Java platform
	Everything is interpreted
	About performance

	Working with Jython
	Using Jython as a command-line interpreter
	Using Jython via source files
	The print statement
	A "Hello World" example
	Jython source files are modules
	Compiled Jython
	A compilation example

	Jython basic data types
	Everything is an object
	Common operators
	Boolean types
	Numeric types
	Additional numeric type operations and functions
	Additional integer type operations
	Additional floating type functions
	Math module examples

	Jython collections
	Collection types
	Sequence types
	A slice of life
	Sequence operators
	Sequence functions
	A final note about sequences
	Strings
	String examples
	Mixed and long strings
	Formatting strings and values
	Tuples
	Ranges
	Lists
	Stacks and queues
	List comprehensions
	Maps and dictionaries
	Example dictionaries

	Jython program structure
	File structure
	Commentary
	A commentary example
	Statement syntax
	Identifiers and reserved words
	Blocks
	Example blocks
	Visibility and scopes
	Dynamic code evaluation
	Eval, exec and execfile

	Modules and importing
	About modules and imports
	Modules and packages
	The import statement
	Example imports
	Importing modules and packages
	Import is executable
	Subsetting imports
	Running native applications

	Jython exceptions
	About exceptions
	The Jython exception hierarchy
	The try-except-else statement
	Accessing exception information
	The try-finally statement
	A try statement example
	The raise statement

	Jython procedural statements
	A statement for every procedure
	The pass statement
	The expression statement
	Operators and precedence
	Summary of operator precedence
	The assignment statement
	Parallel assignment
	Multiple assignment
	Augmented assignment
	The if statement
	The if-else statement
	The if-elif-else statement
	Conditional expressions
	Implementing a switch statement
	The while statement
	The for statement
	The break and continue statements
	Updating a sequence
	The del statement

	Jython functions
	What are functions?
	The def statement
	Specifying function arguments
	Handling mutable arguments
	Anonymous functions
	The return statement
	Function calls
	Example function definitions and calls
	The global statement
	Generic functions
	Dynamic type testing
	Nested functions
	Functional programming
	Functional programming examples

	Wrap-up and resources
	Summary
	Resources and feedback
	Feedback

	Appendices
	Appendix A: Escape characters
	Appendix B: String methods
	Appendix C: List methods
	Appendix D: Map methods
	Appendix E: Built-in functions
	Appendix F: Jython library summary
	Appendix G: Jython types summary
	Appendix H: Format codes

