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Summary 
F-x eigen filtering performs random noise suppression on 2-D 
seismic data using eigenimage analysis along constant-frequency 
slices. The method works equally well on flat or dipping events. 
Statistical measures of noise suppression performance on 
artificial data, as well as tests on real data, shows the method to 
be competitive with prediction-based noise attenuators. 

Methodology 
Suppose we have a series of n equally spaced traces 
representing, say, a portion of a 2-D stacked section. A typical 
value for n might be 25. For a given temporal frequency extract 
the complex DFT value for every trace 

nttt ...21 . 

Canales (1984) showed that for noiseless data made up of at 
most k dips the above sequence can be written as the sum of k 
sinusoids 
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where ia  are complex values and ib  are real values. Form the 
data matrix 
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This matrix has Hankel structure, meaning the matrix elements 
are constant along the anti-diagonals. By adjusting m we can 
change the matrix dimensions. The accepted strategy is to make 
the matrix as square as possible by choosing m = n/2. 

The noise suppression method replaces A  with a reduced-rank 
approximation )(AkF  (Trickett, 2002.) To briefly summarize, 
begin by taking the singular value decomposition (SVD) 

HVUA Σ=  

where U  and V  are unitary matrices, and Σ  is a real diagonal 
matrix whose diagonal elements iσ  are ordered such that 
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For some small value of k form the partial sum 
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where vectors iu  and iv  are the i’th columns of U  and V , 
respectively.  

It can be shown that )(AkF  is the nearest rank-k matrix to ,A  
but it is not generally Hankel. We recover the Hankel structure by 
averaging the elements of each anti-diagonal of ).(AkF This is 
not optimum, however, and calculating the nearest rank-k Hankel 
matrix to A is a subject of active research (Park et al, 1999). It is 
an open question whether doing so would result in a significantly 
improved noise suppression. 

Putting all of this together, the method, which I will call f-x eigen 
filtering, is: 

T
a
R
i
s
w

O
T
w
i
W
f
M
p
i
s

T
a
i
t

E
m

P

I
t
r
m
e

Take the DFT of each trace. 

For each frequency… 

     Form the complex-valued Hankel matrix A from the 
     DFT value of each trace. 

     Calculate the partial sum )(AkF  for some small value of k. 

     Average along the anti-diagonals of )(AkF  to recover the 
     Hankel structure. Call this matrix ).(AkH  

     Replace the trace DFT values with the )(AkH  values. 

Take the inverse DFT of each trace. 
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his method was first suggested by Cadzow (1988) for spectral 
nalysis problems, and is well known to the Nuclear Magnetic 
esonance (NMR) community. Cadzow actually recommended 

terating between the calculation of the partial sum and averaging 
teps. I have dispensed with it here because it increases the cost 
ithout delivering any apparent improvement for this application. 

ther f-x noise suppression schemes also use eigen methods. 
wo examples are spectral matrix filtering (Gounan et al, 1998), 
hich is a frequency-domain version of the K-L transform, and the 

mprovements to f-x prediction filtering suggested by Harris and 
hite (1997). Unlike these, however, our method does not work 

rom a covariance matrix, nor does it extract a prediction operator. 
ore similar to our method is the eigenimage noise suppression 
roposed by Ulrych et al (1988.) Although not described in detail, 

t is (apparently) in the t-x domain and probably does not give 
atisfactory results for dipping data. 

he amount of attenuated noise can be increased by increasing n 
nd most importantly decreasing k. By doing so, however, we also 

ncrease the chance of distorting the coherent signal. In practise 
ypical values of k are 1 (harsh), 2 (strong), and 3 (moderate). 

xactness Property: If a noiseless seismic section contains no 
ore than k dips then .)( AA =kH   

roof: Stephenson (1988). 

n other words, eigen filtering does nothing to noiseless data when 
he number of dips is less than or equal to k (Figure 1). This 
esults from the fact that under these condiitions matrix A  has at 
ost rank k. The exactness property means we can consider 
igen filtering even for structured data.  
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Figure 1:  The exactness property. Eigen filtering is carried 
out with increasing values of  k. Filtering with k = 3 does 

nothing since it equals the number of distinct dips. 

Efficiency 
The method as described is about ten times slower than f-x 
prediction filtering. It can, however, be sped up using the same 
methods as f-xy eigen filtering (Trickett, 2002.) In particular, 
estimating )(AkF  using double-truncated SVD is about three 
times faster than our original method with little or no difference in 
results. 

There is an additional optimization not available to f-xy eigen 
filtering. The computation of )(AkF , no matter which method is 
used, involves the repeated calculation of Av  for different values 
of vector .v This can be made efficient using a strategy known as 
“embedding in a circulant matrix” which exploits the Hankel 
structure of A and the Fast Fourier Transform (Luk and Qiao, 
2000.) Regrettably it is only worthwhile when n > 30, which is 
usually larger than our spatial design gate. 

Signal Preservation vs. Noise Suppression 
The goal is to preserve as much signal as possible while 
removing as much noise as possible. With artificial data examples 
we can quantify these ideas because we know both the signal 
and noise. Suppose }{ iF is the set of filtered (that is, noise 
suppressed) samples for all traces, }{ iS is the set of signal 
samples for all traces, and }{ iN is the set of noise samples for all 
traces. One measure of the percentage of signal preservation is 
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100% means perfect signal preservation. 0% means there is no 
correlation between the result and the signal. Similarly a measure 
of the percentage of noise removed is 
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When NR = 100% the filtered data exactly matches the signal, 
meaning we have removed all noise. When NR = 0% the filtering 
has made no improvement to the noise level. 

Figure 2 compares f-x eigen filtering against f-x projection 
(Soubaras, 1994) and f-x prediction (Canales, 1984) filtering on 
an artificial data set. Figure 3 charts the amount of signal 
preservation and noise removal in the same example. Eigen 

filtering matches up well with projection filtering, while prediction 
filtering gives the worst results. 

Figure 2:  F-x eigen, projection, and prediction filtering on 
noisy artificial data. Eigen and projection filtering both 

show artifacts, although this does not tend to be a 
problem with real data.  

Figure 3:  Estimated signal preservation vs. noise 
removal for Figure 2. E = eigen, J = projection, D = 

prediction . The top right hand corner of the graph is 
optimum. 

Data Results and Conclusions 
Figure 4 compares various filtering methods on a real structured 
data set. With k = 2 eigen filtering is comparable to projection 
filtering in this example. With k = 3 it is comparable to prediction 
(although it removes much less energy.) One of the advantages of 
eigen filtering is that by adjusting the single parameter k it can be 
tailored to almost any level of noise suppression.  

Noise suppression along constant-frequency slices can be 
considered a type of spectral line analysis. The acoustics and 
NMR communities have developed a wealth of signal processing 
algorithms in this area. The geophysics community should actively 
mine these algorithms. 
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Figure 4:  Noise suppression on real data using eigen, projection, and prediction filters. By adjusting k, eigen filtering can be 
tailored to almost any level of noise suppression.
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