

Bruker Corporation

Almanac 2010

50 Years of Innovation

www.bruker.com

Bruker the performance leader in life science and analytical systems.

Right from the beginning, which is now fifty years ago, Bruker has been driven by a single idea: to provide the best technological solution for each analytical task.

Today, worldwide more than 4,000 employees are working on this permanent challenge at over 70 locations on all continents. Bruker systems cover a broad spectrum of applications in all fields of research and development and are used in all industrial production processes for the purpose of ensuring quality and process reliability.

Bruker continues to build upon its extensive range of products and solutions, its broad base of installed systems and a strong reputation amongst its customers. Indeed, as our customers would expect, Bruker as one of the world's leading analytical instrumentation companies, continues to develop state-of-the-art technologies and innovative solutions for today's analytical questions.

Bruker. Think forward!

Bruker is the performance leader in the following technology platforms and product lines:

Magnetic Resonance

- Nuclear Magnetic Resonance (NMR)
- Electron Paramagnetic Resonance (EPR)
 Magnetic Resonance Imaging (MRI)
 Bench-top TD-NMR Process and
- **GA Systems**
- Superconducting Magnets

X-Ray and Elemental Analysis

- X-RayDiffraction (XRD)

- X-Ray Spectrometry (XRF)
 X-Ray Crystallography (SCD)
 EDS and X-Ray Microanalysis
- Optical Emission Spectroscopy (OES) Combustion Analysis for Metals

Life Sciences Mass Spectrometry

- MALDI TOF/TOF Mass Spectrometry
- Ion Trap Mass SpectrometryESI-(Q)-TOF Mass Spectrometry
- ESI/MALDI-FTMS

• UHR-TOF MS

Molecular Spectroscopy

- FT-Infrared Spectroscopy (FT-IR) Near Infrared Spectroscopy (NIR)Raman Spectroscopy

Chemical, Biological, Radiological, Nuclear and Explosives (CBRNE) Detection

- GC-Mass Spectrometry
- Ion Mobility Spectrometry (IMS)
- FT IR Stand-off DetectionBiological Classification and
- Identification Systems • Explosives Detection Systems

Superconductor Wire Products and Devices

- Low temperature superconductors (LTS)
- High-temperature superconductors (HTS)Hydrostatic Extrusions
- Magnets
- Synchrotron instrumentation

Life Science

Quality & **Process Control**

Materials Research

Food & Environment

Pharma & **Biotech**

Clinical Research

ISBN 978-3-929431-24-7

Bruker AXS

Bruker AXS GmbH

Oestliche Rheinbrückenstr. 49 76187 Karlsruhe Germany

Tel: +49 (7 21) 5 95-28 88 Fax: +49 (7 21) 5 95-45 87

info@bruker-axs.de www.bruker-axs.com

Bruker AXS Inc. 5465 East Chervl Parkway Madison, WI 53711

Tel: +1 (8 00) 2 34-XRAY Tel: +1 (6 08) 2 76-30 00 Japan Tel: +81 (45) 4 53-19 60 Fax: +1 (6 08) 2 76- 30 06

Fax: +81 (45) 4 40-07 57 info@bruker-axs.com www.bruker-axs.com info@bruker-axs.jp www.bruker-axs.com

Bruker AXS K.K.

3-9-A. Moriva-cho. Kanagawa-ku, Yokohama-shi Kanagawa 221-0022

Germany Tel: +49 (7 21) 51 61-0 Fax: +49 (7 21) 51 71 01

Silberstreifen 4

76287 Rheinstetter

nmr@bruker-biospin.de epr@bruker-biospin.de mri@bruker-biospin.de www.bruker-biospin.com

Bruker BioSpin

Bruker BioSpin GmbH Bruker BioSpin Corp.

15 Fortune Drive Billerica, MA 01821-3991 USA

Tel: +1 (9 78) 6 67-95 80 Fax: +1 (9 78) 6 67-09 85 sales@bruker-biospin.com

www.bruker-biospin.com

Bruker EST Bruker EAS GmbH

Fhrichstr 10 63450 Hanau Germany

Tel: +49 (6181) 4384-4100 Fax: +49 (6181) 4384-4400 info@advancedsupercon.com

www.advancedsupercon.com

Bruker Daltonics

Bruker Daltonik GmbH Bruker Daltonics Inc.

Fahrenheitstr. 4 28359 Bremen Germany

Tel: +49 (4 21) 22 05-0 Fax: +49 (4 21) 22 05-103 **CBRN Detection** Tel: +49 (3 41) 24 31-30

www.bdal.de

sales@bdal.de www.bdal.com

Tel: +1 (9 78) 6 63-36 60 Fax: +1 (9 78) 6 67-59 93 ms-sales@bdal.com

People's Republic

40 Manning Road

Billerica, MA 01821

Manning Park

Bruker BioSciences Pty. Ltd.

Unit 1/28A, Albert St. Preston, VIC. 3072 Australia Tel: 1300 BRUKER

Tel: +61 (3) 94 74 70 00 Fax: +61 (3) 94 74 70 70

sales@bruker-daltonics.com.au. www bdal com

Bruker Optics

Bruker Optik GmbH Rudolf-Plank-Str. 27

info@brukeroptics.de

www.brukeroptics.de

Germany

19 Fortune Drive 76275 Ettlingen Manning Park Billerica, MA 01821-3991 USA Tel: +49 (72 43) 5 04-20 00 Fax: +49 (72 43) 5 04-20 50

Tel: +1 (9 78) 4 39-98 99 Fax: +1 (9 78) 6 63-91 77 info@brukeroptics.com www.brukeroptics.com

Bruker Optics Inc.

Fax: +8 52-27 96-61 09 asiapacific@brukeroptics.com.hk www.brukeroptics.com

Bruker Optik

Asia Pacific Ltd.

Unit 509, 5/F, Tower II,

Sheung Yuet Road

Hong Kong

Enterprise Square No. 9,

Tel: +8 52-27 96-61 00

United States

(Northeast/U.S. Headquarters)

sales@nmr.bruker-biospin.com

Tel: +1 (9 78) 6 67-95 80

Tel: +1 (5 10) 6 83-43 00

Bruker BioSpin

Corporation

(West Coast)

Australia

Bruker BioSpin Pty. Ltd.

Tel: +61 (2) 95 50-64-22 sales@bruker.com.au

Bruker BioSciences Ptv. Ltd.

Tel: 1300 BRUKER +61 (0)3 9474 7000 sales@bruker-daltonics.com.au Canada baxs@bruker-axs.com.au

Austria

Bruker Austria GmbH

Tel: +43 (1) 8 04-78 81-0 sales@bruker.com.at office@bruker.at

Belgium

Bruker Belgium SA/NV **Bruker Daltonics** SPRL/BVBA

Tel: +32 (2) 7 26-76 26 bruker@bruker.be

Brazil

Bruker do Brasil,

Tel: +55 (11) 55 94-50 30 Tel: +55 (11) 50 52-55 37 info@bruker.com.br

Tel: +55 (11) 55 94-50 30

Bruker BioSpin Ltd **Bruker Da** Tel: +1 (905) 8 76-46

Tel: +1 (604) 5 91info@bruker.ca

Bruker AXS

Tel: +1 (608) info@bruk

Bruker Bio

Bruker AXS S.A

Tel: +33 (1) 60 95 90 secret@bruker-axs.fr

Bruker Daltonique S.A.

Tel: +33 (3) 88 06 60 40 infomasse@bruker.fr

Bruker Optics S.a.r.l.

bruker@bruker.fr

info@bruker-

Bruker Optik Leipzig

Tel: +49 (3 41) 2 41

Tel: +49 (4 21) 2 23 19-10

Germany

Bruker BioSpin GmbH

GmbH

Bruker AXS do Brasil

France

Tel: +33 (3) bruker@bruk

ysis GmbH_

Bruker-Elemen **GmbH**

Tel: +49 (28 24)

info@brukeroptics.d

Bremen

India

Bruker India Scientific Pvt. Ltd.

Tel: +49 (7 21) 51 61-0 nmr@bruker-biospin.de epr@bruker-biospin.de cv.man biospin.in

Bruker BioSpin MRI Bruker A Tel: +49 (7 21) 51 61-

vt. Ltd. (New Delhi ruker O

+9 72 (8) 9 47-77 05

Bruker BioSpin S.r.l.

Tel: +39 (02) 70 63 63 70

Tel: +39 (02) 70 63-63 70

Bruker Daltonics S.r.I.

(0733) 28 31 41

cs Srl

bruker@bruker.it

axs@bruker.it

Italy

ker AXS croanalysis GmbH 19 (30) 67 09 90-0

Bruker AXS S.r.I.

f Bruker AXS

Bruker Optik GmbH,

info@brukeroptics.de

Japan

Bruker BioSpin K.K

3 61 25 20 **Bruker AXS** Tel: +81 (4)

Tel: +81 (45) 4 40-04 71

info@bruker.co.jp **Bruker Optics K.K.** Tel: +81 (3) 58 16-21 25 Tel: +81 (6) 63 94-89 89

info@bruker-optics.jp

Latvia

Bruker Baltic Ltd. Tel: +371 67 38 39 47 office@bruker-baltic.lv

Maghreb Bruker AXS S.A.S. Tel: +33 (1) 60 95-90 00

Malaysia **Bruker Malaysia** SDN Bhd **Bruker Optics** Malaysia

Tel: +60 (3) 56 21 83 03 malay@brukeroptics.com.hk

Mexico

Mexicana, SA

kico-sales@bruker.com asmexico@bdal.com nio akseprake mexico@brukeroptics.co

The Netherlands Bruker BioSpin B.V.

Tel: +31 (75) 6 26 biospin@bruker.r Bruker AXS B.

Tel: +31 (15) 2 info@hrul

s B.V. Tel: +3 daltonics

Bruker

New Zealand Asia-Pacific Are

Bruker BioSpin

Poland Sp.z.o.o.

Russia and the CIS

Bruker Russia Ltd.

South Korea

Spain

Bruker BioS Korea Co. Ltd Tel: +82 (2) 596 :

info@hdal.co.kr **Bruker Optics Ko** Ltd.

Tel: +82 (2) 5 93-6

Bruker Española S.A. Bruker BioSciences

34 (91) 4 99 40 80

Switzer

41 (44) 8 25-91 11 bruker-biospin.ch iker AXS GmbH

Bruker Daltonics GmbH

41 (44) 8 25-91 11 s@bruker.ch

Bruker Daltonics Inc.

Tel: +886 (2) 89 82 37 10 Bruker Optics

Tel: +886 (2) 22 78 73 58 roptics.idv.tw

Thailand Bruker BioSpin AG

Bruker Southeast Asia Tel: +66 (2) 6 42-69 00 kkbsea@bruker.co.th kdcbsea@bruker.co.th

thai@brukeroptics.com.hk

Bruker AXS Ltd.

info@bruker-axs.co.uk

mri@bruker-biospin.com **Bruker Optik Thailand** Tel: +66 (2) 6 32-28 82-5

wcoast@bruker-biospin.com **United Kingdom** Tel: +1 (3 02) 8 36-90 66 Bruker BioSpin Ltd. ma@bruker-biospin.com Bruker BioSpin MRI Ltd.

Tel: +1 (3 02) 8 36-90 66 **Bruker Daltonics Ltd.** soeast@bruker-biospin.com **Bruker Optics Ltd.** (South) Tel: +44 (24) 76 85 52 00 Tel: +1 (2 81) 2 92-24 47 sales@bruker.co.uk sales@biospin-mri.bruker.co.uk so@bruker-biospin.com

Tel: +1 (6 08) 2 76-30 00 Tel: +1 (8 00) 2 34-XRAY

Bruker AXS Inc.

Bruker Daltonics Inc. Billerica, MA

Bruker Daltonics Inc.

Fremont, CA Tel: +1 (5 10) 6 83-43 00

Bruker Optics Inc.

Tel: +1 (9 78) 4 39-98 99

info@brukeroptics.com

Additional information www.bruker.com/offices

Bruker Polska

Tel: +48 (61) 8 68-90 08 secretariat@bruker.poznan.p

Española SA **J** 6 55 90 13 49 38 12

uker BioSpin AG

+49 (721) 5<mark>.95</mark>-28 88

ruker Optics GmbH

Taiwan

Taiwan Ltd.

sales@daltonics.bruker.co.uk Madison, WI sales@optics.bruker.co.uk info@bruker-axs.com

Tel: +1 (9 78) 6 63-36 60

ms-sales@bdal.com

Bruker Corporation

The Bruker Group is a leading provider of high-performance scientific instruments and solutions for molecular and materials research, as well as for industrial and applied analysis. Bruker Corporation (Nasdag: BRKR), headquartered in Billerica, Massachusetts, is the publicly traded parent company of Bruker Scientific Instruments Division (Bruker AXS, Bruker BioSpin, Bruker Daltonics, Bruker Optics) and Bruker Energy & Supercon Technologies (BEST) Division.

Bruker AXS

Bruker AXS is a leading global developer and manufacturer of analytical X-ray systems, optical emission spectrometers and combustion analyzers for elemental analysis, materials research and crystallographic investigations. Bruker AXS' innovative solutions enable a wide range of customers in research and industry – including chemistry, petrochemistry, pharmacy, metals and steel, semiconductor, cement, minerals and mining, automotive, forensics, environmental, art and conservation, nanotechnology and life sciences – to make technological advancements and to accelerate their progress.

Bruker BioSpin

Bruker BioSpin is the global market and technology leader in analytical magnetic resonance instruments including NMR, preclinical MRI and EPR. The company delivers the world's most comprehensive range of magnetic resonance research tools enabling life science, materials science, analytical chemistry, process control and clinical research. Bruker BioSpin is also the leading manufacturer of superconducting high and ultra high field magnets for NMR and MRI.

Bruker Daltonics

Bruker Daltonics is a leading manufacturer of mass spectrometry (MS) instruments and accessories for life science, pharmaceutical, biochemical and chemical research as well as for more routine analytical tasks in forensics and food safety. Technical solutions are based on a comprehensive range of MALDI-TOF/TOF, ESI-(Q)-TOF, UHR-TOF, ESI-ITMS, ESI/MALDI-FTMS mass spectrometry systems, as well as automated sample handling systems and productivity enhancing software designed to answer our customers' needs. Bruker Daltonics is also a global leader in nuclear, biological and chemical detection, with a CBRNE product line based on a broad array of technologies, including mass spectrometry and ion mobility spectrometry.

Bruker Optics

Bruker Optics offers the industry's most comprehensive range of product offerings and solutions based on vibrational spectroscopy. Products include FT-IR spectrometers; from the world's smallest in size to the highest in resolution, Near Infrared and Raman spectrometers. Whether it's a high-end research system, a life sciences instrument, a routine quality control tool or a process analyzer, Bruker Optics offers a wide variety of innovative analytical solutions.

Bruker EST

Bruker Energy & Supercon Technologies Division is a leading manufacturer and

Bruker BioSpin facilities

Bruker Daltonics facilities

Bruker Optics facilities

Bruker Australia

Bruker - the group

with analytical excellence,

long timé experience and global presence.

Bruker Corporation

Bruker 1960-2010

• 50 Years of Innovation

www.bruker.com

think forward

The Beginnings

The Bruker group of companies owes its existence to Dr. Günther Laukien, who moved to the Institute for Experimental Physics in Stuttgart shortly after finishing his studies in Physics in Tubingen in 1952. From 1952 to 1957, he pursed post-doc-

Prof. Günther Laukien

Why the Name Bruker?

In 1960, university pro-

fessors were not allowed

to commit to commercial work whilst in a position of research and teaching.

This meant that Professor Laukien could not

be named as a founding member; thus co-founder

Dr. Emil Bruker gave the

toral research in NMR Spectroscopy, and in 1958 published a pioneering paper on high-frequency nuclear magnetic resonance. This paper described the theoretical aspects that were known at the time, while also covering the practical aspects of constructing experimental systems. In 1960, he was appointed as a Professor for Experimental Physics in Karlsruhe.

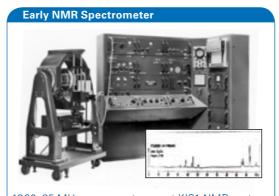
At that time, laboratories in the US were already building the first high-resolution systems for use in analytical chemistry. Dr. Laukien recognized the power in this technique and the need for a system not yet produced commercially. He set out to fill this need by establishing his own company.

Bruker Physik-AG was officially incorporated on September 7, 1960, originally located in the back-yard of a Karlsruhe residence. The development of NMR spectrometers began with the production of laboratory magnets and power supplies.

Bruker Physik AG's first operational facility in Hardtstraße, Karlsruhe, Germany.

By 1963, the rapidly-growing Bruker Physik employed a staff of 30 developing both high-resolution NMR and EPR. With a rapidly expanding market, Bruker quickly outgrew its space and moved to an undeveloped parcel in Forchheim, where it was able to build a facility to better meet it's expanding needs.

Arfunde


1963: Bruker NMR pulse spectrometer.

High-Resolution NMR at Trüb Täuber; The Onset of Bruker in Switzerland

In Zurich in 1960, Trüb Täuber & Company, a manufacturer of complex measuring instruments for the power station industry, had a small research department that focused on NMR spectrometers and electron microscopes.

Their NMR research had benefited directly from close cooperation with the ETH Swiss Federal Institute of Technology in Zurich, namely Professors Günthard, Primas and subsequent Nobel Prize Laureate, Richard Ernst.

Operating at 25 MHz, and equipped with a permanent magnet, their first KIS spectrometers were 2 meters tall.

1960: 25 MHz permanent magnet KIS1 NMR system. Spectra required in 12 hours of acquisition time. Spectra courtesy: Prof. R. Ernst

In 1962, with competitor systems featuring significantly higher field strengths, a new spectrometer, the KIS 2, was developed based on a five-ton magnet that enabled high-resolution spectroscopy at field strengths up to 90 MHz. Around twenty KIS 25 MHz and KIS 2 instruments were installed in Switzerland, France, Belgium and Germany.

When Trüb Täuber fell into financial difficulty midway through the 1960s, Günther Laukien founded Spectrospin AG specifically to preserve its former NMR department.

Bruker-Spectrospin Cooperation

The establishment of Spectrospin AG set the scene for close cooperation and a strong synergistic relationship with Bruker. The introduction of manufacturing agreements saw Bruker specialize in magnets and power supplies while simultaneously closing down its development of high-resolution instruments, leaving Spectrospin AG to focus on the high-resolution instruments and equally close down its development of EPR.

An ambitious development project was then launched to exploit valve-free, solid-state technology. By 1967 successful system demonstrations of the first fully transistorized instrument immediately led to the delivery of the first HFX 90 to the Technical University Berlin.

The HFX 90 was the first production spectrometer in the world to offer three independent channels for locking, recording and decoupling, working exclusively with frequency sweep.

company its name.

Spectra courtesy: Prof. R. Ernst

system, e

New experiments became possible, while previously impossible or extremely difficult experiments became routine. Pioneering innovations included spin spectroscopy (homo and hetero), decoupling, accumulation and completely reproducible scales. To display all the new details made possible by the system, a new recorder with 60 cm paper width had to be developed.

Other developments were also rapidly progressing at Bruker, including EPR spectrometers, pulse spectrometers and magnets applied in physics.

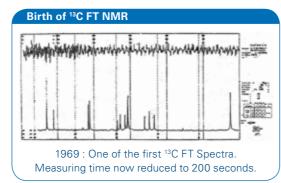
The first demonstrations for American customers took place in 1967. Yale University purchased two systems, with the first spectrometer being delivered in 1968 by air cargo.

1968: First HFX 90 for the United States (Yale Univ.) being loaded onto a Boeing 707.

Shortly after this installation, Bruker opened its first US office in Elmsford, New York, and proceeded to quickly secure a considerable customer base.

At the end of 1970, Spectrospin AG moved to new, modern premises in Fällanden, near Zurich, that provided more space and dedicated production facilities. Expansion also saw Bruker extend its facilities in Forchheim. Consequently, both companies were well equipped to meet the challenges of the next decade.

Fourier Transform (FT)


In 1964, Richard Ernst was the first to develop a functioning FT process that delivered a significant increase in sensitivity. However, skepticism regarding experiment length and long ¹³C relaxation times meant the system was never commercialized.

1971: WH 90, the first FT-only NMR Spectrometer.

Another problem with ¹³C was the lack of decoupling to achieve pure shift spectra with improved signal-to-noise ratio. Richard Ernst was again the pioneering figure, being the first to describe noise decoupling, which solved the problem.

Bruker's continuing development of pulse spectrometry saw the first high-power radio frequency amplifier that could transmit a pulse as well as decouple. This was followed by a new form of

broadband decoupling, which was significantly more effective than Ernst's method, and simpler to implement. The new technology delivered unique experimental opportunities that remained unmatched by Bruker's competitors right through to the 1980s.

1973: NMR spectrometer based on superconducting magnet technology.

In 1969, Bruker unveiled the world's first FT-NMR spectrometer that enabled broadband proton decoupling. Developed in Elmsford, the new spectrometer delivered sensational results. The new, superior and revolutionary ¹³C spectra made a significant impact when presented at the ¹³C conference in Anaheim, California.

Driven by its unmatched FT-NMR technology, Bruker's share of the market expanded considerably. In addition, the development of pulse spectrometry resulted in the construction of the minispec, a spectrometer dedicated to industrial applications.

The Bruker Group

During the 1960s, it had become evident that to be a key player in the analytical instrument market, a worldwide presence was required with contacts for customers and researchers at a local level.

The first step had been toward America, a growing hub of NMR research at the time. Despite local market dominance by US companies, success was rapid, driven by Bruker's unequalled technologies and the widespread approval of the NMR community.

This was followed in 1971 with the establishment of Bruker SA in France. Bruker moved into new production facilities in Wissembourg and quickly started producing sub-units.

Throughout the early 1970s sales offices appeared all over Europe, including the UK and Italy.

In 1969, during the 25th anniversary of the discovery of EPR in Kazan, Bruker undertook its first activities in, what was then, the USSR.

A new office was also established in Israel, strengthening relations with the country and with the Weizman Institute in particular.

In 1972, expansion reached Australia, where collaboration with local company Selby signified Bruker's arrival.

1975: Mr. Fanf Yi, PRC Vice President and President of the Chinese Academy visits the Bruker stand at a trade show in Beijing.

In 1975, Bruker arrived in China. A very successful appearance at the Swiss Industrial Exhibition in Beijing led to the immediate sale of two WH 90 NMR spectrometers.

installation in Venezue

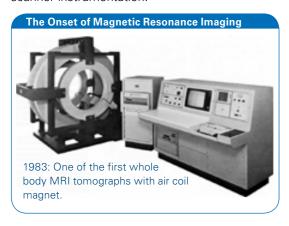
Japan, South Korea and Taiwan sales offices soon followed, and in 1976 Bruker opened its first facility in Japan.

Bruker was also successful in South America, with the first instrument installations taking place in Venezuela.

for breaking ground in Tsukuba, Japan.

FT-IR

Bruker began the development of new infrared spectrometers in the 1970s. Launched in 1974, the IFS 110 was the beginning of a very successful product line that ultimately led to the foundation of the Bruker Optics division.



1974: IFS 110, Bruker's first FT-IR spectrometer.

Today, Bruker Optics offers a comprehensive vibrational spectroscopy product-line that includes both the world's smallest benchtop FT-IR spectrometer for routine use, and the world's highest resolution FT-IR for advanced research applications.

Magnetic Resonance Imaging

Bruker Medizintechnik GmbH was founded in 1975, offering a product range of mobile defibrillators. By the late 1970s, Bruker was producing NMR tomographs for clinical and pre-clinical environments, leading to whole body clinical scanner instrumentation.

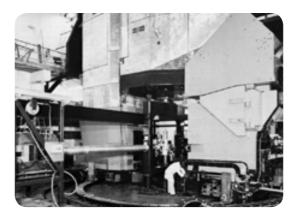
Over time Bruker shifted its focus towards preclinical instrumentation, a move which saw the company develop as market leader in the field, a position maintained by Bruker BioSpin MRI today.

Marine Research

Bruker Meerestechnik GmbH was founded in 1977, producing small submersibles for the shelf research and oil exploration sectors, and for tourism (including the largest tourist submarine in the world to date). Bruker's increasing on analytical instrumentation led to the later sale of this division.

1978: Bruker submersible 'Meermaid' in action.

Partnership with IBM


The late 1970s was a time of global diversification, and IBM's subsidiary, IBM Instruments, sought an interest in Bruker's wide-ranging product range. IBM invested in Bruker in 1978, and the partnership witnessed the development of a large range of instruments for gas chromatography, liquid chromatography and polar graphs, and optimized IR, NMR and TD-NMR instruments for routine applications and specific sales initiatives in the American markets.

The relationship lasted for 10 years, until Bruker repurchased the IBM holding and integrated a portion of the developed systems into its own product range.

Expansion at Karlsruhe

Unable to expand significantly in Forchheim, Karlsruhe became the focus for new production facilities.

In 1982 the company purchased a large factory complex in Karlsruhe-Rheinhafen that was perfectly suited to the production of magnets for particle physics research. The site remains the ideal location for magnet production.

1984: Final assembly of the particle spectroscopy magnet in the Rheinhafen plant.

In 1991 the Ettlingen site witnessed the opening of its first building – the Bruker NMR Imaging Development and Application Center – an NMR tomography development, production and demonstration center.

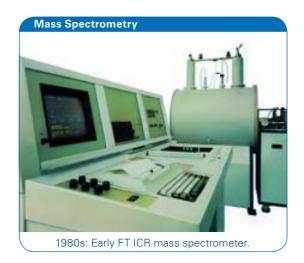
To guarantee the provision of high-quality electronic components for numerous Bruker divisions, Bruker Elektronik GmbH was established in 1985, equipped with state-of-the-art production and testing equipment.

With an ever-increasing number of biological applications using magnetic resonance spectroscopy, the company formed the Bruker BioSpin Group in 2001, bringing together all BioSpin companies specializing in magnetic resonance, to ensure market-leading focus and commitment.

Mass Spectrometry

Industrial production of the first mass spectrometers began in the 1940s. In Germany, an early mass spectrometer was developed in 1948 by Dr. L. Jenckel, head of Atlas MAT (Mess- und Analysentechnik) in Bremen.

In 1977 "Dr. Franzen Analysentechnik" was founded in Bremen as a spin-off company from Atlas MAT. Dr. Franzen developed the first tabletop mass spectrometer, based on a quadrupole mass filter and coupled to a GC.


A few years later, in 1980, Bruker acquired this company and renamed it "Bruker-Franzen Analytik", adding robust quadrupole mass spectrometers to the Bruker portfolio. That same year the first mobile detection system, the MM1, proved successful in both the civilian and military markets.

Thanks to Bruker's existing expertise in NMR and superconducting magnet technology, Bruker Spectrospin in Switzerland successfully developed a new type of mass spectrometer, with the first installations of FT-ICR mass spectrometry systems taking place in 1982.

An innovative collaboration with the Technical University of Munich in 1983 resulted in a project to investigate resonant laser mass spectrometry. The project's success ultimately led to Bruker's introduction of time-of-flight mass spectrometers, an intrinsic part of the product range to this day.

In 1990, together with scientists from the former Academy of Science, Bruker founded Bruker Saxonia in Leipzig. As a subsidiary company of Bruker-Franzen Analytik, Bruker Saxonia was dedicated to ion mobility spectrometry.

In 1997 Bruker-Franzen Analytik GmbH was renamed Bruker Daltonik GmbH. The name was chosen to honor John Dalton for his work in formulating the theory of the atomic structure of matter.

The development of two new ionization procedures in the late 1980s, electrospray and MALDI, enabled the ionization and analysis of biomolecules. This paved the way for the application of mass spectrometry in molecular biology and molecular medicine. The development of these ionization procedures was honored with a Nobel Prize in 2002.

In 1997 the company witnessed a change in leadership, brought about by the death of its founder, Günther Laukien. His death was a great loss to the company and the scientific community at large because his ideas, his motivation, and his competence as both scientist and entrepreneur were major driving forces behind the company's success.

His wife and four sons have continued to lead the company in accordance with his vision and beliefs, and the same forward-thinking spirit that drives progress to this

With the spectrometers being continuously enhanced, Bruker mass spectrometry experienced unexpected growth. Mass spectrometry became a solid base for ground-breaking research in a broad range of sciences, comprising pharmaceutical, life sciences and clinical research.

1987: Early MS TOF spectrometer.

Moreover, Bruker has recently obtained the first IVD-CE mark for the MALDI-TOF-based microbial identification workflow solution, the MALDI Biotyper. This system is pioneering the advancement of mass spectrometry in clinical diagnostics. Global mass spectrometry operations later fell under the umbrella of the Bruker Daltonics Group.

X-ray Technologies

In 1997 Bruker acquired the X-ray spectroscopy division of Siemens AG, which included prime manufacturing facilities in Karlsruhe and Madison, Wisconsin. Commercial growth, combined with additional company acquisitions, quickly launched Bruker AXS as a leading provider of

D8 ADVANCE, new generation of X-ray powder diffraction instrument launched in 1997.

Superconducting Wire Technologies

Superconducting magnets, an essential component in several Bruker product lines, require special qualities of wire critical for high-end performance. In order to secure a guaranteed quality of supply, Bruker acquired the wire manufacturer Vacuumschmelze, in Hanau in 2003.

Magnets and power supplies for physics research have been a key constituent for Bruker since its beginnings in 1960. In 2009, the acquisition of ACCEL significantly strengthened Bruker's position as a leading developer in the sector. The expanding product range, has resulted in a new division, Bruker Energy and Supercon Technologies.

1975: Power supplies for nuclear physics research.

Bruker Corporation

The organizational restructuring of Bruker began in 2000, as the company adapted to meet the needs of today's markets and environments. The Bruker Daltonics group became the first Bruker company to be listed on the NASDAQ stock exchange market, followed by the Bruker AXS group in 2001.

The synergies generated from the improved integration across development, production and sales were quickly recognized, leading to the development of combined systems that would deliver significant customer benefits. Consequently, in 2003, the Daltonics and AXS groups were soon merged into a single listed company.

In 2006, the Bruker Optics group followed suit, and finally the magnetic resonance business, the Bruker BioSpin Group, in 2008.

This unification under one new parent company, the Bruker Corporation, has created one of the strongest brands in analytical instrumentation.

Bruker Corporation headquarters in Billerica, Massachusetts, USA.

Bruker Today

In 2008 Bruker Corporation revenues exceeded the US\$ 1 billion mark for the first time, directly attributable to the company's exceptional customer service, innovation, continuity, and product quality.

The unique scope of the Bruker product range remains ground-breaking and influential, evidenced by the many product lines that lead their respective markets.

Bruker's growth in size has further fueled its highly dynamic nature, driving the introduction of many key innovations throughout 2009.

Positive and committed progress is assured through reliance on more than 4000 highly motivated employees, and through continuing excellent customer relations.

Bruker is convinced that these are the ideal conditions for developing innovative solutions for tomorrow's analytical questions, thereby securing an ever-successful future.

Content

NMR

- 20 AVANCE III / NMR Magnets
- 22 NMR Probes / CryoProbes
- 24 TopSpin / Automation
- 26 Metabolic Profiler / Hyphenation
- 28 Biomolecular NMR
- 29 Complete Molecular Confidence
- 30 JuiceSreener / Immediate Access
 32 Ultra-High Field NMR
- 33 Solid State NMR
- 34 Small Molecule Analysis
- 35 Structure Elucidation
- 36 Analysis of Natural Products
- 37 Mixture Analysis
- 38 Power Supplies / RF Transmitters

- 42 BioSpec 44 ClinScan
- 46 PharmaScan
- 47 USR Magnets
- 48 BGA Gradient Series
- 49 MRI CryoProbe
- 50 ParaVision / Beyond Standard BioSpecs
- 52 Micro-Imaging
- 53 IntraGate

EPR

- 56 ELEXSYS
- 62 Multi-Resonance Accessories
- 63 EMXplus
- 64 EMXmicro
- 65 e-scan

MS

- 68 MALDI-TOF and TOF/TOF 70 ION Trap
- 72 ESI-TOF
- 74 UHR-TOF and FTMS
 76 Ion Sources EASY-nLC and Compass
- 78 Proteomics Solutions and Chemistry
- 80 Small Molecules Applications

CBRN

- 84 Prepared for a World of Changing Threats
- 85 Answers for Life
- 86 Stay Prepared Prepared for the Worst
- 87 Expect the Unexpected

Vibrational Spectroscopy

- 90 FT-IR
- 92 Raman
- 93 FT-IR & Raman Microscopy
- 95 Process Analytical Technologies

Time Domain NMR

- 98 the minispec TD-NMR Analyzers
- 100 HyperQuant

X-ray, AFM, OES

- 105 X-ray Diffraction (XRD)108 X-ray Fluorescence Analysis (XRF)
- 112 Optical Emission Spectrometry (OES)
- 114 Gas Analyzers
- 116 Microanalysis (EDS) 117 Chemical Crystallography 118 Crystal-Structure Analysis
- 119 Biological Crystallography 120 Scanning Probe Microscopy

Advanced Superconductors

- 124 Manufacturing and Applications
- 126 Low Temperature Superconductors
- 127 High-Temperature Superconductors
- 128 Metal Matrix Extrusions

Bruker BioSpin

Nuclear Magnetic Resonance

Solutions for Life Sciences and Analytical Research

NMR

think forward

AVANCE III

The AVANCE™ III is the ultimate NMR platform for life-sciences and materials research. Robust, automated and easy-to-use it is the ideal NMR analysis system for the pharmaceutical, biotech, and chemical industries, for metabonomics, materials science, molecular diagnostics, and much more. With the enhanced architecture of the AVANCE III, we introduce the fastest and most flexible, high-performance NMR spectrometer on the market.

The AVANCE III is the newest generation in the very successful AVANCE series, which has established Bruker BioSpin as the clear technological and market leader in NMR and pre-clinical MRI worldwide. The AVANCE III spectrometer architecture is designed around an advanced digital concept which provides an optimized pathway for high-speed RF generation and data acquisition with highly modular and scalable transmitters and multiple receiver channels.

The AVANCE III platform provides 25 ns event timing (12.5 ns clock), and simultaneous phase, frequency and amplitude switching with capabilities that exceed the requirements of even the most demanding solid-state NMR experiments. The second-generation digital receiver technology delivers

high dynamic range, high digital resolution and large-bandwidth digital filtering. The unique digital lock system provides the utmost in field/frequency stability.

- Patented Direct Digital Synthesis
- One-chip RF generation
- Timing Resolution: 12.5 ns
- Minimum event time: 25 ns
- Phase resolution: 0.0055°
- Frequency resolution:0.005 Hz
- Advanced ADC with an effective resolution of up to 22 bits

10001

NMR Magnets

Bruker BioSpin has specialized in the design and production of magnets and cryogenic systems for a wide range of applications, becoming the world's largest manufacturer of superconducting magnets for NMR. Bruker BioSpin is engaged in every aspect of the magnet business including research and development, production and testing, individual site planning, as well as service and support.

UltraStabilized

UltraStabilized™ is our innovative magnet technology for Ultra-High Field NMR at 750 MHz to 1000 MHz. This proprietary technology provides reliable, stable operation at reduced helium bath temperature and ambient pressure.

UltraShield UltraStabilized

The US² represents the efficient combination of Bruker BioSpin's renowned magnet technologies (UltraStabilized™ and UltraShield™) for enhanced system performance and siting flexibility at Ultra-High Field strength.

UltraShield Plus


The UltraShield™ Plus magnets represent the latest and most advanced technology ever developed. These actively shielded magnets provide the smallest stray field and the greatest immunity to external field transients, in combination with the highest performance.

Electromagnetic Disturbance Suppression (EDS)

Our EDS technology achieves the high est level of shielded performance by simultaneously reducing both the stray field and the influence upon magnet stability of external electromagnetic field disturbances.

NMR Probes

Solids Probes

Our comprehensive range of the most advanced solids probes are ideal for inorganic and biological samples using experiments such as CP, d.CP, MQMAS, or REDOR.

Maximal spinning rates are 70 kHz for the ultra-high speed 1.3-mm MAS probe for materials science, 30 kHz for the 3.2-mm triple-resonance E^{free} MAS probe for protein research, and 15 kHz for the 4-mm HR-MAS probe with Z gradient for metabolomics studies.

X Observe Probes

These probes are optimized for observation of X-nuclei. They are available in selective or broadbanded versions for double, triple and quadruple resonance experiments, including automated tuning and matching.

¹H Inverse Probes

The inner coil of these versatile probes, in multinuclear or selective configuration, is fully optimized for ¹H observation at highest sensitivity with optimal lineshape. The available configurations and choices of X-nuclei are identical to those for X Observe Probes.

BBFOplus SmartProbe

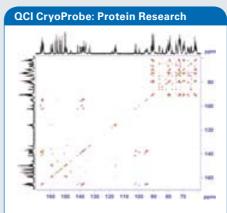
Inverse MicroProbes

For highest ¹H sensitivity per mole of substance, e.g. in natural products applications, Bruker BioSpin offers 1- and 1.7-mm ¹H/¹³C/¹⁵N fixed-frequency probes.

BBFO^{plus} SmartProbeTM

Bruker BioSpin's new BBFO^{plus} Smart-Probe[™] delivers highest sensitivity on both the multinuclear and proton channel. The SmartProbe design exclusively features a broadband frequency channel enabling fully automated applications on protons and the widest range of X-nuclei. This unique probe technology enables fluorine applications including ¹⁹F observe with ¹H decoupling and vice

Decaborane ¹¹B COSY Comparison of the 19F, 1H HOESY and HMBC experiment. While the HOESY spectrum has a correlation to the proton of the heterocycle, the HMBC shows a correlation to the NH protons.


CryoProbes

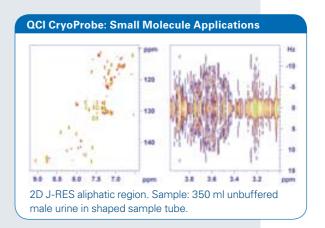
CryoProbe™ technology has delivered the single largest increase in detection sensitivity ever achieved in the evolution of NMR equipment. The factor 3-4 jump in sensitivity allows the use of correspondingly smaller sample quantities that are impractical with conventional probes, or enables the user to increase sample throughput up to 16-fold.

Product Lines

Bruker BioSpin offers the largest range of CryoProbe configurations from 400 MHz to 1000 MHz, including proton optimized probes such as our 1.7- and 5-mm inverse triple-resonance probes, as well as 10-mm dual ¹³C observe probes.

The 1.7-mm Micro-CryoProbe offers an increase in sensitivity per mole of more than an order of magnitude compared to a conventional 5-mm probe. For optimal X-nucleus detection we offer the 5-mm Quad CryoProbe in ¹³C/³¹P/¹⁹F/¹H and ¹⁵N/¹³C/³¹P/¹H versions. All high-resolution CryoProbes are equipped with a ²H lock and a Z-gradient. A ¹H microimaging CryoProbe is also offered to enhance the study of sample structure and properties in the micrometer range.

2D 13 C observe TOCSY with 31 P & 15 N & 1 H decoupling, 4 mg 15 N/ 13 C labeled RNA 14-mer, experiment time 40 min.

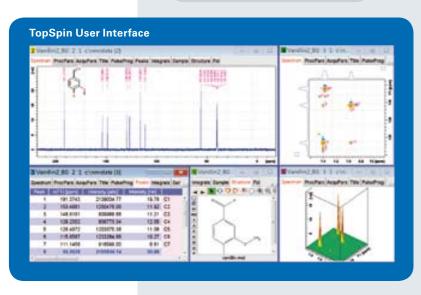

QCI CrvoProbe

CryoPlatform

Every CryoProbe is interfaced with a fully automated universal CryoPlatformTM, which controls the closed-cycled cooling system and guarantees excellent stability during experiments of any length. Once a CryoProbe is in the cold state it is just as easy to use as a conventional probe. The temperature of the sample, while just millimeters away from the cold RF coils, is stabilized at a user-defined value within the usual accessible range.

Nitrogen Liquifier

The Bruker Smart Nitrogen Liquifier (BSNL) is an accessory that uses the extra cooling capacity of the latest generation CryoPlaform™ to re-condense the evaporating nitrogen gas from the magnet dewar. While standard magnets have a nitrogen refill interval of 2–3 weeks, the new BSNL greatly extends this time or even makes refilling unnecessary.



TopSpin

TopSpinTM is our market leading software package for acquiring, processing and analyzing NMR data. TopSpin was designed as a highly intuitive interface for Windows® and Linux® users, utilizing the widespread standards from word processing, graphics, or presentation programs and providing the same convenient look-and-feel for your NMR applications.

Features

- Available for Windows® or Linux® PC
- New Flow User Interface consistent with latest PC standards, the perfect solution for both beginner and expert
- Individual user customization (fonts, colors, menus, toolbars, commands)
- Comprehensive on-linedocumentation for both the software and its applications
- Support tools for regulatory compliance (audit trailing, electronic signature)
- Flexible licensing for various usage, including student license

Data Evaluation

TopSpin provides a wealth of data processing visualization and administration features, including:

- Comprehensive set of functionalities for dealing with 1D to 5D data including automatic forward/backward or delayed linear prediction
- Inverse Fourier transform processing of rows, columns, planes and subcubes of nD datasets
- Interactive and automatic multi-dimensional peak picking and integration.

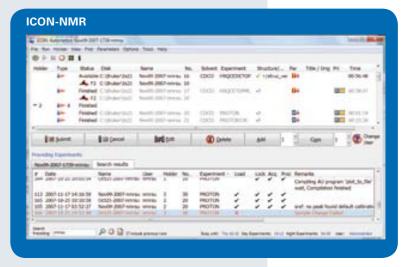
One can automatically process series of data sets, import a variety of NMR data formats, and administer groups of data sets to manage projects. The experienced user can write TopSpin extensions in C or Python, including graphic displays. TopSpin includes, as an option, a small molecular structure elucidation suite with automatic spectra analysis, isomer generation and shift prediction-based structure rating.

Automation

AVANCE™ NMR systems meet the most demanding of automation needs by streamlining every aspect of NMR analysis, including sample submission, sample preparation, automatic probe tuning, data acquisition, processing, data distribution and archiving. Depending upon the laboratory's needs or goals, automation may involve high-throughput screening, overnight automation or multi-user open access.

ICON-NMR

This productivity tool excels whenever large numbers of samples are submitted for standardized experiments, or when many users access the spectrometer. ICON-NMRTM supports sample changers and sample preparation robots. The user can set up or supervise measurements remotely via a Web browser from a desktop or pocket PC.

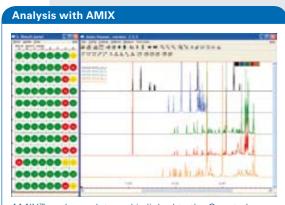

SampleJet

The SampleJet™ changer for 300-700 MHz NMR systems offers both high-throughput as well as individual sample capabilities in a single NMR sample changer. Its versatile design can accept samples from five 96-position racks, allowing batch analysis of up to 480 tubes. In addition, the SampleJet easily accepts single tube samples via a separate carousel that can hold up to forty-seven 1-, 1.7-, 3- and 5-mm tubes.

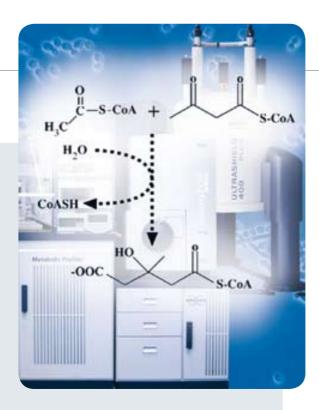
B-ACS 60/120

The Bruker Automatic Sample Changer (B-ACS) provides dialog-guided steps which allow the user to easily and effectively perform automatic (continuous) experiments on most 300-950 MHz systems. Bruker offers the B-ACS™ in 60- or 120-sample versions for 1–10-mm sample tubes with random sample shuffling, optional bar code reader for sample identification, and individual sample temperature control with an optional sample heater.

Metabolic Profiler


Metabolic profiling and finger printing is a key process in the pharmaceutical industry for studying drug efficacy or toxicology. In clinical research, metabolic profiling helps to identify biomarker compounds for early disease detection and monitoring, and enables researchers to study the effects of drugs in biological systems in a rapid and robust method.

Integrated Analysis


The Metabolic ProfilerTM is a dedicated, integrated LC-NMR/MS solution for metabolic analysis featuring an AVANCE NMR spectrometer and a micrOTOF-Q IITM from Bruker Daltonics. This system provides a simple, easy to use and inexpensive base to acquire the spectroscopic data needed for basic metabolic profiling. The system delivers the integration of automated sample handling, acquisition, collection and archiving of your data, and enables the comparative and statistical analysis needed for your research.

Data Management

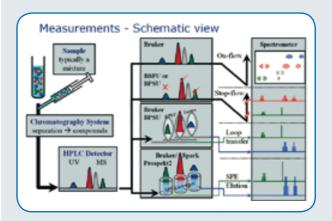
SampleTrackTM is an Oracle® based information system, which utilizes SQL tools for organizing, searching and archiving sample information, which can simplify experimental control of large sample sets.

AMIX™ analyzes data and is linked to the Spectral Database for further comparative analysis.

Statistical Analysis

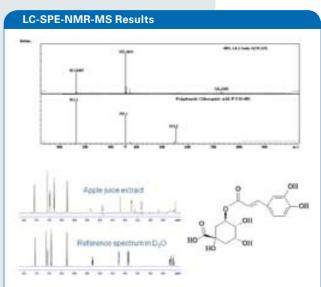
The AMIX program provides a comprehensive range of powerful tools that enable statistical and spectroscopic analyses of both your NMR and MS data. AMIX features Pattern Match - which can define spectral patterns in multiple ways and project these to spectra. In addition, the Multi-Integration features can be used to identify and quantify metabolites in complex mixtures.

Reference Compound Spectral Database


The most complete metabolite NMR spectral database available which contains over 12,500 spectra of the most common endogenous metabolites. By taking into account the effects of pH, field strength and by using one as well as two dimensional NMR data, the database enables the assignment of metabolites in biofluids, cell extracts and tissues in a unique and unambiguous way. With the database linked to AMIX this allows for automatic investigations, such as matching to mixture spectra. Direct integration into statistical data evaluation is also possible.

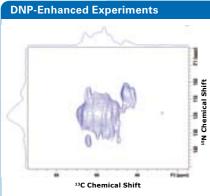
Hyphenation

Major tools for small molecule research and mixture analysis include HPLC, SPE, NMR and MS. Bruker offers hyphenated systems to meet various research needs. While NMR can be used to investigate the complete mixture, LC-NMR can analyse the individual compounds separated by the chromatography. Such an LC-NMR interface could easily be added to the Metabolic Profiler thereby also enabling hyphenated LC-(SPE)-NMR(/MS) applications. By combining the structural resolving power of NMR for the separated compounds with the mass accuracy of the micrOTOF, we can offer the most complete system for structural analysis available today.


LC-(SPE)-NMR

Two different methods for coupling are possible: Either by coupling the chromatography system directly to the NMR spectrometer, or by the intermediate collection of the samples. Direct coupling can be performed as stopflow or on-flow analysis. For intermediate collection loop-storage or collection on solid phase extraction(SPE)-cartridges is possible. The use of SPE provides an efficient interface between chromatography and NMR even enabling the analysis of low level metabolites.

Hyphenated system including sample preparation, NMR, LC and MS


LC-(SPE)-NMR-MS of Apple Juice high resolution mass spectra from m/z 355.1034 (upper part) of chlorogenic acid and the comparison with ion trap library (lower part) ¹H NMR spectrum of chlorogenic acid and the comparison with reference compound commercially available.

Sensitivity Boost for Biomolecular NMR

263 GHz AVANCE™ III Solid-State DNP-NMR Spectrometer

DNP-enhanced NMR experiments on ¹⁵N Proteorhodopsin (WHYIF-reversely labeled) with 10 mM TOTAPOL. 6 mg of sample in 3.2 mm rotor. 8 kHz MAS at 105 K. ¹⁵N- ¹³C NCA correlation experiment to natural abundance ¹²C. ¹⁵N Proteorhodopsin (WHYIF-reversed labeled), 6 mg, 10 mM TOTAPOL. 40 hour experiment time.

Microwaves on continuously. Sample courtesy of L. Shi, E. Lake, L. Brown, V. Ladizhansky, University of Guelph

Bruker BioSpin's 263 GHz AVANCE DNP-NMR Spectrometer is the world's first commercially available solid-state DNP-NMR system. The 263 GHz spectrometer enables extended DNP solid-state NMR experiments, delivering unsurpassed sensitivity for exciting new applications. Signal enhancements from a factor of 20 to 80 are possible on a wide range of samples, with ongoing system optimization delivering even higher DNP efficiency. The new high-power gyrotron system, powering microwaves at 263 GHz, is robust, safe and easy-to-use, enabling long term DNP experiments without time limits. Experiments are performed at a low temperature of ~100 K using Bruker's innovative low-temperature MAS probe for sample polarization in-situ, directly at the NMR field.

Features

- Turn-key solution for DNP-enhanced solids NMR experiments at high-field
- Polarization enhancement yields up to a factor of 80 gain in sensitivity for solid-state NMR
- Unique high-power (25 W) 263 GHz microwave source
- Easy-to-use software-controlled high-power gyrotron (9.7 T)
- Optimum beam propagation to the sample ensured by microwave transmission lines
- New low-temperature MAS probe technology with built-in waveguide and cold spinning gas supply
- AVANCE III 400 wide-bore NMR system

Complete Molecular Confidence

Complete Molecular Confidence™ (CMC) is a unique, fully integrated NMR-LC/MS-X-ray based solution delivering on-the-fly molecular formulae determination and automated structure verification for small molecules and natural products. This novel solution can deliver publication quality results and high-confidence, analytical support for chemical synthesis, reference library screening, and verification.

Complementary Modalities

CMC incorporates Bruker's complementary analytical techniques; NMR and X-ray for structure verification, MS for molecular formula determination.

Analysis is based on data combined from all techniques which results in higher reliability and robustness in highthroughput library screening of small molecules.

Features

- Automated molecular formula determination and structure proposals by electrospray mass spectrometry using SmartFormula3D
- Fast and automated structure verification by Nuclear Magnetic Resonance
- Optimum confidence for small molecule characterization
- Unique tool for compound library screening
- Identification of impurities
- Enhanced productivity for synthetic chemists
- Quantitation of compounds
- Combines Bruker's AVANCE™ III NMR and micrOTOF-Q™ II MS cutting edge technologies
- Automated structure determination using novel X2S Crystal-to-Structure X-ray system (optional)

Molecular Profile CMC yields the Molecular

CMC yields the Molecular Profile in the form of a compact report, detailing metrics for the quality of the fit of the molecular formula, as well as any other sum formula candidates. It delivers a probability for the verification

of the proposed molecular structure, purity information and approximate quantity of the sample.

JuiceScreener

The JuiceScreener™, combined with its SGF Profiling™ technique, can deliver huge amounts of information derived from one single experiment, instead of multiple individual analysis steps. This provides higher throughput and reliability than conventional techniques, leading to a significant reduction of cost per sample. This enables up to 5 times more sample investigations with no change in budget, resulting in an improved and more comprehensive quality control screening.

Push-Button Routine

SGF Profiling is a fully automated pushbutton routine that needs no interaction from the operator. From sample bar code registration, preparation and handling, to data acquisition and statistical evaluation, all steps are under the control of SampleTrackTM, Bruker's laboratory information system.

Spectroscopic Database

The screening is based on an extensive spectroscopic database that includes thousands of NMR spectra from mainly authentic juices. Currently the data base includes about 40 different fruit types from more than 50 production sites worldwide. In addition, the database also provides access to hundreds of small molecule compounds for further analysis of unknown ingredients.

of small mer analysis

Features

- Fully automated push-button NMR solution including evaluation and reporting
- Simultaneous absolute quantification of all relevant organic ingredients for juice assessment
- High-throughput with minimal sample preparation
- Reduced cost per sample
- Reliable screening method providing targeted and non-targeted multimarker analyses
- Enables the detection of unexpected fraud
- Screening is based on an extensive NMR spectroscopic database of more than 3000 reference juices, obtained from production sites all over the world
- Complex statistical models enable the analysis of: origin authenticity, species purity, fruit content, false labeling, production process control and sample similarity

Immediate Access to Latest Technologies

Contract Bruker Analytical Services

Everyone can now benefit from Bruker's latest technologies and instrumentation, and unmatched experience in analytical applications. We offer supporting services that include advanced high-resolution NMR and mass spectrometry applications. Our customers can benefit from access to the latest developments in the field through Bruker's cooperations with academic and industrial research labs. Our experts can also assist you with special customized projects.

Benefits

- Short and long term support increases project handling capacity
- Latest, most advanced Bruker technologies
- Unique analytical expertise and knowledge
- Method development and feasibility studies

Advanced NMR Services

- Structure verification and elucidation
- Reaction and purity control
- Quantitative analysis
- Variable temperature experiments
- Screening methods for pharmaceutical and clinical research
- Food quality control
- Metabonomics studies
- Natural product analysis

Additional Analytical Services

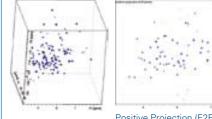
- Mass Spectrometry & Imaging
- EPR (ESR) Spectroscopy
- TD (Time Domain) NMR Spectroscopy
- X-ray Diffraction, Crystallography & Fluorescence
- FT-IR Spectroscopy & Microscopy
- Raman Spectroscopy & Microscopy
- HPLC

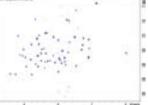
Customized Projects

When additional measures are needed, our technical experts will discuss the range of special capabilities available to you. Whether it is a short term project where specialized equipment is a necessity, method development is required or feasibility studies are needed, we can help you with our extensive resources.

Ultra-High Field NMR

AVANCE™ 1000 System with CryoProbe™

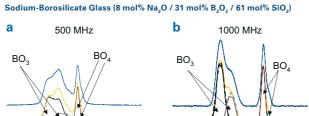



Bruker BioSpin launches a breakthrough one Gigahertz Ultra-High Field AVANCE 1000 MHz NMR spectrometer. It incorporates the world's first 23.5 Tesla standard-bore (54 mm) superconducting NMR magnet. The high-field strength and high-field stability, in combination with the first 5-mm triple-resonance CryoProbe, enables unique 1 GHz NMR

Bruker is proud to be able to deliver such an outstanding instrument to NMR researchers who wish to push the frontiers in biochemistry, structural biology and molecular research areas. The first Avance 1000 system was installed to the new 'Centre de RMN à Très Hauts Champs' in Lyon, France in July 2009.

- World's first standard-bore, highhomogeneity 1 GHz NMR magnet
- Persistent superconducting magnet
- UltraStabilized[™] sub-cooling technology
- Magnetic field strength of 23.5 Tesla
- Proton NMR frequency of 1000 MHz
- Standard bore size of 54 mm

Combination of 1 GHz and CryoProbe



Positive Projection (F2F3 planes)

3D TROSY-HNCA - Fast Acquisition: non-uniform sampling mode, 10% sparse matrix (10% of regular sampled data points actually recorded), MDD Processing (Orekhov et al.), experimental time: 80 min.

Solid-State NMR at 23.5 T: ¹¹B MAS

Spectra of a sodium borosilicate glass at 11.7 T (500 MHz, a) and at 23.5 T (1000 MHz, b) and their spectral deconvolution. The 23.5 T spectrum clearly shows markedly enhanced resolution. Gaussian line shapes suffice to compose the spectrum, indicating that in contrast to the 11.7 T spectrum almost no residual second order broadening is visible.

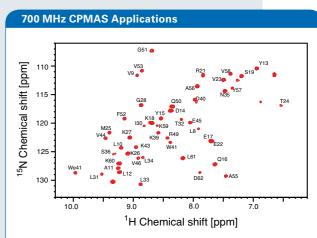
Biological Solid State NMR

TL_a and E^{free} and 1.3mm MAS product lines

The so-called BioSolids probe product line is based on one of two technologies, TL₂ or Efree. For optimum performance these probes are configured as fixed frequency triple resonance probes, most often requested for proton, carbon and nitrogen. TL, probes yield the best overall sensitivity

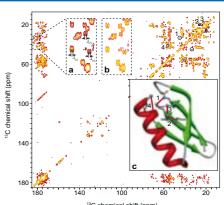
with high ¹H sensitivity for inverse detection experiments.

Efree


Efree probes are specifically designed to minimize RF heating. The two coil configuration provides enhanced sensitivity for ¹³C and ¹⁵N and the highest tuning and matching stability for safe, long term experiments. Minimized RF heating ensures the integrity of your protein, even while operating at room temperature.

TL,

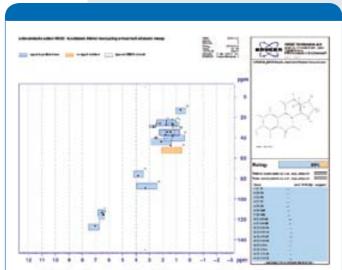
TL₂ technology is the choice when high-decoupling fields are needed for optimum decoupling in J-coupling based experiments and when sample heating is not an issue. TL₂ probes are best used for dry and non-salty samples, or samples that are kept in a frozen state.


1.3-mm MAS

The 1.3-mm probe product line provides the highest spinning speeds coupled with high-sensitivity and RF fields. Where sample heating might become an issue, convenient low power decoupling can be employed.

¹⁵N -¹H inverse detected solid state NMR experiment on SH3. Data kindly provided by Bernd Reif (V. Chevelkov, K. Rehbein, A. Diehl and B. Reif, Angew. Chem. Int. Ed. 45: 3878-3881 (2006)

500 MHz CPMAS Applications



2D ¹³C-¹³C PAR correlation spectra of [U-¹³C, ¹⁵N]-GB1 obtained at nr= 65 kHz and no (¹H) = 500 MHz with 10 ms PAR mixing. Panel (c) illustrates some of the representative long distance contacts that are observed in an experiment with 10 ms PAR mixing. The crosspeaks corresponding to the contacts in panel (c) are circled and marked with numbers in the spectrum.

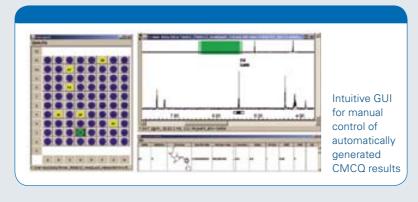
(Lewandowski et al, J. Phys. Chem. B, 2009, 113 (27), pp 9062-9069)

Small Molecule Analysis

TopSpin™ Structure Verification

Visualization of predicted shift ranges and their assignments

The automatically generated plots provide a quick overview on the consistency of structure and spectrum leaving the specialist free to focus on evaluation. Bruker's HSQC structure verification aid is based on a 1D proton and carbon prediction. The prediction generates an error bar for each calculated chemical shift, whose size depends on the accuracy with which the shift can be predicted. In an HSQC, when the structure used for the prediction fits the spectrum, this will result in areas that contain the cross signals of the acquired spectrum.

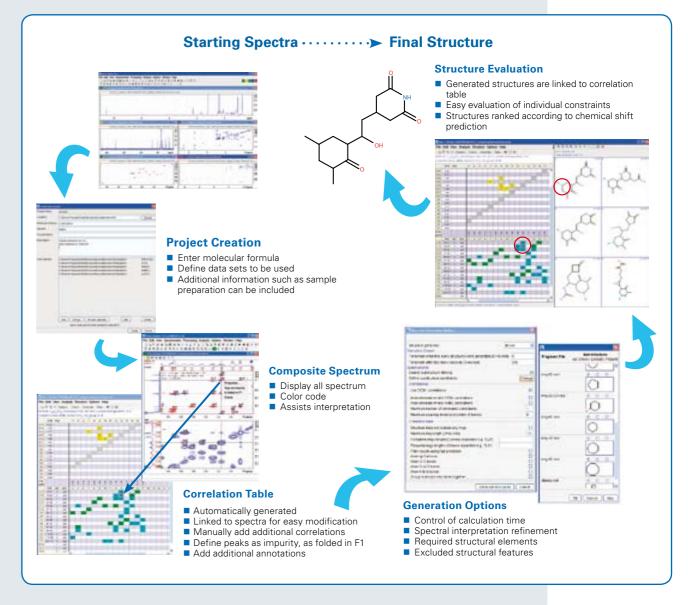

A plot that shows spectrum, structure and predictions is automatically generated. With this readily accessible information, the spectroscopist can decide whether or not the structure fits the spectrum.

Quantitative NMR - CMCQ

In drug discovery, the majority of expensive, false positive screening results originate from erroneous assumptions regarding the concentrations of screening compounds. NMR has been proven superior to other typical methods used for concentration determination.

Bruker provides a complete, highly automated workflow for determining NMR-based high-quality concentrations.

Analysis proposals are presented in an intuitive GUI that automatically generates concentration reports for entire well-plates.

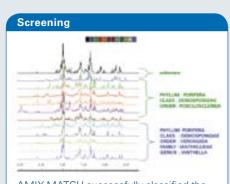


Structure Elucidation

TopSpin™ Structure Elucidation

The elucidation of molecular structures from NMR data is a common and often tedious task. Bruker BioSpin is implementing a set of tools in TopSpin to facilitate this task. Starting from a chemical formula and common NMR experiments, peaks are automatically selected and entered into a correlation table. This information is then interpreted by

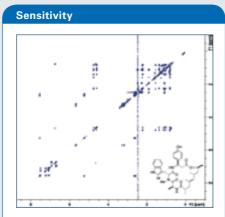
a structure-determination algorithm and structures consistent with the data are generated. These structures can then be ranked in accordance to comparison with chemical shift predictions, thus narrowing down the possibilities, assisting the researcher in determining their structure.



Analysis of Natural Products

High-Performance NMR Solutions

Recent advances in Bruker's NMR technology now deliver the high-performance solutions necessary to address the complex structural questions confronting natural products researchers. Improvements in probe design and receivers provide the



AMIX MATCH successfully classified the unknown natural product extract sample to the proper taxonomy using a user generated spectral base linked with known taxonomy data. Spectra and taxonomy data kindly supplied by Cherie Motti, AIMS, Australia.

highest NMR sensitivity available on the market. These hardware developments, in combination with our new software packages, provide the perfect complement of tools for optimizing your productivity and making new discoveries.

Screening

Bruker software and hardware assists in both of these processes by providing the automation, the instrument stability and the analysis capabilities needed to complete these tasks on both pure materials and complex mixtures. Any spectrum may be added to spectral data bases for rapid comparisons with new samples to determine sample similarities and differences. Analysis capabilities enable the user to find known compounds or fragments, categorize spectra, and find unique NMR spectra.

 $25~\mu g$ of Jaspamide isolated from sponge acquired in CDCl_3 on a 1-mm MicroProbe at 700 MHz. ^1H TOCSY spectrum acquired using 32 scans. Total acquisition time 2 hours 15 min. Sample was kindly provided by Tadeusz Molinski, UCSD.

Mixture Analysis

AMIX™ is a unique and powerful software tool which facilitates and automates the comparative analysis of large sets of spectra for a variety of chemical, biological and medical applications; e.g. the analysis of complex mixtures, detection and quantification of metabolites in body fluids, structure verification in combinatorial chemistry (AutoDROP™) and parallel synthesis, and assessment of protein-ligand binding assays.

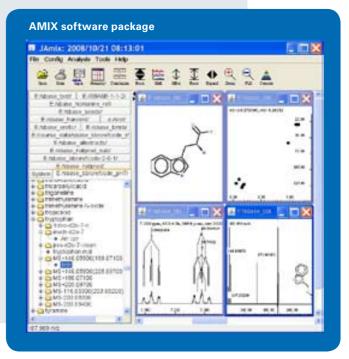
Study of Protein-Ligand Interaction Peak tracing in set of HSQC spectra enables

the study of protein-ligand interaction

Statistics

The available statistical methods include PCA and co-variance analysis to study hidden phenomena in ensembles of spectra, model building and classification to test if new spectra fits a given set of spectra, and PLS to correlate ensembles with external information. Multiple window techniques allow various AMIX tools to be linked and provide unsurpassed interaction between statistics and spectroscopy.

Spectra Bases


AMIX can be used to manage and manipulate so-called user-expandable spectra bases, containing 1D and 2D spectra in an optimally compressed format which retains the full information content of the original data.

Sophisticated routines are included for searching the spectra bases, for displaying results, and for preparing the data for statistical or correlation analysis.

Data Visualization

A powerful front end to AMIX is the AMIX-Viewer, a multiple-object viewer which offers unequaled display and analysis capabilities with direct access to data from flow-injection NMR and hyphenated techniques. Thus, 1D, 2D, and 3D NMR data sets, molecular structures, MS and MSⁿ data, UV absorption and chromatogram data can be readily visualized and correlated in an efficient manner.

High-Performance Power Supplies

High-Voltage Power Supplies

Bruker high-voltage power supplies find their main applications in IOT- and Klystron based RF transmitters in Particle Physics. Our power supplies provide high-voltages of up to 50 kV at broad range, from 1 kW up to several Megawatts. The compact solid-state design is based either on the latest switch mode technique or, in the case of highest power applications, based on SCR (Thyristor) control.

Klystron power supply for the MAMI C race track microtron, Mainz University, Germany.

High-Current Power Supplies

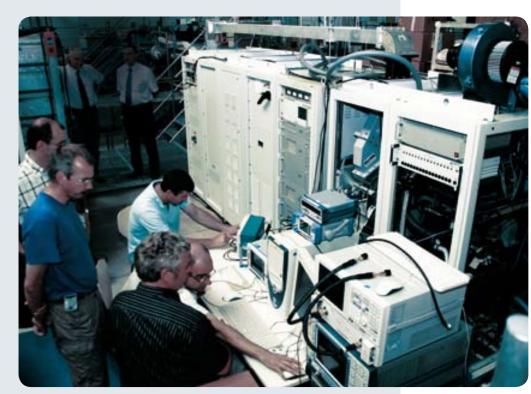
Bruker high-current power supplies are employed in industry and particle physics research worldwide. Our high-current power supplies, available for pulsed or DC, monopolar, bipolar or four-quadrant operation, deliver high-currents of up to 30.000 A. Based on the latest switch mode technology they ensure optimum efficiency and enable standalone, fail-safe operation. The option of linear mode regulation provides maximum stability and minimum noise and fluctuations from 1% to better than 1 ppm (part per million).

For high power applications, our highcurrent power supplies benefit from SCR (Thyristor) control. We offer singleand multi-channel supplies starting in the 100 Watt range going up to several Megawatts.

RF Transmitters

Bruker Radio Frequency Transmitters are established in nuclear physics applications all over the world. Our high-voltage power supplies, capable of emitting power from 100 Watt up to 300 kW and more, benefit from modern switch mode design for optimum efficiency and feature SCR (Thyristor) control to handle the highest power applications.

Choose from single or stacked solidstate amplifiers, whilst IOT amplifiers deliver optimum peak power conversion efficiency.


For arc protection our emitter tubes operate with defined stored energy, with optional solid-state crowbar circuits to protect the sensitive elements.

Start-up and operating procedures are handled automatically ensuring standalone, fail-safe operation, while a solid-state safety system ensures maximum protection for the transmitter elements and the user applications.

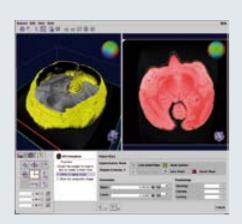
RF IOT high-power transmitter at ELBE FZD Rossendorf, Dresden, Germany.

Content:

MRI Products

- 42 BioSpec
- 44 ClinScan
- 46 PharmaScan
- 47 USR Magnets
- 48 BGA-S Gradient Series
- 49 MRI CryoProbe
- 50 ParaVision 5.0
- 51 Beyond Standard BioSpecs
- 52 Micro-Imaging
- 53 IntraGate

Magnetic Resonance Imaging


 Solutions for Molecular Imaging and Preclinical Research

MRI

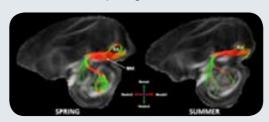
think forward

BioSpec

The BioSpec® series is designed for the emerging market of preclinical and molecular MRI. State-of-the-art MRI CryoProbe[™] technology together with ultra-high field USR magnets deliver high-spatial resolution in vivo enabling customers to come closer to the molecular and cellular level. Thanks to its innovative modular concept, virtually any small animal MR imaging application in life science, biomedical and preclinical research can be conducted. Whatever your application is, the BioSpec series will deliver the optimum solution, will perfectly equip you for the most demanding tasks and challenges.

Standard and optional Product Features

- High-end UltraShield[™] Refrigerated (USR) magnets from 4.7 up to 11.7 Tesla
- A wide range of bore sizes (16 to 40 cm) for investigations on any kind of animals
- Helium zero-boil-off and nitrogen free magnets for reduced service costs
- Scalable AVANCE III architecture with up to 16 receiver and 6 transmitter channels
- Parallel imaging (GRAPPA) for almost all applications including EPI
- Multiple transmit imaging applications
- BGA-S gradients with highest amplitudes, slew rates, shim strengths, and duty cycles
- Motorized animal positioning for increased throughput
- IntraGate[™] Self gated steady-state cardiac imaging (no external triggering devices)
- Phased-array RF coil technology for maximum sensitivity and minimum scan times
- MRI CryoProbe[™] delivers an exceptional increase in sensitivity to 250 %
- ParaVision® Intuitive software package, for multi-dimensional MRI/MRS data acquisition, reconstruction, analysis and visualization


Innovative Animal MRI Solutions for Molecular and Preclinical Imaging

BioSpec benefits from the excellence of Bruker BioSpin, the global market and technology leader in analytical magnetic resonance instruments including NMR, preclinical MRI and EPR. With an install base of over 500 MRI systems worldwide and more than 40 local Bruker offices on all continents, you can rely on our long term expertise and dedicated after sales support.

DTI of the Song Control System (SCS) of Starlings

DTI is used to quantify seasonal changes in the SCS. The density of axonal connections changes under hormonal influences.

Courtesy: De Groof, A. Van der Linden, RUCA, Antwerp, Belgium.

Mouse Abdomen

T2 RARE abdominal mouse imaging with excellent contrast.

Courtesy: D. Elverfeldt, B. Kreher, J. Hennig et al., University Hospital Freiburg, Germany.

our long term expertise and dedicated after sales support. Cardiac Angiography Visualization of coronary arteries in vivo (mice) using IntraGate.

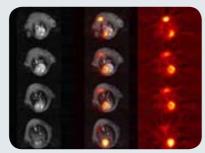
ClinScan

With the ClinScan® you enter the field of translational research and molecular imaging. The ClinScan, a 7 T animal MRI and MRS scanner is designed to further facilitate translational research from 'mice to men' in the field of preclinical and molecular imaging.

ClinScan is Bruker BioSpin's solution for an emerging market of research MRI systems that allows a direct and fast transfer of preclinical studies on animal models to clinical studies on humans.

By virtue of the strategic alliance with Siemens Medical Solutions on human high-field MR systems, ClinScan uses the clinical user interface *syngo®* MR. Its operation is identical to that of Siemens MAGNETOM TIM systems.

DTI tractography of rat brain



Product Description

- 7 T Bruker USR magnet (Ultra Shielded Refrigerated, bore size 20 cm or 30 cm)
- Bruker gradient and shim coil (gradient strength of 290 mT/m or 630 mT/m, slew rate of 1160 T/m/s or 6300 T/m/s)
- Bruker RF array coil technology in combination with numerous animal handling accessories
- Siemens MAGNETOM Avanto technology with up to 32 receive channels
- Clinical routine user interface syngo MR to enable efficient workflow and highly automated state-of-theart MRI and MRS applications on small animals

Multi Modality Imaging - MRI/PET

Simultaneous in-vivo imaging of a F-18-FDG labeled mouse heart at 7 T. PET and MRI acquisition was done in parallel without interference between the two modalities.

Courtesy: B. Pichler, H. Wehrl, M. Judenhofer et al., Laboratory for Preclinical Imaging University Tübingen, Germany

ClinScan systems are designed for translational molecular MRI and provide the clinical routine user interface *syngo* MR that facilitates straightforward transfer of protocols from benchtop to bedside and vice-versa

Small Animal MRI Solution for Molecular Imaging and Translational Research

Clinical User Interface syngo® MR

- Parallel working and one-click exams are supported efficiently.
- Parallel scanning and reconstruction are standard. Images can be loaded and used for graphical slice planning during reconstruction.
- iPAT (integrated Parallel Acquisition Techniques) further increase the acquisition speed. iPAT is fully compatible with the optional phased array coils.
- Dynamic Analysis evaluation and Mean Curve software allow the calculation of functions and dynamic examinations.
- IDEA sequence development environment with research agreement.

Cardiac Imaging

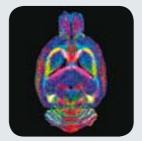
- True FISP & 2D/3D FLASH segmented
- Magnetization prepared TrueFISP
- Prospective triggering & retrospective gating
- Retrospectively gated cine imaging
- Phase sensitive IR

Rat brain, TSE, GRAPPA iPAT, TR: 2 s, TEeff: 45 ms, Resolution: 78 x 78 µm², iPAT factor 1 (left), iPAT factor 2 (right)

Cine cardiac imaging

PharmaScan

Dedicated MR Scanner for Pharmaceutical, Biomedical and Molecular Imaging Research


The PharmaScan® is a high-field, easy-touse and at the same time easy-to-install and very cost-effective MR-system. It is designed for MRI applications on small animals such as mice and rats in the field of routine pharmaceutical, biomedical and molecular imaging research. With the integrated automatic image acquisition and analysis, fast and reliable results can be obtained by simple operation of the system by non-academic personnel, without compromising full flexibility for the

Radial scan with ultra short TE enables the visualization of detailed lung structures without using expensive hyperpolarized helium techniques.

High-Resolution DTI

Coronal map of the major principle diffusion direction of a rat brain. The

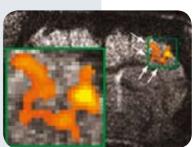
diffusion tensor imaging, with 30 diffusion directions, is acquired by the segmented echo planar imaging technique.

Standard and optional Product Features

- ¹H MRI and MRS routine system, optimized for small rodents (such as rats, mice, gerbils)
- Actively shielded magnets at 4.7 T and 7 T allows easy and cost-efficient siting
- 16 cm clear bore size with 72 mm free access for the animal
- Parallel imaging (GRAPPA)
- High-performance BGA-9 or BGA-9S (as an option) gradients with highest amplitude, slew rates, shim strengths, and duty cycles optimized for small animal imaging
- No Faraday cage required
- 25 m² floor space required
- Scalable AVANCE III architecture incorporates up to 4 receivers
- AutoPac[™] Motorized, positioning system for routine animal handling and increased animal throughput
- IntraGate[™] Self gated steady-state cardiac imaging requiring no external trigger devices
- Phased-array RF coil technology for increased sensitivity and reduced scan
- MRI CryoProbe™ Sensitivity increase up to a factor of 2.5
- ParaVision® Fully intuitive software package for multi-dimensional MRI/ MRS data acquisition, reconstruction, analysis and visualization

USR[™] Magnets

Combining High-Field Magnet Performance with Easy Handling and Siting


The UltraShielded Refrigerated (USR) horizontal bore magnet product line features ultra-high magnetic fields and variable bore sizes in combination with easy handling and siting. Field strengths offered from 4.7 up to 11.7 T deliver optimum sensitivity for high-resolution MRI and MRS. The various bore diameters from 16 to 40 cm ensure optimal experimental performance on a wide range of animal MRI applications. Active shielding based on our well-proven UltraShield™ technology provides minimum stray fields. For ease of operation all USR magnets are nitrogen-free and include helium refrigeration for zero boil-off and minimum service intervals.

Features

- Ultra-high magnetic fields
- Variable bore sizes
- Highest field homogeneity Compact magnet design
- Excellent field stability
- Optimum external disturbance suppression
- Minimum stray fields
- Easy and cost efficient siting
- Nitrogen free
- Helium refrigeration (zero boil-off¹)
- Longer service intervals (two years)
- Cold delivery and fast installation
- Over 100 USR installations worldwide

High resolution BOLD activation measured at 11.7 USR magnet.

Courtesy: J.Seehafer, M.Hoehn, MPI for Neurological Research Cologne, Germany

USR Magnet Product Line for a wide range of applications						
	47/40 USR	70/20 USR	70/30 USR	94/20 USR	94/30 USR	117/16 USR
¹ H Frequency (MHz)	200	300	300	400	400	500
Field Strength (T)	4.7	7.0	7.0	9.4	9.4	11.7
Bore Diameter (cm)	40	20	31	21	31	16
Length (m)	1.49	1.31	1.49	1.49	2.01	1.46
Width (m)	1.65	1.12	1.65	1.65	1.71	1.65
Height (m)	2.37	2.14	2.37	2.37	2.40	2.37
Field Drift (ppm/h)	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Weight (kg)	4.700	2.500	5.200	5.500	11.500	7.000
Stray Field (radial x axial) (m x m)	2 x 3	1.5 x 1.5	2 x 3	2.0 x 3.0	2.3 x 3.3	1.7 x 2.8
Service Interval (year)	2	2	2	2	2	2
Zero Boil-off	Yes ¹					

USR systems are available with field strengths ranging from 4.7 to 9.4 T and bore sizes of 16, 20, 30 or 40 cm as shown in the table.

¹With a valid service contract

BGA-S Gradient Series

Maximum Gradient and Shim Performance in Animal MRI

The Bruker gradient series BGA-S™ delivers unsurpassed performance for the whole range of animal MRI applications. The unique design provides highest gradient strengths and slew ing. The high cooling efficency results in unmatched duty cycles and as a

consequence of it, modern imaging sequences with minimum field of view and a high number of slices for long experiment times can easily be performed. The integrated shim coils add rates required for high field animal imag- up to ultra-strong shim capabilities. The BGA-S gradients can be operated as inserts and are easily exchangeable for maximum flexibility.

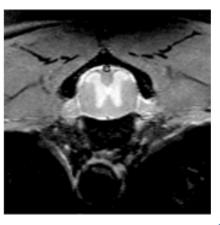
Specifications BGA-6S BGA-9S BGA-12S BGA-20S Outer diameter [mm] 113 150 303 60 90 200 Inner diameter [mm] 114 Strength* [mT/m] at I____ 1000 740 300 660 Slew rate* [T/m/s] at U____ 11250 6600 4570 1100 Gradient linearity/DSV [% / mm] $\pm 5/35$ $\pm 5/60$ ±4/80 ± 3 / 130 Number of RT Shims 9 9 9 9 Max. cont. gradient all axis [mT/m each axis] 500 190 210 87 Max. continous gradient one axis 350 130 167 60 [mT/m] $U_{max} [V]/I_{max} [A]$ 500/300 300/100 300/200 500/300

Product Description

- Highest gradient strengths up to 1000 mT/m
- Highest slew rates
- Excellent duty cycle specifications
- Very high gradient linearity
- Optimal gradient shielding
- Maximum shim performance

MRI CryoProbe

New Signal-to-Noise Horizons in Small Animal MRI



Bruker now offers a new series of MRI CryoProbes for MRI systems. They feature very low temperature, closed cycle cooled RF-coils and preamplifiers offering an increase in signal-to-noise ratio (SNR) to a factor of 2.5 over standard room temperature RF-coils in routine MRI applications. The use of the MRI CryoProbe in routine imaging of the mouse brain in vivo at 9.4 T delivers outstanding image quality. The increased signal-to-noise ratio enables one to acquire high-resolution images of the microscopic structures in the mouse brain down to the cellular level.

Product Description

- Increase in sensitivity to more than 250 %
- Flexible design for easy siting
- Standardized interface allowing different MRI CryoProbes to be used with one cooling system
- Efficient design allows minimal distances between RF-coil and object
- Carefully controlled thermal environment with no cold surfaces in contact with animal
- Cooling down outside the magnet possible

CryoProbe Spine Imaging

Comparison with Nissle staining

Comparison of micro-structures in the mouse cerebellum with histological Nissle staining (left). Identification of anatomical structures like white matter, granular layers, molecular layers and Purkinje cell layers are possible

Courtesy: Baltes C. et al., ETH Zurich, Switzerland

T₂ spine imaging of mouse at 46 um in-plane resolution. total scan time < 7 min.

ParaVision® 5.0

Ultimate MR-Acquisition and Processing in Preclinical Research and Life Science

ParaVision is Bruker's software package for multi-dimensional MRI/MRS data acquisition, reconstruction, analysis and visualization for its BioSpec, PharmaScan and MicroImaging product lines. It offers an intuitive routine user interface and cutting-edge techniques for animal MR imaging and spectroscopy - including a rich palette of powerful image evaluation and visualization tools.

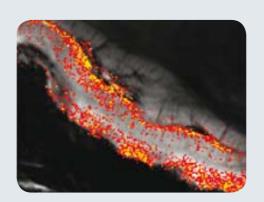
Product Description

- Intuitive routine workflow
- Application-oriented, ready-to-use protocols
- Self-acting, method-specific scanner adjustments
- Automatic instrumentation recognition
- Parallel imaging option for all suitable acquisition techniques with automatic generation of composed images/ spectra
- Half-Fourier (Partial-Fourier) encoding
- Real-time display of acquired and reconstructed data
- Data archiving including DICOM export
- Development environment with powerful tools for rapid prototyping of user-defined experiments and professional method implementation

The state of the s

e: All de senter

New Reconstruction and Processing Features


- Push-button GRAPPA reconstruction
- Sum of squares and phase-sensitive phased-array reconstruction
- Phased-array spectroscopy reconstruction
- Partial Fourier reconstruction
- EPI reconstruction with efficient ghost suppression
- Navigator techniques to reduce motion artifacts in EPI and SPIRAL
- 2D and 3D region growing
- Display and analysis of time-course data with the fitting tool "ISA"
- Frame-selective loading of image sequences for display, e.g. either timecourse frames or slices for a multi-slice movie dataset
- 3D visualization with surface rendering
- Image mask inversion

The second secon

Beyond Standard BioSpecs

Vertical BioSpec

The vertical BioSpec® has been engineered for MR research investigations of non-human primates. It enables specifically fMRI studies on monkeys as they are particularly receptive to behavioral conditioning while sitting in upright position. The vertical BioSpec are offered with two different magnet types operating at 4.7 T and 7 T which both have a high-magnetic field stability and excellent homogeneity. The actively shielded gradient coil with integrated shims is especially designed for a vertically oriented magnet.

Anatomical and Functional Resolution

fMRI-EPI-image with a resolution of $(125 \times 125 \times 660) \, \mu m^3$ in the monkey visual cortex. Fine details of the visual cortex (Gen=Gennari Line) including small cortical vessels are visualized. Each BOLD-pixel represents as few as approx. 600 neurons.

Courtesy: N. Logothetis, MPI for Biological Cybernetics, Tübingen, Germany

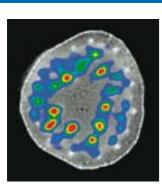
Ultra-High Field MRI

Bruker BioSpin is offering up to 17 T horizontal MRI BioSpec, enabling high-resolution in vivo preclinical MRI on small animals at a microscopic scale. The magnet with a bore size of 25 cm is based on Bruker's UltraStabilizedTM subcooling technology offering excellent field homogeneity and stability.

A new BGA-S[™] gradient coil with unsurpassed specifications regarding gradient field strength, gradient slew rate, and gradient duty cycle provides best MRI performance.

These innovations will push the current limits of animal MR imaging towards higher spatial and spectral resolution, enabling new applications in the field of molecular imaging and preclinical research.

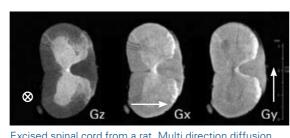
Micro-Imaging


CryoProbe for Micro-Imaging

The extension of Bruker BioSpin's cryogenic NMR probe expertise into the field of MRI microscopy leads to new and exciting opportunities. Micro-imaging techniques for small samples with diameters up to 5 mm benefit from CryoProbe technology and a factor 4 improvement in sensitivity. The result is improved image quality, increased spatial resolution and/or reduced scan times. The MIC CryoProbes for ¹H at 400-600 MHz offer variable temperature operation over the range from 0 to 80 °C and are used with a Bruker BioSpin Micro2.5 gradient system in vertical wide-bore magnets

with bore sizes of 89 mm or larger. The newly developed dual ¹H/¹³C microimaging CryoProbe is also available.

Research Possibilities


- Investigations on plants, insects and other small animals, embryos, or histological tissue samples.
- Studies of porous and inhomogeneous objects at intermediate field strengths with minimum susceptibility distortions and highest sensitivity.
- Studies of fast dynamic processes.
- Microliter spectroscopy.

Detection of sugar transport. An Angiocanthos plant was fed with ^{13}C labelled glucose. The C1- ^{13}C bound protons (coloured) overlayed to a proton image of the system cross-section C1 $\alpha\text{-Glucose}$ (93 ppm (^{13}C), 5.42 ppm (^{14}H)), system field strength 9.4 T, cyclic J cross polarization method in-plane resolution of ^{13}C image: 156 x 156 μm^2 , slice thickness: 5 mm total scan time 4:00 h.

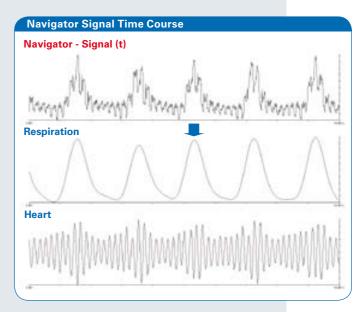
Courtesy of M. Wenzler, Max Planck Institut für chemische Ökologie, Jena, Germany

Excised spinal cord from a rat. Multi direction diffusion anisotropy experiment along three main axes (b=1088 s/mm²) at a spatial resolution of 23×23 mm², slice thickness $250 \, \mu m$, total scan time $22 \, min$.

Sample provided by C. Faber, T. Weber, Univ. of Würzburg, Germany

IntraGate

IntraGate™ is Bruker's unique selfgated cardiac MRI technique, delivering unsurpassed high-quality CINE cardiac imaging without any external triggering hardware. With IntraGate, the cardiac and respiratory cycles are derived from navigator signals that enable the acquisition and retrospective reconstruction of cardiac and respiration movies with full coverage of the R-R interval. In addition, self-gating with IntraGate guarantees a steady state condition during acquisition, thus avoiding the flashing effects common to conventional ECG triggering and respiratory gating. IntraGate is available for BioSpec®, PharmaScan® and Mirco-Imaging systems.


Navigator Signal Processing

The IntraGate navigator signal records physiological motion. Cardiac and respiratory traces can be separated from the navigator signal individually. Using this information, acquired data are rearranged according to their corresponding cardiac and/or respiratory phases. Cardiac motion, respiratory motion and combined cardiac and respiratory motion can be visualized from just one single data set. Temporal resolution of the CINE movies can be changed without reacquiring the data.

High-Resolution Cardiac MRI 8 mm

Features:

- Cardiac and respiratory movies with full coverage of the R-R interval, or respiratory cycle, respectively
- Combined cardiac and respiration movies
- Different reconstruction possibilities of a single data set
- Multi-slice data sets can be acquired in less than 5 minutes
- Time course function enables observation of non-cyclic motion like peristalsis or uptake of contrast agents
- Synchronous multi-slice CINE frames
- No triggering devices necessary
- Steady-state acquisition
- High-temporal and spatial resolution
- Predictable scan times in comparison to conventional triggering
- Image quality independent from cardiac rate

IntraGate CINE of a mouse heart at the ultra-high-field of 11.7 T with (110 x 110) μ m² in plane resolution

Content

EPR Products

- 56 ELEXSYS-II E780
- 58 ELEXSYS-II E500 CW-EPR
- 59 ELEXSYS-II E580 FT/CW
- 60 ELEXSYS-II E540
- 61 ELEXSYS-II Multi-Frequency
- 62 Multi-Resonance Accessories
- 63 EMXplus
- 64 EMXmicro
- 65 e-scan

Bruker Biospin

Electron Paramagnetic Resonance

Solutions for Life Science and Analytical Research

EPR

think forward

ELEXSYS-II E780

The World's First Commercial mm-wave 263 GHz **EPR Spectrometer**

60 mT 9380 9390 9400 9410 9420 9410

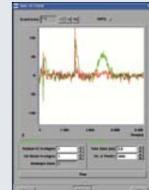
Tempol in polystyrene, 2 mW microwave power, modulation 10 G / 100 kHz, 5x10¹⁵ spins

Mn²⁺ in CaO, dispersion (top) and absorption (bottom) signal, sample volume 80 µl, microwave power 0.2 mW, modulation 1 G / 100 kHz

Bruker BioSpin has pioneered the world's first commercial mm-wave 263 GHz EPR spectrometer, ELEXSYS-II E780, representing a first step for Bruker's EPR division into quasi-optical microwave technology. It incorporates a unique superconducting magnet that can be ramped up to 12 T and is combined with new probe technology for optimum sensitivity, even on large samples up to 5 mm. Based on the well-proven Bruker ELEXSYS concept it provides multiple turn-key operation modes including, CW-, Pulse-EPR, ENDOR and ELDOR, thus enabling research groups for the first time, to routinely use very high frequency EPR technology.

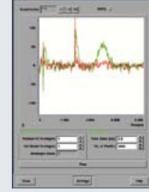
Features

- Enables mm-wave very-high field EPR at 263 GHz
- Quasi optical front-end featuring reflection and induction detection
- Superconducting EPR magnet incorporating 12 T main coil and 0.2 T sweep coil
- Multiple turn-key operation modes including CW-, Pulse-EPR, ENDOR and **ELDOR**
- High-sensitivity single mode resonator
- Non-resonant probe for samples up to
- Variable sample temperature from 4 to 300 K
- Safe and robust operation
- Runs routine software package Xepr

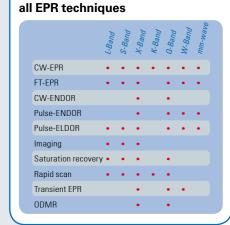

A Complete System

The ELEXSYS-II E780 is equipped with a quasi-optical front-end, featuring reflection and induction detection with safe and robust operation. The front-end is interfaced with a single mode resonator for highest sensitivity, and with a non-resonant probe featuring a larger diameter for samples up to 5 mm, both of which allow low temperature measurements down to 4 Kelvin. As with all other ELEXSYS systems, the E780 is driven by the proprietary Intermediate Frequency (IF) concept for optimum phase stability and pulse precision, and runs the Bruker software package Xepr, for routine and assisted expert work-

Very High-Field EPR Magnets


The ELEXSYS-II E780 is based on a unique superconducting magnet with specifications that match the the needs of very-high field EPR applications.

- Vertical field
- 89-mm bore
- Main field 0-12 T in < 100 min (21 bit)
- Homogeneity 10 ppm in 10 mm dsv
- High-resolution sweep coil (19 bit)
- High-resolution range 0.2 T



Spin echo of the E'center in quartz:

- Single shot
- Non-resonant probe
- Pulse sequence: 0.7-2-0.7 us

tions. **ELEXSYS-II: The only commercial** spectrometer series which covers

ELEXSYS-II Series

assured to keep track with new emerging demands of the EPR society. The

second generation of the pulse devices SpecJet-II and PatternJet-II have been

launched in 2006 and just recently

Yet another major development step

acquisition server has been replaced

and the SuperX microwave bridge has

been redesigned with improved speci-

fications. The new multi-purpose signal

processing unit (SPU) plays a central

role in the expanded capabilities of the

ELEXSYS-II, replacing the signal chan-

nel, fast digitizer, and rapid scan with a

single integrated unit offering unprec-

edented performance and specifica-

has now created ELEXSYS-II. The OS9

DICE-II has become available.

Redefining research level EPR Introduced in 1997 the ELEXSYS has become the renowned research platform for modern EPR. Over the years a constant technical evolution has

Quasi optical front-end of ELEXSYS-II E780

ELEXSYS-II E500 CW-EPR


SuperX: an ELEXSYS feature for the ultimate sensitivity in CW-EPR

The X-Band ELEXSYS instruments are equipped with the SuperX feature. SuperX comprises a selected high-power, ultra-low-noise Dual-Gunn source, and the super-high-Q cavity. The combination of these devices has resulted in an order of magnitude increase in sensitivity for CW-EPR in X-band. As one measure for sensitivity we specify a weak-pitch signal-to-noise of 3000:1 for the E 500 CW-EPR spectrometer.

Xepr for experiment design and data handling

Unprecedented flexibility and ease of use are the attributes of the Xepr software. Whether you are dealing with a simple CW experiment or a complicated multiple-resonance 2D experiment, the graphical user interface of Xepr ensures easy instrument control, experiment definition and execution.

58

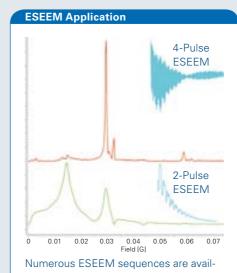
Cu²⁺ histidine at 20 K and 20 dB power

E 500 Accessories

- Teslameter
- Field-Frequency lock
- N₂ and Helium VT systems
- automated goniometer
- DICE-II ENDOR system
- microwave frequencies from L- to W-Band
- numerous dedicated probeheads
- large selection of magnet systems

E500 Highlights

- SuperX microwave units of world record sensitivity
- rapid scan module
- stationary and time resolved experiments
- multi purpose signal processing unit
- reference free spin counting


vity for ms

ELEXSYS-II E580 FT/CW

Pulsed EPR was initially the pride of selected laboratories until a real breakthrough was made by Bruker with the introduction of the ESP380 spectrometer in 1987. This event marked the beginning of a new era and set the standard for all future technical developments in EPR. The new generation of ELEXSYS-II FT/CW spectrometers has now been extended in frequency range ut to 263 GHz. With the recent introduction of the second generation pulse programmer and transient recorder, PatternJet-II and SpecJet-II, improvements in digital resolution and averaging capabilities have again pushed up the performance level of the E580.

PatternJet-II

Virtually no experimental limits are imposed by the PatternJet Series of pulse programmers. Designed for the needs of EPR this pulse programmer features a dynamic range of 10⁹, i.e. ns resolution over a time scale of up to one second. The well established concept of our first generation PatternJet has been

Numerous ESEEM sequences are available for increased sensitivity and resolution: 4-pulse (top) vs. the 2-pulse (bottom) ESEEM spectrum of powder spin label.

technically enhanced and carried on to the second generation PatternJet-II. A 1 GHz clock, ultra low jitter and increased memory size are the cornerstones for a further increase in experimental flexibility and precision in data acquisition.

kperidata

SpecJet II

With the first generation of SpecJet a dramatic improvement in pulse-EPR sensitivity could be achieved by high-speed signal averaging. The SpecJet-II now further enhances the abilities to capture fast and short lived transient signals. The real time display of the averaged echo/FID can now be toggled between time and FT mode and greatly facilitate spectrometer handling and signal optimization. With a sampling rate of up to 1 GHz and a pulse programmer with 1 GHz clock, the SpecJet-II is the perfect partner for meeting the evolving needs of pulsed EPR.

ELEXSYS-II E540 System

Biomedical research by EPR imaging is a rapidly growing field. Bruker's response to this development is the E540. Based on the proven ELEXSYS architecture, this instrument operates at 1 GHz and provides the seamless integration of imaging techniques into EPR spectroscopy. The imaging accessory can also be adapted to an X-band spectrometer for material science applications.

Gradient and Magnet System

EPR imaging uses continuous microwave irradiation and stepped field gradients in 3 dimensions. The 3D gradient coils provide up to 40 G/cm and are mounted on the pole faces of a dedicated L-band magnet or an X-band magnet.

To assure optimum performance, we have developed a variety of probes dedicated to specific applications.

E540R23

This probe has an access diameter of 23 mm, assuring a high-filling factor (sensitivity) for "small" animals.

E540R36

This probe has an access diameter of 36 mm and is well suited for whole body mice and rat brain applications.

An electronic matching control compensates effects from animal motion.

E540SC

The surface coil is designed for localized spectroscopy with or without magnetic field gradients. An electronic automatching and auto-tuning circuit assures ease of handling and compensates the undesired effects of animal movement during data acquisition.

Imaging Software

The graphical user interface provides a comprehensive, easy-to-use software package for all aspects of EPR imaging in 3 dimensions as well as spectral-spatial imaging in 4 dimensions.

The ImageViewer supports further analysis and visualization of the images, and the oximetry software package allows precise determination of tissue oxygen levels.

ELEXSYS-II Multi-Frequency

Multi-frequency EPR is commonly understood in terms of its relation to CW-EPR spectroscopy. Bruker's commercial Multi-frequency/Multi-resonance EPR covers both, CW-EPR and FT-EPR as well as Pulse-ENDOR and Pulse-ELDOR at a multitude of microwave frequencies. Thanks to the ELEXSYS platform design and the advantageous intermediate frequency (IF) concept, every ELEXSYS spectrometer can be expanded for stateof-the-art multi-frequency experiments; now and in the future. All features of the X-Band CW/FT microwave bridge are transferred to the new operating frequency. For each frequency band a dedicated probe provides a maximum of sensitivity and ease of use.

High-Frequency/High-Field EPR and ENDOR at 94 GHz

The ELEXSYS family of EPR spectrometers includes two W-band systems, the E600 and E680. The former is optimized for CW-EPR experiments at 94 GHz, while the E680 operates in both CW and FT-mode.

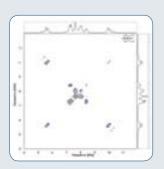
The variable-temperature W-band TeraFlex probehead operates from 4 K to 300 K. This resonator is available as an EPR and EPR/ENDOR version. Samples can be exchanged at any temperature.

6 T EPR SC

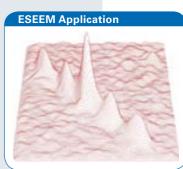
The second generation of W-band super conducting magnet features a horizontal field, a main coil with 6 T sweep range, permanent leads and a 2000 G high-resolution sweep coil. Easy and safe operation is accomplished conveniently by software only, which allows switching between the two operation modes just by a mouse click.

SuperQ-FT

One building block, introduced in 2002, is called SuperQ-FT, a Pulsed EPR microwave bridge operating at Q-band (4 GHz). The SuperQ-FT can be configured as a standalone unit or as an upgrade for an X-band E580. The ER5107D2 resonator is available as an EPR and EPR/ENDOR version.


W-band magnet

SuperL-FT


The Bruker IF Concept not only allows to up covert to higher frequency but also to down convert to a lower operating frequency. This is realized for the first time with the CW/FT microwave bridge SuperL-FT. Combined with a local oscillator at 8.5 GHz, all features of the X-Band CW/FT microwave bridge are transferred to a frequency range of 0.8 – 1.4 GHz.

SuperS-FT

The latest addition to our IF multi-frequency pulse-EPR suite operates in S-band (3.4 – 3.8 GHz) in CW and pulse mode. The SuperS-FT is available as an add-on to an X-band E580 spectrometer for X/S dual band operation.

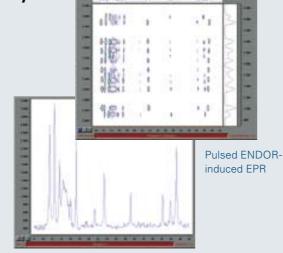
²H Q-Band single crystal HYSCORE

S-Band HYSCORE of BDPA

60

E540R23

Multi-Resonance Accessories



Flexline Pulse-ENDOR Resonator EN4118X-MD4

E560D-P DICE-II Pulse-ENDOR System

The DICE unit has been the cornerstone of pulse-ENDOR applications over many years. Now the second generation, DICE-II, has been developed with numerous enhanced specifications. To mention just one, the frequency range is 1 - 650 MHz covered by two bands.

DICE-II supports all known pulse-ENDOR and related techniques and in addition opens the way to new applications and pulse sequences. Multi-frequency pulse-ENDOR is supported by probeheads in X-, Q-, W- and mm-wave-band.

Davies ENDOR spectrum

E580-400 Pulse-ELDOR unit

Electron-Electron Double Resonance (ELDOR) has become a major tool in EPR applications over the last few years. The E580-400 ELDOR unit is available as an accessory to the E580 FT/CW-EPR system and transfers to all other bands generated by the IF concept.

Typical experiments that can be performed with the ELDOR unit:

- Saturation Recovery ELDOR to measure molecular dynamics
- ELDOR-detected NMR to measure the ENDOR-equivalent nuclearspin spectrum
- DEER to measure electronelectron spin distances
- Hyperfine Selective ENDOR to correlate the ENDOR and hyperfine spectrum

Specifications

- Digitally controlled solid-state microwave oscillator
- Frequency range of 800 MHz
- Pulse switching unit with 80 dB isolation
- Amplitude control with 30 dB dynamic range
- Fully software controlled

In order to make full use of the 800 MHz frequency range the ELDOR unit is complemented by the ultra broad band Flexline resonator series.

EMX*plus*

The foundation of EPR

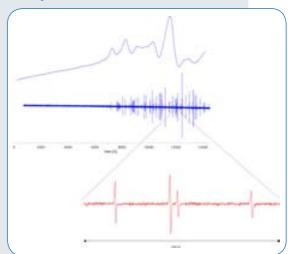
The EMXplus is the next generation of Bruker's successful EMX spectrometer line, well-known for its premium performance in CW-EPR research. The design of the EMXplus reflects its dedication to the heart of the matter: rapid and high-quality data.

Simply power-on the EMXplus and start your EPR journey. Following self-validation procedures, the EMXplus is ready to use via Bruker's WIN-ACQ software.

The Perfect Duo I

The Signal Channel and Field Controller work together seamlessly to provide practically unlimited resolution on both axes: field and signal intensity.

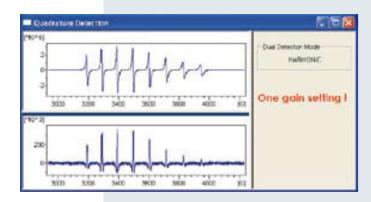
The Perfect Duo II


The EMXplus Signal Channel now offers two detection channels in one. Simultaneous quadrature and 1st & 2nd harmonic detection schemes are just a mouse click away.

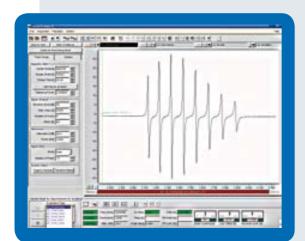
Accessories & Options

- The PremiumX microwave package for enhanced sensitivity
- The Variable Temperature Controller can be incorporated into the EMXplus console
- The ER036TM Teslameter ensures precise g-factor determination in combination with the integrated microwave counter
- The EMX-ENDOR package allows CW-ENDOR experiments to be performed on EMXplus Systems
- The full range of microwave frequencies from L- to Q-Band

Ultra-high-resolution over large sweep



The spectra show oxygen in air at ambient pressure (top) and reduced pressure (middle) measured at Q-Band. A sweep range of 14 kG was recorded with 180000 points, resulting in a resolution of 80 mG, sufficient for the line width of 300 mG at reduced pressure.


EMX*micro*

The EMXmicro completes the EMX family and features an electronics cabinet with the footprint of a PC tower. The instruments micro cabinet can be combined with all electromagnets and microwave bridges from L- to Q-Band.

The standard software of the EMX series for data acquisition and processing is provided by WinACQ and WinEPR

Dual-mode simultaneous detection of 1st and 2nd harmonic EPR spectrum of a vanadyl sample

Xenon user interface

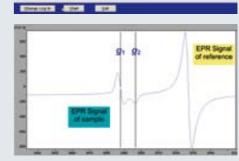
Xenon

This new software package is an option for the EMXmicro/plus series. It features a Linux® front end PC with a new graphical user interface integrating acquisition and processing in a user friendly environment. Xenon features numerous novel tools for data acquisition and processing, e.g. the direct spin counting method without reference sample.

e-scan

Bruker BioSpin's e-scan product line of table-top EPR (ESR) readers offer dedicated and tailored turn-key systems for specific Quality Control applications as well as systems for medical and pharmaceutical R&D applications of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS). All e-scan systems have been designed for and have proven rock-solid in 24/7 operation with the best possible price-performance ratio available today.

A few example applications fields for e-scan:


- Irradiation Dosimetry with Alanine Dosimeters (ISO/ASTM method)
- Food Irradiation Control (EU standard methods)
- Beer Shelf Life: flavour stability and antioxidant stability (patented application)
- Biomedical EPR research: ROS and RNS detection and quantification

e-scan food control inserts (left) and the cavity template. (right).

EPR spectrum of an irradiated chicken bone recorded with the e-scan Food Analyzer.

Content:

MS Products

68 MALDI-TOF and TOF/TOF

70 ION Trap

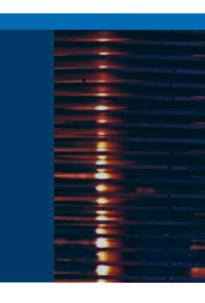
72 ESI-TOF

74 UHR-TOF and FTMS

76 Ion sources, EASY-nLC

and Compass

78 Proteomics Solutions and Chemistry


80 Small Molecule Applications

For research use only.

Not for use in diagnostic procedures.

Bruker Daltonics

Mass Spectrometry

• Solutions for Life Science Research

MASS SPECTROMETRY

67

think forward

MALDI-TOF and **TOF/TOF**

The well-known Bruker Daltonics FLEX MALDI-TOF-series stands for maximum performance and reliability. Applicationsspecific solution packages, like MALDI Molecular Imager or MALDI Biotyper, provide maximum flexibility and scalability of the system to answer challenging questions in expression proteomics, clinical proteomics and functional genomics.

microflex LT/microflex

The microflex instruments are affordable, easy-to-use and compact benchtop MALDI-TOF systems with superior performance. The modular design supports different and growing user requirements. Unbeaten 15k resolution and microScout MALDI targets in 1/4 MTP format distinguish the microflex from other benchtop MALDI-TOF systems.

autoflex III smartbeam

autoflex III smartbeam

Innovative MALDI-TOF and TOF/TOF MS technology for reliable and detailed protein characterization, high-resolution MALDI imaging and validated biomarker discovery. The innovative smartbeam-II™ laser technology in combination with dedicated high-speed bioinformatics enables LC MALDI and MALDI imaging applications with unrivalled speed, improved sensitivity and excellent resolution. smartbeam-II outclasses YAG-only laser technology and provides top-performance with any chosen matrix - with an adjustable laser repetition rate from 1 – 200Hz and computercontrolled, adjustable laser focus size from 10 – 100 μm for highest spatial resolution.

spectrometry performance: Incredible sensitivity, resolution and mass accuracy for high-success expression proteomics, quantitation and advanced biomarker discovery studies. First commercially available 1 kHz smartbeam-IITM laser technology gives access to superior performance in any proteomics project.

Our TOF/TOF technology provides enhanced ion optics for cutting-edge MS/MS experiments and second generation PAN™ "panoramic" resolution allows impressive simultaneous mass

leading to reliable top-down sequencing capabilities.

The latest innovation in MALDI mass spectrometry is the TOF/TOF technology for ultimate performance in both 2D gelbased and LC-based proteome analysis. Our patented LIFT™ technology with up to 1 kHz data acquisition rate and a highly automated workflow provide high-quality MALDI-TOF and TOF/TOF information from minute sample amounts in just seconds.

ION Trap

Bruker's novel amaZon ion trap series opens up new performance levels for any kind of analytical requirements.

Equipped with dual ion funnel transfer for 10x improved sensitivity, novel technology for highly accelerated data acquisition as well as a mass resolving power up to 20,000, this ion trap reaches unrivalled data quality and extreme flexibility for a broad variety of complementary applications like proteomics, metabolomics, compound screening and identification as well as chemical analysis.

The amaZon series is available in two versions: amaZon ETD for proteomics, and amaZon X for small molecule analysis and applied markets.

The amaZon series of ion traps equipped with the renowned spherical high-capacity trap, combined with an ingenious detector design, offers high performance and superior data quality for a large range of applications – tailored for highest productivity. Transforming speed to information, the amaZon series perfectly answers today's challenges in molecular characterization.

Spherical ion traps are ideal tools for ETD & PTR:

- Simultaneous storage of + and ions with direct ETD reaction as soon as anions enter the trap
- 2. Cations and anions are pushed towards the center of the trap:
 Excellent cross section for ionion-reactions
- 3. Perfect combination of resolution for up to 6+ charge states at highscan speed of 4,600 u/sec
- 4. High m/z range of 3,000 u
- 5. Easy and fast switching between ETD and PTR simply by changing electrical potentials
- 6. High-mass accuracy (< 0.15 Da) for fast protein database searches and successful de novo sequencing. Features that translate directly to highly efficient ETD reaction and superior data acquisition.

 Exceed the Limits of all Previous Ion Trap Technologies

High-Capacity Ion Trap for highest information content

Support of all widely used Cap- and nanoLC systems

ProteinScape 2 bioinformatics database system (see Application Note MT-84/LCMS-50)

Fully automated screening for toxins/drugs based on MS/MS library search. Push button solution in open access environment.

amaZon X / amaZon ETD

The new amaZon series incorporates key inventions for unprecedented capabilities:

- First ion trap system with dual ion funnel transfer for 10x improved sensitivity over current platforms
- Unrivalled scan speed of 52,000 u/sec at better than unit resolution for fastest UPLC applications and a maximum duty cycle in data-dependant MS/MS and MSⁿ
- Ultimate ion trap mass resolving power up to 20,000 in full scans across the 50-3,000 m/z range at HPLC speed.
- Latest ETD/PTR technology for most efficient, extremely robust and sensitive peptide and protein fragmentation. The combination of bottom-up CID or ETD and top-down ETD/PTR provides new ways for detailed protein characterization in, e.g. the unambiguous elucidation of posttranslational modifications and the full coverage of the amino acid sequence including N- and C-termini.

ETD was first commercially available on Bruker ion traps and is incorporated in all amaZon ETD systems or available as a field upgrade for all amaZon X systems.

"Zero Delay Alternating" for highspeed ion polarity switching without any sensitivity and time compromise. Up to 20 Hz MS data acquisition in both polarities provides for an ideal combination with fast UPLC separation. Supported by spectral MSⁿ libraries, the amaZon is the ultimate mass spectrometer for MS/MS based multi-compound screening.

ESI-TOF

Get ultimate confidence in your results. Bruker Daltonics' micrOTOF IITM and micrOTOF-Q IITM mass spectrometers feature the very lastest technology developments to provide maximum certainty in your research in Small Molecule Identification, Metabolomics or Proteomics.

Precious sub-ppm confidence is available for formula determination in pharmaceutical impurity analysis, metabolite identification, pesticide screening and toxicology & doping analysis.

Simultaneously, three dimensions of information promote your analytical tasks to unrivaled heights of confidence:

- 1. Measure with unequalled accurate mass.
- 2. Validate with sub-ppm confidence using unequaled True Isotopic Pattern (TIP) analysis.
- 3. Benefit from accurate mass and TIP also in fragments analysis in MS/MS mode with the micrOTOF-Q II.

Highest confidence in analytical and scientific tasks is achieved by the concurrent availability of market-leading sensitivity, wide dynamic range mass accuracy and superb focus resolution power.

Automated detection of multiple compounds and ID of unknowns (see Technical Note ET-12)

High-resolution Extracted Ion Chromatogram (hrEIC)

micrOTOF II focus

Featuring a mass resolution exceeding 16,500 FWHM and mass accuracy of better than 2 ppm in combination with true isotopic pattern analysis, micrOTOF II is the perfect choice for straightforward formula determination of small molecules, quality control of intact proteins, and metabolic studies.

Easy Formula Determination

UHR-TOF

Intens. x104

1.25

1.00

0.8 ppm accuracy

43,000 resolution

0.75

0.50

0.25

0.00

359.241306

360.243507

356 357 358 359 360 361 362 m/z

The latest development from Bruker, the novel UHR-TOF ultra-high resolution technology, again proves Bruker Daltonics leadership in the design of cutting-edge mass spectrometry.

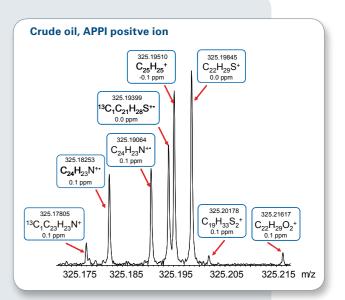
Maximum information @ maximum speed

maXis™ is a high-resolution tandem mass spectrometer offering a no-compromise solution for exceptional accurate mass, high-resolution and high-sensitivity analysis at a speed able to take full advantage of ultra-high performance chromatography.

With resolution in excess of 40,000 FWHM and MS and MS/MS mass accuracy typically between 600 – 800 ppb at speeds of up to 20 full spectra per second simultaneously, no other mass spectrometer is better equipped to deliver definitive data on complex samples in proteomics, metabolomics and small molecule identification challenges.

FTMS

solariX ®


solariX, the next-generation hybrid Qq-FTMS, is an easy to use, high-performing system that is equipped to address the most challenging proteomics and complex mixture applications.

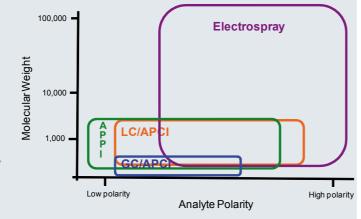
The broad-band, ultra-high resolving power (> 1,000,000 @ m/z 400, 7 T) is essential for tackling complex mixtures, especially those that are not amenable to on-line separation techniques such as; hydrocarbon related analysis ("petroleomics"), environmental analysis, and metabolomics.

For applications that require highperformance LC-MS or LC-MS/MS, the solariX is ideally suited. New functionality provides more resolution when it is needed most and with optional, faster acquisitions for MS/MS data.

Added top-down versatility is provided with fully enabled Electron Transfer Dissociation (ETD). This exciting new technique, combined with FTMS performance, is superb for the comprehensive analysis of proteins and peptides and their subtle, posttranslational modifications.

The solariX can be configured with Dual ESI/MALDI (based on advanced ion funnel technology) and a range of API source options (APCI, GC-APCI, APPI). Low maintenance, refrigerated magnets are standard with solariX and can be configured with one of several magnetic field options (7T, 9.4T, 12T and 15T).

Ion Sources


The key to performance and flexibility

In Mass spectrometry, the performance of the MS system in terms of mass resolution, mass accuracy and mainly sensitivity, depends strongly on the method of ion generation. There is no single ion source for any application; polar and non-polar, big and small molecules require different ionization techniques. Especially for LC/MS systems there are numerous ion sources available to meet any possible application. Bruker Daltonics offers the biggest variety of ion sources, all of them with special features and some of them really unique.

micrOTOF II with GC/APCI source and heated transfer line.

Types of ion sources and their fields of application taking the molecular weight and the polarity of the analyte into account.

API sources

In general atmospheric pressure ionization (API) is more gentle than vacuum ionisation techniques like electron impact (EI). Therefore API is used for larger molecules like peptides which would undergo uncontrollable fragmentation at vacuum ionisation.

GC/APCI

The GC/APCI source allows the coupling of a GC on a Bruker LC-MS (TOF-MS, UHR-TOF, FTMS). If just a few samples need to be analysed by a high-resolution MS there is no need anymore for an expensive, dedicated GC. Switchhing from LC to GC and vice versa can be done within minutes without breaking the vacuum. This option allows for the first time the coupling of a GC with a real high-performance mass spectrometer for unambigous formula determination or high-resolution extracted ion chromatograms.

HPLC for nano-LC-MS/MS Proteomics

EASY-nLC: "One Click" separation

It is easy to handle, steady and reliable. It is a 1D-nanoflow HPLC system tailored to the requirements of today's proteomics applications. It is the straightforward gateway to proteomics discovery and provides the researcher with:

- Simplicity: Easy installation & operation
- Reliability: Robust & steady
- Low-Maintenance: Split-free gradient mixing
- A 2D LC-kit is available as an option
- Efficiency: minimum peak widths
 < 5 sec.
- Compact design with small footprint

Ease of use and split-free flows Max

The EASY-nLC is a compact, innovative and affordable nano-HPLC system for state-of-the-art proteomics laboratories. Split-free binary gradient mixing down to the low nanolitre/min range are made possible by precise direct drive pumps. Bruker Daltonics' Compass™ software environment fully integrates the EASY-nLC with Bruker Daltonics mass spectrometry systems.

Maximize productivity

Easy-nLC operation is optimized for Bruker Daltonics mass spectrometry instrumentation, whether it is connected online to amaZon X or amaZon ETD ion traps, micrOTOF ESI-TOF systems, FTMS sytems or the PROTEINEER fc II MALDI sample collector for offline measurements with FLEX series MALDI-TOF/TOF instruments. Intuitive and simple software allows the integrated control of the whole experiment.

Compass - the common user interface

Bruker Daltonics' unified software environment for all life science instruments integrates our successful modules for instrument control, data acquisition, processing and interpretation with a new, global method management. The optional Compass Security Pack provides all necessary functions to support work in compliance with FDA and EU regulations (21CFR part 11/Annex 11).

The database system for proteomics project management

ProteinScape is Bruker Daltonics' central bioinformatics platform for storage and processing of MS data. The embedded processing pipeline maximizes the outcome and reliability of your protein identification. ProteinScape is the bioinformatics backbone of the HUPO Brain Proteomics Project.

Proteomics Solutions

Protein characterization

The Proteomics solution is a comprehensive, integrated platform supporting all major LC and gel-based strategies that allow to identify and quantify proteins at proteomic scale. The ProteinScape™ software is the bioinformatics heart. providing a single software platform for identification and quantification by gelbased analysis, label-free and labeling technologies such as SILAC, ICPL or iTRAQ™, using any of Bruker Daltonics mass spectrometer platforms. Reporting tools following the HUPO-PSI guidelines accelerate the publication process of proteomics studies dramatically, using ProteinScape. Both, top-down and bottom-up strategies are supported comprising detailed protein characterization tools unique in the market: PTM discovery with ETD II on amaZon enables powerful phosphorylation, glycosylation and epigenomic work; top-down protein sequencing provided by the MALDI-TDS on the ultrafleXtreme with ISD and T³-Sequencing is replacing Edmansequencing in the near future for N- plus C-terminal sequencing of intact proteins even in case of N-terminal protein modification.

Detailed Protein Report Figure 1848 Water Street Street Figure 1849 Figure 1849

ProteinScape 2

Easy and intuitive data evaluation and comprehensive data reporting with ProteinScape 2.

MALDI imaging

The MALDI Molecular Imager™ is based on solariX and FLEX-series MALDI-TOF MS with smartbeam-II™ laser technology to combine MALDI-TOF MS technology with histological tissue imaging. The system enables high-sensitivity imaging of protein biomarker candidates in biological and clinical research based on their spatial distribution in tissue sections. The complete imaging solution provides all tools necessary for successfull MALDI imaging: the fullyautomated ImagePrep™ station, mass spectrometry, as well as data analysis and statistical evaluation software.

MALDI imaging of rat brain. See Application Note MT-91 for details.

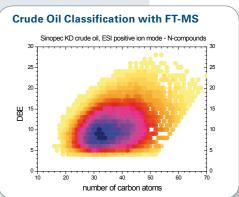
ID of microorganisms

The MALDI Biotyper allows fast and reliable identification and classification of microorganisms, such as bacteria, archaea, yeasts or fungi. Single bacterial colonies can be directly taken from the agar plate and transferred onto a MALDI sample target. There is neither a need for any prior PCR amplification, nor for the usage of selective growth media nor for any other preassumptions, which may influence the outcome of the analysis. The MALDI Biotyper software identifies microorganisms by the species-specific signal patterns contained in their respective molecular profiles.

plates and a dedicated software that controls the acquisition of MALDI-TLC mass chromatograms and their analysis. MALDI-TLC provides direct access to molecular information for various applications: from quick tests in the organic synthesis lab to identify side products to lipidomics and lipid profiling and all analysis of groups of organic molecules for which no stale HPLC procedure is available.

Lipidomics

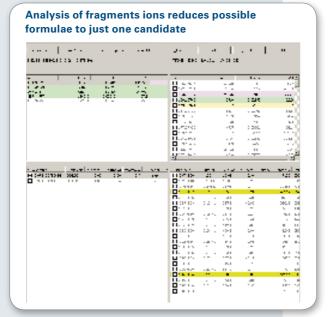
The direct coupling of thin layer chromatography with MALDI is enabled by a new adapter target for Merck's 5*7.5 cm aluminum backed HPTLC


Polymer analysis

MALDI-TOF mass spectrometry and PolyTools™ software enable for the rapid determination of monomer units and end groups of oligomeric resolved polymer mass spectra. Characteristic values of the polymer, like weight average molecular weight (MW), number average molecular weight (MN), polydispersity and degree of polymerization are automatically calculated from the mass spectra.

Petroleomics

Crude oil is a very complex mixture. The analysis of the elemental composition of single compounds of crude oil is achieved using ultra-high resolution Fourier Transform Mass Spectrometry (FTMS). Quantitative information of compound classes in crude oil is indispensable in many industries. Applying different ionization techniques such as ESI, APCI and APPI in negative and positive mode enables the comprehensive classification of crude oil.


DBE Plot vs. carbon atoms of compound class N in positive ion mode of crude oil 3/1.

Small Molecules Applications

Identification of unknowns

The precise mass TOF-MS systems by Bruker are ideally suited for the identification of unknown substances in an LC run. The combination of accurate mass information and True Isotopic Pattern allows an unrivalled confidence in the outcome and a dramatic reduction in the remaining number of possible formulae. Common structure elucidation algorithms are just using the exact mass and isotopic pattern of the precursor ion and the exact mass of the fragment ions. By SmartFormula 3D the isotopic pattern of the fragment ions is used additionally. By this possibility the number of possible hits is in most cases reduced to 1. The sophisticated algorithm combines the information of precise mass with multistep fragmentation, thus dramatically List of sum formulae after reduction by accurate reducing the number of possible formulae. mass and True Isotopic Pattern.

Screening of multiple pesticides in a single run

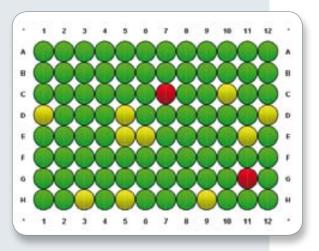
The usefulness of LC/MS/MS for the unambiguous identification and quantification of pesticides in complex matrixes are well known as the ESI-TOF system can generate highspecificity without limiting the number of simultaneously observed target compounds. Further benefits are:

- 1. Due to mass accuracy apparently independent of peak intensity, it is possible to generate extracted ion traces with a window down to a few mDa, allowing for extreme selectivity and simple and fast identification.
- 2. Due to the conserved correct isotopic pattern, it is possible to reduce the number of possible hits within a given mass interval by at least an order of magnitude. The derived SmartFormula strongly helps to find the correct elemental composition.

List of compounds detected

Analysis of a complex pesticide mixture detected with one single run. Resulting search in TargetAnalysis database based on accurate mass, isotope pattern and retention time identified more than 250 compounds in a mass range from m/z 100 to m/z 1000.

Metabolite detection


The major task of metabolite identification is rapid and reliable elucidation of structural changes. This fact applies to metabolism of both xenobiotics and endogenous compounds. Liquid chromatography hyphenated to atmospheric pressure ionization mass spectrometers (LCMS) has become an integral part of metabolite identification, and especially ion trap mass spectrometers with their multiple MS capability have proven excellent tools for this purpose. Since data acquisition is performed nowadays in an automated fashion, data interpretation has emerged as new bottleneck in the identification process. The integrated solution provided by Bruker Daltonik, consisting of a state-of-the-art MS (either ion trap, TOF or FTMS) and a sophisticated software combination of DataAnalysis.

OA/QC

Deliver an expert analytical result first time to every walkup lab user, whatever their knowledge or experience. Compass OpenAccessTM is the ideal client/server software system to combine with the unique chemical formula generation capabilities of the Bruker Daltonics micrOTOF IITM, defining a new level of certainty in chemical information from open-use LC/MS.

Compass OpenAccess allows the guided use of LC/MS systems, all under a simple user interface to select appropriate analytical tasks with prepared SOPs. It automatically handles even more advanced analytical tasks on behalf of the user, such as automated analysis of isotopic patterns and evaluation of chemical species using SmartFormula™.

and MetaboliteTools provides novel tools for both metabolite prediction as well as sophisticated detection and thus significantly speeds up data interpretation in this specific application.

	Sample	Expected-crawle	meas. w/z	intri[ppint] sigma
13	4 Contratorio	C22H31N03	358,237543	0.356 0.000
18	√ Terfenodine	C39H41N02	472,320332	2.067 (3000)
W		C37H67NO13	734,467653	1.177 BOSE 6
1	4 S.Fadewthoone	C12H14V4045	311,07999+	3.081 BOOM 2
13		C10H908M005	205.020004	2610 10000 2
w	√ Sull'amethicole	C9H309H0Q52	271.031605	0.695 0.004
1	4" S.//amethiscine	C12H14N402S	279,090340	2.448 BIDE 2
13	√ Caybutyrin	C23H31N03	350-236397	1.079 (0.00)
æ	√ Citybutyrin	C22431N03	350.237377	0.019 (9.004)
1	√ Terfersedire	C32H41N02	472.321037	0.065 0.0tt 2
THE	√ Erythramyan	C37H67N013	734.467501	1,076 (100)
w	√ sufadirethorina	C12H14N4045	311.000751	0.324 (8000)
1	4" 5.Eachiomowidazine	C10H90NH02S	285,020011	2.595 BIOSE C

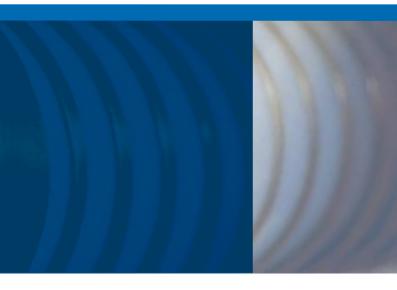
Confirmation of formulae at a glance: Colorbased confirmation is visualized in a well-plate representation. More details are obtained from a result table of compounds using Compass OpenAcess QC.

Content:

CBRN Products

84 Prepared for a World of Changing Threats

Answers for Life


Stay Prepared - Prepared for

the Worst

87 Expect the Unexpected

Bruker Detection

CBRN

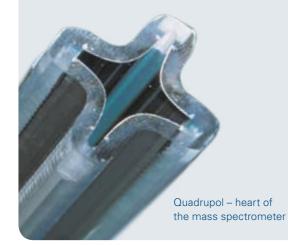
 Chemical, Biological, Radiological and Nuclear Detection

CBRNE DETECTION

83

think forward

Prepared for a World of Changing Threats


The complete product line for **CBRN** detection

CBRN detection technology has always been the core competence of Bruker Daltonics. As the first supplier on the market, we cover the complete range of chemical, biological and nuclear detection. Bruker is specialized in development, engineering and manufacturing of military hardened and easy-to-use analytical systems and is ISO9001 certified.

The product line supports all possible use cases for the detection of various threats, and includes handheld point detectors as well as detection systems for reconnaissance vehicles, shipboard or stationary use. Bruker provides sophisticated CBRN evaluation and monitoring software.

Safety and Security

Major events such as summits, concerts, parades or sporting events are part of critical infrastructure and may be targets of terrorist attacks with CWA and TIC. Harbor and airport areas as well as any public buildings are also most sensitive in terms of any release of hazardous agents. Stationary and mobile Bruker detection equipment can be integrated into monitoring systems for critical infrastructure.

Bruker offers a wide product range including

- Mobile Mass Spectrometers
- Ion Mobility Spectrometers for real time detection of CWA and TIC
- Stand-off detectors based on passive FTIR
- Radiation Meters
- Non invasive identification of CWA in ammunition

System Integration

Our CBRN detectors can be easily integrated into any kind of CBRN detection system. The systems are deployed under various environmental conditions. Ruggedised design and sophisticated accessories allow flexible and extensive applications for the detection of hazardous compounds by mounting the systems on vehicles, ships, helicopters, shelters or by hand-held use under field conditions. Sophisticated software supports the integration of our CBRN detectors. Bruker has over twenty years of experience in systems integration.

Bruker Detection confronts the needs of airport-, emergency responder-, event- and border-security personnel not only with military equipment. Special designed products face these challenges.

RAID-AFM

The innovative RAID-AFM is the only available stationary IMS without a radioactive source. It can be deployed for chemical and radiological detection in vulnerable areas such as airports, sea ports, sports arenas and other public facilities.

(NC-Version)

Mobile-IR

Most chemical substances have their own infrared signature; just like a fingerprint. With the new portable FT-IR spectrometer Mobile-IR, it is easy to identify unknown chemicals in just a few seconds, by comparing the fingerprint of the substance with included data bases. Unlike other portable instruments, the Bruker Mobile-IR is designed to be used under adverse conditions. It is waterproof to IP67 standards, and offers a high degree of shock protection.

Mobile-IR

E²M

The enhanced environmental mass spectrometer E²M is a mobile, compact and lightweight GC/MS system for fast, reliable onsite identification of organic chemicals from any medium (soil, water, air). Typical fields of application are environmental protection, mobile on-site analysis and event monitoring. The E²M fully supports first responders and homeland security detection and identification activities.

Stay Prepared – Prepared for the Worst

The challenge of asymmetric threats in various environments requires highly flexible equipment. Bruker Detection provides a assuring track record of such equipment, used all over the world. As technology market leader for more than 25 years we are ready to "Stay prepared - prepared for the worst".

Stand-off detector for atmospheric pollutants

A compact, mobile infrared detector for real-time remote sensing of chemical agent clouds. All known CWA and important Toxic Industrial Chemicals (TICs) can be automatically identified and monitored over a distance of several kilometres – either stationary or on the move. Latest developments have resulted in linking two ore more RAPID's to setup a triangulation system and allowing tomographic reconstruction of CWA clouds.

RAPID - easily deployable chemical stand-off capabilty on various platforms.

The new MM2 sets a milestone in GC/ MS technology with a volume of 43 litres and a weight of 35 kg. Equipped with improved Gas Chromatography/ Mass Spectrometry technique it represents the new generation of quadrupole mass spectrometers. The MM2 is optimized for long-term chemical reconnaissance in various armoured vehicles, as well as for mobile chemical agent inspection and detection missions.

RAID series

A series of chemical monitors, covering multiple tasks including monitoring of collective protection facilities and CBRN filter stations, as well as handheld point detection for personnel protection purposes. Based on the well-established Ion Mobility Spectrometry, all important CWA and Toxic Industrial Chemicals (TIC) can be monitored.

The innovative RAID-XP combines chemical and radiological detection into one system.

The RAID-M 100 is distinguished by its flexible and easy use for portable and hand-held deployment. It is designed for fast and sensitiv detection and identification of CWA and TICs.

The RAID-S2 is specially designed for long term operations. The instrument can either be operated separately, or several instruments can be connected in networks.

The µRAID is a compact, easy-to-use IMS based chemical agent detector for personal use.

Integrated RAID-S2 sensors

Content:

Vibrational Spectroscopy

90 FT-IR Spectrometers

92 Raman Spectrometers

93 FT-IR and Raman Microscopy

94 FT-NIR Spectrometers

95 Process Analytical Technologies

Bruker Optics

Vibrational Spectroscopy

Advanced Research and QA/QC Solutions
Based on Infrared and Raman Spectroscopy

IR/NIR/RAMAN

think forward

FT-IR

Bruker Optics has the industry's most comprehensive FT-IR product-line; from the world's smallest FT-IR spectrometer to the world's highest resolution.

ALPHA

About the size of a lab book, the world's smallest FT-IR spectrometer ALPHA will play a big part in your daily routine. Plug & play set-up, easy-to-use software, combined with QuickSnap™ sampling modules assure powerful and reliable FT-IR analysis you expect from Bruker. ALPHA is ideal for academic teaching and routine industrial applications.

ALPHA with ATR Sampling Module

Mobile-IR Portable FT-IR

Material Identification Anywhere!
Bruker's Mobile-IR is a self-contained,
rugged portable FT-IR spectrometer
that provides benchtop performance,
wider spectral coverage and higher spectral resolution. It's ideal for crime scene
investigation, environmental monitoring and hazardous material identification
applications.

Mobile-IR

EM27 Open Path FT-IR

Providing laboratory grade performance, the EM27 open-path FT-IR can easily be deployed in the field for various environmental air monitoring applications. Emissions from smoke stacks and waste disposals, hazardous emissions from chemical accidents can be observed with an operating range of up to several kilometers.

EM27 Open Path FT-IR

Most Comprehensive FT-IR Product Line;
 from the Smallest in Size to the Highest in Resolution

TENSOR 27 FT-IR Spectrometer

VERTEX 70 FT-IR Spectrometer

VERTEX 80v Vacuum FT-IR Spectrometer

TENSOR Series

If you need a FT-IR spectrometer that can rapidly identify, quantify and verify your routine samples, TENSOR is the right tool for your laboratory. It combines the highest performance and outstanding flexibility with ease of use. A full line of sample compartment and external FT-IR accessories enable it to be used for various challenging applications.

VERTEX Series

The VERTEX Series is built on a fully upgradeable optics platform that is designed with the utmost flexibility in mind. Multiple input and exit ports allows users to connect various external and internal accessories and components to customize the instrument based on applications. VERTEX spectrometers share a wide range of features and utilize patented RockSolid™ and UltraScan™ interferometer designs. With the vacuum models, peak sensitivity in the mid-, near-and far IR regions is obtained without the fear of masking very weak spectral features by air water vapor absorptions.

IFS 125 Series

The IFS 125 is built for performance with each instrument component optimized to approach the theoretical limit of sensitivity. It offers the highest spectral resolution available down to 0,001 cm⁻¹, a resolving power of up to 10⁶ and the wide wavelength range from 5 cm⁻¹ in the far-IR/THz to 50,000 cm⁻¹ in the UV. The mobile IFS 125/M is dedicated to gas phase absorption studies, frequently applicable to atmospheric research.

Raman

The Raman effect is based on the inelastic scattering of monochromatic light with matter. As the complementary vibrational technique of IR spectroscopy Raman provides detailed molecular structure information. Due to its nondestructive characteristic, Raman spectroscopy is ideally suited for in-situ analysis of macro and micro samples ranging from materials research to quality control. The Raman spectrum reveals valuable information about crystallinity, polymorphism and phase transitions. Raman spectroscopy combines high-information content, no sample preparation and the use of fiber optic probes for remote sampling.

Bruker Optics added FT-Raman capabilities to its product line shortly after the technique was first reported in late 1980s. Since then, continual hardware and software improvements, as well as the development of various sampling accessories, helped Bruker maintain the tradition of innovation and excellence in this scientific instrumentation technique. Today, Bruker offers a variety of Raman (both dispersive and Fourier transform) instruments for laboratory and process applications.

MultiRam

The MultiRAM is a stand-alone highperformance Fourier transform Raman spectrometer. It has a large sample compartment to utilize an extensive range of pre-aligned sampling accessories that are designed to accommodate all types of sample formats; from powders to liquids in vials.

RAMII FT-Raman Module

Designed as an add-on module, Bruker's RAM II is a dual-channel FT-Raman spectrometer that can be coupled to VERTEX series multi range FT-IR spectrometers. It combines fast and easy sample handling and maximum suppression of disturbing fluorescence, expected from FT-Raman.

MultiRam Stand-Alone FT-Raman

RAMII coupled to VERTEX 70 FT-IR

FT-IR & Raman Microscopy

Sample visualization is the important first step in the analysis of almost any sample. Infrared and Raman spectroscopy are versatile and powerful analytical techniques that can be applied to micro-analysis. Bruker's FT-IR and Raman microscopes are built on state-of-the-art optical microscopy platforms that provide optimal sample visualization and also feature chemical imaging and mapping. Areas of applications include material science, forensics, mineralogy, failure analysis, content uniformity, sample homogeneity and quality control.

HYPERION™ Series

Featuring full automation, infrared chemical imaging, crystal-clear sample viewing and a wide variety of IR and visible objectives, the HYPERION™ series provide everything needed to conduct the most demanding microanalysis easily and efficiently. It can be coupled to TENSOR and VERTEX Series FT-IR Spectrometers.

The HYPERION™ 3000 represents the pinnacle of infrared microspectroscopy, incorporating state-of-the-art Focal Plane Array detectors for the most demanding infrared imaging applications. High-resolution chemical images can be collected in a matter of seconds.

SENTERRA Raman Microscope

SENTERRATM

Bruker's SENTERRATM is an easy to use Raman microscope that combines many novel features such as the patented SureCal permanent calibration, fluorescence rejection and on-demand confocal depth profiling. With a wide variety of excitation lasers providing high-spectral resolution, it is ready to challenge any microanalysis research applications.

RamanScopelll

When sample fluorescence is a problem, FT-Raman microscopy with near infrared 1064 nm excitation is frequently the only solution. RamanScopeIII can be coupled to Bruker's FT-Raman spectrometers, and be combined with the SENTERRATM dispersive Raman microscope as a hybrid solution.

FT-NIR

Discover the flexibility of Near Infrared Spectroscopy

Choosing the best possible sampling method is crucial when solving a specific analysis task. Near-Infrared Spectroscopy (NIR) is an ideal technique for both online as well as in the laboratory. It offers several advantages over traditional methods, including the ability to make measurements remotely over fiber optics, rapid results, and multiplexing capability.

NIR spectroscopy has largely replaced a number of wet chemical analysis methods. With the fiber optics and the integrating sphere sampling techniques, NIR spectroscopy does not require any sampling preparation. It is a fast and precise tool for the nondestructive analysis of liquids, solids and paste-like materials, saving costs by reducing time and reagent use.

MPA Multi Purpose Analyzer

Bruker's dedicated FT-NIR spectrometer MPA offers everything you need for the analysis of liquids, solids, powders and tablets. Selection of the different measurement accessories is completely software controlled and validated, without the need for any manual exchange.

MATRIX™ Series

The award winning MATRIX™ series process-ready FT-NIR Spectrometers incorporate state-of-the-art optics for outstanding sensitivity and stability. Available configurations include fiber optic coupling up-to 6 probes and integrating sphere.

Process Analytical Technologies

Today, many companies are not only striving to manufacture high-quality products, but also increase production efficiency by installing the analytical systems directly into their production plants. This improves process verifiability and gives the company the opportunity to optimize material use.

Bruker's technology base includes FT-IR, FT-NIR, Dispersive NIR and Raman Spectroscopy. This allows us to offer a choice of analytical solutions based on applications or sampling points. The robust design of our spectrometers enable use in tough conditions in the production plant.

MATRIX-F duplex FT-NIR Spectrometer

MATRIX-MF FT-IR Reaction Monitoring

SENTINEL Dispersive Process Raman

MATRIX-F FT-NIR Spectrometers

The award winning MATRIX-F FT-NIR spectrometers allow the direct measurement in process reactors and pipelines, leading to a better understanding and control of the process. Its innovative design provides consistent high-quality results, less downtime and direct method transfer.

MATRIX-MF FT-IR Spectrometers

Utilizing the information rich mid-IR region for use in both laboratory and process environments, the MATRIX-MF is a process ready spectrometer that is ideal for real-time monitoring and analysis of chemical and biological reactions.

SENTINEL Raman Spectrometer

With patented automatic calibration, curve slit correction for aberration free imaging and the low noise CCD, Bruker's SENTINEL Raman spectrometer brings innovative insight to process monitoring and control applications.

Content:

TD-NMR Products

98 the minispec TD-NMR Analyzer

100 HyperQuant

Bruker Optics

Time Domain NMR

Time Domain Benchtop NMR Analyzers

TD-NMR

think forward

the minispec TD-NMR Analyzers

The minispec benchtop product lines utilize Time-Domain (TD-)NMR spectroscopy, a method similar to High-Resolution NMR and Magnetic Resonance Imaging, MRI. Unique permanent magnet and radio frequency (RF) technologies are applied to investigate the sample as a whole, nondestructively and non-invasive.

Turn-key solutions for Quality Control (QC) are offered with straight-forward calibrations comprising well-known international recognized standard methods according to ISO, ASTM and AOCS. the minispec series provide also a sound basis for R&D applications like MRI contrast agent research, droplet size determination of emulations and obesity research

the minispec mg Series

the minispec LF Series

Bruker's minispec LF Series Whole Body Composition Analyzers provide a precise method for measurement of Lean Tissue, Fat, and Fluid in live mice and rats. The longitudinal studies are possible as the animal is carefully handled without the need for anesthesia. Measurements with the LF Series are done in minutes without the need for any sample preparation.

the minispec mq Series

The award winning mq series covers a wide range of applications and offer expansion capabilities for both routine quality control and R&D.

With the addition of innovative accessories and readily exchangeable probe assemblies, the mg series is suited to a full range of time domain NMR measurements. Typical applications include pharmaceutical contactless check weighing, contrast agent analysis, droplet size determination in emulsions, and others.

the minispec LF90

 Dedicated Solutions for Industrial Quality Control

Readily available calibration standards, such as for the spin finish analysis

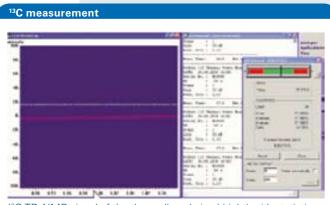
the minispec Plus software displays results in seconds

FILTE

No sample preparation, just insert sample into the minispec mq_{one}

the minispec mq_{one}

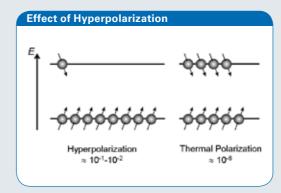
The mq_{nne} takes the minispec mq series product line further into the realm of routine industrial applications. The minispec mq_{one} analyzer is not just a benchtop system; it is a dedicated analyzer providing a complete solution off the shelf. With easy installation, comprehensive calibration and calibration transfer standards, the mq___ is ready to use in minutes.


the minispec mq_{one} Analyzers

- mq SFC Analyzer Solid-Fat Content (ISO, AOCS)
- mq_{one} Seed Analyzer Oil and Moisture (ISO, IUPAC, AOCS)
- mq_{one} Hydrogen Analyzer Hydrogen in Fuels (ASTM)
- mq_{ana} Spin Finish Analyzer Finish on Fibre, Oil-Pick-Up (OPU)
- mq_{ana} Polymer Analyzer Xylene-soluble in PP
- mq_{one} Total Fat Analyzer

HyperQuant

HyperQuant™ is a benchtop time-domain NMR reader that precisely and quantitatively delivers both the magnetic hyperpolarization and thermal polarization status of a sample. This proprietary solution applies a unique permanent 0.94 Tesla magnet system combined with an innovative MR probe design and novel NMR pulse sequence capabilities. This unique combination enables quantification of the thermal polarization level of ¹³C-labeled samples using volumes as low as 1 ml. The hyperpolarization enhancement factors can be obtained directly on the sample of interest, without the need for a separate calibration reference.

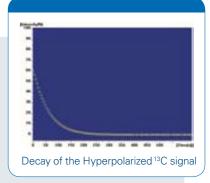

 $^{\rm 13}{\rm C}$ TD-NMR signal of the thermally polarized (right) with statistics on the superior restability (left)

Features

- Direct quantification of magnetic hyperpolarization and thermal polarization levels
- Calibration-free technology based on direct comparison of hyperpolarized and thermally polarized state
- Turn-key ¹³C application
- Proven bench-top TD-NMR design
- Unique 0.94 T permanent magnet system
- Only 1 ml of sample volume required
- Tracing of the
- ¹³C hyperpolarization decayThermal signal determination
- with 99% accuracy

 Quantifying concentrations of fully labeled ¹³C samples
- External trigger interface to HyperSense®
- Applicable to all hyperpolarization methods including DNP and Para-Hydrogen

Hyperpolarization


Hyperpolarization promises to be a useful technique with its potential to boost contrast in MRI and sensitivity in solidstate NMR. Hyperpolarization provides a means to increase the nuclear magnetic polarization by orders of magnitude (enhancement factors of 100,000) from the otherwise physical limit of the thermal Boltzmann polarization. Hyperpolarization can be obtained by various mechanisms, both physical and chemical in nature, such as DNP (dynamic nuclear polarization) and parahydrogen induced polarization (PHIP). Typically labeled ¹³C samples are utilized because of the preferential MR properties of the ¹³C nucleus.

Direct Quantification

HyperQuant delivers a unique direct quantification of the enhancement factor, by being able to measure both the hyperpolarized and the thermally polarized state of the ¹³C sample. Thus, it does not require a separate calibration reference.

Applications

For academic researchers and manufacturers of hyperpolarization systems, HyperQuant delivers quantitative measurements for research studies and product validation. In the research field of hyperpolarized agents in MRI or NMR, HyperQuant provides a precise measure of the enhancement factor.

Quantifying Hyperpolarization

The hyperpolarization is quantified by using a carefully calibrated small flip angle excitation pulse. The measurement hardly affects the polarization state of the sample. Alternatively, HyperQuant can also closely trace the decay rate of the hyperpolarization.

Thermal Polarization

The thermal polarization of ¹³C labeled samples is enabled by a unique combination of a 0.94 T magnet, a high Q ¹³C probe (10 MHz) and a multipulse NMR sequence. The plug-and-play concept of the probes allows for easy exchange and handling. In addition, 40 MHz ¹H probes are also available.

Pulse Flip Angle Calibration

Key to the precise determination of the enhancement factor is the automatic flip angle calibration to determine and validate both the 90° and 180° pulse length.

Content:

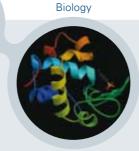
X-RAY, XRF, SC-XRD, AFM, MA, OES and CA

- 105 X-ray Diffraction
- 108 X-ray Fluorescence Analysis
- 112 Optical Emission Spectrometry
- 114 Gas Analyzers
- 116 Microanalysis
- 117 Chemical Crystallography
- 118 Automated Crystal-Structure Analysis
- 119 Biological Crystallography
- 120 Scanning Probe Microscopy

Advanced Analytical Solutions

XRD, XRF, SC-XRD, AFM, MA, OES, CA

X-RAY, AFM, OES


think forward

Chemistry

We Exceed Your Expectations

Professional Competence

Bruker AXS is a worldwide market leader in providing advanced X-ray and optical emission systems and complete solutions for structure and elemental analysis using X-ray diffraction (XRD), X-ray fluorescence (XRF/OES) and crystallographic diffraction techniques. Our products fit the analytical requirements of customers in materials research, life science, quality control, and process analysis. They provide essential information about the molecular structure, material and structural parameters of thin film and bulk material as well as elemental composition of solids and liquids.

SUPER SPEED SOLUTIONS

Bruker AXS breaks all records.
The SUPER SPEED components
ensure breathtaking speed at
high-sensitivity resolution –
without sacrificing reliability and
flexibility. The X-ray diffraction
SUPER SPEED SOLUTIONS
enable an unprecedented
throughput in research and
development.

- TURBO X-RAY SOURCE
- VÅNTEC-1 detector instant diffraction snapshots
- LYNXEYE[™] rapid powder diffraction
- HI-STAR detector super sensitive XRD²
- VÅNTEC-2000 detector ultra size XRD²

High-Performance

Bruker AXS X-ray systems emphasize modularity and flexibility, enabling an entry-level system to be reconfigured or upgraded to meet changing requirements. We offer the widest available variety of X-ray sources, optics, sample environments and detectors, along with expert advice on configuring the optimal system. All of our systems and solutions are easy to operate, robust and compact, with degrees of automation ranging from none to one-button operation. Professional training and worldwide service is in place to support the customer.

A History of Innovation Leadership

Bruker AXS is constantly redefining the performance and quality standards in X-ray analysis. Breakthrough innovations and continual improvements upon established techniques provide our customers with analytical possibilities that were considered beyond reach only a short while ago. Examples include our revolutionary detection technologies, multilayer X-ray optics, and ability to perform XRF analysis of light or trace elements.

X-ray Powder Diffraction

Table-top, automated, or scientific workshorse instrumentation

X-ray diffraction expands analytical capabilities down to the nanometer range. Our highly accurate, reliable and fast diffraction solutions are accompanied by an intuitive and clearly laid-out user interface, easy handling, and individual data presentation, as well as perfect integration and communication capabilities.

I MONTHAN I

D4 ENDEAVOR

D2 PHASER

D8 ADVANCE

Applications

- Crystalline phase identification
- Crystalline phase quantification
- % crystallinity
- Crystallite size determination
- Crystal structure analysis
- Texture and preferred orientation
- Microstrain
- Residual stress
- Depth profiling
- Polymorph screening
- High temperature
- Low temperature
- Humidity
- Phase transition
- Nanoparticles

Powder diffraction at it's best

DAVINCI.DESIGN

The D8 ADVANCE with DAVINCI.DESIGN facilitates a pioneering diffractometer concept, which eliminates the problems of awkward configuration and adjustments once and for all. It is extremely easy to exchange all components and geometries, thanks to the multi-level design:

- DAVINCI.SNAPLOCK: alignment- and tool-free optics change
- DAVINCI.MODE: real-time component recognition, configuration and conflict detection
- DIFFRAC.DAVINCI: graphical representation of the actual goniometer showing all beam path components including their status, enabling immediate measurements as well as the creation of measurement methods.

Total Flexibility with DIFFRAC.Suite

DIFFRAC. Suite is the benchmark program suite for all routine and research applications in powder diffractometry, generally ackowledged in literature as the most innovative, powerful and intuitive software package. DIFFRAC.Suite has a remarkable tradition in introducing most significant scientific innovations into the powder diffraction community, and consequently performed best repeatedly in international round robins for phase identification and ab-initio structure determination.

with TURBO X-RAY SOURCE

.. with GADDS

. for Material Research

X-ray Diffraction

Quick-Change Artists without Limits

The capabilities provided by the D8 DISCOVER, laboratory X-ray diffraction enters new frontiers in the nano-world and materials research so that synchrotron measurement campaigns become obsolete in many cases.

. with GADDS HTS for High-Throughput Screening

Screening a large number of samples quickly and completely requires dedicated instrumentation and extensive knowledge of the analytical process. Extremely large amounts of data need to be handled, especially in catalyst development and pharmaceutical research. Unique applications from Bruker AXS extract authoritative results from the most varied of sample characteristics, parameters and correlations, e.g.:

High-Throughput

Applications

- Laser/Video system for precisely focused, automated alignment
- Eulerian cradles 2D Detectors, robotic wafer handling
- Powerful X-ray sources, innovative detectors
- Integrated Analytical Intelligence with POLYSNAP software

D8 DISCOVER

Applications

- Crystalline phase identification
- Crystalline phase quantification
- % crystallinity
- Crvstallite size determination
- Crystal structure analysis
- Texture and preferredHumidity orientation
- Microstrain and relaxation
- Residual stress
- Layer thickness
- Layer roughness
- Lattice parameter

- Chemical composition
- Lateral structures
- Defects
- Depth profiling
- Real space mapping
- Microdiffraction
- Polymorph screening
- High-temperature
- Low temperature
- Phase transition
- Nanoparticles

Enter the Universe of Nanostructure Analysis

The innovative Small Angle X-ray Scattering System NANOSTAR is the ideal tool for investigating precipitants in bulk materials and macromolecules like protein solutions with a size on the order of 10 to 1000 Ångstrom.

Applications

- Small Angle X-ray Scattering (SAXS)
- Grazing-incidence SAXS (GI-SAXS)
- Wide Angle X-ray Scattering (WAXS)
- Nanography
- Particle size
- Particle size distribution
- Particle shape
- Orientation distribution
- Particle distances
- Low temperature
- High-temperature

Glazing Incidence Small Angle X-ray Scattering (GISAXS)

NANOSTAR-U

(HRXRD)

cence (µXRF)

Diffraction (GID)

(XRR)

Göbel and Montel Mirror

The highest performance can only be achieved with the most modern instruments. With the invention of the Göbel Mirror, Bruker AXS raised the standards for diffraction and SAXS. Göbel Mirrors are X-ray optics with incomparable precision: The mirrors have length and width in the centimeter range, the contour accuracy is in the micrometer range and the roughness is in the nanometer range.

- Maximum flux
- Perfect beam homogeneity
- Bragg-Brentano, parallel beam, or focusing geometries

X-Ray Diffraction

Highest spectral purity

X-ray Fluorescence Analysis

Defining the World of Elements in Seconds

X-ray fluorescence spectrometry is the most effective way to perform multielemental analysis determining concentrations in all forms of samples: solids, powders and liquids. Based on the renowned XFlash® silicon drift detector

S2 PICOFOX: **True Trace Element**

TouchControl™

Reliable results and errorfree instrument operation is the key to success. This is why Bruker AXS developed the intuitive instrument operation with touch screen. With minimum training, even inexperienced operators can obtain optimum results. And your analytical data are safe due to the unique TouchControl™ concept.

- Easy-to-use intuitive operation
- No mouse or keyboard
- Minimal training required
- Immediate results on the touch screen
- Compact all-in-one design

Analysis by TXRF

Applications

- Fresh water, sea water
- Sewage, sludge
- Pharmaceuticals
- Blood, urine
- Proteins, macromolecules
- Food, dietary supplements
- Wine, beverages
- Nanoparticles
- Washcoats Contaminations
- Aerosols
- Thin films

technology Bruker AXS energy dispersive X-ray fluorescence (EDXRF) systems offer highest analytical precision and stability. The S2 PICOFOX allows the analysis of thin films as well as the analysis of traces down to 0.1 ppb

using total reflection X-ray fluorescence (TXRF). The S2 RANGER with Touch-Control™ provides you with instant answers for element concentrations from Na to U in unknown samples.

S2 RANGER: EDXRF with TouchControl™

Applications

- Petrochemicals
- Minerals and mining
- Slags
- Cement
- Geology
- Pharmaceuticals
- Metals and alloys
- Soil, sediments and waste

Unrivalled

Analytical Performance

Our wavelength dispersive X-ray fluorescence (WDXRF) systems provide you with excellent analytical results for elements from Be to U in your samples. They feature high accuracy and the best achievable precision for effective

process and quality control. They are reliable and robust for all industrial applications, yet flexible and powerful for all non-routine applications in research and development.

S8 TIGER - S8 LION: Excellence in WDXRF

S8 LION

Applications

- Cement
- Industrial Minerals
- Mining

S8 TIGER: TouchControl™ and **SampleCare**[™]

Applications

- Petrochemicals
- Plastics and polymers Cement
- Geology
- Metals and alloys
- Precious metals
- Minerals and mining
- Glass and ceramics
- Chemicals and catalysts
- Pharmaceuticals
- Soil. sediments and waste
- Foods

Intuitive easy operation TouchControl™

Easiest operation due to intuitive touchscreen interface tailored for industrial environments

- No operator training required
- Standalone operation in tough environments (no PC, mouse or keyboard)
- Unmatched data integrity
- Online language switch with free selection: English, German, French, Chinese, Russian, Spanish, Korean

Micro-X-ray Fluorescence Analysis

M1 and M4 Tabletop **Micro-XRF Spectrometer Series**

M4 TORNADO

Highlights of **Innovation Leadership**

Using policapillary optics Bruker's micro-XRF spectrometers can illuminate areas down to 30 µm in diameter with maximum X-ray intensity. The integrated Peltier-cooled XFlash® Silicon Drift Detectors process highest count rates at optimal energy resolution. Short measurement times and fast sample stages lead to extremely quick results regarding the elemental composition of a sample.

- Spatially resolved analysis of arbitrarily shaped samples, including fine structures
- No cooling media or consumables required
- Non-destructive measurement without sample preparation
- Outstanding analytical flexibility

Applications

- Minerals

- Forensics
- Art conservation, archeology

- Electronic
- Particles
- Lavers

- components (RoHS)

Metals and alloys

M1 MISTRAL and M1 ORA

Applications

- Jewelry
- Metals and alloys

u-XRF is the method of choice for the

elemental analysis of inhomogeneous

small samples or even inclusions.

or irregularly shaped samples as well as

Bruker's M1 and M4 tabletop spectrom-

eters offer maximum versatility for all

sis in quality control or for individual

setups analyzing special samples.

applications, whether for routine analy-

Layers (M1 MISTRAL)

ARTAX - High Spatial Resolution, Portable, Non-destructive

The ARTAX is a unique, portable micro-XRF spectrometer designed to meet the requirements for a spectroscopic analysis of immobile and valuable objects on site, i.e. in archeometry and restoration. It can be used for both spot measurements and high-resolution 1D and 2D mapping.

Applications

- Non-destructive element analysis in
- Art conservation, archeology and archeometry
- Metals, alloys, sheet metal

Handheld XRF Spectrometry

XRF Elemental Analyzer

The Bruker handheld XRF analyzers provide quick and easy non-destructive analysis. The S1 TURBO^{SD} and S1 SORTER enable fast analysis and ID of most alloys. The TRACER III-V and III-SD tube based systems include the Bruker /NASA joint patented vacuum system and high-resolution detector allows for laboratory grade results of elements from Mg to U.

Applications

- Analysis of metal alloys for Positive Material Identification (PMI)
- Non-destructive testing with grade ID and chemistry
- Light element capability: Mg, Al, Si, P
- Scrap metal recycling
- QA/QC in the manufacturing environment

TRACER III-V

Applications

- Art conservation, archaeology and archeometry
- Research and teaching tool for universities
- Research and development
- Selected by leading museums like the Getty and MOMA

Highlights of Innovation Leadership

- Light element analysis Mg, Al, Si, P, S and Cl without vacuum or He
- SDD provides rapid analysis and ID for alloys
- TÜV SÜD certification trusted the world over!
- Joint Bruker/NASA patent, earned NASA's Space Seal for vacuum technology
- Tube-based XRF for handheld elemental analysis - no radioactive materials
- PDA based analyzer

Optical Emission Spectrometry

High-End Elemental Analysis of Metals

Spark optical emission spectrometers (S-OES) are the ideal instruments for all types of metals. From pure metal trace analysis to high alloyed grades, spark OES covers the complete range from sub-ppm to percentage levels. All relevant elements can directly be analyzed simultaneously.

Spark spectrometer instruments cover all types of metal applications. Our range of high-end instruments allows our customers to elevate their business into new levels of quality and process control.

> Channel photomultiplier (CPM)

Highlights of **Innovation Leadership**

Pioneering Channeltron technology

Q8 MAGELLAN and Q6 COLUMBUS feature the latest technology in photomultiplier detectors:

- Lowest dark current
- Large dynamic range
- Highest sensitivity
- Improved limits of detection
- Impressive stability and repeatability

Spark stand with co-axial argon flow

The innovative co-axial argon flow represents the culmination of our efforts to further improve performance:

- Extended cleaning intervals
- Low argon consumption
- Better analytical quality
- Reduced operation costs

Q4 TASMAN (CCD)

Q6 COLUMBUS (CPM)

Pneumatic sample clamp

Applications

- Iron and steel and its alloys
- Copper and its alloys

- Lead and its alloys
- Titanium and its alloys
- Zinc and its alloys

Applications

- Process analysis of steels
- Process analysis of cast iron
- Process analysis of aluminum
- Process analysis of copper

Applications

Elemental analysis of:

Nitrogen in steel

Oxygen in copper

Iron and steel alloys and its traces

Aluminium alloys and its traces

Copper alloys and its traces

Nickel alloys and its traces

Cobalt alloys and its traces

Tin alloys and its traces

Lead alloys and its traces

Titanium alloys and its traces

Magnesium alloys and its traces

Q8 MAGELLAN -**Stationary vacuum** spectrometer

optic

QMATRIX is an easy to use front-end interface:

 QMATRIX for the routine analysis

Highlights of

package

Innovation Leadership

Complete software

Spectrometer software

- Regression software for calibration
- SQL for data treatment

Automation control software QMATION

The Q8 CORONADO is controlled by the powerful QMATION software:

- Net framework technology
- Graphical user interface for providing system status

- Aluminium and its alloys
- Nickel and its alloys Cobalt and its alloys
- Magnesium and its alloys
- Tin and its alloys

Gas Analyzers - C, S, O, N, H in Solids

Our innovative analysis instruments allow automatic and fast determination of Carbon, Sulfur, Oxygen, Nitrogen and Hydrogen in solids. Our instruments provide highly accurate measurement within a short analysis time and are highly reliable and userfriendly.

The state-of-the-art technology allows not only the use for quality control but also in the various fields of material development. The "One-4-All" analysis software is clear and simply structured and universal for all instruments.

G4 ICARUS HF

Highlights of Innovation Leadership

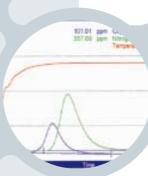
CS-Analysis

G4 ICARUS analyzers are designed for simultaneous or individual, fast and accurate determination of carbon and sulfur in various metallic and non-metallic materials.

G4 ICARUS features:

- Continuously adjustable HF furnace power for optimum sample combustion
- Alternative version with external high-temperature tube furnace up to 1550° C
- Short analysis time, nearly maintenance-free operation
- Long term stable, selective solid-state NDIR detectors
- Automatic base line compensation/zero adjustment and Automatic Level Control

CS analyzer with high-temperature tube furnace


Applications

- Iron, steel and alloys
- Aluminum and alloys
- Titanium and alloys
- Zirconium and alloys
- Ores, minerals
- Coal, coke and ash
- Catalysts

G4 ICARUS HF ceramic crucible

G4 ICARUS TF ceramic boat

tube Ø 30 mm

G4 PHOENIX DH

G8 GALILEO

O, N, H analyzer

Applications

- Iron, steel and alloys
- Aluminum and alloys
- Copper and alloys
- Titanium and alloys
- Zirconium and alloys
- Ores
- Ceramics
- Minerals

G4 PHOENIX

Determination of diffusible hydrogen

Applications

- Steel
- Aluminum
- Weld material
- Weld seams

Highlights of Innovation Leadership

ON/H-Analysis

G8 GALILEO delivers fast and automatic determination of oxygen, nitrogen and hydrogen in solids by carrier gas method, melt and hot extraction.

Different configurations for simultaneous or single element determination are available.

G8 GALILEO features:

- Electrode furnace with programmable temperature up to 2500°C, contact-free optical sensor for temperature measurement
- Selective solid-state NDIR-detector for CO, long term stable thermal conductivity cell for N₂/H₂
- Optional automatic furnace cleaning system with dust removal and optional automatic crucible changer
- External furnace for diffusible Hydrogen with ramping functions optional

Microanalysis (EDS) and Electron **Backscatter Diffraction (EBSD)**

Accurate, Fast and Easy to Use

Rough surfaces, particles, thin layers, bulk samples ... The QUANTAX family of EDS instruments tackles even your toughest challenges with unprecedented speed, accuracy and ease-of-use. The unique LN₂-free XFlash® Silicon Drift Detectors (SDD), together with our

state-of-the-art Hybrid Pulse Processor technology, deliver both the highest available energy resolution and over ten times the speed of conventional Si(Li)based systems.

The QUANTAX EDS microanalysis system works in conjunction with Scanning Electron Microscopes, as well as Transmission Electron Microscopes (TEM) with the worldwide first SDD designed for TEM - the XFlash® 5030 T. In addition QUANTAX also provides the option of EBSD analysis with the fully integrated QUANTAX CrystAlign.

QUANTAX 800

Applications

- Metals and allovs
- Semiconductors
- Layers and coatings
- Minerals
- Glasses
- Nano-materials
- Plastics and organic solids
- Biological samples
- Forensics

QUANTAX CrystAlign -Discover Fast and Easy

to Use EBSD Revolutionary in-situ

Highlights of

Nanoanalysis

nology

ciency

resolution

performance

Innovation Leadership

QUANTAX EDS for

With XFlash® world

For SEM and TEM

High collecting effi-

Unmatched energy

Superb light element

wide leading SDD tech-

- tiltable e⁻Flash detector Simultaneous EBSD and EDS analysis
- Live data processing during acquisition
- Fast analysis and minimum drift

XFlash® 5000 series for SEM

XFlash® 5030 T for TEM

e-Flash for EBSD

Chemical Crystallography

Absolute Clarity for your Results

Single Crystal X-ray diffraction is the method of choice for determining the 3-dimensional structure of any kind of chemical compound. The method provides accurate and precise measurements of molecular dimensions in a way that no other investigative technique can begin to approach. The APEX II line of Chemical Crystallography Solutions features easy to use, state-of-the-art software, the fastest, most sensitive low noise APEX II CCD detector, inte-

grated with the most flexible and precise sample motion available. A broad selection of dedicated X-ray sources including sealed tube microfocus tube, rotating anodes and dual wavelength options completes the system to give you the best data possible. The newly released APEX DUO provides two X-ray sources and enables the scientist to select Moor Cu-radiation for absolute structure determination just with a mouse click.

Applications

- Structural determination of new molecules and minerals
- Comprehensive treatment of absorption effects by intuitive correction methods
- Absolute structure determination on molybdenum and copper radiation
- Integrated treatment of twinned samples
- Electron charge density studies by high-angle diffraction
- Structural investigation of high-pressure phases
- Modulated structures
- Diffuse scattering

Highlights of Innovation Leadership

APEX II Detector

The APEX II CCD detector provides ultimate sensitivity for data collection on small or weakly diffracting crystals.

- 4 K CCD Chip (16 megapixel)
- 1:1imaging, no reduction taper
- Highest signal to noise
- Superior dynamic range
- Anti blooming mode
- Optimized for Cu- and Mo-radiation

Automated Crystal-Structure Analysis

Walk-up X-ray Structure Determination for Chemists

Bruker AXS' SMART X2S is the first benchtop X-ray crystallography system for fully automated 3D chemical structure determination. It is designed for use by chemists who have no special training in crystallography. The SMART X2S takes small molecule structure determination to the next level of convenience by automating the previously difficult aspects of X-ray structure determination, from sample loading through data collection all the way to report generation and data archiving. Its compact design, low maintenance, low cost of ownership and easy and intuitive operation through a touch screen graphical interface are truly groundbreaking

Highlights of Innovation Leadership

AUTOSTRUCTURETM

The ground-breaking program suite for fully automatic determination of 3D crystal structures of organic and inorganic molecules from X-ray data. It allows solving and refining structural parameters routinely, providing the crucial tool to make accurate chemical X-ray structure determination quick and easy.

- Fast, reliable, intuitive-touse, fully-automated
- Results verified using IUCr standard structure checkers
- Cascades through Patterson, direct- and dual-space methods to increase structure solution success

SMART X2S

Applications

- Structural information for routine samples when you need it – quickly, reliably and cost effectively
- X-ray structure determination with no or little background in crystallography
- Unambiguous synthesis control for working chemists

Biological Crystallography

High-Class Performance of True Brilliance

No other field in crystallography has developed as rapidly as biological crystallography. This is because single crystal diffraction is the ideal tool for obtaining accurate structural models of the molecules of life: such as nucleic acids, proteins, and viruses. The sheer volume and complexity of structural biology projects has steadily increased in recent years. In order to meet the demands of struc-

tural biologists Bruker AXS has further improved the performance and ease-of-use of its solutions. Today we offer systems with highest intensity, sensitivity, and reliability. Consequently, the investigation of weakly diffracting samples and small crystals for a complete in-house data collection or prior to a synchrotron trip has become a routine.

X8 PROSPECTOR

Feature

- Designed for fast protein screening
- Intuitive software
- Minimal down-time
- Lowest cost of ownership
- Small footprint
- IµS microfocus source with three years of warranty on the tube
- Most sensitive 16 Mega pixel CCD detector

Highlights of Innovation Leadership

The IµS microfocus source is an outstanding X-ray source for point-focus applications combining the advantage of a traditional sealed tube and a rotating anode generator. Running at only 30W, the tube has a long lifetime and water cooling is not required. Despite this low power consumption, the beam produced has a high brilliance and unprecedented high flux, outperforming a traditional 300 micron rotating anode generator.

Scanning Probe Microscopy

Analyze Nanometer Size Surface Structures within Minutes

The N8 range of instruments provides a complete set of solutions for atomic force and scanning probe microscopy (SPM). All systems are based on the unique NANOS SPM head. These instruments can accurately analyze a wide variety of different sample characteristics associated with SPM. It is only

a matter of selecting the appropriate measurement mode and probe. Supported are contact mode, non-contact mode, intermittent contact mode, scanning tunneling microscopy, magnetic and electrostatic force microscopy, and

Highlights of **Innovation Leadership**

NANOS

The NANOS is the only SPM head that approximates the size and shape of a standard microscope objective. It therefore fits any commercially available microscope and can be used to unite optical and SPM analysis in a single instrument.

- · Changing between optical microscopy and SPM by a simple turn of the microscope turret
- Unique feedback cycle for compact SPM head design, yet providing fast and accurate results
- Contact and oscillation modes (non-contact, intermittent contact)
- Easy to replace measuring probe, no adjustment required
- Wide variety of measuring modes supported
- Can be used to upgrade existing research grade microscopes

N8 NEOS

The N8 NEOS combines optical microscopy and scanning probe microscopy in a single, optimized set-up that reduces vibration and thermal drift. The combination of the NANOS measuring head

and a powerful optical microscope allows unequalled productivity in performing high-resolution surface inspection.

High-Class Performance of True Brilliance

N8 RADOS

The N8 RADOS combines a high quality research microscope, a scriber and the NANOS AFM measuring head on a single automated platform. After locating a region of interest with the microscope the AFM scan is started at the press of a button. After completion the press of another button can be used to scribe the location on the sample.

No moving part for

features

beam alignment, tip

saving auto-retract

Tip deflection & ampli-

brated in nm not V

Compatible with bright

field, dark field, DIC,

fluorescence micro-

Unobstructed sample

is observed, not the

back of the cantilever.

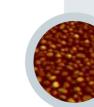
scopy and even Raman

view, the sample image

tude automatically cali-

N8 TITANOS

The N8 TITANOS provides sub-nanometer resolution on a fully-automated, in-line capable and rigid singleplane setup for the analysis of samples with a size of up to 300 mm². The open architecture accommodates the NANOS AFM measuring head, while allowing various other optical measuring devices or microscopes to be added to the system.


Applications

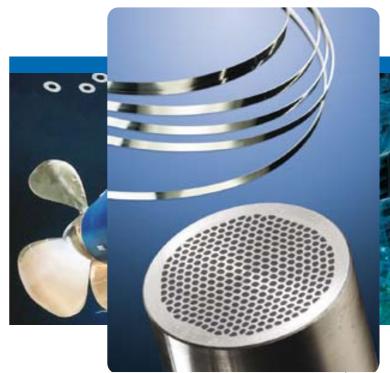
- Semiconductors
- Hard Disk/CD/DVD inspection
- Material science
- Nano-particles and structures
- Metrology
- Polymers
- Catalysts
- Life Science

Roughness

Magnetic structure

on hard disk

3D surface


representation 121 120

Content:

Advanced Superconductors

- 124 Manufacturing Site
- 125 Applications
- 126 Low Temperature Superconductors (LTS)
- 127 High-Temperature Superconductors (HTS)
- 128 Metal Matrix Extrusions

Bruker EST

Advanced Superconductors

Authority in Superconductivity

LTS/ HTS

think forward

Manufacturing Site

Bruker EAS - low temperature superconductors

Bruker EAS, based in Hanau, Germany, has been a world leading manufacturer of low temperature superconductor (LTS) wire for over 40 years, an experience unparalleled in the industry. Its LTS wire is used for clinical MRI, scientific instruments including NMR, EPR, and FTMS, as well as for large-scale research applications in high-energy physics and fusion projects. We continue to be a partner in major superconductivity projects worldwide, with a track record of excellence.

Bruker HTS - high-temperature superconductors

Bruker HTS has now become Europe's leading company in the area of high-temperature superconductivity, a key technology of the 21st Century. Our research and development teams of over 30 people develop Bismuth (Bi) and Yttrium (Y)-based high-temperature superconducting technologies. Bruker HTS provides industrial superconductors and application solutions to a wide range of customers.

Hydrostatic Extrusions Limited - hydrostatic extrusion

Developed by Asea, the hydrostatic extrusion process uses a fluid compression medium under very high-pressure to force material through a precision made die.

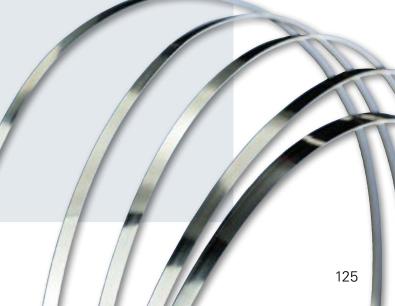
Applications

Rotating Machines

High-temperature superconductors (HTS) now overcome the limitations of these machines, replacing copper wire with new, virtually resistance-free superconductors. HTS technology permits new machine designs, combining substantial weight and size reduction together with operational benefits.

Cables

Providing dependable electricity in today's megacities, across networks, and over vast distances has become a critical challenge in our increasingly energy demanding world. HTS play a vital role in building the power cable of the future. Their unique ability to carry currents at over ten times the amount of conventional wires, provide substantially lower losses, and allow more compact designs makes them ideally suited to meet the requirements of densely populated urban environments and critical high-power links.


Magnets

Superconducting magnets represent by far the largest market for superconducting technologies today. Low temperature and high-temperature superconductors provide vast benefits to increase performance and efficiency

Fault Current Limiters

Electric power disruptions cause hundreds of millions of dollars worth of economic loss every year to the world's leading economies. Worldwide energy demand is increasing rapidly, requiring new solutions to dramatically improve the reliability of our energy supply. Fault Current Limiters are new devices, using the unique electrical properties of HTS to almost instantaneously protect power grids against short circuits and thereby prevent costly outages.

Low Temperature Superconductors (LTS)

Our LTS products are used in a wide range of applications, including clinical MRI and ultra-high-field NMR as well as energy storage, high-energy physics and fusion research, addressing the world's energy needs.

NbTi Superconductors

NbTi superconductors are high-performance superconductors and the workhorse of the world's superconductor industry. Their major market is in clinical MRI, with well over 1,000,000 kilometers of NbTi wire produced to date. Other large markets include Nuclear Magnetic Resonance (NMR) Spectroscopy, particle accelerators for highenergy

Customized Superconductors

Our customized products include superconductors with highly specialized performance characteristics. We have delivered specially alloyed or reinforced conductors and conductors with ultra thin filaments to some of the most demanding customers world wide. Between 2000 and 2005 we had delivered over 40.000 km of thin filament NbTi conductors to the LHC particle accelerator project at CERN. By 2007 we delivered over 60 km of aluminum clad NbTi cables with a total of 15.000 kilometers of NbTi wire to the Euratom "Wendelstein" fusion project.

Nb3Sn Superconductors

Nb3Sn superconductors are high-performance superconductors and the gold standard of the world's superconductor industry. Their distinguishing characteristic among LTS conductors is the extraordinary performance under ultra-high magnetic fields. They are indispensable for the high-field magnets in Nuclear Magnetic Resonance (NMR) and Mass Spectroscopy (FTMS), which today routinely exceed 20 Tesla. Large fusion projects also rely on Nb3Sn for magnets exceeding field strengths of 14 Tesla, paving the way to a future with clean and abundant energy.

The portfolio encompasses innovative "Powder-In-Tube" Nb3Sn conductors, which combine extremely high-currents with unmatched workability and high-field performance.

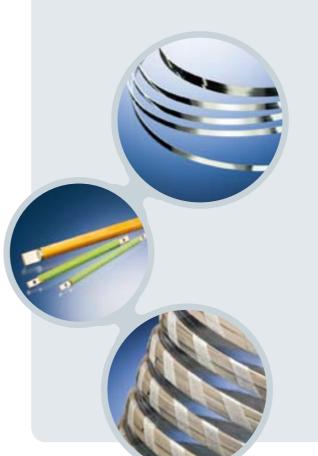
High-Temperature Superconductors (HTS)

Bruker HTS is a leading manufacturer of HTS materials and devices, based on its broad conductor technology platform. Bruker HTS products and services enhance the reliability and efficiency of electrical power grids and large energy demanding applications. Conductors and components made by Bruker HTS are used to build a new generation of compact high-power devices such as motors, generators, cables and transformers as well as high-field magnets for medical and research applications.

HTS Tapes

Bruker HTS tape products are able to carry more than ten times the electricity of a comparable copper wire. They are designed with electric power and magnet applications in mind. Bruker HTS commercially produces HTS tapes of the highest quality, using state-of-the-art production technology. Our products can be optimized to meet a large range of demanding applications. All Bruker HTS tapes are available with reliable electrical insulation.

Current Leads

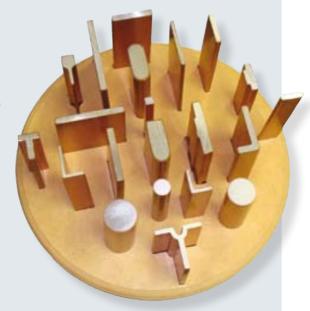

Today's superconducting applications operate at temperatures as low as -270° Celsius. Current leads transfer electric current from room temperature to these extremely low temperature operating conditions. Our robust HTS technology reduces heat leakage to the cryogenic envelope by an order of magnitude and is used in a wide range of applications, from MRI to large scale and cryogen free magnets.

Coils

HTS coils are used for a wide range of applications in magnet and electric power technology. In all of these applications, the end-user benefits from reduced operating cost, a more compact design, and high reliability of operation.

Roebel Conductors

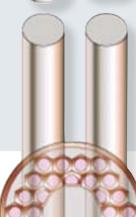
Roebel conductors are designed for high total currents. The transposition adds the advantage of equivalence of elementary tapes. This is of benefit for magnets as well as for AC applications (low loss). The Roebel conductors may be made by an odd number of transposed tapes, bare or insulated; the actual transposition scheme is usually designed to fit the requirements of the application. This cable has the advantage of high-mechanical flexibility and high-current at the same time.


Metal Matrix Extrusions

Our hydrostatically extruded metal product line includes Cuponal[™] copper clad aluminum wire and sections for the aircraft industry and electric power equipment. We also offer extrusion services for aluminum, superconductors and other alloys.

Cuponal

Cuponal is a bi-metal conductor developed to provide an economic alternative to solid copper. CUPONAL is produced by the hydrostatic extrusion process, and consists of a solid core of electrical grade aluminum with a pressure bonded outer layer of high-conductivity copper.


CUPONAL therefore offers economic and weight saving advantages over solid copper, while retaining the surface properties of a copper busbar. It is often possible to substitute a copper bar with a Cuponal bar of equal dimensions. This yields the maximum cost saving.

Tolling Service

Materials extruded by the hydrostatic process exhibit very important characteristics of uniform fine grain structure, high-dimensional accuracy and has cross-sectional relationships identical to the input material. This delivers a high-quality feedstock material for onward processing with less waste.

Hydrostatically extruded aluminum, in particular, requires little or no further preparation for operations such as impact extrusion or forging.

Composite materials, e.g. superconductors, where there is a requirement for exact replication of cross-sectional parameters, can only be extruded by the hydrostatic process.

Tables and Others Useful Information

	NMR		Mass Spectrometry
2	Isotopes sorted according to spin and nucleon numbers	63-66	Exact Masses of the Isotopes
3-5	NMR Frequencies vs. Bruker Field Strengths	67/68	Solid Phase Peptides Synthesis
3-3	- sorted by increasing atomic number	69	Peptide Fragmentation
6-8	NMR Frequencies vs. Bruker Field Strengths	70/71	Molecular Weights of Amino Acid Residues
	 sorted with decreasing Larmor frequency 	72/73	Amino Acid Calculator Table
9-14	NMR Properties of Selected Isotopes	74	Matrices
15/16	NMR Properties of Selected Deuterated Solvents	75 76	Bruker Matrix Selection Guide Molecular Weights
16	MRI Abbreviations and Acronyms		
17	Chemical Shifts of Residual Protons in Common Deuterated Solvents / ¹ H Chemical Shifts in Organic Compounds	77	Conversion Factors Chemical Tables
18	¹³ C Chemical Shifts in Organic Compounds /	78/79	IUPAC Periodic Table of Elements
	¹¹ B Chemical Shifts	80/81	Properties of Selected Nondeuterated Solvents
19	¹⁷ O Chemical Shifts / ¹⁵ N Chemical Shifts in Organic Compounds	81	Electronegativities according to Pauling
20	²⁷ Al and ²⁹ Si Chemical Shifts	82-84	Important Abbreviations and Acronyms
21	¹⁹ F and ³¹ P Chemical Shifts	84	Concentration Units for Solutions
22	Chemical Shift Ranges and Standards for	85/86	Acronyms and Abbreviations in Quantum
22	Selected Nuclei / Some Important Silylated Compounds Used as ¹ H Shift References		Chemistry and Molecular Modeling
22-25	Various NMR Tables		Physical Tables
26-32	Abbreviations and Acronyms Used in Magnetic Resonance	87	Colour, Wave Length, Frequency, Wave Number and Energy of Light / Density of Water / Viscosity of Water
33/34	Symbols for NMR and Related Quantities	88	Viscosities of Various Liquids /
35/36	¹ H Chemical Shifts for Common Contaminants in Deuterated Solvents		Self-Diffusion Coefficients D of Various Liquids at 25°C /
36/37	¹³ C Chemical Shifts for Common Contaminants in Deuterated Solvents		Temperature Dependence of the Self- Diffusion Coefficient D of Water (H ₂ O)
38-40	NMR Formulae	89-91	SI Unit System (Système International)
44.40	V 5'''	92/93	SI Values of US and Imperial Measures
41-46	X-ray Diffractometry Tables	94	Fundamental Physical Constants (CODATA 2006)
47-52	EPR/ENDOR	05 (00	1
	IR Spectroscopy	95/96	International Dialing Codes / World Time Zones
53	Conversion Table for Transmittance and Absorbance Units / Near-Infrared Table		
54	Conversion Table for Energy and Wavelength Units		
55/56	IR Spectroscopy Tables		
57/58	IR Window Materials / Absorption of Commonly Used IR Solvents		
58-61	Infrared and Raman Tables		
62	Vibrational Spectroscopy		

NMR Tables

NMR Frequency Tables

Isotopes sorted according to spin and nucleon numbers

		Isotope	Spin			Isotope	Spin			Isotope	Spin
1	Н	Hydrogen	1/2	39	K	Potassium	3/2	173	Yb	Ytterbium	5/2
3	Н	Tritium *	1/2	41	K	Potassium	3/2	185	Re	Rhenium	5/2
3	Не	Helium	1/2	53	Cr	Chromium	3/2	187	Re	Rhenium	5/2
13	С	Carbon	1/2	61	Ni	Nickel	3/2	229	Th	Thorium *	5/2
15	N	Nitrogen	1/2	63	Cu	Copper	3/2	237	Np	Neptunium *	5/2
19	F	Fluorine	1/2	65	Cu	Copper	3/2	241	Am	Americium *	5/2
29	Si	Silicon	1/2	69	Ga	Gallium	3/2	243	Am	Americium *	5/2
31	Р	Phosphorus	1/2	71	Ga	Gallium	3/2	10	В	Boron	3
57	Fe	Iron	1/2	75	As	Arsenic	3/2	39	Ar	Argon *	7/2
77	Se	Selenium	1/2	79	Br	Bromine	3/2	43	Ca	Calcium	7/2
89	Υ	Yttrium	1/2	81	Br	Bromine	3/2	45	Sc	Scandium	7/2
103	Rh	Rhodium	1/2	87	Rb	Rubidium	3/2	49	Ti	Titanium	7/2
107	Ag	Silver	1/2	131	Xe	Xenon	3/2	51	V	Vanadium	7/2
109	Ag	Silver	1/2	135	Ва	Barium	3/2	59	Со	Cobalt	7/2
111	Cd	Cadmium	1/2	137	Ва	Barium	3/2	123	Sb	Antimony	7/2
113	Cd	Cadmium	1/2	139	Се	Cerium *	3/2	133	Cs	C(a)esium	7/2
115	Sn	Tin	1/2	155	Gd	Gadolinium	3/2	139	La	Lanthanum	7/2
117	Sn	Tin	1/2	157	Gd	Gadolinium	3/2	143	Nd	Neodymium	7/2
119	Sn	Tin	1/2	159	Tb	Terbium	3/2	145	Nd	Neodymium	7/2
123	Те	Tellurium	1/2	189	Os	Osmium	3/2	147	Sm	Samarium	7/2
125	Те	Tellurium	1/2	191	lr	Iridium	3/2	149	Sm	Samarium	7/2
129	Xe	Xenon	1/2	193	lr	Iridium	3/2	165	Но	Holmium	7/2
169	Tm	Thulium	1/2	197	Au	Gold	3/2	167	Er	Erbium	7/2
171	Yb	Ytterbium	1/2	201	Hg	Mercury	3/2	175	Lu	Lutetium	7/2
183	W	Tungsten	1/2	227	Ac	Actinium *	3/2	177	Hf	Hafnium	7/2
187	Os	Osmium	1/2	231	Pa	Protactinium *	3/2	181	Та	Tantalum	7/2
195	Pt	Platinum	1/2	17	0	Oxygen	5/2	235	U	Uranium *	7/2
199	Hg	Mercury	1/2	25	Mg	Magnesium	5/2	245	Cm	Curium *	7/2
203	TI	Thallium	1/2	27	Al	Alumin(i)um	5/2	249	Bk	Berkelium *	7/2
205	TI	Thallium	1/2	47	Ti	Titanium	5/2	253	Es	Einsteinium *	7/2
207	Pb	Lead	1/2	55	Mn	Manganese	5/2	73	Ge	Germanium	9/2
209	Po	Polonium *	1/2	67	Zn	Zinc	5/2	83	Kr	Krypton	9/2
211	Rn	Radon *	1/2	85	Rb	Rubidium	5/2	87	Sr	Strontium	9/2
225	Ra	Radium *	1/2	91	Zr	Zirconium	5/2	93	Nb	Niobium	9/2
239	Pu	Plutonium *	1/2	95	Мо	Molybdenum	5/2	99	Тс	Technetium *	9/2
251	Cf	Californium *	1/2	97	Мо	Molybdenum	5/2	113	In	Indium	9/2
2	Н	Deuterium	1	99	Ru	Ruthenium	5/2	115	In	Indium	9/2
	Li	Lithium	1		Ru	Ruthenium	5/2	179		Hafnium	9/2
14	N	Nitrogen	1		Pd	Palladium	5/2	209	Bi	Bismuth	9/2
7	Li	Lithium	3/2	121	Sb	Antimony	5/2	138		Lanthanum	5
9	Ве	Beryllium	3/2	127	L	lodine	5/2	212	Fr	Francium *	5
11	В	Boron	3/2	141	Pr	Praeseodymium	5/2	50	V	Vanadium	6
21	Ne	Neon	3/2	145	Pm	Promethium *	5/2	176	Lu	Lutetium	7
23	Na	Sodium	3/2	151	Eu	Europium	5/2				
33	S	Sulfur	3/2	153	Eu	Europium	5/2				
35	CI	Chlorine	3/2	161	Dy	Dysprosium	5/2	!			
37	CI	Chlorine	3/2	163	Dy	Dysprosium	5/2				

^{*} Unstable isotope with lifetime suitable for NMR.

NMR Frequencies vs. Bruker Field Strengths – sorted by increasing atomic number

Larmor Frequencies (WHz) vs. Bruker Field Strengths (lesia) Freq. to 3 decimals are experimental for IUPAC Standards; freq. to 2 dec. are calculated from magn. moments	17,6185 18,7929 19,9673 21,1416 22,3160	850.130 900.130	130.500 138.175	906.782 960.114 1013.446 647.620 685.710 723.799	132.464 139.822		349.825 369.257	1.7	369.2 133.5 102.0	33.5 33.5 304.8	0.00	12 12 12 21 21 21 21 21 21 21			0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	70 01 01 01 01 01 01 01 01 01 01 01 01 01	57 10 10 10 10 10 10 10 10 10 10 10 10 10	 	V 0 0 0 0 0 0 1 1 10 10 V m + 1 +	V O B B O B V H I I I I I I I I I I I I I I I I I I	<u> </u>	200000000000000000000000000000000000000	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			2 1 2 2 2 1 1 2 3 2 1 1 3 3 2 3 1 1 3 3 3 1 3 3 3 1 3 3 3 3					2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							57 388.688 10 140.536 10 140.536 10 140.536 10 140.536 10 121.483 12 121.483 12 140.585 14 140.62 15 140.62 16 141.062 17 260.1563 18 698 19 1404.681 10 1404.681 10 1404.681 10 1404.681 10 1404.681 10 1404.681 10 1404.681 10 1404.681 10 1404.681 10 1404.681 10 1404.681 10 1404.681 10 1404.681 10 1404.681 10 1404.681 10 1404.681 10 1404.681 10 1404.681 10 1404.6
(IMHz) vs. Bruker Field Strengths (Tesia AC Standards; freq. to 2 dec. are calculate	17.6185 18.7929 19.9673	850.130	130.500	_		3		3.48	126.485 96.707					2 3 1 1																								
AC Standards; freq. to 2 dec.	17.6185 18.7929				125.106	330.393	119.459 126			1	22	22	7 2 7	8 1 2 2	0 7 7	2 8 7																						
AC Standards; fre	17.6185		122.825	853.450 9 609.531 6		310.961 3	_	082	_		(1)(1)	(4)(4)	(4)			[2][2]	[2] [2]																					
AC Sta		750.130	-	571.441		291.529	105.407			+	\perp	\bot	+																									
<u>s</u> ⊒	16.4442	700.130	107.474	746.786	103.032	272.097	98.381	75.220	224.630		176.048	176.048 50.594	176.048 50.594 70.971 94.913	176.048 50.594 70.971 94.913 658.780	176.048 50.594 70.971 94.913 658.780 55.270	176.048 50.594 70.971 94.913 658.780 55.270	176.048 50.594 70.971 94.913 658.780 55.270 185.198 42.859	176.048 50.594 70.971 94.913 658.780 55.270 185.198 42.859 182.432	176.048 50.594 70.971 94.913 658.780 55.270 185.198 42.859 182.432 139.096	176.048 50.594 70.971 94.913 658.780 55.270 185.198 42.859 42.859 139.096 283.419	176.048 50.594 70.971 94.913 658.780 55.70 185.198 42.859 122.432 133.096 283.419 53.742	176.048 50.594 70.971 94.913 658.780 55.270 185.198 42.859 122.432 133.096 283.419 53.742 68.598	176.048 50.594 70.971 94.913 658.780 55.780 42.859 42.859 139.096 283.419 53.742 68.598 53.742 53.742	176.048 50.594 70.971 94.913 658.780 55.70 185.198 42.859 42.859 139.096 283.419 53.742 68.598 68.598 53.742 53.742 68.598 53.742 68.598 53.742 68.598 53.742 68.598 53.742 68.598 53.742 68.598 53.742 68.598 53.742 68.598 53.742 68.598 68.59	176.048 50.594 70.971 94.913 658.780 55.270 185.198 42.859 42.859 139.096 283.419 53.742 68.598 53.742 68.598 53.742 73.671 17.932 47.119	176.048 50.594 70.971 94.913 658.780 55.780 185.198 42.859 182.432 139.096 283.419 53.742 68.598 53.742 73.7101 73.074 74.119	176.048 50.594 70.971 94.913 658.780 55.780 185.198 42.859 182.432 139.096 283.419 53.742 68.598 53.742 73.711 17.932 47.119 17.0074	176.048 50.594 70.971 94.913 658.780 55.780 42.859 42.859 139.096 283.419 53.742 68.598 53.742 68.598 53.742 77.074 17.932 47.119 17.0074	176.048 50.594 70.971 94.913 658.780 55.70 185.198 42.859 42.859 139.096 53.742 68.598 53.742 53.742 73.742 73.742 73.742 73.742 73.742 73.742 73.742 73.743 743 743 743 743 743 743 743 743 743	70.048 50.594 70.971 94.913 658.780 55.707 182.432 182.432 183.096 283.419 53.742 68.598 68.598 67.101 72.671 17.932 47.119 17.0074 39.481 69.805 69.805	176.048 50.594 70.971 94.913 668.780 55.270 185.198 42.859 42.859 182.432 182.432 183.096 53.441 68.598 57.101 170.074 39.471 39.471 39.481 69.805 69.805 184.155	176.048 50.594 70.971 94.913 658.780 185.780 185.780 185.780 185.780 133.096 53.742 68.583.419 17.0074 39.470 39.471 17.932 17.0074 39.481 69.805 184.155 39.575	176.048 50.594 70.971 94.913 658.780 65.270 185.198 42.859 42.859 42.859 182.432 182.432 183.096 53.742 68.598 57.101 17.032 17.932 17.932 17.032 17.932 17.	176.048 50.594 50.594 50.594 10.971 94.913 658.780 658.742 182.432 182.432 182.432 182.432 182.432 182.432 133.096 53.742 68.598 57.101 32.671 17.0074 33.470 33.470 17.032 17.332 47.119 17.0074 33.470 17.3322 17.332 17.332 17.332 17.332 17.332 17.332 17.332 17.332 17.3322 17.332 17.332 17.332 17.332 17.332 17.332 17.332 17.332 17.3322 17.332 17.332 17.332 17.332 17.332 17.332 17.332 17.332 17.3322 17.332 17.332 17.332 17.332 17.332 17.332 17.332 17.332 17.3322 17.332	176.048 50.594 50.594 50.594 10.971 94.913 658.780 658.742 182.432 182.432 182.432 182.432 182.432 182.432 17.932 47.119 17.034 17.034 17.034 17.034 17.33.481 184.155 39.470 39.470 39.470 17.33.557 17.33.557 17.33.557 17.33.557 17.33.557 17.33.557 17.33.557 17.33.557 17.33.557 17.33.557 17.33.557 17.33.557	70.948 50.594 50.594 70.971 94.913 658.780 658.780 42.869 42.869 42.869 139.096 283.419 53.742 68.598 68.598 47.119 17.932 47.119 17.932 47.119 17.932 17.832 17.832 17.832 17.832 17.832 17.832 17.832 17.832 17.832 17.832 17.832 17.832 17.832 17.832 17.832 17.832 17.832 17.832 184.165 184.165 184.165 184.165 186.120 18	70.971 94.913 658.780 658.780 658.780 185.198 42.859 42.859 182.432 139.096 53.742 68.598 47.119 17.0074 47.119 17.932 47.119 17.932 17.833 17.833 17.833 17.833 17.833 17.833 17.833 17.833 17.833 17.833 17.833 17.833 17.833 17.833 17.833 17.833 17.833 184.155 17.833 1	70.948 50.594 50.594 50.594 50.594 658.780 658.742 68.598 68.598 68.598 68.598 68.598 69.671 17.0074 17.032 17.032 17.393 69.805 184.155 33.470 33.470 17.393 69.805 184.155 173.557 173.
r Frequein	14.0954	600.130	92.124	640.123 457.173	88.316	233.233	84.329	64.476	192.546	150 003	700.000	43.367	43.367 60.834 81.356	43.367 60.834 81.356 564.686	43.367 60.834 81.356 564.686 47.376	43.367 60.834 81.356 564.686 47.376 158.746	43.367 43.367 60.834 81.356 564.686 47.376 158.746 36.738	43.367 43.367 60.834 81.356 564.686 47.376 158.746 36.738	43.367 60.834 81.356 564.686 47.376 158.746 36.738 119.229	43.367 43.367 60.334 81.356 564.686 564.686 158.746 36.738 119.229 242.938	43.367 60.334 81.356 564.686 158.746 36.738 119.229 242.938	197.302 197.303 197.303 197.303 197.306 107	43.367 60.3367 60.3364 60.3364 47.376 47.376 119.229 242.938 46.066 58.800 48.945	43.367 60.834 81.356 564.686 47.376 119.229 242.938 46.066 58.800 48.800 48.800 15.371	43.367 60.834 81.356 564.686 47.376 119.229 242.938 46.066 58.800 48.945 28.004 15.371 40.389	43.367 60.834 81.356 564.686 47.376 119.229 242.938 46.066 58.800 48.800 40.389 40.389 145.782	43.83 40.389 40.389 40.389 40.389 40.389 40.389 40.389 40.389 40.389	43.367 47.376 47.376 47.376 47.376 47.376 47.376 47.376 47.376 47.376 46.086 58.000 48.945 28.004 40.389 40.389 40.389 40.389 40.389 40.389 40.389 40.389 40.389 40.389 40.389	43.367 60.834 81.356 60.834 47.376 47.376 47.376 47.376 47.376 47.376 46.066 58.800 48.945 28.004 40.389 145.782 33.833 33.83	43.367 60.834 81.356 564.686 158.746 38.738 46.066 58.800 48.945 15.371 40.389 145.782 33.842 33.842 33.842 33.842 156.835 166.835 177.82 33.842 33.842 33.842 33.842 33.842 33.842 33.842 36.835 56.835	43.367 60.834 81.356 564.686 564.686 158.738 36.738 46.066 58.800 48.945 28.004 48.945 28.004 48.945 145.782 33.833 33.833 33.832 33.922	43.367 60.834 81.356 60.834 1.356 1.58.738 36.738 46.066 58.800 48.945 28.004 48.945 28.004 48.945 28.004 48.945 28.004 48.945 28.004 48.945 28.004 48.945 28.004 48.945 28.004 145.782 33.883 33.883 33.883 33.882 145.782 33.883	43.367 60.834 81.356 564.686 664.686 47.376 1158.746 36.738 46.066 58.800 48.945 242.938 46.066 58.800 48.945 145.771 15.371 145.782 33.833 33.833 33.833 33.832 145.782 146.788 16.389 17.389 146.788 17.389	43.367 60.834 81.366 60.834 81.366 47.376 158.746 158.746 168.375 119.229 242.938 242.938 242.938 242.938 243.938 145.771 15.371 16.3	13.307 60.834 60.834 1.356 60.834 1.58.738 1.19.237 1.19.237 1.19.237 46.066 58.800 58.800 145.782 1.15.371 40.389 145.782 33.833 33.832 145.782 157.852 177.8	43.307 60.834 60.834 60.834 158.736 115.375 46.066 58.800 58.800 15.371 46.389 145.782 33.833 33.842 145.782 145.782 145.782 145.782 145.782 145.782 145.782 145.783 145.782 145.783 145.782 145.783 1	43.367 48.346 60.834 60.834 60.834 60.834 60.834 60.834 60.834 60.834 60.834 60.834 60.834 60.834 60.834 60.836 60.834 60.834 60.834 60.834 60.838	13.30 13.30 13.30 158.746 158.746 158.746 16.375 16.375 16.375 16.376 16.376 16.389 14.383 145.782 157.882 145.782 157.882 147.383
Larmo are experii	11.7467	500.130	76.773	380.994	73.600	194.370	70.277	53.732	160.462	125./58	26 1 11	36.141	36.141 50.697 67.800	36.141 50.697 67.800 470.592	36.141 50.697 67.800 470.592 39.482	36.141 50.697 67.800 470.592 39.482 132.294	36.141 50.697 67.800 470.592 39.482 132.294 30.616	36.141 50.697 67.800 470.592 39.482 132.294 30.616 130.318	36.141 50.697 67.800 470.592 39.482 132.294 130.318 99.362	36.141 50.697 67.800 67.800 470.592 39.482 132.294 30.616 130.318 99.362 202.457	36.141 50.697 67.800 470.592 39.482 39.482 132.294 30.616 130.318 39.362 202.457	36.141 50.697 67.800 470.592 39.482 39.482 132.294 132.294 132.294 132.294 132.294 132.294 132.294 132.294 130.318 99.362 202.457 49.002	36.141 67.800 470.592 39.482 132.294 30.616 130.318 99.362 202.457 38.390 40.002 40.002 73.338	36.141 67.800 470.592 39.482 132.294 30.616 130.318 99.362 202.457 38.390 49.002 49.002 40.789 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23	36.141 50.697 67.800 470.592 39.482 132.294 30.616 130.318 99.362 202.457 38.390 40.002 40.002 40.002 40.002 38.390 40.002 40.002 40.002 38.390 38.390 40.002 40.002 40.002 38.390 38.390 40.002 40.002 40.002 38.390 40.002 40.002 38.390 40.002 40.002 40.002 38.390 40.002 40.002 40.002 38.390 40.002 40.002 38.390 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40	36.141 67.800 470.592 39.482 132.294 30.616 130.318 99.362 202.457 38.390 49.002 40.789 23.388 23.388 23.388 23.388 21.280 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810 21.2810	36.141 67.800 470.592 39.482 132.294 30.616 130.318 99.362 202.457 202.457 38.390 49.002 40.789 23.388 12.819 28.195	36.141 67.800 470.592 39.482 132.294 30.618 130.318 99.362 202.457 38.390 49.002 40.789 23.38 12.810 28.195 28.203 38.203 38.650 40.789 28.195 28.195	36.141 50.697 67.800 470.592 39.482 132.294 30.318 130.318 99.362 202.457 202.457 49.002 40.789 23.38 12.1490 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.203 38.659 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 2	36.141 50.697 67.800 470.592 39.482 132.294 30.616 130.318 39.362 202.457 38.390 49.002 49.002 49.002 23.338 12.1490 28.196 28.196 28.196 28.203 49.865 131.549	36.141 50.697 67.800 470.592 39.482 132.294 30.318 39.338 202.457 38.390 49.002 49.002 49.002 49.002 49.002 49.002 23.338 12.810 33.659 12.1490 23.338 23.3659 49.002 49.002 49.002 23.338 12.810 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 23.338 2	36.141 50.697 67.800 470.592 39.482 132.294 30.318 99.331 30.318 99.332 202.457 38.390 49.002 49.002 49.002 49.023 23.338 12.810 23.369 49.033 49.033 49.033 12.810 23.338 12.810 28.135 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.230 28.	36.141 50.697 67.800 470.592 39.482 132.294 30.616 130.318 99.362 202.457 38.390 49.002 40.789 23.338 12.1490 40.789 23.338 12.1490 23.346 40.789 23.346 40.789 23.346 23.346 40.789 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346 23.346	36.141 67.800 470.592 39.482 132.294 30.697 130.318 130.318 99.362 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457 202.457	36.141 50.697 67.800 470.592 39.482 132.294 30.318 39.362 202.457 49.002 40.789 23.38 12.1490 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.	36.141 50.697 67.800 470.592 39.482 132.294 30.318 30.338 130.318 49.002 49.002 49.002 49.002 49.002 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.	36.141 50.697 50.697 67.800 470.592 39.482 132.294 30.467 30.318 49.002 49.002 49.002 49.002 49.002 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.203 28.204 131.549 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490 121.490	36.141 50.697 50.697 67.800 470.592 39.482 132.294 30.318 39.362 202.457 49.002 49.002 49.002 49.002 49.002 28.293 38.390 49.002 49.002 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.195 131.549 131.549 14.692 14.692 14.692 14.692 14.055 13.1592
3 decimals	9.39798	400.130	61.422	426.795 304.815	58.883	155.506	56.226	42.989	128.378	100.613	2000	28.915	28.915 40.560 54.243	28.915 40.560 54.243 376.498	28.915 40.560 54.243 376.498 31.587	28.915 40.560 54.243 376.498 31.587 105.842	28.915 40.560 54.243 376.498 31.587 105.842 24.494	28.915 40.560 54.243 376.498 31.587 105.842 24.494 104.261	28.915 40.560 40.560 54.243 376.498 31.587 105.842 24.494 104.261 79.495	28.915 40.560 40.560 54.243 376.498 31.587 105.842 24.494 104.261 79.495 161.976	28.915 40.560 54.243 376.498 31.587 105.842 104.261 161.976	28.915 40.560 54.243 376.498 105.842 104.261 179.496 161.976 30.714 330.714	28.915 40.560 54.438 376.438 31.587 105.842 104.261 79.495 161.976 30.714 39.204 18.672	28.915 40.560 54.438 376.438 31.587 105.842 104.261 104.261 104.261 161.976 30.714 39.204 32.634 10.249	28.915 40.560 56.498 31.587 105.842 104.261 104.261 104.261 104.261 161.976 30.714 30.714 32.634 10.249 10.249	28.915 40.560 54.498 31.587 105.842 104.261 79.495 161.976 30.714 39.204 32.634 10.249 10.249 97.199	28.915 40.560 54.498 31.587 105.842 104.261 104.261 101.976 30.714 39.204 32.634 10.249 10.249 97.199	28.915 40.560 56.498 31.587 105.842 104.261 104.261 104.261 107.99 32.204 32.204 32.634 10.249 97.199 97.199 97.199	28.915 40.560 56.498 31.687 105.842 104.261 104.261 101.976 30.714 39.204 32.634 10.249 97.199 97.199 22.557 22.557 39.894	28.915 40.560 54.243 376.438 31.687 105.842 79.495 161.976 39.204 32.634 10.249 26.929 97.199 97.199 97.199 97.199 39.894	28.915 40.560 54.243 376.498 31.587 105.842 24.494 104.261 161.976 30.714 30.714 30.204 32.634 32.634 32.634 32.634 32.634 32.634 32.634 32.634 32.634 32.634 32.634 32.634 32.634 32.634 32.634 33.894 33	28.915 40.560 54.434 31.587 105.842 24.494 104.261 161.976 30.714 39.204 32.634 32.634 32.634 10.249 26.929 97.199 97.199 97.199 97.199 97.199 97.199 97.199 97.199 97.199 97.199 97.199 97.199	28.915 40.560 56.438 31.587 105.842 24.494 106.842 10.249 39.204 30.204 30.204 30.204 30.204 30.204 30.204 30.204 30.204 30.204 30.204 30.204 30.204 30.204 30.204 30.204	28.915 40.560 54.434 31.587 105.842 106.842 104.261 104.261 104.261 104.261 104.261 107.963 97.199	28.915 40.560 56.498 31.587 105.842 104.261 104.261 104.261 107.249 32.204 32.204 32.204 32.204 32.204 32.204 32.204 32.204 32.204 32.204 32.204 32.204 32.204 32.204 32.205 32.2	28.915 40.560 54.434 31.587 105.842 106.096 106.096 10.249 10.249 10.246	28.915 40.560 56.438 376.438 31.547 105.842 104.261 104.261 104.263 30.714 33.204 32.634 10.249 97.199 97.1	28.915 40.560 54.439 31.587 105.842 106.842 104.261 104.261 104.261 104.261 104.261 104.261 104.261 104.261 106.929 97.199 97.
Freq. to 3	7.04925	300.130	46.072	320.131 228.636	44.167	116.642	42.174	32.245	96.294	75.468		30 423	21.688 30.423 40.687	21.688 30.423 40.687 282.404	21.688 30.423 40.687 282.404 23.693	21.688 30.423 40.687 282.404 23.693 79.390	21.688 30.423 40.687 282.404 23.693 79.390 18.373	21.688 30.423 40.687 282.404 23.693 79.390 18.373 78.204	21.688 30.423 40.687 282.404 23.693 79.390 18.373 78.204 59.627	21.688 30.423 30.423 40.687 23.693 79.390 18.373 78.204 18.373 121.495	21.688 30.423 40.687 282.404 23.693 79.390 18.373 78.204 59.627 121.495 23.038	21.688 30.423 40.687 23.693 79.390 18.373 78.204 121.495 23.038 23.038 23.406	21.688 30.423 40.687 282.404 23.693 79.390 78.204 121.495 23.038 29.406 24.478	21.688 30.423 40.687 282.404 23.693 79.390 78.204 18.373 78.204 121.495 23.038 29.406 24.478 14.005	21.688 30.423 40.687 282.404 23.693 79.390 18.373 78.204 121.495 23.038 23.038 24.406 24.478 14.005 20.199	21.688 30.423 40.687 282.404 23.693 79.390 18.373 78.204 121.495 23.038 29.406 24.478 14.478 7.687 7.687	21.688 30.423 40.687 28.2404 23.693 79.390 18.373 78.204 121.495 29.406 24.478 14.478 1.4.05 20.199 72.907	21.688 20.423 30.423 40.687 28.693 79.390 78.204 121.495 59.627 121.495 23.038 29.406 24.478 14.005 72.907 16.920	21.688 30.423 40.687 28.204 18.373 79.390 79.390 78.204 121.495 29.406 29.406 24.478 14.478 16.920 16.920 16.924 16.920 16.924 16.920 16.924 16.920 16.920 16.924 16.920 1	21.688 30.423 40.687 28.2404 28.263 79.390 18.373 78.204 121.495 29.406 2.4478 2.4478 16.920 16.924 16.924 16.924 16.924 16.924 29.924 29.924 29.924 29.924	21.688 30.423 40.687 282.404 23.693 79.390 78.204 121.495 23.406 24.478 14.005 16.924	21.688 30.423 40.687 282.404 23.693 79.390 78.204 121.495 23.406 24.478 14.005 16.920 16.924 17.934	21.688 30.423 40.687 282.404 23.693 18.373 18.373 121.495 29.406 24.478 14.005 16.920 16.920 72.907 16.924 16.965 74.400 74.400 74.400 74.400 74.400 74.400	21.688 30.423 40.687 28.2404 23.693 79.390 18.373 78.204 121.495 23.038 23.038 23.038 23.0406 24.406 72.907 16.924 16.924 16.924 16.924 72.907 72.907 74.400 9.718	21.688 30.423 40.687 28.693 79.390 79.390 18.373 78.204 121.495 23.038 23.038 23.038 24.406 72.907 72.907 72.907 72.907 72.907 72.907 76.924 76.926 77.907 76.924 76.924 76.924 76.924 76.924 76.924 76.926 77.907 76.924 76.924 76.924 76.924 76.924 76.924 76.926 77.907 76.924 76.924 76.924 76.924 76.924 76.924 76.926 77.907 76.924 76.924 76.924 76.924 76.924 76.924 76.926 77.907 76.924 76.92	21.688 30.423 30.423 40.687 28.693 79.390 18.373 78.204 121.495 29.406 29.406 20.199 72.907 16.920 16.920 16.924 16.920 16.924 16.924 16.924 72.907 72.90	21.688 20.423 30.423 40.687 28.693 79.390 18.373 78.204 121.495 29.406 2.9.406 16.920 16.920 16.924 16.920 16.924 16.924 16.924 16.924 16.924 17.895 17.895 17.907 17.907 18.373 19.627 19.627 19.924 19.927 10.924 10.927 10.9	21.688 20.423 30.423 40.687 28.693 79.390 78.204 121.495 23.038 23.038 23.038 24.406 72.907 72.90
vity	Molar rel. ¹H	1.00E+00	9.65E-03	1.21E+00 4.42E-01	8.50E-03	2.94E-01	1.39E-02	1.99E-02	1.65E-01	1.59E-02	1 01 1 0 1	1.01E-03	1.01E-03 1.04E-03 2.91E-02	1.01E-03 1.04E-03 2.91E-02 8.32E-01	1.01E-03 1.04E-03 2.91E-02 8.32E-01 2.46E-03	1.01E-03 1.04E-03 2.91E-02 8.32E-01 2.46E-03 9.27E-02	1.01E-03 1.04E-03 2.91E-02 8.32E-01 2.46E-03 9.27E-02 2.68E-03	1.01E-03 1.04E-03 2.91E-02 8.32E-01 2.46E-03 9.27E-02 2.68E-03 2.07E-01	1.01E-03 1.04E-03 2.91E-02 8.32E-01 2.46E-03 9.27E-02 2.07E-01 7.86E-03	1.01E-03 1.04E-03 2.31E-02 8.32E-01 2.46E-03 9.77E-02 2.07E-01 7.86E-03 6.65E-03	1.01E-03 1.04E-03 2.91E-02 8.32E-01 2.46E-03 9.77E-02 2.07E-01 7.86E-03 6.65E-02	1.01E-03 1.04E-03 2.31E-02 8.32E-01 2.46E-03 9.27E-02 2.07E-01 7.86E-03 6.65E-03 4.72E-03 4.72E-03	1.01E-03 1.04E-03 2.31E-02 8.32E-01 2.46E-03 9.77E-02 2.07E-01 7.86E-03 6.65E-03 6.65E-03 4.72E-03 2.77E-03 2.77E-03 2.77E-03 2.77E-03 2.77E-03 4.77E-03 2.77E-03	1.01E-03 1.04E-03 2.31E-02 8.32E-01 2.46E-03 9.77E-03 2.07E-01 7.86E-03 6.65E-02 6.65E-03 4.72E-03 2.77E-03 2.77E-03 8.44E-05 8.44E-05	1.01E-03 1.04E-03 2.31E-02 8.32E-01 2.46E-03 9.27E-03 2.07E-01 7.86E-03 6.65E-02 6.65E-03 4.72E-03 2.77E-03 5.76E-03 6.65E-	1.01E-03 1.04E-03 2.31E-02 8.32E-01 2.46E-03 9.77E-03 2.07E-01 7.86E-03 6.65E-02 6.65E-02 6.55E-03 4.72E-03 5.10E-04 8.44E-05 6.43E-03 3.02E-01	1.01E-03 1.04E-03 2.31E-02 8.32E-01 2.46E-03 9.77E-03 2.07E-01 7.86E-03 7.86E-03 7.86E-03 7.86E-03 7.86E-03 7.86E-03 7.86E-03 6.65E-02 6.65E-02 6.65E-03 7.72E-03 8.44E-05 6.43E-03 3.02E-01 2.10E-03	1.01E-03 1.04E-03 2.31E-02 8.32E-01 2.46E-03 9.77E-03 2.07E-01 7.86E-03 7.86E-03 7.86E-03 7.86E-03 7.86E-03 7.86E-03 7.86E-03 6.65E-02 6.65E-03 7.72E-03 7.72E-03 8.44E-04 8.44E-05 6.43E-03 3.02E-01 2.10E-03 3.78E-	1.01E-03 1.04E-03 2.31E-02 8.32E-01 2.46E-03 9.74E-03 2.07E-01 7.86E-03 7.86E-03 7.86E-03 7.86E-03 7.86E-03 7.86E-03 7.72E-03 7.72E-03 8.44E-05 6.43E-03 3.72E-01 3.72E-03 3.72E-03 5.10E-03 3.78E-03 5.10E-03 3.78E-03 5.10E-03 5.10E-03 5.10E-03 5.10E-03 5.10E-03 6.65E-01 6.65E-01 6.65E-03 6.77E-03 6.77E-03 6.77E-03 7.77E-	1.01E-03 1.04E-03 2.31E-02 2.46E-03 9.27E-01 2.08E-03 2.07E-01 7.86E-03 2.07E-01 7.86E-03 2.27E-03 2.72E-03 2.72E-03 3.02E-01 3.02E-01 3.78E-03 3.78E-	1.01E-03 1.04E-03 2.91E-02 8.32E-01 2.46E-03 9.27E-02 2.07E-01 7.88E-03 2.77E-03 4.72E-03 2.77E-03 2.77E-03 3.78E-03 3.02E-01 2.77E-03 3.02E-01	1.01E-03 1.04E-03 2.31E-01 2.46E-03 2.07E-01 2.07E-01 7.86E-03 2.07E-01 7.86E-03 2.07E-01 7.86E-03 4.72E-03 4.72E-03 4.72E-03 3.72E-03 3.02E-01 5.10E-04 8.44E-05 6.43E-03 3.02E-01 2.10E-04 8.44E-05 6.43E-03 3.02E-01 3.02E-01 3.02E-01 3.02E-01 3.02E-01 3.02E-01 3.02E-01 3.02E-01 3.02E-01 3.02E-01 3.02E-01 3.02E-01 3.02E-01 3.02E-01	1.01E-03 2.31E-02 8.32E-01 2.46E-03 9.27E-02 2.07E-01 7.86E-03 2.07E-01 7.86E-03 2.27E-03 4.72E-03 2.72F-03 3.78E-03 3.77E-03	1.01E-03 1.04E-03 2.31E-02 8.32E-01 2.46E-03 9.27E-03 2.07E-01 7.86E-03 6.55E-03 2.77E-03 2.77E-03 3.78E-03 3.78E-03 3.78E-03 3.78E-03 3.78E-03 5.10E-03 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01	1.01E-03 1.04E-03 2.31E-02 8.32E-01 2.46E-03 9.77E-03 2.07E-01 7.86E-03 7.86E-03 7.86E-03 7.86E-03 7.86E-03 7.86E-03 7.86E-03 7.86E-03 8.44E-05 6.43E-03 3.78E-03 3.78E-04 8.44E-05 6.43E-03 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-03 3.78E-01	1.01E-03 1.04E-03 2.31E-02 8.32E-01 2.46E-03 9.77E-03 2.07E-01 7.86E-03 7.86E-03 7.86E-03 7.72E-	1.01E-03 1.04E-03 2.31E-02 8.32E-01 2.46E-03 2.76E-03 2.07E-01 7.86E-03 2.07E-01 7.86E-03 7.86E-03 7.86E-03 7.86E-03 7.86E-03 8.44E-05 5.10E-04 8.44E-05 5.10E-03 3.78E-01 1.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 1.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01 3.78E-01	1.01E-03 1.04E-03 2.29E-01 2.46E-03 2.76E-03 2.07E-01 2.07E-01 2.07E-01 2.07E-03 2.07E-03 2.07E-03 3.02E-01
Receptivity	Natural rel. ¹C	5.87E+03	6.52E-03	3.48E-03	3.79E+00	1.59E+03	8.15E+01	2.32E+01	7.77E+02	1.00E+00	00 1	5.90E+00	5.90E+00 2.23E-02 6.50E-02	5.90E+00 2.23E-02 6.50E-02 4.89E+03	5.90E+00 2.23E-02 6.50E-02 4.89E+03 3.91E-02	5.90E+00 2.23E-02 6.50E-02 4.89E+03 3.91E-02 5.45E+02	5.90E+00 2.23E-02 6.50E-02 4.89E+03 3.91E-02 5.45E+02	5.90E+00 2.23E-02 6.50E-02 4.89E+03 3.91E-02 5.45E+02 1.58E+00	5.90E+00 2.23E-02 6.50E-02 4.89E+03 3.91E-02 5.45E+02 1.58E+00 1.22E+03	5.90E+00 2.23E-02 6.50E-02 3.48E+03 5.45E+00 1.25E+03 2.16E+00 3.91E+02	5.90E+00 2.23E-02 6.650E-02 4.89E+03 3.91E-02 5.45E+00 1.22E+03 2.16E+00 3.91E+02 1.00E-01	5.90E+00 2.23E-02 6.650E-02 3.91E-02 5.345E+03 1.22E+03 1.22E+03 3.91E+02 1.00E-01	5.90E+00 2.23E-02 6.650E-02 3.91E-02 5.45E+00 1.22E+03 2.16E+00 3.91E+02 1.00E-01 2.10E+01 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.91E+02 3.	5.90E+00 2.23E-02 4.650E-02 3.91E-02 5.45E+03 1.22E+03 1.22E+03 2.16E+00 1.22E+03 3.91E+02 1.00E-01 2.79E+00 3.34E-00 3.34E-00 3.34E-00	5.90E+00 2.23E-02 4.650E-02 3.91E-02 5.45E+03 1.22E+03 1.22E+03 1.22E+03 2.16E+01 1.00E-01 2.79E+00 3.34E-02 3.34E-02 5.10E-02 5.10E-02	5.90E+00 2.23E-02 6.650E-02 3.91E-02 5.45E+00 1.22E+03 2.16E+00 3.31E+02 1.00E-01 2.70E+00 3.34E+02 3.34E-02 3.34E-02 3.34E-02 3.34E-02 5.10E-02 1.78E+03	5.90E+00 2.23E-02 6.650E-02 3.91E-02 5.45E+00 1.22E+03 2.16E+00 3.91E+02 1.00E-01 2.70E+00 3.34E+02 3.34E-02 5.10E-02 5.10E-02 9.18E+03 9.18E+03	5.90E+00 2.23E-02 4.650E-02 3.91E-02 5.391E-02 1.22E+03 1.22E+03 3.391E+02 1.00E-01 2.70E+00 2.70E+00 3.34E-02 5.10E-02 1.78E+03 9.18E-01	5.90E+00 2.23E-02 4.650E-02 3.91E-02 5.391E-02 1.22E+03 1.22E+03 3.391E+02 1.00E-01 2.10E+01 2.79E+00 3.34E+02 3.34E+02 3.34E+03 3.34E+03 3.34E+03 3.34E+03 1.78E+03 9.18E-01	5.90E+00 2.23E-02 6.50E-02 3.91E+02 1.22E+03 3.91E+02 1.00E-01 1.00E-01 2.16E+00 3.91E+02 3.91E+02 1.00E-01 1.00E-01 1.00E-01 2.10E+01 2.10E+01 3.91E+02 3.91E+02 1.00E-01 1.00E-01 2.10E+01 3.91E-02 3.91E+02 1.00E-01 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-02 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-03 3.91E-	5.90E+00 2.23E-02 6.50E-02 3.91E-02 3.91E-02 1.22E+03 2.16E+00 1.00E-01 2.10E+01 2.10E+01 2.79E+00 3.34E-02 3.34E-02 3.34E-02 3.34E-02 3.34E-02 3.34E-02 3.34E-01 2.79E+00 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-01 3.34E-	2.23E-02 2.23E-02 4.89E+02 5.45E+02 1.58E+00 1.22E+03 3.31E+02 1.00E-01 2.79E+00 3.34E-02 5.10E-02 5.10E-02 5.10E-03 3.34E-02 5.10E-03 3.34E-02 5.10E-01 3.88E+00 2.79E+00 8.18E-01 1.78E+03 9.18E-01 1.78E+03 9.18E-01 1.78E+03 5.10E-02 5.10E-01 1.78E+03 5.10E-01 1.78E+03 5.10E-01 1.78E+03 5.10E-01 1.78E+03 1.78E+03 5.10E-01 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+	2.23E-02 2.60E-02 4.650E-02 5.45E+02 1.58E+02 1.22E+03 3.31E+02 1.00E-01 3.88E+00 2.16E+01 3.88E+00 2.79E+00 2.79E+00 2.79E+00 2.79E+00 2.79E+00 2.79E+00 3.34E-02 5.10E-01 1.78E+03 3.34E-02 5.10E-01 1.78E+03 4.55E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E+03 4.25E	5.90E+00 2.23E-02 6.650E-02 3.91E-02 5.45E+00 1.22E+03 3.91E+02 1.00E-01 2.10E+01 2.79E+00 2.79E+00 3.34E-02 5.10E-01 1.78E+03 3.34E-02 5.10E-01 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.78E+03 1.	5.90E+00 2.23E-02 6.650E-02 3.91E-02 5.45E+00 1.22E+03 2.16E+00 2.16E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01 3.34E-02 5.10E-01 1.78E+03 3.34E-02 5.10E-01 1.78E+03 3.44E-02 5.10E-01 1.78E+03 3.44E-02 5.10E-01 1.78E+03 3.44E-02 5.10E-01 1.78E+03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E	5.90E+00 2.23E-02 6.650E-02 3.91E-02 5.391E-02 1.58E+00 1.22E+03 3.391E+02 1.00E-01 2.10E+01 2.10E+01 2.10E+01 2.10E+01 1.78E+03 3.34E-02 5.10E-01 1.78E+03 3.34E-02 5.10E-01 1.65E+03 3.45E-03 1.65E+03 1.65E+03 3.45E-03 3.45E-03 1.65E+03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.45E-03 3.4	5.90E+00 2.23E-02 6.650E-02 3.91E-02 5.391E-02 1.28E+00 1.22E+03 3.391E+02 2.10E+01 2.79E+00 3.34E+02 3.34E-02 5.10E-01 1.78E+03 9.18E-01 1.60E-03 3.41E-02 5.10E-02 5.10E-03 1.64E+03 3.82E+03 1.64E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.82E+03 3.8	5.90E+00 2.23E-02 4.650E-02 3.91E-02 5.45E+02 1.22E+03 2.16E+00 2.16E+01 2.10E+01 2.10E+01 2.10E+01 3.34E-02 5.10E-01 1.78E+03 3.34E-02 5.10E-01 1.78E+03 3.34E-02 5.10E-03 3.34E-02 5.10E-03 1.78E+03 3.34E-02 5.10E-03 1.78E+03 3.34E-02 5.10E-03 1.78E+03 3.34E-03 3.34E-02 5.10E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E-03 3.34E
Nat. Abund.	(%)	99.9885	0.0115	1.34E-04	7.59	92.41	100.0	19.9	80.1	1.07		0.364	0.038	0.364 0.038 100.0	0.364 0.038 100.0 0.27	0.364 0.038 100.0 0.27	0.364 0.038 100.0 100.0 100.0	0.038 100.0 0.27 100.0 10.00 10.00	0.384 0.038 100.0 0.27 100.0 100.0 100.0	0.384 0.038 100.0 100.0 100.0 100.0 4.685 100.0	0.384 0.038 0.038 100.0 100.0 100.0 100.0 100.0 100.0 100.0	0.0364 0.0364 0.036 0.27 100.0 10.00 100.0 100.0 100.0 100.0 0.75 75.76	0.038 0.038 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.75 75.76 93.258	0.038 0.038 100.0 100.0 100.0 100.0 0.75 7.5.6 24.24 93.258 6.730	0.038 0.038 100.0 100.0 100.0 100.0 0.75 75.76 24.24 93.258 6.730 6.730	0.0384 0.0384 0.038 100.0 100.0 100.0 0.75 75.76 24.24 93.258 6.730 6.730	0.038 0.038 0.038 100.0 100.0 100.0 0.75 75.76 24.24 93.258 6.730 6.730 100.0 7.44	0.0384 0.0384 0.0384 0.027 100.0 100.0 100.0 0.75 75.76 24.24 93.258 6.730 0.135 100.0 1.35 100.0	0.0384 0.0384 0.0384 0.027 100.0 100.0 100.0 0.75 0.75 6.730 6.730 6.730 100.0 100.0 0.135 100.0 0.135 0.250	0.0384 0.0384 0.0384 100.0 10.00 10.00 10.00 10.00 0.75 75.76 24.24 93.258 6.730 0.135 100.0 1.35 100.0 100.0 1.35 100.0 1.35 100.0 1.35 100.0 1.35 100.0 1.35 100.0 1.35 100.0 1.35 100.0 1.35 100.0 1.35 100.0 1.35 100.0 1.35 100.0 1.35 100.0	0.0384 0.0384 0.0384 100.0 100	0.0384 0.0384 0.0384 0.027 100.0 100.0 100.0 0.75 75.76 24.24 93.258 6.730 0.135 100.0 7.44 5.41 5.41 6.730 0.250 99.750 99.750	0.038 0.038 0.038 100.0 100.0 100.0 100.0 0.75 100.0 0.135 100.0 0.135 100.0 0.135 0.1	0.0384 0.0384 0.0384 0.027 100.0 100.0 100.0 0.75 75.76 24.24 93.258 6.730 0.135 100.0 0.250 99.750 99.750 99.750 99.750 100.0	0.038 0.038 0.038 0.038 100.0 100.0 100.0 0.75 75.76 24.24 93.258 6.730 0.135 100.0 0.135 100.0 2.119 1.00.0 2.119 1.00.0 1.1399	0.0384 0.0384 0.0384 0.0384 100.0 100.0 4.685 100.0 0.75 75.76 24.24 93.258 6.730 0.135 100.0 7.44 5.41 5.41 5.41 5.41 5.41 5.41 5.41 5	0.0364 0.0384 0.0384 0.0384 0.027 100.0 4.685 100.0 0.75 75.76 24.24 93.258 6.730 0.135 100.0 9.501 100.0 2.119 100.0 2.119 100.0 2.119 100.0 2.119 100.0	0.0384 0.0384 0.0384 0.027 100.0 100.0 100.0 0.75 6.730 6.730 6.730 6.730 100.0 0.250 99.750
Spin		1/2	- 5	1/2	_	3/2	3/2	က	3/2	1/2	-	117	1/2	1/2 5/2 1/2	1/2 5/2 1/2 3/2																							
Isotope		Τ	+	는 은 문	\vdash	7 Li		-	11 B	13 C	1	L																										

NMR Frequency Tables

NMR Frequency Tables

NIV	1 R	Fre	pe	ue	ene	cie	98	V	s.	Br	ul	(e	r F	Fie	ld	S	tr	er	ŋg	th	S	- \$	80	rte	ed	b	y	in	cr	ea	si	ng	j a	ito	n	nic	n	ıuı	ml	be	r		
	oments	23.4904	34.888	171.248	190.740	250.572	270.100	38.481	96.562	327.247	43.344	49.008	92.975	244.794	65.178	66.546	225.113	46.057	51.620	31.869	45.767	40.483	46.541	212.182	221.961	218.686	219.155	327.230	356.369	372.955	239.337	129.609	261.731	315.539	200.101	278.138	82.450	131.178	99.357	111.144	131.960	141.275	306.21
	n magn. n	22.3160	33.144	162.687	181.204	238.045	256.597	36.557	91.735	310.887	41.177	46.558	88.327	232.555	61.919	63.219	213.858	43.755	49.040	30.275	43.479	38.460	44.215	201.575	210.864	207.753	208.198	310.871	338.553	354.309	227.372	123.129	248.647	299.764	190.097	264.233	78.328	124.620	94.390	105.587	125.363	134.212	290.90
Fesla)	ulated tror	21.1416	31.399	154.126	171.668	225.518	243.094	34.633	86.907	294.527	39.010	44.108	83.679	220.317	58.661	59.892	202.604	41.452	46.459	28.682	41.191	36.436	41.888	190.967	199.767	196.820	197.242	294.511	320.737	335.664	215.406	116.650	235.562	283.989	180.093	250.328	74.206	118.062	89.423	100.031	118.766	127.149	275.59
rengths (c. are calc	19.9673	29.622	145.564	162.133	212.991	229.591	32.710	82.080	278.166	36.843	41.658	79.031	208.079	55.402	56.565	191.350	39.150	43.878	27.089	38.903	34.412	39.561	180.359	188.671	185.887	186.286	278.152	302.921	317.019	203.441	110.170	222.477	268.214	170.090	236.423	70.084	111.504	84.456	94.474	112.169	120.086	260.28
er Field St	eq. to 2 de	18.7929	27.911	137.003	152.597	200.464	216.087	30.786	77.252	261.806	34.676	39.208	74.382	195.841	52.144	53.238	180.096	36.847	41.298	25.496	36.615	32.388	37.234	169.751	177.574	174.954	175.330	261.793	285.104	298.374	191.476	103.691	209.392	252.439	160.086	222.518	65.962	104.946	79.489	88.918	105.572	113.023	244.97
Larmor Frequencies (MHz) vs. Bruker Field Strengths (Tesla)	rreq. to 3 decimals are experimental for IUPAC Standards; freq. to 2 dec. are calculated from magn. moments	17.6185	26.167	128.442	143.061	187.937	202.584	28.862	72.425	245.446	32.509	36.758	69.734	183.603	48.885	49.911	168.842	34.545	38.717	23.902	34.327	30.364	34.908	159.144	166.478	164.022	164.373	245.433	267.288	279.728	179.510	97.211	196.307	236.664	150.082	208.613	61.840	98.388	74.521	83.361	98.974	105.961	229.67
cies (MHz	IUPAC Sta	16.4442	24.423	119.881	133.525	175.410	189.081	26.938	67.597	229.086	30.342	34.308	980.39	171.365	45.627	46.585	157.588	32.242	36.136	22.309	32.039	28.340	32.581	148.536	155.381	153.089	153.417	229.074	249.472	261.083	167.545	90.731	183.222	220.889	140.078	194.707	57.718	91.830	69.554	77.805	92.377	868.86	214.36
r Frequen	mental tor	14.0954	20.934	102.758	114.454	150.356	162.074	23.091	57.942	196.365	26.009	29.408	55.790	146.889	39.110	39.931	135.079	27.637	30.975	19.123	27.463	24.292	27.927	127.320	133.188	131.223	131.504	196.355	213.840	223.792	143.615	27.77	157.052	189.340	120.071	166.897	49.474	78.714	59.620	66.692	79.183	84.772	183.74
Larmo	are experi	11.7467	17.446	85.635	95.382	125.302	135.068	19.243	48.287	163.645	21.675	24.507	46.494	122.413	32.593	33.277	112.571	23.032	25.814	15.936	22.886	20.244	23.274	106.105	110.995	109.357	109.592	163.636	178.208	186.502	119.684	64.813	130.883	157.790	100.063	139.087	41.230	65.598	49.685	55.579	62.989	70.647	153.12
	3 decimals	9.39798	13.958	68.513	76.311	100.248	108.061	15.395	38.632	130.924	17.341	19.607	37.197	97.936	26.076	26.623	90.063	18.427	20.652	12.750	18.310	16.197	18.620	84.890	88.802	87.491	87.679	130.918	142.575	149.211	95.753	51.854	104.713	126.240	80.056	111.277	32.986	52.482	39.751	44.466	52.794	56.521	122.51
L	Freq. to	7.04925	10.469	51.390	57.239	75.195	81.055	11.548	28.977	98.204	13.007	14.707	27.901	73.460	19.559	19.970	67.554	13.821	15.491	9.563	13.734	12.149	13.967	63.674	809.99	65.626	65.766	98.199	106.943	111.920	71.823	38.894	78.543	94.690	60.048	83.467	24.742	39.365	29.816	33.353	39.600	42.395	91.89
vity	,	Molar rel. ¹H	1.41E-03	2.54E-02	7.03E-03	7.94E-02	9.95E-02	1.90E-03	1.06E-02	1.77E-01	2.72E-03	1.19E-04	9.49E-03	4.88E-01	3.27E-03	3.49E-03	3.82E-01	1.13E-03	1.57E-03	3.17E-05	1.13E-03	6.74E-05	1.02E-04	9.66E-03	1.11E-02	3.51E-01	3.53E-01	3.56E-02	4.60E-02	5.27E-02	1.63E-01	4.66E-02	1.84E-02	3.22E-02	9.54E-02	2.16E-02	2.82E-03	4.84E-02	5.01E-03	7.00E-03	9.40E-02	6.06E-02	3.35E-01
Receptivity		Natural rel. ¹3C	6.44E-01	1.49E+02	3.15E+00	2.37E+02	2.88E+02	1.28E+00	4.50E+01	2.90E+02	1.12E+00	7.00E-01	6.26E+00	2.87E+03	3.06E+00	1.96E+00	•	8.46E-01	1.58E+00	1.86E-01	1.49E+00	2.05E-01	2.90E-01	7.27E+00	7.94E+00	8.85E+01	1.99E+03	7.11E-01	2.08E+01	2.66E+01	5.48E+02	1.17E+02	9.61E-01	1.34E+01	5.60E+02	3.35E+01	3.51E+00	2.84E+02	1.94E+00	4.62E+00	4.97E-01	3.56E+02	1.97E+03
Nat.	Abund.	(%)	7.76	100.0	7.63	50.69	49.31	11.500	72.17	27.83	7.00	100.0	11.22	100.0	15.90	9.56		12.76	17.06	100.0	22.33	51.839	48.161	12.80	12.22	4.29	95.71	0.34	7.68	8.59	57.21	42.79	0.89	7.07	100.0	26.4006	21.2324	100.0	6.592	11.232	0.090	99.910	100.0
Spin			9/2	3/2	1/2	3/2	3/2	9/2	5/2	3/2	9/2	1/2	5/2	9/2	5/2	5/2	9/2	5/2	5/2	1/2	5/2	1/2	1/2	1/2	1/2	3/5	9/2	1/2	1/2	1/2	2/5	7/2	1/2	1/2	5/2	1/2	3/2	7/2	3/2	3/2	2	7/2	2/5
Isotope			73 Ge		77 Se	79 Br	81 Br	83 Kr	85 Rb	87 Rb	87 Sr			93 Nb		97 Mo	_	99 Ru	101 Ru		105 Pd	107 Ag	_	111 Cd	113 Cd	\vdash		115 Sn			-		123 Te	125 Te	127	129 Xe		Н		\dashv	Н	Н	141 Pr

NMR Frequencies vs. Bruker Field Strengths – sorted by increasing atomic number

INIVII	rre	q	ue	no	ЭЕ	S	VS	5.	Br	ur	(e)	_	·ie	IC	3	τr	er	ıg	tn	S·	- \$	50	rte	ea	D	y	ıne	cre	ea	SII	ng	a	ITC	m	110	n	ıuı	m	be		
noments	23.4904	54.48	33.56	41.68	34.36	248.65	109.75	30.70	40.26	240.41	34.38	48.20	211.38	28.85	82.72	175.016	48.69	114.20	81.06	40.59	25.50	119.912	41.669	225.275	227.546	22.826	77.664	17.99	19.54	214.996	17.69	179.132	66.124	571.306	576.913	209.233	160.714	243.51	239.93	18.416	
n magn. m	22.3160	51.76	31.88	39.60	32.64	236.22	104.26	29.17	38.25	228.39	32.66	45.79	200.82	27.40	78.59	166.266	46.26	108.49	77.01	38.56	24.23	113.917	39.586	214.013	216.170	21.685	73.781	17.09	18.56	204.247	16.80	170.176	62.819	542.745	548.071	198.773	152.679	231.34	227.93	17.496	
Fesla) ulated fror	21.1416	49.04	30.20	37.52	30.93	223.78	98.78	27.63	36.24	216.37	30.94	43.38	190.25	25.96	74.45	157.517	43.83	102.78	72.95	36.53	22.95	107.922	37.503	202.751	204.794	20.544	69.836	16.19	17.59	193.499	15.92	161.221	59.513	514.183	519.230	188.313	144.644	219.16	215.94	16.575	
Larmor Frequencies (MHz) vs. Bruker Field Strengths (Tesla) experimental for IUPAC Standards; freq. to 2 dec. are calculated.	19.9673	46.31	28.53	35.43	29.21	211.35	93.29	26.10	34.22	204.35	29.22	40.97	179.68	24.52	70.32	148.767	41.39	97.07	06.89	34.51	21.68	101.927	35.420	191.488	193.418	19.403	66.016	15.29	16.61	182.751	15.03	152.265	56.207	485.621	490.388	177.852	136.610	206.99	203.94	15.654	
er Field St	18.7929	43.59	26.85	33.35	27.49	198.92	87.80	24.56	32.21	192.33	27.50	38.56	169.11	23.08	66.18	140.017	38.96	91.36	64.85	32.48	20.40	95.932	33.337	180.226	182.042	18.262	62.133	14.39	15.63	172.002	14.15	143.310	52.901	457.060	461.546	167.392	128.575	194.81	191.95	14.734	
) vs. Bruke Indards; fre	17.6185	40.86	25.17	31.26	25.77	186.49	82.32	23.03	30.20	180.31	25.78	36.15	158.54	21.63	62.04	131.268	36.52	85.65	08.09	30.45	19.13	89.938	31.253	168.964	170.667	17.120	58.251	13.49	14.66	161.254	13.26	134.354	49.595	428.498	432.704	156.932	120.541	182.64	179.96	13.813	
cies (MHz	16.4442	38.14	23.49	29.18	24.06	174.06	76.83	21.49	28.19	168.29	24.07	33.74	147.98	20.19	57.91	122.518	34.09	79.94	56.74	28.42	17.85	83.943	29.170	157.701	159.291	15.979	54.368	12.59	13.68	150.505	12.38	125.399	46.290	399.937	403.862	146.471	112.506	170.47	167.96	12.892	
r Frequen mental for	14.0954	32.69	20.14	25.01	20.62	149.20	65.86	18.42	24.16	144.26	20.63	28.92	126.84	17.31	49.64	105.019	29.22	68.53	48.64	24.36	15.30	71.953	25.004	135.177	136.539	13.697	46.602	10.79	11.73	129.009	10.01	107.488	39.678	342.813	346.178	125.551	96.437	146.12	143.97	11.051	
Larmo are experii	11.7467	27.25	16.78	20.84	17.18	124.34	54.88	15.35	20.13	120.22	17.19	24.10	105.71	14.42	41.37	87.519	24.35	57.11	40.53	20.30	12.75	59.964	20.837	112.652	113.788	11.415	38.837	9.00	9.77	107.512	8.84	89.577	33.067	285.690	288.494	104.630	80.367	121.77	119.98	9.209	
Larmor Frequencies (MHz) vs. Bruker Field Strengths (Tesla) Freq. to 3 decimals are experimental for IUPAC Standards; freq. to 2 dec. are calculated from magn. moments	9.39798	21.80	13.43	16.68	13.75	99.48	43.91	12.28	16.11	96.18	13.75	19.28	84.57	11.54	33.10	70.020	19.48	45.69	32.43	16.24	10.20	47.974	16.671	90.128	91.036	9.132	31.072	7.20	7.82	86.015	7.08	71.667	26.455	228.567	230.810	83.710	64.298	97.42	95.99	7.368	
Freq. to 3	7.04925	16.35	10.07	12.51	10.31	74.62	32.94	9.21	12.08	72.14	10.32	14.46	63.43	8.66	24.82	52.521	14.61	34.27	24.33	12.18	7.65	35.984	12.505	67.603	68.284	6.850	23.306	5.40	5.86	64.518	5.31	53.756	19.843	171.444	173.127	62.789	48.229	73.08	72.00	5.527	
vity	Molar rel. ¹H	3.39E-03	7.93E-04	1.52E-03	8.52E-04	1.79E-01	1.54E-02	1.45E-04	3.26E-04	6.94E-02	4.74E-04	1.31E-03	1.98E-01	5.04E-04	5.66E-04	5.52E-03	1.35E-03	3.13E-02	3.98E-02	1.40E-03	5.47E-04	3.74E-02	7.50E-05	1.39E-01	1.43E-01	1.24E-05	2.44E-03	2.91E-05	3.73E-05	1.04E-02	2.76E-05	5.94E-03	1.49E-03	1.96E-01	2.02E-01	9.06E-03	1.44E-01	1.44E-02	6.90E-02	1.54E-04	
Receptivity	Natural rel. ¹³C	2.43E+00	3.87E-01	1.34E+00	6.92E-01	5.04E+02	4.73E+01	1.26E-01	3.00E-01	4.08E+02	5.26E-01	1.91E+00	1.16E+03	6.77E-01	3.32E+00	4.63E+00	1.28E+00	1.79E+02	0.05E+00	1.53E+00	4.38E-01	2.20E+02	6.31E-02	3.05E+02	5.26E+02	1.43E-03	2.32E+00	6.38E-02	1.37E-01	2.07E+01	1.62E-01	5.89E+00	1.16E+00	3.40E+02	8.36E+02	1.18E+01	8.48E+02	1	4.06E+02	6.53E-03	
Nat. Abund.	(%)	12.2	8.3	14.99	13.82	47.81	52.19	14.80	15.65	100.0	18.889	24.896	100.0	22.869	100.0	14.28	16.13	97.41	2.59	18.60	13.62	99.988	14.31	37.40	62.60	1.96	16.15	37.3	62.7	33.832	100.0	16.87	13.18	29.52	70.48	22.1	100.0		100.0	0.7204	
Spin		7/2	7/2											7/2	1/2	1/2	5/2	7/2	7	7/2	9/2	7/2	1/2	5/2	5/2	1/2	3/2	3/2	3/2	1/2	3/2	1/2	3/2	1/2	1/2	1/2	9/2	1/2	3/2	7/2	
be		Nd	Nd	Sm	Sm	En	Eu	BG	РÐ	Tb	Dy	Ο	Но	Ē	Tm	Λþ	Λb	Γn	rn Tu	Hf	Hŧ	Ta	×	Re	Re	Os	SO	<u>_</u>	<u>-</u>	ď	Αn	Hg	Hg	I	F	Pb	<u></u>	Po	Pa	Ы	
Isotope		143	145	147	149	151	153	155	157	159	161	163	165	167	169	171	173	175	176	177	179	181	183	185	187	187	189	191	193	195	197	199	201	203	205	207	209	500	231	235	

NMR Frequency Tables

NMR Frequency Tables

NMR Frequencies vs. Bruker Field Strengths – sorted with decreasing Larmor frequency

1														
Nat.		Receptivity	vity	Freq. to	3 decimals	Larmor Frequencies (IMHz) vs. Bruker Field Strengths (Tesla) Freq. to 3 decimals are experimental for IUPAC Standards; freq. to 2 dec. are calculated from magn. moments	r Frequen mental for	cies (MHz IUPAC Sta	Larmor Frequencies (MHz) vs. Bruker Field Strengths (Tesla, experimental for IUPAC Standards; freq. to 2 dec. are calculater	er Field S i eq. to 2 de	trengths (' ec. are calc	Tesla) :ulated fror	n magn. m	oments
(%)		Natural rel. ¹3C	Molar rel. ¹H	7.04925	9.39798	11.7467	14.0954	16.4442	17.6185	18.7929	19.9673	21.1416	22.3160	23.4904
		ı	1.21E+00	320.131	426.795	533.459	640.123	746.786	800.118	853.450	906.782	960.114	1013.446	1066.778
99.9885		5.87E+03	1.00E+00	300.130	400.130	500.130	600.130	700.130	750.130	800.130	850.130	900.130	950.130	1000.130
100.0		4.89E+03	8.32E-01	282.404	376.498	470.592	564.686	658.780	705.827	752.874	799.921	846.968	894.015	941.062
1.34E-04	74	3.48E-03	4.42E-01	228.636	304.815	380.994	457.173	533.352	571.441	609.531	647.620	685.710	723.799	761.889
70.48		8.36E+02	2.02E-01	173.127	230.810	288.494	346.178	403.862	432.704	461.546	490.388	519.230	548.071	576.913
29.52		3.40E+02	1.96E-01	171.444	228.567	285.690	342.813	399.937	428.498	457.060	485.621	514.183	542.745	571.306
100.0		3.91E+02	6.65E-02	121.495	161.976	202.457	242.938	283.419	303.659	323.900	344.140	364.380	384.621	404.861
92.41		1.59E+03	2.94E-01	116.642	155.506	194.370	233.233	272.097	291.529	310.961	330.393	349.825	369.257	388.688
8.59		2.66E+01	5.27E-02	111.920	149.211	186.502	223.792	261.083	279.728	298.374	317.019	335.664	354.309	372.955
7.68		2.08E+01	4.60E-02	106.943	142.575	178.208	213.840	249.472	267.288	285.104	302.921	320.737	338.553	356.369
27.83		2.90E+02	1.77E-01	98.204	130.924	163.645	196.365	229.086	245.446	261.806	278.166	294.527	310.887	327.247
0.34		7.11E-01	3.56E-02	98.199	130.918	163.636	196.355	229.074	245.433	261.793	278.152	294.511	310.871	327.230
80.1		7.77E+02	1.65E-01	96.294	128.378	160.462	192.546	224.630	240.672	256.714	272.755	288.797	304.839	320.881
7.07		1.34E+01	3.22E-02	94.690	126.240	157.790	189.340	220.889	236.664	252.439	268.214	283.989	299.764	315.539
100.0		1.97E+03	3.35E-01	91.89	122.51	153.12	183.74	214.36	229.67	244.97	260.28	275.59	290.90	306.21
39.89	2	3.35E+02	1.43E-01	91.530	122.026	152.523	183.020	213.517	228.765	244.013	259.262	274.510	289.758	305.007
30.85		2.08E+02	1.15E-01	85.248	113.652	142.055	170.459	198.863	213.065	227.266	241.468	255.670	269.872	284.074
26.40	900	3.35E+01	2.16E-02	83.467	111.277	139.087	166.897	194.707	208.613	222.518	236.423	250.328	264.233	278.138
49.31		2.88E+02	9.95E-02	81.055	108.061	135.068	162.074	189.081	202.584	216.087	229.591	243.094	256.597	270.100
69.1	2	3.82E+02	9.39E-02	79.581	106.096	132.612	159.127	185.643	198.901	212.158	225.416	238.674	251.931	265.189
100.0		5.45E+02	9.27E-02	79.390	105.842	132.294	158.746	185.198	198.424	211.650	224.876	238.101	251.327	264.553
99.750	20	2.25E+03	3.84E-01	78.943	105.246	131.549	157.852	184.155	197.306	210.458	223.609	236.761	249.912	263.064
0.8	6	9.61E-01	1.84E-02	78.543	104.713	130.883	157.052	183.222	196.307	209.392	222.477	235.562	248.647	261.731
100.0		1.22E+03	2.07E-01	78.204	104.261	130.318	156.375	182.432	195.460	208.489	221.517	234.546	247.574	260.602
1.07	7	1.00E+00	1.59E-02	75.468	100.613	125.758	150.903	176.048	188.620	201.193	213.765	226.338	238.910	251.483
50.69	69	2.37E+02	7.94E-02	75.195	100.248	125.302	150.356	175.410	187.937	200.464	212.991	225.518	238.045	250.572
47.81	31	5.04E+02	1.79E-01	74.62	99.48	124.34	149.20	174.06	186.49	198.92	211.35	223.78	236.22	248.65
100.0	(1.05E+03	1.79E-01	74.400	99.189	123.978	148.768	173.557	185.951	198.346	210.741	223.135	235.530	247.924
100.0	0	2.87E+03	4.88E-01	73.460	97.936	122.413	146.889	171.365	183.603	195.841	208.079	220.317	232.555	244.794
		I	1.44E-02	73.08	97.42	121.77	146.12	170.47	182.64	194.81	206.99	219.16	231.34	243.51
100.0	0	1.78E+03	3.02E-01	72.907	97.199	121.490	145.782	170.074	182.220	194.366	206.511	218.657	230.803	242.949
100.0	(4.08E+02	6.94E-02	72.14	96.18	120.22	144.26	168.29	180.31	192.33	204.35	216.37	228.39	240.41
60.108	88	2.46E+02	6.97E-02	72.035	96.037	120.038	144.039	168.041	180.041	192.042	204.043	216.043	228.044	240.045
100.0		4.06E+02	6.90E-02	72.00	95.99	119.98	143.97	167.96	179.96	191.95	203.94	215.94	227.93	239.93
57.21		5.48E+02	1.63E-01	71.823	95.753	119.684	143.615	167.545	179.510	191.476	203.441	215.406	227.372	239.337
100.0		1.64E+03	2.78E-01	71.212	94.939	118.666	142.393	166.120	177.984	189.847	201.711	213.575	225.438	237.302
62.60	0:	5.26E+02	1.43E-01	68.284	91.036	113.788	136.539	159.291	170.667	182.042	193.418	204.794	216.170	227.546
37.4	0.	3.05E+02	1.39E-01	67.603	90.128	112.652	135.177	157.701	168.964	180.226	191.488	202.751	214.013	225.275
		1	3.82E-01	67.554	90.063	112.571	135.079	157.588	168.842	180.096	191.350	202.604	213.858	225.113
12.22	.2	7.94E+00	1.11E-02	809.99	88.802	110.995	133.188	155.381	166.478	177.574	188.671	199.767	210.864	221.961
95.7	1	1.99E+03	3.53E-01	65.766	87.679	109.592	131.504	153.417	164.373	175.330	186.286	197.242	208.198	219.155

NMR Frequencies vs. Bruker Field Strengths – sorted with decreasing Larmor frequency

								-	(clast) often contact black may be seen and contact of the seen and seen as the seen and seen as the s	-in / Will-	June David	70 17 17 17	') odtono	Total		
Isotope	be	Spin	Nat. Abund.	Receptivity	ivity	Freq. to 3	3 decimals	are experir	Lating requencies (miles) and experimental for IUPAC Standards; freq. to 2 dec. are calculated from magn. moments	IUPAC Sta	ndards; fre	eq. to 2 de	c. are calc	ıcsıa <i>)</i> :ulated fror	n magn. n	oments
			(%)	Natural rel. ¹3C	Molar rel. ¹H	7.04925	9.39798	11.7467	14.0954	16.4442	17.6185	18.7929	19.9673	21.1416	22.3160	23.4904
113	ے	9/2	4.29	8.85E+01	3.51E-01	65.626	87.491	109.357	131.223	153.089	164.022	174.954	185.887	196.820	207.753	218.686
195	꿆	1/2	33.832	2.07E+01	1.04E-02	64.518	86.015	107.512	129.009	150.505	161.254	172.002	182.751	193.499	204.247	214.996
111	ප	1/2	12.80	7.27E+00	9.66E-03	63.674	84.890	106.105	127.320	148.536	159.144	169.751	180.359	190.967	201.575	212.182
165	운	7/2	100.0	1.16E+03	1.98E-01	63.43	84.57	105.71	126.84	147.98	158.54	169.11	179.68	190.25	200.82	211.38
207	Pb	1/2	22.1	1.18E+01	9.06E-03	62.789	83.710	104.630	125.551	146.471	156.932	167.392	177.852	188.313	198.773	209.233
127		5/2	100.0	5.60E+02	9.54E-02	60.048	80.056	100.063	120.071	140.078	150.082	160.086	170.090	180.093	190.097	200.101
53	Si	1/2	4.685	2.16E+00	7.86E-03	59.627	79.495	99.362	119.229	139.096	149.030	158.963	168.897	178.831	188.764	198.698
11	Se	1/2	7.63	3.15E+00	7.03E-03	57.239	76.311	95.382	114.454	133.525	143.061	152.597	162.133	171.668	181.204	190.740
199	Hg	1/2	16.87	2.89E+00	5.94E-03	53.756	71.667	89.577	107.488	125.399	134.354	143.310	152.265	161.221	170.176	179.132
171	٨p	1/2	14.28	4.63E+00	5.52E-03	52.521	70.020	87.519	105.019	122.518	131.268	140.017	148.767	157.517	166.266	175.016
75	As	3/2	100.0	1.49E+02	2.54E-02	51.390	68.513	85.635	102.758	119.881	128.442	137.003	145.564	154.126	162.687	171.248
509	B	9/2	100.0	8.48E+02	1.44E-01	48.229	64.298	80.367	96.437	112.506	120.541	128.575	136.610	144.644	152.679	160.714
2	Н	1	0.0115	6.52E-03	9.65E-03	46.072	61.422	76.773	92.124	107.474	115.150	122.825	130.500	138.175	145.851	153.526
9	l i	1	7.59	3.79E+00	8.50E-03	44.167	58.883	73.600	88.316	103.032	110.390	117.748	125.106	132.464	139.822	147.180
139	La	7/2	99.910	3.56E+02	6.06E-02	42.395	56.521	70.647	84.772	98.898	105.961	113.023	120.086	127.149	134.212	141.275
6	Be	3/2	100.0	8.15E+01	1.39E-02	42.174	56.226	70.277	84.329	98.381	105.407	112.433	119.459	126.485	133.510	140.536
17	0	5/2	0.038	6.50E-02	2.91E-02	40.687	54.243	67.800	81.356	94.913	101.691	108.469	115.248	122.026	128.804	135.582
138	La	5	060'0	4.97E-01	9.40E-02	39.600	52.794	686.39	79.183	92.377	98.974	105.572	112.169	118.766	125.363	131.960
133	Cs	7/2	100.0	2.84E+02	4.84E-02	39.365	52.482	65.598	78.714	91.830	98.388	104.946	111.504	118.062	124.620	131.178
123	qs	7/2	42.79	1.17E+02	4.66E-02	38.894	51.854	64.813	77.772	90.731	97.211	103.691	110.170	116.650	123.129	129.609
181	Та	7/2	886.66	2.20E+02	3.74E-02	35.984	47.974	59.964	71.953	83.943	89.938	95.932	101.927	107.922	113.917	119.912
175	Γn	7/2	97.41	1.79E+02	3.13E-02	34.27	45.69	57.11	68.53	79.94	85.65	91.36	97.07	102.78	108.49	114.20
137	Ba	3/2	11.232	4.62E+00	7.00E-03	33.353	44.466	55.579	66.692	77.805	83.361	88.918	94.474	100.031	105.587	111.144
153	Eu	5/2	52.19	4.73E+01	1.54E-02	32.94	43.91	54.88	98.39	76.83	82.32	87.80	93.29	98.78	104.26	109.75
10	8	က	19.9	2.32E+01	1.99E-02	32.245	42.989	53.732	64.476	75.220	80.591	85.963	91.335	96.707	102.079	107.451
15	2	1/2	0.364	2.23E-02	1.04E-03	30.423	40.560	20.697	60.834	70.971	76.039	81.107	86.176	91.244	96.312	101.381
20	>	9	0.250	8.18E-01	5.57E-02	29.924	39.894	49.865	59.835	69.805	74.790	79.775	84.761	89.746	94.731	99.716
135	æ	3/2	6.592	1.94E+00	5.01E-03	29.816	39.751	49.685	29.620	69.554	74.521	79.489	84.456	89.423	94.390	99.357
32	5	3/2	75.76	2.10E+01	4.72E-03	29.406	39.204	49.002	28.800	68.598	73.497	78.396	83.295	88.194	93.093	97.992
82	8	5/2	72.17	4.50E+01	1.06E-02	28.977	38.632	48.287	57.942	67.597	72.425	77.252	82.080	86.907	91.735	96.562
91	Zr	5/2	11.22	6.26E+00	9.49E-03	27.901	37.197	46.494	25.790	980.29	69.734	74.382	79.031	83.679	88.327	92.975
61	Z	3/2	1.1399	2.40E-01	3.59E-03	26.820	35.756	44.692	53.628	62.564	67.032	71.500	75.968	80.436	84.904	89.372
169	E	1/2	100.0	3.32E+00	5.66E-04	24.82	33.10	41.37	49.64	57.91	62.04	66.18	70.32	74.45	78.59	82.72
	Xe	3/2	21.2324	3.51E+00	2.82E-03	24.742	32.986	41.230	49.474	57.718	61.840	65.962	70.084	74.206	78.328	82.450
37	<u></u>	3/2	24.24	3.88E+00	2.72E-03	24.478	32.634	40.789	48.945	57.101	61.179	65.256	69.334	73.412	77.490	81.568
176	3	7	2.59	6.05E+00	3.98E-02	24.33	32.43	40.53	48.64	56.74	60.80	64.85	68.90	72.95	77.01	81.06
21	Ne	3/2	0.27	3.91E-02	2.46E-03	23.693	31.587	39.482	47.376	55.270	59.217	63.165	67.112	71.059	75.006	78.953
189	Os	3/2	16.15	2.32E+00	2.44E-03	23.306	31.072	38.837	46.602	54.368	58.251	62.133	66.016	69.836	73.781	77.664
33	S	3/2	0.75	1.00E-01	2.27E-03	23.038	30.714	38.390	46.066	53.742	57.580	61.418	65.256	69.094	72.932	76.770
14	2	—	98.636	5.90E+00	1.01E-03	21.688	28.915	36.141	43.367	50.594	54.207	57.820	61.433	65.046	68.659	72.273
43	డ్ర	7/2	0.135	5.10E-02	6.43E-03	20.199	26.929	33.659	40.389	47.119	50.484	53.849	57.214	60.579	63.944	62.309

NMR Frequency Tables

NMR Properties of Selected Isotopes

NMR Frequencies vs. Bruker Field Strengths – sorted with decreasing Larmor frequency

र	8	94.	24	78	9/9	24	332	868	833	<u></u>	320	80	တ္တ	0	0/2	17	157	67	344	, ,	690		83	9	<u>~</u>	8	χ g	ي وي	စ္တန္တြ	7 09	800	يرا	316	.00	326	.¥	116	66	ဥ	Γ
nomen	23.4904							56.398	56.383			49.008	48.69	48.20		46.54			43.34	41.68			\perp	40.26	_		85.58	34.36	32.30			28.85	25.616		22.826	19.54		17.99	17.69	
n magn. r	22.3160	63.219	62.819	61.919	59.448	58.163	53.706	53.578	53.564	51.76	49.040	46.558	46.26	45.79	44.337	44.215	43.755	43.479	41.177	39.60	39.586	38.56	38.460	38.25	36.557	33.144	32.00	32.64	20.00	30.705	29.17	27.40	24.336	24.23	21.685	18.56	17.496	17.09	16.80	
esla) ulated fron	21.1416	59.892	59.513	58.661	56.319	55.103	50.880	50.759	50.745	49.04	46.459	44.108	43.83	43.38	42.003	41.888	41.452	41.191	39.010	37.52	37.503	36.53	36.436	36.24	34.633	31.399	30.34	30.93	30.20	28,687	27.63	25.96	23.055	22.95	20.544	17.59	16.575	16.19	15.92	
rengths (7 2. are calcu	19.9673	56.565	56.207	55.402	53.191	52.042	48.054	47.939	47.926	46.31	43.878	41.658	41.39	40.97	39.670	39.561	39.150	38.903	36.843	35.43	35.420	34.51	34.412	34.22	32.710	29.655	73.67	29.21	28.53	27.020	26.10	24.52	21.774	21.68	19.403	16.61	15.654	15.29	15.03	
r Field St ı q. to 2 dec	18.7929	53.238	52.901	52.144	50.063	48.981	45.227	45.120	45.108	43.59	41.298	39.208	38.96	38.56	37.337	37.234	36.847	36.615	34.676	33.35	33.337	32.48	32.388	32.21	30.786	27.911	02.72	27.49	20.83	25.300	24.56	23.08	20.494	20.40	18.262	15.63	14.734	14.39	14.15	
vs. Bruke ndards; fre	17.6185	49.911	49.595	48.885	46.934	45.920	42.401	42.300	42.289	40.86	38.717	36.758	36.52	36.15	35.004	34.908	34.545	34.327	32.509	31.26	31.253	30.45	30.364	30.20	28.862	26.167	22.78	25.77	71.02	23.002	23.03	21.63	19.213	19.13	17.120	14.66	13.813	13.49	13.26	
ies (MHz) UPAC Star	16.4442	46.585	46.290	45.627	43.806	42.859	39.575	39.481	39.470	38.14	36.136	34.308	34.09	33.74	32.671	32.581	32.242	32.039	30.342	29.18	29.170	28.42	28.340	28.19	26.938	24.423	74.07	24.06	23.49	22.003	21.49	20.19	17.932	17.85	15.979	13.68	12.892	12.59	12.38	
Larmor Frequencies (MHz) vs. Bruker Field Strengths (Tesla) experimental for IUPAC Standards; freq. to 2 dec. are calculated	14.0954	39.931	39.678	39.110	37.549	36.738	33.922	33.842	33.833	32.69	30.975	29.408	29.22	28.92	28.004	27.927	27.637	27.463	26.009	25.01	25.004	24.36	24.292	24.16	23.091	20.934	20.03	20.62	10 421	10.43	18.42	17.31	15.371	15.30	13.697	11.73	11.051	10.79	10.61	
Larmor Frequencies (MHz) vs. Bruker Field Strengths (Tesla) Freq. to 3 decimals are experimental for IUPAC Standards; freq. to 2 dec. are calculated from magn. moments	11.7467	33.277	33.067	32.593	31.292	30.616	28.270	28.203	28.195	27.25	25.814	24.507	24.35	24.10	23.338	23.274	23.032	22.886	21.675	20.84	20.837	20.30	20.244	20.13	19.243	17.446	7.13	17.18	16.78	15 936	15,35	14.42	12.810	12.75	11.415	9.77	9.209	9.00	8.84	
decimals a	9.39798	26.623	26.455	26.076	25.035	24.494	22.617	22.563	22.557	21.80	20.652	19.607	19.48	19.28	18.672	18.620	18.427	18.310	17.341	16.68	16.671	16.24	16.197	16.11	15.395	13.958	13.75	13.75	13.43	12.750	12.28	11.54	10.249	10.20	9.132	7.82	7.368	7.20	7.08	
Freq. to 3	7.04925	19.970	19.843	19.559	18.779	18.373	16.965	16.924	16.920	16.35	15.491	14.707	14.61	14.46	14.005	13.967	13.821	13.734	13.007	12.51	12.505	12.18	12.149	12.08	11.548	10.469	10.32	10.31	0.77	0.7.0	9.21	8.66	7.687	7.65	6.850	5.86	5.527	5.40	5.31	
y.	Molar rel. ¹H	3.49E-03	1.49E-03	3.27E-03	2.87E-03	2.68E-03	9.08E-04	3.78E-03	2.10E-03	3.39E-03	1.57E-03	1.19E-04	1.35E-03	1.31E-03	5.10E-04	1.02E-04	1.13E-03	1.13E-03	2.72E-03	1.52E-03	7.50E-05	1.40E-03	6.74E-05	3.26E-04	1.90E-03	1.41E-03	4./4E-04	8.52E-04	7.93E-04	3.17E_05	1.45E-04	5.04E-04	8.44E-05	5.47E-04	1.24E-05	3.73E-05	1.54E-04	2.91E-05	2.76E-05	
Receptivity	Natural rel. ¹³C	1.96E+00	1.16E+00	3.06E+00	6.92E-01	1.58E+00	5.07E-01	1.20E+00	9.18E-01	2.43E+00	1.58E+00	7.00E-01	1.28E+00	1.91E+00	2.79E+00	2.90E-01	8.46E-01	1.49E+00	1.12E+00	1.34E+00	6.31E-02	1.53E+00	2.05E-01	3.00E-01	1.28E+00	6.44E-01	5.20E-01	6.92E-01	3.8/E-01	1 86F_01	1.26E-01	6.77E-01	3.34E-02	4.38E-01	1.43E-03	1.37E-01	6.53E-03	6.38E-02	1.62E-01	
Nat. Abund.	(%)	9:26	13.18	15.90	4.102	10.00	9.501	5.41	7.44	12.2	17.06	100.0	16.13	24.896	93.258	48.161	12.76	22.33	7.00	14.99	14.31	18.60	51.839	15.65	11.500	7.76	18.889	13.82	8.3 0110	1000	14.80	22.869	6.730	13.62	1.96	62.7	0.7204	37.3	100.0	
Spin		5/2	3/2	2/5	2/5	5/2	3/2	7/2	5/2	7/2	5/2	1/2	5/2	2/5	3/2	1/2	2/5	5/2	9/2	7/2	1/2	7/2	1/2	3/2	9/2	9/2	7/0	7//2	7//	1/2	3/2	7/2	3/2	9/2	1/2	3/2	7/2	3/2	3/2	
Isotope		Mo	Hg	Mo	Zu	Mg	Ċ	ш	F	Nd	Ru	γ	Λb	Ò	¥	Ag	Ba	Pd	Sr	Sm	>	Ξ	Ag	පි	호	පී දි	2	Sm	2 3	2 4	3	à	¥	Ξ	SO	_	n	L	Au	
7		97	201	92	67	25	53	49	47	143	101	89	173	163	33	99	66	105	37	147	183	177	107	22	33	23	2	149	£ [102	22	167	41	179	187	193	235	191	197	ľ

Z = proton number, **A** = mass number, **Half-Life** where appropriate in years (y), days (d), hours (h), minutes (m); **I** = spin quantum number; **NA** = natural abundance (IUPAC 2003); μ_z = z-component of nuclear magnetic moment in units of the nuclear magneton (μ_N); **Q** = electric quadrupole moment in units of fm² = 10⁻³⁰ m² (1 fm² = 0.01 barns); calc. magnetogyric ratio $\gamma = \mu_z/\hbar$ *l*. Note: for μ_z and **Q** the experimental uncertainty begins with the last significant digit.

			Isotope	Spin	Nat. Abund.	Rel. Nucl.	Quadrupole	Magnetogyric
			(half-life)		2003	Magn. Mom.	Moment	Ratio
					(TICE 2001)	(measured)		(calc., free atom)
Z	Α	Sym	Name	1	NA (%)	μ_z / μ_N	Q [fm ²]	γ [10 ⁷ rad s ⁻¹ T ⁻¹]
0	1	n	Neutron	1/2		-1.9130427		-18.3247183
1	1	Н	Hydrogen	1/2	99.9885	2.79284734		26.7522208
	2	H (D)	Deuterium	1	0.0115	0.857438228	0.286	4.10662919
	3	H (T)	Tritium (12.32 y)	1/2		2.97896244		28.5349865
2	3	Не	Helium	1/2	0.000134	-2.12749772		-20.3789473
3	6	Li	Lithium	1	7.59	0.8220473	-0.0808	3.937127
	7	Li	Lithium	3/2	92.41	3.2564625	-4.01	10.397704
4	9	Ве	Beryllium	3/2	100	-1.17749	5.288	-3.75966
5	10	В	Boron	3	19.9	1.80064478	8.459	2.87467955
	11	В	Boron	3/2	80.1	2.688649	4.059	8.584707
6	13	С	Carbon	1/2	1.07	0.702412		6.728286
7	14	N	Nitrogen	1	99.636	0.40376100	2.044	1.9337798
	15	N	Nitrogen	1/2	0.364	-0.28318884		-2.7126189
8	17	0	Oxygen	5/2	0.038	-1.89379	-2.558	-3.62806
9	19	F	Fluorine	1/2	100	2.626868		25.16233
10	21	Ne	Neon	3/2	0.27	-0.661797	10.155	-2.113081
11	23	Na	Sodium (Natrium)	3/2	100	2.2176556	10.4	7.0808516
12	25	Mg	Magnesium	5/2	10.00	-0.85545	19.94	-1.63884
13	26	Al	Alumin(i)um (7.17E5 y)	5		2.804	27	2.686
13	27	Al	Alumin(i)um	5/2	100	3.6415069	14.66	6.9762780
14	29	Si	Silicon	1/2	4.685	-0.55529		-5.31903
15	31	Р	Phosphorus	1/2	100	1.13160		10.8394
16	33	S	Sulfur	3/2	0.75	0.643821	-6.78	2.055685
17	35	CI	Chlorine	3/2	75.76	0.8218743	-8.165	2.6241991
	37	CI	Chlorine	3/2	24.24	0.6841236	-6.435	2.1843688
18	39	Ar	Argon (269 y)	7/2		-1.59		-2.17
19	39	K	Potassium (Kalium)	3/2	93.258	0.3915073	5.85	1.2500612
	40	K	Potassium (1.248E9 y)	4	0.0117	-1.298100	-7.3	-1.554286
	41	K	Potassium	3/2	6.730	0.21489274	7.11	0.68614062
20	41	Ca	Calcium (1.02E5 y)	7/2		-1.594781	-6.7	-2.182306
	43	Ca	Calcium	7/2	0.135	-1.317643	-4.08	-1.803069
21	45	Sc	Scandium	7/2	100	4.756487	-22.0	6.508800
22	47	Ti	Titanium	5/2	7.44	-0.78848	30.2	-1.51054
	49	Ti	Titanium	7/2	5.41	-1.10417	24.7	-1.51095
23	50	V	Vanadium (1.4E17 y)	6	0.250	3.345689	21	2.670650
	51	V	Vanadium	7/2	99.750	5.1487057	-5.2	7.0455139
24	53	Cr	Chromium	3/2	9.501	-0.47454	-15	-1.51518
25	53	Mn	Manganese (3.74E6 y)	7/2		5.024		6.875
	55	Mn	Manganese	5/2	100	3.46871790	33	6.64525453
26	57	Fe	Iron, Ferrum	1/2	2.119	0.09062300		0.8680627
	59	Fe	Iron (44.507 d)	3/2		-0.3358		-1.0722
27	59	Со	Cobalt	7/2	100	4.627	42 s	6.332
	60	Со	Cobalt (1925.2 d)	5		3.799	44	3.639
28	61	Ni	Nickel	3/2	1.1399	-0.75002	16.2	-2.39477
29	63	Cu	Copper, Cuprum	3/2	69.15	2.227346	-22.0	7.111791
	65	Cu	Copper, Cuprum	3/2	30.85	2.3816	-20.4	7.6043
30	67	Zn	Zinc	5/2	4.102	0.8752049	15.0	1.6766885
31	69	Ga	Gallium	3/2	60.108	2.01659	17.1	6.43886
	71	Ga	Gallium	3/2	39.892	2.56227	10.7	8.18117
32	73	Ge	Germanium	9/2	7.76	-0.8794677	-19.6	-0.9360306
33	75	As	Arsenic	3/2	100	1.43947	31.4	4.59615
34	77	Se	Selenium	1/2	7.63	0.5350743		5.125388

NMR Properties of Selected Isotopes

NMR Properties of Selected Isotopes

Theor. NMR freq. v_{\circ} calc. from γ and scaled to ${}^{1}\text{H} = 100.0$ MHz; Molar Receptivity $\mathbf{R_{M}(H)}$ relative to equal number of protons is proportional to γ^{3} / (/+1); Receptivity at nat. abundance $\mathbf{R_{NA}(C)}$ relative to ${}^{13}\text{C}$; recommended Reference sample (IUPAC 2001); experimental reson. freq. of ref. sample on the unified Ξ scale (at B_{0} where TMS (${}^{1}\text{H}$) = 100.0 MHz).

Numbers containing E are in exponential format.

		Theoretical NMR Freq. (free atom)	Molar Receptivity (rel. ¹ H)	Receptivity at Nat. Abund. (rel. ¹³ C)	Reference Sample	Measured. NMR Freq. (rel. ¹ H ref.)
Α	Sym	ν _o [MHz]	R _M (H)	R _{NA} (C)	Reference	Ξ [MHz]
1	n	68.4979	3.21E-01			
1	Н	100.0000	1.00E+00	5.87E+03	1% Me₄Si in CDCl₃	100.000000
2	D	15.3506	9.65E-03	6.52E-03	(CD ₃) ₄ Si neat	15.350609
3	Т	106.6640	1.21E+00		TMS-T ₁	106.663974
3	Не	76.1767	4.42E-01	3.48E-03	He gas	76.178976
6	Li	14.7170	8.50E-03	3.79E+00	9.7 m LiCl in D₂O	14.716086
7	Li	38.8667	2.94E-01	1.59E+03	9.7 m LiCl in D ₂ O	38.863797
9	Be	14.0536	1.39E-02	8.15E+01	0.43 m BeSO ₄ in D ₂ O	14.051813
10	В	10.7456	1.99E-02	2.32E+01	15% BF ₃ .Et ₂ O in CDCl ₃	10.743658
11	В	32.0897	1.65E-01	7.77E+02	15% BF ₃ .Et ₂ O in CDCl ₃	32.083974
13	C	25.1504	1.59E-02	1.00E+00	1% Me ₄ Si in CDCl ₃	25.145020
10	~	20.1004	1.002 02	1.002100	DSS in D ₂ O	25.144953
14	N	7.2285	1.01E-03	5.90E+00	MeNO ₂ + 10% CDCl ₃	7.226317
15	N	10.1398	1.04E-03	2.23E-02	MeNO ₂ + 10 % CDC ₁₃	10.136767
10	IN .	10.1390	1.04E-03	Z.ZSE=UZ	liquid NH ₃	10.136767
17	0	13.5617	2.91E-02	6.50E-02		13.556457
19	F	94.0570	8.32E-01	4.89E+03	CCl₃F	94.094011
21	Ne	7.8987	2.46E-03	3.91E-02	Neon gas, 1.1 MPa	7.894296
23	Na	26.4683	9.27E-02	5.45E+02	0.1 M NaCl in D ₂ O	26.451900
25	Mg	6.1260	2.68E-03	1.58E+00	11 M MgCl ₂ in D ₂ O	6.121635
26	Al	10.0399	4.05E-02			
27	Al	26.0774	2.07E-01	1.22E+03	1.1 m Al(NO ₃) ₃ in D ₂ O	26.056859
29	Si	19.8826	7.86E-03	2.16E+00	1% Me₄Si in CDCl₃	19.867187
31	Р	40.5178	6.65E-02	3.91E+02	H₃PO₄ external	40.480742
					(MeO)₃PO internal	40.480864
33	S	7.6842	2.27E-03	1.00E-01	$(NH_4)_2SO_4$ in D_2O (sat.)	7.676000
35	CI	9.8093	4.72E-03	2.10E+01	0.1 M NaCl in D₂O	9.797909
37	CI	8.1652	2.72E-03	3.88E+00	0.1 M NaCl in D₂O	8.155725
39	Ar	8.1228	1.13E-02			
39	K	4.6727	5.10E-04	2.79E+00	0.1 M KCl in D ₂ O	4.666373
40	K	5.8099	5.23E-03	3.59E-03	0.1 M KCl in D ₂ O	5.802018
41	K	2.5648	8.44E-05	3.34E-02	0.1 M KCl in D ₂ O	2.561305
41	Ca	8.1575	1.14E-02		_	
43	Ca	6.7399	6.43E-03	5.10E-02	0.1 M CaCl ₂ in D ₂ O	6.730029
45	Sc	24.3299	3.02E-01	1.78E+03	0.06 M Sc(NO ₃) ₃ in D ₂ O	24.291747
47	Ti	5.6464	2.10E-03	9.18E-01	TiCl ₄ neat + 10% C ₆ D ₁₂	5.637534
49	Ti	5.6479	3.78E-03	1.20E+00	TiCl ₄ neat + 10% C ₆ D ₁₂	5.639037
50	V	9.9829	5.57E-02	8.18E-01	VOCl ₃ + 5% C ₆ D ₆	9.970309
51	V	26.3362	3.84E-01	2.25E+03	VOCI ₃ + 5% C ₆ D ₆	26.302948
53	Cr	5.6638	9.08E-04	5.07E-01	K_2CrO_4 in D_2O (sat.)	5.652496
53	Mn	25.6983	3.56E-01	5.67 L=01	1/20104 111 020 (301.)	5.052430
55	Mn	24.8400	1.79E-01	1.05E+03	0.82 m KMnO ₄ in D ₂ O	24.789218
57	Fe	3.2448	3.42E-05	4.25E-03	$0.82 \text{ HI RIVITIO}_4 \text{ HI } D_2 \text{O}$ $\text{Fe(CO)}_5 + 20\% \text{ C}_6 \text{D}_6$	3.237778
57 59		4.0079	3.42E-05 3.22E-04	4.20E-03	Fe(CO) ₅ + 20 % C ₆ D ₆	3.23///0
	Fe			1.045.00	0 FC == K IC-(CN) 1 := D O	00 707074
59	Co	23.6676	2.78E-01	1.64E+03	0.56 m K₃[Co(CN) ₆] in D₂O	23.727074
60	Co	13.6026	1.01E-01	0.405.04	N:(CO) - 52/ C D	0.0000=1
61	Ni	8.9517	3.59E-03	2.40E-01	Ni(CO) ₄ + 5% C ₆ D ₆	8.936051
63	Cu	26.5839	9.39E-02	3.82E+02	$[Cu(CH_3CN)_4[CIO_4]$ in CH_3CN (sat.) + 5% C_6D_6	26.515473
65	Cu	28.4250	1.15E-01	2.08E+02	$[Cu(CH_3CN)_4[CIO_4]$ in CH_3CN (sat.) + 5% C_6D_6	28.403693
67	Zn	6.2675	2.87E-03	6.92E-01	$Zn(NO_3)_3$ in D_2O (sat.)	6.256803
69	Ga	24.0685	6.97E-02	2.46E+02	1.1 m Ga(NO₃)₃ in D₂O	24.001354
71	Ga	30.5813	1.43E-01	3.35E+02	1.1 m Ga(NO₃)₃ in D₂O	30.496704
73	Ge	3.4989	1.41E-03	6.44E-01	Me ₄ Ge + 5% C ₆ D ₆	3.488315
75	As	17.1804	2.54E-02	1.49E+02	0.5 M NaAsF ₆ in CD₃CN	17.122614
77	Se	19.1587	7.03E-03	3.15E+00	Me ₂ Se + 5% C ₆ D ₆	19.071513

Z	Α	Sym	Name	ı	NA (%)	μ_z / μ_N	Q [fm ²]	γ [10 ⁷ rad s ⁻¹ T̄ ⁻¹]
	79	Se	Selenium (2.95E5 y)	7/2		-1.018	80	-1.393
35	79	Br	Bromine	3/2	50.69	2.106400	30.5	6.725619
	81	Br	Bromine	3/2	49.31	2.270562	25.4	7.249779
36	83	Kr	Krypton	9/2	11.500	-0.970669	25.9	-1.033097
37	85	Rb	Rubidium	5/2	72.17	1.3533515	27.6	2.5927059
	87	Rb	Rubidium (4.81E10 y)	3/2	27.83	2.751818	13.35	8.786403
38	87	Sr	Strontium	9/2	7.00	-1.093603	33.5	-1.163938
39	89	Y	Yttrium	1/2	100	-0.1374154	17.0	-1.316279
40	91	Zr	Zirconium	5/2	11.22	-1.30362	-17.6	-2.49743
41	93 95	Nb Mo	Niobium Molybdenum	9/2 5/2	100 15.9	6.1705 -0.9142	-32 -2.2	6.5674 -1.7514
42	95	Mo	Molybdenum	5/2	9.56	-0.9335	25.5	-1.7884
	99	Mo	Molybdenum (65.924 h)	1/2	9.50	0.375	20.0	3.59
43	99	Tc	Technetium (2.1E5 y)	9/2		5.6847	-12.9	6.0503
44	99	Ru	Ruthenium	5/2	12.76	-0.641	7.9	-1.228
	101	Ru	Ruthenium	5/2	17.06	-0.716	45.7	-1.372
45	103	Rh	Rhodium	1/2	100	-0.08840		-0.84677
46	105	Pd	Palladium	5/2	22.33	-0.642	66	-1.230
47	107	Ag	Silver, Argentum	1/2	51.839	-0.1136797		-1.088918
	109	Ag	Silver	1/2	48.161	-0.13069		-1.2519
48	111	Cd	Cadmium	1/2	12.80	-0.5948861		-5.698315
	113	Cd	Cadmium (7.7E15 y)	1/2	12.22	-0.6223009	70.0	-5.960917
49	113	In	Indium	9/2	4.29	5.5289	79.9	5.8845
ΕO	115 115	In Cn	Indium (4.41E14 y)	9/2 1/2	95.71	5.5408 -0.91883	81	5.8972
50	117	Sn Sn	Tin	1/2	0.34 7.68	-1.00104		-8.8013 -9.58880
	119	Sn	Tin (Stannum)	1/2	8.59	-1.04728		-9.50000
51	121	Sb	Antimony (Stibium)	5/2	57.21	3.3634	-36	6.4435
- 51	123	Sb	Antimony	7/2	42.79	2.5498	-49	3.4892
	125	Sb	Antimony (2.7586 y)	7/2	12.70	2.63		3.60
52	123	Te	Tellurium (9.2E16 y)	1/2	0.89	-0.7369478		-7.059101
	125	Те	Tellurium	1/2	7.07	-0.8885051		-8.510843
53	127	1	lodine	5/2	100	2.81327	-71	5.38957
	129	1	lodine (1.57E7 y)	7/2		2.6210	-48	3.5866
54	129	Xe	Xenon	1/2	26.4006	-0.777976		-7.45210
	131	Xe	Xenon	3/2	21.2324	0.691862	-11.4	2.209077
55	133	Cs	C(a)esium	7/2	100	2.582025	-0.343	3.533256
56	135	Ba	Barium	3/2	6.592	0.838627	16.0	2.677690
57	137 137	Ba La	Barium Lanthanum (6E4 y)	3/2 7/2	11.232	0.93734 2.695	24.5 26	2.99287 3.688
57	138	La	Lanthanum (1.05E11 y)	5	0.090	3.713646	45	3.557240
- 37	139	La	Lanthanum	7/2	99.910	2.7830455	20	3.808333
58	139	Ce	Cerium (137.64 d)	3/2	00.010	1.06	20	3.38
	141	Ce	Cerium (32.508 d)	7/2		1.09		1.49
59	141	Pr	Praeseodymium	5/2	100	4.2754	-5.89	8.1907
60	143	Nd	Neodymium	7/2	12.2	-1.065	-63	-1.4574
	145	Nd	Neodymium	7/2	8.3	-0.656	-33	-0.898
61	145	Pm	Promethium (17.7 y)	5/2		3.8	21	7.3
62	147	Sm	Samarium (1.06E11 y)	7/2	14.99	-0.8148	-25.9	-1.115
	149	Sm	Samarium	7/2	13.82	-0.6717	7.5	-0.9192
63	151	Eu	Europium	5/2	47.81	3.4717	90.3	6.6510
64	153 155	Eu Gd	Europium Gadolinium	5/2 3/2	52.19 14.80	1.5324 -0.2572	241 127	2.9357 -0.8212
04	155	Gd	Gadolinium	3/2	15.65	-0.2372	135	-0.8212
65	159	Tb	Terbium	3/2	100	2.014	143.2	6.431
66	161	Dy	Dysprosium	5/2	18.889	-0.480	251	-0.920
	163	Dy	Dysprosium	5/2	24.896	0.673	265	1.289
67	163	Но	Holmium (4570 y)	7/2		4.23	360	5.79
	165	Но	Holmium	7/2	100	4.132	358	5.654
	166	Но	Holmium (1200 y)	7		3.60	-340	2.46
68	167	Er	Erbium	7/2	22.869	-0.5639	357	-0.7716
	169	Er	Erbium (9.40 d)	1/2		0.4850		4.646
69	169	Tm	Thulium	1/2	100	-0.231		-2.21
7.	171	Tm	Thulium (1.92 y)	1/2	44.00	-0.228	-	-2.18
70	171	Yb	Ytterbium	1/2	14.28	0.49367	200	4.7288
71	173 175	Yb	Ytterbium	5/2	16.13 97.41	-0.67989 2.232	280 349	-1.30251 3.0547
71	1/5	Lu	Lutetium	7/2	37.41	Z.Z3Z	J 348	3.004/

NMR Properties of Selected Isotopes

A Sym		v _o [MHz]	R _M (H)	R _{NA} (C)	Reference	Ξ [MHz]		
	Se	5.2072	2.97E-03	144.7				
	Br	25.1404	7.94E-02	2.37E+02	0.01 M NaBr in D₂O	25.053980		
_	Br	27.0997	9.95E-02	2.88E+02	0.01 M NaBr in D ₂ O	27.006518		
					**			
	Kr	3.8617	1.90E-03	1.28E+00	Kr gas	3.847600		
	Rb	9.6916	1.06E-02	4.50E+01	0.01 M RbCl in D ₂ O	9.654943		
_	Rb	32.8436	1.77E-01	2.90E+02	0.01 M RbCl in D₂O	32.720454		
87	Sr	4.3508	2.72E-03	1.12E+00	0.5 M SrCl₂ in D₂O	4.333822		
89	Υ	4.9203	1.19E-04	7.00E-01	$Y(NO_3)_3$ in H_2O/D_2O	4.900198		
91	Zr	9.3354	9.49E-03	6.26E+00	$Zr(C_5H_5)_2Cl_2$ in CH_2Cl_2 (sat.) + 5% C_6D_6	9.296298		
	Nb	24.5488	4.88E-01	2.87E+03	K[NbCl ₆] in CH ₃ CN / CD ₃ CN (sat.)	24.476170		
	Мо	6.5467	3.27E-03	3.06E+00	2 M Na ₂ MoO ₄ in D ₂ O	6.516926		
	Mo	6.6849	3.49E-03	1.96E+00	2 M Na ₂ MoO ₄ in D ₂ O	6.653695		
_				1.900+00	Z IVI INd ₂ IVIOO ₄ III D ₂ O	0.003090		
	Mo	13.4272	2.42E-03					
	Тс	22.6161	3.82E-01		NH ₄ TcO ₄ in H ₂ O / D ₂ O	22.508326		
99	Ru	4.5903	1.13E-03	8.46E-01	$0.3 \text{ M K}_{4}[\text{Ru}(\text{CN})_{6}] \text{ in } \text{D}_{2}\text{O}$	4.605151		
101	Ru	5.1274	1.57E-03	1.58E+00	0.3 M K₄[Ru(CN) ₆] in D₂O	5.161369		
103	Rh	3.1652	3.17E-05	1.86E-01	Rh(acac) ₃ in CDCl ₃ (sat.)	3.186447		
105		4.5975	1.13E-03	1.49E+00	K_2PdCl_6 in D_2O (sat.)	4.576100		
107		4.0704	6.74E-05	2.05E-01	AgNO ₃ in D ₂ O (sat.)	4.047819		
		4.6795	1.02E-04	2.90E-01	AgNO ₃ in D ₂ O (sat.) AgNO ₃ in D ₂ O (sat.)	4.653533		
109								
	Cd	21.3003	9.66E-03	7.27E+00	Me ₂ Cd neat liq.	21.215480		
	Cd	22.2820	1.11E-02	7.94E+00	Me₂Cd neat liq.	22.193175		
113		21.9963	3.51E-01	8.85E+01	$0.1 \text{ M In}(NO_3)_3 \text{ in } D_2O + 0.5 \text{ M DNO}_3$	21.865755		
115	In	22.0436	3.53E-01	1.99E+03	$0.1 \text{ M In}(NO_3)_3 \text{ in } D_2O + 0.5 \text{ M DNO}_3$	21.912629		
115	Sn	32.8994	3.56E-02	7.11E-01	Me ₄ Sn + 5% C ₆ D ₆	32.718749		
	Sn	35.8430	4.60E-02	2.08E+01	Me ₄ Sn + 5% C ₆ D ₆	35.632259		
	Sn	37.4986	5.27E-02	2.66E+01	Me ₄ Sn + 5% C ₆ D ₆	37.290632		
		24.0858	1.63E-01		KSbCl ₆ in CH ₃ CN / CD ₃ CN (sat.)	23.930577		
	Sb			5.48E+02				
123		13.0425	4.66E-02	1.17E+02	KSbCl ₆ in CH₃CN / CD₃CN (sat.)	12.959217		
125		13.4527	5.11E-02					
123	Te	26.3870	1.84E-02	9.61E-01	Me ₂ Te + 5% C ₆ D ₆	26.169742		
125	Те	31.8136	3.22E-02	1.34E+01	Me ₂ Te + 5% C ₆ D ₆	31.549769		
127	1	20.1462	9.54E-02	5.60E+02	0.01 M KI in D ₂ O	20.007486		
129	İ	13.4067	5.06E-02	***************************************				
129		27.8560	2.16E-02	3.35E+01	XeOF ₄ neat liq.	27.810186		
131		8.2575	2.82E-03	3.51E+00	XeOF₄ neat liq.	8.243921		
	Cs	13.2073	4.84E-02	2.84E+02	0.1 M CsNO ₃ in D ₂ O	13.116142		
135		10.0092	5.01E-03	1.94E+00	0.5 M BaCl ₂ in D ₂ O	9.934457		
137	Ba	11.1874	7.00E-03	4.62E+00	0.5 M BaCl₂ in D₂O	11.112928		
137	La	13.7852	5.50E-02					
138	La	13.2970	9.40E-02	4.97E-01	LaCl ₃ in D ₂ O / H ₂ O	13.194300		
	La	14.2356	6.06E-02	3.56E+02	0.01 M LaCl ₃ in D ₂ O	14.125641		
	Ce	12.6514	1.01E-02	0.00L UZ	5.51 WE LOUGHT D20	17.120041		
-						 		
	Ce	5.5755	3.64E-03	4.075.00		1		
	Pr	30.6168	3.35E-01	1.97E+03		1		
143		5.4476	3.39E-03	2.43E+00		1		
145		3.3555	7.93E-04	3.87E-01				
145	Pm	27.2124	2.35E-01					
147		4.1678	1.52E-03	1.34E+00				
149	0	3.4358	8.52E-04	6.92E-01				
	Eu	24.8614	1.79E-01	5.04E+02		1		
		10.9737				1		
	Eu		1.54E-02	4.73E+01		1		
155		3.0697	1.45E-04	1.26E-01				
_	Gd	4.0258	3.26E-04	3.00E-01				
159	Tb	24.0376	6.94E-02	4.08E+02				
	Dy	3.4374	4.74E-04	5.26E-01				
	Dy	4.8195	1.31E-03	1.91E+00				
163		21.6369	2.13E-01			1		
_			1.98E-01	1 16E+02		 		
165		21.1356		1.16E+03	(+0)-1	1		
166		9.2072	5.83E-02		(+6 keV excited state)	1		
167		2.8842	5.04E-04	6.77E-01		1		
169	Er	17.3658	5.24E-03					
169	Tm	8.2711	5.66E-04	3.32E+00				
	Tm	8.1637	5.44E-04					
	Yb	17.6762	5.52E-03	4.63E+00	0.171 M Yb(η-C ₅ Me ₅) ₂ (THF) ₂ in THF	17.499306		
173		17.0702	1.35E_03	4.03L+00 1.28F±00	5.17 F WE FD(I) O514105/2 (11 II /2 III 11 II	17.400000		

NMR Properties of Selected Isotopes

176 177 179 179 180	Lu Hf Hf	Lutetium (3.78E10 y) Hafnium	7	2.59	3.169	497	2.168	
177 179 179	Hf				3.103	437	I 2.108	
179 179	Hf		7/2	18.60	0.7935	337	1.0858	
179		Hafnium	9/2	13.62	-0.641	379	-0.682	
	Та	Tantalum (1.82 y)	7/2		2.289	337	3.132	
	Та	Tantalum (1.2E15 y)	9	0.012	4.825	495	2.568	
181	Та	Tantalum	7/2	99.988	2.3705	317	3.2438	
183	W	Tungsten (Wolfram)	1/2	14.31	0.11778476	-	1.1282407	
185	Re	Rhenium	5/2	37.40	3.1871	218	6.1057	
187	Re	Rhenium (4.35E10 y)	5/2	62.60	3.2197	207	6.1682	
187	Os			1.96	0.06465189	-	0.6192897	
						85.6	2.107130	
							0.4812	
							0.5227	
						70.1	5.8385	
						54.7	0.473060	
			_			54.7	4.845793	
		7. 7 07				38.6	-1.788770	
		/				30.0	15.539339	
							15.692186	
				70.40		22	1.3635	
				22.1		23	5.5767	
						E1 6	4.3747	
			_	100		0.10		
							6.51 5.76	
						10	4.43	
						-10		
						470	-7.03	
							3.5	
				100			0.88	
				100			6.42	
				0.7004			1.13	
					-0.38		-0.52	
	-		_	99.274				
						386.6	6.02	
		,					1.94	
							-1.30	
							3.03	
						286	2.87	
							0.79	
							0.68	
							0.39	
247								
							2.7	
		. , , ,						
	Es	Einsteinium (472 d)			no data			
253	Es					670	5.61	
253								
257	Fm	Fermium (100.5 d)	(9/2)		no data			
	189 191 193 195 197 199 201 203 205 205 207 209 211 212 225 231 233 235 231 241 241 243 243 245 247 249 251 255 253 253	189 Os 191 Ir 193 Ir 195 Pt 195 Pt 197 Au 199 Hg 201 Hg 203 Tl 205 Tl 206 Pb 207 Pb 209 Bi 209 Po 211 Rn 212 Fr 225 Ra 227 Ac 229 Th 231 Pa 233 U 235 U 237 Np 239 Pu 241 Am 243 Am 243 Am 244 Cm 247 Bk 249 Bk 251 Cf 252 Es 253 Es 253 Fm	189 Os Osmium 191 Ir Iridium 193 Ir Iridium 195 Pt Iridium 197 Au Gold, Aurum 199 Hg Mercury, Hydrargyrum 201 Hg Mercury 203 Ti Thallium 205 Pb Lead (1.73E7 y) 207 Pb Lead (Plumbum) 209 Bi Bismuth 209 Po Polonium (102 y) 211 Rn Radon (14.6 h) 212 Fr Francium (19.3 m) 225 Ra Radium (14.9 d) 227 Ac Actinium (21.77 y) 229 Th Thorium (7.34E3 y) 231 Pa Protactinium (3.25E4 y) 233 U Uranium (7.04E8 y) 233 U Uranium (7.04E8 y) 235 U Uranium (7.446E9 y) 237 Np Neptunium (2.410E4 y) 241<	189 Os Osmium 3/2 191 Ir Iridium 3/2 193 Ir Iridium 3/2 195 Pt Platinum 1/2 197 Au Gold, Aurum 3/2 199 Hg Mercury, Hydrargyrum 1/2 201 Hg Mercury 3/2 203 Tl Thallium 1/2 205 Pb Lead (1.73E7 y) 5/2 207 Pb Lead (Plumbum) 1/2 209 Bi Bismuth 9/2 209 Po Polonium (102 y) 1/2 21 Fr Francium (19.3 m) 5 225 Ra Radium (14.9 d) 1/2 227 Ac Actinium (21.77 y) 3/2 229 Th Thorium (7.34E3 y) 5/2 231 Pa Protactinium (3.25E4 y) 3/2 233 U Uranium (7.04E8 y) 7/2 238	189 Os Osmium 3/2 16.15 191 Ir Iridium 3/2 37.3 193 Ir Iridium 3/2 62.7 195 Pt Platinum 1/2 33.832 197 Au Gold, Aurum 3/2 100 199 Hg Mercury, Hydrargyrum 1/2 16.87 201 Hg Mercury 3/2 13.18 203 Tl Thallium 1/2 29.52 205 Tl Thallium 1/2 29.52 205 Pb Lead (1.73E7 y) 5/2 207 Pb Lead (Plumbum) 1/2 22.1 209 Bi Bismuth 9/2 100 100 100 209 Po Polonium (102 y) 1/2 11/2 100 11/2 11 Rn Radon (14.6 h) 1/2 11/2 100 11/2 11/2 11/2 11/2 11/2 11/2 11/2 11/2	189 Os Osmium 3/2 16.15 0.659933 191 Ir Iridium 3/2 37.3 0.1507 193 Ir Iridium 3/2 62.7 0.1637 195 Pt Platinum 1/2 33.832 0.60952 197 Au Gold, Aurum 3/2 100 0.148158 199 Hg Mercury, Hydrargyrum 1/2 16.87 0.5058855 201 Hg Mercury 3/2 13.18 -0.560226 203 TI Thallium 1/2 29.52 1.6222579 205 TI Thallium 1/2 70.48 1.6382146 205 Pb Lead (Plumbum) 1/2 22.1 0.58219 205 Ti Thallium 1/2 22.1 0.58219 209 Bi Bismuth 9/2 100 4.1103 209 Po Polonium (102 y) 1/2 0.68 211 Rn	189	

This Table (updated Oct. 2009) was assembled and calculated by W.E. Hull using information from the following sources:

De Laeter et al. Pure Appl Chem 75 (2003) 683-800. (isotope abundances)

Harris RK, et al. *Pure Appl Chem* 73 (2001) 1795-1818 and 80 (2008) 59-84. (shift references) Mills I, et al. *Quantities, Units and Symbols in Physical Chemistry* (IUPAC recommendations 1993, corrections 1995). Blackwell Scientific (1993, 1995).

Pyykkö P. Spectroscopic nuclear quadrupole moments. Mol. Phys. 99 (2001) 1617-1629.

NMR Properties of Selected Isotopes

A Sym ν_o [MHz] $R_M(H)$ R_{NA}(C) Reference Ξ [MHz] 176 Lu 8.1049 3.98E-02 6.05E+00 177 Hf 4.0588 1.40E-03 2.5502 179 Hf 5.47E-04 4.38E-01 179 Ta 11.7085 3.37E-02 180 Ta 1.06E-01 7.48E-02 9.5979 (+77 keV excited state) 181 Ta 12.1254 3.74E-02 2.20E+02 KTaCl₆ in CH₃CN (sat.) 11.989600 183 W 4.2174 7.50E-05 6.31E-02 1 M Na₂WO₄ in D₂O 4.166387 185 Re 22.8233 1.39E-01 3.05E+02 0.1 M KReO₄ in D₂O 22.524600 187 Re 23.0568 1.43E-01 5.26E+02 0.1 M KReO₄ in D₂O 22.751600 1.43E-03 187 Os 2.3149 1.24E-05 0.98 M OsO₄ in CCl₄ 2.282331 189 Os 0.98 M OsO₄ in CCl₄ 7.765400 7.8765 2.44E-03 2.32E+00 1.7986 2.91E-05 193 lr 1.37E-01 1.9538 3.73E-05 195 Pt 21.8243 1.04E-02 2.07E+01 1.2 M Na₂PtCl₆ in D₂O 21.496784 197 Au 1.7683 2.76E-05 1.62E-01 199 Hg 18.1136 5.94E-03 5.89E+00 Me₂Hg neat lig. (toxic!) 17.910822 201 Hg 6.6864 1.49E-03 1.16E+00 Me₂Hg neat liq. (toxic!) 6.611583 203 TI 58.0862 1.96E-01 3.40E+02 $TI(NO_3)_3$ 57.123200 205 TI 58.6575 2.02E-01 8.36E+02 TI(NO₃)₃ 57.683838 205 Pb 5.0966 1.54E-03 207 Pb 20.8458 9.06E-03 1.18E+01 Me₄Pb + 5% C₆D₆ 20.920599 209 Bi 16.3525 1.44E-01 Bi(NO₃)₂ sat. in conc. HNO₃ + 50% D₂O 209 Po 24.3479 1.44E-02 211 Rn 21.5193 9.97E-03 212 Fr 16.5423 1.81E-01 225 Ra 26.2814 1.82E-02 227 Ac 13.1288 1.13E-02 229 Th 3.2941 4.17E-04 4.06E+02 231 Pa 23.9899 6.90E-02 4.2251 8.80E-04 6.53E-03 1.54E-04 UF₆ + 10% C₆D₆ 1.841400 237 Np 22.4860 1.33E-01 3.84E-04 239 Pu 7.2686 241 Pu 4.8696 1.35E-03 241 Am 11.3146 1.69E-02 243 Am 10.7417 1.45E-02 243 Cm 2.9361 2.95E-04 245 Cm 2.5576 3.51E-04 247 Cm 1.4720 1.05E-04 249 Bk 10.2302 2.25E-02

Stone NJ. *Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments (2001)* [http://www.nndc.bnl.gov/nndc/stone_moments/nuclear-moments.pdf].

LBNL Isotopes Project Nuclear Data Dissemination Home Page. *Table of Nuclear Moments* [http://ie.lbl.gov/toipdf/mometbl.pdf].

NUDAT 2 half-life data: http://www.nndc.bnl.gov/

1.94E-01

20.9719

NMR Tables

Properties of Selected Deuterated Solvents for NMR

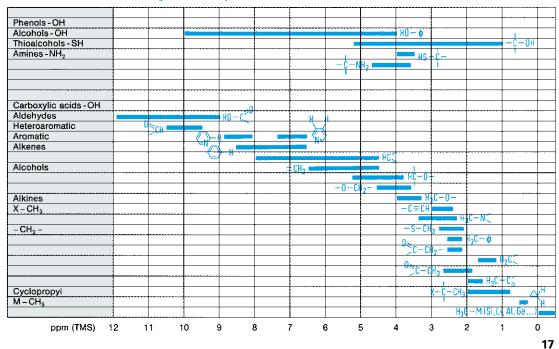
Solvent	Formula	MW _{ave}	Density	MP	ВР	RI	Dielec.	¹H shift (Mult.)	J(HD)	¹³ C Shift (Mult.)	J(CD)	H₂O/ HDO Shift
			[d ₄ ²⁰]	[°C]	[°C]	[<i>n</i> _D ²⁰]	[ε]	[ppm]	[Hz]	[ppm]	[Hz]	[ppm]
Acetic Acid-d4	C ₂ D ₄ O ₂	64.08	1.119	15.9	115.5	1.368	6.1	11.65 2.04 (5)	2.2	178.99 20 (7)	20	11.5
Acetone-d6	C ₃ D ₆ O	64.12	0.872	-93.8	55.5	1.3554	20.7	2.05 (5)	2.2	29.92 (7) 206.68 (13)	19.4 0.9	2.84/ 2.81
Acetonitrile-d3	C ₂ D ₃ N	44.07	0.844	-46	80.7	1.3406	37.5	1.94 (5)	2.5	1.39 (7) 118.69	21	2.12
Benzene-d6	C_6D_6	84.15	0.950	6.8	79.1	1.4986	2.3	7.16		128.39 (3)	24.3	0.4
Chloroform-d1	CDCl₃	120.38	1.500	-64.1	60.9	1.4445	4.8	7.24		77.23 (3)	32	1.55
Cyclohexane-d12	C ₆ D ₁₂ O	96.24	0.890	7	78		2	1.38		26.43 (5)	19	0.80
Deuterium oxide	D ₂ O	20.03	1.107	3.8	101.4	1.328	78.5	4.81				
1,2-Dichloroethane-d4	C ₂ D ₄ Cl ₂	102.99	1.307	-35	83	1.443		3.72 (5)		43.6 (5)	23.5	
Dichloromethane-d2	CD ₂ Cl ₂	86.95	1.362	-97	39.5	1.362		5.32 (3)	1.1	54 (5)	27.2	1.52
Diethylether-d10	C ₄ D ₁₀ O	84.19	0.78	-116.3	34.6			3.34 (m) 1.07 (m)		65.3 (5) 14.5 (7)	21 19	
Diethylene glycol dimethyl ether-d14 (diglyme-d14)	C ₆ D ₁₄ O ₃	148.26	0.95	-68	162			3.49 (br) 3.40 (br) 3.22 (5)	1.5	70.7 (5) 70 (5) 57.7 (7)	21 21 21	
1,2-Dimethoxyethane-d10 (glyme-d10)	C ₄ D ₁₀ O ₂	100.18	0.86	-58	83			3.40 (m) 3.22 (5)	1.6	71.7 (5) 57.8 (7)	21 21	
N,N-Dimethyl- formamide-d7	C ₃ D ₇ NO	80.14	1.04	-60	153	1.428	36.7	8.03 2.92 (5) 2.75 (5)	1.9 1.9	163.15 (3) 34.89 (7) 29.76 (7)	29.4 21.0 21.1	3.45
Dimethyl sulfoxide-d6	C ₂ D ₆ O _S	84.17	1.190	20.2	190	1.4758	46.7	2.50 (5)	1.9	39.51 (7)	21.0	3.3
1,4-Dioxane-d6	C ₄ D ₈ O ₂	96.16	1.129	12	99	1.4198	2.2	3.53 (m)		66.66 (5)	21.9	2.4
Ethanol-d6	C ₂ D ₆ O	52.11	0.888	-114.5	78	1.358	24.5	5.29 3.56 1.11 (m)		56.96 (5) 17.31 (7)	22 19	5.2
Methanol-d4	CD ₄ O	36.07	0.89	-99	65	1.3256	32.7	4.87 3.31 (5)	1.7	49.15 (7)	21.4	4.86
Methyl cyclohexane-d14	C ₇ D ₁₄	112.27	0.77	-126	101	1.4189						
Nitrobenzene-d5	C ₆ D ₅ NO ₂	128.14	1.253	6	211	1.5498		8.11 (br) 7.67 (br) 7.50 (br)		148.6 134.8 (3) 129.5 (3) 123.5 (3)	24.5 25 26	2.42
Nitromethane-d3	CD ₃ NO ₂	64.06	1.19	-26	100	1.3795		4.33 (5)		62.8 (7)	22	2.2
2-Propanol-d8	C ₃ D ₈ O	68.15	0.786	-89.5	82.4	1.3728		5.12 3.89 (br) 1.10 (br)		62.9 (3) 24.2 (7)	21.5 19	
Pyridine-d5	C ₅ D ₅ N	84.13	1.02	-41	114	1.5079	12.4	8.74 7.58 7.22		150.35 (3) 135.91 (3) 123.87 (3)	27.5 24.5 25	4.97
Tetrachloroethane-d2	C ₂ D ₂ Cl ₄	169.86	1.7	-43	146	1.493		5.91 (5)		74.2 (5)		1.5
Tetrahydrofuran-d8	C ₄ D ₈ O	80.16	0.99	-108	64	1.4035	7.6	3.58 1.73		67.57 (5) 25.37 (5)	22.2 20.2	2.42

NMR Tables

Toluene D_8 Trifluoroacetic acid D_1 Trifluoroethyl alcohol D_3 , D_2

Solvent	Formula	MW _{ave}	Density	MP	ВР	RI	Dielec.	¹H shift (Mult.)	J(HD)	¹³ C Shift (Mult.)	J(CD)	H₂O/ HDO Shift
			[d ₄ ²⁰]	[°C]	[°C]	[<i>n</i> _D ²⁰]	$[\varepsilon]$	[ppm]	[Hz]	[ppm]	[Hz]	[ppm]
Toluene-d8	C ₇ D ₈	100.19	0.94	-85	109	1.4932	2.4	7.09 (m) 7.00 6.98 (m) 2.09 (5)	2.3	137.86 129.24 (3) 128.33 (3) 125.49 (3) 20.4 (7)	23 24 24 19	0.45
2,2,2-Trifluoroacetic Acid-d1	C ₂ DF ₃ O ₂	115.03	1.50	-15	71	1.30		11.50		164.2 (4) 116.6 (4)		11.5
2,2,2-Trifluoroethanol-d3	C ₂ D ₃ F ₃	87.06	1.42	-44	77	1.30		5.02 3.88 (4x3)	2 (9)	126.3 (4) 61.5 (4x5)	22	5

This Table summarizes the physical properties of deuterated solvents and the chem. shifts (rel. to TMS) and deuterium couplings for the solvent signals and the approximate shifts for residual water (last column).

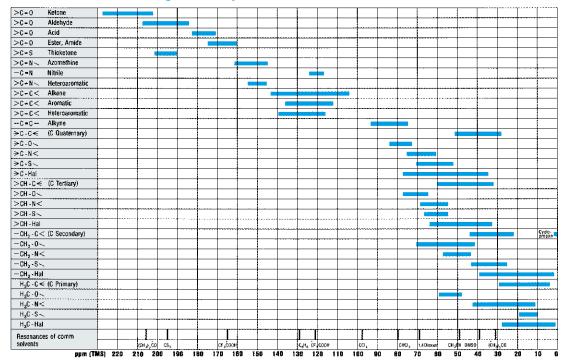

MRI Tables

Abbreviations and Acronyms Used in Magnetic Resonance Imaging

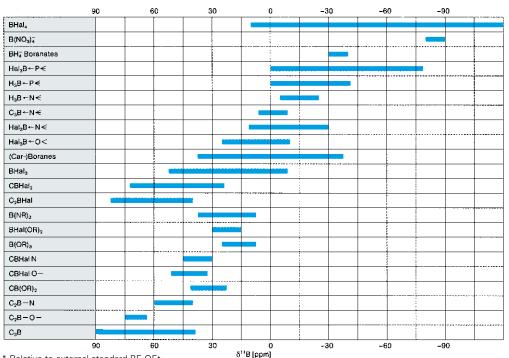
Method	Description	Equivalent acronyms
SINGLEPULSE	Basic pulse-and-acquire spectroscopy	FID
NSPECT	Non-localized spectroscopy with NOE and decoupling options	FID
CSI	Chemical shift imaging with optional PRESS localization	
PRESS	Localized MRS with double spin echo	
STEAM	Localized MRS with stimulated echo (for short TE)	
ISIS	Localized MRS with inversion-based voxel definition	OSIRIS
DtiEpi	Diffusion tensor imaging with EPI (SE and STE)	PGSE-EPI
DtiStandard	Diffusion tensor imaging with 2DFT (SE and STE)	PGSE
EPI	Echo-Planar Imaging (GE and SE), single-shot or interleaved, with navigator-based phase stabilization and automatic ghost correction	
FAIR_EPI	Pulsed arterial spin labelling-based perfusion imaging with EPI	
FC2D_ANGIO	Time-of-flight angiography flow-compensated	TOF-angio
FL2D_ANGIO	Time-of-flight angiography w/o flow-comp. (short TE)	
FISP	Fast gradient echo with steady state signal selection (FID, echo or fully balanced), and optional inversion recovery for T1 mapping.	FLASH, FAST, FISP, PSIF, CE-FAST, SSFP, GRASS, TrueFISP
FLASH	Gradient echo	FISP, GRASS, FAST
GEFC	Gradient echo with flow compensation	
MDEFT	T1-weghted hi-res imaging with inversion-recovery preparation	MPRAGE
MGE	Multiple gradient echo	
MSME	Multiple spin echo including T2 mapping	
RARE	Fast spin echo based on CPMG sequence	FSE, TSE
RAREVTR	RARE with variable TR for simultaneous T1&T2 mapping	
RAREst	Fast spin echo for short TE using slew-rate-optimized gradients	HASTE
FLOW_MAP	Quantitative flow mapping and PC-angio	
UTE	Ultra-short TE radial scan	
FieldMap	Quantitative B0 mapping, part of the MAPSHIM tool for localized high-order shimming	
SPIRAL	Fast MRI with spiral k-space scan	
IntraGate-FLASH	Cardiac and respiration-cine with retrospective (trigger-free) gating	

Chemical Shifts of Residual Protons in Common Deuterated Solvents δ H⁺ (ppm) Reference: TMS/TMSP Acetic acid D₄ Acetone D₆ Acetonitrile D₃ Benzene D Chloroform D Cyclohexane D, Deuterium oxide D. Dimethyl formamide D₇ Dimethyl sulfoxide D₆ Dioxane D_s Ethyl alcohol D₁, D₆ Methyl alcohol D₁, D₂, D₄ Methylene chloride D, Pyridine D₅ Tetrahydrofuran D_s

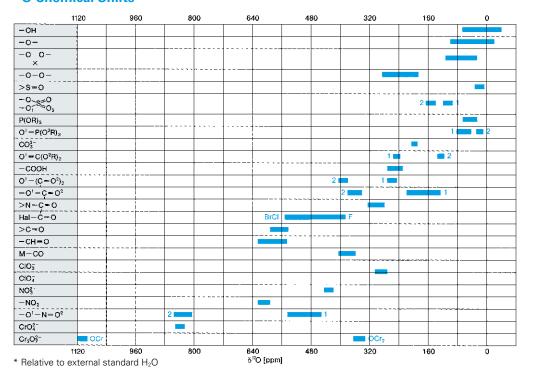
¹H Chemical Shifts in Organic Compounds



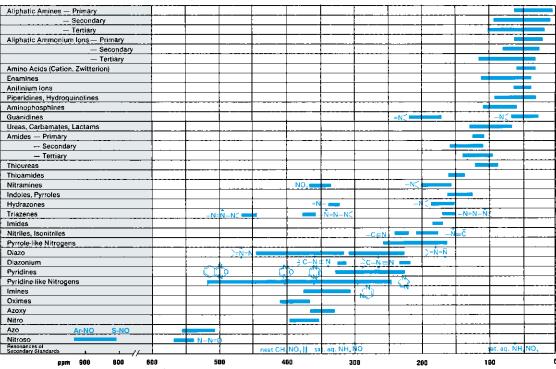
NMR Tables



¹³C Chemical Shifts in Organic Compounds*


^{*} Relative to internal tetramethylsilane.

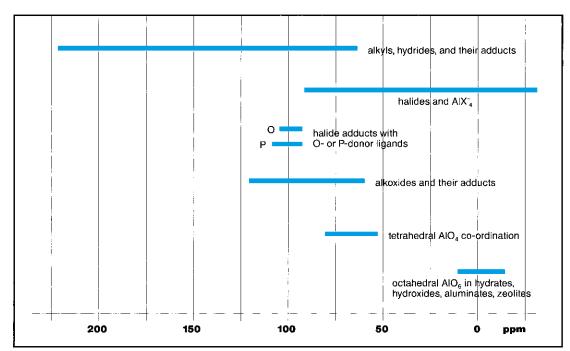
¹¹B Chemical Shifts*



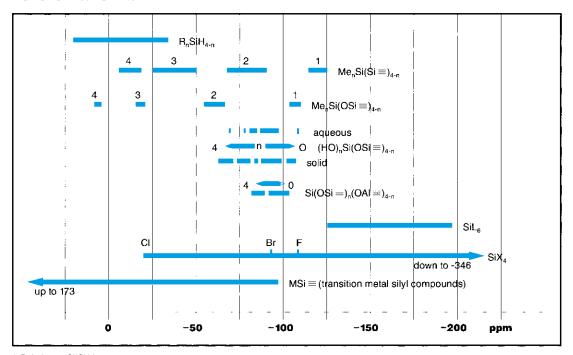
* Relative to external standard BF₃OEt₂

¹⁷O Chemical Shifts*

¹⁵N Chemical Shifts in Organic Compounds*


^{*} Relative to external liquid ammonia at 25°C. Data taken from: G. C. Levy and R. L. Lichter: "Nitrogen-15 Nuclear Magnetic Resonance

NMR Tables



²⁷Al Chemical Shifts*

^{*} Relative to AI(H₂O)³ 6.

²⁹Si Chemical Shifts*

^{*} Relative to Si(CH₃)₄.

Some Representative 19F Chemical Shifts Referenced to CFCl₃

	δ/ppm		δ/ppm		δ/ppm
MeF	-271.9	CFBr ₃	7.4	FCH=CH ₂	-114
EtF	-213	CF ₂ Br ₂	7	F ₂ C=CH ₂	-81.3
CF ₂ H ₂	-1436	CFH₂Ph	-207	F ₂ C=CF ₂	-135
CF₃R	-60 to -70	CF ₂ Cl ₂	-8	C ₆ F ₆	-163
AsF ₅	-66	[AsF ₆] ⁻	-69.5	[BeF ₄]-	-163
BF ₃	-131	CIF ₃	116; -4	CIF ₅	247; 412
IF ₇	170	MoF ₆	-278	ReF ₇	345
SeF ₆	55	[SbF ₆] ⁻	-109	SbF ₅	-108
[SiF ₆] ²⁻	-127	TeF ₆	-57	WF ₆	166
XeF ₂	258	XeF ₄	438	XeF ₆	550

Some Representative
³¹P Chemical Shifts
Referenced to 85 % H₃PO₄

(a) Phosphorus (III) compounds		
	δ/ppm		δ/ppm
PMe ₃	-62	PMeF ₂	245
PEt ₃	-20	PMeH ₂	-163.5
P(n-Pr) ₃	-33	PMeCl ₂	192
P(i-Pr) ₃	-19.4	PMeBr ₂	184
P(n-Bu) ₃	-32.5	PMe ₂ F	186
P(i-Bu) ₃	-45.3	PMe₂H	-99
P(s-Bu) ₃	7.9	PMe₂Cl	96.5
P(t-Bu) ₃	63	PMe₂Br	90.5

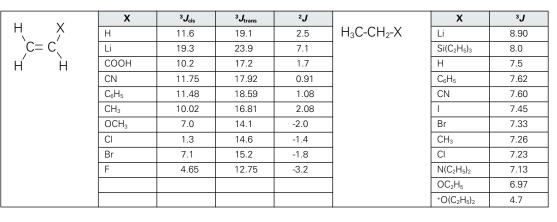
(b) Phosphorus (V) compounds		
	δ/ppm	δ/ppm	
Me ₃ PO	36.2	Me₃PS	59.1
Et ₃ PO	48.3	Et ₃ PS	54.5
[ME ₄ P] ⁺	24.4	[Et ₄ P]+	40.1
[PO ₄] ³⁻	6.0	[PS ₄] ³⁻	87
PF ₅	-80.3	[PF ₆]-	-145
PCI ₅	-80	[PCl ₄]+	86
MePF ₄	-29.9	[PCI ₆] ⁻	-295
Me ₃ PF ₂	-158	Me ₂ PF ₃	8.0

Chemical Shift Ranges and Standards for Selected Nuclei

Nucleus	Spin	Chemical Shift Range δ [ppm]	Standard	Nucleus	Spin	Chemical Shift Range δ [ppm]	Standard
¹H	1/2	12 to -1	SiMe ₄	⁴³ Ca	7/2	40 to -40	CaCl ₂
⁶ Li	1	5 to -10	1M LiCl in H ₂ O	51 V	7/2	0 to -2000	VOCI ₃
⁷ Li	3/2	5 to -10	1M LiCl in H₂O	⁶⁷ Zn	5/2	100 to -2700	ZnClO ₄
11B	3/2	100 to -120	BF ₃ · OEt ₂	77Se	1/2	1600 to -1000	SeMe ₂
¹³ C	1/2	240 to -10	SiMe ₄	93NB	9/2	0 to -2000	K[NbCl ₆]
¹⁵ N	1/2	1200 to -500	MeNO ₂	99Ru	3/2	3000 to -3000	RuO ₃ /CCI ₄
¹⁷ O	5/2	1400 to -100	H ₂ O	¹¹⁹ Sn	1/2	5000 to -3000	SnMe ₄
19 F	1/2	100 to -300	CFCI₃	¹²¹ Sb	5/2	1000 to -2700	Et ₄ NSbCl ₆
²³ Na	3/2	10 to -60	1M NaCl in H ₂ O	¹²⁹ Xe	1/2	2000 to -6000	XeOF ₄
²⁷ AI	5/2	200 to -200	[AI(H ₂ O) ₆] ³⁺	¹³³ Cs	7/2	300 to -300	CsBr
²⁹ Si	1/2	100 to -400	SiMe ₄	¹⁹⁵ Pt	1/2	9000 to -6000	Na ₂ PtCl ₆
³¹ P	1/2	230 to -200	H₃PO₄	¹⁹⁹ Hg	1/2	500 to -3000	HgMe ₂

Some Important Silylated Compounds Used as ¹H Shift References

Name	Chemical formula	Abbre- viation	Mole- cular weigth	Boiling or melting point (°C)	δ ¹H ppm rel.TMS
Tetramethylsilane	(CH ₃) ₄ Si	TMS	88.2	BP = 26.3	0
Hexamethyldisilane	(CH ₃) ₃ Si–Si(CH ₃) ₃	HMDS	146.4	BP = 112.3	0.037
Hexamethyldisiloxane	(CH ₃) ₃ Si-O-Si(CH ₃) ₃	HMDSO	162.4	BP = 100	0.055
Hexamethyldisilazane	(CH ₃) ₃ Si-NH-Si(CH ₃) ₃	HMDSA	161.4	BP = 125	0.042
3-(trimethylsilyl)propane sulfonic acid soduim salt	(CH ₃) ₃ Si(CH ₂) ₃ SO ₃ Na	TSPSA	218.3	MP = 200	0.015
4,4-dimethyl-4-silapentane sodium sulfonate	(C1 13/3 O1 (C1 12/3 O O3 1 Na	DSS	210.5	1011 = 200	0.013
3-(trimethylsilyl)propionic acid sodium salt	(CH ₃) ₃ Si(CH ₂) ₂ COONa	TSP	168 2	MP > 300	0.000
4,4-dimethyl-4-silapentane sodium carboxylate	(C1 13/3-31(C1 12/2-COOMa	DSC	100.2	IVIF > 300	0.000
3-(trimethylsilyl) 2,2,3,3-tetra- deuteropropionic acid sodium salt	(CH ₃) ₃ Si(CD ₂) ₂ COONa	TSP-d ₄	172.2	MP > 300	0.000
Octamethylcyclotetrasiloxane	(CH ₃) ₂ Si[O–Si(CH ₃) ₂] ₃ –O	OCTS	296.8	BP = 175 MP = 16.8	0.085
1,1,3,3,5,5-hexakis-(trideutero- methyl)-1,3,5-trisilacyclohexane	(CD ₃) ₂ Si–CH ₂ –Si(CD ₃) ₂ CH ₂ –Si(CD ₃) ₂ –CH ₂	CS-d ₁₈	216.6	BP = 208	-0.327
Tetrakis-(trimethylsilyl)-methane	[(CH ₃) ₃ Si] ₄ C	TTSM	304.8	MP = 307	0.236


Enhancement Factors η_{NOE} and $\,\eta_{\text{INEPT}}$ for X {¹H} Nuclear Overhauser and INEPT Experiments

х	¹⁹ F	³¹ P	11 B	¹³ C	¹⁵ N	²⁹ Si	⁵⁷ Fe	¹⁰³ Rh	¹⁰⁹ Ag	¹¹⁹ Sn	¹⁸³ W
η _{NOE} a	0.53	1.24	1.56	1.99	-4.93	-2.52	15.41	-15.80	-10.68	-1.33	11.86
η _{ιΝΕΡΤ} b	1.06	2.47	3.12	3.98	-9.86	-5.03	30.82	-31.59	-21.37	-2.67	23.71

 $^{\text{a}}$ The maximum possible intensity enhancement is equal to 1 + η_{NOE} in the extreme narrowing limit.

b For ¹⁹F or ³¹P as polarization source (irradiated nucleus) the factors η_{NOE} and η_{NEPT} are reduced by the factor 0.941 [γ(¹⁹F)/γ(¹H)] and 0.405 [γ(³¹P)/γ(¹H)]

¹H, ¹H Coupling Constants in Selected Organic Molecules

	Х	³ <i>J</i> (1,2)	³ <i>J</i> (1,3)	3 <i>J</i> (2,4)	³ <i>J</i> (3,5)	³J(2,5)	²J(2,3)
H ¹	Н	8.97	5.58	8.97	8.97	5.58	-4.34
$H^2 \bigwedge H^4$	CI	7.01	3.58	10.26	10.58	7.14	-6.01
X	Br	7.13	3.80	10.16	10.45	7.01	-6.12
	1	7.51	4.37	9.89	9.97	6.63	-5.94
H ³ H ⁵	NH ₂	6.63	3.55	9.65	9.89	6.18	-4.29
	CN	8.43	5.12	9.18	9.49	7.08	-4.72
	СООН	8.04	4.57	9.26	9.66	7.14	-4.00
	COCI	7.88	4.43	9.19	9.99	7.59	-4.46
	COCH₃	7.96	4.55	8.76	9.60	6.94	-3.41

0 1	Х	³ <i>J</i> (1,2)	⁴ <i>J</i> (1,3)	5J(1,4)	⁴ <i>J</i> (1,5)	³J(2,3)	⁴ <i>J</i> (2,4)
2 1	Н	7.54	1.37	0.66	1.37	7.54	1.37
3⟨	Li	6.73	1.54	0.77	0.74	1.42	1.29
4 5	CH ₃	7.64	1.25	0.60	1.87	7.52	1.51ª
4 5	COOCH ₃	7.86	1.35	0.63	1.79	7.49	1.31
	1	7.93	1.14	0.47	1.88	7.47	1.75
	Br	8.05	1.12	0.46	2.1	7.44	1.78
	CI	8.05	1.13	0.48	2.27	7.51	1.72
	NH ₂	8.02	1.11	0.47	2.53	7.39	1.60
a 4 <i>J</i> (1, CH ₃) -0.75	N(CH ₃) ₂	8.40	1.01	0.43	2.76	7.29	1.76
5 <i>J</i> (2, CH₃) 0.36	N(CH ₃) ₃	8.55	0.92	0.48	3.05	7.46	1.69
⁶ J(3, CH₃) -0.62	NO ₂	8.36	1.18	0.55	2.40	7.47	1.48
^{ь з} Ј(1, F) 8.91	ОН	8.17	1.09	0.49	2.71	7.40	1.74
⁴ J(2, F) 5.69	OCH₃	8.30	1.03	0.44	2.94	7.36	1.76
⁵ <i>J</i> (3, F) 0.22	F	8.36	1.07	0.43	2.74	7.47	1.82⁵

Substituent Effect S(i,j) for J_{HH} in Monosubstituted Benzenes

pos. i,j	F	CI	Br		NO ₂	OCH ₃
1,2	+0.81	+0.61	+0.53	+0.39	+0.77	+0.79
1,3	-0.34	-0.23	-0.27	-0.25	-0.20	-0.32
1,4	-0.24	-0.16	-0.20	-0.19	-0.16	-0.22
1,5	+1.21	+0.87	-0.71	+0.51	+1.02	+1.33
2,3	-0.04	+0.03	-0.05	-0.04	-0.07	-0.16
2,4	+0.39	+0.34	+0.36	+0.37	+0.08	+0.38

NMR Tables

Additivity Parameters for ¹³C Chemical Shifts in Substituted Benzenes

 $\delta_i = 128.5 + S_i(\delta_i)$, $S_i(\delta_1)$ refers to the carbon atom bearing the substituent

Substituent	S _i (δ _I)	S _i (δ _o)	$S_i(\delta_m)$	$S_i(\delta_p)$	Substituent	$S_i(\delta_l)$	S _i (δ _o)	$S_i(\delta_m)$	$S_i(\delta_p)$
-H	0.0	0.0	0.0	0.0	-1	-32.3	9.9	2.6	-0.4
−CH ₃	9.3	0.6	0.0	-3.1	-ОН	26.9	-12.7	1.4	-7.3
-CH₂CH₃	15.7	-0.6	-0.1	-2.8	-OCH₃	30.2	-14.7	0.9	-8.1
-CH(CH ₃) ₂	20.1	-2.0	0.0	-2.5	-NH ₂	19.2	-12.4	1.3	-9.5
-C(CH ₃) ₃	22.1	-3.4	-0.4	-3.1	-N(CH ₃) ₂	22.4	-15.7	0.8	-11.8
-Cyclopropyl	15.1	-3.3	-0.6	-3.6	-N(C ₆ H ₅) ₂	19.3	-4.4	0.6	-5.9
–CH₂CI	9.1	0.0	0.2	-0.2	-NO ₂	19.6	-5.3	0.8	6.0
–CH₂Br	9.2	0.1	0.4	-0.3	-CN	-16.0	3.5	0.7	4.3
-CF ₃	2.6	-2.2	0.3	3.2	-NCO	5.7	-3.6	1.2	-2.8
–CH₂OH	13.0	-1.4	0.0	-1.2	-SC(CH ₃) ₃	4.5	9.0	-0.3	0.0
-CH=CH ₂	7.6	-1.8	-1.8	-3.5	-сон	9.0	1.2	1.2	6.0
–C≡CH	-6.1	3.8	0.4	-0.2	-COCH₃	9.3	0.2	0.2	4.2
-C ₆ H ₅	13.0	-1.1	0.5	-1.0	-соон	2.4	1.6	-0.1	4.8
–F	35.1	-14.3	0.9	-4.4	-coo-	7.6	0.8	0.0	2.8
-CI	6.4	0.2	1.0	-2.0	-COOCH₃	2.1	1.2	0.0	4.4
–Br	-5.4	3.3	2.2	-1.0	-coci	4.6	2.9	0.6	7.0

Nuclear Magnetic Relaxation Rates (1/T₁)° in s⁻¹ at Infinite Dilution of Quadrupolar Relaxing Ionic Nuclei in Various Solvents

lonic nucleus	H₂O	HCONH ₂	NMF	DMF	DMA	MeOH	EtOH	нсоон	CH₃CN	(CH₃)₂CO	DMSO	НМРТ
⁷ Li⁺	0.027*	0.2	0.18	0.15	0.15	0.035	0.18	0.14	0.05	0.07	0.17	0.36
²³ Na ⁺	16.2	95	130	90	83	41	95	50	20	30	140	60
³⁹ K+	17.8	-	_	_	-	33	-	-	_	-	_	-
87Rb+	386	2400	4000	2900	-	1380	5500	1400	≈342	-	4400	-
¹³³ Cs ⁺	0.086	0.45	0.75	0.5	0.67	0.20	1.1	0.27	-	-	0.95	-
35 CI -	26.5	250	340	800	-	400	1300	950	40	-	100	-
81Br-	1050	420	11700	5400	-	11800	43000	28000	700	≈3000	1100	-
127 -	4600	13200	33000	4700	-	46000	>105	70000	1200	-	4000	-
²⁵ Mg ²⁺	3.85	-	_	-	-	_	-	_	-	-	_	-
⁴³ Ca ²⁺	0.80	-	_	_	-	-	-	_	-	-	_	-
87Sr ²⁺	170	-	_	_	-	-	_	_	_	-	_	-
¹³⁷ Ba ²⁺	4000	-	_	_	-	-	_	_	_	-	_	-
⁶⁷ Zn ²⁺	51.8	-	_	_	-	-	_	_	_	-	_	-
²⁷ AI ³⁺	≈5.7	-	-	-	-	-	-	-	-	-	-	-
45Sc3+	≈69	-	-	-	-	-	-	-	-	-	_	-
69Ga3	≦350	-	-	-	-	-	-	-	-	-	-	-
¹³⁹ La ³⁺	368	-	-	-	-	-	-	-	-	-	-	-

Typical Stray Field Data for NMR Magnet Systems

Magnet System ¹H MHz/mm Bore	Axial Distance (m) from Magnet Center to 5 Gauss (0.5 mT) Line	Radial Distance (m) from Magnet Center to 5 Gauss (0.5 mT) Line
300/54 UltraShield	0.90	0.60
300/89 UltraShield WB	1.60	1.10
400/54 UltraShield	1.50	1.00
400/54 UltraShield Plus	1.00	0.50
400/89 UltraShield WB	2.00	1.40
500/54 UltraShield	1.90	1.30
500/54 UltraShield	1.90	1.30
500/54 UltraShield Plus	1.20	0.60
500/89 UltraShield WB	2.50	1.80
600/54 UltraShield	2.50	1.80
600/54 UltraShield Plus	1.40	0.70
600/89 UltraShield WB	3.50	2.70
700/54 UltraShield	3.10	1.90
750/89 UltraStabilized WB	7.80	6.20
800/54 UltraStabilized	7.60	6.10
800/54 US ²	3.40	2.20
800/54 USPlus	2.50	1.50
850/54 US ²	3.40	2.20
850/89 US ² WB	4.60	3.30
900/54 UltraStabilized	9.80	7.80
900/54 US ²	4.60	3.30
950/54 US ²	4.60	3.30

Relevant Properties of Cryogenic Fluids

(Liquid helium and nitrogen are used in supercon magnets)

Cryogen	Normal Boiling Point (K)	Latent Heat (J/g)	Amount of Liquid Evaporated by 1 Watt (I/hour)	Liquid Density (g/ml)	Gas Density at NTP (g/ml)	Liquid to NTP Gas Volume Ratio	Enthalpy Change (gas) B.P. to 77 K (J/mole)	Enthalpy Change (gas) 77 to 300 K (J/mole)
Liquid Helium	4.2	20.9	1.038	0.125	1.79 x 10 ⁻⁴	1 : 700	384	1157
Liquid Hydrogen	20.39	443	0.115	0.071	8.99 x 10 ⁻⁵	1 : 790	590	2900
Liquid Nitrogen	77.55	198	0.023	0.808	1.25 x 10 ⁻³	1 : 650	-	234
Liquid Oxygen	90.19	212.5	0.015	1.014	1.43 x 10 ⁻³	1 : 797	-	From BP: 193

NTP = normal room temperature and atmospheric pressure

Abbreviations and Acronyms Used in Magnetic Resonance

2D	Tun Dimonnianal
	Two-Dimensional
3D	Three-Dimensional
ACCORDION	2D technique, simultane- ous incrementing of evolution and mixing times
ADA	Alternated Delay Acquisition
ADC	Analog-to-Digital Converter, Apparent Diffusion Constant
ADEQUATE	Astonishingly Sensitive DoublE QUAntum Transfer Experiment
ADLF	Adiabatic Demagnetization in the Laboratory Frame
ADRF	Adiabatic Demagnetization in the Rotating Frame
A.E.COSY	Alternative Exclusive COSY
AFP	Adiabtic Fast Passage
AHT	Average Hamiltonian Theory
AJCP	Adiabatic J Cross Polarization
AMCP	Amplitude-Modulated Cross Polarization
ANGIO	MR ANGIO graphy
АРНН-СР	Adiabatic-Passage Hartmann-Hahn Cross Polarization
APT	Attached Proton Test
AQ	A c Q uisition
ARP	Adiabatic Rapid Passage
ASIS	Aromatic Solvent-Induced Shift
ASL	Arterial Spin Labeling
ASTM	American Society for Testing and Materials
BASE	BA sis imaging with SE lective-inversion preparation
ВВ	B road B and, as in decoupling
BDR	Broadband Dipolar Recoupling
bEPI	blipped EPI
bFFE	balanced Fast-Field Echo
BIRD	Bllinear Rotation Decoupling
BIRD/2	half BIRD , bilinear $\pi/2$ pulse
BLEW	A windowless multiple- pulse decoupling sequence

BLEW-n	Burum-Linder-Ernst Win-
	dowless homonuc. dipolar dec. sequence of n pulses
BMS	Bulk Magnetic Susceptibility
BOLD	
BOLD	Blood Oxygenation Level- Dependent contrast (MRI)
BOSS	BimOdal Slice-Selective
BP	BiPhasic
BPP	Bloembergen/Purcell/ Pound (theory)
BR-n	B urum- R him homonuclear dipolar decoupling sequence of n pulses
BSP	Bloch-Siegert Phase
BURP	Band-selective Uniform Response Pure-phase pulse
bTFE	balanced Turbo Field Echo
BW	B and W idth
BWR	B loch- W angsness- R edfield theory
CA	Contrast Agent
CAMELSPIN	Cross-relaxation Appropriate for Minimolecules Emulated by Locked SPINs
CBCA(CO) NH	$\mathbf{C}\boldsymbol{b}(i-1)$ and $\mathbf{C}\boldsymbol{a}(i-1)$, $\mathbf{N}(i)$, $\mathbf{H}_{\mathbf{N}}(i)$ 3D correl.
CBCANH	$\mathbf{C}\boldsymbol{b}(i,i-1)$ and $\mathbf{C}\boldsymbol{a}(i,i-1)$, $\mathbf{N}(i)$, $\mathbf{H}_{\mathbf{N}}(i)$ 3D correl.
ССРРА	Coupled Cluster Polarization Propagator Approximation
CE	Contrast-Enhanced
CEST	Chemical Exchange Saturation Transfer
CH-COSY	Carbon-Hydrogen COrrelation SpectroscopY
CHESS	CHEmical Shift Selective Imaging Sequence
CHIRP	rf pulse with linear freq. modulation
CIDEP	Chemically Induced Dynamic Electron Polarization
CIDNP	Chemically Induced Dynamic Nuclear Polarization
CINE	"movie-like" MRI
CISS	Constructive Interference Steady State
CNR	Contrast-to-Noise Ratio
COLOC	COrrelated Spectroscopy via LOng-Range Coupling
	- 5 - 5

CONOESY	Combined COSY/NOESY
CORMA	COmplete Relaxation Matrix Analysis
CORY-n	CORY modification of BR-n
coss	CO rrelation with S hift S caling
COSY	COrrelated SpectroscopY
COSY-45	COSY with 45° mixing pulse
COSYDEC	COSY with F ₁ DECoupling
COSYLR	COSY for Long-Range couplings
СР	Cross Polarization, Circular Polarization
CPD	Composite-Pulse Decoupling
CPMAS	Cross Polarization Magic- Angle Spinning
CPMG	Carr-Purcell-Meiboom-Gill Sequence
CRAMPS	Combined Rotation And Multiple Pulse Spectroscopy
CRAZED	Correlated Spectroscopy Revamped by Asymmetric Z-gradient Echo Detection
CRINEPT	Cross-correlated Relaxation- enhanced INEPT
CS	Contiguous Slice
CSA	Chemical Shift Anisotropy
CSCM	Chemical Shift Correlation Map
CSI	Chemical Shift Imaging
СТ	Constant Time
CW	Continuous Wave
CYCLCROP	CYCLic CROss Polarization
CYCLOPS	CYCLically Ordered Phase Sequence
CYCLPOT	CYCLic POlarization Transfer
DAC	Digital-to-Analog Converter
DAISY	Direct Assignment Inter- connection SpectroscopY
DANTE	Delay Alternating with Nutation for Tailored Excitation
DAS	Dynamic Angle Spinning
DCNMR	NMR in Presence of an Electric D irect C urrent
DD	D ipole- D ipole
DE	Dual Echo, Driven Equilibrium

Abbreviations and Acronyms Used in Magnetic Resonance

	ions and Acronyms
DECSY	Double-quantum Echo Correlated SpectroscopY
DEFT	D riven E quilibrium F ourier T ransform
DEPT	Distortionless Enhancement by Polarization Transfer
DEPTH	spin-echo sequence for spatial localization
DEPTQ	DEPT including quaternary carbons
DFT	Discrete Fourier Transformation
DICE	DIrect Connectivity Experiment
DICOM	Digital Imaging and COmmunications in Medicine
DIGGER	Discreet Isolation from Gradient-Governed Elimination of Resonances
DIPSI	Composite-pulse Decoupling In the Presence of Scalar Interactions
DISCO	DI fferences and S ums within CO SY
DLB	Differential Line Broadening
DNMR	D ynamic NMR
D.NOESY	Direct cross-relaxation NOESY
DNP	D ynamic N uclear P olarization
DOC	D ouble CO nstant-Time sequence
DOPT	Dipolar Order Polarization Transfer
DOR	Double-Orientation Rotation
DOSY	Diffusion-Ordered SpectroscopY
DOUBTFUL	DOUBle Quantum Transition for Finding Unresolved Lines
DPFGSE	Double Pulsed Field Gradient Spin Echo
DQ	D ouble Q uantum
DQC	Double Quantum Coherence
DQF	Double Quantum Filter
DQF-COSY	Double Quantum Filtered COSY
DQSY	D ouble- Q uantum CO SY
DQ/ZQ	Double Quantum/Zero Quantum Spectroscopy

DDARA	D' I D Avei
DRAMA	Dipolar Recovery At the Magic Angle
DREAM	D ouble-quantum R elay
	Enhancement by Adiabatic
	Mixing
DRESS	Depth RESolved Spectrosocpy
DRIVE	DRIVen Equilibrium
DRYCLEAN	Diffusion-Reduced water
	signals in spectroscopY of
	moleCules moving sLowEr thAN water
DSA	Data-Shift Acquisition
DSC	
DSC	D ynamic S usceptibility C ontrast
DSE	Dual Spin Echo
DTI	Diffusion Tensor Imaging
DTRCF	Double Tilted Rotating
	Coordinate Frame
DTSE	Double Turbo Spin Echo
DUMBO	Decoupling Using Mind-
	Boggling Optimization –
	a numerically optimized phase-modulated homonuc.
	dipolar dec. sequence
DWI	D iffusion- W eighted
	Imaging
E-BURP	Excitation BURP pulse
EC	Eddy Currents
E.COSY	Exclusive COrrelation SpectroscopY
ECO-WURST	WURST decoupling with
	Flinsing to a coording to the
	Elimination of Cycling
	Oscillations Oscillations
EFG	
	O scillations
EFG	Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field
EFG EM EMF	Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force
EFG EM	Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force ElectronNuclear DOuble
EFG EM EMF	Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force Electron-Nuclear DOuble Resonance
EFG EM EMF ENDOR	Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force Electron-Nuclear DOuble Resonance Electrophoretic NMR
EFG EM EMF ENDOR ENMR EPI	Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force Electron-Nuclear DOuble Resonance Electrophoretic NMR Echo-Planar Imaging
EFG EM EMF ENDOR ENMR EPI EPR	Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force Electron-Nuclear DOuble Resonance Electrophoretic NMR
EFG EM EMF ENDOR ENMR EPI EPR	Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force Electron-Nuclear DOuble Resonance Electrophoretic NMR Echo-Planar Imaging Electron Paramagnetic
EFG EM EMF ENDOR ENMR EPI EPR	Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force Electron-Nuclear DOuble Resonance Electrophoretic NMR Echo-Planar Imaging Electron Paramagnetic Resonance
EFG EM EMF ENDOR ENMR EPI EPR	Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force Electron-Nuclear DOuble Resonance Electrophoretic NMR Echo-Planar Imaging Electron Paramagnetic Resonance Echo-Planar Spectroscopy Echo Spacing Enhanced SHORT
EFG EM EMF ENDOR ENMR EPI EPR EPS ES, ESP	Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force Electron-Nuclear DOuble Resonance Electrophoretic NMR Echo-Planar Imaging Electron Paramagnetic Resonance Echo-Planar Spectroscopy Echo Spacing Enhanced SHORT repetition MRI
EFG EM EMF ENDOR ENMR EPI EPR EPS ES, ESP E-SHORT	Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force Electron-Nuclear DOuble Resonance Electrophoretic NMR Echo-Planar Imaging Electron Paramagnetic Resonance Echo-Planar Spectroscopy Echo Spacing Enhanced SHORT repetition MRI Electron Spin Resonace
EFG EM EMF ENDOR ENMR EPI EPR EPS ES, ESP E-SHORT ESR E.TACSY	Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force Electron-Nuclear DOuble Resonance Electrophoretic NMR Echo-Planar Imaging Electron Paramagnetic Resonance Echo-Planar Spectroscopy Echo Spacing Enhanced SHORT repetition MRI Electron Spin Resonace Exclusive TACSY
EFG EM EMF ENDOR ENMR EPI EPR EPS ES, ESP E-SHORT	Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force Electron-Nuclear DOuble Resonance Electrophoretic NMR Echo-Planar Imaging Electron Paramagnetic Resonance Echo-Planar Spectroscopy Echo Spacing Enhanced SHORT repetition MRI Electron Spin Resonace

FA	Flip Angle
FADE	FASE Acq. with Double Echo
FAIR	Flow-sensitive Alternating Inversion Recovery
FASE	Fast Advanced Spin Echo
FAST	Fourier-Acquired STeady State
FASTMAP	FAST B ₀ Field MAP ping for shimming
FATE	FAst Turbo Echo
FC	Flow Compensation
FC2D_ANGIO	Flow-Compensated time- of-flight 2D ANGIOgraphy
FE	Field Echo, Frequency Encoding
FFE	Fast Field Echo
FFLG	Flip-Flop Lee-Goldburg decoupling
FFT	Fast Fourier Transform
FGRE	Fast Gradient-Recalled Echo
FID	Free Induction Decay
FIDS	FItting of D oublets and S inglets
FieldMap	<i>B</i> ₀ Field Map ping for localized shimming
FIRFT	Fast Inversion-Recovery Fourier Transform
FISP	Fast Imaging with Steady- state Precession
FL2D_ANGIO	FLow-sensitive 2D ANGIOgraphy
FLAIR	FLuid Attenuation Inversion-Recovery
FLASH	Fast Low-Angle SHot imaging
FLOCK	Long-range HETCOR using 3 BIRD pulses
FLOPSY	Flip-FIOP SpectroscopY
FLOW_MAP	Quantitative FLOW MAP ping and PC-angiography
FMP	Fast MultiPlanar
fMRI	functional MRI
FOCSY	FOldover-Corrected SpectrospcopY
FONAR	Field-focusing MRI
FOV	Field Of View
FPT	Finite Perturbation Theory
FR	Frequency Encoding
FS	Fat Saturation, Fast Scan

Abbreviations and Acronyms Used in Magnetic Resonance

FSE	Fast Spin Echo
FSLG	Frequency-Switched Lee- Goldburg – a homonuc. dipolar dec. scheme
FSPGR	Fast SPoiled GRadient Echo
FT	Fourier Transform
FUCOUP	FUlly COUPled Spectroscopy
FWHM	Full (line) Width at Half Maximum
GARP	Globaly Optimized Alternating Phase Rectangular Pulses
GE	Gradient Echo
GEFC	Gradient Echo with Flow Compensation
gem-COSY	geminal-filtered COSY
GES	Gradient-Echo Spectroscopy
GFE	Gradient Field Echo
GRASE	GRAdient and Spin Echo
GRASP	GRadient-Accelerated SPectroscopy
GRASS	Gradient-Recalled Acquisition in the Steady State
GRE	Gradient-Recalled Echo
GRECCO	GRadient-Enhanced Carbon COupling
GROESY	G radient-Enhanced Selective 1D ROESY
GROPE	Generalized compensation for Resonance Offset and Pulse length Errors
GS	Gradient Spectroscopy
gs	gradient-selected (e.g. gs-COSY)
H,X-COSY	H,X shift correlation (X-detected)
HASTE	Half-Fourier Acquisition Single-shot Turbo spin Echo
HBHA (CBCA CO) NH	$\mathbf{H}\mathbf{b}(i\text{-}1)$ and $\mathbf{H}\mathbf{a}(i\text{-}1)$, $\mathbf{N}(i)$, $\mathbf{H}_{\mathbf{N}}(i)$ 3D correl.
HCACO	H a(i), C a(i), C'O (i) 3D correl.
HCACON	H a(i), C a(i), C'O (i), N (i+1) 4D correl.
HCA(CO)N	H a(i), C a(i), N (i+1) 3D correl.
HCA(CO) NNH	H _a (i), C _a (i), N (i+1), H _N (i+1) 4D correl.

HCANNH	H a(i), C a(i), N (i), H _N (i) 3D correl.
(H)CC(CO) NH	C a,b,(i), N (i+1), H _N (i+1) 3D correl.
HCCH-COSY	H a(i), C a(i), H b(i) 3D correl.
HCCH- TOCSY	total correlation of side- chain H and C
HDQC	Heteronuclear Double- Quantum Correlation
HEED	Hahn spin-Echo ExtendeD sequence
HET2DJ	HETeronuclear 2D J-correlated
HETCOR	HET eronuclear COR relation Spectroscopy
HETLOC	HETeronuclear LOng-range Couplings
НЕНАНА	HE teronuclear HA rtmann HA hn
НМВС	Heteronuclear Multiple- Bond Correlation
НМО	Heteronuclear Multiple- Quantum
нмос	Heteronuclear Multiple- Quantum Coherence
HMSC	Heteronuclear Multiple- and Single-bond Correlation
HNCA	$\mathbf{H}_{\mathbf{N}}(i)$, $\mathbf{N}(i)$, $\mathbf{Ca}(i)$ and $\mathbf{Ca}(i-1)$ 3D shift correlation
HNCA-J	3D HNCA to measure ³ <i>J</i> (H _N , Hα)
HN(CA)NNH	H _N (<i>i</i>), N (<i>i</i>), N (<i>i</i> +1) and N (<i>i</i> -1) 3D correl.
HN(CA)CO	H _N (<i>i</i>), N (<i>i</i>), C'O (<i>i</i>), and C'O (<i>i</i> -1) 3D shift correlation
H(N)CACO	$\mathbf{H}_{\mathbf{N}}(i)$, $\mathbf{C}\mathbf{a}(i)$, $\mathbf{C}^{\prime}\mathbf{O}(i)$ 3D shift correlation
HNCAHA	$\mathbf{H_N}(i)$, $\mathbf{N}(i)$, $\mathbf{Ca}(i)$, $\mathbf{Ha}(i)$ 4D shift correlation
HNCO	$\mathbf{H}_{\mathbf{N}}(i)$, $\mathbf{N}(i)$, $\mathbf{C'O}(i-1)$ 3D shift correlation
HN(CO)CA	H _N (<i>i</i>), N (<i>i</i>), C a(<i>i</i> -1) 3D shift correlation
H(N)COCA	$\mathbf{H}_{\mathbf{N}}(i+1)$, $\mathbf{C'O}(i)$, $\mathbf{Ca}(i)$ 3D shift correlation
HN(CO) CAHA	$\mathbf{H}_{\mathbf{N}}(i+1)$, $\mathbf{N}(i+1)$, $\mathbf{Ca}(i)$, $\mathbf{Ha}(i)$ 4D shift correlation
HOESY	Heteronuclear Overhauser Effect SpectroscopY
	HO monuclear HA rtmann-

HORROR	double-quantum HO mo- nuclea R RO tary R esonance
НООС	Heteronuclear Quadruple-Quantum Correlation
HR	High Resolution
HRPA	Higher Random Phase Approximation
HS	H omo S poil
HSL	Heteronuclear Spin Lock
HSQC	Heteronuclear Single- Quantum Coherence
HTQC	Heteronuclear Triple- Quantum Correlation
I-BURP	Inversion BURP pulse
ICE	Indirect Connectivity Experiment
IDESS	Improved DE pth S elective single surface coil S pectroscopy
IDR	Inverted Direct Response
IEPI	Interleaved EPI
IFT	Inverse FT
IGLO	Individual G auge for different L ocalized O rbitals
INADE- QUATE	Incredible Natural Abudance DoublE QUAnatum Transfer Experiment
INAPT	INEPT with selective 1H excitation
INDOR	INternuclear DOuble Resonance
INEPT	Insensitive N uclei E nhanced by P olarization T ransfer
INEPT+	INEPT with refocusing period for in-phase multiplets
INEPT-R	INEPT R efocused for 1H-dec. spectra
INSIPID	INadequate Sensitivity Improvement by Proton Indirect Detection
IntraGate- FLASH	Cardiac and respiration cine MRI with retrospective (trigger-free) gating
INVERSE	H, X correlation via ¹ H detection
IPAP	In-Phase Anti-Phase (in 2D)
IR	Inversion-Recovery
	Inchesion Deleveries Metalic
IRMA	Iterative Relaxation Matrix Analysis

Abbreviations and Acronyms Used in Magnetic Resonance

Abbicvia	tions and Acronyms
ISIS	Image-Selected In-vivo Spectroscopy (single-voxel)
IST	Irreducible S pherical T ensor
IVIM	IntraVoxel Incoherent Motion
JCP	J Cross-Polarization
J-mod	J mod ulation
JR	J ump-and- R eturn sequence $(90_y$ - τ - 90_y)
J-res	J-res olved 2D
LAS	Laboratory Axis System
LASE	Low-Angle SE
LB	Line Broadening (via EM)
LG	L orentz- G auss window function
LIS	Lanthanide Induced Shift
LORG	Local ORiGin
LOSY	LOcalized SpectroscopY
LP	Linear Polarization, Linear Prediction
LPSVD	Linear Prediction using Singular Value Decomposition
LSR	Lanthanide Shift Reagent
LUT	LookUp Table
MAGROFI	MAgnetization Grid ROtating-Frame Imaging
MARCO POLO	Multiple Analysis by Reduction of Cross peaks and Ordering of Patterns in an Overdetermined Library Organization
MARDI- GRAS	Matrix Analysis of Relaxati- on for Distance GeometRy of an Aqueous Structure
MARF	Magic Angle in the Rotating Frame
MAS	Magic-Angle Spinning
MASS	Magic-Angle Sample Spinning
MAST	Motion Artifact Suppression Technique
MDEFT	Modified D riven E quilibrium FT method
ME	M ulti E cho
MEDUSA	Technique for the Determination of Dynamic Structures
MEM	Maximum Entropy Method
MEMP	MultiEcho MultiPlanar
MESS	MultiEcho Single Shot
MFISP	Mirrored FISP (PSIF)
101	Miniored Fior (FSII)

1405	
MGE	Multiple Gradient Echo
MINIP	MINinmum Intensity Projection
MIP	M aximum I ntensity P rojection
MLEV	M. Levitt's CPD sequence
MLM	M aximum L ikelihood M ethod
MOTSA	Multiple Overlapping Thin Slab(Slice) Acquisition
MP	Multiple Pulse, MultiPlanar, Magnetization-Prepared
MPFn	Multiple-Pulse Decoupling with Phase and Frequency Switching with <i>n</i> offsets
MP-GR	M ulti P lanar G radient- R ecalled Acq. in Steady State
MPR	MultiPlanar Reconstruction
MP-RAGE	Magnetization-Prepared RApid Gradient Echo (MP-GRE)
MQ	M ultiple- Q uantum
MQC	Multiple-Quantum Coherence
MQF	M ultiple- Q uantum F ilter
МОНРТ	Multiple-Quantum Heteronuclear Polarization Transfer
MQS	Multiple-Quantum Spectroscopy
MR	Magnetic Resonance
MRA	MR Angiography
MREV-n	Mansfield-Rhim-Elleman- Vaughan homonuc. dipolar dec. cycle of <i>n</i> pulses
MRV	MR Venography
MRI	M agnetic R esonance I maging
MRS	Magnetic Resonance Spectroscopy
MRSI	Magnetic Resonance Spectroscopic Imaging
MRT	M agnetic R esonance T omography
MS	M ulti S lice
mSENSE	modified SENSE
MS-EPI	MultiShot EPI
MSHOT-n	Magic Sandwich High- Order Truncation homo- nuc. dipolar decoupling sequence with <i>n</i> TREV-4 sandwiches
MSME	M ulti S lice M ulti E cho (T2 mapping)

	T
MSOFT	MultiSlice Off-resonance FaT Suppression
MSP	Multiple Sensitive Point
MSPGSE	Multiple-Stepped PGSE
MT	M agnetization T ransfer
MTC	Magnetization Transfer Contrast
MTSA	Multiple Thin-Slab Acquisition
MUSIC	MUltiplicity-Selective In- phase Coherence transfer
MVS	Multiple Volume Spectroscopy
NEDOR	Nuclear Electronic DOuble Resonance
NERO	Nonlinear Excitation with Rejection on Resonance
NEWS	Narrow-gap non-Excitation for Water Suppression
NEX	Number of EX citations
NMR	N uclear M agnetic R esonance
NOE	Nuclear Overhauser Effect
NOE-DIFF	NOE-DIFFerence spectroscopy
NOESY	NOE -based 2D shift correlation
NOVEL	Nuclear Orientation Via Electron spin Locking
NPW	No Phase Wrap
NQCC	Nuclear Quadrupole Coupling Constant
NQR	Nuclear Quadrupole Resonance
NQS	Non-Quaternary Suppression
NSPECT	Non-localized SPECTroscopy
OBTUSE	Offset Binomial Tailored for Uniform Spectral Excitation
ocs	Optimized Cosine-Sine pulse
ODMR	Optically Detected Magnetic Resonance
OS	Overcontiguous Slices
OSIRIS	Outer-Volume-Suppressed Image-Related In vivo Spectroscopy – a modifica- tion of ISIS
PACE	Prospective Acquisition CorrEction
PAR	Phase-Alternated Rotation of magnetization

Abbreviations and Acronyms Used in Magnetic Resonance

PARACEST	PARAmagnetic Chemical Exchange Saturation Transfer
PAS	Principal Axis System
PC	Phase Contrast
PCA	Phase Contrast Angiography
P.COSY	Purged COSY
PD	Proton Density
PDLF	Proton-Detected Local Field
PE	Phase Encoding
P.E.COSY	Primitive E.COSY, Purged Exclusive COSY
PEDRI	Proton-Electron Double Resonance Imaging
PELF	Proton-Encoded Local Field
PENDANT	Polarization ENhancement During Attached Nucleus Testing
PEP	Preservation of Equivalent Pathways
PFG	Pulsed Field Gradient
PFGSE	Pulsed Field Gradient Spin Echo
PGSE	Pulsed Gradient Spin Echo
PISEMA	Polarization Inversion with Spin Exchange at the Magic Angle
PITANSEMA	Polarization Inversion Time Averaged Nutation Spin Exchange at the Magic Angle
PJR	P ower-adapted J ump and R eturn
PMFG	Pulsed Magnetic Field Gradient
PMLG	Phase-Modulated Lee-Goldburg dipolar decoupling
PMRFI	Phase-Modulated Rotating- Frame Imaging
POF	P roduct O perator F ormalism
POMMIE	Phase Oscillations to MaxiMIze Editing
POST	Permutationally Offset- STabilized
PRE	Proton Relaxation Enhancement
Presat	Presaturation (usually of solvent)

PRFT	Partially Relaxed Fourier Transform
PROPELLER	Periodically Rotated Over- lapping ParallEL Lines with Enhanced Reconstruction
PS	Partial Saturation
PS-COSY	Phase-Sensitive COSY
PSD	Phase-Sensitive Detection
PSIF	mirrored FISP (SE acquisition)
PT	P olarization T ransfer
PW	Pulse Width
PWI	Perfusion-Weighted Imaging
Q	Quality Factor (of RF coil/circuit) Quantitative (e.g. QMRI, QCSI)
QF	Q uadrupole moment/ F ield gradient (interaction or relaxation mechanism)
Q Flow	Flow Quantification
QPD	Quadrature Phase Detection
QUEST	QUick Echo Split Imaging Technique
QUIPSS	QUantitative Imaging of Perfusion using a Single Subtraction
RAM	Rapid Acquisition Matrix
RARE	Rapid Acquisition Relaxation Enhanced
RAREst	RARE with short tE using slew-rate-optimized gradients
RAREVTR	RARE with V ariable TR (simultaneous $T_1 \& T_2$ mapping)
RASE	Rapid Acquisition Spin Echo
RBW	Receiver BandWidth
RCF	Rotating Coordinate Frame
RCT	Relayed Coherence Transfer
RE	Rapid Excitation (MRI)
REAPDOR	Rotational Echo Adiabatic Passage DOuble Resonance
RE-BURP	Refocused Band-selective Uniform Response Pure phase
RECSY	Multistep RE layed C oherence S pectroscop Y
REDOR	Rotational Echo DOuble

Resonance

RELAY	RELAY ed Correlation Spectroscopy
REPAY	Reverse Editing of Protons According to multiplicitY
REREDOR	Rotor-Encoded REDOR
REST	REgional Saturation Technique
RF	Radio Frequency
RFDR	RF-Driven Recoupling
RF-FAST	RF-spoiled FAST
RFOV	Rectangular FOV
RICE	Rapid Imaging using Composite Echo
RIDE	RIng Down Elimination
RINEPT	Reverse INEPT
RISE	Rapid Imaging using Spin Echo
RMSD	Root-Mean-Square Deviation
ROAST	Resonant Offset Averaging in the STeady State
RODI	ROtatin-grame relaxation Dispersion Imaging
ROE	Rotating-frame Overhauser Effect
ROESY	ROE-based 2D shift correlation
ROI	Region Of Interest
ROPE	Respiratory Ordered PE
ROTO	ROESY-TOCSY Relay
RPA	Random Phase Approximation
RR	Rotational Resonance
RSSARGE	RF-Spoiled SARGE
RT	Respiratory Trigger
RUFIS	Rotating UltraFast Imaging Sequence
SA	Shielding Anisotropy
SAR	Specific Absorption Rate (RF)
SARGE	Spoiled steady-state Acquisition with Rewinded Gradient Echo
SAT	SAT uration
SB	Sine-Bell window function
SC	Scalar Coupling
S.COSY	COSY with shift Scaling in F1
SCT	SCan Time
SCUBA	Stimulate Cross peaks Under Bleached Alphas
SD	Spin Dipolar

Abbreviations and Acronyms Used in Magnetic Resonance

	T
SDDS	Spin Decoupling Difference Spectroscopy
SDEPT	Selective DEPT
SE	Spin Echo
SECSY	Spin-Echo Correlated SpectroscopY
SEDOR	Spin-Echo DOuble Resonance
SEDRA	Simple Excitation for Dephasing of Rotational echo Amplitudes
SEDUCE	SElective Decoupling Using Crafted Excitation
SEFT	Spin-Echo Fourier Transform Spectroscopy (with J modulation)
SELCOSY	SELective COSY
SELTICS	Sideband ELimination by Temporary Interruption of the Chemical Shift
SELINCOR	SELective INverse CORrelation
SELINQUATE	SELective INADEQUATE
SELRESOLV	SEL ective RES olution of C,H Coupling
SEMS	Spin-Echo MultiSlice
SEMUT	Subspectral Editing Using a MUltiple-Quantum Trap
SENSE	SENSitivity Encoding
sEPI	spiral EPI
SEPT	Selective INEPT
SERF	SElective ReFocussing
SESAM	SEmi-Selective Acquisition Modulated (Decoupling)
SFAM	Simultaneous Freq. and Ampl. Modulation
SFORD	Single Frequency Off- Resonance Decoupling
SGSE	Steady-Gradient Spin-Echo
SHECOR	Selective HE teronuclear COR relation
SHORT	SHORT repetition techniques
SI	Spectroscopic Imaging
SIAM	Simultaneous acq. of In-phase and Antiphase Multiplets
SIP	Saturation Inversion Projection
SIMBA	Selective Inverse Multiple- Bond Analysis
SINEPT	SINE-dependent PT
OUVER I	JINE-dependent PT

OINIOI T	
SINGLE PULSE	SINGLE PULSE-acquire spectroscopy
SIS	Substituent-Induced Shift
SJR	Second-order Jump and Return
SKEWSY	SKEW ed Exchange S pectroscop Y
SL	Spin-Lock pulse
SLF	Separated Local Field
SLITDRESS	SLIce inTerleaved Depth REsolved Surface coil Spectroscopy
SLOPT	Spin-LOcking Polarization Transfer
SMART	Shimadzu Motion Artifact Reduction Technique
SMASH	Short Minimum Angle SHot, SiMultaneous Acquisition of Spatial Harmonics
SNR or S/N	Signal-to-Noise Ratio
SOPPA	Second-Order Polarization Propagator Approach
SORS/STC	Slice-selective Off-Resonance Sinc Pulse / Saturation Transfer Contrast
SPACE	SPA tial and C hemical-Shift Encoded E xcitation
SPAIR	SP ectral Selection A ttenuated I nversion R ecovery
SPECIFIC-CP	SPECtrally Induced Filtering In Combination with Cross Polarization
SPEED	Swap PhasE-Encoded Data
SPGR	SPoiled Gradient-Recalled
SPI	Selective Population Inversion
SPIDER	Steady-state Projection Imaging with Dynamic Echo Train Readout
SPIO	SuperParamagnetic Iron Oxide
SPIR	Spectral Presaturation Inversion-Recovery
SPIRAL	MRI with SPIRAL k-space scan
SPRITE	Single-Point Ramped Imaging with T1 Enhancement
SPT	Selective Population Transfer
SQ	Single-Quantum
SQC	Single-Quantum Coherence
SQF	Single-Quantum Filter

SR	Saturation-Recovery
SRP	Self-Refocusing Pulse
SS	Slice Selection (gradient), Single Slice
SSB	S hifted S ine- B ell window function
SSFP	Steady-State Free Precession
SSFSE	Single-Shot FSE
SSI	Solid State Imaging
SSMP	Single-Slice Multiple-Phase
ssNMR	solid-state NMR
SSTSE/T2	Single-Shot TSE with T2 weighting
ST	Saturation Transfer, Slice Thickness
STAGE	Small Tip Angle GE
STE	STimulated Echo
STEAM	ST imulated E cho A cquisition M ode for imaging
STEP	STE Progressive Imaging
STERF	Steady-State TEchnique with Refocused FID
STIR	Short T1 Inversion- Recovery
STREAM	Suppressed Tissue with REfreshment Angiography Method
STUD	Sech/Tanh Universal Decoupling – an adiabatic decoupling scheme
SUBMERGE	SUppression By Mistuned Echo and Repetitive Gradient Episodes
SUSAN	Spin decoupling employing Ultra-broadband inversion sequences generated via Simulated ANnealing
SWATTR	Selective Water Attenuation by T2 and T1 Relaxation
svs	Single-Volume Spectroscopy
T1	T1-weighted (method)
T1W	T1-Weighted
T2	T2-weighted (method)
T2W	T2-Weighted
T2*W	T2*-Weighted
TACSY	TAylored Correlation SpectroscopY
TANGO	Testing for Adjacent Nuclei with a Gyration Operator

Abbreviations and Acronyms

TART	Tip Angle Reduced T₁ Imaging
TD	Trigger Delay, Time Difference
TCF	Time Correlation Function
TE	Time delay between excitation and E cho maximum
TEDOR	Transferred-Echo DOuble Resonance
TEI	TE Interleaved
TF	Turbo Factor
TFE	Turbo Field Echo
TGSE	Turbo Gradient Spin Echo
THRIVE	T1W High-Resolution Isotropic Volume Examination
TI	Time following Inversion
TIR	Turbo IR
TMR	Topical Magnetic Resonance
TOBSY	TOtal through-Bond correlation SpectroscopY
TOCSY	TOtal Correlation SpectroscopY
TOF	Time-Of-Flight
TOE	Truncated NOE
TONE	Tilt-Optimized Nonsaturated Excitation
TORO	TOCSY-ROESY Relay
TOSS	TO tal S uppression of S idebands
TPPI	Time-Proportional Phase Incrementation
TPPM	Two-Pulse Phase Modulation
TPR	Time and Phase Reversal
TQ	Triple-Quantum
TQF	Triple-Quantum Filter
TR	Time for R epetition of excitation
T/R	Transmit/Receive
TRAPDOR	TRAnsfer of Populations in DOuble Resonance
TRCF	Tilted Rotating Coordinate Frame
TREV-n	Time-REVersal echo sequence of n pulses for homonuc. dipolar dec.
TRNOE	TRansferred NOE
TROSY	Transverse Relaxation Optimized SpectroscopY
T-ROESY	Transverse ROESY

TrueFISP	FISP with balanced gradient waveform
TS	Time of Saturation
TSE	Turbo Spin Echo
TSETSE	double-resonance Two- Spin Effect for correlation spectroscopy
TSR	Total SR
Turbo- FLASH	FLASH sequence during one IR period
U-BURP	Universal BURP pulse
UE	Unpaired Electron (relaxation mechanism)
UFSE	UltraFast SE
UNCOSY	UNiform excitation COSY
USPIO	UltraSmall Paramagnetic Iron Oxide
UTE	Ultra-short TE radial scan
UTSE	Ultra-short TSE
VAPRO	VA riable PRO jection method
VAS	Variable Angle Spinning
VE	Velocity-Encoded
VEC	Velocity-Encoded Cine (MRI)
VEMP	Variable-Echo MultiPlanar
VENC	Velocity ENCoding value
VEST	Volume Excitation STimulated echoes
VIGRE	Volumetric Interpolated GRadient Echo
VOI	Volume Of Interest
VOSING	VOlume-selective Spectral editING
VOSY	VOlume-Selective SpectroscopY
VPS	Volumes Per Segment
VSOP	Very Small superparamagnetic iron Oxide Particles
WAHUHA	WAugh-HUber-HAeberlen Sequence
WALTZ	CPD Sequence Containing the Elements 1-2-3
WATER- GATE	WATER suppression through GrAdient Tailored Excitation
WATR	Water Attenuation by Transverse Relaxation
WEFT	Water Eliminated Fourier Transform
WET	Water suppression Enhanced through T1 effects

WFOP	Water Fat Opposed Phase
WFS	Water Fat Separation (Shift Difference)
WHH-n	WAHUHA dec. cycle of <i>n</i> pulses
WIM-n	Windowless Isotropic Mixing dec. cycle of <i>n</i> pulses
WURST	Wideband, Uniform Rate, and Smooth Truncation – an adiabatic decoupling sequence
XCORFE	H, X COR relation using a F ixed E volution time
XD-NOESY	e X change- D ecoupled NOESY
X-FILTER	Selection of ¹ H- ¹ H correlation when both H are coupled to X
X-HALF- FILTER	Selection of ¹ H- ¹ H correlation when one H is coupled to X
Z-COSY	Z-filtered COSY
Z-FILTER	pulse sandwich for elimina- tion of signal components with dispersive phase
ZECSY	Zero-Quantum-Echo Correlation SpectroscopY
ZIP	Zero-fill Interpolation Processing
ZQ	Zero Quantum
ZQC	Zero-Quantum Coherence
ZQF	Zero-Quantum Filter
ZZ- Spectro- scopy	Selection of coherences involving ZZ or longitudinal two-spin order
ZZZ- Spectro- scopy	Selection of coherences involving longitudinal 3-spin order
β-COSY	COSY with low-angle mixing pulse
Ψ-COSY	pseudo-COSY using incremented freqselective excitation

Symbols for NMR and Related Quantities*

Roman alph	abet
a or A	Hyperfine (electron-nucleus) coupling constant
$A_q^{(l,m)}$	The <i>m</i> th component of an irreducible tensor of order <i>l</i> representing the nuclear spin operator for an interaction of type <i>q</i>
В	Magnetic field (strictly the magnetic flux density or magnetic induction)
B ₀	Static magnetic field of an NMR spectrometer
B ₁ , B ₂	Radiofrequency magnetic fields associated with frequencies $\nu_{\text{1}},\nu_{\text{2}}$
B_{\perp}	Local magnetic field of random field or dipolar origin
С	Spin-rotation interaction tensor
C _X	Spin-rotation coupling constant of nuclide X
D	Dipolar interaction tensor
$D_{i,j}$	Dipolar coupling constant between nuclei (<i>i</i> and <i>j</i>), in Hz
Dc	Nuclear receptivity relative to that of ¹³ C
DP	Nuclear receptivity relative to that of ¹ H
Ε	Electric field strength
F	Spectral width
F_1 , F_2 or f_1 , f_2	The two frequency dimensions of a two-dimensional spectrum
F _G	Nuclear spin operator for a group, G, of nuclei
F _G	Magnetic quantum number associated with $\hat{\pmb{F}}_{\!\scriptscriptstyle G}$
g	Nuclear or electronic <i>g</i> factor (Landé splitting factor)
G	Magnetic field gradient amplitude
Ĥ	Hamiltonian operator
$H_{i,j}$	Matrix element of Hamiltonian operator
Î j	Nuclear spin operator for nucleus j
\hat{l}_{j+} , \hat{l}_{j-}	'Raising' and 'lowering' spin operators for nucleus j
I _j	Magnetidc quantum number associated with $\hat{m{f}}_{i}$
J	Indirect coupling tensor
$^{\rm n}J_{\rm AB}$	Spin-spin coupling constant for nuclei A and B through <i>n</i> bonds in Hz
<i>J</i> (ω)	Spectral density of fluctuations at angular frequency $\boldsymbol{\omega}$
$^{n}K_{AB}$	Reduced nuclear spin-spin coupling constant $K_{AB} = 4\pi^2 J_{AB}/h \gamma_A \gamma_B$) in $T^2 J^{-1}$

L	Angular momentum
m _j	Eigenvalue of $\hat{\pmb{f}}_{jz}$ (magnetic component quantum number)
m _{tot}	Total magnetic component quantum number for a spin system (eigenvalue of $\sum_i \hat{\bf j}_{i,2}$)
m _{tot} (X)	Total magnetic component quantum number for X-type nuclei
M ₀	Equilibrium macroscopic magnetization per unit volume in the presence of B ₀
M_x , M_y , M_z	Components of macroscopic magnetization per volume
<i>M</i> _n	n th moment of spectrum (M_2 = second moment, etc.)
n_{α} , n_{β}	Populations of the α and β spin states
N	Total number of nuclei of a given type per unit volume in the sample
q	Electric field gradient tensor in units of the elementary charge
eQ	Nuclear quadrupole moment, Q is in m^2 and e is the elementary charge in C
R ₁ ^x	Spin-lattice (longitudinal) relaxation rate constant for nucleus X
R_2^{X}	Spin-spin (transverse) relaxation rate constant for nucleus X
R _{1p}	Longitudinal relaxation rate constant for nucleus X in the reference frame rotating with B ₁
S	Signal intensity
Ŝ	Electron (or, occasionally, nuclear) spin operator; cf. $\hat{\pmb{I}}$
t ₁ , t ₂	Time dimensions for two-dimensional NMR
T _c	Coalescence temperature under chem. exchange for signals in an NMR spectrum
<i>T</i> ₁ ^x	Spin-lattice (longitudinal) relaxation time of the X nucleus
T ₂ ^x	Spin-spin (transverse) relaxation time of the X nucleus
T ₂ *	Net dephasing time for M_x or M_y
T _{1p}	Longitudinal relaxation time for the X nucleus in the reference frame rotating with B ₁
T _d	Pulse (recycle) delay
T _{a c}	Acquisition time
T _q (l,m)	The <i>m</i> th component of an irreducible tensor of order / representing the strength of an interaction of type <i>q</i>

* IUPAC Recommendations: Magnetic Resonance in Chemistry, Vol. 36, 145-149 (1998)

Symbols for NMR and Related Quantities*

V Electric field gradient tensor. $V = eq$, where e is the elementary charge $V_{\alpha\beta}$ Elements of Cartesian electric field gradient tensor W_o , W_1 , W_2 Relaxation rate constants (transition probabilities per time) between energy levels differing by 0, 1 and 2 in m_{loc} W_{rs} Transition probability between spin states r and s Greek alphabet Nuclear spin wavefunction (eigenfunction of l_2) for the $m_1 = + \frac{1}{2}$ state of a spin- $\frac{1}{2}$ nucleus α Nuclear spin wavefunction (eigenfunction of l_2) for the $m_1 = - \frac{1}{2}$ state of a spin- $\frac{1}{2}$ nucleus γ Magnetogyric ratio of nucleus X δ Chemical shift (for the resonance) of nucleus of element X, usually in ppm Δn Population difference between nuclear states (Δn_0 at Boltzmann equilibrium) $\Delta \delta$ Change or difference in δ Full width in frequency units of a resonance line at half-height $\Delta \sigma$ Anisotropy in $\sigma [\Delta \sigma = \sigma_{sr} - \frac{1}{2}(\sigma_{sx} + \sigma_{rr})]$ $\Delta \chi$ (i) Susceptibility anisotropy ($\Delta \chi = \chi_{lr} - \chi_{sl}$); (ii) difference in electronegativities ϵ_0 Permittivity of the vacuum ζ Anisotropy in shielding, expressed as σ_{sr} - σ_{so} η (i) Nuclear Overhauser enhancement; (ii) tensor asymmetry factor; (iii)		
$\begin{array}{c} \text{gradient tensor} \\ W_{o_{i}} \ W_{i}, \ W_{2} \\ \text{Relaxation rate constants} \\ \text{(transition probabilities per time) between energy levels differing by 0, 1 and 2 in m_{\text{tot}} } \\ W_{\text{rs}} \\ \text{Transition probability between spin states} \\ r \text{ and } s \\ \\ \hline \\ \textbf{Greek alphabet} \\ \alpha \\ \text{Nuclear spin wavefunction} \\ \text{(eigenfunction of } \hat{I_{2}} \text{) for the} \\ m_{1} = + \frac{1}{2} \text{ state of a spin-}\frac{1}{2} \text{ nucleus} \\ \alpha_{E} \\ \text{The Ernst angle (for optimum sensitivity)} \\ \beta \\ \text{Nuclear spin wavefunction} \\ \text{(eigenfunction of } \hat{I_{2}} \text{) for the} \\ m_{1} = -\frac{1}{2} \text{ state of a spin-}\frac{1}{2} \text{ nucleus} \\ \gamma_{\times} \\ \text{Magnetogyric ratio of nucleus X} \\ \delta_{\times} \\ \text{Chemical shift (for the resonance) of nucleus of element X, usually in ppm} \\ \Delta n \\ \text{Population difference between nuclear states } (\Delta n_{0} \text{ at Boltzmann equilibrium}) \\ \Delta \delta \\ \text{Change or difference in } \delta \\ \Delta V_{1/2} \\ \text{Full width in frequency units of a resonance line at half-height} \\ \Delta \sigma \\ \text{Anisotropy in } \sigma \left[\Delta \sigma = \sigma_{22} - \frac{1}{2} \left(\sigma_{xx} + \sigma_{YY}\right)\right] \\ \Delta \chi \\ \text{(i) Susceptibility anisotropy } (\Delta \chi = \chi_{1} - \chi_{2}); \\ \text{(ii) difference in electronegativities} \\ \varepsilon_{o} \\ \text{Permittivity of the vacuum} \\ \zeta \\ \text{Anisotropy in shielding, expressed} \\ \text{as } \sigma_{22} - \sigma_{\text{soo}} \\ \eta \\ \text{(i) Nuclear Overhauser enhancement;} \\ \text{(ii) tensor asymmetry factor; (iii) viscosity} \\ \kappa \\ \text{Skew of a tensor} \\ \theta \\ \text{Angle, especially for that between a given vector and } B_{o} \\ \mu \\ \text{(i) Magnetic dipole moment (component } \mu_{2} \\ \text{along } B_{o}; \text{(ii) electric dipole moment} \\ \mu_{0} \\ \text{Permeability of the vacuum} \\ \mu_{0} \\ \text{Permeability of the vacuum} \\ \mu_{0} \\ \text{Permeability of the vacuum} \\ \nu_{0} \\ \text{Larmor or resonance frequency of nucleus } j \\ \text{(in Hz)} \\ v_{o} \\ \text{(i) Spectrometer operating frequency;} \\ \text{(ii) Basic Larmor or resonance frequency} \\ \end{array}$	V	
$W_{rs} \qquad \text{Itransition probabilities per time) between energy levels differing by 0, 1 and 2 in m_{tot} and s W_{rs} \qquad \text{Transition probability between spin states } r \text{ and } s \text{Recel alphabet} \alpha \qquad \text{Nuclear spin wavefunction } \text{ (eigenfunction of } \hat{\textbf{f}}_{s} \text{) for the } m_{t} = + \frac{1}{2} \text{ state of a spin-}\frac{1}{2} \text{ nucleus} \alpha_{E} \qquad \text{The Ernst angle (for optimum sensitivity)} \beta \qquad \text{Nuclear spin wavefunction } \text{ (eigenfunction of } \hat{\textbf{f}}_{s} \text{) for the } m_{t} = -\frac{1}{2} \text{ state of a spin-}\frac{1}{2} \text{ nucleus} \gamma_{X} \qquad \text{Magnetogyric ratio of nucleus } X \delta_{X} \qquad \text{Chemical shift (for the resonance) of nucleus of element X, usually in ppm} \Delta n \qquad \text{Population difference between nuclear states } (\Delta n_{o} \text{ at Boltzmann equilibrium}) \Delta \delta \qquad \text{Change or difference in } \delta \Delta V_{1/2} \qquad \text{Full width in frequency units of a resonance line at half-height} \Delta \sigma \qquad \text{Anisotropy in } \sigma [\Delta \sigma = \sigma_{zz} - \frac{1}{2} (\sigma_{xx} + \sigma_{YY})] (i) \text{Susceptibility anisotropy } (\Delta \chi = \chi_{1} - \chi_{1}); (ii) \text{ difference in electronegativities} \epsilon_{o} \qquad \text{Permittivity of the vacuum} \zeta \qquad \text{Anisotropy in shielding, expressed as } \sigma_{zz} - \sigma_{so} \sigma_{zz} - \sigma_{so} \eta \qquad (i) \text{Nuclear Overhauser enhancement;} (ii) \text{ tensor asymmetry factor; (iii) viscosity} \kappa \qquad \text{Skew of a tensor} \theta \qquad \text{Angle, especially for that between a given vector and } \boldsymbol{B}_{o} \mu \qquad (i) \text{Magnetic dipole moment (component } \mu_{z} \text{ along } \boldsymbol{B}_{o}); (ii) \text{ electric dipole moment} \mu_{o} \qquad \text{Permeability of the vacuum} \mu_{B} \qquad \text{Bohr magneton (earlier } \beta_{b}) \mu_{N} \qquad \text{Nuclear magneton (earlier } \beta_{e}) \mu_{N} \qquad \text{Nuclear magneton (earlier } f_{x}) V_{j} \qquad \text{Larmor or resonance frequency of nucleus } j \text{(ii) Basic Larmor or resonance frequency} \text{(iii) Basic Larmor or resonance frequency}$	$V_{\alpha\beta}$	
Greek alphabet α Nuclear spin wavefunction (eigenfunction of \hat{I}_2) for the $m = + \frac{1}{2}$ state of a spin- $\frac{1}{2}$ nucleus α_E The Ernst angle (for optimum sensitivity) β Nuclear spin wavefunction (eigenfunction of \hat{I}_2) for the $m_1 = -\frac{1}{2}$ state of a spin- $\frac{1}{2}$ nucleus γ_X Magnetogyric ratio of nucleus X δ_X Chemical shift (for the resonance) of nucleus of element X, usually in ppm Δn Population difference between nuclear states (Δn_0 at Boltzmann equilibrium) Δn Population difference in δ Δn Change or difference in δ Δn Full width in frequency units of a resonance line at half-height Δn Anisotropy in $\sigma[\Delta \sigma = \sigma_{zz} - \frac{1}{2}(\sigma_{xx} + \sigma_{ry})]$ Δn (i) Susceptibility anisotropy ($\Delta n = \frac{1}{2} - \frac{1}{2} - \frac{1}{2}$); (ii) difference in electronegativities ϵ_0 Permittivity of the vacuum ζ Anisotropy in shielding, expressed as $\sigma_{zz} - \sigma_{iso}$ η (i) Nuclear Overhauser enhancement; (ii) tensor asymmetry factor; (iii) viscosity κ Skew of a tensor θ Angle, especially for that between a given vector and B_0 μ (i) Magnetic dipole moment (component μ_z along B_0); (ii) electric dipole mo	W _o , W ₁ , W ₂	(transition probabilities per time) between
α Nuclear spin wavefunction (eigenfunction of \hat{I}_i) for the $m_i = + \frac{1}{2}$ state of a spin-½ nucleus α_E The Ernst angle (for optimum sensitivity) β Nuclear spin wavefunction (eigenfunction of \hat{I}_i) for the $m_i = -\frac{1}{2}$ state of a spin-½ nucleus γ × Magnetogyric ratio of nucleus X δ × Chemical shift (for the resonance) of nucleus of element X, usually in ppm Δn Population difference between nuclear states (Δn_o at Boltzmann equilibrium) Δδ Change or difference in δ Δν _{1/2} Full width in frequency units of a resonance line at half-height Δσ Anisotropy in σ [$\Delta \sigma = \sigma_{zz} - \frac{1}{2} (\sigma_{xx} + \sigma_{ry})$] Δχ (i) Susceptibility anisotropy ($\Delta \chi = \chi_{11} - \chi_{11}$); (ii) difference in electronegativities ε _o Permittivity of the vacuum ζ Anisotropy in shielding, expressed as $\sigma_{zz} - \sigma_{iso}$ η (i) Nuclear Overhauser enhancement; (ii) tensor asymmetry factor; (iii) viscosity κ Skew of a tensor θ Angle, especially for that between a given vector and \mathbf{B}_o μ (i) Magnetic dipole moment (component μ_z along \mathbf{B}_o); (ii) electric dipole moment μ _o Permeability of the vacuum μ _b	W _{rs}	
α Nuclear spin wavefunction (eigenfunction of \hat{I}_i) for the $m_i = + \frac{1}{2}$ state of a spin-½ nucleus α_E The Ernst angle (for optimum sensitivity) β Nuclear spin wavefunction (eigenfunction of \hat{I}_i) for the $m_i = -\frac{1}{2}$ state of a spin-½ nucleus γ × Magnetogyric ratio of nucleus X δ × Chemical shift (for the resonance) of nucleus of element X, usually in ppm Δn Population difference between nuclear states (Δn_o at Boltzmann equilibrium) Δδ Change or difference in δ Δν _{1/2} Full width in frequency units of a resonance line at half-height Δσ Anisotropy in σ [$\Delta \sigma = \sigma_{zz} - \frac{1}{2} (\sigma_{xx} + \sigma_{ry})$] Δχ (i) Susceptibility anisotropy ($\Delta \chi = \chi_{11} - \chi_{11}$); (ii) difference in electronegativities ε _o Permittivity of the vacuum ζ Anisotropy in shielding, expressed as $\sigma_{zz} - \sigma_{iso}$ η (i) Nuclear Overhauser enhancement; (ii) tensor asymmetry factor; (iii) viscosity κ Skew of a tensor θ Angle, especially for that between a given vector and \mathbf{B}_o μ (i) Magnetic dipole moment (component μ_z along \mathbf{B}_o); (ii) electric dipole moment μ _o Permeability of the vacuum μ _b		
(eigenfunction of \hat{I}_i) for the $m_i = + \frac{1}{12}$ state of a spin- $\frac{1}{12}$ nucleus α_E The Ernst angle (for optimum sensitivity) β Nuclear spin wavefunction (eigenfunction of \hat{I}_i) for the $m_i = -\frac{1}{2}$ state of a spin- $\frac{1}{2}$ nucleus γ_X Magnetogyric ratio of nucleus χ δ_X Chemical shift (for the resonance) of nucleus of element χ , usually in ppm Δn Population difference between nuclear states (Δn_o at Boltzmann equilibrium) $\Delta \delta$ Change or difference in δ Full width in frequency units of a resonance line at half-height $\Delta \sigma$ Anisotropy in σ [$\Delta \sigma = \sigma_{zz} - \frac{1}{2}(\sigma_{xx} + \sigma_{ry})$] $\Delta \chi$ (i) Susceptibility anisotropy ($\Delta \chi = \chi_{11} - \chi_{11}$); (ii) difference in electronegativities ϵ_o Permittivity of the vacuum ζ Anisotropy in shielding, expressed as $\sigma_{zz} - \sigma_{iso}$ η (i) Nuclear Overhauser enhancement; (ii) tensor asymmetry factor; (iii) viscosity κ Skew of a tensor θ Angle, especially for that between a given vector and θ_o μ (i) Magnetic dipole moment (component μ_z along θ_o); (ii) electric dipole moment μ_o Permeability of the vacuum μ_b Bohr magneton (earlier ρ_b) μ Nuclear magneton (earlier ρ_b) μ Nuclear magneton (earlier ρ_b) μ Larmor or resonance frequency of nucleus ρ (in Hz) ν (i) Spectrometer operating frequency; (ii) Basic Larmor or resonance frequency	Greek alpha	bet
	α	(eigenfunction of $\hat{m{l}}_{z}$) for the
β Nuclear spin wavefunction (eigenfunction of $\mathbf{\hat{l}_i}$) for the $m_i = -\frac{1}{V}$ state of a spin- $\frac{1}{V}$ nucleus γ × Magnetogyric ratio of nucleus X δ × Chemical shift (for the resonance) of nucleus of element X, usually in ppm Δn Population difference between nuclear states (Δn_0 at Boltzmann equilibrium) Δδ Change or difference in δ Δν _{1/2} Full width in frequency units of a resonance line at half-height Δσ Anisotropy in σ [$\Delta \sigma = \sigma_{zz} - \frac{1}{2}(\sigma_{xx} + \sigma_{ry})$] Δχ (i) Susceptibility anisotropy ($\Delta \chi = \chi_{11} - \chi_{11}$); (ii) difference in electronegativities ε₀ Permittivity of the vacuum ζ Anisotropy in shielding, expressed as $\sigma_{zz} - \sigma_{iso}$ η (i) Nuclear Overhauser enhancement; (ii) tensor asymmetry factor; (iii) viscosity κ Skew of a tensor θ Angle, especially for that between a given vector and \mathbf{B}_o μ (i) Magnetic dipole moment (component μ_z along \mathbf{B}_o); (ii) electric dipole moment μ ₀ Permeability of the vacuum	$\alpha_{\scriptscriptstyle extsf{F}}$	The Ernst angle (for optimum sensitivity)
		Nuclear spin wavefunction (eigenfunction of $\hat{\mathbf{l}}_{\!\scriptscriptstyle 2}$) for the
nucleus of element X, usually in ppm Δn Population difference between nuclear states (Δn_o at Boltzmann equilibrium) $\Delta \delta$ Change or difference in δ $\Delta v_{1/2}$ Full width in frequency units of a resonance line at half-height $\Delta \sigma$ Anisotropy in σ [$\Delta \sigma = \sigma_{zz} - \frac{1}{2}(\sigma_{xx} + \sigma_{yy})$] $\Delta \chi$ (i) Susceptibility anisotropy ($\Delta \chi = \chi_{\parallel} - \chi_{\perp}$); (ii) difference in electronegativities ϵ_o Permittivity of the vacuum ζ Anisotropy in shielding, expressed as $\sigma_{zz} - \sigma_{iso}$ η (i) Nuclear Overhauser enhancement; (ii) tensor asymmetry factor; (iii) viscosity κ Skew of a tensor θ Angle, especially for that between a given vector and \boldsymbol{B}_o μ (i) Magnetic dipole moment (component μ_z along \boldsymbol{B}_o); (ii) electric dipole moment μ_o Permeability of the vacuum μ_b Bohr magneton (earlier β_e) μ Nuclear magneton (earlier β_e) ν Larmor or resonance frequency of nucleus j (in Hz) ν (i) Spectrometer operating frequency; (ii) Basic Larmor or resonance frequency	γ _×	Magnetogyric ratio of nucleus X
states $(\Delta n_o$ at Boltzmann equilibrium) $\Delta \delta$ Change or difference in δ $\Delta V_{1/2}$ Full width in frequency units of a resonance line at half-height $\Delta \sigma$ Anisotropy in σ [$\Delta \sigma = \sigma_{zz} - \frac{1}{2}(\sigma_{xx} + \sigma_{YY})$] $\Delta \chi$ (i) Susceptibility anisotropy ($\Delta \chi = \chi_{11} - \chi_{11}$); (ii) difference in electronegativities ε_o Permittivity of the vacuum ζ Anisotropy in shielding, expressed as $\sigma_{zz} - \sigma_{iso}$ η (i) Nuclear Overhauser enhancement; (ii) tensor asymmetry factor; (iii) viscosity κ Skew of a tensor θ Angle, especially for that between a given vector and \boldsymbol{B}_o μ (i) Magnetic dipole moment (component μ_z along \boldsymbol{B}_o); (ii) electric dipole moment μ_b Permeability of the vacuum μ_b Bohr magneton (earlier β_b) ν_j Larmor or resonance frequency of nucleus j (in Hz) ν_o (i) Spectrometer operating frequency; (ii) Basic Larmor or resonance frequency	δ_{\times}	
	Δn	'
resonance line at half-height $\Delta\sigma$ Anisotropy in σ [$\Delta\sigma = \sigma_{zz} - \frac{1}{2}(\sigma_{xx} + \sigma_{ry})$] $\Delta\chi$ (i) Susceptibility anisotropy ($\Delta\chi = \chi_{\parallel} - \chi_{\perp}$); (ii) difference in electronegativities ε_{\circ} Permittivity of the vacuum ζ Anisotropy in shielding, expressed as $\sigma_{zz} - \sigma_{iso}$ η (i) Nuclear Overhauser enhancement; (ii) tensor asymmetry factor; (iii) viscosity κ Skew of a tensor θ Angle, especially for that between a given vector and \mathbf{B}_{\circ} μ (i) Magnetic dipole moment (component μ_z along \mathbf{B}_{\circ}); (ii) electric dipole moment μ_{\circ} Permeability of the vacuum μ_{\circ} Bohr magneton (earlier β_{\circ}) ν_j Larmor or resonance frequency of nucleus j (in Hz) ν_{\circ} (i) Spectrometer operating frequency; (ii) Basic Larmor or resonance frequency	$\Delta\delta$	Change or difference in δ
	$\Delta v_{1/2}$. ,
(ii) difference in electronegativities \mathcal{E}_{\circ} Permittivity of the vacuum ζ Anisotropy in shielding, expressed as σ_{zz} - σ_{iso} η (i) Nuclear Overhauser enhancement; (ii) tensor asymmetry factor; (iii) viscosity κ Skew of a tensor θ Angle, especially for that between a given vector and \mathbf{B}_{\circ} μ (i) Magnetic dipole moment (component μ_z along \mathbf{B}_{\circ}); (ii) electric dipole moment μ_{\circ} Permeability of the vacuum μ_{B} Bohr magneton (earlier β_{E}) μ Nuclear magneton (earlier β_{E}) ν_j Larmor or resonance frequency of nucleus j (in Hz) ν_{O} (i) Spectrometer operating frequency; (ii) Basic Larmor or resonance frequency	$\Delta\sigma$	Anisotropy in $\sigma[\Delta \sigma = \sigma_{zz} - \frac{1}{2}(\sigma_{xx} + \sigma_{YY})]$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Δχ	
as σ_{zz} - σ_{lso} η (i) Nuclear Overhauser enhancement; (ii) tensor asymmetry factor; (iii) viscosity κ Skew of a tensor θ Angle, especially for that between a given vector and \mathbf{B}_o μ (i) Magnetic dipole moment (component μ_z along \mathbf{B}_o); (ii) electric dipole moment μ_o Permeability of the vacuum μ_b Bohr magneton (earlier β_b) ν_j Nuclear magneton (earlier β_b) ν_j Larmor or resonance frequency of nucleus j (in Hz) ν_o (i) Spectrometer operating frequency; (ii) Basic Larmor or resonance frequency	\mathcal{E}_{\circ}	Permittivity of the vacuum
(ii) tensor asymmetry factor; (iii) viscosity κ Skew of a tensor θ Angle, especially for that between a given vector and \mathbf{B}_{o} (i) Magnetic dipole moment (component μ_{z} along \mathbf{B}_{o}); (ii) electric dipole moment μ_{z} Bohr magneton (earlier μ_{z} Nuclear magneton (earlier μ_{z} Nuclear magneton (earlier μ_{z} V) Larmor or resonance frequency of nucleus μ_{z} (i) Spectrometer operating frequency; (ii) Basic Larmor or resonance frequency	ζ	
$\begin{array}{ccc} \theta & & \text{Angle, especially for that between a given} \\ & & \text{vector and } \textbf{\textit{B}}_{\text{o}} \\ & & \text{(i) Magnetic dipole moment (component } \mu_{\text{z}} \\ & & \text{along } \textbf{\textit{B}}_{\text{o}}); \text{(ii) electric dipole moment} \\ & & & \text{Permeability of the vacuum} \\ & & & \text{Bohr magneton (earlier } \beta_{\text{e}}) \\ & & & \text{Nuclear magneton (earlier } \beta_{\text{N}}) \\ & & & \text{V}_{j} & & \text{Larmor or resonance frequency of nucleus } j \\ & & & \text{(i) Spectrometer operating frequency;} \\ & & & & \text{(ii) Basic Larmor or resonance frequency} \\ \end{array}$	η	**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	κ	Skew of a tensor
along \mathbf{B}_o); (ii) electric dipole moment μ_o Permeability of the vacuum μ_B Bohr magneton (earlier β_e) μ_N Nuclear magneton (earlier β_N) \mathbf{V}_j Larmor or resonance frequency of nucleus j (in Hz) \mathbf{V}_o (i) Spectrometer operating frequency; (ii) Basic Larmor or resonance frequency	θ	
$\begin{array}{c c} \mu_{\rm B} & {\rm Bohr\ magneton\ (earlier\ }\beta_{\rm e}) \\ \hline \mu_{\rm N} & {\rm Nuclear\ magneton\ (earlier\ }\beta_{\rm N}) \\ \hline v_j & {\rm Larmor\ or\ resonance\ frequency\ of\ nucleus\ }j \\ {\rm (in\ Hz)} \\ \hline v_{\rm o} & {\rm (i)\ Spectrometer\ operating\ frequency;} \\ {\rm (ii)\ Basic\ Larmor\ or\ resonance\ frequency} \end{array}$	μ	
$\begin{array}{c c} \mu_{\text{N}} & \text{Nuclear magneton (earlier } \beta_{\text{N}}) \\ \hline v_{j} & \text{Larmor or resonance frequency of nucleus } j \\ \text{(in Hz)} \\ \hline v_{\text{o}} & \text{(i) Spectrometer operating frequency;} \\ \text{(ii) Basic Larmor or resonance frequency} \end{array}$	μ_{\circ}	Permeability of the vacuum
V _j Larmor or resonance frequency of nucleus j (in Hz) V₀ (i) Spectrometer operating frequency; (ii) Basic Larmor or resonance frequency	μ_{B}	- ,
(in Hz) v _o (i) Spectrometer operating frequency; (ii) Basic Larmor or resonance frequency	μ_{N}	
(ii) Basic Larmor or resonance frequency	V_j	
	V _o	(ii) Basic Larmor or resonance frequency

<i>V</i> ₁	Frequency of primary RF magnetic field B_1 (excitation, detection)
V_2	Frequency of secondary RF magnetic field B_2 (decoupling)
Ξx	Normalized resonance frequency for nucleus X relative to v_H for tetramethylsilane (TMS) at the same \mathbf{B}_0 field; $\mathbf{\Xi}_x = 100 \ v_x/v_H$ (TMS)
ρ	Density matrix
ρ̂	Density operator
ρ_{ij}	Element of matrix representation of $\hat{ ho}$
σ	Shielding tensor
σ_{j}	(Isotropic) shielding constant of nucleus j
$\sigma_{\scriptscriptstyle \parallel}$, $\sigma_{\scriptscriptstyle \perp}$	Components of shielding tensor σ parallel and perpendicular to the symmetry axis
$\hat{\sigma}$	Reduced density operator
τ	(i) Time between RF pulses or recovery time following inversion (ii) lifetime in dynamic NMR studies
$ au_{ ext{c}}$	Correlation time for molecular motion, especially for isotropic molecular tumbling
$ au_{ m d}$	Dwell time for data sampling
$ au_{ m null}$	Recovery time leading to null M _z after a 180° pulse
$ au_{p}$	Pulse duration
$ au_{ m sc}$	Correlation time for relaxation by the scalar mechanism
$ au_{ m sr}$	Correlation time for spin-rotation relaxation
$ au_{\scriptscriptstyle \parallel}$, $ au_{\scriptscriptstyle \perp}$	Correlation times for molecular tumbling parallel and perpendicular to the symmetry axis
х	(i) Magnetic susceptibility; (ii) nuclear quadrupole coupling constant ($\chi = e^2 q_{ZZ}Q/h$)
$\omega_{j}, \omega_{o}, \omega_{1}, \omega_{2}$	As for v_{i} , v_{o} , v_{1} , v_{2} but in angular frequency units (rad/s)
Ω	Span of a tensor
Ω_1,Ω_2	Angular frequency of RF fields ${\it \textbf{B}}_{1}, {\it \textbf{B}}_{2}$

¹H Chemical Shifts for Common Contaminants in Deuterated Solvents

	T		0001	(00.) 00	(00) 00		00.01	00.00	
	Proton	mult., J	CDCI ₃	(CD ₃) ₂ CO	(CD₃)₂SO	C ₆ D ₆	CD₃CN	CD₃OD	D₂O
residual solvent H			7.26	2.05	2.50	7.16	1.94	3.31	4.79
H ₂ O		S	1.56	2.84 ª	3.33 a	0.40	2.13	4.87	
acetic acid	CH₃	S	2.10	1.96	1.91	1.55	1.96	1.99	2.08
acetone	CH₃	S	2.17	2.09	2.09	1.55	2.08	2.15	2.22
acetonitrile	CH ₃	S	2.10	2.05	2.07	1.55	1.96	2.03	2.06
benzene	CH	S	7.36	7.36	7.37	7.15	7.37	7.33	
<i>t</i> -butanol	CH₃	S	1.28	1.18	1.11	1.05	1.16	1.40	1.24
	OH ^c	S			4.19	1.55	2.18		
t-butyl methyl ether	CCH₃	S	1.19	1.13	1.11	1.07	1.14	1.15	1.21
DUTA	OCH ₃	S	3.22	3.13	3.08	3.04	3.13	3.20	3.22
BHT ^b	ArH	S	6.98	6.96	6.87	7.05	6.97	6.92	
	OH ^c	S	5.01	2.22	6.65	4.79	5.20	0.01	
	ArCH ₃	S	2.27	2.22	2.18	2.24	2.22	2.21 1.40	
ablarafarm	ArC(CH ₃) ₃	S	1.43	1.41 8.02	1.36	1.38 6.15	1.39		
chloroform cyclohexane	CH ₂	S	7.26 1.43	1.43	8.32 1.40	1.40	7.58 1.44	7.90 1.45	
1,2-dichloroethane	CH ₂	S S	3.73	3.87	3.90	2.90	3.81	3.78	
dichloromethane	CH ₂	S	5.30	5.63	5.76	4.27	5.44	5.49	
diethyl ether	CH ₃	t, 7	1.21	1.11	1.09	1.11	1.12	1.18	1.17
uletilyi etilei	CH ₂	q, 7	3.48	3.41	3.38	3.26	3.42	3.49	3.56
diglyme	CH ₂	m q, 7	3.65	3.56	3.51	3.46	3.53	3.61	3.67
aigiyiiio	CH ₂	m	3.57	3.47	3.38	3.34	3.45	3.58	3.61
	OCH ₃	S	3.39	3.28	3.24	3.11	3.29	3.35	3.37
1,2-dimethoxyethane	CH ₃	s	3.40	3.28	3.24	3.12	3.28	3.35	3.37
1,2 diriothoxyothario	CH ₂	S	3.55	3.46	3.43	3.33	3.45	3.52	3.60
dimethylacetamide	CH₃CO	S	2.09	1.97	1.96	1.60	1.97	2.07	2.08
	NCH ₃	S	3.02	3.00	2.94	2.57	2.96	3.31	3.06
	NCH₃	S	2.94	2.83	2.78	2.05	2.83	2.92	2.90
dimethylformamide	СН	S	8.02	7.96	7.95	7.63	7.92	7.97	7.92
,	CH₃	S	2.96	2.94	2.89	2.36	2.89	2.99	3.01
	CH ₃	S	2.88	2.78	2.73	1.86	2.77	2.86	2.85
dimethylsulfoxide	CH₃	S	2.62	2.52	2.54	1.68	2.50	2.65	2.71
dioxane	CH ₂	S	3.71	3.59	3.57	3.35	3.60	3.66	3.75
ethanol	CH₃	t, 7	1.25	1.12	1.06	0.96	1.12	1.19	1.17
	CH ₂	q, 7 ^d	3.72	3.57	3.44	3.34	3.54	3.60	3.65
	OH	S ^{c,d}	1.32	3.39	4.63		2.47		
ethyl acetate	CH₃CO	S	2.05	1.97	1.99	1.65	1.97	2.01	2.07
	CH ₂ CH ₃	q, 7	4.12	4.05	4.03	3.89	4.06	4.09	4.14
	CH₂CH₃	t, 7	1.26	1.20	1.17	0.92	1.20	1.24	1.24
ethyl methyl ketone	CH₃CO	S	2.14	2.07	2.07	1.58	2.06	2.12	2.19
	CH ₂ CH ₃	q, 7	2.46	2.45	2.43	1.81	2.43	2.50	3.18
	CH ₂ CH ₃	t, 7	1.06	0.96	0.91	0.85	0.96	1.01	1.26
ethylene glycol	CH	S ^e	3.76	3.28	3.34	3.41	3.51	3.59	3.65
"grease" ^f	CH ₃	m	0.86	0.87		0.92	0.86	0.88	
	CH ₂	br s	1.26	1.29	0.00	1.36	1.27	1.29	
<i>n</i> -hexane	CH ₃	t	0.88	0.88	0.86	0.89	0.89	0.90	
LINADAG	CH ₂	m	1.26	1.28	1.25	1.24	1.28	1.29	0.01
HMPA ^g	CH₃	d, 9.5	2.65	2.59	2.53	2.40	2.57	2.64	2.61
methanol	CH₃	S ^h	3.49	3.31	3.16	3.07	3.28	3.34	3.34
nitromethane	OH CH ₃		1.09 4.33	3.12 4.43	4.01 4.42	2.94	2.16 4.31	4.34	4.40
	CH ₃	t, 7	0.88	0.88	0.86	0.87	0.89	0.90	4.40
<i>n</i> -pentane			1.27	1.27	1.27	1.23	1.29	1.29	
	CH ₂	m	1.27	1.27	1.27	1.23	1.29	1.23	

Reprinted with permission from: J. Org. Chem. 1997, 62, 7512-7515

NMR Tables

¹H Chemical Shifts for Common Contaminants in Deuterated Solvents (continued)

	Proton	mult.	CDCI ₃	(CD ₃) ₂ CO	(CD ₃) ₂ SO	C ₆ D ₆	CD ₃ CN	CD ₃ OD	D ₂ O
<i>i</i> -propanol	CH₃	d, 6	1.22	1.10	1.04	0.95	1.09	1.50	1.17
	CH	sep, 6	4.04	3.90	3.78	3.67	3.87	3.92	4.02
pyridine	CH(2)	m	8.62	8.58	8.58	8.53	8.57	8.53	8.52
	CH(3)	m	7.29	7.35	7.39	6.66	7.33	7.44	7.45
	CH(4)	m	7.68	7.76	7.79	6.98	7.73	7.85	7.87
silicone grease ⁱ	CH ₃	S	0.07	0.13		0.29	0.08	0.10	
tetrahydrofuran	CH ₂	m	1.85	1.79	1.76	1.40	1.80	1.87	1.88
	CH ₂ O	m	3.76	3.63	3.60	3.57	3.64	3.71	3.74
toluene	CH₃	S	2.36	2.32	2.30	2.11	2.33	2.32	
	CH(<i>o/p</i>)	m	7.17	7.1-7.2	7.18	7.02	7.1-7.3	7.16	
	CH(m)	m	7.25	7.1-7.2	7.25	7.13	7.1-7.3	7.16	
triethylamine	CH₃	t, 7	1.03	0.96	0.93	0.96	0.96	1.05	0.99
	CH ₂	q, 7	2.53	2.45	2.43	2.40	2.45	2.58	2.57

 $^{^{\}rm o}$ In these solvents the intermolecular rate of exchange is slow enough that a peak due to HDO is usually also observed; it appears at 2.81 and 3.30 ppm in acetone and DMSO, respectively. In the former solvent, it is often seen as a 1:1:1 triplet, with $^2J_{\text{H,D}}=1$ Hz. $^{\rm o}$ 2,6-di-*tert*-butyl-4-methylphenol. $^{\rm o}$ The signals from exchangeable protons were not always identified. $^{\rm d}$ In some cases (see note a), the coupling interaction between the CH $_2$ and the OH protons may be observed (J=5 Hz). $^{\rm e}$ In CD $_3$ CN, the OH proton was seen as a multiplet at $\delta=2.69$, and extra coupling was also apparent on the methylene peak. $^{\rm f}$ Long-chain, linear aliphatic hydrocarbons. Their solubility in DMSO was too low to give visible peaks. $^{\rm g}$ Hexamethylphosphoramide. $^{\rm h}$ In some cases (see notes a, d), the coupling interaction between the CH $_3$ and the OH protons may be observed (J=5.5 Hz). $^{\rm f}$ Poly(dimethylsiloxane). Its solubility in DMSO was too low to give visible peaks.

¹³C Chemical Shifts for Common Contaminants in Deuterated Solvents

		CDCI ₃	(CD ₃) ₂ CO	(CD ₃) ₂ SO	C ₆ D ₆	CD₃CN	CD ₃ OD	D ₂ O
solvent signals		77.16	29.84	39.52	128.06	1.32	49.00	
			206.26			118.26		
acetic acid	CO	175.99	172.31	171.93	175.82	173.21	175.11	177.21
	CH₃	20.81	20.51	20.95	20.37	20.73	20.56	21.03
acetone	CO	207.07	205.87	206.31	204.43	207.43	209.67	215.94
	CH₃	30.92	30.60	30.56	30.14	30.91	30.67	30.89
acetonitrile	CN	116.43	117.60	117.91	116.02	118.26	118.06	119.68
	CH₃	1.89	1.12	1.03	0.20	1.79	0.85	1.47
benzene	CH	128.37	129.15	128.30	128.62	129.32	129.34	
<i>t</i> -butanol	С	69.15	68.13	66.88	68.19	68.74	69.40	70.36
	CH ₃	31.25	30.72	30.38	30.47	30.68	30.91	30.29
t-butyl methyl ether	OCH ₃	49.45	49.35	48.70	49.19	49.52	49.66	49.37
	С	72.87	72.81	72.04	72.40	73.17	74.32	75.62
	CCH₃	26.99	27.24	26.79	27.09	27.28	27.22	26.60
BHT	C(1)	151.55	152.51	151.47	152.05	152.42	152.85	
	C(2)	135.87	138.19	139.12	136.08	138.13	139.09	
	CH(3)	125.55	129.05	127.97	128.52	129.61	129.49	
	C(4)	128.27	126.03	124.85	125.83	126.38	126.11	
	CH₃Ar	21.20	21.31	20.97	21.40	21.23	21.38	
	CH₃C	30.33	31.61	31.25	31.34	31.50	31.15	
	С	34.25	35.00	34.33	34.35	35.05	35.36	
chloroform	CH	77.36	79.19	79.16	77.79	79.17	79.44	
cyclohexane	CH ₂	26.94	27.51	26.33	27.23	27.63	27.96	
1,2-dichloroethane	CH ₂	43.50	45.25	45.02	43.59	45.54	45.11	
dichloromethane	CH ₂	53.52	54.95	54.84	53.46	55.32	54.78	
diethyl ether	CH₃	15.20	15.78	15.12	15.46	15.63	15.46	14.77
	CH ₂	65.91	66.12	62.05	65.94	66.32	66.88	66.42

¹³C Chemical Shifts for Common Contaminants in Deuterated Solvents (continued)

		CDCI ₃	(CD ₃) ₂ CO	(CD ₃) ₂ SO	C ₆ D ₆	CD ₃ CN	CD ₃ OD	D ₂ O
diglyme	CH ₃	59.01	58.77	57.98	58.66	58.90	59.06	58.67
<u> </u>	CH ₂	70.51	71.03	69.54	70.87	70.99	71.33	70.05
	CH ₂	71.90	72.63	71.25	72.35	72.63	72.92	71.63
1,2-dimethoxyethane	CH ₃	59.08	58.45	58.01	58.68	58.89	59.06	58.67
1,2 a	CH ₂	71.84	72.47	17.07	72.21	72.47	72.72	71.49
dimethylacetamide	CH ₃	21.53	21.51	21.29	21.16	21.76	21.32	21.09
annothylacotannac	CO	171.07	170.61	169.54	169.95	171.31	173.32	174.57
	NCH₃	35.28	34.89	37.38	34.67	35.17	35.50	35.03
	NCH ₃	38.13	37.92	34.42	37.03	38.26	38.43	38.76
dimethylformamide	CH	162.62	162.79	162.29	162.13	163.31	164.73	165.53
difficityfforfflatfilde	CH ₃	36.50	36.15	35.73	35.25	36.57	36.89	37.54
	CH ₃	31.45	31.03	30.73	30.72	31.32	31.61	32.03
dimethyl sulfoxide	CH ₃	40.76	41.23	40.45	40.03	41.31	40.45	39.39
dioxane	CH ₂	67.14	67.60	66.36	67.16	67.72	68.11	67.19
ethanol	CH ₃	18.41	18.89	18.51	18.72	18.80	18.40	17.47
etriarioi	CH ₂	58.28	57.72	56.07	57.86	57.96	58.26	58.05
ethyl acetate	CH ₃ CO	21.04	20.83	20.68	20.56	21.16	20.88	21.15
etriyi acetate	CO	171.36	170.96	170.31	170.44	171.68	172.89	175.26
	CH ₂	60.49	60.56	59.74	60.21	60.98	61.50	62.32
	CH ₂				14.19			
		14.19	14.50	14.40		14.54	14.49	13.92
ethyl methyl ketone	CH₃CO CO	29.49	29.30	29.26	28.56	29.60	29.39	29.49
		209.56	208.30	208.72	206.55	209.88	212.16	218.43
	CH₂CH₃	36.89	36.75	35.83	36.36	37.09	37.34	37.27
	CH ₂ CH ₃	7.86	8.03	7.61	7.91	8.14	8.09	7.87
ethylene glycol	CH ₂	63.79	64.26	62.76	64.34	64.22	64.30	63.17
"grease"	CH ₂	29.76	30.73	29.20	30.21	30.86	31.29	
<i>n</i> -hexane	CH ₃	14.14	14.34	13.88	14.32	14.43	14.45	
	CH ₂ (2)	22.70	23.28	22.05	23.04	23.40	23.68	
	CH ₂ (3)	31.64	32.30	30.95	31.96	32.36	32.73	
HMPA ^b	CH₃	36.87	37.04	36.42	36.88	37.10	37.00	36.46
methanol	CH₃	50.41	49.77	48.59	49.97	49.90	49.86	49.50°
nitromethane	CH₃	62.50	63.21	63.28	61.16	63.66	63.08	63.22
<i>n</i> -pentane	CH₃	14.08	14.29	13.28	14.25	14.37	14.39	
	CH ₂ (2)	22.38	22.98	21.70	22.72	23.08	23.38	
	CH ₂ (3)	34.16	34.83	33.48	34.45	34.89	35.30	
<i>i</i> -propanol	CH₃	25.14	25.67	25.43	25.18	25.55	25.27	24.38
	CH	64.50	63.85	64.92	64.23	64.30	64.71	64.88
pyridine	CH(2)	149.90	150.67	149.58	150.27	150.76	150.07	149.18
	CH(3)	123.75	124.57	123.84	123.58	127.76	125.53	125.12
	CH(4)	135.96	136.56	136.05	135.28	136.89	138.35	138.27
silicone grease	CH₃	1.04	1.40		1.38		2.10	
tetrahydrofuran	CH ₂	25.62	26.15	25.14	25.72	26.27	26.48	25.67
	CH ₂ O	67.97	68.07	67.03	67.80	68.33	68.83	68.68
toluene	CH ₃	21.46	21.46	20.99	21.10	21.50	21.50	
	C(i)	137.89	138.48	137.35	137.91	138.90	138.85	
	CH(o)	129.07	129.76	128.88	129.33	129.94	129.91	
	CH(m)	128.26	129.03	128.18	128.56	129.23	129.20	
	CH(p)	125.33	126.12	125.29	125.68	126.28	126.29	
triethylamine	CH ₃	11.61	12.49	11.74	12.35	12.38	11.09	9.07
,	CH ₂	46.25	47.07	45.74	46.77	47.10	46.96	47.19

 $^{^{\}rm a}$ See footnotes for Table 1. $^{\rm b}$ $^2J_{\rm PC}$ = 3 Hz. $^{\rm c}$ Reference material; see text.

Reprinted with permission from J. Org. Chem. 1997, 62, 7512-7515

© 1997 American Chemical Society

NMR Formulae

NMR Formulae

NMR Relaxation

Mechanisms (isotropic tumbling, SI units)	Remarks			
Intramolecular Heteronuclear Dipole-Dipole Spin / relaxed by Spin S $R_1^{-1} = E_{\rm IS} \ r_{\rm IS}^{-6} \ [(1/12)J_0(\omega_1-\omega_{\rm S}) + (3/2)J_1(\omega_1) + (3/4)J_2(\omega_1+\omega_{\rm S})] \\ R_2^{-1} = E_{\rm IS} \ r_{\rm IS}^{-6} \ [(1/6)J_0(0) + (1/24)J_0(\omega_1-\omega_{\rm S}) + (3/4)J_1(\omega_1) + (3/2)J_1(\omega_{\rm S}) + (3/8)J_2(\omega_1+\omega_{\rm S})] \\ \text{where } E_{\rm IS} = (\mu_0/4\pi)^2 \ (\gamma_1 \ \gamma_{\rm S} \ \hbar)^2 \ S(S+1) \\ \text{Extreme narrowing: } R_1^{-1} = (4/3) \ E_{\rm IS} \ r_{\rm IS}^{-6} \ \tau_{\rm c} \ (\omega\tau_{\rm c} <<1) \\ \text{For several spins } S: \ \text{use} \ \sum \ r_{\rm IS}^{-6} \\ \text{NB: } T_1^{-1} = 1/R_1^{-1} \ \text{only when } S \ \text{is saturated}$	Factor $(\mu_0/4\pi)=10^{-7}$ is required for conversion from cgs-Gauss units to MKSA (SI) units. Spectral Densities for random isotropic rotation $J_q(\omega)=C_q\left[\tau_c/(1+\omega^2\tau_c^2)\right]$ $(q=0,1,2)$ $C_0=24/15;\ C_1=4/15;\ C_2=16/15$ extreme narrowing: $J_q(\omega)=C_q\ \tau_c$			
Spin I_k relaxed by Spin I_1 $R_1^{-1} = E_1 r_{kl}^{-6} (3/2) [J_1(\omega_l) + J_2(2\omega_l)]$ $R_{1p}^{-1} = E_1 r_{kl}^{-6} [(3/8)J_0(\omega_1) + (15/4)J_1(\omega_l) + (3/8)J_2(2\omega_l)]$ $R_2^{-1} = E_1 r_{kl}^{-6} [(3/8)J_0(0) + (15/4)J_1(\omega_l) + (3/8)J_2(2\omega_l)]$ where $E_1 = (\mu_0/4\pi)^2 \gamma_1^{-4} \hbar^2 I(I+1)$ Extreme narrowing: $R_1^{-1} = R_2^{-1} = 2 E_1 r_{kl}^{-6} \tau_c (\omega \tau_c << 1)$ For several spins I : use $\sum r_{kl}^{-6}$				
Intermolecular Heteronuclear Dipole-Dipole Spin / on mol. A relaxed by Spin S on mol. B ($\omega \tau_{\rm C} << 1$) $R_1{}^{\rm I} = 16\pi \ c_{\rm S} \ E_{\rm IS} \ / \ (27 \ r_{\rm IS} \ D_{\rm trans})$ (pair distribution function = step function)	$E_{\rm IS} = (\mu_0/4\pi)^2 (\gamma_1 \gamma_S \hbar)^2 S(S+1)$ $c_{\rm S} = {\rm conc. \ of \ spins \ } S$ $r_{\rm IS} = {\rm distance \ of \ closest \ approach }$ $D_{\rm trans} = (D_{\rm A} + D_{\rm B}) / 2$			
Intermolecular Homonuclear Dipole-Dipole	$E_1 = (\mu_0/4\pi)^2 \gamma_1^4 \hbar^2 I(I+1)$			
Spin / on mol. A relaxed by Spin / on mol. B ($\omega \tau_{\rm C} << 1$) $R_1{}^{\rm I} = 8\pi c_1 \; E_1 \; / \; (9 \; r_{\rm II} \; D_{\rm trans})$ also found in the literature is: $R_1{}^{\rm I} = (4\pi/3) \; c_1 \; E_1 \; (\tau/r_{\rm II}{}^3) \; [1 \; + \; (2r_{\rm II}{}^2/5 \; D_{\rm trans} \; \tau)]$	$c_{\rm l} = {\rm conc.~of~spins~} I$ $r_{\rm ll} = {\rm distance~of~closest~approach}$ $\tau = {\rm mol.~jump~time}$			

Spherical Harmonics

Spherical harmonics up to rank 2 expressed in polar and orthogonal Cartesian coordinates

Y _{0,0}	=	$\sqrt{\frac{1}{4\pi}}$		
Y _{1,0}	=	$\sqrt{\frac{3}{4\pi}}\cos\theta$	=	$\sqrt{\frac{3}{4\pi}} \frac{z}{r}$
Y _{1,±1}	=	$\frac{1}{4} \sqrt{\frac{3}{8\pi}} \sin \theta \ e^{\pm i\phi}$	=	$\frac{1}{r} \sqrt{\frac{3}{8\pi}} \frac{x \pm iy}{r}$
Y _{2,0}	=	$\sqrt{\frac{5}{16\pi}} (3\cos^2\theta - 1)$	=	$\sqrt{\frac{5}{16\pi}} \frac{2z^2 - x^2 - y^2}{r^2}$
Y _{2,±1}	=	$\frac{15}{8\pi}\cos\theta\sin\theta\ e^{\pm i\varphi}$	=	$\frac{15}{\pi} \sqrt{\frac{15}{8\pi}} \frac{(x\pm iy)z}{r^2}$
Y _{2,±2}	=	$\sqrt{\frac{15}{32\pi}}$ $\sin^2\theta$ $e^{\pm 2i\varphi}$	=	$\sqrt{\frac{15}{32\pi}} \frac{(x\pm iy)^2}{r^2}$

Quantity	Formula (bold face = vectors)	Definitions (SI units) (see SI section for constants and units)			
Magnetic Field Magnetic Force	$\mathbf{B} = \mu_o \ \mathbf{H}$ $\mathbf{F} = Q \ \mathbf{v} \times \mathbf{B}$	${m B}=$ magn. flux density, magn. induction (T) ${m H}=$ magn. field strength (A m $^{-1}$) ${\mu}_o=$ permeability of vacuum (4 π × 10 $^{-7}$ H m $^{-1}$) ${\cal Q}=$ elec. charge (C); $v=$ velocity (m/s)			
Nuclear Spin Spin Angular Mom. Magn. Moment	$ \begin{array}{c} I \\ \hbar m_{l} \\ \mu_{l} = \gamma_{l} \hbar_{l} I = g_{l} \beta_{N} I \end{array} $	γ = magnetogyric ratio (rad s ⁻¹ T ⁻¹); $\hbar = h/2\pi$ $\beta_{\rm N} = \mu_{\rm B}$ (nuclear magneton); $g_{\rm I}$ = nuclear g factor $m_{\rm I}$ = quantum no. (- I , - I +1,+ I)			
Zeeman Interaction Larmor Freq. Nutation Vector	$H = -\boldsymbol{\mu}_{1} \cdot \boldsymbol{B}_{0}, E = -m_{1} \gamma_{1} \hbar B_{0}$ $\omega_{0} = \gamma_{1} B_{0}, v_{0} = \gamma_{1} B_{0}$ $\boldsymbol{\omega} = -\gamma_{1} \boldsymbol{B}$	$ω$ in rad s ⁻¹ , v in Hz ($Δm_1 = \pm 1$), $γ = γ/2π$ (clockwise precession in lab frame for $γ > 0$)			
Boltzmann Pop. Diff. Equil. Magn.	$\Delta N/N \sim \gamma_1 \hbar/2kT (\Delta m_1 = \pm 1)$ $M_0 = B_0 [N \gamma_1^2 \hbar^2 I(I+1) / 3kT]$	N = number of nuclei with spin I T = temperature (K)			
Rotating Frame (r.f.) and residual field	$\gamma \Delta \boldsymbol{B}_0 = \gamma \boldsymbol{B}_0 + \boldsymbol{\omega}_{\text{r.f.}}$ $\boldsymbol{\Omega} = -\gamma \Delta \boldsymbol{B}_0 = \boldsymbol{\omega}_0 - \boldsymbol{\omega}_{\text{r.f.}}$	$\omega_{\rm r.f.}$ = rot. frame vector (detector freq.) in direction ω_0 (-z axis for $\gamma > 0$) ΔB_0 = residual field in r.f. Ω = precession freq. in r.f. (clockwise in r.f. for $\omega_0 > \omega_{\rm r.f.}$)			
Effective RF Field Amplitude and Tilt Nutation	$\omega_1 = -\gamma \emph{B}_1, \emph{B}_{\rm eff} = \emph{B}_1 + \Delta \emph{B}_0$ $B_{\rm eff} = [B_1^2 + \Delta B_0^2]^{1/2}, \tan\theta = \Delta B_0/B_1$ $\emph{\beta}_{\rm eff} ({\rm in \ rad}) = -\gamma \emph{B}_{\rm eff} \emph{\tau}_{\rm p}$ $\gamma B_{\rm eff} ({\rm in \ Hz}) = 1/(4\tau_{90})$	$m{B_1} = \text{RF field vector in } xy \text{plane; nutation is covaround } m{\omega_{\text{eff}}} = -\gamma m{B_{\text{eff}}}; \theta = \text{tilt angle between } m{B_{\text{eff}}} = -\gamma m{B_{\text{eff}}}; \theta = \text{tilt angle between } m{B_{\text{eff}}} = B_1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
Optimum flip angle	$\cos\beta_{\rm opt} = \exp(-TR/T_1)$	TR = pulse repetition time			
Relaxation rates	spin-lattice: $R_1 = 1/T_1$ spin-spin: $R_2 = 1/T_2 = \pi \Delta v_0$	$\Delta \nu_{\text{o}}$ = natural Lorentzian linewidth at half-height			
Bulk Susceptibility Correction	for cylindrical samples with external ref. in coaxial capillary $\delta_{\rm corr} = \delta_{\rm obs} + C \left(\chi_{\rm ref} - \chi_{\rm sample} \right)$	$C = +2\pi/3$ (tube perpendicular to B_0) $C = -4\pi/3$ (tube parallel to B_0)			
Spin-echo amplitude in constant B_0 gradient	$M(2 \tau) = M_0 \exp[-2 \tau/T_2 - (2/3)(\gamma G)^2 D \tau^3]$	90- τ -180- τ Hahn echo with gradient G D = diffusion coeff. in gradient direction			
Spin-echo attenuation in PFG-SE experiment	In $(S_{\text{echo}} / S_0) = -bD$ $b = (\gamma \delta G)^2 (\Delta - \delta/3)$	$G = B_0$ gradient pulse amplitude (T/m) $\delta = \text{pulse width; } \Delta = \text{pulse spacing}$			
Rotational Correlation Time	Stokes-Einstein Relation $\tau_c = (4\pi \eta \ r^3) / (3kT)$	$ au_{\rm c} = { m rot.}$ correlation time for isotropic tumbling $\eta = { m viscosity}; \ r = { m molecular radius (sphere)}$			
Nuclear Oberhauser Enhancement	$M_{\rm S}\{l\}/M_{\rm S}(0) = 1 + 0.5(\gamma_{\rm l}/\gamma_{\rm S})(R_{\rm l}^{\rm lS}/R_{\rm l}^{\rm S})$ (extreme narrowing; $\omega_{\rm S}\tau_{\rm C} << 1$)	enhancement of spin S due to continuous irradiation of spin I; R_1^{S} = dipolar relaxation of S via I ; R_1^{S} = relaxation of S via all mechanisms			
Polarization Transfer	$M_{\rm S}$ {PT}/ $M_{\rm S}$ (0) = $\gamma_{\rm I}/\gamma_{\rm S}$	PT from I to S via J_{IS}			
Lorentzian Lineshape	$a(\omega) = R_2 / [R_2^2 + \Delta \omega^2]$ $d(\omega) = \Delta \omega / [R_2^2 + \Delta \omega^2]$	$a(\omega)$, $d(\omega)$ = absorption, dispersion signals $\Delta\omega = \omega$ - Ω			

NMR Formulae

X-ray Diffractometry Tables

Space Groups

Point groups and space groups without centers of inversion or mirror planes are printed in italics. Those space groups which are uniquely determinable from the systematic absences and the symmetry of the diffraction pattern are printed in bold type.

Crystal System	Point Group	SG #	Condensed Symbol	Full Symbol	Crystal System	Point Group	SG #	Condensed Symbol	Full Symbol
triclinic	1 -1	1 2	<i>P1</i> P-1				63 64 65	Cmcm Cmca Cmmm	C 2/m 2/c 2(1)/m C 2/m 2/c 2(1)/a
monoclinic	2	3 4 5	P2 P2(1) C2	P 1 2 1 P 1 2(1) 1 C 1 2 1			66 67	Cccm Cmma	C 2/m 2/m 2/m C 2/c 2/c 2/m C 2/m 2/m 2/a
	m	6 7	Pm Pc	P 1 m 1 P 1 c 1			68 69 70	Ccca Fmmm Fddd	C 2/c 2/c 2/a F 2/m 2/m 2/m F 2/d 2/d 2/d
	2/m	8 9 10 11	Cm Cc P2/m P2(1)/m	C 1 m 1 C 1 c 1 P 1 2/m 1 P 1 2(1)/m 1			71 72 73 74	Immm Ibam Ibca Imma	1 2/m 2/m 2/m 1 2/b 2/a 2/m 1 2(1)/b 2(1)/c 2(1)/a 1 2(1)/m 2(1)/m 2(1)/a
		12 13 14	C2/m P2/c P2(1)/c	C 1 2/m 1 P 1 2/c 1 P 1 2(1)/c 1	tetragonal	4	75 76	P4 P4(1)	P 4 P 4(1)
orthorhombic	222	15 16	C2/c P222	C 1 2/c 1			77 78 79	P4(2) P4(3) 4	P 4(2) P 4(3) I 4
0.1.101110111011		17 18 19	P222(1) P2(1)2(1)2	P 2 2 2(1) P 2(1)2(1) 2		-4	80 81	I4(1) P-4	I 4(1) P -4
		20 21	P2(1)2(1)2(1) C222(1) C222	P 2(1) 2(1) 2(1) C 2 2 2(1) C 2 2 2		4/m	82 83 84	I-4 P4/m P4(2)/m	I -4 P 4/m P 4 (2)/m
		22 23 24	F222 I222 I2(1)2(1)2(1)	F 2 2 2 I 2 2 2 I 2(1) 2(1) 2(1)			85 86 87	P4/n P4(2)/n 4/m	P 4/n P 4(2)/n
	mm2	25 26	Pmm2 Pmc2(1)	P m m 2 P m c 2(1)		422	88 <i>89</i>	I4(1)/a <i>P422</i>	I 4(1)/a P 4 2 2
		27 28 29	Pcc2 Pma2 Pca2(1)	P c c 2 P m a 2 P c a 2(1)			90 91 92	P42(1)2 P4(1)22 P4(1)2(1)2	P 4 2(1) 2 P 4(1) 2 2 P 4(1) 2(1) 2
		30 31 32	Pnc2 Pmn2(1) Pba2	P n c 2 P m n 2(1) P b a 2			93 94 95	P4(2)22 P4(2)2(1)2 P4(3)22	P 4(2)22 P 4(2)2(1)2 P 4(3)22
		33 34	Pna2(1) Pnn2	P n a 2(1) P n n 2			96 97	P4(3)2(1)2 1422	P 4(3) 2(1) 2 1 4 2 2
		35 36 37	Cmm2 Cmc2(1) Ccc2	C m m 2 C m c 2(1) C c c 2		4mm	98 99 100	I4(1)22 P4mm P4bm	14(1) 2 2 P 4 m m P 4 b m
		38 39 40	Amm2 Abm2 Ama2	A m m 2 A b m 2 A m a 2			101 102 103	P4(2)cm P4(2)nm P4cc	P 4(2) c m P 4(2) n m P 4 c c
		41 42	Aba2 Fmm2	A b a 2 F m m 2			104 105	P4nc P4(2)mc	P 4 n c P 4(2) m c
		43 44 45	Fdd2 Imm2 Iba2	F d d 2 m m 2 b a 2			106 107 108	P4(2)bc I4mm I4cm	P 4(2) b c I 4 m m I 4 c m
	mmm	46 47 48	Ima2 Pmmm Pnnn	I m a 2 P 2/m 2/m 2/m P 2/n 2/n 2/n		-42m	109 110 111	I4(1)md I4(1)cd P-42m	I 4(1) m d I 4(1) c d P -4 2 m
		49 50	Pccm Pban	P 2/c 2/c 2/m P 2/b 2/a 2/n		-42111	112	P-42c P-42(1)m	P -4 2 C P -4 2(1) m
		51 52 53	Pmma Pnna Pmna	P 2(1)/m 2/m 2/a P 2/n 2(1)/n 2/a P 2/m 2/n 2(1)/a			114 115 116	P-42(1)c P-4m2 P-4c2	P -4 2(1) c P -4 m 2 P -4 c 2
		54 55 56	Pcca Pbam Pccn	P 2(1)/c 2/c 2/a P 2(1)/b 2(1)/a 2/m P 2(1)/c 2(1)/c 2/n			117 118	P-4b2 P-4n2	P -4 b 2 P -4 n 2
		57 58	Pbcm Pnnm	P 2/b 2(1)/c 2(1)/m P 2(1)/n 2(1)/n 2/m			119 120 121	I-4m2 I-4c2 I-42m	I -4 m 2 I -4 c 2 I -4 2 m
		59 60 61	Pmmn Pbcn Pbca	P 2(1)/m 2(1)/m 2/n P 2(1)/b 2/c 2(1)/n P 2(1)/b 2(1)/c 2(1)/a		4/mmm	122 123 124	I-42d P4/mmm P4/mcc	I -4 2 d P 4/m 2/m 2/m P 4/m 2/c 2/c
		62	Pnma	P 2(1)/n 2(1)/m 2(1)/a			125	P4/nbm	P 4/n 2/b 2/m

Mechanisms (isotropic tumbling, SI units)	Remarks
Chemical Shift Anisotropy (CSA) molecular tumbling modulates the interaction of the chem. shift tensor with the B_0 field. $R_1 = (2/5) \; E_{\rm CSA} \left[\tau_{\rm c} / (1 + \omega^2 \tau_{\rm c}^2) \right] \\ R_2 = (1/90) \; E_{\rm CSA} \left\{ 8 \tau_{\rm c} + \left[6 \tau_{\rm c} + (1 + \omega^2 \tau_{\rm c}^2) \right] \right\}$	predominant relaxation mech. for non-protonated X nuclei $E_{\text{CSA}} = \gamma^2 \ B_0^2 \ \Delta \sigma^2 \\ \Delta \sigma = \sigma_\perp - \sigma_\parallel \text{ (in ppm)} \\ \text{(assuming axial symmetry of tensor)}$
Quadrupole Relaxation ($I > 1/2$) $R_1 = R_2 = (3/40) C_1 [1 + \eta^2/3] C_{QF}^2 \tau_c (\omega \tau_c << 1)$	$C_1 = (2l + 3) / [P(2l - 1)]$ $C_{QF} = e^2 Q q_{zz} / \hbar = quadrupolar$ coupling in Hz; $\eta =$ asymmetry param.
Spin-Rotation Interaction (SR)	

Spin-Rotation Interaction (SR)

Relaxation arises from the interaction of the nuclear spin with magnetic fields generated by the rotation of a molecular magnetic moment modulated by molecular collisions:

$$\left(\frac{1}{T_1}\right)_{SR} = \frac{2 I_1 kT}{3 \hbar^2} C_{eff}^2 \tau_J$$

 I_i = moment of inertia of the molecule

 C_{eff} = effective spin-rotational coupling constant

 $\tau_{\rm J}$ = angular momentum correlation time

With $\tau_c \cdot \tau_J = \frac{I_i}{6kT}$, we can introduce the reorientational correlation time and we obtain:

$$\left(\frac{1}{T_1}\right)_{SR} = \frac{J_1^2}{9 \, \hbar^2} \, C_{eff}^2 \cdot \frac{1}{\tau_c}$$

Scalar Coupling (SC)

This relaxation mechanism can occur if the nucleus I in question is scalar coupled (with coupling constant J) to a second spin ($S \ge \frac{1}{2}$) and the coupling is modulated by either chemical exchange (**SC relaxation of the first kind**) or the relaxation of spin S, e.g. if $S > \frac{1}{2}$, (**SC relaxation of the second kind**). In this case spin splittings disappear and single lines are observed.

$$\left(\frac{1}{T_1}\right)_{\text{SC}} = \frac{8\pi^2 \, J^2 \, S \, (S\!+\!1)}{3} \left[\frac{\tau_{\text{SC}}}{1+(\omega_1-\omega_S)^2 \, \tau_{\text{SC}}^2}\right]$$

$$\left(\frac{1}{T_2}\right)_{\rm SC} = \frac{4\pi^2 \ J^2 \ S \ (S+1)}{3} \ \left[\tau_{\rm SC} + \frac{\tau_{\rm SC}}{1 + (\omega_1 - \omega_S)^2 \ \tau_{\rm SC}^2}\right]$$

 $au_{\text{SC}} = au_{\text{e,}}$ if exchange time $au_{\text{e}} \! \ll \! T_{\text{1}}$ of either spin (first kind)

 $\tau_{\rm SC} = T_1^{\rm S}$ (the relaxation time of spin S) if $T_1^{\rm S} \ll \tau_{\rm e}$, $1/2\pi J$ (second kind)

 $\omega_{\rm I}$ and $\omega_{\rm S}$ are the resonance of I and S at the magnetic field in which $\left(\frac{1}{T_{\rm I,2}}\right)_{\rm SC}$ is measured.

X-ray Diffractometry Tables

X-ray Diffractometry Tables

Bond Lengths of Main Group Elements

	Н	В	С	N	0	F	ΑI	Si	Р	S	CI	Ga	Ge	As	Se	Br	ln	Sn	Sb	Те	I
Н	68	115	111	99	92	86	152	147	143	135	130	152	154	154	148	144	176	172	174	169	167
В	115	162	157	145	138	131	199	195	190	181	176	199	201	200	194	191	224	219	221	216	213
С	111	157	158	148	143	137	192	188	185	182	178	193	196	197	195	193	216	213	215	211	210
N	99	145	148	146	142	138	179	175	173	172	173	180	184	186	185	186	203	200	202	199	199
0	92	138	143	142	144	142	171	168	167	166	168	173	177	180	179	181	195	193	195	192	193
F	86	131	137	138	142	148	163	161	160	160	163	166	170	173	173	176	187	185	188	185	186
AI	152	199	192	179	171	163	244	236	227	217	210	239	238	237	229	225	268	261	261	253	249
Si	147	195	188	175	168	161	236	230	222	213	206	234	234	232	225	222	260	255	256	249	245
P	143	190	185	173	167	160	227	222	218	210	204	227	229	228	222	219	251	247	249	244	241
Si	135	181	182	172	166	160	217	213	210	206	202	218	220	222	219	216	241	238	240	235	235
CI	130	176	178	173	168	163	210	206	204	202	202	211	215	217	215	216	234	231	233	230	230
Ga	152	199	193	180	173	166	239	234	227	218	211	238	238	237	230	226	263	259	260	253	250
Ge	154	201	196	184	177	170	238	234	229	220	215	238	240	239	233	230	263	258	260	255	252
As	154	200	197	186	180	173	237	232	228	222	217	237	239	240	235	231	261	257	259	254	253
Se	148	194	195	185	179	173	229	225	222	219	215	230	233	235	232	230	254	250	252	248	248
Br	144	191	193	186	181	176	225	222	219	216	216	226	230	231	230	230	249	246	248	245	245
In	175	223	216	202	195	187	268	260	251	241	234	263	262	260	253	249	292	285	285	277	273
Sn	172	219	213	200	193	185	261	255	247	238	231	259	258	257	250	246	285	280	281	273	270
Sb	174	221	215	202	195	188	261	256	249	240	233	260	260	259	252	248	285	281	282	275	272
Те	169	216	211	199	192	185	253	249	244	235	230	253	255	254	248	245	278	273	275	270	267
ı	167	213	210	199	193	186	249	245	241	235	230	250	252	253	248	245	274	270	272	267	266

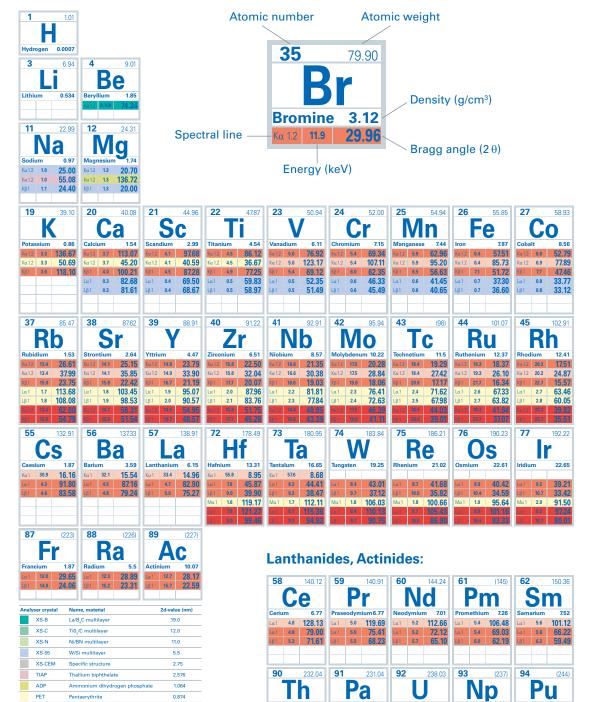
Bond valences s may be calculated from experimental bond lengths (d) after Pauling's correlation equation (Pauling, The Nature of Chemical Bond) using this single bond length (d_0). The constant b is commonly taken to be 37 pm.

$$s = \exp\left[\left(d_0 - d\right)/b\right]$$

 $d = d_0 - (b \ln s)$

The single bond lengths are listed in pm. They are calculated from the modified Schomaker-Stevenson equation (Blom, Haaland, *J. Mol. Struc.* 128 (1985) 21-27).

Laue Classes and Point Groups


Crystal System	Laue Class	Point Group	Crystal System	Laue Class	Point Group
Triclinic	-1	<i>1</i> -1	Trigonal/Hexagonal	-3	<i>3</i> -3
Monoclinic	2/m	2 m 2/m		-3m1 (-31m)	321 (312) 3m1 (31m) -3m1 (-31m) 6
Orthorhombic	mmm	222 mm2 mmm		6/mmm	-6 6/m <i>622</i> -62m
Tetragonal	4/m	4 -4			6mm 6/mmm
	4/mmm	4/m 422 -42m 4mm 4/mmm	Cubic	m-3 m-3m	23 m-3 432 -43m m-3m

Crystal	Point	SG	Condensed	Full	Crystal	Point	SG	Condensed	Full
System	Group	#	Symbol	Symbol	System	Group	#	Symbol	Symbol
		126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	P4/nnc P4/mbm P4/mnc P4/nmm P4/ncc P4(2)/mmc P4(2)/nbc P4(2)/nnm P4(2)/nbc P4(2)/mmn P4(2)/mmn P4(2)/mmn P4(2)/mmn P4(1)/mmn P4(1)/mmd P4(1)/amd P4(1)/amd	P 4/n 2/n 2/c P 4/m 2(1)/b 2/m P 4/m 2(1)/n 2/c P 4/n 2(1)/n 2/c P 4/n 2(1)/n 2/c P 4/2/m 2/m 2/c P 4(2)/m 2/m 2/c P 4(2)/m 2/c 2/m P 4(2)/n 2/n 2/b 2/c P 4(2)/m 2/n 2/n 2/m P 4(2)/m 2(1)/n 2/m P 4(2)/m 2(1)/n 2/m P 4(2)/n 2(1)/n 2/m P 4(2)/n 2(1)/n 2/m P 4(2)/n 2(1)/m 2/c P 4(2)/n 2(1)/c 2/m I 4/m 2/c 2/m I 4/m 2/c 2/m I 4(1)/a 2/m 2/d I 4(1)/a 2/c 2/d	cubic	23 m-3	195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 211 212	P23 F23 I23 P2(1)3 P1(1)3 Pm-3 Pn-3 Fm-3 Fd-3 Im-3 Pa-3 Ia-3 P432 P4(2)32 F432 F432 F432 P4(3)32	P23 F23 I23 P2(1)3 I2(1)3 P2/m-3 P2/m-3 F2/d-3 I2/m-3 P2(1)/a-3 I2(1)/a-3 P4(2)32 F4(3)32 P4(2)32 F4(3)32
trigonal	3 32 3m	143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 166 167	P3 P3(1) P3(2) R3 R-3 R-3 P312 P3(1)12 P3(1)12 P3(1)12 P3(2)12 P3(2)21 R32 P3m1 P31m P3c1 P31c R3m R3c P-31m P-31c R-3m R-3c R-3m R-3c	P3 P3(1) P3(2) R3 P-3(2) R3 P-3 R-3 P312 P3(1) 12 P3(1) 12 P3(2) 12 P3(2) 21 R32 P3 m1 P3 1 m P3 c 1 P3 1 c R3 m R3 c P-3 1 2/c P-3 2/m P-3 1 2/c P-3 2/m R-3 2/c		-43m m-3m	213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230		P 4(1) 3 2 P 4(1) 3 2 P 4 3 m F -4 3 m F -4 3 c I -4 3 d P 4/m -3 2/m P 4(2)/m -3 2/n P 4(2)/m -3 2/m F 4/m -3 2/m F 4/m -3 2/m F 4/m -3 2/c I -4/m -3 2/c I -4/m -3 2/m I -4/m -3 2/m
hexagonal	6 -6 6/m 622 6mm -6m	168 169 170 171 172 173 174 175 176 177 178 179 180 181 181 182 183 184 185 186 187 188 189 190 191	P6 P6(1) P6(2) P6(4) P6(3) P-6 P6(m) P6(3)/m P6(3)/m P6(3)/m P6(2) P6(5)22 P6(1)22 P6(5)22 P6(4)22 P6(3)22 P6(3)22 P6(3)mc P-602 P-602 P-622 P-622 P-622 P-622 P-63/mcm P6(3)/mcm P6(3)/mcm	P 6 P 6(1) P 6(5) P 6(2) P 6(4) P 6(3) P -6 P 6/m P 6(3)/m P 6(3)/m P 6 2 2 P 6(1) 2 2 P 6(5) 2 2 P 6(4) 2 2 P 6(4) 2 2 P 6(3) 2 2 P 6 m m P 6 c c P 6(3) c m P 6(3) m c P -6 c 2 P -6 2 c P 6/m 2/m 2/c P 6(3)/m 2/m 2/c					

Periodic Table of Elements

Lα1 13.0 39.22

13.0 27.46

Lα1 13.3 38.23

26.79

18.45

α1 14.0 **36.38**

17.8 19.96

Lα1 14.3 35.50

.α1 13.6 **37.29**

13.6 26.14 17.2 20.59

																			Helium	<u>1e</u>
							5		10.81	6	1	2.01	7	14.01	8	16.00	9	19.00	10	20.
								B			C		Λ		()		F	Λ	le
				1 0			Boror	_	2.34	Carbon		2.27	Nitrogen	0.001	Oxygen	0.001	Fluorine	0.001	Neon	0.00
λ	(nn	า) =	E	1.2	.4	_	Κα 1.2	0.18	42.51	Kα 1.2		7.24 3.31	Kα 1.2 0.39Kα 1.2 0.39	70.14 33.60	Kα 1.2O.5Kα 1.2O.5		Kα 1.20.6Kα 1.20.6		Kα 1.2 0.8 Kα 1.2 0.8	
	(*****	- /	E	(k	eV)	13		26.98	14	2	8.09	15	30.97	16	32.07	17	35.45	18	39
								Α			Si		P			S			A	\r
n/	$\lambda = 1$	2d :	sin ()			Alum	inium	2.70	Silicon		2.33	Phosphoru	s 1.82	Sulphur	2.07	Chlorine	0.003	Argon	0.
							Κα 1.2		145.12			9.21	Kα 1.2 2.0	89.56	Kα 1.2 2.3	7 0.00	Kα 1.2 2.6	00.10	Kα 1.2 3.0	
							Kα 1.2	1.5	17.45 131.86			4.58 1.67	Kα 1.2 2.0 Kβ 1 2.1	83.20	Kα 1.2Cα 1.2<	110100	Κα 1.2Κβ 12.8		Kα 1.23.0Kβ 13.2	
							Κα1	1.5	35.31			0.04	Κα.1 2.0	25.88	Κα1 2.3		Tyr L.	00.43	прт од	. 3
28	58.69	29	63.55	30	_	65.41	31		69.72	32	7	2.64	33	74.92	34	78.96	35	79.90	36	83
Ν	li I		u		Zı	n		G	a	(Эe		A	S	S	e	E	3r	K	r
Nickel	8.91	Copper	8.93			7.13	Galliu		5.91	Germa		5.32	Arsenic	5.78	Selenium		Bromine	3.12	Krypton	0
Kα 1.2 7.5 Kα 1.2 7.5	48.67 71.26	Kα 1.2 8			8.6	41.80 60.58	Kα 1.2	9.2	38.91 56.20			6.32 2.31	Kα 1.210.5Kα 1.210.5	33.99 48.83	Kα 1.2 11.3 Kα 1.2 11.3		Kα 1.2 11.9 Kα 1.2 11.9		Kα 1.2 12.0 Kα 1.2 12.0	
Kβ1 8.3	43.72		1.9 40.4	_	9.6	37.52	Κβ 1	10.3	34.90			2.56	Kβ1 11.7	30.44	Kβ 1 12.	_	Kβ1 13.		Kβ 1 14.	
Lα1 0.9	30.70		.9 28.00		1.0	25.74	La1	1.1	23.69			1.88	Lα1 1.3	20.25	Lα1 1.4		Lα1 1.5		Lα1 1.6	
Lβ1 0.9 Kα 1.2 7.5	30.08		.0 27.4 !	Lβ1	1.0	25.18 105.87	Lβ1 Kα 1.2	9.2	23.12 96.35		9.9	1.33	Lβ1 1.3 Kα 1.2 10.5	19.71 81.69	Lβ1 1.4 Kα 12 11.2		Lβ1 1.5 Kα1.2 11.5		Lβ1 1.6	6 12
Kβ1 8.3	112.81	47	.9 101.20	48	9.6	91.98	кр1 49	10.3	84.24	ξ ρ1	11.0 7	7.64	Kp1 11.7	71.90	κρ1 12.	66.86	кр1 13.	62.39	54	
46 D	106.42	4/ L	107.87	40		112.41	49	In	114.82	30	2n	8.71	31 C	121.76	5 <u>2</u>	127.60	33	126.90	V	13
Palladium	12.02	Silver	19 _{10.55}	Cade	nium	8.69	Indiu		7.31	Tin	ווכ	7.29	Antimony	6.64	Tellurium	6.23	lodine	4.93	Xenon	<u>(e</u>
Kα 1.2 21.2	16.71	Κα 1.2 2		_	23.1	15.27	_	24.2	14.61	Κα 1.2	25.2 1	3.99	Κα 1.2 26.4	13.41	Κα 1.2 27.4		Κα 1.2 28.		Κα 1.2 29.	
Kα 1.2 21.2	23.73	Κα 1.2 2			23.1	21.66	Κα 1.2		20.72	Κα 1.2		9.84	Kα 1.2 26.4	19.01	Kα 1.2 27. 4		Kα 1.2 28 J		Kα 1.2 29.	
Kβ1 23.8	14.85 59.95		4.9 14.18 1.0 56.7		26.1 3.1	13.55 53.82	Κβ1 Lα1	3.3	12.96 51.12			2.41 8.64	Kβ1Lα13.6	11.89 46.34	Kβ 1 31.0Lα 1 3.8		Kβ1 32.5 Lα1 3.5		Kβ 1B 33.B 4.1	
Lα1 2.8 Lβ1 3.0	56.63		2 53.5		3.1	50.63	LB1	3.5	47.99			5.56	Lβ1 3.8	43.31	Lβ1 4.0		Lβ1 4.2		Lβ1 4.4	
Kα 1.2 21.2 KB 1 23.8	37.94 33.60	Κα 1.2 2	2.2 36.1 9	Κα 1.2	23.1	34.65	Κα 1.2	24.2	33.04			1.62 797	Ku 1.2 26.4	30.28	Kα12 275		Kα 1.2 28.			
78	195.08	79	196.97			200.59	81	67.0	204.37	82	20	7.20	83	208.98	84	(209)	85	(210)	86	(
P	+		\ 111		Н	a		Т			Ph		B		P	O.		1	R	n
Platinum	21.46	Gold	19.28	Merc		13.53	Thalli	um	11.86	Lead		1.34	Bismuth	9.81	Polonium		Astatine	7.00	Radon	
Lα1 9.4	38.06	La1 S	36.90	La 1	10.0	35.90	La1	10.3	34.92	La 1		3.93	Lα1 10.8	33.00	Lα1 11.1		La 1 11.0	31.26	Lα1 11.3	.7 3
Lβ1 11.1	32.29		1.4 31.22		11.8	30.19	Lβ1	12.2	29.20			8.25	Lβ1 13.0	27.34	Lβ1 13.0	26.47	Lβ 1 13.	25.64	Lβ1 14.	.3 2
Mα.1 2.0	87.53		83.8		2.1	80.49 87.13	Μα 1	2.3	77.30 84.20			4.41 1.45	Mα1 2.4	71.67 78.86	La 1 11.1	76,41			\vdash	-
la1 9.4	93.62																			

63		151.96	64		157.25	65		158.93	66		162.50	67		164.93	68		167.26	69		168.93	70)	173.04	71		174.47
	Ει	J		G	d		T	b		D	V		H	0		Е	r	•	Γı	n	'	ΥI	b		L	u
Europ	oium	5.24	Gado	olinium	7.90	Terb	ium	8.23	Dysp	rosium	8.55	Holn	nium	8.80	Erbiu	ım	9.07	Thuli	um	9.32	Ytter	rbium	6.97	Lutet	ium	9.84
La 1	5.9	96.23	La1	6.1	91.87	La 1	6.3	87.87	La1	6.5	84.15	La 1	6.7	80.73	La 1	7.0	77.58	La 1	7.2	74.63	La 1	7.4	71.89	La1	7.7	69.31
La 1	5.9	63.55	La 1	6.1	61.09	La 1	6.3	58.78	La1	6.5	56.59	La 1	6.7	54.53	La 1	7.0	52.60	La 1	7.2	50.78	La 1	7.4	49.06	La1	7.7	47.42
Lβ1	6.5	56.96	Lβ1	6.7	54.59	Lß1	7.0	52.36	Lß1	7.2	50.27	Lß1	7.5	48.30	Lß1	7.8	46.43	Lβ1	8.1	44.67	Lß 1	8.4	42.99	Lß1	8.7	41.40
																					La.1	7.4	136.36	La 1	7.7	128.12
																					LB1	8.4	110.04	LB1	8.7	104.46
95		(243)	96		(247)	97		(247)	98		(251)	99		(252)	10	0	(257)	10	1	(258)	10	2	(259)	10	3	(262)
	\ r	n		Cr	n		B	k		C	f		E	S		Fr	n		V	d		N	0		L	r
Ame	icium	13.69	Curiu	ım	13.51	Berk	elium	14.79	Calif	ornium	15.1	Einst	einium	13.5	Ferm	ium		Men	delevi	um	Nobe	elium		Lawr	enciur	m
La 1	14.6	34.65	La1	15.0	33.84	La 1	15.3	33.04	La1	15.7	32.38															
La 1	14.6	24.32	La1	15.0	23.76	La 1	15.3	23.20	La1	15.7	22.68															
Lβ1	18.8	18.81	Lβ1	19.4	18.26	Lβ1	20.0	17.74	Lβ1	20.6	17. 22															

PET

Indium antimonide

Lithium fluoride

0.874

0.748

0.653

0.285

X-ray Diffractometry Tables

EPR/ENDOR Frequency Table

Conversion from the 2Θ Bragg angle using Ag, Mo and Cu radiation to resolution and vice versa.

Calculations based on Bragg's Law: $2 d \sin \Theta = n \lambda$

For λ , the mean of α_1 and α_2 (2/3 α_1 + 1/3 α_2) was taken, resulting in following wavelengths:

Ag 0.56083 Å Mo 0.71073 Å Cu 1.54178 Å

2 ⊕ _{Ag} (°)	2 ⊕ _{Mo} (°)	2 ⊕ _{Cu} (°)	d (Å)	sin Θ/λ	2 ⊕ _{Ag} (°)	2⊕ _{Mo} (°)	d (Å)	sin Θ/λ
3.21	4.07	8.84	10.000	0.050	50.00	64.77	0.664	0.754
3.63	4.61	10.00	8.845	0.057	53.32	69.30	0.625	0.800
6.43	8.15	17.74	5.000	0.100	53.82	70.00	0.620	0.807
7.24	9.18	20.00	4.439	0.113	60.00	78.64	0.561	0.892
7.89	10.00	21.80	4.077	0.123	60.96	80.00	0.553	0.904
10.00	12.68	27.73	3.217	0.155	67.83	90.00	0.503	0.995
10.73	13.61	29.78	3.000	0.167	68.23	90.59	0.500	1.000
10.80	13.70	30.00	2.979	0.168	70.00	93.25	0.489	1.023
12.88	16.34	35.92	2.500	0.200	74.38	100.00	0.464	1.078
14.29	18.14	40.00	2.254	0.222	80.00	109.09	0.436	1.146
15.75	20.00	44.26	2.046	0.244	80.54	110.00	0.434	1.153
16.12	20.47	45.34	2.000	0.250	84.60	117.05	0.417	1.200
17.69	22.47	50.00	1.824	0.274	86.22	120.00	0.410	1.219
19.37	24.62	55.10	1.667	0.300	89.02	125.35	0.400	1.250
20.00	25.43	57.03	1.615	0.310	90.00	127.30	0.397	1.261
20.96	26.65	60.00	1.542	0.324	91.31	130.00	0.392	1.275
21.55	27.41	61.85	1.500	0.333	95.72	140.00	0.378	1.322
23.57	30.00	68.31	1.373	0.364	99.32	150.00	0.368	1.359
24.09	30.66	70.00	1.344	0.372	100.00	152.24	0.366	1.366
25.93	33.03	76.15	1.250	0.400	101.99	160.00	0.361	1.386
27.04	34.47	80.00	1.199	0.417	103.47	168.56	0.357	1.400
29.81	38.05	90.00	1.090	0.459	103.64	170.00	0.357	1.402
30.00	38.29	90.72	1.083	0.461	104.20	180.00	0.355	1.407
31.31	40.00	95.80	1.039	0.481	110.00		0.342	1.461
32.36	41.36	100.00	1.006	0.497	120.00		0.324	1.544
32.57	41.63	100.87	1.000	0.500	127.62		0.313	1.600
34.67	44.37	110.00	0.941	0.531	130.00		0.309	1.616
36.72	47.06	120.00	0.890	0.562	138.36		0.300	1.667
38.50	49.39	130.00	0.851	0.588	140.00		0.298	1.676
38.96	50.00	132.92	0.841	0.595	150.00		0.290	1.722
39.33	50.48	135.36	0.833	0.600	160.00		0.285	1.756
39.97	51.34	140.00	0.820	0.609	170.00		0.281	1.776
40.00	51.37	140.19	0.820	0.610	180.00		0.280	1.783
41.04	52.75	149.00	0.800	0.625				
41.14	52.88	150.00	0.798	0.626				
41.98	54.00	160.00	0.783	0.639				
42.49	54.67	170.00	0.774	0.646				
42.66	54.90	180.00	0.771	0.649				
46.23	59.67		0.714	0.700				
46.48	60.00		0.711	0.704				
47.23	61.02		0.700	0.714				

Z	A	E	Spin I	Nat. Abund. [%] (Half-life)	calc. X-Band ENDOR Freq. [MHz at 0.350T] (free nucleus)	$g = \mu / (1 \mu_N)$	д μм / д。 μв	Quadrupole Moment Q [fm² = 0.01 barn]
0	1	n	1/2		10.2076432	-3.8260854	1.040669 E-03	
1	1 2 3	HHH	1/2 1 1/2	99.9885 0.0115 (12.32 y)	14.9021186 2.28756617 15.8951945	5.58569468 0.857438228 5.95792488	-1.519270 E-03 -2.332173 E-04 -1.620514 E-03	0.286
2	3	Нe	1/2	0.000134	11.3519357	-4.25499544	1.157329 E-03	
3	6 7	Li Li	1 3/2	7.59 92.41	2.193146 5.791961	0.8220473 2.1709750	-2.235912 E-04 -5.904902 E-04	-0.0808 -4.01
4	9	Ве	3/2	100.0	2.09429	-0.784993	2.13513 E-04	5.288
5	10 11	B B	3 3/2	19.9 80.1	1.601318 4.782045	0.600214927 1.792433	-1.632543 E-04 -4.875293 E-04	8.459 4.059
6	13	С	1/2	1.07	3.747940	1.404824	-3.821023 E-04	
7	14 15	N N	1 1/2	99.636 0.364	1.077197 1.511043	0.40376100 -0.56637768	-1.098202 E-04 1.540508 E-04	2.044
8	17	0	5/2	0.038	2.02098	-0.757516	2.06039 E-04	-2.558
9	19	F	1/2	100.0	14.01648	5.253736	-1.428980 E-03	
10	21	Ne	3/2	0.27	1.177076	-0.441198	1.20003 E-04	10.155
11	22 23	Na Na	3 3/2	(2.6019 y) 100.0	1.5527 3.944334	0.5820 1.4784371	-1.583 E-04 -4.021247 E-04	10.4
12	25	Mg	5/2	10.00	0.91290	-0.34218	9.3071 E-05	19.94
13	27	Al	5/2	100.0	3.886082	1.4566028	-3.961859 E-04	14.66
14	29	Si	1/2	4.685	2.96293	-1.11058	3.02070 E-04	
15	31	Р	1/2	100.0	6.03801	2.26320	−6.15575 E−04	
16	33	S	3/2	0.75	1.145104	0.429214	–1.16743 E–04	-6.78
17	35 36 37	CI CI	3/2 2 3/2	75.76 (3.01 E5 y) 24.24	1.461790 1.71476 1.216786	0.5479162 0.642735 0.4560824	-1.490294 E-04 -1.748195 E-04 -1.240513 E-04	-8.165 -1.80 -6.435
18	39	Ar	7/2	(269 y)	1.21	-0.454	1.234 E-04	
19	39 40 41	K K K	3/2 4 3/2	93.258 0.0117 6.730	0.696337 0.865803 0.382209	0.2610049 -0.324525 0.143261827	-7.099152 E-05 8.82686 E-05 -3.896623 E-05	5.85 -7.3 7.11
20	41 43	Ca Ca	7/2 7/2	(1.02 E5 y) 0.135	1.215637 1.004386	-0.4556517 -0.3764694	1.239341 E-04 1.023971 E-04	-6.7 -4.08
21	45	Sc	7/2	100.0	3.625677	1.358996	-3.696376 E-04	-22.0
22	47 49	Ti Ti	5/2 7/2	7.44 5.41	0.84144 0.84166	-0.31539 -0.315477	8.5784 E-05 8.58076 E-05	30.2 24.7
23	50 51	> >	6 7/2	0.250 99.750	1.487665 3.924649	0.5576148 1.4710588	-1.516674 E-04 -4.001178 E-04	21 -5.2
24	53	Cr	3/2	9.501	0.844019	-0.31636	8.6048 E-05	–15 or –2.8
25	53 55	Mn Mn	7/2 5/2	(3.74 E6 y) 100.0	3.8296 3.701688	1.4354 1.38748716	-3.9043 E-04 -3.773869 E-04	33

EPR/ENDOR Frequency Table

EPR/ENDOR Frequency Table

Z	Α	E	Spin	NA [%]	ENDOR Freq.	$g = \mu / (I \mu_N)$	g μ _N / g _e μ _B	Q [fm²]
26	57	Fe	1/2	2.119	0.483548	0.18124600	-4.92977 E-05	
27	59 60	Co Co	7/2 5	100.0 (1925 d)	3.527 2.027	1.322 0.7598	-3.596 E-04 -2.067 E-04	42 44
28	61	Ni	3/2	1.1399	1.33399	-0.50001	1.3600 E-04	16.2
29	63 65	Cu Cu	3/2 3/2	69.15 30.85	3.961568 4.2359	1.484897 1.5877	-4.038817 E-04 -4.318525 E-04	-22.0 -20.4
30	67	Zn	5/2	4.102	0.933986	0.35008196	-9.521988 E-05	15
31	69 71	Ga Ga	3/2 3/2	60.108 39.892	3.58672 4.55726	1.34439 1.70818	-3.6567 E-04 -4.6461 E-04	17.1 10.7
32	73	Ge	9/2	7.76	0.521409	-0.1954373	5.315759 E-05	-19.6
33	75	As	3/2	100.0	2.56025	0.959647	-2.61017 E-04	31.4
34	77 79	Se Se	1/2 7/2	7.63 (2.95 E5 y)	2.855058 0.7760	1.0701486 -0.2909	-2.910730 E-04 7.911 E-05	80
35	79 81	Br Br	3/2 3/2	50.69 49.31	3.746454 4.038433	1.404267 1.513708	-3.819508 E-04 -4.117181 E-04	30.5 25.4
36	83 85	Kr Kr	9/2 9/2	11.500 (10.756 y)	0.575479 0.596	-0.215704 -0.2233	5.86701 E-05 6.075 E-05	25.9 43.3
37	85 87	Rb Rb	5/2 3/2	72.17 27.83	1.444247 4.894398	0.5413406 1.834545	-1.472409 E-04 -4.989836 E-04	27.6 13.35
38	87	Sr	9/2	7.00	0.648363	-0.243023	6.61005 E-05	33.5
39	89	Υ	1/2	100.0	0.733223	-0.2748308	7.475208 E-05	
40	91	Zr	5/2	11.22	1.39118	-0.521448	1.41830 E-04	-17.6
41	93	Nb	9/2	100.0	3.6583	1.37122	-3.72963 E-04	-32
42	95 97	Mo Mo	5/2 5/2	15.90 9.56	0.9756 0.9962	-0.3657 -0.3734	9.9462 E-05 1.016 E-04	-2.2 25.5
43	99	Tc	9/2	(2.1 E5 y)	3.3703	1.2633	-3.4360 E-04	-12.9
44	99 101	Ru Ru	5/2 5/2	12.76 17.06	0.684 0.764	-0.256 -0.286	6.97 E-05 7.79 E-05	7.9 45.7
45	103 105	Rh Rh	1/2 7/2	100.0 (35.36 h)	0.47169 3.39	-0.17680 1.27	4.8088 E-05 -3.46 E-04	
46	105	Pd	5/2	22.33	0.685	-0.257	6.98 E-05	66
47	107 109	Ag Ag	1/2 1/2	51.839 48.161	0.606574 0.69734	-0.2273593 -0.26138	6.184016 E-05 7.1094 E-05	
48	111 113	Cd Cd	1/2 1/2	12.80 12.22	3.174203 3.320483	-1.1897722 -1.2446018	3.236098 E-04 3.385231 E-04	
49	113 115	In In	9/2 9/2	4.29 95.71	3.2779 3.2850	1.2286 1.2313	-3.3418 E-04 -3.3490 E-04	79.9 81
50	115 117 119	Sn Sn Sn	1/2 1/2 1/2	0.34 7.68 8.59	4.9027 5.34136 5.5881	-1.8377 -2.00208 -2.09456	4.9983 E-04 5.44552 E-04 5.69706 E-04	
51	121 123 125	Sb Sb Sb	5/2 7/2 7/2	57.21 42.79 (2.75856 y)	3.5893 1.9436 2.00	1.34536 0.72851 0.75	-3.65929 E-04 -1.9815 E-04 -2.04 E-04	–36 or –45 –49

Z	Α	E	Spin	NA [%]	ENDOR Freq.	$g = \mu / (I \mu_N)$	g μ _N / g _e μ _B	Q [fm²]
52	123 125	Te Te	1/2 1/2	0.89 7.07	3.932218 4.740899	-1.4738956 -1.7770102	4.008894 E-04 4.833345 E-04	
53	127 129	I	5/2 7/2	100.0 (1.57 E7 y)	3.00222 1.9979	1.125308 0.7489	-3.060760 E-04 -2.0368 E-04	-71 -48
54	129 131	Xe Xe	1/2 3/2	26.4006 21.2324	4.15114 1.230549	-1.555952 0.461241	4.232082 E-04 -1.254545 E-04	-11.4
55	133 134 135 137	Cs Cs Cs	7/2 4 7/2 7/2	100.0 (2.0652 y) (2.3 E6 y) (30.07 y)	1.968173 1.9967 2.0828 2.163	0.7377214 0.74843 0.78069 0.8109	-2.006551 E-04 -2.0357 E-04 -2.12341 E-04 -2.205 E-04	-0.343 38.9 5.0 5.1
56	133 135 137	Ba Ba Ba	1/2 3/2 3/2	(10.51 y) 6.592 11.232	4.11749 1.491586 1.66716	-1.54334 0.559085 0.62489	4.19778 E-04 -1.520672 E-04 -1.69967 E-04	16.0 24.5
57	137 138 139	La La La	7/2 5 7/2	(6 E4 y) 0.090 99.910	2.054 1.981533 2.121403	0.7700 0.7427292 0.7951559	-2.094 E-04 -2.020172 E-04 -2.1627690 E-04	26 45 20
59	141	Pr	5/2	100.0	4.5625	1.71016	-4.65152 E-04	-5.89
60	143 145	Nd Nd	7/2 7/2	12.2 8.3	0.8118 0.5000	-0.3043 -0.1874	8.2764 E-05 5.0979 E-05	-63 -33
61	147	Pm	7/2	(2.623 y)	1.97	0.737	-2.00 E-04	74
62	147 149 151	Sm Sm Sm	7/2 7/2 5/2	14.99 13.82 (90 y)	0.6211 0.5120 0.3874	-0.2328 -0.1919 -0.1452	6.332 E-05 5.220 E-05 3.949 E-05	-25.9 7.5 71
63	151 152 153 154 155	Eu Eu Eu Eu	5/2 3 5/2 3 5/2	47.81 (13.537 y) 52.19 (8.593 y) (4.753 y)	3.70487 1.7253 1.6353 1.783 1.62	1.38868 0.6467 0.6130 -0.6683 0.608	-3.77711 E-04 -1.759 E-04 -1.667 E-04 1.818 E-04 -1.65 E-04	90.3 271 241 280 240
64	155 157	Gd Gd	3/2 3/2	14.80 15.65	0.4575 0.5999	-0.1715 -0.2249	4.664 E-05 6.116 E-05	127 135
65	157 158 159	Tb Tb Tb	3/2 3 3/2	(71 y) (180 y) 100.0	3.57 1.563 3.5821	1.34 0.5860 1.3427	-3.64 E-04 -1.594 E-04 -3.6520 E-04	141 270 143.2
66	161 163	Dy Dy	5/2 5/2	18.889 24.896	0.512 0.718	-0.192 0.269	5.22 E-05 -7.32 E-05	251 265
67	165	Но	7/2	100.0	3.150	1.181	-3.211 E-04	358
68	167	Er	7/2	22.869	0.4298	-0.1611	4.382 E-05	357
69	169 171	Tm Tm	1/2 1/2	100.0 (1.92 y)	1.23 1.22	-0.462 -0.456	1.257 E-04 1.240 E-04	
70	171 173	Yb Yb	1/2 5/2	14.28 16.13	2.6341 0.72555	0.98734 -0.27196	-2.6855 E-04 7.3970 E-05	280
71	173 174 175 176	Lu Lu Lu Lu	7/2 1 7/2 7	(1.37 y) (3.31 y) 97.41 2.59	1.74 5.1 1.7016 1.208	0.651 1.9 0.6378 0.4527	-1.772 E-04 -5.2 E-04 -1.735 E-04 -1.231 E-04	349 497

EPR/ENDOR Frequency Table

ENDOR Freq.

0.6049

0.380

1.8069

3.4012

3.4359

0.344971

1.173760

0.26804

0.2912

3.25229

0.26351

2.699312

0.996420

8.656069

8.741211

3.1065

2.419

2.437

3.63

3.207

2.47

3.916

2.0

0.491

3.57

0.630

0.290

3.351

1.08

0.726

1.69

1.60

0.438

0.38

0.22

1.5

3.13

0.12

0.628478

 $g = \mu / (I \mu_N)$

0.2267

0.67729

1.2748

1.2879

0.2355695

0.12930378

0.439955

0.10047

0.1091

1.21904

0.098772

1.011771

-0.3734838

0.045

1.1644

0.9069

0.9134

1.36

1.202

0.924

-1.468

0.73

0.184

1.34

0.236

-0.109

1.256

0.406

-0.272

0.632

0.60

0.164

0.14

0.082

0.6

1.17

3.24451580

3.2764292

-0.142

 $g \mu_{\rm N} / g_{\rm e} \mu_{\rm B}$

-6.166 E-05

-1.8422 E-04

-3.4675 E-04

-3.5029 E-04

-3.516974 E-05

-1.196648 E-04

-2.7326 E-05

-2.9684 E-05

-3.31570 E-04

-2.6865 E-05

-2.751947 E-04

1.015850 E-04

-8.824859 E-04

-8.911661 E-04

-3.1670 E-04

-2.4667 E-04

-2.4844 E-04

-3.70 E-04

-3.269 E-04

-2.51 E-04

3.993 E-04

-1.99 E-04

-5.00 E-05

-3.64 E-04

-6.42 E-05

2.95 E-05

-3.416 E-04

-1.104 E-04

7.40 E-05

-1.72 E-04

-1.63 E-04

-4.46 E-05

-3.89 E-05

-2.24 E-05

-1.6 E-04

-3.19 E-04

-1.22 E-05

-6.407328 E-05

3.87 E-05

NA [%]

18.60

13.62

99.988

14.31

37.40

62.60

1.96

16.15

37.3

62.7

100.0

16.87

13.18

29.52

70.48

22.1

100.0

(102 y)

(32.9 y)

(14.6 h)

(20 min)

(14.9 d)

(21.77 y)

100.0 (3.25 E4 y)

(7.34 E3 y)

(1.592 E5 v)

(2.14 E6 y)

(2.410 E4 y)

(7.37 E3 y)

(8.48 E3 y)

(1.56 E7 y)

(14.4 y)

(432.7 y)

(29.1 y)

(320 d)

0.7204 (7.04 E8 y)

(3.78 y)

33.832

Z

72

74

76

Α

177

179

181

183

185

187

187

189

191

193

195

197

199

201

203

204

205

207

207

209

209

211

212

225

227

229

231

233

235

237

239

241

241

243

243

245

247

249

253

97

Ε

Hf

Hf

Ta

W

Re

Re

Os

Os

lr

Pt

Au

Hg

Hg

TI

Pb

Bi

Ро

Rn

Fr

Ra

Ac

Th

Pa

U

U

Np

Pu

Pu

Am

Am

Cm

Cm

Cm

Bk

Es

Spin

7/2

9/2

7/2

1/2

5/2

5/2

1/2

3/2

3/2

3/2

1/2

3/2

1/2

3/2

1/2

2

1/2

1/2

9/2

9/2

1/2

1/2

5

1/2

3/2

5/2

3/2

5/2

7/2

5/2

1/2

5/2

5/2

5/2

5/2

7/2

9/2

3.5

3.5

Q [fm²]

337

379

317

218

207

85.6

81.6

75.1

54.7

38.6

-58

-10

170

430

-172

366.3

493.6

386.6

560

314

286

670

-51.6

EPR Tables

Useful Relationships for EPR

Magn. Moment of the electron $\mu_{\rm e}=g_{\rm e}~\mu_{\rm B}~S=g_{\rm e}~\mu_{\rm B}~/~2~(g_{\rm e}~{\rm defined~as~negative})$ alternatively: $\mu_{\rm e}=-g_{\rm e}~\mu_{\rm B}~/~2~({\rm with}~g_{\rm e}~{\rm positive})$ $\mu_{\rm B}=\beta_{\rm e}={\rm Bohr~magneton}$	Magn. Moment for nucleus n with spin I_n $\mu_n = g_n \ \mu_N \ I_{n=1} \gamma_n \ \eta \ I_n$ $\mu_N = \beta_N = \text{nuclear magneton}$
Resonance Condition - EPR $ v_e = g \; \mu_B B_0 / h $ $ v_e [\text{GHz}] = 13.996246 \; g \; B_0 [\text{T}] $ $ B_0 [\text{T}] = 0.071447730 \; v_e [\text{GHz}] / g $ $ g = 0.071447730 \; v_e [\text{GHz}] / B_0 [\text{T}] $ $ g = 3.04198626 \; v_e [\text{GHz}] / v_{\text{H2O}} [\text{MHz}] $	Resonance Condition - NMR $v_{\rm n} = g_{\rm n} \; \mu_{\rm N} \; B_0 \; / \; {\rm h} \; = \; \gamma_{\rm n} B_0 \; / \; 2 \pi$ for $^1 H$: $v_{\rm H2O} \; [{\rm MHz}] = 42.5763875 \; B_0 \; [{\rm T}]$ $B_0 \; [{\rm T}] = 0.0234871970 \; v_{\rm H2O} \; [{\rm MHz}]$
Hyperfine Coupling A [MHz] = 2.99792458 ×10 ⁴ A [cm ⁻¹] = 13.996246 g A [mT] = 1.3996246 g A [G]	$A [\text{cm}^{-1}] = 0.333564095 \times 10^{-4} A [\text{MHz}]$ = $4.6686451 \times 10^{-4} g A [\text{mT}]$ = $0.46686451 \times 10^{-4} g A [\text{G}]$
Magnetic Field (flux density) = B_0 [in Tesla]	1 T = 10 ⁴ G = 10 kG; 1 mT = 10 G; 1 G = 0.1 mT

see Physical Tables for Fundamental Constants

Skin Depth Table

Material	Specific Resistivity	Depth a	at 9.6 GHz	Depth a	at 100 kHz
	x 10 ⁻⁶ ohm-cm	μm	μ in	mm	in
Silver	1.629	0.656	25.8	0.203	0.008
Copper. annealed	1.724	0.674	26.6	0.209	0.008
Gold	2.440	0.802	31.6	0.249	0.010
Aluminum	2.824	0.863	34.0	0.267	0.011
Rhodium	5.040	1.153	45.4	0.357	0.014
Tungsten	5.600	1.216	47.9	0.377	0.015
Molybdenum	5.700	1.226	48.3	0.380	0.015
Zinc	5.800	1.237	48.7	0.383	0.015
Brass	ca. 7.	1.359	53.5	0.421	0.017
Cadmium	7.600	1.416	55.8	0.439	0.017
Nickel	7.800	1.435	56.5	0.444	0.017
Platinum	10.000	1.624	64.0	0.503	0.020
Palladium	11.0	1.704	67.1	0.528	0.021
Tin	11.5	1.742	68.6	0.540	0.021
Lead	22.0	2.409	94.9	0.747	0.029

(20.47 d) revision 2009 based on NMR Properties Table, W. E. Hull; no. of decimal places reflects precision.

EPR Tables

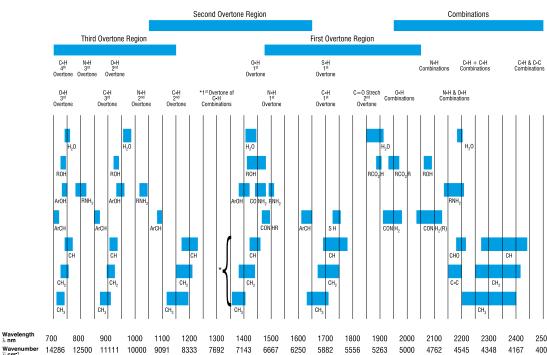
IR Spectroscopy Tables

Table for Various Free Radicals Generated in Aqueous Solution

Radical	Sample solution	T (°C) pH	T₁ (μs)	Radical	Sample solution	T (°C) pH	T₁ (μs)
*CH₃	0.1-0.5 M DMSO 1.0 M NaOH	19 pH = 14	0.2	*CH₂OH	0.5-1.0 M CH₃OH 1.0 M phosphate buffer	17 pH = 6.6-6.8	0.6
*CH₂COO⁻	0.5 M NaOAc 1.0 M NaOH	17-19 pH = 14	2.0	CH₃C*HOH	0.5 M CH ₃ CH ₂ OH 1.0 M phosphate buffer	18 pH = 6.6-6.8	1.3
*CH(COO ⁻) ₂	0.5 M malonic acid 2.0 M NaOH	18 pH = 14	2.9	(CH ₃) ₂ C*OH	0.25 M <i>i</i> -propanol 0.5 M phosphate buffer	17 pH = 6.8	2.7
-OC*(COO-) ₂	0.1 M tartronic acid 1.2 M NaOH	17 pH = 14	3.6 3.5≤ <i>T</i> ₁ <4.0	CH₂OD	0.5 M CH ₃ OH in D ₂ O acidif with H ₂ SO ₄	9 pD = 3.6	0.72
-OCH•COO-	0.1 M tartronic acid 1.2 M NaOH	17 pH = 14	1.4			19 pD = 3.2	0.53
*CH ₂ O⁻	0.5 M CH₃OH 0.1 M NaOH	10 pH = 13	~0.1 0.08≤ <i>T</i> ₁ <0.15	(CH ₃) ₂ C*OD	0.5 M <i>i</i> -propanol in D ₂ O acidif with H ₂ SO ₄	19 pD = 3.5	2.2
*CH₃C*OH	0.5 M CH ₃ CH ₂ OH 1.0 M NaOH	18 pH = 14	0.7		0.5 M isopropanol in D ₂ O; 0.5 M phosphate buffer	19 pD = 7.0	2.5
(CH ₃) ₂ CO*-	0.5 M <i>i</i> -propanol 1.0 M NaOH	16 pH = 14	1.6				

Relaxation Times of Some Organic Free Radicals (Saturation-Recovery Method)

Radical	T ₁ (μs)	T₂ (μs)
1,2-dicarboxylvinyl	9.0±1	7.0±2
chelidonic acid trianion	5.0±0.5	4.5±1
ascorbate radical	2.3±0.5	1.0±0.3
p-benzosemiquinone anion	2.0±0.3	1.8±0.5
2,5-di- <i>t</i> -butyl-benzosemiquinone anion	11.5±0.5	


Values of T₂ for Various Organic Radicals at 77 K (ESE Method)

Radical	Matrix	T₂ (μs)	
naphthalene anion	MTHF	3.4	
naphtalene-d ₈ anion	MTHF	3.2	
1.3,5-triphenylbenzene anion	MTHF	3.2	
triphenylene anion	MTHF	3.2	
DPPH	MTHF	3.2	
DPPH	fluorolube (FS-5)	10.0	
perylene cation	sulfuric acid	10.4	
anthracene cation	sulfuric acid	10.4	
naphthacene cation	sulfuric acid	10.4	
thianthrene cation	sulfuric acid	10.0	
anthracene- d_{10} cation	sulfuric acid- d_2	200.0	
anthracene cation	boric acid	14.6	
biphenyl cation	boric acid	14.6	
p-terphenyl cation	boric acid	14.2	
naphthalene cation	boric acid	13.2	
1,3,5-triphenylbenzene cation	boric acid	13.8	
coronene cation	boric acid	10.0	
triphenylene cation	boric acid	9.8	
thianthrene cation	boric acid	10.0	

Conversion Table for Transmittance and Absorbance Units

Transmittance [%]	Absorbance	Transmittance [%]	Absorbance	Transmittance [%]	Absorbance	Transmittance [%]	Absorbance
1.0	2.000	26.0	.585	51.0	.292	76.0	.119
2.0	1.699	27.0	.569	52.0	.284	77.0	.114
3.0	1.523	28.0	.553	53.0	.276	78.0	.108
4.0	1.398	29.0	.538	54.0	.268	79.0	.102
5.0	1.301	30.0	.523	55.0	.260	80.0	.097
6.0	1.222	31.0	.509	56.0	.265	81.0	.092
7.0	1.155	32.0	.495	57.0	.244	82.0	.086
8.0	1.097	33.0	.481	58.0	.237	83.0	.081
9.0	1.046	34.0	.469	59.0	.229	84.0	.076
10.0	1.000	35.0	.456	60.0	.222	85.0	.071
11.0	.959	36.0	.444	61.0	.215	86.0	.066
12.0	.921	37.0	.432	62.0	.208	87.0	.060
13.0	.886	38.0	.420	63.0	.201	88.0	.056
14.0	.854	39.0	.409	64.0	.194	89.0	.051
15.0	.824	40.0	.398	65.0	.187	90.0	.046
16.0	.796	41.0	.387	66.0	.180	91.0	.041
17.0	.770	42.0	.377	67.0	.174	92.0	.036
18.0	.745	43.0	.367	68.0	.167	93.0	.032
19.0	.721	44.0	.357	69.0	.161	94.0	.027
20.0	.699	45.0	.347	70.0	.155	95.0	.022
21.0	.678	46.0	.337	71.0	.149	96.0	.018
22.0	.658	47.0	.328	72.0	.143	97.0	.013
23.0	.638	48.0	.319	73.0	.137	98.0	.009
24.0	.620	49.0	.310	74.0	.131	99.0	.004
25.0	.602	50.0	.301	75.0	.125	100.0	.000

Near-Infrared Table

IR Spectroscopy Tables

IR Spectroscopy Tables

Conversion Table for Energy and Wavelength Units

12.50

11.11

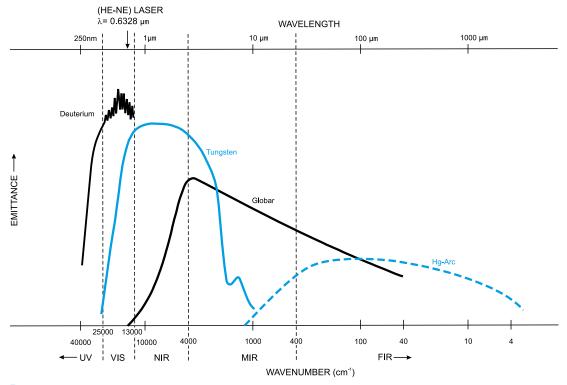
12 500

11 111

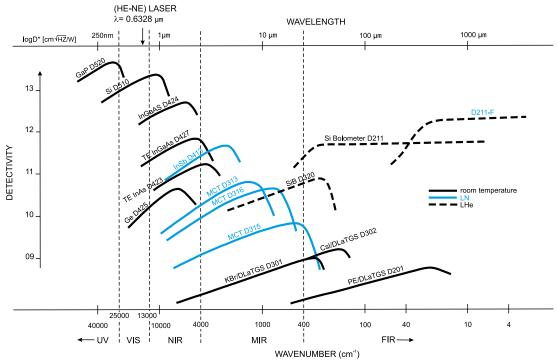
23 983

26 981

.09 919


.11 159

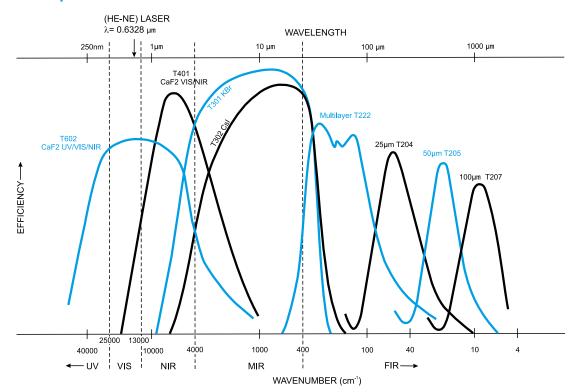
800.0

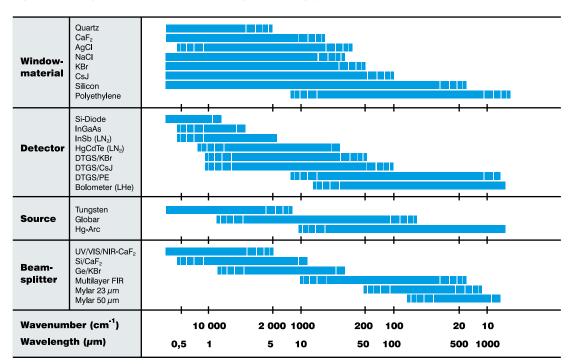

900.0

Wavenumber [cm ⁻¹]	Wavelength [µm]	Wavelength [nm]	Frequency [GHz]	Electron Volt [eV]	Wavenumber [cm ⁻¹]	Wavelength [µm]	Wavelength [nm]	Frequency [GHz]	Electron Volt [eV]
2.0	5 000.00	5 000 000	60	.00 025	1 000.0	10.00	10 000	29 979	.12 398
4.0	2 500.00	2 500 000	120	.00 050	1 100.0	9.09	9 091	32 977	.13 638
6.0	1 666.67	1 666 667	180	.00 074	1 200.0	8.33	8 333	35 975	.14 878
8.0	1 250.00	1 250 000	240	.00 099	1 300.0	7.69	7 692	38 973	.16 118
10.0	1 000.00	1 000 000	300	.00 124	1 400.0	7.14	7 143	41 971	.17 358
12.0	833.33	833 333	360	.00 149	1 500.0	6.67	6 667	44 968	.18 598
14.0	714.29	714 286	420	.00 174	1 600.0	6.25	6 250	47 966	.19 837
16.0	625.00	625 000	480	.00 198	1 700.0	5.88	5 882	50 964	.21 077
18.0	555.56	555 556	540	.00 223	1 800.0	5.56	5 556	53 962	.22 317
20.0	500.00	500 000	600	.00 248	1 900.0	5.26	5 263	56 960	.23 557
22.0	454.55	454 545	660	.00 273	2 000.0	5.00	5 000	59 958	.24 797
24.0	416.57	416 667	719	.00 298	2 200.0	4.55	4 545	65 954	.27 276
26.0	384.62	384 615	779	.00 322	2 400.0	4.17	4 167	71 950	.29 756
28.0	357.14	357 143	839	.00 347	2 600.0	3.58	3 846	77 945	.32 236
30.0	333.33	333 333	898	.00 372	2 800.0	3.57	3 571	83 941	.34 716
32.0	312.50	312 500	959	.00 397	3 000.0	3.33	3 333	89 937	.37 195
34.0	294.12	294 118	1 019	.00 422	3 200.0	3.13	3 125	95 933	.39 675
36.0	277.78	277 778	1 079	.00 446	3 400.0	2.94	2 941	101 929	.42 155
38.0	263.16	263 158	1 139	.00 471	3 600.0	2.78	2 778	107 924	.44 634
40.0	250.00	250 000	1 199	.00 496	3 800.0	2.63	2 632	113 920	.47 141
50.0	200.00	200 000	1 499	.00 620	4 000.0	2.50	2 500	119 916	.49 594
60.0	166.67	166 667	1 799	.00 744	5 000.0	2.00	2 000	149 895	.61 992
70.0	142.86	142 857	2 099	.00 868	6 000.0	1.67	1 667	179 874	.74 390
80.0	125.00	125 000	2 398	.00 992	7 000.0	1.43	1 429	209 853	.86 789
90.0	111.11	111 111	2 698	.01 116	8 000.0	1.25	1 250	239 832	.99 187
100.0	100.00	100 000	2 988	.01 240	9 000.0	1.11	1 111	269 811	1.11 586
110.0	90.91	90 909	3 298	.01 364	10 000.0	1.00	1 000	299 790	1.23 984
120.0	83.33	83 333	3 597	.01 488	11 000.0	.91	909	329 769	1.36 382
130.0	76.92	76 923	3 897	.01 612	12 000.0	.83	833	359 748	1.48 781
140.0	71.43	71 429	4 197	.01 736	13 000.0	.77	769	389 727	1.61 179
150.0	66.67	66 667	4 497	.01 860	14 000.0	.71	714	419 706	1.73 578
160.0	62.50	62 500	4 797	.01 984	15 000.0	.67	667	449 685	1.85 976
170.0	58.82	58 824	5 096	.02 108	16 000.0	.62	625	479 664	1.98 374
180.0	55.56	55 556	5 396	.02 232	17 000.0	.59	588	509 643	2.10 773
190.0	52.63	52 632	5 696	.02 356	18 000.0	.56	556	539 622	2.23 171
200.0	50.00	50 000	5 996	.02 480	19 000.0	.53	526	569 601	2.35 570
220.0	45.45	45 455	6 595	.02 728	20 000.0	.50	500	599 580	2.47 968
240.0	41.67	41 667	7 195	.02 976	22 000.0	.45	455	659 538	2.72 765
260.0	38.46	38 462	7 795	.03 224	24 000.0	.42	417	719 496	2.97 562
280.0	35.71	35 714	8 394	.03 472	26 000.0	.38	385	779 454	3.22 358
300.0	33.33	33 333	8 994	.03 720	28 000.0	.36	357	839 412	3.47 155
320.0	31.25	31 250	9 593	.03 967	30 000.0	.33	333	899 370	3.71 952
340.0	29.41	29 412	10 193	.04 215	32 000.0	.31	312	959 328	3.96 749
360.0	27.78	27 778	10 792	.04 463	34 000.0	.29	294	1 019 286	4.21 546
380.0	26.32	26 316	11 329	.04 711	36 000.0	.28	278	1 079 244	4.46 342
400.0	25.00	25 000	11 992	.04 959	38 000.0	.26	263	1 139 202	4.71 139
500.0	20.00	20 000	14 990	.06 199	40 000.0	.25	250	1 199 160	4.95 936
600.0	16.67	16 667	17 987	.07 439	50 000.0	.20	200	1 498 950	6.19 921
700.0	14.29	14 286	20 985	.08 679					

Sources

Detectors

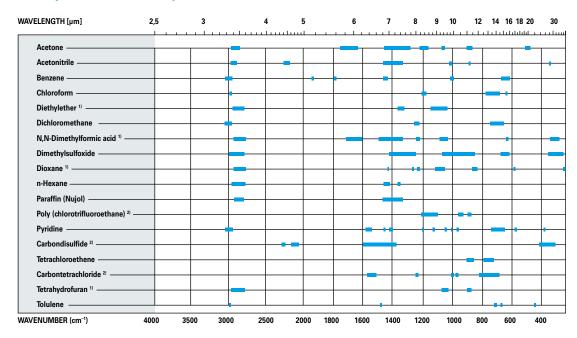

IR Spectroscopy Tables


IR Window Materials

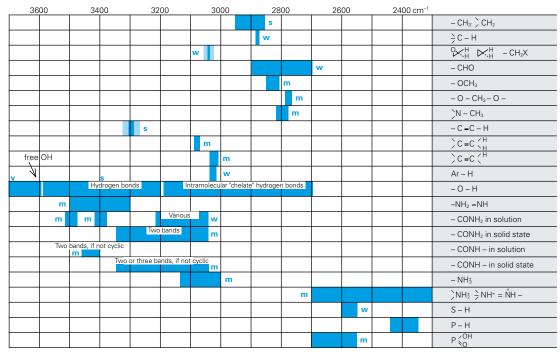
Beamsplitters

Optical Components Used in FT-IR Spectroscopy

Material	Transmission Range [cm -1] ([micrometers])	Refractive Index n at 2000 cm ⁻¹	Reflectance loss per surface	Hardness (Knoop)	Chemical Properties
Infrasil SiO ₂	57,000-2,800 (0.175-3.6)	1.46	~ 3.3%	461	Insoluble in water; soluble in HF.
UV Sapphire AL ₂ O ₃	66,000-2,000 (0.15-5.0)	1.75	~ 7.3%	1370	Very slightly soluble in acids and bases.
Silicon Si	10,000-100 (1.0-100)	3.42	~ 30%	1150	Insoluble in most acids and bases; soluble in HF and HNO ₃ .
Calcium Fluoride CaF ₂	66,000-1,200 (0.15-8.0)	1.40	~ 2.8%	158	Insoluble in water; resists most acids and bases; soluble in NH ₄ salts.
Barium Fluoride BaF ₂	50,000-900 (0.2-11)	1.45	~ 3.3%	82	Low water solubility; soluble in acid and NH ₄ Cl.
Zinc Sulfide, Cleartran ZnS	22,000-750 (0.45-13.0)	2.25	~ 15%	355	Soluble in acid; insoluble in water.
Germanium Ge	5,000-600 (2.0-17)	4.01	~ 36%	550	Insoluble in water; soluble in hot H ₂ SO ₄ and aqua regia.
Sodium Chloride NaCl	28,000-700 (0.35-15)	1.52	~ 4.5%	15	Hygroscopic; slightly soluble in alcohol and NH ₃ .
AMTIR GeAsSe Glass	11,000-900 (0.9-11)	2.50	~ 18%	170	Insoluble in water. Soluble in bases.
Zinc Selenide ZnSe	20,000-500 (0.5-20)	2.43	~ 17%	150	Soluble in strong acids; dissolves in HNO ₃ .
Silver Chloride AgCl	23,000-400 (0.42-25)	2.00	~ 11%	10	Insoluble in water; soluble in NH ₄ OH.
Potassium Bromide KBr	33,000-400 (0.3-25)	1.54	~ 4.5%	7	Soluble in water, alcohol, and glycerine; hygroscopic.
Cesium lodide Csl	33,000-150 (0.3-70)	1.74	~ 7.3%	20	Soluble in water and alcohol; hygroscopic.
KRS-5 TIBr/I	16,000-200 (0.6-60)	2.38	~ 17%	40	Soluble in warm water; soluble in bases; insoluble in acids.
Polyethylene PE (high density)	600-10 (16-1,000)	1.52	~ 4.5%	5	Resistant to most solvents.
Diamond C	45,000-10 (0.22-1,000)	2.40	~ 17%	7000	Insoluble in water, acids, and bases.
TPX ^(TM) Methylpentene Resin	350-10 (28-1,000)	1.43	~ 3.3%		Similar to PE but transparent and more rigid

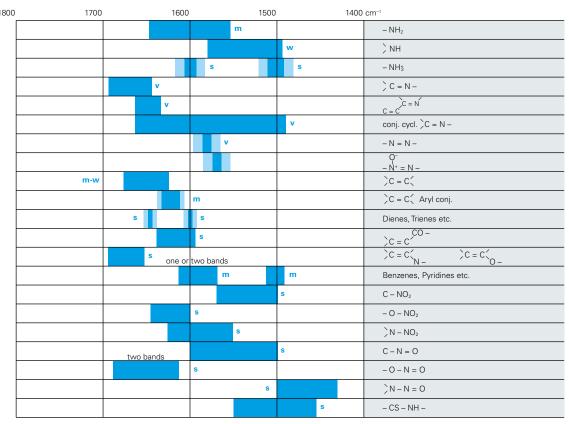

IR Spectroscopy Tables

Infrared and Raman Tables



Absorption of Commonly Used IR Solvents*

^{*} This chart shows ranges with transmission less than 20 %; standard thickness: 100 µm; except for: (1) 20 µm; (2) 200 µm.


Infrared and Raman Tables

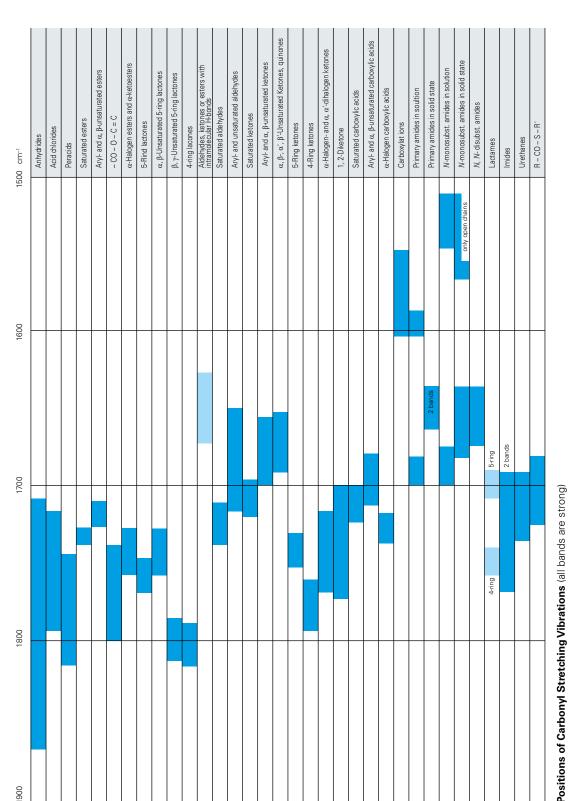
2400 1900 cm⁻¹ 2300 2200 2100 -C≡CH - C≡C-- C≡N - N₂ - S - C≡N s CO_2 - NCO − N₃ - N = C = N -C = C = 0-N=C=S $\hat{C} = \hat{N} = \hat{N}$ C = C = N -) C = C = C (

Positions of Stretching Vibrations of Triple Bonds and Cumulated Double Bonds

($\mathbf{s} = \text{strong}, \mathbf{m} = \text{medium}, \mathbf{w} = \text{weak}, \mathbf{v} = \text{varying}$)

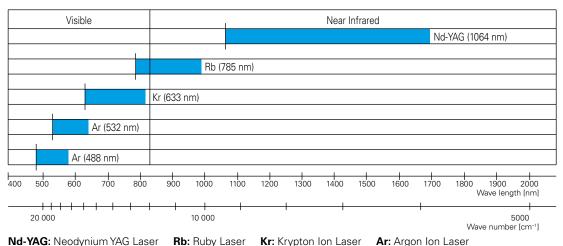
Positions of the Double Bond Stretching Vibrations and N-H Bending Vibrations

($\mathbf{s} = \text{strong}, \mathbf{m} = \text{medium}, \mathbf{w} = \text{weak}, \mathbf{v} = \text{varying}$)


Positions of Stretching Vibrations of Hydrogen (in the hatched ranges the boundaries are not well defined; Band intensity: s = strong, m = medium, w = weak, v = varying.

Infrared and Raman Tables

Infrared and Raman Tables



1500 1400 1300 700 cm⁻¹ 1200 1100 900 Alkanes - OCOCH₃ and - COCH₃ - C(CH₃)₃ C(CH₃)₂ (Double band) -CH = CH - transC = C - H Alkenes s/m - O - H C – O 5 neighbouring aromatic C - H 4 neighbouring aromatic C - H 3 neighbouring aromatic C - H 2 neighbouring aromatic C - H 1 isolated aromatic C - H C - NO₂ O - NO₂ N - NO₂ N - N = O> N+ − O-)C = S - CSNH -)SO)SO2 - SO₂N(- SO₂O -P - O - Alkyl P - O - Aryl)P = 0 `P∜0H C – F

Characteristic Absorptions in the Fingerprint Region (s = strong, m = medium, w = weak)

Stokes Shifts (0-3500 cm⁻¹) of Various Laser Sources

Vibrational Spectroscopy

MS: Exact Masses of the Isotopes

Selected Force Constants and Bond Orders (according to Siebert) of Organic and Inorganic Compounds

Li-Li	Compound S(CH ₃) ₂ CCl ₄ Ni ₄ CO Ni ₄ CO NiCO CSe ₂ CBr ₄ (Rh(CN) ₆) ³⁻ (Ag(CN) ₂) ⁻ Cl ₄ NH ₃ BN ₂ ³⁻ HCN N ₂ N-NNH N-N-N-N- N-O+ NO+2 NO ONCI NNO NF ₃
Li-Li	CCI ₄ Ni ₄ CO NiCO CSe ₂ CBr ₄ (Rh(CN) ₆) ³⁻ (Ag(CN) ₂) ⁻ CI ₄ NH ₃ BN ₂ ³⁻ HCN N ₂ N-NNH N-N-N ⁻ N-O ⁺ NO ⁺ ₂ NO ONCI NNO NF ₃
B-B 3.58 1.2 B₂ C-Ni 2.91 1.2 C-C 16.5 3.8 HCCH C-Ni 1.43 0.68 N-N 22.42 3.2 N₂ C-Se 5.94 1.8 O-O 11.41 1.4 O₂ C-Br 2.42 0.86 F-F 4.45 0.58 F₂ C-Rh 2.4 1.2 Na-Na 0.17 0.24 Na₂ C-Ag 2.0 0.99 Si-Si 4.65 2.0 Si₂ C-I 1.69 0.79 Si-Si 4.65 2.0 Si₂ C-I 1.69 0.79 Si-Si 4.05 2.1 P₂ N-B 7.2 1.6 P-P 2.07 0.95 P₄ N-B N-C 18.07 3.0 S-S 4.96 1.7 S₂ N-N N-N 13.15 2.0 Cl-Cl 3.24 1.1 Cl₂ N-N 13.15 </th <th>Ni₄CO NiCO CSe₂ CBr₄ (Rh(CN)₆)³⁻ (Ag(CN)₂)⁻ Cl₄ NH₃ BN₂³⁻ HCN N₂ N-NNH N-N-N- N-O+ NO+₂ NO ONCI NNO NF₃</th>	Ni ₄ CO NiCO CSe ₂ CBr ₄ (Rh(CN) ₆) ³⁻ (Ag(CN) ₂) ⁻ Cl ₄ NH ₃ BN ₂ ³⁻ HCN N ₂ N-NNH N-N-N- N-O+ NO+ ₂ NO ONCI NNO NF ₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NiCO CSe ₂ CBr ₄ (Rh(CN) ₆) ³⁻ (Ag(CN) ₂) ⁻ Cl ₄ NH ₃ BN ₂ ³⁻ HCN N ₂ N-NNH N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CSe ₂ CBr ₄ (Rh(CN) ₆) ³⁻ (Ag(CN) ₂) ⁻ Cl ₄ NH ₃ BN ₂ ³⁻ HCN N ₂ N-NNH N-N-N-N N-N-N-N N-O+ NO+2 NO ONCI NNO NF ₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CBr ₄ (Rh(CN) ₆) ³⁻ (Ag(CN) ₂) ⁻ Cl ₄ NH ₃ BN ₂ ³⁻ HCN N ₂ N-NNH N-N-N-N N-N-N-N N-O ⁺ NO ⁺ ₂ NO ONCI NNO NF ₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(Rh(CN) ₆) ³⁻ (Ag(CN) ₂) ⁻ Cl ₄ NH ₃ BN ₂ ³⁻ HCN N ₂ N-NNH N-N-N ⁻ N-O ⁺ NO ⁺ ₂ NO ONCI NNO NF ₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(Ag(CN) ₂) ⁻ Cl ₄ NH ₃ BN ₂ ³⁻ HCN N ₂ N-NNH N-N-N ⁻ N-O ⁺ NO ⁺ ₂ NO ONCI NNO NF ₃
Si-Si 4.65 2.0 Si₂ H ₆ N-H 7.05 1.1 P-P 5.56 2.1 P₂ N-B 7.2 1.6 P-P 2.07 0.95 P₄ N-C 18.07 3.0 S-S 4.96 1.7 S₂ N-N 22.42 3.2 S-S 2.5 0.99 S ₈ N-N 16.01 2.4 Cl-Cl 3.24 1.1 Cl₂ N-N 13.15 2.0 Ni-Ni 0.11 0.2 Ni solid N-O 25.07 3.1 As-As 3.91 1.8 As₂ N-O 17.17 2.3 Se-Se 3.61 1.6 № Se₂ N-O 15.49 2.1 Br-Br 2.36 1.1 Bf₂ N-O 15.18 2.0 Rb-Rb 0.08 0.2 Rb₂ N-O 11.78 1.7 Cd-Cd 1.11 1.0 Cd₂²²+ N-F 4.16 0.66 <th>CI₄ NH₃ BN₂³⁻ HCN N₂ N-NNH N-N-N⁻ NO⁺ NO⁺ NO ONCI NNO NF₃</th>	CI ₄ NH ₃ BN ₂ ³⁻ HCN N ₂ N-NNH N-N-N ⁻ NO ⁺ NO ⁺ NO ONCI NNO NF ₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NH ₃ BN ₂ ³⁻ HCN N ₂ N-NNH N-N-N-N- N-O ⁺ NO ⁺ ₂ NO ONCI NNO NF ₃
P-P 5.56 2.1 P₂ N-B 7.2 1.6 P-P 2.07 0.95 P₄ N-C 18.07 3.0 S-S 4.96 1.7 S₂ N-N 12.242 3.2 S-S 2.5 0.99 S₂ N-N 13.15 2.0 Cl-Cl 3.24 1.1 Cl₂ N-N 13.15 2.0 Ni-Ni 0.11 0.2 Ni solid N-O 25.07 3.1 As-As 3.91 1.8 As₂ N-O 17.17 2.3 Se-Se 3.61 1.6 №6e₂ N-O 15.49 2.1 Br-Br 2.36 1.1 Br₂ N-O 15.18 2.0 Rb-Rb 0.08 0.2 Rb₂ N-O 11.78 1.7 Cd-Cd 1.11 1.0 Cd₂²²² N-F 4.16 0.66 Sb-Sb 2.61 1.9 Sb₂ N-Si 3.1 0.81	BN ₂ ³ HCN N ₂ N-NNH N-N-N ⁻ N-O ⁺ NO ⁺ ₂ NO ONCI NNO NF ₃
P-P 2.07 0.95 P₄ N-C 18.07 3.0 S-S 4.96 1.7 S₂ N-N 22.42 3.2 S-S 2.5 0.99 S ₈ N-N 16.01 2.4 Cl-CI 3.24 1.1 Cl₂ N-N 13.15 2.0 Ni-Ni 0.11 0.2 Ni solid N-O 25.07 3.1 As-As 3.91 1.8 As₂ N-O 17.17 2.3 Se-Se 3.61 1.6 №2₂ N-O 15.49 2.1 Br-Br 2.36 1.1 Br₂ N-O 15.49 2.1 Br-Br 2.36 1.1 Br₂ N-O 15.49 2.1 Br-Br 2.36 1.1 Br₂ N-O 15.49 2.1 Br-Br-Br 2.36 1.1 Br₂ N-O 11.78 1.7 Cd-Cd 1.11 1.0 Cd₂²²² N-F 4.16 0.66 </th <th>HCN N₂ N-NNH N-N-N⁻ N-O⁺ NO₂ NO ONCI NNO NF₃</th>	HCN N ₂ N-NNH N-N-N ⁻ N-O ⁺ NO ₂ NO ONCI NNO NF ₃
S-S 4.96 1.7 S₂ N-N 22.42 3.2 S-S 2.5 0.99 S ₈ N-N 16.01 2.4 Cl-Cl 3.24 1.1 Cl₂ N-N 13.15 2.0 Ni-Ni 0.11 0.2 Ni solid N-O 25.07 3.1 As-As 3.91 1.8 As₂ N-O 17.17 2.3 Se-Se 3.61 1.6 ⁸⁰ Se₂ N-O 15.49 2.1 Br-Br 2.36 1.1 Br₂ N-O 15.18 2.0 Rb-Rb 0.08 0.2 Rb₂ N-O 11.78 1.7 Cd-Cd 1.11 1.0 Cd₂²²² N-F 4.16 0.66 Sb-Sb 2.61 1.9 Sb₂ N-Si 3.8 1.1 Te-Te 2.37 1.7 Te₂ N-S 8.3 1.9 Hg-Hg 1.69 1.5 Hg₂²² N-S 3.1 0.87<	N ₂ N-NNH N-N-N ⁻ N-O ⁺ NO ⁺ ₂ NO ONCI NNO NF ₃
S-S 2.5 0.99 S_8 N-N 16.01 2.4 CI-CI 3.24 1.1 Cl_2 N-N 13.15 2.0 Ni-Ni 0.11 0.2 Ni solid N-O 25.07 3.1 As-As 3.91 1.8 As_2 N-O 17.17 2.3 Se-Se 3.61 1.6 30 Se ₂ N-O 15.49 2.1 Br-Br 2.36 1.1 Br_2 N-O 15.49 2.1 Br-Br 2.36 1.1 Br_2 N-O 15.49 2.1 Br-Br 2.36 1.1 Br_2 N-O 11.78 1.7 Cd-Cd 1.11 1.0 Cd_2^{2+} N-F 4.16 0.66 Sb-Sb 2.61 1.9 Sb_2 N-S 12.54 2.5 I-I 1.70 1.2 1.2 N-S 12.54 2.5 I-I	N-NNH N-N-N- N-O+ NO+2 NO ONCI NNO NF3
Cl-Cl 3.24 1.1 Cl₂ N-N 13.15 2.0 Ni-Ni 0.11 0.2 Ni solid N-O 25.07 3.1 As-As 3.91 1.8 As₂ N-O 17.17 2.3 Se-Se 3.61 1.6 №SeSe₂ N-O 15.49 2.1 Br-Br 2.36 1.1 Br₂ N-O 15.49 2.1 Rb-Rb 0.08 0.2 Rb₂ N-O 11.78 1.7 Cd-Cd 1.11 1.0 Cd₂²²² N-F 4.16 0.66 Sb-Sb 2.61 1.9 Sb₂ N-Si 3.8 1.1 Te-Te 2.37 1.7 Te₂ N-S 12.54 2.5 I-I 1.70 1.2 I₂ N-S 8.3 1.9 Hg-Hg 1.69 1.5 Hg₂²²+ N-S 3.1 0.87 Pb-Pb 4.02 3 Pb₂ O-Li 1.58 0.66<	N-N-N ⁻ N-O ⁺ NO ⁺ ₂ NO ONCI NNO NF ₃
Ni-Ni 0.11 0.2 Ni solid N-O 25.07 3.1 As-As 3.91 1.8 As₂ N-O 17.17 2.3 Se-Se 3.61 1.6 ^{®0} Se₂ N-O 15.49 2.1 Br-Br 2.36 1.1 Br₂ N-O 15.18 2.0 Br-Bb 0.08 0.2 Rb₂ N-O 11.78 1.7 Cd-Cd 1.11 1.0 Cd₂²²² N-F 4.16 0.66 Sb-Sb 2.61 1.9 Sb₂ N-Si 3.8 1.1 Te-Te 2.37 1.7 Te₂ N-S 12.54 2.5 I-I 1.70 1.2 I₂ N-S 8.3 1.9 Hg-Hg 1.69 1.5 Hg₂²²² N-S 3.1 0.87 Pb-Pb 4.02 3 Pb₂ O-Li 1.58 0.66 Bi-Bi 1.84 1.6 Bi₂ O-Be 7.51 1.8	N-O* NO* ₂ NO ONCI NNO NF ₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NO+2 NO ONCI NNO NF ₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NO ONCI NNO NF ₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ONCI NNO NF ₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NNO NF ₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NF ₃
Sb-Sb 2.61 1.9 Sb₂ N-Si 3.8 1.1 Te-Te 2.37 1.7 Te₂ N-S 12.54 2.5 I-I 1.70 1.2 I₂ N-S 8.3 1.9 Hg-Hg 1.69 1.5 Hg₂²+ N-S 3.1 0.87 Pb-Pb 4.02 3 Pb₂ O-Li 1.58 0.66 Bi-Bi 1.84 1.6 Bi₂ O-Be 7.51 1.8 H-B 2.75 0.68 BH₃ O-B 13.66 2.5 H-C 5.50 1.0 CH₄ O-B 6.35 1.3 H-N 7.05 1.1 NH₃ O-O 16.59 2.0 H-O 8.45 1.1 H₂O O-O 11.41 1.4 H-O 7.40 1.0 HO⁻ O-O 6.18 0.89 H-F 8.85 1.1 HF O-O 5.70 0.83	INF ₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	//OLL > O.> NILL
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	((CH₃)₃Si)₂NH
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NSF₃
Pb-Pb 4.02 3 Pb₂ O-Li 1.58 0.66 Bi-Bi 1.84 1.6 Bi₂ O-Be 7.51 1.8 H-B 2.75 0.68 BH₃ O-B 13.66 2.5 H-C 5.50 1.0 CH₄ O-B 6.35 1.3 H-N 7.05 1.1 NH₃ O-O 16.59 2.0 H-O 8.45 1.1 H₂O O-O 11.41 1.4 H-O 7.40 1.0 HO⁻ O-O 6.18 0.89 H-F 8.85 1.1 HF O-O 5.70 0.83 H-AI 1.76 0.60 AlH⁻₄ O-Na ~3.2 ~1.1 H-Si 2.98 0.84 SiH₄ O-Mg 3.5 1.1 H-P 3.11 0.82 PH₃ O-AI 5.66 1.5 H-S 4.29 1.0 H₂S O-AI 3.8 1.1 <t< th=""><th>HNSO</th></t<>	HNSO
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	H ₃ N-SO ₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LiO
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BeO
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BO 3-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BO ₃ ³⁻
H-O 7.40 1.0 HO⁻ O-O 6.18 0.89 H-F 8.85 1.1 HF O-O 5.70 0.83 H-AI 1.76 0.60 AlH⁻₄ O-Na ~3.2 ~1.1 H-Si 2.98 0.84 SiH₄ O-Mg 3.5 1.1 H-P 3.11 0.82 PH₃ O-Al 5.66 1.5 H-S 4.29 1.0 H₂S O-Al 3.8 1.1 H-CI 4.81 1.0 HCI O-Si 9.25 2.1 H-Ge 2.81 0.82 GeH₄ O-Si 4.75 1.2 H-As 2.85 0.81 AsH₃ O-P 9.41 2.0	O+ ₂
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	O ₂
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{O_2}{O_3}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>∪₃</u> Na-OH
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MgO
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AIO
H-Cl 4.81 1.0 HCl O-Si 9.25 2.1 H-Ge 2.81 0.82 GeH ₄ O-Si 4.75 1.2 H-As 2.85 0.81 AsH ₃ O-P 9.41 2.0	AI(OH)-4
H-Ge 2.81 0.82 GeH ₄ O-Si 4.75 1.2 H-As 2.85 0.81 AsH ₃ O-P 9.41 2.0	SiO
H-As 2.85 0.81 AsH ₃ O-P 9.41 2.0	SiO ⁻⁴ ₄
	PO 4
H-Se 3.51 0.93 H ₂ Se O-P 6.16 1.4	PO ³⁻ ₄
	SO ₂
	CIO-2
	CIO-
	CaO
	TiO
C-B 3.82 1.1 $B(CH_3)_3$ O-V 7.36 2.3	VO
	CrO
C-C 9.15 1.9 H ₂ CCH ₂ O-Mn 5.16 1.6	MnO
C-C 7.6 1.7 C ₆ H ₆ O-Fe 5.67 1.7	FeO
C-C 4.4 1.1 H ₃ CCH ₃ O-Cu 2.97 0.93	CuO
C-N 18.07 3.0 HCN O-Ge 7.53 1.8	⁷⁴ GeO
C-N 11.84 2.1 CN_2^{2-} O-Se 6.45 1.5	SeO
C-N 6.54 1.3 NNCH ₂ O-Mo 3.05 1.2	Ba ₂ CaMoO ₆ (solid)
	RuO ₄
	AgO
	SnO
C-O 7.86 1.3 CO ₃ ² O-Te 5.31 1.6	TeO
	BaO
	CeO
	PrO
C-S 7.67 2.0 CS ₂ O-Nd 3.5 1.6	NdAc ₃ ·H ₂ O (polymer

Atomic Masses and Representative Abundances of the Isotopes (NIST)

The masses and abundances of the isotopes we use for generating molecular formulas, simulating patterns and SNAP peak finding basically are taken from the National Institute of Standards and Technology (NIST).

Z = Atomic number, M = mass number; Abund. = isotope abundance.

Ar 36 36.9059020 0.2472 38 35.96754628 0.003365 38 37.9627322 0.000632 40 39.962383123 0.996003 40 39.9639867 0.032581 41 40.96182597 0.067302 Ca 40 39.9625912 0.96941 42 41.9586183 0.00647
38 39 40 44 40 47 47 47 47 47 47 47 47 47 47 47 47 47
38 40 40 40 40 40 40 40 40 40 40 40 40 40
10
50 6
20 2
- 8 8
0.9241 1 2 0.199 3 0.801
19
.012937 0 .0093055 0

MS: Exact Masses of the Isotopes

MS: Exact Masses of the Isotopes

Atomic Masses and Representative Abundances of the Isotopes (NIST)

The masses and abundances of the isotopes we use for generating molecular formulas, simulating patterns and SNAP peak finding basically are taken from the National Institute of Standards and Technology (NIST).

Z = Atomic number, M = mass number; Abund. = isotope abundance.

Z =				_	_																_					_		_							
Valency	4			2	9						4			က						೮	2					,	_		2						
Abund.	0.5145 0.1122	0.1715	0.028	_	0.1484	0.0925	0.1592	0.1668	0.0933	0.0963				0.0554	0.018/	0.1276	0.1706	0.3155	0.1862	_	0.0102	0.1114	0.2233	0.2733	0.2646	0.1172	0.51839	0.40101	0.0125	0.0089	0.1249	0.128	0.2413	0.1222 0.2873	0.0749
Exact Mass	89.9047037 90.905645	91.9050401 93.9063158	95.908276	92.9063775	91.90681	93.9050876	94.9058415	95.9046789	97.9054078	99.907477	96.906365	97.907216	98.9062546	95.907598	97.905287	98.9059393	100.9055822	101.9043495	103.90543	102.905504	101.905608	103.904035	104.905084	105.903483	107.903894	109.903132	106.905093	100.304730	105.906458	107.904183	109.903006	110.904182	111.9.027572	112.9.044009 113.9.033581	115.904755
Σ	90	92	96	93	92	94	8	96	2 8	g 2	97	86	S	96	86	3 5	3 5	102	104	103	102	104	105	106	108	2 5	707	2 3	106	308	110	_;	112	113	116
ш	Zr			QN Q	Мо						JC			2						뚪	Pd					•	Ag		కె						
Z	40			41	42						43			44						45	46					į	4		84						
Valency													\Box																			Г	T		
	_	2				ဗ		4				က	2	ı					<u></u>	c	0					1		2				ď	2		
Abund.	0.6917	0.4863 2	0.273	0.1875	0.0062		0.39892		0.2754	0.0773	0.0761	1 3	0.0089		0.0763	0.2377	0.4961		0.5069 1		0.0035	0.1158	0.1149	0.57	0.173		0.2783		0.0986	0.07	0.8258	~	-		
Exact Mass Abund.	62.9296011 0.6917 1 64.9277937 0.3083	0.4863						0.2084		72.9234594 0.0773		1	0.0089	0.0937	199146	173095	165218	0.00/3		- 0000		134846	14136	11507	106103	0.7217	91835	3425 0.0056	85.9092624 0.0986	388793)56143	158479	- 674000		
		0.4863	66.9271309	67.9248476	69.925325	0.60108	/0.924/05	69.9242504 0.2084	71.9220762		75.9214027	1	73.9224766 0.0089	192141 0.0937	76.9199146	77.9173095	79.9165218	0.00.0	183376 0.5069 16291 0.4931	1000000	7.920386 0.0035	81.9134846	82.914136	83.911507	85.9106103	17893 0.7217	86.9091835	83.913425 0.0056	192624	86.9088793	87.9056143	88 9058479	67+0000:00		
Exact Mass	62.9296011 64.9277937	63.9291466 0.4863	66.9271309	67.9248476	69.925325	68.925581 0.60108	/0.924/05	69.9242504 0.2084	71.9220762	72.9234594	75.9214027	74.9215964 1	73.9224766 0.0089	76 75.9192141 0.0937	76.9199146	77.9173095	79.9165218	0.00.0	78.9183376 0.5069		7.920386 0.0035	81.9134846	82.914136	83.911507	85.9106103	84.9117893 0.7217	86.9091835	83.913425 0.0056	86 85.9092624	86.9088793	87.9056143	88 9058479	6/40000000		

Atomic Masses and Representative Abundances of the Isotopes (NIST)

The masses and abundances of the isotopes we use for generating molecular formulas, simulating patterns and SNAP peak finding basically are taken from the National Institute of Standards and Technology (NIST).

Z = Atomic number, M = mass number; Abund. = isotope abundance.

60 Nd 142 141.907719 61 Nd 142 141.907719 62 Sm 144 143.91269 63 Eu 151 150.91886 64 Gd 152 151.91888 66 Dy 156 159.92738 66 Dy 156 159.92738 66 Dy 156 159.92738 67 168 159.91388 68 Dy 156 159.92738 69 150 158 159.92887 60 Dy 156 159.928387 61 150 159.92887 62 M 144 143.91788 64 152 151.919788 65 Tb 159 159.927051 65 Tb 159 159.927051 66 Dy 156 159.927051 67 169.9251343 68 169.9251343 69 169.927051 60 169.927051 60 169.927051 60 169.927051 60 169.927051	E M Exact Mass Abund.	M Exact Mass 112 904061	Exact Mass	Exact Mass	Valency	ancy Z	ш	≥ 28		Exact Mass Abunc	Abund.	
60 Nd 142 14.9024 60 Nd 142 14.902719 60 Nd 142 14.902719 61 Pm 143 142.90881 62 Sm 144 143.91083 63 Eu 151 150.91846 64 Gd 152 151.91978 65 Tb 158 15.927051 66 Dy 158 15.92738 66 Dy 158 15.92738 67 160 159.22478 68 175 169.22478 69 Dy 158 162.92838 60 Dy 158 162.92838 60 Dy 158 162.92838 61 163 163.92838 61 163 163.92838 61 163 163.92838 61 163 163.92838 61 163 163.92838 61 163 163.92838 61 163.92838 61 163.92838 61 163.92838 61 163.92838 61 163.92838 61 163.92838	115 114.903878	115 114.903878	114.903878	114.903878	ກ	/ G	La	139	`		991	
60 Nd 142 141.907719 0.272 144 143.91083 0.272 145 142.90831 0.122 146 143.91083 0.238 146 144.912569 0.083 148 147.916889 0.057 149 149.920887 0.056 61 Pm 145 14.912749 (3) 62 Sm 144 14.912749 (3) 62 Sm 144 14.912749 (3) 63 Eu 151 146.914893 0.0307 147 146.914893 0.0307 148 147.914818 0.1124 149 148.91778 0.0307 150 148.91778 0.0275 151 150.919846 0.4781 153 152.92126 0.5219 154 153.922062 0.0218 155 15.919788 0.002 156 159.92019 0.148 157 156.92212 0.2484 160 159.927051 0.2484 160 159.927051 0.2865 161 159 15.92405 0.0006 162 159 150.938 0.1891 161 160.92693 0.1891 162 162.928728 0.2861 163 163.92273 0.1891 164 165.92273 0.249	Sn 112 111.904821 0.0097 114 113.902782 0.0066 115 114.903346 0.0034 116 115.901744 0.1454	112 111.904821 114 113.902782 115 114.903346 116 115.901744	111.904821 113.902782 114.903346 115.901744	111.904821 113.902782 114.903346 115.901744	4	28		136 138 140		(0.4	3185 3251 345 1114	4
60 Nd 142 141.907719 143 142.90981 144 143.910083 145 144.912569 146 145.913112 148 147.916889 150 149.920887 161 Pm 145 144.912749 (3) 170 149.91288 (26) 170 149 148.91718 170 149.917271 170 149.91728 170 150 150.92893 170 150 159.928728 170 160 159.928728 170 160 169.928728	116.902954	116.902954	116.902954	116.902954		29		141	Ė	0.907648		ო
144 143.910083 0.238 145 144.912569 0.083 0.087 146 145.913112 0.172 146 145.913112 0.172 0.057 146 145.913112 0.057 0.057 0.057 147.916889 0.065 0.057 147.916889 0.057 0.057 147.91385 (26) 0.0307 144.912749 (3) 0.0307 144.912749 (3) 0.0307 144.912749 0.0307 149.917271 0.0738 0.1382 149.917271 0.0738 0.0738 159.917271 0.0738 0.002 159.91266 0.0275 0.0275 159.91266 0.0275 0	117.901606 118.903309	117.901606 118.903309	117.901606 118.903309	117.901606 118.903309		09		142			72	က
61 Pm 145 147.916889 0.057 148 147.916889 0.057 149.920887 0.056 0.057 149.920887 0.056 0.057 146.9151385 (26) 0.0307 146.9151385 (26) 0.0307 148 147.914818 0.1124 148.91718 0.01382 148 147.914818 0.1124 149.917271 0.0738 148.91718 0.0378 15.922205 0.2275 15.919788 0.0275 15.919788 0.002 15.92212 0.0218 15.92212 0.0218 15.92212 0.0218 15.92212 0.0247 15.92212 0.0247 15.92212 0.0247 15.92212 0.0248 15.92212 0.0248 15.92212 0.0248 15.92212 0.0218 15.92212 0.0248 15.9224278 0.0006 15.924278 0.0006 15.924278 0.0006 15.924278 0.0006 15.922428 0.0234 16.926795 0.2519 0.2519 16.926795 0.2519 16.92679 16.926795 0.2519 16.926795 0.2519 16.926795 0.2519 16.926795 0.2519 16.926795 0.2519 16.926795 0.2519 16.926795 0.2519 16.92679 16.926795 0.2519 16.926795 0.2519 16.926795 0.2519 16.926795 0.2519 16.926795 0.2519 16.926795 0.2519 16.926795 0.2519 16.92679	9021966 9034401	119.9021966 121.9034401	119.9021966 121.9034401	119.9021966 121.9034401				4 4			8. 88	
61 Pm 145 147.916889 0.057 61 Pm 145 144.912749 (3) 62 Sm 144 143.911995 0.0307 148 147.914818 0.1124 149 148.91718 0.0307 148 147.914818 0.1124 149 148.91718 0.0382 150 149.917271 0.0738 151 150.91984 0.0275 152 151.91978 0.0275 153 152.92126 0.0278 154 155.92212 0.0278 155 15.922895 0.0218 156 156.923957 0.148 157 156.923957 0.148 158 157.924101 0.2484 160 159.927081 0.0006 158 157.92405 0.001 160 159.925194 0.0234 161 160.92693 0.1891 162.92878 0.0024 163 165.925128 0.0024 164 165 165.924278 0.0006 165 176 169.92693 0.1891 166 176.92693 0.0249 167 169.92693 0.0249	124 123.9052746	124 123.9052746	123.9052746	123.9052746				146			72	
61 Pm 145 144.912749 (3) 62 Sm 144 143.911995 0.0307 147 146.915185 (26) 148 143.911995 0.1499 148 148.91718 0.1324 149 148.91718 0.1382 150 149.917271 0.0738 152 151.919728 0.0275 154 153.92205 0.275 155 151.919788 0.002 155 151.919788 0.002 156 155.92212 0.2047 157 156.923957 0.1565 158 157.924101 0.2484 160 159.254278 0.0006 160 159.254278 0.0006 160 159.254278 0.0006 161 160.92693 0.1891 162 162.92873 163 163.925436 0.0234 164 165 163.926795 0.0284 167 169.26795 0.0284 168 167.924405 0.001 169 169.926795 0.2551 163 163.92771 0.2844	Sb 121 120.903818 0.5721 123 122 9042157 0.4279	121 120.903818 123 122 9042157	120.903818	120.903818	വ			148			57	
62 Sm 144 143.911995 0.0307 147 146.914893 0.1499 148 147.914818 0.1124 149 148.91718 0.1382 150 149.917271 0.0738 151 152 191728 0.2275 154 153.922205 0.2275 154 153.922862 0.0278 155 154.912818 0.002 156 155.92212 0.0218 156 156.92212 0.0247 157 157 157.919788 0.002 158 157.924101 0.2484 160 159.927051 0.2484 160 159.927051 0.0006 158 157.924405 0.001 160 159.925149 0.00234 161 160.92693 0.0281 163 167.92878 0.0001 163 167.92878 0.0001 164 165 167.924405 0.001 165 167.924405 0.001 167 167 167.928728 0.0284 167 167 167.928728 0.2873	119.90402	120 119.90402	119.90402	119.90402	2	61	Pm	4	Ť.		2	
62 Sm 144 143.911995 0.0307 148 147.914818 0.1124 148 147.914818 0.1124 149 148.91718 0.1124 150 149.917271 0.0738 150 149.917271 0.0738 151 152.91226 0.2275 152 151.919788 0.002 153 152.921226 0.5219 154 153.920862 0.0218 155 154.922619 0.148 156 155.92212 0.2047 157 157 156.923957 0.1565 158 157.924101 0.2186 159 158.925343 1 160 159.927594 161 160.92693 0.0234 162 163.92579 163 163.92579 164 167 167 167 167 167 167 167 167 167 167	_	121.9030471	121.9030471	121.9030471				147	_	3.9151385 (26)		
147 146,514883 0.1499 148 147,914818 0.1124 149 149,91781 0.0738 150 149,91781 0.0738 152 151,91978 0.2275 153 152,92126 0.5219 154 159,91846 0.4781 155 15,919788 0.002 156 15,922619 0.0218 156 15,922619 0.148 157 156,922619 0.148 158 15,924101 0.2484 160 159,92513 1 160 159,2405 0.0006 158 157,924405 0.0034 161 169,92633 0.1891 162,928728 0.2551 163 163,92873 0.2551 164 165,928728 0.2551 165 167,928728 0.2551 167,928728 0.2551 168 167,928728 0.2551 169 169,928728 0.2551 169 169,928728 0.2551 169 169,928728 0.2551 169 169,928728 0.2551 169 169,928728 0.2551 169 169,928728 0.2551 169 169,928728 0.2551 169 169,928728 0.2551 169 169,928728 0.2551 169 169,928728 0.2551 169 169,928728 0.2551 169 169,928728 0.2551 169 169,928728 0.2551 169 169,928728 0.2551 169 169 169,928728 0.2551 169 169 169,928728 0.2551 169 169 169,928728 0.2501 169 169 169,928728 0.2551 169 169 169,928728 0.2551 169 169 169,928728 0.2551 169 169 169,928728 0.2551 169 169 169,928728 0.2551 169 169 169,928728 0.2551 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169		122.904273 123.904273	122.904273 123.904273	122.904273 123.904273		62		4:			307	2
149 148 9178 0.1382 150 149 9178 0.0738 152 151 91727 0.0738 154 153 922205 0.2275 155 150 91946 0.4781 153 152 92122 0.6219 154 153 920862 0.0218 155 154 922619 0.148 156 159 159 0.047 157 156 92367 0.1565 158 157 924101 0.2186 159 159 158 925343 1 160 159 159 925144 0.0234 161 160 160 92693 0.1881 162 163 92872 0.2511 163 163 163 163 163 164 165 165 165 163 165 167 167 167 167 166 167 167 167 167 167 167 167 167 167 168 167 167 167 167 168 167 167 168 167 168 167 167 168 167 167 168 167 168 167 168 167 168 167 168 167 168 167 16	124.9044247	124.9044247	124.9044247	124.9044247				147			124	
150 149.917271 0.0738 152 151.919728 0.2675 154 153.922205 0.2275 153 150.919846 0.4781 153 152.921226 0.5219 154 152.921226 0.6219 155 151.919788 0.002 156 153.920862 0.0218 156 154.922619 0.148 156 159.2212 0.2047 157 156.923957 0.1565 158 157.924101 0.2186 159 159.927051 0.2186 160 159.92734 1 160 159.925194 0.001 161 169.925194 0.0234 162 169.925194 0.0234 163 169.925194 0.0251 164 169.92693 0.1891 165 167.926795 0.2551 163 163.928728 0.2551 164 163.928728 0.2551 165 163.928728 0.2581	125.9033055	125.9033055	125.9033055	125.9033055				149		<u> </u>	382	
Eu 152 15.919728 0.2675 154 15.3.92205 0.2275 153 15.921206 0.2275 153 15.921226 0.5219 154 15.921226 0.5219 155 15.922082 0.002 156 15.922082 0.0218 156 15.92212 0.2047 157 15.92212 0.2047 158 15.924101 0.2484 160 159.927051 0.2186 159 158.925343 1 160 159.925194 0.001 161 169.925194 0.0234 162 169.925194 0.0234 163 164.926795 0.2551 164 162.92837 0.2551 165 167.928728 0.2551		127.9044614	127.9044614	127.9044614				150		_	738	
Eu 151 150 919846 0.4781 Gd 152 151.919788 0.002 154 153.920862 0.5219 155 154.922619 0.148 156 155.92212 0.2047 157 156.923957 0.1565 158 157.924101 0.2484 160 159.927051 0.2186 150 159.225343 1 161 160.92693 0.0006 163 163 926795 0.001 164 165 9225194 0.0234 165 167.92405 0.001 167 169.925194 0.0234 168 167.92495 0.2551 169 169.926795 0.2551 169 169.926795 0.2551	129.3002220	129.3002220	129.3002220	129.3002220		T		152			5/5	
Eu 151 150.919846 0.4781 153 152.921226 0.5219 Gd 152 151.919788 0.002 154 153.920862 0.0218 155 154.922619 0.148 156 155.92212 0.2047 157 156.923957 0.1565 158 157.924101 0.2484 160 159.927051 0.2186 158 158.925343 1 160 159.924778 0.0006 161 169.925194 0.0234 162 169.925194 0.0234 163 169.925194 0.0234 164 169.92633 0.1891 165 167.926795 0.2551 167 167.926795 0.2551 163 163.928728 0.2818	1 127 126.904468 1	126.904468 1	126.904468 1	126.904468 1				154			7/2	
Gd 153 152.921226 0.5219 Gd 152 151.919788 0.002 154 153.920862 0.0218 155 154.922619 0.148 156 155.92212 0.2047 157 156.923957 0.1565 158 157.924101 0.2484 160 159.927051 0.2186 160 159.224278 0.0006 158 157.924405 0.001 161 169.925194 0.0234 162 169.925194 0.0234 163 164.926795 0.2551 163 163.928728 0.2551 164 162.928728 0.2551	123.9058958 0.0009	124 123.9058958 0.0009	123.9058958 0.0009	123.9058958 0.0009		63		151			781	2
Gd 152 15.919788 0.002 154 153.920862 0.0218 155 154.922619 0.148 156 155.92212 0.2047 157 156.923957 0.1565 158 157.924101 0.2484 160 159.927051 0.2186 160 159.927051 0.0006 158 157.924405 0.0001 160 159.925194 0.0234 161 160.92693 0.1891 162 162.926795 0.2551 163 164 162.928728 0.2551	125.904269	125.904269	125.904269	125.904269				153	`		219	
154 153.920862 0.0218 155 154.922619 0.148 156 155.92212 0.2047 157 156.923957 0.1565 158 157.924101 0.2484 160 159.927051 0.2186 158 158.925343 1 160 159.92478 0.0006 161 159.925194 0.0234 162 169.925194 0.0234 163 162.926795 0.2551 164 162.926795 0.2551 165 162.928778 0.2551 166 167.928778 0.2551 167 167.928778 0.2551	127.9035304	127.9035304	127.9035304	127.9035304		64		152			32	က
155 154.922619 0.148 156 155.92212 0.2047 157 156.923957 0.1565 158 157.924101 0.2484 160 159.927051 0.2186 159 158.925343 1 160 159.224278 0.0006 161 169.925194 0.0234 162 169.92693 0.1891 163 162.926795 0.2551 164 162.928728 0.2551 165 167.9287728 0.2551 167 167.9287728 0.2581	128.9047795	128.9047795	128.9047795	128.9047795				154			218	
156 15.92212 0.2047 157 16.923957 0.1565 168 157.924101 0.2484 160 159.927051 0.2186 Dy 158 15.924278 0.0006 160 159.925194 0.0234 161 160.92693 0.1891 163 162.928728 0.2551 163 162.928728 0.2551 163 162.928728 0.2581		129.9035079	129.9035079	129.9035079				155			18	
Tb 15.924101 0.2186 160 159.924101 0.2186 160 159.927051 0.2186 160 158.925343 1 161 15.924278 0.0006 162 15.924405 0.001 161 169.925194 0.0234 162 160.92693 0.1891 163 162.928728 0.2551 164 162.928728 0.2581		131.9041545	131.9041545	131.9041545				1 26)4 / 565	
Tb 159.927051 0.2186 Tb 159 158.925343 1 Dy 156 15.924278 0.0006 160 159.925194 0.0234 161 160.92693 0.1891 163 162.928728 0.2551 164 162.928728 0.2581	133.9053945	133.9053945	133.9053945	133.9053945				158	_		184	
Tb 159 158.925343 1 Dy 156 15.924278 0.0006 158 15.924405 0.001 160 159.925194 0.0234 161 160.92693 0.1891 162 161.926795 0.2551 163 162.928728 0.2581 164 163.929728 0.2581		135.90.722	135.90.722	135.90.722				160			186	
Dy 156 15.924278 0.0006 158 157.924405 0.001 160 159.925194 0.0234 161 160.92693 0.1891 162 161.926795 0.2551 163 162.928728 0.249 164 163.928728 0.249	Cs 133 132.905447 1	133 132.905447 1	132.905447 1	132.905447 1		65		159		3.925343		က
158 157.924405 0.001 160 159.925194 0.0234 161 160.92693 0.1891 162 161.926795 0.2551 163 162.928728 0.249 164 163.928728 0.249	129.90631 0.00106	130 129.90631 0.00106	129.90631 0.00106	129.90631 0.00106		99		156	Ľ		900	co
159.925194 160.92693 161.926795 162.928728	132 131.905056 0.00101	132 131.905056 0.00101	131.905056 0.00101	131.905056 0.00101)		158			01)
160.92693 161.926795 162.928728	133.904503	133.904503	133.904503	133.904503				160	_		734	
161.926795 162.928728 163.929171		134.905683	134.905683	134.905683				16			391	
162.928728	_	135.90457	135.90457	135.90457				162	`	LO	551	
	137 136.905821 0.11232 138 137.905241 0.71698	136.905821	136.905821	136.905821				163	`		19	

 $4 \hspace{1cm} 6$

MS: Exact Masses of the Isotopes

Solid Phase Peptides Synthesis

Atomic Masses and Representative Abundances of the Isotopes (NIST)

The masses and abundances of the isotopes we use for generating molecular formulas, simulating patterns and SNAP peak finding basically are taken from the National Institute of Standards and Technology (NIST).

Z = Atomic number, M = mass number; Abund. = isotope abundance.

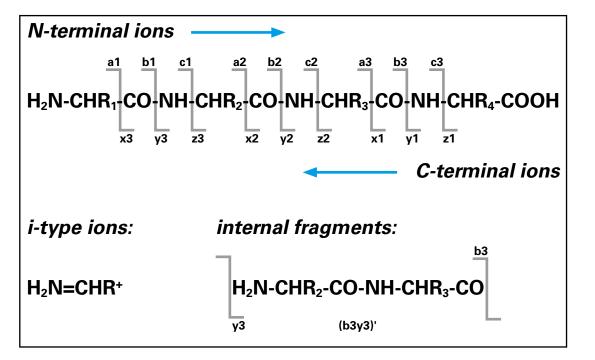
<u>Z</u> =	At	110			,			_							_				_	_	_	_						Ę			
Valency	3		2				_	2						က		4			ıc	2 4	.	+ 0	2			tions stitute of Stan-	73(4), 667 (2001); Ref. Data 27(6), Nuclear Physics	mpositions (version		5N and 180	olease refer
Abund.	0.373	0.627	0.00014	0.32967	0.33832	0.07163	_	0.0015	0.0997	0.1687	0.1318	0.2986	0.0687	0.29524	0.70476	0.014	0.241	0.221				- 1	0.0072	0.992745		Coursey, J.S., Schwab, D.J., and Dragoset, R.A. (2003). Atomic Weights and Isotopic Compositions feesing and S.3.1). (Online Available Intily/physics nist; gow/Comp [2004, February 26]. National Institute of Standards and Technique, Gaitheachine MIP.	of the Elements 1999, Pure Appl. Chem. of the Elements 1997, J. Phys. Chemodate To The Atomic Mass Evaluation	VIST Atomic Weights and Isotopic Co	the official pages	the Official rights. have an abundance of 95% of 13C, 11 Aded to calculate isotopically marked is	 The valencies of the atoms are listed additionally. For quickly inspecting the valencies used, please refer to the Table of Valencies.
Exact Mass	190.960591	192.962924	189.95993	193.962664	195.9647/4 195.964935	197.967876	196.966552	195.965815	197.966752	198.968262	200.970285	201.970626	203.973476	202.972329	204.974412	203.973029	205.974449	206.975881 207 976636	208 980383	232 0380504	231 0358789	201.00001.00	235.0439231	238.0507826		, and Dragoset, R.A. (2003), A llable: http://physics.nist.gov/	Coplen, Atomic Weights of the aylor, Isotopic Compositions	(additions were made to the I	wood of doishow (mulitabeteman)	t and Ot were defined which	s are listed additionally. For q
Σ	191	193	190	194	195	198	197	196	198	199	201	202	204	203	205	204	206	207	209	232	231		235	238		vab, D.J. line] Avai	P.D.P. T	i). fications,		its Ct, N	the atom lencies.
ш	ı		£				Αn	Нg						F		Pb			ä	i =	: Da	: =)		nces:	7, J.S., Schv 12.3.1). [On nd Technolic	ly published Sosman and	l), 409 (1995) owing modi	able:	onal elemer	alencies of 1
Z	77		78				79	08						81		82			8	6	01	- 6	70		References:	Course (version	Original K.J.R. F	A 595(4 The foll	2.3.1) ta	• Additi	• The v to the
Valency	3	က				က	2	İ					က		4					2		9				4	е				
Abund.		114	12	. 20	m m																										
	1	0.0014	0.0161	0.2293	0.2678	-	0.0013	0.0304	0.1428	0.2183	0.3183	0.1276	0.9741	0.0259	0.0016	0.0526	0.186	0.2728	0.3508	0.00012	0.99988	0.0012	0.265	0.3064	0.2843	0.374 0.626	0.0002	0.0196	0.1324	0.1615	0.4078
Exact Mass	164.930.319	.928775	929197		932368	934211	933894	169.934759 0.0304	936322	9363777	9382000	942568	9407679					177.9436977 0.2728	0	179.947466 0.00012	947996	946706	948206	182.9509326 0.3064	954362	184.9529557 0.374 186.9557508 0.626	952491	9557479	955836	9581449	191.961479 0.2628
M Exact Mass	165 164.930.319 1	161.928775	929197	166.932045	167.932368	168.934211	167.933894	934759	170.936322	171.9363777	173.9388581	175.942568	174.9407679		173.94004	175.9414018 4	176.94322		179.9465488 0	947466	180.947996	179.946706	181.948206	9509326	185.954362	9529557	183.952491	186.9557479	187.955836	188.9581449	958445 961479
Exa	165 164.	162 161.928775	164 163.929197	166.932045	167.932368	168.934211	168 167.933894	170 169.934759	170.936322	171.9363777	173.9388581	175.942568	174.9407679	176 175.9426824	173.94004	175.9414018 4	176.94322	177.9436977	179.9465488 0	179.947466	180.947996	179.946706	181.948206	183.9509326	185.954362	184.9529557 186.9557508	183.952491	186.9557479	187.955836	188.9581449	191.961479

Mass Shift of Modifications, Protection Groups and Artifacts

m/z shift [Da]	Modification	Abbreviation	Sum formula change	Valid residues	Origin
-186,07931	Trp->Null		-C ₁₁ H ₁₀ N ₂ O	W	Deletion
-163,06333	Tyr->Null		-C ₉ H ₉ NO ₂	Υ	Deletion
-156,10111	Arg->Null		-C ₆ H ₁₂ N ₄ O	R	Deletion
-147,06841	Phe->Null		-C₀H₀NO	F	Deletion
-137,05891	His->Null		-C ₆ H ₇ N ₃ O	Н	Deletion
-131,04049	Met->Null		-C₅H ₉ NOS	M	Deletion
-129,04259	Glu->Null		-C ₅ H ₇ NO ₃	E	Deletion
-128,09496	Lys->Null		-C ₆ H ₁₂ N ₂ O	K	Deletion
-128,05858	Gln->Null		-C ₅ H ₈ N ₂ O ₂	Q	Deletion
-115,02694	Asp->Null		-C₄H₅NO₃	D	Deletion
-114,04293	Asn->Null		-C ₄ H ₆ N ₂ O ₂	N	Deletion
-113,08406	lle->Null		-C ₆ H ₁₁ NO	1	Deletion
-113,08406	Leu->Null		-C ₆ H ₁₁ NO	L	Deletion
-101,04768	Thr->Null		-C ₄ H ₇ NO ₂	Т	Deletion
-99,06841	Val->Null		-C₅H ₉ NO	V	Deletion
-97,05276	Pro->Null		-C₅H ₇ NO	Р	Deletion
-87,03203	Ser->Null		-C ₃ H ₅ NO ₂	S	Deletion
-71,03711	Ala->Null		-C ₃ H ₅ NO	A	Deletion
-57,02146	Gly->Null		-C ₂ H ₃ NO	G	Deletion
-16,01872	Pyro-glutamination (N-term)		-NH ₂	Q	N-terminal
0,98402	Deamidation		-NH ₂ +OH	NQ	Artefact
14.01565	Methylation		+CH ₂	DEKR	Chemical Modification
14,01565	Methylation	Me	-H+CH ₃	Y	Fmoc
	Oxidation		-	MW	Artefact
15,99492		Ox	+0	_	
16,01872	Amidation (C-term)	-	-O+NH ₂ O	all Amino acids	C-terminal
27,99492	Formylation	For	-H+CHO	W	Boc Characian Manifestina
28,03130	Dimethylation		+C ₂ H ₄	KR	Chemical Modification
28,03130	Ethylation	Et	-H+C ₂ H ₅	Y	Boc
29,00274	Formyl (N-term)		+CHO	M	N-terminal
31,98983	Double Oxidation Tryptophane		+02	W	Artefact
42,01057	Acetylation	Ac	-H+C ₂ H ₃ O	K	Fmoc
42,04695	Trimethylation		+C ₃ H ₆	KR	Chemical Modification
44,98508	Nitration	NO2	-H+NO ₂	Y	Chemical Modification
44,98508	Nitration	NO2	-H+NO ₂	R	Boc
47,94445	Selenocystein		-S+Se	С	Chemical Modification
56,06260	Diethylation		+C ₄ H ₈	K	Chemical Modification
56,06260	tertButyl	tBu	-H+C ₄ H ₉	CSTY	Fmoc
56,06260	tertButyl	tBu	-H+C ₄ H ₉	STY	Boc
57,02146	Gly->GG		+C ₂ H ₃ NO	G	Double coupling
68,06260	Piperidine	Pip	+C ₅ H ₈	DE	Artefact
71,03711	Propionamidation		+C ₃ H ₅ NO	С	Cys-State
71,03711	Ala->AA		+C ₃ H ₅ NO	А	Double coupling
71,03711	Acetamidomethyl	Acm	-H+C ₃ H ₆ NO	С	Fmoc/Boc
72,05752	tertButoxy	OtBu	-H+C ₄ H ₉ O	DE	Fmoc/Boc
79,96633	Phosphorylation		-H+PO ₃ H ₂	STY	Chemical Modification
86,07317	tertButoxymethyl	Bum	-H+C ₅ H ₁₁ O	Н	Fmoc
87,03203	Ser->SS	56	+C ₃ H ₅ NO ₂	S	Double coupling
88,03467	tertButylthio	tButhio	-H+C ₄ H ₉ S	C	Fmoc
90,04695	Benzyl	Bzl	-H+C ₇ H ₇	CST	Fmoc
90,04695	Benzyl	Bzl	-H+C ₇ H ₇	CSTY	Boc
95,98230	Trifluoroacetylation	Tfa	-H+C ₂ F ₃ O	K	Fmoc/Boc
97,05276	Pro->PP	l I I d		P	
•			+C ₅ H ₇ NO	V	Double coupling
99,06841	Val->VV		+C ₅ H ₉ NO	I V	Double coupling

 $6 \hspace{1cm} 6$

Solid Phase Peptides Synthesis


Peptide Fragmentation

69

Mass Shift of Modifications, Protection Groups and Artifacts

m/z shift [Da]	Modification	Abbreviation	Sum formula change	Valid residues	Origin
101,04768	Thr->TT		+C ₄ H ₇ NO ₂	T	Double coupling
103,00918	Cys->CC		+C₃H₅NOS	С	Double coupling
104,06260	4-Methylbenzyl	MeBzl	-H+C ₈ H ₉	С	Boc
106,04187	Benzyloxy	BzlO	-H+C ₇ H ₇ O	DE	Fmoc/Boc
113,08406	lle->ll		+C ₆ H ₁₁ NO	1	Double coupling
113,08406	Leu->LL		+C ₆ H ₁₁ NO	L	Double coupling
114,04293	Asn->NN		+C ₄ H ₆ N ₂ O ₂	N	Double coupling
115,02694	Asp->DD		+C ₄ H ₅ NO ₃	D	Double coupling
118,07825	2-Phenylisopropyl	O-2-PhiPr	-H+C ₉ H ₁₁	DE	Fmoc
120,05752	4-Methoxybenzyl	MeOBzl	-H+C ₈ H ₉ O	С	Fmoc/Boc
120,05752	Benzyloxymethyl	Bom	-H+C ₈ H ₉ O	Н	Boc
128,05858	Gln->QQ		+C ₅ H ₈ N ₂ O ₂	Q	Double coupling
128,09496	Lys->KK		+C ₆ H ₁₂ N ₂ O	K	Double coupling
129,04259	Glu->EE		+C ₅ H ₇ NO ₃	E	Double coupling
131,04049	Met->MM		+C ₅ H ₉ NOS	M	Double coupling
134,03678	Benzyloxycarbonyl	Z	-H+C ₈ H ₇ O ₂	K	Fmoc/Boc
137,05891	His->HH	-	+C ₆ H ₇ N ₃ O	H	Double coupling
147,06841	Phe->FF		+C ₉ H ₉ NO	F	Double coupling
148,08882	Adamantyloxy	O-1-Ada	-H+C ₁₀ H ₁₃ O	D	Fmoc/Boc
148,08882	Adamantyloxy	O-1-Ada O-2-Ada	-H+C ₁₀ H ₁₃ O	D	Boc
154,00885	Tosyl	Tos	-H+C ₇ H ₇ O ₂ S	HR	Fmoc/Boc
156,10111	Arg->RR	105	, , , ,	R	Double coupling
157,96901	2,6-Dichlorobenzyl	di-Cl-Bzl	+C ₆ H ₁₂ N ₄ O -H+C ₇ H ₅ Cl ₂	Y	Fmoc/Boc
	Z,o-Didilioroberizyi Tvr->YY	UI-CI-DZI		Y	
163,06333	'	Dda	+C ₉ H ₉ NO ₂ -H+C ₁₀ H ₁₃ O ₂	K	Double coupling
164,08373	1-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene)-ethyl 2.4-Dinitrophenyl	Dde	-H+C ₆ H ₃ N ₂ O ₄	Н	Fmoc
166,00146	,	Dnp 2 CL 7	-0 0 2-4	+	Boc Franc/Boo
167,99781	2-Chlorobenzyloxycarbonyl	2-CI-Z	-H+C ₈ H ₆ ClO ₂	K	Fmoc/Boc
180,05752	Xanthyl	Xan	-H+C ₁₃ H ₉ O	NQ	Boc
180,07864	2,4,6-Trimethoxybenzyl	Tmob	-H+C ₁₀ H ₁₃ O ₃	N	Fmoc
182,04015	Mesitylene-2-sulfonyl	Mts	-H+C ₉ H ₁₁ O ₂ S	R	Fmoc
182,04015	Mesitylene-2-sulfonyl	Mts	-H+C ₉ H ₁₁ O ₂ S	RW	Boc
186,07931	Trp->WW		+C ₁₁ H ₁₀ N ₂ O	W	Double coupling
206,13068	1-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene)-3-methylbutyl	ivDde	-H+C ₁₃ H ₁₉ O ₂	K	Fmoc
211,94729	2-Bromobenzyloxycarbonyl	2-Br-Z	-H+C ₈ H ₆ BrO ₂	Y	Boc
212,05072	4-Methoxy-2,3,6-trimethyl-benzenesulfonyl	Mtr	-H+C ₁₀ H ₁₃ O ₃ S	R	Fmoc/Boc
222,06808	Fluorenylmethoxycarbonyl	Fmoc	-H+C ₁₅ H ₁₁ O ₂	all Amino acids	Fmoc
226,07760	Biotinylation		+C ₁₀ H ₁₄ N ₂ S ₁ O ₂	K	Chemical Modification
226,09938	4,4'-Dimethoxybenzhydryl	Mbh	-H+C ₁₅ H ₁₅ O ₂	NQ	Fmoc
242,10955	Trityl	Trt	-H+C ₁₉ H ₁₅	CHNQST	Fmoc
242,10955	Trityl	Trt	-H+C ₁₉ H ₁₅	CHNQ	Boc
252,08202	2,2,4,6,7-Pentamethyl-dihydrobenzofurane-5-sulfonyl	Pbf	-H+C ₁₃ H ₁₇ O ₃ S	R	Fmoc
256,12520	4-Methyltrityl	Mtt	-H+C ₂₀ H ₁₇	HK	Fmoc
266,09767	2,2,5,7,8-Pentamethyl-chromane-6-sulfonyl	Pmc	-H+C ₁₄ H ₁₉ O ₃ S	R	Fmoc
272,12012	4-Methoxytrityl	Mmt	-H+C ₂₀ H ₁₇ O	С	Fmoc
276,07058	2-Chlorotrityl	2-CI-Trt	-H+C ₁₉ H ₁₄ CI	Υ	Fmoc
327,18344	4{N-[1-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene)-3-methylbutyl]-amino}benzyloxy	ODmab	-H+C ₂₀ H ₂₆ NO ₃	DE	Fmoc
388,08211	Fluorescein		+C ₂₂ H ₁₄ N ₁ O ₆	С	Chemical Modification
421,07324	Fluoresceinisothiocyanat	FITC	+C ₂₁ S ₁ H ₁₅ N ₃ O ₅	CKRS	Chemical Modification
431,26920	Biotinylation		-H+C ₂₀ H ₄₀ N ₄ O ₄ S	K	Chemical Modification
672,29816	CyDye-Cy3		+C ₃₇ H ₄₄ N ₄ S ₁ O ₆	С	Chemical Modification

Typical fragment ions observed

• Low energy CID: b and y

• PSD: a, b, y and i, including neutral losses of NH₃ from a and b

ISD: c and yECD-FTICR: c and z

Structures of the fragments	+
H ₂ N + NH	O R3 H O OH OH X2
H_2N O	R3 O O OH N OH Y2
R1 O NH ₃ + C2	R3 O H N OH OH z2

Molecular Weights of Amino Acid Residues

Amino Acid Structure	Name	Symbol	1 Letter Code	Elemental Composition (Residue)	Monoisotopic Mass (Residue)	Averaged Mass (Residue)
H,N H,C OH	Alanine	Ala	А	C ₃ H ₅ NO	71.03712	71.08
H,N H C OH	Cysteine	Cys	С	C₃H₅NOS	103.00919	103.15
H,N, H,C,OH	Aspartic acid	Asp	D	C ₄ H ₅ NO ₃	115.02695	115.09
H,N, H,COH, CH, CH, CH,	Glutamic acid	Glu	Е	C ₅ H ₇ NO ₃	129.0426	129.12
H,N, H,COH	Phenylanaline	Phe	F	C ₉ H ₉ NO	147.06842	147.18
H.N. H.C.OH	Glycine	Gly	G	C ₂ H ₃ NO	57.02146	57.05
H,N H COH	Histidine	His	Н	C ₆ H ₇ N ₃ O	137.05891	137.14
H,N,H,COH	Isoleucine	lle	I	C ₆ H ₁₁ NO	113.08407	113.16
H.N. B.C. OH CH; CH; CH, CH, NH;	Lysine	Lys	К	C ₆ H ₁₂ N ₂ O	128.09497	128.17
H ₂ N ₂ H ₂ CO _{OH} CH ₂ CH CH ₃ CH ₃	Leucine	Leu	L	C ₆ H ₁₁ NO	113.08407	113.16

Ν	/	asses	of	Term	inal	Groups
---	---	-------	----	------	------	--------

C-Terminal Groups Free Acid Amide Composition OH NH₂ Monoisotopic Mass 17.00274 16.01872

Averaged Mass 17.00735 16.02262

Amino Acid Structure	Name	Symbol	1 Letter Code	Elemental Composition (Residue)	Monoisotopic Mass (Residue)	Averaged Mass (Residue)
H ₂ N H C OH CH ₂ CH ₂ CH ₃ CH ₃	Methionine	Met	М	C ₅ H ₉ NOS	131.04049	131.20
H ₂ N ₁ H ₂ C _{OH}	Asparagine	Asn	N	C ₄ H ₆ N ₂ O ₂	114.04293	114.10
HN-B.COH	Proline	Pro	Р	C ₅ H ₇ NO	97.05277	97.12
H,N,H,COH CH ₂ CH ₂ CN ₁	Glutamine	Gln	Q	C ₅ H ₈ N ₂ O ₂	128.05858	128.13
H.N. H.C. OH CH; CH; CH; CH; NH	Arginine	Arg	R	C ₆ H ₁₂ N ₄ O	156.10112	156.19
H,N, H,C OH CH ₃ OH	Serine	Ser	S	C ₃ H ₅ NO ₂	87.03203	87.08
H.N. H.C. OH CH CH, OH	Threonine	Thr	Т	C ₄ H ₇ NO ₂	101.04768	101.11
H.N. H.C.OH.	Valine	Val	V	C ₅ H ₉ NO	99.06842	99.13
H,N, H,C OH	Tryptophan	Trp	W	C ₁₁ H ₁₀ N ₂ O	186.07932	186.21
H,N, H,COH	Tyrosine	Tyr	Y	C ₉ H ₉ NO ₂	163.06333	163.18

Composition H HCO CH₃CO Monoisotopic Mass 1.00783 29.00274 43.01839 Averaged Mass 1.0079 29.01808 43.04447

Amino Acid Calculator Table

Amino Acid Calculator Table

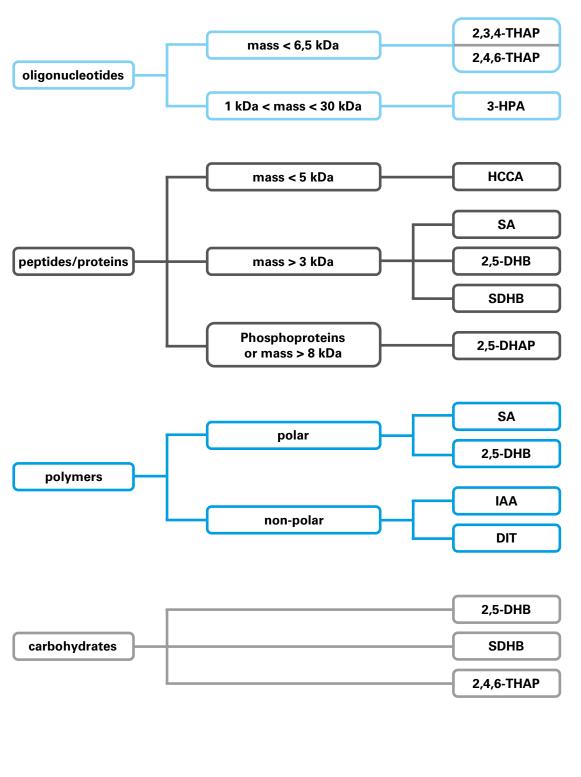
Residues Sorted by Molecular Weight

Sums and Differences of 2 Amino Acid Residues Residue Mass Differences

		G	Α	S	Р	v	Т	С	1	L
		_				-				_
		57.05203	71.07902	87.07832	97.11704	99.13299	101.10531	103.14344	113.15998	113.15998
G	57.05203	114.10406	14.02699	30.02629	40.06501	42.08097	44.05328	46.09141	56.10795	56.10795
A	71.07902	128.13105	142.15804	15.99931	26.03803	28.05398	30.02629	32.06442	42.08097	42.08097
s	87.07832	144.13035	158.15734	174.15665	10.03872	12.05467	14.02699	16.06512	26.08166	26.08166
P	97.11704	154.16907	168.19606	184.19537	194.23409	2.01595	3.98827	6.02640	16.04294	16.04294
V	99.13299	156.18502	170.21201	186.21132	196.25004	198.26599	1.97232	4.01045	14.02699	14.02699
Т	101.10531	158.15734	172.18433	188.18363	198.22235	200.23831	202.21062	2.03813	12.05467	12.05467
С	103.14344	160.19547	174.22246	190.22176	200.26048	202.27644	204.24875	206.28688	10.01654	10.01654
I	113.15998	170.21201	184.23900	200.23831	210.27703	212.29298	214.26529	216.30342	226.31997	0.00000
L	113.15998	170.21201	184.23900	200.23831	210.27703	212.29298	214.26529	216.30342	226.31997	226.31997
N	114.10406	171.15609	185.18308	201.18238	211.22110	213.23705	215.20937	217.24750	227.26404	227.26404
D	115.08866	172.14069	186.16768	202.16699	212.20571	214.22166	216.19398	218.23211	228.24865	228.24865
Q	128.13105	185.18308	199.21006	215.20937	225.24809	227.26404	229.23636	231.27449	241.29103	241.29103
К	128.17468	185.22671	199.25370	215.25300	225.29172	227.30768	229.27999	231.31812	241.33466	241.33466
E	129.11565	186.16768	200.19467	216.19398	226.23270	228.24865	230.22096	232.25909	242.27564	242.27564
М	131.19742	188.24945	202.27644	218.27574	228.31446	230.33041	232.30273	234.34086	244.35740	244.35740
н	137.14152	194.19355	208.22054	224.21985	234.25857	236.27452	238.24684	240.28497	250.30151	250.30151
F	147.17714	204.22917	218.25616	234.25546	244.29418	246.31014	248.28245	250.32058	260.33712	260.33712
R	156.18813	213.24016	227.26714	243.26645	253.30517	255.32112	257.29344	259.33157	269.34811	269.34811
Υ	163.17645	220.22848	234.25546	250.25477	260.29349	262.30944	264.28176	266.31989	276.33643	276.33643
w	186.21391	243.26594	257.29293	273.29224	283.33096	285.34691	287.31922	289.35735	299.37390	299.37390

N	D	Q	К	E	М	Н	F	R	Υ	W
114.10406	115.08866	128.13105	128.17468	129.11565	131.19742	137.14152	147.17714	156.18813	163.17645	186.21391
57.05203	58.03664	71.07902	71.12265	72.06362	74.14539	80.08950	90.12511	99.13610	106.12442	129.16188
43.02504	44.00965	57.05203	57.09566	58.03664	60.11840	66.06251	76.09812	85.10911	92.09743	115.13490
27.02574	28.01034	41.05272	41.09636	42.03733	44.11910	50.06320	60.09882	69.10980	76.09812	99.13559
16.98702	17.97162	31.01400	31.05764	31.99861	34.08038	40.02448	50.06010	59.07108	66.05940	89.09687
14.97106	15.95567	28.99805	29.04169	29.98266	32.06442	38.00853	48.04415	57.05513	64.04345	87.08092
12.99875	13.98335	27.02574	27.06937	28.01034	30.09211	36.03621	46.07183	55.08282	62.07113	85.10860
10.96062	11.94522	24.98761	25.03124	25.97221	28.05398	33.99808	44.03370	53.04469	60.03301	83.07047
0.94407	1.92868	14.97106	15.01470	15.95567	18.03744	23.98154	34.01716	43.02814	50.01646	73.05393
0.94407	1.92868	14.97106	15.01470	15.95567	18.03744	23.98154	34.01716	43.02814	50.01646	73.05393
228.20812	0.98461	14.02699	14.07062	15.01160	17.09336	23.03747	33.07308	42.08407	49.07239	72.10985
229.19272	230.17733	13.04238	13.08602	14.02699	16.10875	22.05286	32.08848	41.09946	48.08778	71.12525
242.23510	243.21971	256.26209	0.04364	0.98461	3.06637	9.01048	19.04609	28.05708	35.04540	58.08287
242.27874	243.26335	256.30573	256.34936	0.94097	3.02274	8.96684	19.00246	28.01345	35.00176	58.03923
243.21971	244.20432	257.24670	257.29033	258.23131	2.08177	8.02587	18.06149	27.07247	34.06079	57.09826
245.30148	246.28608	259.32846	259.37210	260.31307	262.39484	5.94411	15.97972	24.99071	31.97903	55.01649
251.24558	252.23019	265.27257	265.31621	266.25718	268.33894	274.28305	10.03562	19.04660	26.03492	49.07239
261.28120	262.26581	275.30819	275.35182	276.29279	278.37456	284.31867	294.35428	9.01099	15.99931	39.03677
270.29219	271.27679	284.31917	284.36281	285.30378	287.38555	293.32965	303.36527	312.37625	6.98832	30.02579
277.28050	278.26511	291.30749	291.35113	292.29210	294.37386	300.31797	310.35359	319.36457	326.35289	23.03747
300.31797	301.30258	314.34496	314.38859	315.32957	317.41133	323.35544	333.39105	342.40204	349.39036	372.42783

Sum of 2 Residues


Matrices

Bruker Matrix Selection Guide

Matrix name	Elemental Composition	Structure	MH _{mono} + [Th]	Average Mass	Order No.
2,3,4-Trihydroxyacetophenone (2,3,4-THAP), 1 g	C ₈ H ₈ O ₄	но ОН	169,04953	168,15	206148
2,4,6-Trihydroxyacetophenone (2,4,6-THAP), 1 g	C ₈ H ₈ O ₄ •H ₂ O	но — Он	169,04953	186,16	206154
2,5-Dihydroxyacetophenon (2,5-DHAP), 1g	C ₈ H ₈ O ₃	ОН	153,05462	152,20	231829
2,5-Dihydroxybenzoic acid (2,5-DHB), 1g 2,5-Dihydroxybenzoic acid (2,5-DHB), 5g	C ₇ H ₆ O ₄	НО ОН	155,03388	154,12	201346 203074
3-Hydroxypicolinic acid (3-HPA), 1 g 3-Hydroxypicolinic acid (3-HPA), 5 g	C ₆ H₅NO₃	OH OH	140,03422	139,11	201224 203070
α-Cyano-4-hydroxycinnamic acid ester (CNME), 1g	C ₁₁ H ₉ NO ₃	0 осн3	204,06552	203,19	201225
α-Cyano-4-hydroxycinnamic acid (HCCA), 1 g α-Cyano-4-hydroxycinnamic acid (HCCA), 5 g α-Cyano-4-hydroxycinnamic acid (HCCA), portioned, 10 tubes	C ₁₀ H ₇ NO ₃	но	190,04987	189,17	201344 203072 255344
Dithranol (DIT), 1g	C ₁₄ H ₁₀ O ₃	OH O OH	227,07027	226,23	209783
SDHB, 5g	C ₇ H ₆ O ₄	но		154,12	209813
	C ₈ H ₈ O ₄	H ₃ CO OH		168,15	
Sinapinic acid (SA), 1g Sinapinic acid (SA), 5g	C ₁₁ H ₁₂ O ₅	H ₃ CO OH	225,07575	224,22	201345 203073
trans-Indole-3-acrylic acid (IAA), 1g	C ₁₁ H ₉ NO ₂	H O OH	188,07060	187,20	209803
Peptide / Protein Matrix Kit	HCCA, 2,5-DHB and SA	H H			205931

Please see page 74 for matrices details.

Molecular Weights

Molecular Weights of Selected Glycan Residues

Residue Name	Symbol	Elemental Composition	Monoisotopic Mass	Average Mass
Deoxyribose	dRib	C₅H ₈ O₃	116,04734	116,12
Arabinose	Ara	C ₅ H ₈ O ₄	132,04226	132,11
Ribose	Rib	C ₅ H ₈ O ₄	132,04226	132,11
Xylose	Xyl	C ₅ H ₈ O ₄	132,04226	132,11
Fucose	Fuc	C ₆ H ₁₀ O ₄	146,05791	146,14
Galactosamine	GalN	C ₆ H ₁₁ NO ₄	161,06881	161,16
Glucosamin	GlcN	C ₆ H ₁₁ NO ₄	161,06881	161,16
Galactose	Gal	C ₆ H ₁₀ O ₅	162,05282	162,14
Glucose	Glc	C ₆ H ₁₀ O ₅	162,05282	162,14
Mannose	Man	C ₆ H ₁₀ O ₅	162,05282	162,14
Glucuronic acid	GlcA	C ₆ H ₈ O ₆	176,03209	176,13
N-acetylgalactosamin	GalNAc	C ₈ H ₁₃ NO ₅	203,07937	203,20
N-acetylglucosamin	GlcNAc	C ₈ H ₁₃ NO ₅	203,07937	203,20
Muramic acid	Mur	C ₁₁ H ₁₇ NO ₇	275,10050	275,26
N-acetylneuraminic acid	NANA	C ₁₁ H ₁₇ NO ₈	291,09542	291,26

Molecular Weights of Nucleotide Residues (compatible to BioTools 3.2)

Nucleotide Residue	Elemental Composition	Monoisotopic Mass	Averaged Mass
AMP	C ₁₀ H ₁₂ N ₅ O ₆ P	329,05252	329,21
GMP	C ₁₀ H ₁₂ N ₅ O ₇ P	345,04744	345,21
UMP	C ₉ H ₁₁ N ₂ O ₈ P	306,02530	306,17
CMP	C ₉ H ₁₂ N ₃ O ₇ P	305,04129	305,18
dAMP	C ₁₀ H ₁₂ N ₅ O ₅ P	313,05761	313,21
dGMP	C ₁₀ H ₁₂ N ₅ O ₆ P	329,05252	329,21
dTMP	C ₁₀ H ₁₃ N ₂ O ₇ P	304,04604	304,20
dCMP	C ₉ H ₁₂ N ₃ O ₆ P	289,04637	289,18
Hypoxanthine	C ₁₀ H ₁₁ N ₄ O ₆ P	314,04162	314,19
7-deaza-dGMP	C ₁₁ H ₁₃ N ₄ O ₆ P	328,05727	328,22
7-deaza-dAMP	C ₁₁ H ₁₃ N ₄ O ₅ P	312,06236	312,22
2-amino-purine	C ₁₀ H ₁₂ N ₅ O ₅ P	313,05761	313,21
dAMP-thioCH3	C ₁₁ H ₁₄ N ₅ O ₄ SP	343,05041	343,30
dGMP-thioCH3	C ₁₁ H ₁₄ N ₅ O ₅ SP	359,04533	359,30
dTMP-thioCH3	C ₁₁ H ₁₅ N ₂ O ₆ SP	334,03885	334,29
dCMP-thioCH3	C ₁₀ H ₁₄ N ₃ O ₅ SP	319,03918	319,28
ddCMP	C ₉ H ₁₂ N ₃ O ₅ P	273,05146	273,19
ddAMP	C ₁₀ H ₁₂ N ₅ O ₄ P	297,06269	297,21
ddTMP	C ₁₀ H ₁₃ N ₂ O ₆ P	288,05112	288,20
ddGMP	C ₁₀ H ₁₂ N ₅ O ₅ P	313,05761	313,21

Conversion Factors for Important Physical Units

Energy Equivalents

	Joule	Hertz	cm ⁻¹	Kelvin	eV
Joule	1	1.5091905 E+33	5.03411762 E+22	7.242964 E+22	6.24150974 E+18
Hertz	6.62606876 E-34	1	3.335640952 E-11	4.7992374 E-11	4.13566727 E-15
cm ⁻¹	1.98644544 E-23	2.99792458 E+10	1	1.4387752	1.239841857 E-04
Kelvin	1.3806503 E-23	2.0836644 E+10	0.6950356	1	8.6173432 E-05
eV	1.602176462 E-19	2.417989491 E+14	8.06554477 E+03	1.1604506 E+04	1

based on the Fundamental constants with E = mc^2 = hc/λ = hv = kT and 1 eV = (e/C) J

Force Units: Si unit = Newton (N), cgs unit = dyne, Weight = $mass \times g_n$

	N	p (pond)	kp	dyne
N	1	101.9716	0.1019716	1.0 E+05
р	0.00980665	1	1.00 E-03	980.665
kp	9.80665	1000	1	980665
dyne	1.0 E-05	1.019716 E-03	1.019716 E-06	1

Energy and Work Units: SI unit = Joule (J), cgs unit: 1 erg = 10⁻⁷ Joule

	J = N m	kp m	kWh	kcal	BTU	eV	
J	1	0.101972	2.777778 E-07	2.390057 E-04	9.478134 E-04	6.241512 E+18	
kp m	9.80665	1	2.724069 E-06	2.343846 E-03	9.294874 E-03	6.120832 E+19	
kWh	3.600 E+06	3.670978 E+05	1	860.4207	3412.128	2.246944 E+25	
kcal	4184	426.6493	1.162222 E-03	1	3.965651	2.611448 E+22	
BTU	1055.06	1.075862 E+02	2.930722 E-01	2.521654 E-01	1	6.585169 E+21	
eV	1.602176 E-19	1.633765 E-20	4.450489 E-26	3.829293 E-23	1.518564 E-22	1	

Power Units: SI unit = Watt (W)

	W = J s ⁻¹	kW	kpm/s PS		cal/s	kcal/h
W	1	1.0 E-03	0.1019716	1.341022 E-03	0.2390057	0.8604207
kW	1.0 E+03	1	101.9716	1.341022	239.0057	860.4207
kpm/s	9.80665	9.80665 E-03	1	1.315093 E-02	2.343846	8.437844
PS	745.7	0.7457	76.04024	1	178.2266	641.6157
cal/s	4.184	4.184 E-03	0.4266493	5.610835 E-03	1	3.6
kcal/h	1.162222	1.162222 E-03	0.1185137	1.558565 E-03	0.2777778	1

Pressure Units: SI unit = Pascal

	Pa = N/m ²	kp/m ²	atm	bar	Torr = mmHg	at = kp/cm ²
Pa = N/m ²	1	0.1019716	9.86923 E-06	1.0 E-05	7.500617 E-03	1.019716 E-05
kp/m²	9.80665	1	9.67841 E-05	9.80665 E-05	7.355592 E-02	1.0 E-04
atm	1.01325 E+05	1.033227 E+04	1	1.01325	760	1.033227
bar	1.0 E+05	1.019716 E+04	0.9869233	1	750.0617	1.019716
Torr	133.3224	13.59510	1.315789 E-03	1.333224 E-03	1	1.359510 E-03
at = kp/cm ²	9.80665 E+04	1.0 E+04	0.9678411	9.800665 E-01	735.5592	1

Time Units: SI unit = second

	s	min	h	d	week	year	
s	1	1.666667 E-02	2.777778 E-04	1.157407 E-05	1.653439 E-06	3.168874 E-08	
min	60	1	1.666667 E-02	6.944444 E-04	9.920635 E-05	1.901324 E-06	
h	3600	60	1	4.166667 E-02	5.952381 E-03	1.140795 E-04	
d	86400	1440	24	1	1.428571 E-01	2.737907 E-03	
week	604800	10080	168	7	1	1.916535 E-02	
year	31556952	525949.2	8765.82	365.2425	52.1775	1	

Temperature Conversion: SI unit = Kelvin

	Kelvin (K)	Centigrade (°C)	Fahrenheit (°F)	Rankine (°R)
K	1	$T_C = T_K - 273.15$	$T_F = (9/5)T_K - 459.67$	$T_R = (9/5)T_K$
°C	$T_K = T_C + 273.15$	1	$T_F = (9/5)T_C + 32$	$T_R = (9/5)(T_C + 273.15)$
°F	$T_K = (5/9)(T_F + 459.67)$	$T_C = (5/9)(T_F - 32)$	1	$T_R = T_F + 459.67$
°R	$T_K = (9/5)T_R$	$T_C = (5/9)T_R - 273.15$	$T_F = T_R - 459.67$	1

IUPAC Periodic Table of Elements

1 (IA) Hydrogen 1 H ₁ -259.34° -252.87° -240.18°								
1.00794 91.0%	2 (IIA)			Group				
Lithium ² Li ₃ 180.5° ¹ Li ₃ 180.5° ¹ 41 6.941 1.86· 10 ⁻⁷ %	Beryllium ² Be ₄ 1287° 2471° +2 9.012182 2.38· 10 9%			Blement K L E Z BP.° N Ox.States O P At.Weight Q Abundance%				
Sodium 2 Na ₁₁ 97.80° 883° +1	Magnesium 2 Mg ₁₂ 650° 2 1090° +2		K	Key to Tabl	le			
22.98976928 0.000187%	24.3050 0.00350%	3 (IIIB)	4 (IVB)	5 (VB)	6 (VIB)	7 (VIIB)	8 (VIII)	9 (VIII)
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt
2 K ₁₉ 63.38° 8 K ₁₉ 759° 1 +1 39.0983 0.0000123%	² / ₈ Ca ₂₀ ^{842°} _{1484°} ² +2 40.078 0.000199%	$\begin{bmatrix} {2\atop 8} \mathbf{Sc_{21}} & {}^{1541^{\circ}} \\ {2\atop 9} & {}^{2} \mathbf{Sc_{21}} & {}^{2836^{\circ}} \\ {2\atop 1} & {}^{+3} & {}^{44.955912} \\ {1.12 \cdot 10} & {}^{-7}\% \end{bmatrix}$	${\overset{2}{8}} \mathbf{Ti}_{22} \overset{1668^{\circ}}{\overset{3287^{\circ}}{}} \\ {\overset{10}{\overset{2}{}}} \overset{+2+3+4}{\overset{47.867}{}} \\ 7.8 \cdot 10^{-6} \%$	$\begin{array}{c} {2\atop 8} \\ {1\atop 11} \\ {2\atop 2} \\ {1\atop $	$\begin{bmatrix} {2\atop 8} {\bf Cr_{24}} & {1907^{\circ}} \\ {13\atop 1} & {+2+3+6} \\ & 51.9961 \\ & 0.000044\% \end{bmatrix}$	$\begin{array}{c} {}^{2}_{8} \mathbf{Mn_{25}}^{} {}^{1246^{\circ}}_{2061^{\circ}} \\ {}^{2}_{2} {}^{+2+3+4+7}_{54.938045} \\ {}^{0.000031\%} \end{array}$	${\begin{smallmatrix} 2\\8\\14\\2\\+2+3\\55.845\\0.00294\% \end{smallmatrix}} \mathbf{Fe_{26}} {\begin{smallmatrix} 1538^{\circ}\\2861^{\circ}\\2861^{\circ}\\}$	2 CO ₂₇ 2927° 15 2 +2+3 58.933195 7.3·10 -6%
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium
$\begin{bmatrix} {2\atop 8} \mathbf{Rb_{37}} & {39.31}^{\circ} \\ {8\atop 18} & {+1\atop 1} & {85.4678} \\ {2.31\cdot 10^{-8}\%} \end{bmatrix}$	$ \begin{array}{c} {}^{2}_{8} \mathbf{Sr_{38}} & {}^{777^{\circ}}_{1382^{\circ}} \\ {}^{8}_{18} & {}^{+2}_{2} \\ {}^{2}_{2} & {}^{87.62}_{7.7 \cdot 10^{-8}\%} \end{array} $	$\begin{bmatrix} \frac{2}{8} & \mathbf{Y_{39}} & \frac{1522^{\circ}}{3345^{\circ}} \\ \frac{9}{2} & +3 & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix} & \frac{1522^{\circ}}{3345^{\circ}}$	$\begin{array}{c} {}^{2}_{8}\mathbf{Zr_{40}} & {}^{1855^{\circ}}_{4409^{\circ}} \\ {}^{18}_{10} & {}^{+4}_{2} & {}^{91.224}_{3.72 \cdot 10^{-8}\%} \end{array}$	$ \begin{array}{c} {}^{2}_{8} \textbf{Nb}_{\textbf{41}} $	² / ₈ Mo ₄₂ ^{2623°} / _{4639°} ¹³ / ₁ +6 ¹ 95.96 8.3· 10 ⁻⁹ %	² / ₈ Tc ₄₃ ^{2157°} ¹⁸ / ₁₈ ¹³ ⁺⁴⁺⁶⁺⁷ ² [98]	2334° 18	2 Rh ₄₅ 1964° 18 16 +3 1 102.90550 1.12· 10 ⁻⁹ %
Cesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium
28.44° 8 Cs ₅₅ 28.44° 18 +1 8 132.9054519 1.21· 10 ⁻⁹ %	² / ₈ Ba ₅₆ ^{727°} ^{1897°} ¹⁸ / ₁₈ +2 ⁸ / ₂ 137.327 1.46· 10 ⁻⁸ %	28 La ₅₇ † 318° 18 +3 9 138.90547 1.45· 10 ⁻⁹ %	${}^{2}_{8}\mathbf{Hf_{72}} {}^{2233^{\circ}}_{4603^{\circ}} \\ {}^{32}_{10} {}^{+4}_{178.49} \\ {}^{5.02 \cdot 10^{-10}}\%$	$ \begin{array}{c} {2\atop8} {\bf Ta_{73}} & {}^{3017^{\circ}} \\ {}^{8\atop18} & {}^{10} & {}^{5458^{\circ}} \\ {}^{32} & {}^{+5} & {}^{11} \\ {}^{11} & 180.94788 \\ {}^{2} & 6.75 \cdot 10^{-11} \% \\ \end{array} $	$ \begin{array}{c} {2\atop 8} \\ {18\atop 18} \\ {32\atop 2} \\ {12\atop 2} \\ {183.84} \\ {4.34\cdot 10^{-10}\%} \end{array} $	$ \begin{array}{c} {}^{2}_{8}\mathbf{Re_{75}} & {}^{3186^{\circ}}_{5596^{\circ}} \\ {}^{32}_{2} & {}^{+4+6+7}_{2} \\ {}^{13}_{2} & 186.207 \\ {}^{1}_{2} & 1.69 \cdot 10^{-10}\% \end{array} $	8 Os ₇₆ 3033° 18 32 +3+4 14 190.23 2.20· 10 ⁻⁹ %	28 Ir ₇₇ 2446° 18 1r ₇₇ 4428° 32 +3+4 15 192.217 2.16· 10 ⁻⁹ %
Francium	Radium		Rutherfordium		Seaborgium	Bohrium	Hassium	Meitnerium
² ₈ Fr ₈₇ ³² ¹⁸ ¹⁸ ⁸ ¹ [223]	² / ₈ Ra ₈₈ ¹⁸ ³² ⁺² ¹⁸ ⁸ [226]	2 Ac ₈₉ [‡] 1051° 18 32 +3 18 [227]	² / ₈ Rf ₁₀₄ ¹⁸ ³² ¹⁰ ¹² ¹⁰ ¹² ¹⁰ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁹ ¹⁹ ¹⁹ ¹⁹ ¹⁹ ¹⁹ ¹⁹ ¹⁹	² ₈ ₁₈ Db ₁₀₅ ³² ₁₁ ³² ₁ [268]	² ₈ Sg ₁₀₆ ³² ₁₂ ³² ₁₂ [271]	² / ₈ Bh ₁₀₇ ³² ³² ¹³ ²	² ₈ Hs ₁₀₈ ³² ³² ¹⁴ ² [277]	² / ₈ Mt ₁₀₉ ¹⁸ / ₃₂ ³² / ₁₅ ¹⁹ / ₂ [276]

† Lanthanides

Certum Prase	eoaymum Neoay	mium Promet	mum Saman	ium Europii	im Gadoninium
${}^{2}_{18}\mathbf{Ce}_{58} \ {}^{798^{\circ}}_{3443^{\circ}} \ {}^{2}_{18}\mathbf{P}$	\mathbf{r}_{59} $\overset{931^{\circ}}{\overset{18}{520^{\circ}}}$ $\overset{2}{\overset{18}{8}}$ Nd.	$\frac{1021^{\circ}}{3074^{\circ}} \begin{vmatrix} \frac{2}{8} \mathbf{Pm}_{6} \\ \frac{18}{23} \end{vmatrix}$	10	${}_{2}^{1074^{\circ}} {}_{1794^{\circ}} {}_{18}^{2} \mathbf{Eu}_{63}$	822° 8 Gd 1313° 12596° 8 18 3273°
	$\begin{vmatrix} +3 \\ 140.90765 \\ 44 \cdot 10^{-10} \% \end{vmatrix}$ $\begin{vmatrix} 22 \\ 8 \\ 2 \end{vmatrix}$ $\begin{vmatrix} 144 \\ 2.70 \end{vmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccc} 45 & & 24 & +2+3 \\ 8 & & 150 \\ 8.42 \cdot & 1 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

‡ Actinides

Thorium Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium
32 +4 32 +5+4	32 +3+4+5+6		\$\begin{pmatrix} 28 \\ 8 \\ 18 \end{pmatrix} \text{640}\circ \\ 3228\circ \\ \text{3228}\circ \\	$\begin{array}{c} {2\atop 8} \mathbf{Am_{95}} & {1176^{\circ}} \\ {18\atop 18} & {32\atop 22} & {}^{+3+4+5+6} \\ {25\atop 8} & [243] \end{array}$	² ₈ Cm ₉₆ ^{1345°} ³² ⁺³ ²⁵ ⁹ ¹²⁴⁷

Key to Table: The IUPAC Group Numbers 1 to 18 are used (CAS group numbering in parentheses). Information presented: E_Z = element symbol and nuclear charge (protons); melting, boiling, critical point (MP, BP, CP) in °C (sublimation or critical temp. marked with s or t); population of electron levels K - Q; possible oxidation states; **IUPAC mean atomic weights updated 2005** based on terrestrial isotope abundances ($^{12}C = 12.0000$); for unnatural elements atom. wt. of most abundant isotope is given in brackets; total element abundance (%) in the solar system.

18 (VIIIA) Helium He₂ -268.93 4.002602 13 (IIIA) 14 (IVA) 15 (VA) 16 (VIA) 17 (VIIA) 2075° 4000° 4 **C**₆ 4492t° 3642s° ²/₈ Ne₁₀-^{248.38}/_{-246.08} ² N₇ -210.00° -195.79° -146.94° O₈ -182.95° -118.56° ±1±2±3+4+5 12.0107 14.0067 18.9984032 20.1797 2.7. 10 -6% 0.0112% 0.033% 0.0102% 0.078% Aluminum Sulfur Silicon Chlorine Phosphorus Argon P₁₅ 44.15° 280.5° 721° ²/₇Cl₁₇ -101.5° -34.04° 143.8° S₁₆ 115.21 444.60 1041 ${}_{4}^{2}$ Si₁₄ ${}^{\frac{2}{8}}\mathbf{Ar}_{18\overset{-189.35}{-122.28}}$ +2+4-4 +3+5-3 +4+6-2 +1+5+7-1 26.9815386 28.0855 30.973762 32.065 35 453 39.948 10 (VIII) 11 (IB) 12 (IIB) 0.000277% 0.0000179 0.000329% 0.00326% 0.0000349 0.00168% Nickel Copper ${\overset{2}{\underset{16}{8}}} \mathbf{Ni_{28}} \overset{1455^{\circ}}{\underset{2913^{\circ}}{\underset{12}{2913^{\circ}}}}$ ${}^{\frac{2}{8}}\mathbf{Z}\mathbf{n}_{30}$ ${}^{\frac{2}{8}}Cu_{29}^{1084.02}$ Ge_{32} Ga_{31} Kr₃₆ 15: Se₃₄ \mathbf{As}_{33} +3+5-3 +4+6-2 +1+5-1 63.546 65.38 69.723 72.64 74.92160 78.96 79.904 0.000161% 1.70 · 10 -6% 4.11 · 10 -6% 1.23 · 10 -79 3.9. 10 -7% 2.1. 10 -8% 2.03 · 10 -79 1.5. 10 -7% Silver Tin Antimony Tellurium ${}^{\frac{2}{8}}Sb_{51}$ 8 Te₅₂ ²₈**Pd**₄₆ ^{1554.9°} _{2963°} 630.63° 1587° .8 **Xe**₅₄-108.04 ${}^{\frac{2}{8}}\mathbf{Ag}_{47}^{\frac{961.78^{\circ}}{2162^{\circ}}}$ ${}^{\frac{2}{8}}\mathbf{Cd}_{48}^{3}$ 5 In₄₉ Sn₅₀ 106.42 107.8682 112.411 114.818 118.710 121.760 127.60 131.293 1.58 · 10 -9% Gold Platinum Lead Bismuth Polonium Radon Mercury ²₈**Pb**₈₂ 327.46° 1749° $\overline{{}^{\frac{2}{8}}}\mathbf{At}_{85}$ ²/₈ Au₇₉ 2856° ${}^{\frac{2}{8}}\mathbf{Hg_{80}}{}^{\frac{36.6}{356.7}}$ 2 Po₈₄ ${}^{2}_{8}\mathbf{Tl}_{81}$ ${}^{\frac{2}{8}}$ **Bi**₈₃ ² **Rn**₈₆ -61.7 2 Pt₇₈ +2+4 207.2 32 +2+4 16 195.084 196.966569 200.59 204.3833 208.98040 [210] [222] [209] 4.4. 10 6.1· 10⁻¹⁰% 4.7. 10-10% 1.11.10-9 6.0· 10⁻¹ Darmstadtium ${}^{\frac{2}{8}}\mathbf{Ds}_{110}$ Rg_{111} $\frac{1}{8}Cn_{112}$ [280] [285] [281]

	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
2 8 18 27 8 2	Tb ₆₅ ^{1356°} _{3230°} +3 158.92535 1.97· 10 ⁻¹⁰ %	28 Dy 66 2567° 18 28 +3 8 162.500 1.286: 10 ⁻⁹ %	² / ₈ Ho ₆₇ ^{1474°} ^{2700°} ¹ / _{2700°} ⁸ / ₂ 164.93032 2.90· 10 ⁻¹⁰ %	2 8 Er ₆₈ 1529° 2868° 30 +3 8 167.259 8.18· 10 ⁻¹⁰ %	$\begin{bmatrix} \frac{2}{8} & \mathbf{Tm}_{69} & \frac{1545^{\circ}}{1950^{\circ}} \\ \frac{31}{8} & +3 & \\ \frac{2}{1} & 168.93421 \\ 1.23 \cdot 10^{-10}\% & \end{bmatrix}$	2 Yb ₇₀ 1196° 32 +2+3 8 173.054 8.08· 10 ⁻¹⁰ %	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
² ₈ Bk ₉₇ ^{1050°} ³² ₈ +3+4 ²⁷ ₈ [247]	² ₈ Cf ₉₈ ³² ⁺³ ²⁸ [251]	² / ₈ Es ₉₉ ³² +3 ²⁹ / ₈ [252]	² / ₈ Fm ₁₀₀ ^{1527°} ³² / ₈ +3 ³⁰ / ₈ [257]	$ \begin{array}{c} {2\atop 8} \mathbf{Md}_{101} \\ {32\atop 18} \\ {32\atop 31\atop 8} \\ {258} \end{array} $	² / ₈ No ₁₀₂ ^{827°} ³² / ₈ ⁺²⁺³ ³² / ₂ [259]	$\begin{array}{c} {}^{2}_{8} \mathbf{Lr_{103}} \\ {}^{1627^{\circ}}_{18} \\ {}^{32}_{9} \\ {}^{1262}_{2} \end{array}$

Adapted by W. E. Hull from the Table prepared by Richard B. Firestone (rbf@lbl.gov), Isotopes Project, Lawrence Berkeley National Laboratory; see R. B. Firestone, C. M. Baglin, and S.Y. F. Chu, 1999 Update to the 8th Edition of the *Table of Isotopes*, John Wiley & Sons, (1999); for Atomic Wt. updates see T. B. Coplen, Pure Appl Chem 73 (2001) 667-683 and R. D. Loss, Pure Appl Chem 75 (2003) 1107-1122.

Chemical Tables

Properties of Selected Nondeuterated Solvents

Solvent	Formula	MW _{ave}	Density	Viscosity	MP	BP	Refrac.	Dielec.	Dipole		al Shift
			d₄²⁰ [g/mL]	η²⁵ [mPa•s, cP]	[°C]	[°C]	Index n _D ²⁰	Const. ε	Mom. [<i>D</i>]	δ_{H} (ppm)	$\delta_{ m c}$ (ppm)
Acetic acid	C ₂ H ₄ O ₂	60.05	1.049	1.13	16.5	118.1	1.3716	6.17	1.7	2.10 11.42	20.8 178.1
Acetone	C₃H ₆ O	58.08	0.788	0.306	-94.5	56.2	1.3587	20.7	2.8	2.05	30.50 205.4
Acetonitrile	C ₂ H ₃ N	41.05	0.784	0.35	-45.2	81.7	1.3441	37.5	3.44	1.93	1.6 117.8
Benzene	C ₆ H ₆	78.11	0.8789	0.604	5.5	80.2	1.5011	2.29	0	7.16	128.5
1-Butanol	C ₄ H ₁₀ O	74.12	0.8097	2.55	-89.5	117.6	1.3993	17.7	1.70	1.0-1.5 3.5	14, 19 34, 63
2-Butanone (methyl ethyl ketone)	C ₄ H ₈ O	72.11	0.805	0.378	-86.7	79.6	1.3788	18.5	2.77	1.1, 2.2 2.5	7, 27.5 35, 207
Carbon disulfide	CS ₂	76.14	1.270	0.363	-111.8	46.1	1.628	2.6	0		192.8
Carbon tetrachloride	CCI ₄	153.82	1.590	0.908	-22.9	76.7	1.460	2.22	0		96.7
Chloroform	CHCl₃	119.38	1.480	0.537	-63.5	61.2	1.4458	4.81	1.08	7.26	77.2
Chloromethane	CH₃CI	50.49	0.916	0.24	-97.5	-24.1	1.3389	12.6	1.87	3.06	25.6
Cyclohexane	C ₆ H ₁₂	84.16	0.7786	0.894	6.5	80.8	1.4262	2.02	0	1.4	27.6
Cyclopentane	C ₅ H ₁₀	70.13	0.745	0.44	-94.0	49.3	1.4065	1.94	0	1.5	26.5
Dibromomethane	CH ₂ Br ₂	173.84	2.485		-52.7	96.9	1.5419	7.5	1.43	5.0	21.6
o-Dichlorobenzene	C ₆ H ₄ Cl ₂	147.00	1.31	1.324	-17.2	180.3	1.5515	9.9	2.27	7.0-7.4	128-133
1,2-Dichloroethane	C ₂ H ₄ Cl ₂	98.96	1.253	0.79	-35.7	83.4	1.4448	10.4	1.83	3.7	51.7
cis-1,2-Dichloroethylene	C ₂ H ₂ Cl ₂	96.94	1.284		-80.0	60.6	1.4490	9.2	1.90	6.4	119.3
trans-1,2-Dichloroethylene		96.94	1.257		-49.8	47.7	1.4462	2.1	0	6.3	121.1
1,1-Dichloroethylene	C ₂ H ₂ Cl ₂	96.94	1.213		-122.6	31.6	1.4254	4.6	1.34	5.5	115.5 128.9
Dichloromethane	CH ₂ Cl ₂	84.93	1.326	0.41	-96.7	39.9	1.424	9.0	1.60	5.31	53.73
Diethylether	C ₄ H ₁₀ O	74.12	0.713	0.230	-116.3	34.6	1.3526	4.30	1.25	1.2 3.5	17.1 67.4
Diethylene glycol dimethyl ether (diglyme)	C ₆ H ₁₄ O ₃	134.18	0.947	0.989	-64.1	162.0	1.407	7.1		3.3-3.6	59.0 70.5 72
1,2-Dimethoxyethane (glyme)	C ₄ H ₁₀ O ₂	90.12	0.868	0.46	-69 -58	85	1.379	7.20	1.71	3.3 3.5	59 72
Dimethoxymethane	C ₃ H ₈ O ₂	76.10	0.866		-105.2	42.3	1.3563	2.6		3.3 4.4	54.8 97.9
N,N-Dimethylacetamide	C ₄ H ₉ N ₀	87.12	0.9415	2.14	-20	166	1.437	37.8	3.75	2.1	21.5 34, 38 169.6
Dimethylcarbonate	C ₃ H ₆ O ₃	90.08	1.069		3	90.5	1.3688			3.65	54.8 156.9
Dimethylether	C ₂ H ₆ O	46.07			-139	-24.5				1.3	59.4
N,N-Dimethyl- formamide	C3H ₇ NO	73.10	0.9487	0.92	-60.5	152.9	1.4305	36.7	3.86	2.8 2.9 8.0	30.10 35.2 162.5
Dimethylsulfoxide	C ₂ H ₆ OS	78.14	1.100	1.987	18.5	189.5	1.4783	46.7	4.0	2.49	39.50
1,4-Dioxane	C ₄ H ₈ O ₂	88.11	1.034	1.18	11.9	101.2	1.4224	2.25	0.45	3.53	67.30
Ethanol	C ₂ H ₆ O	46.07	0.789	1.074	-114.4	78.4	1.3614	24.5	1.69	1.10	17.20 56.70
Ethyl acetate	C ₄ H ₈ O ₂	88.11	0.896	0.426	-83.8	77.1	1.3724	6.0	1.8	1.2 2.0 4.1	14.3 20.7 60.1 170.4
Ethylene carbonate	C ₃ H ₄ O ₃	88.06	1.321	1.93	36.4	244	1.416	89.6	4.91	4.2	65.0 155.8
Ethylene glycol	C ₂ H ₆ O ₂	62.07	1.115	21 (20 °C)	-12.6	197.5	1.431	37.7		3.7	63.4
Formamide	CH₃NO	45.04	1.133	3.3	2.6	210.5	1.4475	110	3.38	7.2 8.1	165.1
Glycerol	C ₃ H ₈ O ₃	92.10	1.26	940	17.9	290.1	1.474	42.5		3.4 3.7	64.5 73.7

Properties of Selected Nondeuterated Solvents

Solvent	Formula	MW _{ave}	Density	Viscosity	MP	BP	Refrac.	Dielec.	Dipole	Chemic	al Shift
			d₄²⁰ [g/mL]	η ²⁵ [mPa•s, cP]	[°C]	[°C]	Index n _D ²⁰	Const. ε	Mom. [<i>D</i>]	δ _H (ppm)	$\delta_{\rm c}$ (ppm)
Hexamethyl- phosphoramide (HMPA)	C ₆ H ₁₈ N ₃ OP	179.20	1.027		7.2	233	1.4588	30.6	5.5	2.4 2.6	36.6
Hexane	C ₆ H ₁₄	86.18	0.6594	0.294	-95.4	68.8	1.3749	1.89	0.08		
Methanesulfonic acid	CH ₄ O ₃ S	96.11	1.48	10.52	18	168	1.430			2.8	39.6
Methanol	CH₄O	32.04	0.791	0.544	-97.7	64.7	1.3284	32.6	1.70	3.31	49.0
Morpholine	C ₄ H ₉ NO	87.12	1.005	2.011	-3.1	128.9	1.4548	7.4	1.58	2.6 3.9	46.8 68.9
Nitromethane	CH ₃ NO ₂	61.04	1.137	0.61	-28.7	100.9	1.3817	35.9	3.46	4.33	62.8
Pentane	C ₅ H ₁₂	72.15	0.626	0.224	-129.7	36.1	1.3575	1.84	0.04		
2-Propanol	C ₃ H ₈ O	60.10	0.786	2.1	-87.9	82.4	1.3772	19	1.66	1.2 3.4	25.3 64.0
Pyridine	C ₅ H ₅ N	79.10	0.983	0.95	-41.8	115.4	1.510	12.4	2.3	7.21 7.57 8.72	123.5 135.5 149.5
Quinoline	C ₉ H ₇ N	129.16	1.098		-14.9	237.7	1.6293	9.0	2.2	7-8.8	121-151
1,1,2,2-Tetrachloroethane	C ₂ H ₂ CI ₄	167.85	1.60	1.58	-43.5	146.2	1.486	8.2	1.3	6.0	74.0
Tetrachloroethylene	C ₂ Cl ₄	165.83	1.622	0.89	-22.2	121.1	1.504	2.3			120.4
Tetrahydrofuran	C ₄ H ₈ O	72.11	0.889	0.46	-108.6	66.0	1.407	7.5	1.68	1.72 3.57	25.26 67.2
Toluene	C ₇ H ₈	92.14	0.867	0.56	-95.0	110.7	1.4969	2.38	0.36	2.09 7.01 7.09	21.3 138.5
Trichloroethylene	C ₂ HCl ₃	131.39	1.465	0.545	-84.7	87.1	1.4767	3.4	0.81	6.4	116.7 124.0
Triethylamine	C ₆ H ₁₅ N	101.19	0.728	0.363	-114.7	89.2	1.401	2.42	0.87	1.0, 2.5	13, 51
Trifluoroacetic acid	C ₂ HF ₃ O ₂	114.02	1.53	1.14	-15.4	72.5	1.285	42.1	2.26		115.7 163.8
2,2,2-Trifluoroethanol	C ₂ H ₃ F ₃ O	100.04	1.384	1.76	-44	74	1.291	8.55	2.52	3.9 5.0	62 126.3
Water	H ₂ O	18.02	0.9982	0.8909	0.0	100.0	1.3329	80.1	1.85	4.72	
o-Xylene	C ₈ H ₁₀	106.17	0.88	0.76	-25.2	144.5	1.505	2.57	0.5	2.4 6.9	18 125-137

Data were revised 2006 from a variety of sources; density and refractive index are at 20°C, other parameters mainly at 25°C; exceptions occur when the solvent is not liquid at these temperatures; MP and BP are means or best values from the NIST Chem WebBook.

Electronegativities according to Pauling

Main group elements				d-block elements												
H 2.20							Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6
Li 0.98	Be 1.57	B 2.04	C 2.55	N 3.04	O 3.44	F 3.98	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7
Na 0.93	Mg 1.31	AI 1.61	Si 1.90	P 2.19	S 2.58	CI 3.16	La 1.1	Hf 1.3	Ta 1.5	W 1.7	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9
K 0.82	Ca 1.10	Ga 2.01	Ge 2.01	As 2.18	Se 2.55	Br 2.96	f-block elements									
Rb 0.82	Sr 0.95	In 1.78	Sn 1.96	Sb 2.05	Tr 2.1	l 2.66	All 1.1-1.3									
Cs 0.7	Ba 0.9	TI 1.8	Pb 1.8	Bi 1.9	Po 2.0	At 2.2										

Chemical Tables

Important Abbreviations and Acronyms

Α	adenine				
AA	anisylacetone				
AAO	acetaldehyde oxime				
AC	acetate				
Ac	acetyl [CH ₃ C(0)-]				
acac	acetylacetone				
ACTH	adrenocorticotropic hormone (corticotropin)				
ADMA	alkyldimethylamine				
ADP	adenosine 5'-diphosphate				
AIBN	azobis(isobutyronitrile)				
Ala	alanine (A)				
Am	amyl				
AMP	adenosine 5'-monophosphate				
AN	acetonitrile				
APS	adenosine 5'-phosphosulfate				
Ar	aryl				
Arg	arginine (R)				
Asn	asparagine (N)				
Asp	aspartic acid (D)				
ATA	anthranilamide				
ATP	adenosine 5'-triphosphate				
BA	benzyladenine				
BaP (BAP)	benzo[a]pyrene				
BBP	benzyl butyl phthalate				
ВНС	benzene hexachloride				
ВНТ	2,6-di- <i>t</i> -butyl-4-methylphenol				
bipy	2,2'-bipyridyl				
Bn	benzyl (also Bz, BZL, or Bnz)				
BN	benzonitrile				
Вос	t-butyloxycarbonyl				
ВОМ	benzyloxymethyl [PhCH ₂ OCH ₂ -]				
BON	β-oxynaphthoic acid				
BPBG	butyl phthalyl butyl glycolate				
Bs	brosylate [BrC ₆ H ₄ SO ₂ –]				
BSA	O,N-bistrimethylsilyl acetamide				
BTA	benzoyltrifluoroacetone				
Bu	butyl				
Bz	benzoyl				
C	cytosine				
p CBA	p-carboxybenzaldehyde				
Cbz	carbobenzyloxy [PhCH ₂ OC(O)–]				
CD	cyclodextrin				
CDP	cytidine 5'-diphosphate				

CE	cyanoethyl				
CMP	cytidine 5'-monophosphate				
CoA	coenzyme A				
Cp (or cp)	cyclopentadiene				
12-Crown-4	1,4,7,10-tetraoxacyclododecane				
CTA	citraconic anhydride				
Cys	cysteine (C)				
DAA	diacetone acrylamide				
DAP	dodecylammonium propionate				
DCB	dicyanobenzene				
DCEE	dichloroethyl ether				
DDD	2,2'-dihydroxy-6,6'-dinaphthyl disulfide				
DDH	1,3-dibromo-5,5-dimethylhydantoin				
DDM	diphenyldiazomethane				
DDT	1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane				
DEA	N,N-diethylaniline or diethyl amine				
DEC	diethylaminoethyl chloride hydrochloride				
DHA	dehydroacetic acid				
DHP	dihydropyran				
Diglyme	diethylene glycol dimethyl ether				
Diox	dioxane				
DMAc	N,N-dimethylacetamide				
DMAA	N,N-dimethylacetoacetamide				
DME	1,2-dimethoxyethane (glyme)				
DMF	dimethylformamide				
DML	dimyristoyl lecithin				
DMS	dimethylsiloxane				
DMSO	dimethyl sulfoxide				
DMSO2	dimethyl sulfone				
DMT	dimethyl terephthalate				
DNA	deoxyribonucleic acid				
DNF	2,4-dinitrofluorobenzene				
DOCA	deoxycorticosterone acetate				
DPG	2,3-diphosphoglycerate				
DPL	dipalmitoyl lecithin				
dpm	dipivaloyImethanato				
DPPH	diphenylpicrylhydracyl				
DST	disuccinimidyl tartrate				
DTBN	di-t-butyl nitroxide				
E	trans config. (entgegen)				
EAA	ethyl acetoacetate				
EAK	ethyl amyl ketone				
EBA	N-ethyl-N-benzylaniline				

Important Abbreviations and Acronyms

EBBA	N-(p-ethoxybenzylidene)-p-butylaniline
EDC	ethylene dichloride
EDTA	ethylenediaminetetraacetic acid
EGS	ethylene glycol bis(succinimidyl succinate)
en	ethylenediamine
Et	ethyl
EVA	ethylene vinyl acetate
FA	furfuryl alcohol
FAD	flavin adenine dinucleotide
FMA	fluoroscein mercuric acetate
Fmoc	9-fluorenylmethoxycarbonyl
Fuc	fucose
G	guanine
Gal	galactose
GDP	guanosine 5'-diphosphate
Glc	glucose
Gln	glutamine (Q)
Glu	glutamic acid (E)
Gly	glycine (G)
Glyme (glyme)	1,2-dimethoxyethane
HAB	4,4'-bis(heptyl)azoxybenzene
Hex	hexane (or hexyl) or hexose
HFA	hexafluoroacetone
His	histidine (H)
HMDS	hexamethyldisilazide
HMPA	hexamethylphosphoramide
HMPT	hexamethylphosphorous triamide
HOAB	<i>p-n</i> -heptyloxyazoxybenzene
HOAc	acetic acid
Нур	hydroxyproline
IH	immobilized histamine
IHP	inositolhexaphosphate
lle	isoleucine (I)
IMP	inosine 5'-monophosphate
IPN	isophthalonitrile
KDP	potassium dihydrogen phosphate
LAH	lithium aluminum hydride (LiAIH4)
LAP	leucine aminopeptidase
LDH	lactic dehydrogenase
Leu	leucine (L)
Lys	lysine (K)
M	metal
MA	maleic anhydride

MAA	methoxyacetic acid
Man	mannose
MBBA	<i>N</i> -(<i>p</i> -methoxybenzylidene)- <i>p</i> -butylaniline
MCA	monochloroacetic acid
Me	methyl
MEM	eta-methoxyethoxymethyl
Mes	mesityl = 2,4,6-trimethylphenyl
Met	methionine (M)
MMH	methylmercuric hydroxide
MOM	methoxymethyl
Ms	mesyl = methanesulfonyl = CH_3SO_2 -
MSA	methanesulfonic acid
MTPA	lpha-methoxy- $lpha$ -trifluoromethylphenylacetic acid
MVK	methyl vinyl ketone
NAC	N-acetyl
NAD(P)	nicotinamide adenine dinucleotide (phosphate)
NAD(P)H	nicotinamide adenine dinucleotide (phosphate)
NAI	N-acetylimidazole
NCA	<i>N</i> -chloroacetamide
Nf	nonaflate (C ₄ F ₉ SO ₂ –)
NM	nitromethane
NMA	<i>N</i> -methylacrylamide
NMF	<i>N</i> -methylformamide
Ns	<i>p</i> -nitrobenzenesulfonyl
NTA	nitrilotriacetic acid
OCBA	o-chlorobenzoic acid
OCT	o-chlorotoluene
ODCB	o-dichlorobenzene
P	polymer substituent
PAA	<i>p</i> -azoxyanisole
PAS	<i>p</i> -aminosalicylic acid
PBA	pyrene butyric acid
PBLG	poly(L-benzyl μ-glutamate)
PC	propylene carbonate
PCA	perchloric acid
PCB	polychlorinated biphenyl
PCP	pentachlorophenol
PDMS	poly(dimethylsiloxane)
PEG	polyethylene glycol
PET	
Ph	phenyl
Phe	phenylalanine (F)
phen	1,10-phenanthroline

Chemical Tables

Important Abbreviations and Acronyms

PMA	poly(methacrylic acid)
PMMA	poly(methyl methacrylate)
POC	cyclopentyloxycarbonyl
POM	poly(oxymethylene)
PPA	poly(phosphoric acid)
Pr	propyl
Pro	proline (P)
PS	polystyrene
PTFE	polytetrafluoroethylene
PVA	poly(vinyl alcohol)
PVC	poly(vinyl chloride)
PVF	poly(vinyl fluoride)
PVP	poly(vinyl pyrrolidone)
Pyr (or Py)	pyridine
RNA	ribonucleic acid
SDS	sodium dodecyl sulfate
Ser	serine (S)
SLS	sodium lauryl sulfate
T	thymine
TAB	trimethylammonium bromide (TMAB)
TBE	tetrabromoethane
TCA	trichloroacetic acid
TCNQ	tetracyanoquinodimethane
TEA	triethylamine
Tf	triflate [CF ₃ SO ₂ -]
TFA	trifluoroacetic acid

THF	tetrahydrofuran		
THP	tetrahydropyran		
Thr	threonine (T)		
TIPS	triisopropylsilyl		
TMB	N,N,N'N'-tetramethylbenzidine		
TMM	trimethylenemethane		
TMS	tetramethylsilyl		
TMU	tetramethylurea		
TNM	tetranitromethane		
TNT	2,4,6-trinitrotoluene		
Tol	p-tolyl		
TP	thymolphthalein		
TPC	thymolphthalein complexone		
TPE	tetraphenylethylene		
Tr	trityl = triphenylmethyl		
Triglyme	triethylene glycol dimethyl ether		
TRIS	tris(hydroxymethyl)aminomethane		
Trp	tryptophan (W)		
Ts	tosyl = p-toluenesulfonyl		
Tyr	tyrosine (Y)		
U	uracil		
UTP	uridine 5'-triphosphate		
Val	valine (V)		
XyI	xylose		
Z	cis configuration (zusammen)		

Concentration Units for Solutions

Name	Symbol	Definition	
Weight percent	wt %	(Grams of solute per grams of solution) x 100	
Mole fraction	X_A	Moles of A per total number of moles	
Molar	М	Moles of solute per liter of solution	
Normal	N	Equivalents of solute per liter of solution	
Formal	F	Formula weights of solute per liter of solution	
Molal	m	Moles of solute per kg of solvent	
Weight formal	f	Formula weight of solute per kg of solvent	

Acronyms and Abbreviations in Quantum Chemistry and Molecular Modeling

AEE	Average Excitation Energy
AM1	Austin Method 1, a modified MNDO method (semi-empirical)
AMBER	Assisted Model Building and Energy Refinement, P. Kollman's empirical force field for biopolymers
AMFI	Atomic Mean Fleld approximation for SO coupling
AO	Atomic Orbital
ARCS	Aromatic Ring Current Shielding
BOMD	Born-Oppenheimer Molecular Dynamics simulation
СС	Coupled Cluster methods (ab initio)
CCSD(T)	Coupled Cluster method at Singles, Doubles, Triples level
CDFT	Current Density Functional Theory (ab initio)
CFT	Crystal Field Theory
CHARMM	CHemitry at HARvard Macromolecular Mechanics, empirical force field implementation of M. Karplus
CHF	Coupled Hartree-Fock perturbation theory
CI	Configuration Interaction
CNDO	Complete Neglect of Differential Overlap (semi-empirical)
CNDO/n	Complete Neglect of Differential Overlap (level n = 1 or 2)
CNDO/2H	CNDO/2 modified for hydrogen bonding
CPMD	Car-Parrinello Molecular Dynamics simulation
CSGT	Continuous Set of Gauge Transformations (ab initio)
DFT	Density Functional Theory (ab initio)
DFTB	Density Functional Tight Binding method
DGEOM	Distance GEOMetry
DHF	relativistic four-component D irac- H artree- F ock method
DZ	D ouble Z eta, a basis set consisting of two STOs for each atomic orbital
EH	Extended Hückel theory
EHT	Extended Hückel MO Theory
ЕОМ	Equation Of Motion
FEMO	Free-Electron Molecular Orbitals
FPT	Finite Perturbation Theory
GGA	Generalized Gradient Approximation (DFT)
GIAO	Gauge-Including Atomic Orbitals, also used: Gauge-Invariant or Gauge-Independent (ab initio)
GIPAW	Gauge-Including Projector-Augmented Waves (ab initio)
GTO	Gaussian Type atomic Orbital
HF	Hartree-Fock method for self-consistent fields
HFC(C)	HyperFine Coupling (Constant)
НМО	Hückel Molecular Orbitals
номо	Highest Occupied Molecular Orbital
IGAIM	Individual Gauge for Atoms In Molecules (ab initio)
IGLO	Individual Gauge for Localized Orbitals (ab initio)
INDO	Intermediate Neglect of Differential Overlap (semi-empirical)
INDO/S	INDO for Spectroscopy
JWKB	Jeffreys-Wentzel-Kramers-Brillouin, a semiclassical approximation to quantum mechanics
K-LMG	split-valence basis set defined with K, L, M numbers of Gaussians
	!

Physical Tables

Acronyms and Abbreviations in Quantum Chemistry and Molecular Modeling

LCAO	Linear Combination of Atomic Orbitals (ab initio)
LDA	Local Density Approximation (DFT)
LUMO	Lowest Unoccupied Molecular Orbital (see HOMO)
MCSCF	MultiConfiguration Self Consistent Field (ab initio)
MD	Molecular Dynamics (with any method)
MINDO	Modified Intermediate Neglect to Differential Overlap (semi-empirical)
MINDO/n	M odified Intermediate Neglect of D ifferential O verlap (n = 1-3, semi-empirical)
MINDO/3H	MINDO/3 modified for hydrogen bonding
MM	Molecular Mechanics (with empirical force field)
MMn	N. L. Allinger's empirical force field for small molecules (n = integer)
MNDO	Modified Neglect of Differential Overlap (semi-empirical)
MNDO/H	MNDO modified for hydrogen bonding
МО	Molecular Orbital
MP2	Møller-Plesset 2nd-order perturbation calc. (ab initio)
MR-CI	Multi-Reference Configuration Interaction
NDDO	Neglect of Diatomic Differential Overlap
NICS	Nucleus-Independent Chemical Shift (aromaticity)
OPLS	Optimized Potentials for Liquid Simulations, W. Jorgensen's empirical force field for biopolymers
PM3	Parameterized Method 3 (a modification of AM1)
PPP	Pariser-Parr-Pople method (semi-empirical)
QSAR	Quantitative Structure-Activity Relationship
REX	Relativistic EXtended Hückel MOs
RHF	Restricted Hartee-Fock method (for SCF calculations)
SCF	Self-Consistent Field
SCPT	Self-Consistent Perturbation Theory
SCRF	Self-Consistent Reaction Field for free radicals
SD	Spin-Dipolar term
SO	Spin-Orbit coupling
SOMO	Singly Occupied Molecular Orbital
sos	Sum Over States perturbation theory
STO	Slater Type Orbital basis set (ab initio)
STO- nG	Slater Type Orbitals as a sum of <i>n</i> Gaussians
TFD	Thomas-Fermi-Dirac method, a statistical treatment of electron density
UCHF	UnCoupled Hartree-Fock perturbation method
UHF	Unrestricted Hartee-Fock method for SCF calculations
VB	Valence B ond theory
VSEPR	Valence-Shell Electron Pair Repulsion, a theory of molecular geometry
VWN	Vosko, Wilk, Nusair parameterization for LDA
WKB	Wentzel-Kramers-Brillouin method, a semiclassical approximation to quantum mechanics
ZDO	Zero Differential Overlap (semi-empirical)
ZFS	Zero-Field Splitting
ZINDO	Zerner's INDO method
ZORA	Zero-Order Regular Approximatio

Colour, Wave Length, Frequency, Wave Number and Energy of Light

Colour	λ [nm]	v [Hz]	ν [cm ⁻¹]	E [eV]	E [kJ mol ⁻¹]
Infrared	1000	3.00 · 10 ¹⁴	1.00 · 10 ⁴	1.24	120
Red	700	4.28 · 10 ¹⁴	1.43 · 10 ⁴	1.77	171
Orange	620	4.84 · 10 ¹⁴	1.61 · 10 ⁴	2.00	193
Yellow	580	5.17 · 10 ¹⁴	1.72 · 10 ⁴	2.14	206
Green	530	5.66 · 10 ¹⁴	1.89 ⋅ 10⁴	2.34	226
Blue	470	6.38 · 10 ¹⁴	2.13 · 104	2.64	254
Violet	420	7.14 · 10 ¹⁴	2.38 · 104	2.95	285
Near Ultraviolet	300	1.00 · 10 ¹⁵	3.33 ⋅ 10⁴	4.15	400
Far Ultraviolet	200	1.50 · 10 ¹⁵	5.00 · 10 ⁴	6.20	598

Density of Water (H₂O)

t [°C]	ρ[kg/dm³]	t [°C]	ρ[kg/dm³]	t [°C]	ρ[kg/dm³]
0	0.999841	11	0.999606	22	0.997772
01	0.999900	12	0.999498	23	0.997540
02	0.999941	13	0.999377	24	0.997299
3	0.999965	14	0.999244	25	0.997047
4	0.999973	15	0.999099	26	0.996785
5	0.999965	16	0.998943	27	0.996515
6	0.999941	17	0.998775	28	0.996235
07	0.999902	18	0.998596	29	0.995946
8	0.999849	19	0.998406	30	0.995649
09	0.999782	20	0.998205		
10	0.999701	21	0.997994		

Viscosity of Water, η in mPa · s (cP)

t [°C]	η	t [°C]	η	t [°C]	η	t [°C]	η
0	1.7865	20	1.0019	50	0.5477	90	0.3155
5	1.5138	25	0.8909	60	0.4674	100	0.2829
10	1.3037	30	0.7982	70	0.4048	125	0.2200
15	1.1369	40	0.6540	80	0.3554	150	0.1830

Physical Tables

Viscosities of Various Liquids, η in mPa · s (cP)

Liquid	0°C	10°C	20°C	30°C	40°C	50°C	60°C	70°C	100°C
Acetic acid	_	-	1.219	1.037	0.902	0.794	0.703	0.629	0.464
Acetone	0.397	0.358	0.324	0.295	0.272	0.251	-	-	-
Aniline	_	6.53	4.39	3.18	2.40	1.91	1.56	1.29	0.76
Benzene	_	0.757	0.647	0.560	0.491	0.435	0.389	0.350	_
Bromobenzene	1.556	1.325	1.148	1.007	0.889	0.792	0.718	0.654	0.514
Carbon disulfide	0.436	0.404	0.375	0.351	0.329	_	-	_	_
Carbon dioxide (liq.)	0.099	0.085	0.071	0.053	-	-	-	-	-
Carbon tetrachloride	1.348	1.135	0.972	0.845	0.744	0.660	0.591	0.533	0.400
Chloroform	0.704	0.631	0.569	0.518	0.473	0.434	0.399	-	-
Diethyl ether	0.294	0.267	0.242	0.219	0.199	0.183	0.168	0.154	0.119
Ethanol	1.767	1.447	1.197	1.000	0.830	0.700	0.594	0.502	-
Ethyl acetate	0.581	0.510	0.454	0.406	0.366	0.332	0.304	0.278	-
Ethyl formate	0.508	0.453	0.408	0.368	0.335	0.307	-	-	-
Formic acid	-	2.241	1.779	1.456	1.215	1.033	0.889	0.778	0.547
Mercury	1.681	1.661	1.552	1.499	1.450	1.407	1.367	1.327	1.232
Methanol	0.814	0.688	0.594	0.518	0.456	0.402	0.356	-	-
n-Octane	0.710	0.618	0.545	0.485	0.436	0.494	0.358	0.326	0.255
Oil, castor	-	2420	986	451	231	125	74	43	16.9
Oil, olive	_	138	84	52	36	24.5	17	12.4	-
<i>n</i> -Pentane	0.278	0.254	0.234	0.215	0.198	0.184	0.172	0.161	0.130
Sulfuric acid	56	49	27	20	14.5	11.0	8.2	6.2	-
Toluene	0.771	0.668	0.585	0.519	0.464	0.418	0.379	0.345	0.268

Self-Diffusion Coefficients D of Various Liquids at 25°C

Liquid	D [10 ⁻⁹ m ² s ⁻¹]	Liquid	D [10 ⁻⁹ m ² s ⁻¹]	Liquid	D [10 ⁻⁹ m ² s ⁻¹]
Water (H₂O)	2.299	Acetonitrile	4.37	Cyclopentane	3.09
Water (D ₂ O)	1.872	Pyridine	1.54	Cyclooctane	0.55
Methanol (CH₃OH)	2.415	Nitromethane	2.39	n-Pentane	5.72
Methanol (CH₃OD)	2.30	Tetrahydrofuran	2.84	n-Hexane	4.26
Methanol (CD₃OH)	2.21	Benzene	2.21	n-Heptane	3.12
Methanol (CD₃OD)	2.11	Fluorobenzene	2.39	n-Octane	2.35₅
Ethanol	1.08	Hexafluorobenzene	1.46	n-Nonane	1.77
<i>t</i> -Butanol-d₁	0.28	Toluene	2.27	N-Decane	1.37
Formamide	0.55	Carbon disulfide	4.32	n-Undecane	1.07 ₆
N,N-Dimethylformamide	1.63	Carbon Tetrachloride	1.30	n-Dodecane	0.81
N,N-Dimethylacetamide	1.35	Chloroform	2.35	n-Tridecane	0.70
Dimethyl sulfoxide	0.73	Acetic acid	1.08	n-Tetradecane	0.52
Dioxane	1.09	Formic acid	1.08	Pentan-1-ol	0.29
Acetone	4.57	Cyclohexane	1.42	Octan-1-ol	0.14

Table by courtesy of Dr. M. Holz (Institute of Phys. Chem., University of Karlsruhe, FRG) and Prof. A Sacco (Dept. Chem., University of Bari, Italy).

Temperature Dependence of the Self-Diffusion Coefficient D of Water (H₂O)

t [°C]	D [10 ⁻⁹ m ² s ⁻¹]	t [°C]	D [10 ⁻⁹ m ² s ⁻¹]	t [°C]	D [10 ⁻⁹ m ² s ⁻¹]	t [°C]	D [10 ⁻⁹ m ² s ⁻¹]
-5	0.913	20	2.023	50	3.956	80	6.557
0	1.099	25	2.299	55	4.344	85	7.056
2.5	1.199	30	2.594	60	4.748	90	7.574
5	1.303	35	2.907	65	5.172	95	8.111
10	1.525	40	3.238	70	5.615	100	8.667
15	1.765	45	3.588	75	6.078		

Table by courtesy of Dr. M. Holz, Institute of Phys. Chem., University of Karlsruhe, FRG.

SI Unit System (Système International) adapted from NIST Publication 330 (2001)

Fundamental SI Base Units	Unit Name	Symbol
length (I, λ)	meter	m
mass (m)	kilogram	kg
time (t)	second	S
electric current (/)	ampere	А
thermodynamic temperature (7)	kelvin	K
amount of substance (n)	mole	mol
luminous intensity (/ _v)	candela	cd
SI-derived Quantities	Unit Name	Symbol
area (A)	square meter	m ²
volume (V)	cubic meter	m³
speed, velocity (v)	meter per second	m/s
acceleration (a)	meter per second squared	m/s ²
momentum ($\boldsymbol{p} = m\boldsymbol{v}$)	kilogram meter per second	kg m/s
moment or inertia (I, J)	kilogram square meter	kg m ²
mass density (ρ)	kilogram per cubic meter	kg/m³
specific volume (v)	cubic meter per kilogram	m³/kg
molar mass (M)	kg per mole	kg/mol
molar volume (V_m)	cubic meter per mole	m³/mol
concentration (c)	mole per cubic meter	mol/m ³
molal concentration (m)	mole per kilogram	mol/kg
kinematic viscosity (v)		
diffusion coefficient (D)	square meter per second	m²/s
electric current density (J)	ampere per square meter	A/m ²
magnetic field strength (<i>H</i>)		
magnetization ($\mathbf{M} = \mathbf{B}/\mu_0 - \mathbf{H}$)	ampere per meter	A/m
magnetic dipole moment (m , μ)	ampere square meter	A m ²
wave number (\widetilde{v})	reciprocal meter	m ⁻¹
luminance (L _v)	candela per square meter	cd/m ²
refractive index (n)	(dimensionless)	

SI Prefix	Symbol	Factor
yocto	У	10-24
zepto	Z	10-21
atto	а	10 ⁻¹⁸
femto	f	10 ⁻¹⁵
pico	р	10 ⁻¹²
nano	n	10 ⁻⁹
micro	μ	10 ⁻⁶
milli	m	10 ⁻³
centi	С	10-2
deci	d	10 ⁻¹
deka	da	10¹
hecto	h	10 ²
kilo	k	10 ³
mega	М	10 ⁶
giga	G	10 ⁹
tera	Τ	1012
peta	Р	1015
exa	Е	1018
zetta	Z	10 ²¹
yotta	Υ	1024

Special SI-derived Quantities	Unit Name	Symbol	SI-derived and Base Units
plane angle ($\alpha = s/r$)	radian	rad	$m m^{-1} = 1$ [2 π rad = 360°],
			1 rad = 57.2957795°
solid angle ($\Omega = A/r^2$)	steradian	sr	$m^2 m^{-2} = 1$ [4 π sr = sphere]
frequency (v, f)	hertz	Hz	s ⁻¹
force (F = m a)	newton	N	m kg s ⁻²
pressure, stress (p, P, $\sigma = \mathbf{F}/A$)	pascal	Pa	$N/m^2 = m^{-1} kg s^{-2}$
energy, work, heat (E, W)	joule	J	$N m = m^2 kg s^{-2}$
power, radiant flux (P)	watt	W	$J/s = m^2 kg s^{-3}$
electric charge, quantity (Q), flux (ψ)	coulomb	С	s A
electric potential (V , ϕ),			
pot. difference (<i>U</i>), emf (<i>E</i>)	volt	V	W/A or J/C = $m^2 \text{ kg s}^{-3} \text{ A}^{-1}$
capacitance (C)	farad	F	$CN = m^{-2} kg^{-1} s^4 A^2$
electric resistance (R), impedance (Z)	ohm	Ω	$V/A = m^2 \text{ kg s}^{-3} A^{-2}$
electric conductance ($G = 1/R$)	siemens	S	A/V or $\Omega^{-1} = m^{-2} kg^{-1} s^3 A^2$
magnetic flux (Φ)	weber	Wb	$V s = m^2 kg s^{-2} A^{-1}$
magnetic flux density, induction (B)	tesla	Т	Wb/m ² = V s m ⁻² = kg s ⁻² A ⁻¹
inductance (L)	henry	Н	Wb/A or V s $A^{-1} = m^2 \text{ kg s}^{-2} A^{-2}$
Celsius temperature (θ , t)	degree Celsius	°C	°C = K – 273.15

Physical Tables

Special SI-derived Quantities	Unit Name	Symbol	SI-derived and Base Units
luminous flux (F)	lumen	lm	$cd sr = m^2 m^{-2} cd$
illuminance (E _v)	lux	lx	$lm/m^2 = m^2 m^{-4} cd = m^{-2} cd$
activity, radioactive decay (A)	becquerel	Bq	S ⁻¹
absorbed dose, specific energy	gray	Gy	$J/kg = m^2 s^{-2}$
dose equivalent (personal, organ)	sievert	Sv	$J/kg = m^2 s^{-2}$
catalytic activity	katal	kat	s ⁻¹ mol

Other SI-derived Quantities	Unit Name	SI Symbol	SI Base Units
angular velocity (ω)	radian per second	rad/s	s^{-1} [1 Hz = 2π rad s^{-1}]
angular acceleration	radian per second squared	rad/s²	S ⁻²
moment of force (M),			
torque ($\mathbf{T} = \mathbf{r} \times \mathbf{F}$)	newton meter	Nm	m² kg s ⁻²
dynamic viscosity (η, μ)	pascal second	Pa s	$N s/m^2 = m^{-1} kg s^{-1}$
surface tension (γ, σ)	newton per meter	N/m	kg s ⁻²
specific energy	joule per kilogram	J/kg	m² s-²
molar energy	joule per mole	J/mol	m² kg s-² mol-1
energy density	joule per cubic meter	J/m ³	m ⁻¹ kg s ⁻²
heat flux density (/)	watt per square meter	W/m²	kg s ⁻³
thermal conductivity (λ, k)	watt per meter kelvin	W/(m K)	m kg s ⁻³ K ⁻¹
heat capacity (C_v, C_p) , entropy (S)	joule per kelvin	J/K	m ² kg s ⁻² K ⁻¹
specific heat capacity (c) or entropy	joule per kilogram kelvin	J/(kg K)	m ² s ⁻² K ⁻¹
molar entropy, molar heat capacity (C_{m})	joule per mole kelvin	J/(mol K)	m ² kg s ⁻² K ⁻¹ mol ⁻¹
electric field strength (E)	volt per meter	V/m	m kg s ⁻³ A ⁻¹
electric field gradient (q_{ab})	volt per square meter	V/m²	kg s ⁻³ A ⁻¹
electric charge density (ρ)	coulomb per cubic meter	C/m ³	m ⁻³ s A
electric thange density (p)	coulomb per square meter	C/m ²	m ⁻² s A
electric flux defisity (\mathbf{P}) electric polarization ($\mathbf{P} = \mathbf{D} - \varepsilon_0 \mathbf{E}$)	coulomb per square meter	C/m ²	m ⁻² s A
electric dipole moment (μ)	coulomb meter	C m	m s A
electric polarizability (α)	COGIOTID MICTOR	C ² m ² J ⁻¹	$F m^2 = kg^{-1} s^4 A^2$
electric quadrupole moment (eQ)	coulomb square meter	C m ²	m ² s A
electric resistivity ($\rho = E/I$)	ohm meter	Ωm	m³ kg s-3 A-2
electric conductivity ($\kappa = 1/\rho$)	siemens per meter	S/m	m ⁻³ kg ⁻¹ s ³ A ²
molar conductivity (Λ)	siemens square meter	0,111	III Ng 5 / V
	per mole	S m²/mol	kg ⁻¹ s ³ A ² mol ⁻¹
permittivity (ε)	farad per meter	F/m	m ⁻³ kg ⁻¹ s ⁴ A ²
permeability ($\mu = \mathbf{B/H}$)	henry per meter	H/m	m kg s ⁻² A ⁻²
pormodomey (pr	Thomas por motor	11,111	in ng o ' r
		0.11	L1 - A
exposure (radiation), ion dose	coulomb per kilogram	C/kg	kg ⁻¹ s A
absorbed dose rate	gray per second	Gy/s	m ² s ⁻³
rf specific absorption rate (SAR)	watt per kg	W/kg	m ² s ⁻³
radiant intensity (/)	watt per steradian	W/sr	m ² kg s ⁻³
radiance (L)	watt per square meter steradian	W/(m ² sr)	lkg og3
irradiance (E)		W/m ²	kg s ⁻³
	watt per square meter		3
luminous energy (Q _v)	lumen second	lm s	s cd sr m ⁻³ s ⁻¹ mol
catalytic activity concentration	katal per cubic meter	kat/m³	IIII ~ S · IIIOI

Accepted non-SI units	Unit Name	Symbol	Value in SI units
length	astronomical unit	ua, AU	1 ua = 1.495 978 70 (30) × 10 ¹¹ m
	nautical mile	nmi, NM	1 nautical mile = 1852 m
	Ångström	Å	$1 \text{ Å} = 10^{-10} \text{ m} = 0.1 \text{ nm}$
area	are	а	$1 a = 1 dam^2 = 10^2 m^2$
	hectare	ha	1 ha = $1 \text{hm}^2 = 10^4 \text{ m}^2$
	barn	b	$1 \text{ b} = 100 \text{ fm}^2 = 10^{-28} \text{ m}^2$
volume	liter	L (I)	$1 L = 1 dm^3 = 10^{-3} m^3$
concentration	moles per liter (molar, M)	mol/L	$1 \text{ M} = 1 \text{ mol/dm}^3$
time	minute	min	1 min = 60 s
	hour	h	1 h = 60 min = 3600 s
	day	d	1 d = 24 h = 86 400 s
angular measure	degree	0	$1^{\circ} = (\pi/180) \text{ rad} = 60'$
	minute	1	$1' = (1/60)^{\circ} = (\pi/10800)$ rad
	second	11	$1'' = (1/60)' = (\pi/648000)$ rad
mass	atomic mass unit	u	1 u = 1.660 538 86 (28) \times 10 ⁻²⁷ kg
	metric ton	t	1 t = 1000 kg
velocity	knot = 1 naut. mile/h	kn	1 nmi/h = 0.514444444 m/s
energy	electronvolt	eV	1 eV = 1.602 176 53 (14) × 10 ⁻¹⁹ J
pressure	bar	bar	1 bar = 10 ⁵ Pa = 1000 hPa
nat. log. intensity scale	neper	Np	1 Np = 1 (= 8.6858896 dB)
base-10 log. intensity scale	bel, decibel	B, dB	1 dB = (1n 10)/20 Np

CGS Units	Symbol	SI Value	CGS Units	Symbol	SI Value
erg	erg	$1 \text{ g cm}^2 \text{ s}^{-2} = 10^{-7} \text{ J}$	dyne	dyn	$1 \text{ g cm s}^{-2} = 10^{-5} \text{ N}$
gal	Gal	$1 \text{ cm/s}^2 = 10^{-2} \text{ m/s}^2$	gauss	G	$10^{-4} T = 0.1 \text{ mT}$
maxwell	Mx	10 ⁻⁸ Wb	oersted	Oe	(10 ³ /4π) A/m
phot	ph	10 ⁴ lx	poise	Р	1 dyn s /cm 2 = 10 $^{-1}$ Pa s
stilh	sh	$1 \text{ cd/cm}^2 = 10^4 \text{ cd/m}^2$	stokes	St	$1 \text{ cm}^2/\text{s} = 10^{-4} \text{ m}^2 \text{ s}^{-1}$

non-SI Units	Symbol	SI Value	non-SI Units	Symbol	SI Value
acceleration	g_{n}	9.80665 m s ⁻²	atmosphere	atm	101325 Pa
bohr (au)	<i>a</i> ₀ , b	5.29177 × 10 ⁻¹¹ m	calorie (therm.)	calth	4.184 J
calorie (intern.)	cal₁⊤	4.1868 J	carat (metric)	kt	200 mg
centipoise	cР	1 mPa s	curie	Ci	3.7 × 10 ¹⁰ Bq
dalton	Da, u	1.66053873 × 10 ⁻²⁷ kg	debye	D	3.33564 × 10 ⁻³⁰ C m
entropy unit	e.u.	4.184 J K ⁻¹ mol ⁻¹	fermi	f, fm	$1 \text{ fm} = 10^{-15} \text{ m}$
footcandle		10.76391 lx	gamma	γ	1 nT = 10 ⁻⁹ T
horsepower	hp	745.6999 W	jansky	Jy	$1 \text{ Jy} = 10^{-26} \text{ W m}^{-2} \text{ Hz}^{-1}$
lambert		$10^4/\pi = 3.183099 \text{ cd/m}^2$	light year	l.y.	9.46073047258 × 10 ¹⁵ m
mho		1 siemens	miles/gal. (US)	mpg	235.215/mpg = L/100 km
miles/h	mph	0.44704 m/s	parsec	рс	3.085677581 × 10 ¹⁶ m
point (1/72 in)	pt	0.3527778 mm	pound/in ²	psi	6.894757 kPa
quad (10 ¹⁵ Btu)		1.055056 × 10 ¹⁸ J	rad	rad	1 cGy = 10 ⁻² Gy
rem	rem	1 cSv = 10 ⁻² Sv	roentgen	R	$1 R = 2.58 \times 10^{-4} \text{ C/kg}$
svedberg	S, Sv	10 ⁻¹³ s	ton (TNT)		4.184 GJ
ton (register)		2.831685 m ³	torr (mm hg)	Torr	1/760 atm =
					133.322 3684 Pa
X unit		ca. 1.002 × 10 ⁻⁴ nm	year	а	365.2425 d
			(Gregorian)		31 556 952 s

Physical Tables

SI Values of US and Imperial Measures

Linear Measures (1 m = 1	$0^2 \text{ cm} = 10^3 \text{ mm}$		
Name	Symbol	Equivalents	Exact SI Value (m)
mil; thou	mil	0.001 in	2.54 E-05
point (font sizes)	pt	1/72 in	3.527778 E-04
pica		12 pt	4.233333 E-03
inch (international)	in	defined	0.0254
inch (US survey)	in	defined: 39.3700 in = 1 m	0.0254000508001016
hand		4 in	0.1016
link (US survey)	li, lnk	33/50 ft	0.201168402336805
foot (int.)	ft	12 in (int)	0.3048
foot (US survey)	ft	defined: 1 ft = 12/39.37 m	0.304800609601219
yard (int.)	yd	3 ft; 36 in (int)	0.9144
yard (US survey)	yd	3 ft; 36 in	0.914401828803658
fathom (US survey)	fm	6 ft	1.82880365760732
rod (US survey)	rd	25 li; 5.5 yd; 16.5 ft	5.02921005842012
chain (US survey)	ch	4 rd; 100 li; 22 yd; 66 ft	20.1168402336805
furlong (US survey)	fur	10 ch; 40 rd; 220 yd; 660 ft	201.168402336805
cable (US survey)		120 fm; 720 ft	219.456438912878
mile (int.)	mi	1760 yd; 5280 ft (int)	1609.344
statute mile (US survey)	mi	25 rd; 80 ch; 5280 ft; 8000 li	1609.347219
nautical mile (int.)	nmi	defined	1852
sea mile (US survey)		6080.20 ft	1853.24866649733
league	lea	3 nautical miles	5556
Area Measures (1 m ² = 10	$0^4 \text{ cm}^2 = 10^6 \text{ mm}^2$		<u> </u>
Name	Symbol	Equivalents	Exact SI Value (m²)
square inch (int.)	sg in, in ²	1	6.4516 E-04
square foot (int.)	sq ft, ft ²	144 in²	0.09290304
square yard (int.)	sq yd, yd²	9 ft²; 1296 in²	0.83612736
square rod (US survey)	sq rd, rd ²	30.25 yd²; 272.25 ft²	25.2929538117141
acre (international)	041.07.0	4840 yd²; 43560 ft²; 0.40468564 ha	4046.8564224
acre (US survey)		10 ch²; 160 rd²; 4840 yd²; 43560 ft²	4046.87260987425
square mile (int.)	sq mi, mi ²	3097600 yd²	2.589988110336 E+06
square mile (US survey)	sq mi, mi ²	640 acre	2.58999847031952 E+06
		$L = 1 \text{ cm}^3 = 10^{-6} \text{ m}^3$; $1 \mu I = 1 \text{ mm}^3 = 10^{-6} \text{ m}^3$	1
Name	Symbol	Equivalents	Exact SI Value (L, dm³)
cubic inch (int.)	cu in, in ³	0.554 fl oz	0.016387064
cubic foot (int.)	cu ft, ft ³	1728 in ³	28.316846592
cubic yard (int.)	cu yd, yd ³	27 ft³; 46656 in³	764.554857984
displacement ton	00 70, 70	defined as 35 ft ³	991.08963072
register ton		defined as 100 ft ³	2831.6846592
cubic mile (int.)	cu mi, mi ³	5.451776 E9 yd ³	4.168181825 E+12
cas.o mno (ma)		fluid measures (UK, Commonwealth)	00101020 E112
minim	min	1/480 fl oz	5.919388021 E-05
		1 ., 100 11 02	
	att	1/288 fl.oz: 5/3 min	9 865646701 F-05
drop	gtt	1/288 fl oz; 5/3 min	9.865646701 E-05 3.699617513 F-04
drop dash	gtt	1/384 gi; 1/16 tsp	3.699617513 E-04
drop dash pinch		1/384 gi; 1/16 tsp 2 dash; 1/192 gi; 1/8 tsp	3.699617513 E-04 7.399235026 E-04
drop dash pinch scruple	fls	1/384 gi; 1/16 tsp 2 dash; 1/192 gi; 1/8 tsp 1/24 fl oz; 20 min	3.699617513 E-04 7.399235026 E-04 1.183877604 E-03
drop dash pinch scruple drachm	fl s fl dr	1/384 gi; 1/16 tsp 2 dash; 1/192 gi; 1/8 tsp 1/24 fl oz; 20 min 1/8 fl oz; 60 min	3.699617513 E-04 7.399235026 E-04 1.183877604 E-03 3.551633000 E-03
drop dash pinch scruple drachm teaspoon (Canada)	fl s fl dr tsp	1/384 gi; 1/16 tsp 2 dash; 1/192 gi; 1/8 tsp 1/24 fl oz; 20 min 1/8 fl oz; 60 min 1/6 fl oz; 80 min	3.699617513 E-04 7.399235026 E-04 1.183877604 E-03 3.551633000 E-03 4.735510417 E-03
drop dash pinch scruple drachm teaspoon (Canada) teaspoon	fl s fl dr tsp tsp	1/384 gi; 1/16 tsp 2 dash; 1/192 gi; 1/8 tsp 1/24 fl oz; 20 min 1/8 fl oz; 60 min 1/6 fl oz; 80 min 1/24 gi; 5/3 fl dr; 100 min	3.699617513 E-04 7.399235026 E-04 1.183877604 E-03 3.551633000 E-03 4.735510417 E-03 5.919388021 E-03
drop dash pinch scruple drachm teaspoon (Canada) teaspoon tablespoon (Canada)	fl s fl dr tsp tsp tbsp	1/384 gi; 1/16 tsp 2 dash; 1/192 gi; 1/8 tsp 1/24 fl oz; 20 min 1/8 fl oz; 60 min 1/6 fl oz; 80 min 1/24 gi; 5/3 fl dr; 100 min 1/2 fl oz; 3 tsp; 240 min;	3.699617513 E-04 7.399235026 E-04 1.183877604 E-03 3.551633000 E-03 4.735510417 E-03 5.919388021 E-03 1.420653125 E-02
drop dash pinch scruple drachm teaspoon (Canada) teaspoon tablespoon (Canada)	fl s fl dr tsp tsp tbsp tbsp	1/384 gi; 1/16 tsp 2 dash; 1/192 gi; 1/8 tsp 1/24 fl oz; 20 min 1/8 fl oz; 60 min 1/6 fl oz; 80 min 1/24 gi; 5/3 fl dr; 100 min 1/2 fl oz; 3 tsp; 240 min; 1/8 gi; 5/8 fl oz; 3 tsp; 5 fl dr; 300 min	3.699617513 E-04 7.399235026 E-04 1.183877604 E-03 3.551633000 E-03 4.735510417 E-03 5.919388021 E-03 1.420653125 E-02 1.775816406 E-02
drop dash pinch scruple drachm teaspoon (Canada) teaspoon tablespoon (Canada)	fl s fl dr tsp tsp tbsp	1/384 gi; 1/16 tsp 2 dash; 1/192 gi; 1/8 tsp 1/24 fl oz; 20 min 1/8 fl oz; 60 min 1/6 fl oz; 80 min 1/24 gi; 5/3 fl dr; 100 min 1/2 fl oz; 3 tsp; 240 min;	3.699617513 E-04 7.399235026 E-04 1.183877604 E-03 3.551633000 E-03 4.735510417 E-03 5.919388021 E-03 1.420653125 E-02

	Imporial dry and	d fluid measures (UK, Commonwealth)	
Name	Symbol	Equivalents	SI Value (L, dm³)
pint	pt (Imp)	4 gill; 20 fl oz	0.56826125
quart	gt (Imp)	2 pt; 40 fl oz	1.1365225
gallon (Imperial)	gal (Imp)	defined as 160 oz av water at 62 °F:	1.1303223
ganon (impenal)	gai (iiiip)	4 qt; 8 pt; 32 gi; 160 fl oz	4.54609
peck	pk	2 gal	9.09218
bucket	bkt	4 gal	18.18436
bushel	bu	8 gal	36.36872
barrel	bl	36 gal	163.65924
		US fluid measures	
minim	min	1/480 fl oz	6.161151992 E-05
drop	gtt	1/360 fl oz; 4/3 min	8.214869323 E-05
dash		1/96 fl oz; 1/16 tsp	3.080575996 E-04
pinch		2 dash; 1/48 fl oz; 1/8 tsp	6.161151992 E-04
dram	fl dr	1/8 fl oz; 60 min	3.696691195 E-03
teaspoon	tsp	1/6 fl oz	4.928921594 E-03
tablespoon	tbsp	1/2 fl oz; 4 fl dr; 0.5 fl oz	1.478676478 E-02
ounce (US)	fl oz (US)	1/128 gal; 8 fl dr; 480 min	0.0295735295625
jigger		1.5 fl oz; 12 fl dr	0.044360294
gill	gi (US)	4 fl oz	0.118294118
cup	c (US)	8 fl oz	0.236588
pint	pt (US)	2 c; 16 fl oz	0.473176473
quart	gt (US)	2 pt; 32 fl oz	0.946353
gallon (US)	gal (US)	defined as 231 in ³ ; 4 qt; 128 fl oz	3.785411784
barrel	fl bl (US)	defined as 31.5 gal	119.240471196
barrel (oil)	bbl	defined as 42 gal (US)	158.987294928
		US dry measures	1
pint	pt	1/64 bu	0.5506104713575
quart	qt	1/32 bu; 2 pt	1.101220942715
board-foot	fbm	defined as 144 in ³	2.359737216
gal	gal	1/8 bu; 4 qt	4.40488377086
peck	pk	1/4 bu; 8 qt	8.80976754172
bushel (dry level)	bu (US IvI)	defined as 2150.42 in ³ ; 4 pk; 32 qt;	35.23907016688
barrel	bl	105 qt	115.628198985075
seam		8 bu	281.91256133504
cord	cd	128 ft ³	3624.556363776
Mass (1 kg = 10^3 g = 10^6 mg)			
Name	Symbol	Equivalents	Exact SI Value (kg)
avoirdupois	av	•	
grain	gr	1/7000 lb	6.479891 E-05
dram	dr av	1/256 lb; 7000/256 gr	1.7718451953125 E-03
ounce	oz av	1/16 lb; 16 dr	2.8349523125 E-02
pound	lb av	defined	0.45359237
stone (UK)		14 lb	6.35029318
quarter (UK)		2 stone; 28 lb	12.70058636
hundredweight (short, US)	net cwt	100 lb	45.359237
hundredweight (long, UK)	gross cwt	8 stone; 112 lb	50.80234544
short ton (US)	ton	20 cwt; 2000 lb	907.18474
long ton (UK)	ton	20 cwt (UK); 2240 lb	1016.0469088
troy or apothecary	t, ap		
grain	gr	same mass as in avoirdupois	6.479891 E-05
scruple	s ap	1/24 oz t; 20 gr	1.2959782 E-03
pennyweight	dwt, pwt	1/20 oz t; 24 gr	1.55517384 E-03
dram	dr t	1/8 oz t; 60 gr	3.8879346 E-03
ounce	oz t	1/12 lb t; 20 dwt; 8 dr t; 480 gr	3.11034768 E-02
pound	lb t	12 oz t; 96 dr t; 5760 gr	0.3732417216
p = = w	, .~ ·	12 32 4, 33 G. 1, 37 33 gi	1 , 0 0

94

Fundamental Physical Constants (CODATA 2006) a

Quantity	Symbol	SI Value
Speed of Light (vacuum)	C, C ₀	2.997 924 58 × 10 ⁸ m s ⁻¹ (defined)
Permeability of vacuum	μ_0	$4\pi \times 10^{-7}$ H m ⁻¹ or N A ⁻² (defined)
Permittivity of vacuum	$\varepsilon_0 = 1/(\mu_0 c_0^2)$	8.854 187 817 × 10 ⁻¹² F m ⁻¹ (defined)
Planck Constant	h	6.626 068 96 (33) × 10 ⁻³⁴ J s
	$\hbar = h / 2\pi \text{ (au)}$	1.054 571 628 (53) × 10 ⁻³⁴ J s
Elementary Charge (au)	е	1.602 176 487 (40) × 10 ⁻¹⁹ C
Electron Rest Mass (au)	m _e	9.109 382 15 (45) × 10 ⁻³¹ kg
Proton Rest Mass	m _p	1.672 621 637 (83) × 10 ⁻²⁷ kg
Proton/Electron Mass Ratio	$m_{\rm p}$ / $m_{\rm e}$	1836.152 672 47 (80)
Neutron Rest Mass	m _n	1.674 927 211 (84) × 10 ⁻²⁷ kg
Deuteron Rest Mass	m _d	3.343 583 20 (17) × 10 ⁻²⁷ kg
Atomic Mass Unit (12C/12)	$m_{\rm u} = 1 {\rm u} = 1 {\rm Da}$	1.660 538 782 (83) × 10 ⁻²⁷ kg
Avogadro's Number	N _A	6.022 141 79 (30) × 10 ²³ mol ⁻¹
Boltzmann Constant	k	1.380 6504 (24) × 10 ⁻²³ J K ⁻¹
Faraday Constant	F	9.648 533 99 (24) × 10 ⁴ C mol ⁻¹
Gas Constant	R	8.314 472 (15) J mol ⁻¹ K ⁻¹
Molar Volume of ideal gas ^b	$V_{\rm m} = RT/p$	22.413 996 (39) × 10 ⁻³ m ³ mol ⁻¹
Standard Atmosphere	atm	101.325 kPa (defined)
Fine Structure Constant	$\alpha = \mu_0 e^2 c_0 / 2h$	7.297 352 5376 (50) × 10 ⁻³
Inverse Fine-Structure Constant	$1/\alpha$	137.035 999 679 (94)
Bohr Radius (au)	$a_0 = 4\pi\varepsilon_0 \hbar^2 / m_e e^2$	0.529 177 208 59 (36) × 10 ⁻¹⁰ m
Hartree Energy (au)	$E_{\rm h} = \hbar^2 / m_{\rm e} a_0^2$	4.359 743 94 (22) × 10 ⁻¹⁸ J
Rydberg Constant	$R_{\infty} = E_{\rm h} / 2hc_{\rm 0}$	1.097 373 156 8527 (73) × 10 ⁷ m ⁻¹
Compton Wavelength (Electron)	$\lambda_{\rm C} = h / m_{\rm e} c_0$	2.426 310 2175 (33) × 10 ⁻¹² m
Bohr Magneton (eta , $eta_{\scriptscriptstyle extsf{e}}$)	$\mu_{\rm B}=e\hbar/2m_{\rm e}$	9.274 009 15 (23) × 10 ⁻²⁴ J T ⁻¹
Electron Magnetic Moment	μ_{e}	$-9.284\ 763\ 77\ (23) \times 10^{-24}\ J\ T^{-1}$
Electron Magnetogyric Ratio	$\gamma_{\rm e} = 2 \mu_{\rm e} / \hbar$	$1.760859770(44) \times 10^{11} \text{ s}^{-1}\text{ T}^{-1}$
	$\gamma_{\rm e}$ / 2π	28.024 953 64 (70) GHz T ⁻¹
Free Electron Landé <i>g</i> factor	$g_{\rm e} = 2\mu_{\rm e}/\mu_{\rm B}$	-2.002 319 304 3622 (15)
Nuclear Magneton ($eta_{ exttt{N}}$)	$\mu_{\rm N} = (m_{\rm e} / m_{\rm p}) \mu_{\rm B}$	5.050 783 24 (13) × 10 ⁻²⁷ J T ⁻¹
Proton Magnetic Moment (free)	$\mu_{ extsf{p}}$	1.410 606 662 (37) × 10 ⁻²⁶ J T ⁻¹
(shielded, H₂O sphere, 25°C)	$\mu_{\scriptscriptstyle m p}'$	1.410 570 419 (38) × 10 ⁻²⁶ J T ⁻¹
Proton Magnetogyric Ratio (free)	$\gamma_{ m p}$	$2.675\ 222\ 099\ (70) \times 10^{8}\ s^{-1}\ T^{-1}$
(shielded, H ₂ O sphere, 25°C)	$\gamma_{\!\scriptscriptstyle p}{}'$	$2.675\ 153\ 362\ (72)\times 10^{8}\ s^{-1}\ T^{-1}$
Proton MR freq. in H₂O	$\gamma_{\rm p}'/2\pi$	42.576 3881 (12) MHz T ⁻¹
Electron/Proton Magn. Mom. Ratio	$\mu_{\rm e}$ / $\mu_{\rm p}$	-658.210 6848 (54)
Deuteron Magnetic Moment	μ_{d}	0.433 073 465 (11) × 10 ⁻²⁶ J T ⁻¹
Gravitation Constant (Newtonian)	G	$6.674\ 28\ (67) \times 10^{-11}\ m^3\ kg^{-1}\ s^{-2}$
Standard Acceleration (Earth gravity)	g_{n}	9.806 65 m s ⁻² (defined)
$\pi = 3.141\ 592\ 653\ 59$	e = 2.718 281 828 46	In 10 = 2.302 585 092 99

^a au = atomic units; uncertainty of last digits shown in (); source: http://physics.nist.gov/constants ^b at STP of 273.15 K and 101.325 kPa = 1 atm.

International Dialing Codes / World Time Zones

Time Zones are listed as increment in hour:min relative to UTC / GMT for ST = standard time; DST = Daylight Savings (Summer) Time (where used).

Provences or Cities are listed for countries with more than one time zone.

NB: DST runs approximately from March to October in the northern hemisphere and October to March in the southern hemisphere; exact period depends on country and may change from year to year. (data adapted by W.E. Hull from www.happyzebra.com and www.worldtimezone.com)

Country (Code) - Provinces / Cities	ST	DST
Afghanistan (+93)	+4:30	
Albania (+355)	+1	+2
Algeria (+213)	+1	
Angola (+244)	+1	
Argentina (+54) DST only in Buenos Aires and some	_	_
provinces in the northeast	-3	-2
Armenia (+374)	+4	+5
Australia (+61) - W. Austr. (Perth)	+8	
Australia (+61) - N. Terr. (Darwin),	+9:30	
Australia (+61) - Queensland (Brisbane)	+10	
Australia (+61) - Cap. Terr. (Canberra), N.S.W. (Sydney),		
Victoria (Melbourne), S. Austr. (Adelaide), Tasmania (Hobart)	+10	+11
Austria (+43)	+1	+2
Azerbaijan (+994)	+4	+5
Bahamas (+1)	-5	-4
Bahrain (+973)	+3	i i
Bangladesh (+880)	+6	+7
Barbados (+1)	-4	Τ/
Belarus (+375)	+2	+3
Belgium (+32)	+1	+2
Belize (+501)	-6	+2
Benin (+229)	+1	
	-4	2
Bermuda (UK)		-3
Bhutan (+975)	+6	
Bolivia (+591)	-4	. 0
Bosnia-Herzegovina (+387)	+1	+2
Botswana (+267)	+2	
Brazil (+55) / Rio Branco	-5	
Brazil (+55) / Manaus	-4	
Brazil (+55) / Salvador, Recife	-3	
Brazil (+55) / Brasilia, Rio de Janeiro, Porto Alegre, Sao Paulo	-3	-2
Brazil (+55) / Fernando de Noronha	-2	
Brunei (+673)	+8	
Bulgaria (+359)	+2	+3
Burkina Faso (+226)	0	
Burundi (+257)	+2	
Cambodia (+855)	+7	
Cameroon (+237)	+1	
Canada (+1) - Newfoundland & Labrador	-3:30	-2:30
Canada (+1) - Pr. Edward Island, Nova Scotia,	-4	-3
New Brunswick	-4	
Canada (+1) - Ontario (Toronto, Ottawa),	- 5	-4
Quebec (Montreal, Quebec)	-5	-4
Canada (+1) - Manitoba (Winnipeg)	-6	- 5
Canada (+1) - Alberta (Edmonton, Calgary), NW Territories	-7	-6
Canada (+1) - Saskatchewan	-7	
Canada (+1) - British Columbia (Vancouver), Yukon Terr.	-8	-7
Canary Islands (Spain)	0	+1
Central African Republic (+236)	+1	
Chad (+235)	+1	
Chile (+56)	-4	-3
China (+86)	+8	_
Colombia (+57)	- 5	
		-

	ST	DST
Congo, Dem. Repub. (+243) / Lubumbashi	+2	
Costa Rica (+506)	-6	
Cote dívoire (+225)	0	
Croatia (+385)	+1	+2
Cuba (+53)	-5	-4
Cyprus (+357)	+2	+3
Czech Republic (+420)	+1	+2
Denmark (+45)	+1	+2
Djibouti (+253)	+3	
Dominican Republic (+1)	-4	
Ecuador (+593)	-5	
Egypt (+20)	+2	+3
El Salvador (+503)	-6	
Eritrea (+291)	+3	
Estonia (+372)	+2	+3
Ethiopia (+251)	+3	
Fiji (+679)	+12	
Finland (+358)	+2	+3
France (+33)	+1	+2
French Guiana	-3	
Gabon (+241)	+1	
Galapagos Islands (Ecuador)	-6	
Gambia (+220)	0	
Gaza (+970)	+2	+3
Georgia (+995)	+4	
Germany (+49)	+1	+2
Ghana (+233)	0	
Gibraltar (UK)	+1	+2
Greece (+30)	+2	+3
Guatemala (+502)	-6	
Guadeloupe (France)	-4	
Guinea (+224)	0	
Guyana (+592)	-4	
Haiti (+509)	-5	
Honduras (+504)	-6	
Hungary (+36)	+1	+2
Iceland (+354)	0	
India (+91)	+5:30	
Indonesia (+62) - Papua	+9	
Indonesia (+62) - Bali, Kalimantan, Lombok, West Timor	+8	
Indonesia (+62) - Java, Sumatra	+7	
Iran (+98)	+3:30	+4:30
Iraq (+964)	+3	
Ireland (+353)	0	+1
Israel (+972)	+2	+3
Italy (+39)	+1	+2
Jamaica (+1)	-5	
Japan (+81)	+9	
Jordan (+962)	+2	+3
Kazakhstan (+7) / Almaty, Astana	+6	
	+5	
Kazakhstan (+/) / Agtau. Agtobe	+	
Kazakhstan (+7) / Aqtau, Aqtobe Kenya (+254)	+3	
Kazaknstan (+/) / Aqtau, Aqtobe Kenya (+254) Kosovo (+381)	+3	+2

qı

International Dialing Codes / World Time Zones

Country (Code) - Provinces / Cities	ST	DST
Kyrgyzstan (+996)	+6	50.
Laos (+856)	+7	
Latvia (+371)	+2	+3
Lebanon (+961)	+2	+3
Lesotho (+266)	+2	+5
Liberia (+231)	0	
	-	
Libya (+218)	+2	. 0
Liechtenstein (+423)	+1	+2
Lithuania (+370)	+2	+3
Luxembourg (+352)	+1	+2
Macedonia (+389)	+1	+2
Madagascar (+261)	+3	
Malawi (+265)	+2	
Malaysia (+60)	+8	
Maldives (+960)	+5	
Mali (+223)	0	
Malta (+356)	+1	+2
Martinique (France)	-4	
Mauritania (+222)	0	
Mauritius (+230)	+4	
Mexico (+52) - Aguascalientes, Fed. District (Mexico City), Guanajuato, Guerrero, Jalisco, Nuevo Leon, Quintana Roo, San Luis Potosi, Veracruz, Yucatan	-6	-5
Mexico (+52) - Chihuahua, Sinaloa	-7	-6
Mexico (+52) - Sonorro	-7	
Mexico (+52) - Baja California (Tijuana)	-8	-7
Moldova (+373)	+2	+3
Monaco (+377)	+1	+2
Mongolia (+976) / Choibalsan, Ulaanbaatar	+8	
Mongolia (+976) / Hovd	+7	
Montenegro (+382)	+1	+2
Morocco (+212)	0	+1
Mozambique (+258)	+2	
Myanmar (+95)	+6:30	
Namibia (+264)	+1	+2
Nepal (+977)	+5:45	
Netherlands (+31)	+1	+2
New Zealand (+64)	+12	+13
Nicaragua (+505)	-6	
Niger (+227)	+1	
Nigeria (+234)	+1	
North Korea (+850)	+9	
Norway (+47)	+1	+2
Oman (+968)	+4	12
Pakistan (+92)	+5	+6
Panama (+507)	- 5	+0
Papua New Guinea (+675)	+10	
· ·	-4	-3
Paraguay (+595)		-5
Peru (+51)	-5	
Philippines (+63)	+8	10
Poland (+48)	+1	+2
Portugal (+351)	0	+1
	4	1
Puerto Rico (+1)	-4	
Qatar (+974)	+3	
Qatar (+974) Reunion (+262)	+3	
Qatar (+974) Reunion (+262) Romania (+40)	+3 +4 +2	+3
Qatar (+974) Reunion (+262) Romania (+40) Russia (+7) / Kaliningrad	+3	+3
Qatar (+974) Reunion (+262) Romania (+40) Russia (+7) / Kaliningrad Russia (+7) / Kazan, Moscow, Murmansk, Novgorod,	+3 +4 +2	
Qatar (+974) Reunion (+262) Romania (+40) Russia (+7) / Kaliningrad Russia (+7) / Kazan, Moscow, Murmansk, Novgorod, St. Petersburg	+3 +4 +2 +2 +3	+3
Qatar (+974) Reunion (+262) Romania (+40) Russia (+7) / Kaliningrad Russia (+7) / Kazan, Moscow, Murmansk, Novgorod, St. Petersburg Russia (+7) / Samara	+3 +4 +2 +2	+3
Qatar (+974) Reunion (+262) Romania (+40) Russia (+7) / Kaliningrad Russia (+7) / Kazan, Moscow, Murmansk, Novgorod, St. Petersburg	+3 +4 +2 +2 +3	+3

Country (Code) - Provinces / Cities	ST	DST
Russia (+7) / Omsk	+6	+7
Russia (+7) / Krasnoyarsk	+7	+8
Russia (+7) / Irkutsk	+8	+9
Russia (+7) / Yakutsk	+9	+10
Russia (+7) / Vladivostok, Yuzhno-Sakhalinsk	+10	+11
Russia (+7) / Magadan	+11	+12
Russia (+7) / Anadyr, Kamchatka	+12	+13
Rwanda (+250)	+2	
Saudi Arabia (+966)	+3	
Senegal (+221)	0	
Serbia (+381)	+1	+2
Seychelles (+248)	+4	
Sierra Leone (+232)	0	
Singapore (+65)	+8	
Slovakia (+421)	+1	+2
Slovenia (+386)	+1	+2
Somalia (+252)	+3	
South Africa (+27)	+2	
South Korea (+82)	+9	
Spain (+34)	+1	+2
Sri Lanka (+94)	+5:30	
Sudan (+249)	+3	
Suriname (+597)	-3	
Swaziland (+268)	+2	
Sweden (+46)	+1	+2
Switzerland (+41)	+1	+2
Syria (+963)	+2	+3
Tahiti (France)	-10	
Taiwan (+886) Tajikistan (+992)	+8	
Tanzania (+255)	+3	
Thailand (+66)	+7	
Timor-Leste (+670)	+9	
Togo (+228)	0	
Trinidad & Tobago (+1)	-4	
Tunisia (+216)	+1	
Turkey (+90)	+2	+3
Turkmenistan (+993)	+5	
UAE - Abu Dhabi, Dubai (+971)	+4	
Uganda (+256)	+3	
Ukraine (+380)	+2	+3
United Kingdom (+44) - England, Scotland, Wales,	0	+1
N. Ireland	1 0	+1
Uruguay (+598)	-3	-2
USA (+1) - Eastern Zone	-5	-4
(New York, Boston, Miami, Philadelphia)	J v	7
USA (+1) - Central Zone	-6	-5
(Chicago, Wichita, New Orleans, Pensicola)		
USA (+1) - Mountain Zone (Helena, Denver, Santa Fe)	-7	-6
USA (+1) - Arizona	-7	
USA (+1) - Pacific Zone	-8	-7
(Las Vegas, San Francisco, Los Angeles)	_	
USA (+1) - Alaska (Anchorage)	-9	-8
USA (+1) - Hawaii (Honolulu)	-11	
Uzbekistan (+998)	+5	. 2
Vatican City (+39)	+1	+2
Venezuela (+58)	-4:30	
Vietnam (+84)	+7	
Yemen (+967)	+3	
Zambia (+260)	+2	
Zimbabwe (+263)	+2	
	1	l