Threads and Swing

IN THIS CHAPTER

 Why Isn’t the Swing Toolkit Multithread-
Safe? 222

e Using SwinguUtilities.invoke
AndWait() 223

* Using SwingUtilities.invokelLater() 227

e Using SwinguUtilities.isEventDispatch
Thread() 230

e When invokeAndWait() and invokeLater()
Are Not Needed 231

e The Need for Worker Threads in a GUI
Setting 231

e Using a Worker Thread to Relieve the
Event Thread 236

e Scrolling Text in a Custom
Component 244

e Animating a Set of Images 249

« Displaying Elapsed Time on a
JLabel 254

» Floating Components Around Inside a
Container 257

CHAPTER

222

Threads

PART |

The Swing graphical toolkit brings a host of new components to the Java platform. There's a
catch, though—Swing components are not designed for a multithreaded environment. In this
chapter, I'll show how you how to safely interact with Swing components in a multithread-safe
manner using Swi ngUtilities.invokeAndwait () and SwingUtilities.invokeLater().I'll
also show you some ways that animation can be achieved using Swing components and
threads.

Why Isn’t the Swing Toolkit Multithread-Safe?

After Swing components have been displayed on the screen, they should only be operated on
by the event-handling thread. The event-handling thread (or just event thread) is started auto-
matically by the Java VM when an application has a graphical interface. The event thread calls
methods like pai nt () on Conponent, acti onPerforned() ON Acti onLi st ener, and al of the
other event-handling methods.

Most of the time, modifications to Swing components are done in the event-handling methods.
Because the event thread calls these methods, it is perfectly safe to directly change components
in event-handling code. Si npl eEvent (See Listing 9.1) shows safe Swing code.

LisTiING 9.1 SimpleEvent.java—Safe Swing Code That Uses the Event Thread

1. inport java.aw.*;
2: inport java.awt.event.*;
3: inport javax.sw ng.*;
4:
5: public class SinpleEvent extends Object {
6: private static void print(String nsg) {
7: String nane = Thread. current Thread(). get Nanme();
8: Systemout.printin(nane + “: “ + nBQ);
9: }
10:
11: public static void main(String[] args) {
12: final JLabel |abel = new JLabel (“)5
13: JButton button = new JButton(“Cick Here");
14:
15: JPanel panel = new JPanel (new Fl owLayout ());
16: panel . add(button);
17: panel . add(| abel) ;
18:
19: but t on. addAct i onLi st ener (new Acti onLi stener () {
20: public void actionPerformed(Acti onEvent e) {
21: print(“in actionPerforned()”);

22: | abel . set Text (“CLI CKED! ") ;

Threads and Swing

CHAPTER 9

23: }

24: 1)

25:

26: JFrame f = new JFrane("“Si npl eEvent”);
27: f . set Cont ent Pane(panel) ;

28: f.setSize(300, 100);

29: f.setVisible(true);

30: }

31: }

In si mpl eEvent , two threads interact with the Swing components. First, the nai n thread creates
the components (lines 12-15), adds them to panel (lines 16-17), and creates and configures a
JFrane (lines 26-29). After set Vi si bl e() isinvoked by mai n (line 29), it is no longer safe for
any thread other than the event thread to make changes to the components.

When the button is clicked, the event thread invokes the act i onPer f or med() method (lines
20-23). In there, it prints a message to show which thread is running the code (line 21) and
changes the text for | abel (line 22). This code is perfectly safe because it is the event thread
that ends up calling set Text ().

When si npl eEvent isrun, the frame appears and the following output is printed to the console
when the button is clicked:

AWT- Event Queue-0: in actionPerforned()

The thread named AWT- Event Queue- 0 is the event thread. Thisis the thread that can safely
make changes through methods like set Text () .

One of the goals for the developers of Swing was to make the toolkit as fast as possible. If the
components had to be multithread-safe, there would need to be alot of synchr oni zed state-
ments and methods. The extra overhead incurred acquiring and releasing locks all the time
would have slowed the performance of the components. The devel opers made the choice for
speed over safety. As aresult, you need to be very careful when making modifications to
Swing components that are initiated outside the event thread.

Using SwingUtilities.invokeAndWait()

The devel opers of the Swing toolkit realized that there would be times when an external thread
would need to make changes to Swing components. They created a mechanism that puts a ref-
erence to a chunk of code on the event queue. When the event thread gets to this code block, it
executes the code. This way, the GUI can be changed inside this block of code by the event
thread.

223

ONIMS
ANV SavadH|

224

Threads

PART |

TheswingUtilities classhasastatic i nvokeAndwait () method available to use to put ref-
erences to blocks of code onto the event queue:
public static void i nvokeAndWii t (Runnabl e target)

throws | nterruptedException,
I nvocat i onTar get Excepti on

The parameter t ar get isareference to an instance of Runnabl e. In this case, the Runnabl e will
not be passed to the constructor of Thread. The Runnabl e interface is ssimply being used as a
means to identify the entry point for the event thread. Just as a newly spawned thread will
invoke run(), the event thread will invoke run() when it has processed all the other events
pending in the queue.

An | nterruptedException isthrown if the thread that called i nvokeAndwai t () isinterrupted

before the block of code referred to by t ar get completes. An | nvocat i onTar get Excepti on (a
classinthejava. |l ang. refl ect package) isthrown if an uncaught exception is thrown by the

codeinsiderun().

NoOTE

A new thread is not created when Runnabl e is used with
Swi ngUtilities.invokeAndWit (). The event thread will end up calling the run()
method of the Runnabl e when its turn comes up on the event queue.

Suppose a JLabel component has been rendered on screen with some text:

| abel = new JLabel (//

Now, if athread other than the event thread needs to call set Text () onl abel to changeit, the
following should be done. First, create an instance of Runnabl e to do the work:

Runnabl e set Text Run = new Runnabl e() {
public void run() {
| abel . setText(// ...
}
b

Then pass the Runnabl e instance referred to by set Text Run t0 i nvokeAndwai t () :

try {

SwingUtilities.invokeAndWit (set Text Run);
} catch (InterruptedException ix) {

i X.printStackTrace();
} catch (InvocationTarget Exception x) {

X. printStackTrace();

}

Threads and Swing

CHAPTER 9

The try/catch block is used to catch the two types of exception that might be thrown while
waiting for the code inside the r un() method of set Text Run to complete.

I nvokeAndwai t Deno (See Listing 9.2) is a complete example that demonstrates the use of
SwingUtilities.invokeAndWait().

LISTING 9.2 InvokeAndWaitDemo.java—Using SwingUtilities.invokeAndWait()

1. inport java.aw.*;
2: inmport java.aw.event.*;
3: inmport java.lang.reflect.*;
4: inport javax.sw ng.*;
5:
6: public class |InvokeAndWiitDeno extends Object {
7: private static void print(String nmsg) {
8: String nanme = Thread. current Thread().get Nane();
9: Systemout.printin(nane + “: “ + nsQ);
10: }
11:
12: public static void main(String[] args) {
13: final JLabel l|abel = new JLabel (“——2);
14:
15: JPanel panel = new JPanel (new Fl owLayout ());
16: panel . add(I abel);
17:
18: JFrame f = new JFrane(“l nvokeAndWai t Denp”) ;
19: f . set Cont ent Pane(panel) ;
20: f.setSize(300, 100);
21: f.setVisible(true);
22:
23: try {
24: print(“sleeping for 3 seconds”);
25: Thr ead. sl eep(3000);
26:
27: print(“creating code block for event thread”);
28: Runnabl e set Text Run = new Runnabl e() {
29: public void run() {
30: print(“about to do setText()");
31: | abel . set Text (“New text!”);
32: }
33: b
34:

continues

225

ONIMS
ANV SavadH|

226

Threads

PART |

LIsTING 9.2 Continued

35: print(“about to invokeAndWait()”);

36: SwingUtilities.invokeAndWi t (set Text Run);

37: print(“back frominvokeAndWait()");

38: } catch (InterruptedException ix) {

39: print(“interrupted while waiting on invokeAndWait()");
40: } catch (InvocationTarget Exception x) {

41: print(“exception thrown fromrun()”);

42: }

43: }

44: }

Note that thej ava. | ang. ref | ect package isimported (line 3) solely for

I nvocat i onTar get Except i on. The mai n thread creates the GUI (lines 13-20) and invokes
set Vi si bl e() onthe JFrane (line 21). From that point on, only the event thread should make
changes to the GUI.

After deeping for 3 seconds (line 25), the mai n thread wants to change the text displayed in

| abel . To safely do this, the mai n thread must pass this work off to the event-handling thread.
The mai n thread creates a bundle of code in set Text Run, which is an instance of Runnabl e
(lines 28-33). Inside the run() method, the set Text () method isinvoked on | abel (line 31).
Ultimately, the event thread will end up invoking the set Text () method inside thisr un()
method.

The mai n thread then calls swi ngUti lities. i nvokeAndWai t () passing in set Text Run (line
36). Inside i nvokeAndwai t (), the set Text Run reference is put onto the event queue. When all
the events that were ahead of it in the queue have been processed, the event thread invokes the
run() method of set Text Run. When the event thread returns from r un() , it notifies the nai n
thread that it has completed the work. The event thread then goes back to reading events from
the event queue. At the same time, the mai n thread returns from i nvokeAndwai t (), indicating
that the code block inside set Text Run has been run by the event thread.

Listing 9.3 shows the output produced when | nvokeAndwai t Dero is run. In addition, a GUI
frame appears, but that doesn’t show anything other than the fact that the label changes when
set Text () isinvoked.

LisTING 9.3 Output from InvokeAndWaitDemo

mai n: sl eeping for 3 seconds

mai n: creating code block for event thread
mai n: about to invokeAndWait ()

AWT- Event Queue-0: about to do set Text ()
mai n: back frominvokeAndWiit ()

Threads and Swing

CHAPTER 9

The mai n thread announces that it is about to call i nvokeAndwai t () (line 3). Next, the event
thread (AWT- Event Queue- 0) reports that it isindeed the thread that is invoking set Text () (line
4). The mai n thread then reports that it is done blocking and has returned from

i nvokeAndwi t () (line5).

CAUTION

Do not call Swi ngUtilities.invokeAndWait () from the event thread. Doing so
causes an instance of Error to be thrown. Even if this call were allowed, it would put
the event thread into a deadlocked state. The event thread does not need the ser-
vices of i nvokeAndWai t () because it can make the changes directly.

Using SwinguUtilities.invokeLater()

The swi ngutilities class has another st ati ¢ method available to use to put references to
blocks of code onto the event queue:

public static void invokeLater(Runnable target)

The swingUtilities.invokeLater() method workslike SwingUtilities.invokeAndWait ()
except for the fact that it puts the request on the event queue and returns right away. The

i nvokeLat er () method does not wait for the block of code inside the Runnabl e referred to by
target to execute. This allows the thread that posted the request to move on to other activities.

NoOTE

Just as with i nvokeAndWai t (), a new thread is not created when Runnabl e is used
with Swi ngUtilities.invokelLater().

This exampleisjust like the one used for i nvokeAndwai t (), but instead shows the changes
necessary to usei nvokelat er () . Suppose aJLabel component has been rendered on screen
with some text:

| abel = new JLabel (// ...

If athread other than the event thread needs to call set Text () on| abel to changeit, you
should do the following. First, create an instance of Runnabl e to do the work:

Runnabl e set Text Run = new Runnabl e() {
public void run() {
try {

227

ONIMS
ANV SavadH|

228

Threads

PART |
| abel . set Text(//
} catch (Exception x) {
X. printStackTrace();
}
}
b

Be sure to catch all exceptionsinsiderun() because unlike i nvokeAndWai t (), i nvokeLat er ()
does not have an automatic mechanism to propagate the exception back to the thread that
called i nvokeLat er () . Instead of simply printing a stack trace, you could have the event thread
store the exception and notify another thread that an exception occurred.

Next, pass the Runnabl e instance referred to by set Text Run tO i nvokeLat er () :
SwingUtilities.invokelLater(setTextRun);

This call returns right away and does not throw any exceptions. When the event thread has
processed al of the pending events, it invokes the run() method of set Text Run.

I nvokeLat er Demo (See Listing 9.4) is a complete example (based on | nvokeAndWai t Deno) that
demonstrates the use of swi ngUtilities.invokelLater().

LisTING 9.4 InvokeLaterDemo.java—Using SwingUrtilities.invokeLater()

1: inport java.awt.*;
2: inmport java.aw.event.*;
3: inport javax.sw ng.*;

4:

5: public class InvokelLaterDeno extends Object {

6: private static void print(String msg) {

7: String nane = Thread. current Thread(). get Nanme();
8: Systemout.printin(nane + “: “ + nBQ);

9: }
10:
11: public static void main(String[] args) {
12: final JLabel |abel = new JLabel (“—2);
13:

14: JPanel panel = new JPanel (new Fl owLayout ());
15: panel . add(I abel);

16:

17: JFrame f = new JFranme(“I| nvokeLat er Denn”);
18: f . set Cont ent Pane(panel) ;

19: f.setSize(300, 100);
20: f.setVisible(true);

21:

Threads and Swing

CHAPTER 9

22: try {

23: print(“sleeping for 3 seconds”);

24: Thr ead. sl eep(3000) ;

25: } catch (InterruptedException ix) {

26: print(“interrupted while sleeping”);

27: }

28:

29: print(“creating code block for event thread”);
30: Runnabl e set Text Run = new Runnabl e() {

31: public void run() {

32: try {

33: Thread. sl eep(100); // for enphasis
34: print(“about to do setText()");
35: | abel . set Text (“New text!”);
36: } catch (Exception x) {

37: X. printStackTrace();

38: }

39: }

40: };

41:

42: print(“about to invokelLater()”);

43: SwingUtilities.invokelLater(setTextRun);

44: print(“back frominvokelLater()");

45; }

46: }

The mai n thread creates the GUI (lines 12—19) and invokes set Vi si bl () on the JFr ame (line
20). From that point on, only the event thread should make changes to the GUI.

After deeping for 3 seconds (line 24), the mai n thread wants to change the text displayed in

| abel . To safely do this, the mai n thread creates a bundle of code in set Text Run (lines 30-40).
Inside the run() method, atry/catch block is used to capture any exceptions that might be
thrown so that run() itself does not end up throwing any exceptions (lines 32-38). A very
short sleep of 0.1 seconds (line 33) is used to momentarily slow the event thread to clearly
show that the i nvokeLat er () call returns right away. In rea-world code there would not be
any need for this sleep. Eventually, the event thread invokes the set Text () method on | abel
(line 35).

After setting up this code block, the mai n thread calls swingUtilities.invokelater (), pass
ing in set Text Run (line 43). Insidei nvokeLat er (), the set Text Run reference is put onto the
event queue and then the mai n thread returns right away. When all of the events that were
ahead of it in the queue have been processed, the event thread invokes the r un() method of
set Text Run.

229

ONIMS
ANV SavadH|

230

Threads

PART |

Listing 9.5 shows the output produced when I nvokelLat er Deno iS run. Your output should
match. In addition, aframe is drawn on the screen, but it doesn’t show anything other than the
fact that the label does indeed change.

LisTING 9.5 Output from InvokeLaterDemo

mai n: sl eeping for 3 seconds

mai n: creating code block for event thread
mai n: about to invokelLater()

mai n: back frominvokeLater()

AWT- Event Queue-0: about to do set Text ()

AN L

The mai n thread calls (line 3) and returns from (line 4) i nvokeLat er () before the event thread
gets achance to invoke set Text () (line5). Thisis the exact asynchronous behavior that was
desired.

NoTE

Unlike Swi ngUtilities.invokeAndwait (), the event thread is permitted to call
Swi ngUtilities.invokelLater().However, there isn't any value to doing so because
the event thread can change the components directly.

Using SwingUtilities.isEventDispatchThread()

If you have code that must (or must not) be called by the event thread, you can use the
SwingUtilities.isEventDispatchThread() method:

public static bool ean i sEvent Di spat chThread()

This st ati ¢ method returnst r ue if the thread that invokes it is the event thread, and returns
fal se if itisnot.

If it iscritical that only the event thread calls a particular method, you might want to put some
code like this at the beginning of the method:

if (SwWingUilities.isEventDi spatchThread() == false) {
t hrow new Runti neExcepti on(
“only the event thread should invoke this nethod”);

}

Thisway if any thread other than the event thread calls the method, a Runt i neExcept i on is
thrown. This step can help safeguard against dangerous code that works most of the time when
called by athread other than the event thread.

Threads and Swing

CHAPTER 9

A downside to this method is that it takes a little bit of time to execute. If you have some code
where performance is critical, you might want to skip this check.

When invokeAndWait() and invokelLater() Are Not
Needed

It is not always necessary to use i nvokeAndWai t () and i nvokelat er () to interact with Swing
components. Any thread can safely interact with the components before they have been added
to avisible container. You have seen this already in the examples: The mai n thread constructs
the GUI and then invokes set Vi si bl e() . After the components have been drawn to the screen,
only the event thread should make further changes to their appearance.

There are a couple of exceptions to this restriction. The adding and removing of event listeners
can safely be done by any thread at any time. Also, any thread can invoke the r epai nt ()
method. Ther epai nt () method has aways worked asynchronously to put a repaint request
onto the event queue. And finally, any method that explicitly indicates that it does not have to
be called by the event thread is safe. The API documentation for the set Text () method of
JText Conponent explicitly states that set Text () can be safely called by any thread. The

set Text () method isinherited by JText Fi el d (a subclass of JText Conponent), S0 any thread
can safely invoke set Text () On aJText Fi el d component at any time.

Tip

If you aren’t sure whether a particular method on a Swing component can be
invoked by any thread, use the i nvokeAndWi t () or i nvokeLat er () mechanism to be
safe.

The Need for Worker Threads in a GUI Setting

The event thread plays a critical role in an application with a graphical interface. Code that will
be executed by the event-handling thread should be relatively brief and nonblocking. If the
event-handling thread is blocked in a section of code for awhile, no other events can be
processed!

This is especially important in a client/server application (even more so in an n-tier applica
tion). Imagine a situation where the client is a graphical application with a Search button.
When this button is clicked, a request is made over the network to the server for the resuilts.
The server produces the results and sends this information back down to the client. The client
then displays this result information on the GUI. To be safe, the event thread needs to be the

231

ONIMS
ANV SavadH|

239 Threads

PART |

thread that gathers the information from the GUI for the search. The event thread also needs to
be the thread that displays the results. But does the event thread have to send the request over
the network? No, it does not, and should not.

The Bal anceLookupCant Cancel class (see Listing 9.6) shows what happens when the event
thread is used to fulfill a request that takes along time. This simple graphical client simulates a
call over the network by sleeping for five seconds before returning the account balance.

LisTING 9.6 BalanceLookupCantCancel.java—Overusing the Event Thread

1: inport java.aw.*;
2: inport java.awt.event.*;
3: inport javax.sw ng.*;

5: public class Bal anceLookupCant Cancel extends JPanel {
6: private JTextField acctTF;

7: private JTextField pinTF;

8: private JButton searchB;

9: private JButton cancel B;

10: private JLabel bal ancel;

11:

12: publ i ¢ Bal anceLookupCant Cancel () {

13: bui | dGUI () ;

14: hookupEvent s();

15: }

16:

17: private void buildGUJ () {

18: JLabel acctL = new JLabel (“Account Nunber:");
19: JLabel pinL = new JLabel (“PIN:");

20: acct TF = new JText Fi el d(12);

21: pi nTF = new JText Fi el d(4);

22:

23: JPanel dataEntryP = new JPanel ();

24: dat aEnt ryP. set Layout (new FI owlLayout (Fl owLayout . CENTER)) ;
25: dat aEnt ryP. add(acctlL);

26: dat aEnt ryP. add(acct TF) ;

27: dat aEnt ryP. add(pi nL);

28: dat aEnt ryP. add(pi nTF);

29:

30: searchB = new JButton(“Search”);

31: cancel B = new JButton(“Cancel Search”);
32: cancel B. set Enabl ed(f al se);

33:

34: JPanel innerButtonP = new JPanel ();

35: i nner Butt onP. set Layout (new Gi dLayout(1, -1, 5, 5));

Threads and Swing

36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:

CHAPTER 9

i nner Butt onP. add(searchB);
i nner But t onP. add(cancel B);

JPanel buttonP = new JPanel ();
but t onP. set Layout (new Fl owLayout (Fl owLayout . CENTER)) ;
but t onP. add(i nner Butt onP);

JLabel bal ancePrefixL = new JLabel (“Account Bal ance:");
bal anceL = new JLabel (“ BALANCE UNKNOW');

JPanel bal anceP = new JPanel ();

bal anceP. set Layout (new Fl owLayout (Fl owLayout . CENTER)) ;
bal anceP. add(bal ancePrefi xL);

bal anceP. add(bal ancel);

JPanel northP = new JPanel ();

nort hP. set Layout (new Gi dLayout (-1, 1, 5, 5));
nort hP. add(dat aEntryP) ;

nort hP. add(buttonP);

nort hP. add(bal anceP) ;

set Layout (new Bor der Layout ());
add(nort hP, BorderLayout. NORTH);

private void hookupEvents() {

sear chB. addAct i onLi st ener (new Acti onLi stener () {
public void actionPerformed(Acti onEvent e) {
search();
}
1)

cancel B. addAct i onLi st ener (new Acti onLi stener () {
public void actionPerformed(Acti onEvent e) {
cancel Search();
}
1)

private void search() {

/'l better be called by event thread!
sear chB. set Enabl ed(f al se);
cancel B. set Enabl ed(true);

continues

233

ONIMS
ANV SavadH|

234

Threads

PART |
LisTinG 9.6 Continued
79: bal ancelL. set Text (“SEARCHI NG ...");
80:
81: /1 get a snapshot of this info in case it changes
82: String acct = acctTF. get Text();
83: String pin = pinTF. get Text();
84:
85: String bal = | ookupBal ance(acct, pin);
86: set Bal ance(bal);
87: }
88:
89: private String | ookupBal ance(String acct, String pin) {
90: try {
91: /1 Sinmulate a lengthy search that takes 5 seconds
92: /1 to communi cate over the network.
93: Thr ead. sl eep(5000) ;
94:
95: /] result “retrieved”, return it
96: return “1, 234.56";
97: } catch (InterruptedException x) {
98: return “SEARCH CANCELLED’;
99: }
100: }
101:
102: private void setBal ance(String newBal ance) {
103: /1 better be called by event thread!
104: bal ancelL. set Text (newBal ance) ;
105: cancel B. set Enabl ed(f al se);
106: sear chB. set Enabl ed(true);
107: }
108:
109: private void cancel Search() {
110: Systemout.println(“in cancel Search()”);
111: /'l Here's where the code to cancel would go if this
112: /1 could ever be called!
113: }
114:
115: public static void main(String[] args) {
116: Bal anceLookupCant Cancel bl =
117: new Bal anceLookupCant Cancel ();
118:
119: JFrame f = new JFrane(“Bal ance Lookup - Can’'t Cancel”);
120: f. addW ndowLi st ener (new W ndowAdapter () {
121: public void w ndowd osi ng(W ndowEvent e) {
122: System exit(0);
123: }

Threads and Swing

CHAPTER 9

124: 1

125:

126: f . set Cont ent Pane(bl);
127: f.setSize(400, 150);
128: f.setVisible(true);
129: }

130: }

Most of Bal anceLookupCant Cancel (lines 1-73, 115-129) is dedicated to constructing the
GUI. In hookupEvent s() (lines 61-73), an event handler for each button is added. When the
search button sear chB is clicked, the sear ch() method is called (lines 63-65). When the can-
cel button cancel B is clicked, cancel Search() iscalled (lines 69-71).

Inside sear ch() (lines 75-87), the Search button is disabled, the Cancel Search button is
enabled, and the balance label is set to SEARCHI NG . . . while the search isin progress (lines
77-78). The event thread is used to gather the account number and PIN number from the fields
(lines 82—83). These strings are passed into | ookupBal ance() , and the balance found is
returned and shown on the screen (lines 85-86).

The ookupBal ance() method (lines 89-100) is used to simulate a lookup over a network con-
nection. It sleeps for five seconds to simulate the delay for lookup and then returns 1, 234. 56
for every account. If the thread that called | ookupBal ance() isinterrupted while the lookup is
in progress (sleeping), it returns the SEARCH CANCELLED string instead of the balance. Thisis
just asimulation; of course, area system would do something more useful.

The set Bal ance() method (lines 102-107) is used to update the balance, disable the Cancel
Search button, and enable the Search button again. The cancel Sear ch() method (lines 109-113)
would normally be used to stop the search process, but in this example, it never gets called.

When the event thread calls sear ch(), it blocks until the balance is retrieved and set. Keeping
the event thread tied up for that long is a bad idea. And in this example, it prevents the Cancel
Search button from being enabled.

Figure 9.1 shows how the application looks when it is first started. Notice that the Cancel
Search button is disabled and that the balance label indicates that the balance is unknown.

After the user enters an account number and a PIN and clicks the Search button, the applica-
tion looks like Figure 9.2. The window continues to look like that for about 5 seconds while
the across-the-network lookup is simulated. Notice the following points:

e The SEARCHI NG . .. message was not displayed in the balance label.

» The Cancel Search button was never enabled.

« The Search button stayed pressed in the whole time.

235

ONIMS
ANV SavadH|

236

Threads

PART |

For the whole time that the lookup was going on, the GUI was unresponsive—the window
couldn’t even be closed. In particular, the Cancel Search button was never enabled. The event
thread was tied up doing the long-running lookup and could not respond to user events.
Obviously, thisis not a good design.

Figure 9.3 shows what the application window looks like after the 5 seconds have el apsed.
Here everything is as expected. The Search button is enabled, the Cancel Search button is dis-
abled, and the balance label shows 1, 234. 56.

AL D L AT

FiGure 9.1
Balancel.ookupCantCancel just after startup.

FIGURE 9.2
Balancel.ookupCantCancel after the Search button is clicked.

FIGURE 9.3
Balancel ookupCantCancel when the lookup finally completes.

Using a Worker Thread to Relieve the Event Thread

In Bal anceLookupCant Cancel , it became apparent that tying up the event thread to do an
extensive operation was a bad idea. This was a problem especially because there was no way to
signal that the search should be canceled. Another thread is needed to do the lookup so that the
event thread can get back to the business of handling events.

Threads and Swing

CHAPTER 9

Bal anceLookup (See Listing 9.7) uses a worker thread to do the lengthy lookup and frees the
event thread from this delay. This technique makes it possible to use the Cancel Search button
to stop a search.

LisTING 9.7 BalanceLookup.java—Using a Worker Thread to Relieve the Event Thread

© 00O ~NO U WN PR

NNNNNNRRRRERRRRRRR
GODNWNROOOOWONOOONWNIERO

W wwwNDNDN
W NP O O N

w w
o Ol

N
o

w

inport java.aw.*;
import java.aw.event.*;
i mport javax.sw ng.*;

public cl ass Bal anceLookup extends JPanel {

private JTextField acctTF;
private JTextField pinTF;
private JButton searchB;
private JButton cancel B;
private JLabel bal ancel;

private volatile Thread | ookupThread;

publ i ¢ Bal anceLookup() {
bui | dGUI () ;
hookupEvent s() ;

}

private void buildGUJ () {
JLabel acctL = new JLabel (“Account Nunber:”);
JLabel pinL = new JLabel (“PIN:");
acct TF = new JText Fi el d(12);
pi nTF = new JText Fi el d(4);

JPanel dataEntryP = new JPanel ();

dat aEnt ryP. set Layout (new FI owlLayout (Fl owLayout . CENTER)) ;
dat aEntryP. add(acct L) ;

dat aEnt ryP. add(acct TF) ;

dat aEnt ryP. add(pi nL);

dat aEnt ryP. add(pi nTF);

searchB = new JButton(“Search”);
cancel B = new JButton(“Cancel Search”);

cancel B. set Enabl ed(f al se);

JPanel innerButtonP = new JPanel ();

continues

237

ONIMS
ANV SavadH|

238

Threads

PART |

LisTING 9.7 Continued

37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74.
75:
76:
T7:
78:
79:
80:

i nner But t onP. set Layout (new GridLayout (1, -1, 5, 5));
i nner Butt onP. add(searchB);
i nner Butt onP. add(cancel B);

JPanel buttonP = new JPanel ();
but t onP. set Layout (new Fl owLayout (Fl owLayout . CENTER)) ;
but t onP. add(i nner Butt onP);

JLabel bal ancePrefixL = new JLabel (“Account Bal ance:”);
bal anceL = new JLabel (“ BALANCE UNKNOWW') ;

JPanel bal anceP = new JPanel ();

bal anceP. set Layout (new Fl owLayout (Fl owLayout . CENTER)) ;
bal anceP. add(bal ancePrefi xL);

bal anceP. add(bal ancel);

JPanel northP = new JPanel ();

nort hP. set Layout (new G'i dLayout(-1, 1, 5, 5));
nort hP. add(dat aEntryP);

nort hP. add(butt onP) ;

nort hP. add(bal anceP) ;

set Layout (new Bor der Layout ());
add(northP, BorderLayout. NORTH);

}

private void hookupEvents() {
sear chB. addAct i onLi st ener (new Acti onLi stener () {
public void actionPerformed(Acti onEvent e) {
search();
}
1)

cancel B. addAct i onLi st ener (new Acti onLi stener () {
public void actionPerformed(Acti onEvent e) {
cancel Search();
}
s

private void search() {
/'l better be called by event thread!
ensur eEvent Thread();

Threads and Swing

81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:

}

CHAPTER 9

sear chB. set Enabl ed(f al se);
cancel B. set Enabl ed(true);
bal ancelL. set Text (“SEARCHI NG ...");

/1 get a snapshot of this info in case it changes
String acct = acctTF. get Text ();
String pin = pinTF. get Text();

| ookupAsync(acct, pin);

private void | ookupAsync(String acct, String pin) {

}

/1 Called by event thread, but can be safely
/1 called by any thread.

final String acctNum = acct;

final String pinNum = pin;

Runnabl e | ookupRun = new Runnabl e() {
public void run() {
String bal = | ookupBal ance(acct Num pi nNum) ;
set Bal anceSaf el y(bal);

}s

| ookupThread = new Thread(| ookupRun, “lookupThread”);
| ookupThread. start();

private String | ookupBal ance(String acct, String pin) {

/1 Called by |ookupThread, but can be safely

/1 called by any thread.

try {
/1l Sinmulate a lengthy search that takes 5 seconds
/1 to communi cate over the network.
Thr ead. sl eep(5000) ;

Il result “retrieved”, return it
return “1,234.56";

} catch (InterruptedException x) {
return “ SEARCH CANCELLED’;

}

continues

239

ONIMS
ANV SavadH|

240 Threads

PART |

LisTING 9.7 Continued

124: private void setBal anceSafel y(String newBal) ({
125: /1 Called by |ookupThread, but can be safely
126: /1 called by any thread.

127: final String newBal ance = newBal ;

128:

129: Runnabl e r = new Runnabl e() {

130: public void run() {

131: try {

132: set Bal ance(newBal ance) ;
133: } catch (Exception x) {

134: X. printStackTrace();

135: }

136: }

137: }s

138:

139: SwingUtilities.invokelLater(r);

140: }

141:

142: private void setBal ance(String newBal ance) {
143: /'l better be called by event thread!

144 ensur eEvent Thread() ;

145:

146: bal ancelL. set Text (newBal ance) ;

147: cancel B. set Enabl ed(f al se);

148: sear chB. set Enabl ed(true);

149: }

150:

151: private void cancel Search() {

152: /1 better be called by event thread!

153: ensur eEvent Thread() ;

154:

155: cancel B. set Enabl ed(fal se); //prevent additional requests
156:

157: if (lookupThread !'= null) {

158: | ookupThread. interrupt();

159: }

160: }

161:

162: private void ensureEvent Thread() {

163: /1 throws an exception if not invoked by the
164: /1 event thread.

165: if (SmingUilities.isEventDi spatchThread()) {

166: return;

Threads and Swing

CHAPTER 9

167: }

168:

169: throw new Runti meException(“only the event “ +
170: “thread should invoke this method”);
171: }

172:

173: public static void main(String[] args) {

174: Bal anceLookup bl = new Bal anceLookup();
175:

176: JFrame f = new JFrane("“Bal ance Lookup”);
177: f . addW ndowLi st ener (new W ndowAdapter () {
178: public void w ndowCd osi ng(W ndowEvent e) {
179: System exit(0);

180: }

181: });

182:

183: f . set Cont ent Pane(bl);

184: f.setSize(400, 150);

185: f.setVisible(true);

186: }

187: }

The code for Bal ancelLookup is based on Bal anceLookupCant Cancel but includes a few key
changes to support a worker thread. Now, when the Search button is clicked and the sear ch()
method is called, | ookupAsync() isinvoked instead of looking up the balance directly.

The event thread invokes | ookupasync() (lines 92-107), passing in the account number and
PIN strings. A new Runnabl e is created (lines 98-103). Inside the r un() method, the slow

| ookupBal ance() method is called. When | ookupBal ance() finally returns the balance, it is
passed to the set Bal anceSaf el y() method. A new Thread named | ookupThr ead iS con-
structed and started (lines 105-106). The event thread is now free to handle other events and
I ookupThr ead takes care of searching for the account information.

Thistime, thel ookupBal ance() method (lines 109-122) gets called by | cokupThr ead instead
of the event thread. | ookupThr ead proceeds to eep for 5 seconds to simulate the slow lookup
on the server. If 1 ookupThr ead is not interrupted while sleeping, it returns 1, 234. 56 for the
balance (line 118). If it was interrupted, it returns SEARCH CANCELLED (line 120).

The st ri ng returned from | ookupBal ance() istaken by thel ookupThr ead and passed to

set Bal anceSaf el y() (lines 124-140). Inside set Bal anceSaf el y(), @ Runnabl e is created that
callsset Bal ance() insideitsrun() method (lines 129-137). This Runnabl e is passed to
SwingUtilities.invokelLater() SO that the event thread is the one that ultimately calls the
set Bal ance() method.

241

ONIMS
ANV SavadH|

242

Threads

PART |

Inside set Bal ance() (lines 142-149), a check is done by calling ensur eEvent Thread() to be
sure that it is indeed the event thread that has called the method. If it is, the balance label is
updated with the information, the Cancel Search button is disabled again, and the Search but-
ton is enabled again.

The cancel Sear ch() method (lines 151-160) is called by the event thread when the Cancel
Search button is clicked. Inside, it disables the Cancel Search button and interrupts

| ookupThr ead. This causes | ookupThr ead to throw an I nt er r upt edExcept i on and return the
SEARCH CANCELLED message.

The ensur eEvent Thr ead() method (lines 162—171) checks to seeif the current thread is the

event thread by using the swi ngUtilities. i sEvent Di spat chThread() method. If itisnot, a
Runt i meExcept i on isthrown. Several methods in Bal anceLookup USe ensur eEvent Thr ead()

to make sure that only the event thread is allowed to proceed.

Figure 9.4 shows how Bal anceLookup l00ks just after startup. Notice that the Cancel Search
button is disabled and that the balance label is BALANCE UNKNOWN.

After an account number and PIN are entered and the Search button is clicked, the application
window looks like Figure 9.5. Notice that the Search button is disabled, the Cancel Search but-
ton is enabled, and the balance label is SEARCHI NG It remains like this for about 5 seconds
while the lookup is simulated.

When the search finally completes, the application looks like Figure 9.6. Notice that the bal-
ance label is 1, 234. 56 (the fake balance), the Search button is enabled again, and the Cancel
Search button is disabled again.

If you click on the Cancel Search button during the 5 seconds while the search isin progress,
the window looks like Figure 9.7. Notice that that the balance label is SEARCH CANCELLED, indi-
cating that the search did not get a chance to complete. As before, the Search button is enabled,
and the Cancel Search button is disabled.

L mnl e L]

B BT e S R Lo

FIGURE 9.4
Balancel.ookup just after startup.

Threads and Swing

CHAPTER 9

Bl My | e e T

AL EE R o R

FIGURE 9.5
Balancel ookup after the Search button is clicked.

Bl Bulance Loakaa

Lot Lt HE IR al PR 1H

FIGURE 9.6
Balancel.ookup after the search has completed.

! Harwiars

Sk

S Cod e SEAFH LR EILED

FIGURE9D.7
Balancel.ookup after the Cancel Search button is clicked during a search.

Tip

243

Rather than spawning a new thread every time the Search button is clicked, a better
design would be to have a thread up and running and waiting to do the work. The
event thread would gather the information, pass it to the waiting worker thread
using synchronization, and signal the worker through the wait-notify mechanism that
a new request was pending. When the worker thread had fulfilled the request, it
would update the GUI through the i nvokelat er () mechanism. The worker would
then go back to waiting for another notification. To simplify the synchronization and
notification of the handoff, an bj ect FI FOwith a capacity of 1 could be used (see
Chapter 18, “First-In-First-Out (FIFO) Queue™). Also look at the thread-pooling tech-
niques in Chapter 13, “Thread Pooling,” for an example of how to do this type of
handoff from one thread to another through a First-In-First-Out queue.

ONIMS
ANV SavIdH |

244

Threads

PART |

Scrolling Text in a Custom Component

Scrol | Text (seeListing 9.8) isa custom JConponent that takes the text passed to its construc-
tor and scrollsit from left to right across the face of the component. At the time of construc-
tion, an off-screen image is prepared with the specified text and an internal thread is started to
scroll thisimage. scrol | Text isaself-running object and uses some of the techniques from
Chapter 11, “Self-Running Objects,” to manage its internal thread.

LisTING 9.8 ScrollText.java—Scroll Text Across the Face of the Component

1: inport java.aw.*;
2: inport java.awt.inage.*;
3: inmport java.aw.font.*;
4: inport java.awt.geom*;
5: inport javax.sw ng.*;
6:
7: public class Scroll Text extends JConponent {
8: private Bufferedl nage i mage;
9: private Dinmension imageSi ze;
10: private volatile int currOffset;
11:
12: private Thread internal Thread;
13: private volatile bool ean noSt opRequest ed;
14:
15: public Scroll Text(String text) {
16: currOf fset = 0;
17: bui | dl mage(text);
18:
19: set M ni nunti ze(i mageSi ze) ;
20: set PreferredSi ze(i mageSi ze) ;
21: set Maxi munSi ze(i nageSi ze) ;
22: set Si ze(i mageSi ze) ;
23:
24: noSt opRequested = true;
25: Runnabl e r = new Runnabl e() {
26: public void run() {
27: try {
28: runWor k() ;
29: } catch (Exception x) {
30: X. printStackTrace();
31: }
32: }
33: b

w
B

Threads and Swing

35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:

internal Thread = new Thread(r, “Scroll Text");
internal Thread. start();

private void buildlmge(String text) {

/1 Request that the drawi ng be done with anti-aliasing
/1 turned on and the quality high.
RenderingH nts renderH nts = new Renderi ngH nts(
Renderi ngH nts. KEY_ANTI ALI ASI NG,
Renderi ngHi nts. VALUE_ANTI ALI AS_ON) ;

render H nts. put (
Render i ngHi nt s. KEY_RENDERI NG,
Renderi ngHi nts. VALUE_RENDER_QUALI TY) ;

/'l Create a scratch image for use in determning

/1 the text dinensions.

Buf f er edl mage scratchl mage = new Bufferedl mage(
1, 1, Bufferedl mage. TYPE | NT_RGB);

Graphi cs2D scratch@ = scratchl mage. creat eG aphi cs();
scrat ch@&. set Renderi ngHi nts(render Hi nts);

Font font =
new Font(“Serif”, Font.BOLD | Font.|TALIC, 24);

Font Render Cont ext frc = scratch®. get Font Render Cont ext () ;
Text Layout tl = new TextLayout(text, font, frc);

Rect angl e2D t ext Bounds = tl. get Bounds();

int textWdth = (int) Mth.ceil (textBounds.getWdth());
int textHeight = (int) Math.ceil (textBounds. getHeight());

int horizontal Pad = 10;

int vertical Pad = 6;

i mageSi ze = new Di nensi on(
textWdth + hori zontal Pad,
t ext Hei ght + verti cal Pad

)

/1 Create the properly-sized i mage
i mmge = new Buf f er edl mage(

CHAPTER 9

continues

245

ONIMS
ANV SavadH|

246 Threads

PART |

LisTING 9.8 Continued

77: i mageSi ze. wi dt h,

78: i mageSi ze. hei ght

79: Buf f er edl mage. TYPE_| NT_RGB)

80:

81: Graphi cs2D g2 = i mage. creat eG aphics();

82: g2. set Renderi ngHi nt s(render Hi nts);

83:

84: int baselineOfset =

85: (verticalPad / 2) - ((int) textBounds.getY())
86:

87: g2. set Col or (Col or. white);

88: g2.fillRect(0, 0, inmageSize.w dth, inageSize. hei ght)
89:

90: g2. set Col or (Col or. bl ue) ;

91: tl.draw(g2, 0, baselineOfset);

92:

93: /'l Free-up resources right away, but keep “image” for
94: /1 animation

95: scrat ch@. di spose();

96: scrat chl mage. fl ush();

97: g2. di spose();

98: }

99:

100: public void paint(Gaphics g) {

101: /1 Make sure to clip the edges, regardl ess of curr size
102: g.setdip(0, O, imageSi ze.wi dth, inmageSize. hei ght)
103:

104: int local Offset = currOffset; // in case it changes
105: g. drawl mage(i mage, -local Offset, 0, this);

106: g. dr aw mage(

107: image, imageSize.width - local Offset, 0, this);
108:

109: /1 draw outline

110: g. set Col or (Col or. bl ack) ;

111: g. drawRect (

112: 0, 0, inmageSize.width - 1, inmageSi ze. height - 1);
113: }

114:

115: private void runWrk() {

116: whil e (noStopRequested) {

117: try {

118: Thread. sl eep(100); // 10 frames per second
119:

120: /] adjust the scroll position

Threads and Swing

121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153: }

CHAPTER 9

currOfset =
(currOfset + 1) % inageSize.wdth;

/1 signal the event thread to call paint()
repaint();

} catch (InterruptedException x) {
Thread. current Thread().interrupt();

}
}

public void stopRequest() {
noSt opRequest ed = fal se;
internal Thread.interrupt();

}

public boolean isAlive() {
return internal Thread.isAlive();

}

public static void main(String[] args) {
Scrol | Text st =
new Scrol | Text (“Java can do ani nmation!”);

JPanel p = new JPanel (new Fl owLayout());
p. add(st);

JFrame f = new JFrane(“Scroll Text Denp”);
f . set Cont ent Pane(p);

f.set Size(400, 100);

f.setVisible(true);

Innmein() (lines 141-152), anew Scrol | Text instance is constructed (lines 142-143) and put
into aJrPanel with aFl owLayout to let the instance of Scrol | Text take on its preferred size
(lines 145-146). This JPanel is put into a JFr ame and set visible.

Inside the constructor (lines 15-37), curr O f set iSsset to initially be 0 pixels. curr O f set is
the x-position of the image relative to the component’s coordinate system. Because
curr O fset isset by theinterna thread and read by pai nt (), itisvol atil e (line 10). The
bui | dl mage() method is called to create the off-screen image that scrolls (line 17). The rest of
the constructor sets the dimensions of the component and starts up the internal thread.

247

ONIMS
ANV SavadH|

248

Threads

PART |

The bui | dl mage() method (lines 39-98) is used to prepare the off-screen image with the
desired text. Because the text will be drawn to the image only once, the rendering hints are set
for quality and anti-alias (lines 42-48). A scratch image is created first and used in determining
the exact pixel dimensions needed for the specified text (lines 52—65). A little bit of horizontal
and vertical padding is added and the real off-screen image is created (lines 67—79). A graphics
context is created from the image and used for drawing the text (lines 81-91).

Whenever the event-handling thread calls pai nt () (lines 100-113), the off-screen imageis
redrawn onto the component. The value of curr O f set is captured in the local variable

| ocal Of f set incasecurr O fset ischanged while pai nt () isin progress (line 104). Actually,
the image is drawn twice. It is drawn once off to the left of the component by thel ocal O f set
(line 105). And it is drawn a second time by the same offset from the right side of the compo-
nent (lines 106-107). Parts of the images will be automatically clipped because they extend off
the sides of the component (line 102). After the image isin place, a black outline is drawn
around the edge (lines 110-112).

The runwor k() method (lines 115-130) is invoked by the internal thread that was started in the
constructor. It loops continuously until another thread invokes the st opRequest () method. In
the whi | e loop, the internal thread sleeps for 0.1 seconds (line 118), increments cur r Of f set
(lines 121-122), and puts a request onto the event queue for the pai nt () method to be called
(line 125). The value of curr O f set is kept between 0 and the width of the off-screen image
(line 122). curr O f set isvol ati | e SO that the event thread sees the changes in value being
made by the internal thread.

Figure 9.8 shows a snapshot of Scrol | Text in action. Figure 9.9 shows the same component a
few seconds later. The text “Java can do animation!” is scrolling from right to left across the
component. The mai n() method of Scrol | Text issimply used for demonstration purposes.
Scrol | Text can be used as a component anywhere. You might want to enhance Scrol | Text SO
that the colors, font, scroll rate, and size of the scroll window can be specified for a more real-
world application. You can speed up the scrolling by moving more than one pixel at atime, or
by moving more than 10 times per second. Keep in mind that increasing the number of
advances per second will use more processor resources.

o=

|fervia caan oo awinrariont |

FIGURE 9.8
Scroll Text—snapshot of text scrolling in progress.

Threads and Swing

CHAPTER 9

=ERDAETEELE T

Vo andmsarion) Sava caw |

FIGURE 9.9

Scroll Text—another snapshot a few seconds later.

NoOTE

Beginning with JDK 1.2, there is a class j avax. swi ng. Ti ner that can be used to sim-
plify animation. After being started, Ti mer calls the act i onPer f or ned() method on
the registered object at regular intervals. The event-handling thread is used to
invoke act i onPer f or med() , so direct modification of visible components from within
acti onPer f or med() is safe. If the action is nonblocking and brief, the use of Ti mer
might be an appropriate substitute for the techniques I've shown you here.

Animating a Set of Images

Instead of scrolling one image across the face of a component as Scr ol | Text does, a compo-
nent can use an internal thread to step through a set of different images one image at atime.
This set of images can be considered frames or dlides. By flipping through the slides (or
frames), the internal thread creates animation.

In sli deshow (see Listing 9.9), a set of imagesis created and an internal thread loops through
them at arate of 10 images per second. In this case, an expanding yellow circleisdrawn on a
blue background, but you could use any set of images.

LisTING 9.9 SlideShow.java—Animation of a Set of Images

inport java.aw.*;
i mport java.aw.imge. *;
i mport javax.sw ng.*;

private Bufferedl nage[] slide;
private Dinmension slideSize;

1
2
3
4:
5: public class SlideShow extends JConponent {
6
7
8 private volatile int currSlide;

9

continues

249

ONIMS
ANV SavadH|

250

Threads

PART |

LisTING 9.9 Continued

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:

private Thread internal Thread;
private volatile bool ean noSt opRequest ed;

public SlideShow) {
currSlide = 0;
slideSi ze = new Di nensi on(50, 50);
bui | dSli des();

set M ni nunti ze(sl i deSi ze);
set PreferredSi ze(sl i deSi ze);
set Maxi munti ze(sl i deSi ze) ;
set Si ze(sl i deSize);

noSt opRequested = true;
Runnabl e r = new Runnabl e() {
public void run() {
try {
runWor k() ;
} catch (Exception x) {

/1 in case ANY exception slips through

X. printStackTrace();

b

internal Thread = new Thread(r, “SlideShow’);

internal Thread. start();

}

private void buildSlides() {

/'l Request that the drawing be done with anti-aliasing

/1 turned on and the quality high.

RenderingH nts renderH nts = new Renderi ngHi nt s(

Render i ngHi nts. KEY_ANTI ALI ASI NG
Renderi ngHi nts. VALUE_ANTI ALI AS_ON) ;

render H nts. put (
Render i ngHi nt s. KEY_RENDERI NG

Renderi ngHi nts. VALUE_RENDER_QUALI TY) ;

slide = new Bufferedl mage[20] ;

Col or rectCol or = new Col or (100, 160, 250);

Col or circleCol or = new Col or (250, 250,

150) ;

/'l blue
/'l yellow

Threads and Swing

54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94
95:
96:

}

CHAPTER 9

for (int i =0; i <slide.length; i++) {

slide[i] = new Bufferedl mage(
sl i deSi ze. w dt h,
sl i deSi ze. hei ght,
Buf f er edl mage. TYPE_| NT_RGB) ;

Graphi cs2D g2 = slide[i].createG aphics();
g2. set Renderi ngHi nts(renderH nts);

g2. set Col or(rectCol or);
g2.fillRect (0, O, slideSize.w dth, slideSize.height);

g2.setCol or(circleColor);

int diameter = O;
if (i <(slide.length/ 2)) {
dianeter =5 + (8 * i);
} else {
diameter =5+ (8 * (slide.length - i));
}

int inset = (slideSize.width - dianeter) / 2;
g2.fillOval (inset, inset, dianeter, dianmeter);

g2. set Col or (Col or. bl ack) ;
g2. dr awRect (
0, 0, slideSize.width - 1, slideSize.height - 1);

g2. di spose();

public void paint(Gaphics g) {

}

g.draw mage(slide[currSlide], 0, 0, this);

private void runWork() {

whil e (noStopRequested) {

try {
Thread. sl eep(100); // 10 franes per second

/'l increnent the slide pointer

continues

251

ONIMS
ANV SavadH|

259 Threads

PART |

LisTING 9.9 Continued

97: currSlide = (currSlide + 1) %slide.length;
98:
99: /1 signal the event thread to call paint()
100: repaint();
101: } catch (InterruptedException x) {
102: Thread. current Thread().interrupt();
103: }
104: }
105: }
106:
107: public void stopRequest() {
108: noSt opRequest ed = fal se;
109: internal Thread.interrupt();
110: }
111:
112: public boolean isAlive() {
113: return internal Thread.isAlive();
114: }
115:
116: public static void main(String[] args) {
117: Sl i deShow ss = new SlideShow();
118:
119: JPanel p = new JPanel (new Fl owiLayout ());
120: p. add(ss);
121:
122: JFrame f = new JFrane("“SlideShow Denmp”);
123: f . set Cont ent Pane(p);
124: f.setSize(250, 150);
125: f.setVisible(true);
126: }
127: }

Inmai n() (lines 116-126), anew Sl i deshow instance is constructed (line 117) and put into a
JPanel with aFl owLayout to let the instance of Sl i deShow take on its preferred size (lines
119-120). This JPanel isputinto aJFranme and set visible.

Inside the constructor (lines 13-37), curr Sl i de isset toinitialy be 0. curr sl i de isthe index
into the Buf f er edl mage[] referred to by sl i de indicating the current slide to display. Because
currSlide isset by onethread (the internal thread) and read by another in pai nt () (the event

Threads and Swing

CHAPTER 9

thread), it must be vol ati | e to ensure that the event thread sees the changes in value (line 8).
Thebui | dSl'i des() method is called to create the set of images used for the animation. The
rest of the constructor sets the dimensions of the component and starts up the internal thread.

Thebui I dSl'i des() method (lines 39-85) is used to construct an array of 20 images (line 50)
to loop through. High-quality rendering hints are used because the images are drawn on only
once and are displayed over and over (lines 42-48, 62). Each of the images is constructed and
drawvn oninthefor loop (lines 55-84). First, a blue rectangle isfilled in (lines 52, 64-65).
Then ayellow circle of varying diameter is drawn in the center (lines 53, 67—77). The last
shape drawn onto each image is a black rectangle to outline the slide (lines 79-81). Each
graphics context is disposed of immediately when it is no longer needed (line 83).

Whenever the pai nt () method (lines 87—89) is called by the event thread, the current slide is
drawn onto the component. Because curr Sl i de iSvol ati | e, the event thread always sees the
most recent index value.

The internal thread invokes the r unwor k() method (lines 91-105). Inside, it continues to exe-
cute the whi | e loop until another thread comes along and invokes st opRequest () . Each time
through, the internal thread sleeps for 0.1 seconds, increments the frame number, and requests
that the event thread repaint the component as soon as possible (lines 94-100). The sl i de
indexed by currslide iskeptintherangeo to(slide.length - 1) (line 97). Theinterna
thread loops through all of the slides over and over until st opRequest () iscalled.

Figure 9.10 catches sl i deshow just as the yellow circle is beginning to expand. Figure 9.11
shows it when the yellow circle has expanded almost enough to touch the edges of the compo-
nent. Figure 9.12 shows it when the yellow circle has grown to almost big enough to eclipse
the entire blue region. After the yellow circle has grown to fill the component, it begins to
shrink until it isatiny circle again. This animation loop continues until st opRequest () iS
called. In this example | used simple drawing to keep the code size down, but you can feel free
to use images of any complexity in this animation component.

IS 50 o5t o e

FIGURE 9.10
SideShow when the yellow circle is just beginning to expand.

253

ONIMS
ANV SavadH|

Threads

254

PART |

FIGURE 9.11
SideShow when the yellow circle has almost expanded to the edges.

FIGURE 9.12
SideShow when the yellow circle has almost engulfed the whole component.

Displaying Elapsed Time on a JLabel

Di gi tal Ti mer (See Listing 9.10) extends JLabel and uses an internal thread to update the text
on the label with the elapsed time since the component was constructed. In thisclassit is
important to use Swi ngUti lities. i nvokeAndWi t () to have the event thread actually update
the text on the label.

LisTING 9.10 DigitalTimer.java—Extending JLabel to Continually Display Elapsed Time

1: inport java.aw.*;

2: inport java.text.*;

3: inport java.lang.reflect.*;

4: inport javax.sw ng.*;

5:

6: public class Digital Tinmer extends JLabel {

7: private volatile String tineText;

8:

9: private Thread internal Thread,
10: private volatile bool ean noSt opRequest ed;
11:
12: public Digital Timer() {
13: set Bor der (Bor der Fact ory. cr eat eLi neBor der (Col or. bl ack)) ;
14: set Hori zont al Al i gnment (Swi ngConst ants. Rl GHT) ;

Threads and Swing

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:

CHAPTER 9

set Font (new Font (“SansSerif”, Font.BOLD, 16));
set Text (“00000.0"); // use to size conponent
set M ni nuntSi ze(get PreferredSi ze());

set PreferredSi ze(get PreferredSi ze());

set Si ze(get PreferredSi ze());

timeText = “0.0";
set Text (timeText);

noSt opRequested = true;
Runnabl e r = new Runnabl e() {
public void run() {
try {
runWor k() ;
} catch (Exception x) {
X. printStackTrace();

}
b

internal Thread = new Thread(r, “Digital Tinmer”);
internal Thread. start();

private void runWrk() {

long startTime = SystemcurrentTineMI1is();
int tenths = 0;

I ong normal Sl eepTi me = 100;

I ong next Sl eepTi me = 100;

Deci mal Format fnmt = new Deci mal Format (“0.0");

Runnabl e updat eText = new Runnabl e() {
public void run() {
set Text (ti meText);

}
b
whil e (noStopRequested) {
try {

Thr ead. sl eep(next Sl eepTi ne) ;

tent hs++;

continues

255

ONIMS
ANV SavadH|

256

Threads

PART |

LisTING 9.10 Continued

57: long currTine = SystemcurrentTimeM I 1is();
58: I ong el apsedTime = currTime - startTine;
59:

60: next Sl eepTi ne = nor nal Sl eepTi ne +

61: ((tenths * 100) - el apsedTine);
62:

63: if (nextSleepTine < 0) {

64: next Sl eepTi me = O;

65: }

66:

67: timeText = fnt.format (el apsedTime / 1000.0);
68: SwingUtilities.invokeAndWit (updateText);
69: } catch (InterruptedException ix) {

70: /1 stop running

71: return;

72: } catch (InvocationTarget Exception x) {

73: /1 1f an exception was thrown inside the
74: /1 run() method of the updateText Runnabl e.
75: X. printStackTrace();

76: }

77: }

78: }

79:

80: public void stopRequest () {

81: noSt opRequest ed = fal se;

82: internal Thread.interrupt();

83: }

84:

85: public boolean isAlive() {

86: return internal Thread.isAlive();

87: }

88:

89: public static void main(String[] args) {

90: Digital Timer dt = new Digital Tiner();

91:

92: JPanel p = new JPanel (new Fl owlLayout ());

93: p. add(dt);

94:

95: JFrame f = new JFrane(“Digital Ti ner Denpn”);

96: f . set Cont ent Pane(p) ;

97: f.setSize(250, 100);

98: f.setVisible(true);

99: }

100: }

Threads and Swing

CHAPTER 9

Inmai n() (lines89-99), anew Di gi t al Ti mer instance is constructed (line 90) and put into a
JPanel with aFl owLayout to let it take on its preferred size (lines 92—93). This JPanel is put
into a JFr ame and set visible.

Inside the constructor (lines 12—-37), the border, alignment, and font for the label are set. A
sample text string of 00000. 0 is used to initialy size the component (lines 16-19). ti neText iS
initialized tobe 0. 0. ti meText isdeclared to bevol ati | e (line 7) because (after construction)
it is set by the internal thread and read by the event thread. The rest of the constructor gets the
internal thread up and running.

The internal thread invokes runvor k() (lines 39-78) to keep track of time and update the label.
Much of the work inside this method is done to keep the elapsed time as accurate as possible.
(See Chapter 4, “Implementing Runnable Versus Extending Thread,” for a more in-depth dis-
cussion of the accuracy issues and techniques used.) The Runnabl e instance referred to by
updat eText (lines 46-50) isused by Swi ngUtilities.invokeAndwait () to get the event
thread to update the text on the label. Notice that the same Runnabl e instance is used over and
over inside the whi | e loop. The Runnabl e reads the vol ati | e member variableti neText to
find out what text should be displayed.

In the whi | e loop (lines 52—77), the internal thread sleeps for a while (about 0.1 seconds),
increments the t ent hs counter, and calculates the elapsed time (lines 54-58). The

next Sl eepTi ne is calculated to keep the clock from running too fast or too slow (lines 60-65).
The elapsed time is converted into seconds (from milliseconds) and formatted into a st ri ng
that isstored inti meText (line 67). Next, Swi ngUtilities.invokeAndWait () iSused to get
the event thread to update the text currently displayed on the label (line 68).
SwingUtilities.invokeAndvait () wasused instead of SwingUtilities.invokeLater() SO
that the internal thread would not get ahead of the event thread.

Figure 9.13 shows how Di gi t al Ti mer appears after 15.5 seconds have el apsed.

FIGURE 9.13
Digital Timer after 15.5 seconds have elapsed.

Floating Components Around Inside a Container

CompMover (SeeListing 9.11) is a utility that takes a component and an initial position and
moves the component around inside its container. Thisis basically a demonstration of how ani-
mation can be achieved by moving components.

257

ONIMS
ANV SavadH|

258 Threads

PART |

LisTING 9.11 CompMover.java—A Utility to Float Components Around Inside a Container

import java.aw.*;
i nport javax.sw ng.*;

1

2

3

4: public class ConpMover extends bject {
5: private Conponent conp;

6: private int initX;

7 private int initY,;

8 private int offsetX;

9: private int offsetY;

10: private bool ean firstTing;

11: private Runnabl e updat ePositi onRun;

12:

13: private Thread internal Thread,

14: private volatil e bool ean noSt opRequest ed;
15:

16: publ i ¢ ConpMover (Conmponent conp,

17: int initX int inity,

18: int offsetX, int offsetY

19:) {

20:

21: this.conp = conp;

22: this.initX = initX

23: this.initY =initY,

24: this.of fsetX = offsetX;

25: this.offsetY = offset;

26:

27: firstTine = true;

28:

29: updat ePosi ti onRun = new Runnabl e() {
30: public void run() {

31: updat ePosi tion();

32: }

33: };

34:

35: noSt opRequest ed = true;

36: Runnabl e r = new Runnabl e() {

37: public void run() {

38: try {

39: runWor k() ;

40: } catch (Exception x) {
41: /1 in case ANY exception slips through
42: X. printStackTrace();

43: }

Threads and Swing

44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
T7:
78:
79:
80:
81:
82:
83:
84.:
85:
86:

CHAPTER 9

internal Thread = new Thread(r);
internal Thread. start();

private void runWrk() {
whil e (noStopRequested) {

try {
Thr ead. sl eep(200);
SwingUtilities.invokeAndWit (updat ePositionRun);

} catch (InterruptedException ix) {
/1 ignore

} catch (Exception x) {
X. printStackTrace();

}

public void stopRequest () {
noSt opRequested = fal se;
internal Thread.interrupt();

public boolean isAlive() {
return internal Thread.isAlive();

}

private void updatePosition() {
/1 should only be called by the *event* thread

if (!'comp.isVisible()) {

return;
}
Conmponent parent = conp. get Parent();
if (parent == null) {

return;

}

Di mensi on parent Size = parent.getSize();
if ((parentSize == null) &&

continues

259

ONIMS
ANV SavadH|

260

Threads

PART |

LisTING 9.11 Continued

87:

88:

89:

90:

91:

92:

93:

94:

95:

96:

97:

98:

99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:

publ

(parentSize.width < 1) &&
(parentSize.height < 1)
) |

return;

}

int newX = 0;
int newy = 0;

if (firstTime) {
firstTinme = fal se;

newX = initX;
newY = initY;
} else {
Poi nt | oc = conp. getlLocation();
newX = |l oc.x + offsetX

newY = |loc.y + offsetY;

newX = newX % parent Si ze. wi dt h;
newY = newY % parent Si ze. hei ght ;

if (newX<0) {
/1 wrap around other side
newX += parent Si ze. wi dth;

if (newy <0) {
/1 wrap around other side
newY += parentSi ze. hei ght;

conp. set Locati on(newX, newY);
parent.repaint();

ic static void main(String[] args) {
Conmponent [] conmp = new Conponent [6] ;

comp[0] = new Scrol | Text(“Scrolling Text”);
conp[1] = new Scroll Text(“Java Threads”);
conp[2] = new SlideShow);

conp[3] = new SlideShow);

conp[4] = new Digital Timer();

Threads and Swing

CHAPTER 9

132: conmp[5] = new Digital Tiner();

133:

134: JPanel p = new JPanel ();

135: p. set Layout (null); // no |l ayout nanager

136:

137: for (int i =0; i < conp.length; i++) {
138: p. add(comp[i]);

139:

140: int x = (int) (300 * Math.randon());
141: int y = (int) (200 * Math.randon());
142: int xOf =2 - (int) (5 * Mth.randon());
143: int yo&of = 2 - (int) (5 * Mth.random());
144:

145: new CompMover (conp[i], X, y, xOf, yOf);
146: }

147:

148: JFrame f = new JFrane(“ ConpMover Denp”);

149: f . set Cont ent Pane(p) ;

150: f.set Size(400, 300);

151: f.setVisible(true);

152: }

153: }

The constructor for corpMover (lines 16-49) takes a component, an initial position, and x and
y offset information. A Runnabl e is created (lines 29-33) to be passed to
SwingUtilities.invokeAndWit (). ThisRunnabl e isreferred to by updat ePosi ti onRun and
invokes the updat ePosi ti on() when called by the event thread. The rest of the constructor
gets the internal thread up and running.

The internal thread invokesrunwer k() (lines 51-62), where it loops inside the whi | e until
another thread invokes st opRequest () . Inside the whi | e loop, the thread sleeps for 0.2 seconds
and then invokes Sswi ngUti lities. i nvokeAndWait () passing in updat ePosi ti onRun (lines
54-55). updat ePosi t i onRun causes the event thread to invoke updat ePosi ti on() .

Each time that the event thread calls updat ePosi ti on() (lines 73-122), the event thread
attempts to move the component alittle. Several checks are done to be sure that the parent con-
tainer is accessible (lines 76-92). The current location of the component is retrieved and the x
and y offsets are added to determine the new location (lines 97-118). The event thread proceeds
to invoke set Locat i on() on the component to move it to its new position (line 120). The event
thread then invokes r epai nt () on the parent container to get the move to show up (line 121).

Inmai n() (lines 124-152), a number of components are constructed: two instances of
Scrol | Text , two instances of Sl i deShow, and two instances of Di gi t al Ti mer (lines 125-132).
A panel is created to house these components, and it has its layout manager set to nul |

261

ONIMS
ANV SavadH|

262

Threads

PART |

because conpMver istaking care of component positions (lines 134-135). Inside the f or loop
(lines 137-146), each component is added to the panel (line 138) and hasits initial position
and x and y offsets randomly determined (lines 140-143). Each component also gets handed
off to a new instance of conpmver to handle its positioning (line 145).

Each of the six components has an internal thread running within it to handle its animation. In
addition, each of the six instances of ConpMover aso has an internal thread running to handle
the component movement. All 12 of these threads perform many operations per second and can
bog down the processor. If you don’t have a really fast machine, you might notice some slug-
gishness when you run this example. As you can see, animation is very processor-intensive.

Figure 9.14 shows how CormpMover looks after running for about 75 seconds. Figure 9.15 shows
how it looks after about 136 seconds. Each of the components travels around in a different
direction. When a component moves off one side of the screen, it returns on the other side.
Your output will differ significantly because the initial positions and directions of movement
for the components are randomly determined.

E e e [i

I." AF PR o E R I

!"-"-':-'.'_r:' P
1117 .'I

FIGure 9.14
A snapshot of CompMover in action.

Harvar L rearaly

I: W3

Ficure 9.15
Another snapshot of CompMover after more time has passed.

Threads and Swing

CHAPTER 9

Summary

In this chapter, you saw how it is important that the event thread be the only thread that makes
direct modifications to Swing components after they have been added to a visible container.
The swi ngUtilities.invokeAndwait () and SwingUtilities.invokelater() methods pro-
vide a mechanism for any thread to put a block of code onto the event queue. When the event
thread gets to the block of code, it executes it and safely makes changes to Swing components.
Using these toals, threads were added to components to provide animation capabilities.
Additionally, a worker thread was able to take the results of along-running search and safely
update the graphical interface of an application.

263

ONIMS
ANV SavadH|

264

