
CSCI 5448
Spring 2011
Jay Daugherty

JAVA CONCURRENCY
FRAMEWORK

 The Java Concurrency Framework provides a set of safe
and robust services that allow Java programmers to
easily create code that will be able to take advantage of
concurrent programming
 This presentation will introduce the framework and

show examples of how the framework can be used in
multithreaded programs

SUMMARY

 Framework was in-part developed by Doug Lea and was available
for three years before integration into J2SE 5.0
 Added to Java in J2SE 5.0 as Java Specification Request 166
 Replaced the existing and limited Java support for concurrency

which often required developers to create their own solutions to
solve concurrency problems
 Framework also caused JVMs to be updated to properly support

the new functionality
 Three main packages:
 java.util.concurrent
 java.util.concurrent.atomic
 java.util.concurrent.locks

ABOUT THE JAVA CONCURRENCY
FRAMEWORK

Meant to have the same effect on Java as
java.util.Collections framework

 Provides Java with set of utilities that are:
 Standardized
 Easy to use
 Easy to understand
 High quality
 High performance
 Useful in a large set of applications with a range of expertise from

beginner to expert

PURPOSE

 The main interfaces and classes in the framework are:
 Executors
 Thread Factory
 Futures
 Queues
 Conditions
 Synchronizers
 Concurrent Collections
 Atomic Variables
 Locks

PRIMARY CLASSES AND SERVICES

 An executor is simply an object that executes runnable tasks
 Decouples task submission from the details of how a task will

executed
 Does not require task to be run asynchronously
 The framework provides two sub-interfaces and three

implementations of the Executor interface:
 ExecutorService – extends base interface to shut-down termination and

support Futures
 ScheduledExecutorService – extends ExecutorService to include delays in

execution
 AbstractExecutorService – default implementation of ExecutorService
 ScheduledThreadPoolExecutor – extension of ThreadPoolExecutor that

icludes services to delay thread execution
 ThreadPoolExecutor – implementation with a set of threads to run

submitted tasks; minimizes thread-creation overhead since this Executor
uses its own set of threads instead of creating new threads to execute tasks

EXECUTORS

EXECUTOR EXAMPLE (I)

 The previous code shows the ExecutorExample class that
implements the Executor interface
 The execute() method is overloaded to allow for a

customized version of Executor allowing the name and
priority of a thread to be controlled or set to a default
value if they are not used in the execute() call
 The customized version contains a ThreadFactory to control

the creation of new threads used in the executor
 It also contains an ArrayBlockingQueue used to store the

threads so that if multiple runnable tasks are submitted to
the ExecutorExample, they will by safely handled and run in
the order submitted to the queue

EXECUTOR EXAMPLE (II)

 A ThreadFactory enable a specific type of thread to be created in
a standardized way without intervention from the client
 This example shows how a thread factory can be used to

standardize the creation of a custom thread
 The name and priority of a new thread are set at creation of the

thread instead multi -stage process

THREAD FACTORY

 A future is an object that holds the result of an
asynchronous computation
Methods are provided to check completion status via

isDone()
 The computation can be cancelled via the cancel()

method if the computation has already completed
 The result is retrieved via get() which will block until

the computation is complete
 Futures can be returned by Executors or used directly

in code

FUTURES

 100 Callable Calculation objects are submitted to an executor
with a linked list of Futures to store the result
 The results of the Callables are stored in the Future objects until

get() is called
 If the callable has not returned, the get() will wait for the result

to return

FUTURE EXAMPLE

 Meant to be used instead of sub classing a Thread
 The Runnable interface provides a way for an object to execute

code when it is active
 Runnable classes do not return a result
 Callable classes return a result
 Callable can also throw an exception if it cannot calculated a

result
 The following example shows a simple Callable class that returns

a random integer.
 Runnable examples are in shown later examples

RUNNABLE AND CALLABLE

 Queues are a synchronized structures to hold tasks before being
executed in the Java Concurrent Framework
 Standard queue commands like offer(), remove(), poll() and others

are available
 Various forms in java.util.concurrency :
 AbstractQueue – default implementation that provides basic queue services
 ArrayBlockQueue – FIFO that is bounded by a fixed capacity set at

construction and based on an array
 BlockingQueue – extends Queue with services to wait for the queue to be

not empty or full; good for producer/consumer
 ConcurrenctLinkedQueue – an unbounded queue based on linked nodes
 DelayQueue – an extension of a BlockingQueue where the head of the queue

can execute if its delay has expired
 LinkedBlockingQueue – an extension of the BlockingQueue based on linking

nodes instead of an array; may be bounded or unbounded
 PriorityBlockingQueue – extends PriorityQueue to make it thread-safe
 SynchronousQueue – A queue with no storage, a put() must wait for a get()

QUEUES

SYNCHRONOUS QUEUE EXAMPLE (I)

 The synchronous queue controls the access to the queue so that
unless a Putter has put() a value into the queue a Taker cannot
take() a value
 The synchronous queue also prevents a Putter from putting a

new value onto the queue until there is a Taker to receive the
value
 In other words, the queue does not have any storage capacity

and acts l ike a traffic controller to route a synchronous
transaction between two threads
 In the sample output, there are 5 Putter threads each putting a

value into the queue and 5 Taker threads removing a value from
the queue and each threads execution occurs at the same time
so the reporting statements show up out of order for what
actually happens in the queue

SYNCHRONOUS QUEUE EXAMPLE (I)

 Provide a framework to allow a thread to suspend safely and
allow another thread to enable a condition where execution can
continue
 Replaces Java Object methods wait, notify and notifyAll that

implemented a monitor
 Condition is bonded to a lock
 Condition can be
 Interruptable – condition causes thread to wait until signaled or

interrupted before resuming
 Non interruptable – condition causes thread to wait until signaled

before resuming
 Timed – condition causes thread to wait a set amount of time (or until

signaled/interrupted) before trying to resume

CONDITIONS

CONDITION EXAMPLE (I)

 The previous condition example implements a monitor
of sorts
 The condition prevents a value from being decremented

below 0 and incremented above 5
 If the threads with the conditional locks try to violate

the contract of the lock, they are told to wait
When the conditions of the lock change to allow

further execution the threads are resumed and can
then execute as normal

CONDITION EXAMPLE (II)

 Semaphore – provides a way to limit access to a shared resource
and can control the access to n resource
 Used with acquire and release methods in Java
 Java also supports fairness (or not) so that the order of an acquire

request is honored by the semaphore (FIFO)
 Mutex – similar to a binary semaphore
 Implemented as Locks in Java

 Barrier – good for controlling the execution flow of a group of
threads that need to synchronize at various points before
continuing executing
 await is the main method in a barrier which causes the threads to wait

until all of the threads in a barrier have called await before being
released
 The constructor is called with the number of threads the barrier is

managing

SYNCHRONIZERS

BARRIER EXAMPLE (I)

BARRIER EXAMPLE (II)

Six runnable tasks delayed at a
barrier and then released
The order that the tasks reach the

barrier do not matter
Ensures that execution will by

synchronized at the barrier
checkpoint before further
execution is performed

 Atomic variables ensure that access to the variable happens as a
single instruction, preventing more than one thread from
accessing the value at the same time
 java.util.concurrent.atomic implements a number of variables to

enable atomic execution without using an outside lock while stil l
being thread-safe
 boolean, int, arrays, etc.

 Extends the existing volatile Java behavior
 Basic set of atomic methods
 get()
 set()
 compareAndSet(<type> expect, <type> update) – compares the current

value to expect and if equal, sets the value to update

ATOMIC VARIABLES

 Sample code has two integers
 Java Concurrent Framework AtomicInteger object
 Regular Java Integer object

 The code sample creates five threads for each integer that
increment the value of the integer and print the value
 The code il lustrates what looks like an atomic action in Java,

++regularInteger, does not behave atomically since there are
several steps to the instruction:
 Value is retrieved
 Value is incremented
 Value is saved

ATOMIC VARIABLE EXAMPLE (I)

ATOMIC VARIABLE EXAMPLE (II)

 Here are three sample outputs
 In all of the output, the AtomicInteger

correctly increments a value from 1 to 5
 In the first example, the regular Integer value

is not properly updated by the threads and the
value is incremented to 2 instead of 5
 In the second example, the regular Integer is

updated a little better, but the final thread has
a stale copy of the value that it acts upon and
looks like it actually decrements the value
 In all of the regular Integer examples a subset

of the five threads grab the initial value at the
same time and do not work in concert to
atomically increment the value

ATOMIC VARIABLE EXAMPLE (III)

 ConcurrentMap and ConcurrentNavigableMap provide
thread-safe interfaces to Map and NavigableMap
 ConcurrentHashMap implements ConcurrentMap to

provide a thread-safe hash map
 ConcurrentSkipListMap implements

ConcurrentNavigableMap to provide a thread-safe skip
list
 The following example shows a ConcurrentHashMap

used between three threads to setup a simple
department store with items going in an out of stock

CONCURRENTMAP (I)

CONCURRENTHASHMAP EXAMPLE (II)

Sample Output
Replacement Thread

Executor

CONCURRENTHASHMAP EXAMPLE (II)

Sample Output

Original Stock Thread

Emptying Thread

 A lock controls access to a shared resource
 Typically access control is limited to one thread at a time
 A more flexible option over Java’s built in synchronization

and monitors
With more flexibility, comes more complexity and care to

create thread-safe code
 Different types of locks
 Reentrant
 Read/Write – allows multiple threads to read a resource, but only

one to write the resource. A read cannot happen at the same time as
a write though.

 Also known as a mutex

LOCKS

LOCK EXAMPLE (I)

 3 readers and 3 writers vie for access to an single
integer value controlled by the Read/Write Lock
RWLockExample
 Multiple readers can have access at the same time,

but not when a write is being performed
 Only one writer can have access as long a no other

thread is in the lock
 Writers use the atomic writeNewValue method to

change the value controlled by the lock
 Sample output shows cases with multiple reads and

atomic writes in different orders
 The number of readers or writers at any time are

displayed

LOCK EXAMPLE (II)

 Concurrent Programming with J2SE 5.0, Qusay H. Mahmoud
(http://java.sun.com/developer/technicalArt icles/J2SE/concurrency /)

 Let's Resync: What's New for Concurrency on the Java Platform,
Standard (http://www.oracle.com/technetwork/java/j1sessn - jsp-156525.html)

 Java Concurrent Animated (http://javaconcurrenta.sourceforge.net/)
 JavaTM 2 Platform Standard Ed. 5.0

(http://download.oracle.com/javase/1.5.0/docs/api/ java/uti l/concurrent/pack
age-summary.html)

 Becoming a Better Programmer: A Conversation With Java Champion Heinz
Kabutz, Janice J. Heiss,
(http://www.oracle.com/technetwork/art icles/javase/kabutz -qa-136652.html)

 Java Concurrency Series , Baptiste Wicht, (http://www.baptiste-wicht.com)
 Doug Lea’s Concurrency JSR -166 Interest Site

(http://gee.cs.oswego.edu/dl/concurrency - interest/index.html)
 Java Concurrency Guidel ines, Long, Mohindra , Seacord and Svoboda, May

2010, Carnegie Mellon
 Java™ Concurrency Uti l ities in Practice

(http://www.oopsla.org /oopsla2007/index.php?page=sub/& id=69)

REFERENCES

