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Abstract—This study concerns parameterization and sub-
sequent subtraction of the fast decaying signals of macro-
molecules from in vivo MRS signals of tissue metabolites of
interest. The parameterization is done with a State Space
approach (HSVD) based on singular value decomposition.
The method is tested with a simulated non-exponentially
damped macromolecule signal and an exponentially damped
metabolite signal. and is compared with mere omission of
initial samples. Exact analytic expressions of the macro-
molecule signal are derived in both the time domain and the
frequency domain.
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I. I NTRODUCTION

A. Magnetic Resonance Information

Non-invasivein vivo detection and quantitation of tis-
sue metabolites plays an increasingly important role in
medicine. A promising technique for this task is Mag-
netic Resonance Spectroscopy (MRS) [1]. However, the
signal-to-noise ratio (SNR) of a clinical MRS signal is of-
ten low which in turn demands the utmost from the quanti-
tation process. The final stage of this quantitation consists
of nonlinear least-squares fitting of an appropriate model
function [2] to the MRS signal [3].

Until today, a physical model function capable of de-
scribing all details of anin vivo MRS signal is not avail-
able. Rather, the capabilities of MRS scanners improve
unabated and ever more details can be detected. In order
to cope, the MRS-modelling community needs to contin-
ually update its knowledge of scanners. Another aspect is
the need to reduce the measurement time which hampers
improvement of the SNR. Ultimately, the best response
to these aspects is to invoke as much prior knowledge as
one can get about tissue properties, tissue metabolites and
MRS-signals emanating from them [4,5]. The ensuing pre-
cision of the quantitation can be obtained from the Cramér-
Rao lower bounds (CRB’s) [2,6–8].

The present paper concerns a way to handle that part
of the MRS signal for which one presently has no model
function. The next paragraph provides some information
about this problem category.

The (spectral) MRS-frequency of a nucleus depends on
the spatial orientation of its host molecule in the living
tissue. The faster the host molecule tumbles in its sur-
roundings, the more the orientation-dependent contribu-
tion to the MRS-frequency is averaged out. Big molecules
are less mobile than small ones. They are constrained to
certain orientations. These orientations are randomly dis-
tributed over the tissue. It follows that an ensemble of
large, less mobile, molecules in living tissue contributes
a broad MRS-spectrum – also referred to as ‘background’
– that usually overlaps with the wanted spectrum of mo-
bile tissue metabolites. Knowledge to properly model this
mechanism is still incomplete. This is the heart of the
problem.

B. Existing Approaches

Pending comprehensive physical modelling of the men-
tioned motion effects, alternative methods are being de-
vised for coping with the less mobile molecules, which are
also indicated by ‘macromolecules’. See,e.g., [9–11] and
references therein. Stanley and Pettegrew [9] addressed
the problem in the time domain which, in the case of
MRS, equals the measurement domain. They exploited
the fact that in the time domain, broad spectral features
such as mentioned above are strongly damped sinusoids
[12]: The less mobile a molecule, the quicker its time-
domain signal ‘decays into the measurement noise’. As a
consequence, mere omission of a sufficient number of ini-
tial samples in the time-domain model fit could solve their
problem in a natural fashion. Seegeret al. [10] separated
the contributions of mobile and less mobile molecules dur-
ing the actual measurement process, using a Magnetic Res-
onance technique called ‘inversion-recovery’ which can
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not be explained here with a few words. Schubertet al.
[11] used non-parametric background-characterization in
the frequency domain.

C. Present Approach

In the present study, we address the problem by applying
a State Space Approach devised by Kunget al. [13] and
described in detail by Rao and Arun [14]. See also Ref.
[15]. In MRS, the method is indicated by HSVD where
H stands for a Hankel matrix formed from the sampled
signal [12, 16]. HSVD models in terms of exponentially
damped sinusoids and is used successfully for removing
the signal of water molecules, omnipresent in living tis-
sue. Note that water molecules are small and mobile;
hence their spectrum is relatively narrow. In addition, its
peak-frequency usually does not coincide with those of the
tissue metabolites. Rather, the water spectrum buries the
metabolite spectrum in its flanks. Seee.g [17, 18] for de-
tails about water- (or solvent-) suppression. The difference
with macromolecule-suppression, addressed in the present
study, is that the spectrum of macromolecules is broad and
entirely overlaps that of the metabolites of interest.

D. Scope of Paper

This paper is set up as follows. Sec. II describes how we
simulate a signal representing a background – or macro-
molecule – using analytical formulae. In Sec. III, we
parameterize the background by means of HSVD (State
Space approach), for various levels of added Gaussian
noise. In Sec. IV, we superimpose a metabolite signal
on the background signal. The sum is parameterized with
HSVD, which enables subsequent separation of the two.
The metabolite signal thus cleaned is finally quantitated
with nonlinear least-squares model fitting. Conclusions
are given in Sec. V.

II. BACKGROUND SIGNAL

A. Introduction

In this study, background signals are composed from
four elementary shapes (≥ 0). Expressed in the frequency
domain, these are 1) right-angled triangle, 2) rectangle, 3)
the positive half of an ellipse, 4) one period of a cosine,
augmented with unity. See Fig. 1. For presentation, the
vertical scales have been adjusted such that the heights are
equal. The angular frequency boundsωb of the shapes
were chosen equal too, but in practice they are set inde-
pendendently, according to need.

Shifting of a shape overωs is done by multiplying the
corresponding time domain signal byexp(iωst), where
i =

√
(−1). Broadening of a shape, in turn, is done by

multiplying in the corresponding time domain signal by
e.g.exp[−αt− (βt)2] or some other damping function.

In practice, we normalize the area of a shape to

−π 0 ωb π

Right-Angled Triangle

−π −ωb 0 ωb π

Rectangle

−π −ωb 0 ωb π

Ellipse

−π −ωb 0 ωb π

Cosine

Fig. 1. Frequency-domain presentation of the four elemen-
tary shapes used for designing background spectra. Clock-wise,
starting upper left: right-angled triangle, rectangle, ellipse, co-
sine. See also the formulae in the text. The triangle can be
reflected with respect toω = 0 by changing the sign ofωb.

unity. Consequently, the corresponding time-domain sig-
nal sshape equals one at timet = 0, as follows from sub-
stituting the latter value in the Fourier transform formula
[19].

sshape(t) =

∞∫
−∞

shape(ω) eiωtdω , (1)

where the angular frequencyω equals2π times the fre-
quencyν.

For the sake of simplicity, only the signal fort ≥ 0 is
treated. In MR jargon, this assumption implies that one
deals with so-called ‘free-induction decays’ or with the
right-hand side of so-called ‘echoes’. Should one equate
the signal fort < 0 to zero, then the spectral shapes would
become complex-valued, as follows from the Fourier rela-
tion

shape(ω) =
1
2π

∞∫
0

sshape(t) e−iωtdt . (2)

In the following sections, we consider only the real-
valued parts of spectral shapes and ignore the signals for
t < 0. This does not impair interpretation of the results.

Note our use of the continuous Fourier transform –
Eqs. (1,2) – rather than its discrete approximation. This
makes the relation between signal and spectrum exact and
thus avoids a source of error in future comparisons of time
and frequency domain procedures for background han-
dling.
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B. Right-angled Triangle

B.1 Frequency domain

Forω between 0 andωb, the spectral shape is

triangle(ωb, ω) =
2
|ωb|

(
1− ω

ωb

)
, (3)

and zero elsewhere.ωb can be chosen between−π andπ.

B.2 Time domain

The corresponding signals in the time domain is

striangle(ωb, t) =
2

(ωbt)2
(
1 + iωbt− eiωbt

)
. (4)

C. Rectangle

C.1 Frequency domain

For−ωb ≤ ω < ωb, the spectral shape is

rectangle(ωb, ω) =
2
ωb

, (5)

and zero elsewhere, whereas0 ≤ ωb ≤ π.

C.2 Time domain

The corresponding signals in the time domain is

srectangle(ωb, t) =
sin(ωbt)

ωbt

def= sinc(ωbt) . (6)

D. Ellipse

D.1 Frequency domain

For−ωb ≤ ω < ωb, the spectral shape is

ellipse(ωb, ω) =
2

ωbπ

√
1− ω2

ω2
b

, (7)

and zero elsewhere, whereas0 ≤ ωb ≤ π.

D.2 Time domain

The corresponding signals in the time domain is

sellipse(ωb, t) = 2
J1(ωbt)

ωbt
. (8)

Background

Trapezium

Cosine

Ellipse

Fig. 2. Spectrum of a simulated macromole signal – background
– using the four basic shapes shown in Fig. 1. First, a trapez-
ium was made from a rectangle and two right-angled triangles.
Next, an ellipse was added. Each was broadened and shifted by
multiplication in the time domain with an appropriate exponen-
tial exp[−αt− (βt)2 + iωt]. Finally, a series of five connected
cosines was added to produce undulations. The phase of the
cosines was rotated by90 deg to augment the complexity.

E. Cosine

E.1 Frequency domain

For−ωb ≤ ω < ωb, the spectral shape is

cosine(ωb, ω) =
1

2ωb

(
1 + cos(

ω

ωb
t)

)
, (9)

and zero elsewhere, whereas0 ≤ ωb ≤ π.

E.2 Time domain

The corresponding signals in the time domain is

scosine(ωb, t) = sinc(ωbt) +
0.5 sinc(ωbt + π) + 0.5 sinc(ωbt− π), (10)

where the sinc function has been defined in Eq. (6).

F. Composition of a Background Signal

In this Section, we compose a background signal from
the basic shapes introduced above. The background sig-
nal should be representative of a macromolecule signal.
See [10] for examples of macromolecule signals of1H ,
and [9] for those of31P. The former possess more struc-
ture than the latter. This study aims at the former.

Although macromolecule signals may have many forms,
we restrict ourselves to the one shown in Fig. 2. Its com-
position is described in the caption. In the frequency do-
main, it consists of two broad features – trapezium and
ellipse – plus an undulating structure made up of five adja-
cent cosines. Spectral discontinuities have been removed
by an extra multiplicative decay term in the time domain.
Many alternative compositions are conceivable.
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Fig. 3. Singular values ofL=512 byM=513 Hankel matrices
formed from the signals corresponding to the trapezium, ellipse,
and cosine-series, and their sum, shown in Fig. 1, for one level
of added noise.N = 1024.

III. PARAMETERIZATION OF BACKGROUND PLUS

NOISE

A. State space modelling by HSVD

In HSVD, which is a State Space approach, the sig-
nal is modelled as a sum of exponentially damped sinu-
soids [12–16, 20]. The procedure is as follows. First,
one forms anL by M Hankel matrixH from the time-
domain signals, sampled at regular intervalst = n∆t,
with n = 0, 1, . . . , N − 1; L ≤ M . When all samples
are used, one hasL + M = N + 1; depending on the
signal-to-noise ratio, omitting the tail of the signal may be
beneficial. Usually,H is chosen approximately square.

Next, H is subjected to Singular Value Decomposition
(SVD)

H = UΛV † , (11)

whereU is the left singular-vector matrix,Λ the diagonal
singular-value matrix,V the right singular-vector matrix,
and† denotes Hermitian conjugation. If the signal consists
of K exactly exponentially damped sinusoids and is not
corrupted by noise, then there are exactlyK non-zero sin-
gular valuesλ(k), k = 1, 2, . . . ,K.

If the damping is non-exponential, as is the case for the
signals given inEqs. (4,6,8,10), then all singular values,
λ(k), k = 1, 2, . . . , L, are usually non-zero [15]. In other
words, many exponentially damped sinusoids are needed
to model a non-exponentially damped sinusoid. When

noise is added to the signal, all singular values become
non-zero too. Examples of this are shown below.

As for the parameters of the exponentially damped si-
nusoids that model a signals(n), n = 0, 1, . . . , N − 1,
according to

s(n) =
Kmax∑
k=1

cke
[(−αk+iωk)n∆t+iφk] , (12)

HSVD first estimates the angular frequenciesωk and expo-
nential damping factorsαk from U , and subsequently esti-
mates the amplitudesck and phasesφk of the correspond-
ing sinusoids by a linear least-squares fit tos [12–16, 20].
The maximum number of sinusoidsKmax deemed neces-
sary for fitting is discussed in the next Subsection.
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Fig. 4. Singular values of anL=512 byM=513 Hankel matrix
formed from the signal corresponding to the background spec-
trum shown in Fig. 1, for five levels of added noise.N = 1024.
Reduction ofL andM by a factor of four, using only the first
L + M − 1 samples, reduces the effect of noise significantly.

B. HSVD Modelling of a Background Signal

B.1 Preliminaries

Fig. 1 showed three individual shapes and the back-
ground composed from them. In this Subsection, we apply
SVD to Hankel matrices formed from the corresponding
signals with various amount of added Gaussian noise. Fig.
3 shows the singular values for the signals of the individual
shapes and their sum,i.e. the background. The magnitudes
of the signals att = 0 are|s(0)| = 200.01, 199.01, 499.2,
729.2 (in arbitrary units) for trapezium, ellipse, cosine, and
background, respectively.

It can be seen in Fig. 3 that each shape needs many sin-
gular values for proper modelling in terms exponentially
damped sinuoids. The meaning of ‘proper’ is of course re-
lated to the noise level. To illustrate this, we plotted the
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singular values of a Hankel matrix made up of Gaussian
noise with standard deviationσnoise = 0.01; see dashed
line. If, at a certain indexk, the singular valueλ(k) of
the background signal drops below that dashed line, then
at leastk exponentially damped sinusoids are needed for
modelling.

For further illustration, Fig. 4 shows the singular val-
ues of the background for five different levels of added
Gaussian noise, and using all 1024 samples. It can be seen
that atσnoise = 0.01, at least 20 singular values would be
needed for proper modelling, whereas atσnoise = 10, this
number drops to at least 5.

B.2 Optimal background modelling

As already said in Sec. I-A, the signal from a broad
background decays fast and is therefore relatively short-
lived. The number of samples used for modelling should
be adapted accordingly. If too many samples are used,
noise reduces the precision. Reduction ofL and M by
a factor of four, using only the firstL + M − 1 samples,
alleviates the effect of noise significantly. On the other
hand, using too few samples limits the modelling space.
Thus, the task is to find optimal values of the State Space
(HSVD) parametersL, M , and Kmax at a given noise
level. In the present application, optimality pertains to
minimizing the error of metabolite quantitationfollowing
subtraction of the parameterized background signal. The
latter is addressed in the next Section.

IV. QUANTITATION OF SIGNALS SUPERIMPOSED ON

BACKGROUND PLUS NOISE

A. Considerations

Once the background has been parameterized for certain
values ofL, M , andKmax, it can be subtracted from the
signal. In view of unavoidable parameterization errors, the
subtraction should be applied only to a minimal number of
initial samples: There is no need to subtract background
when its magnitude is smaller than the noise. On the other
hand, if the background is not negligible with respect to
the metabolite contribution to a sample, it should be sub-
tracted.

Another aspect is how many and which of theKmax ex-
ponentially damped sinusoids to subtract. Subtraction of
sinusoids with damping less than twice that of the metabo-
lite components was avoided.

B. Results

The results obtained so far are compiled in Table I and
Figs. 5, 6. For the sake of comparison, the simulated back-

ground was handled in four different ways: i) Background
put to zero, no initial samples omitted. ii) Background put
to zero, 45 initial samples omitted. iii) Non-zero back-
ground, handled by mere omission of 45 initial samples.
iv) Non-zero background, 20 initial samples corrected by
State Space approach HSVD.

In iv), we have investigated many values of the ‘proce-
dure variables’ mentioned in Sec. IV-A. Here we present
results forL = 125, M = 126, Kmax = 35. All back-
ground components with damping≤ 20 Hz – twice the
damping value of the doublet components – were ignored;
as a result, typically 13 to 23 of theKmax = 35 compo-
nents were subtracted. See Fig. 5 for an example. The total
number of samples in each signal wasN = 1024.

Once the signal has been stripped of the background, the
metabolites are quantified by the nonlinear least-squares
time-domain fit programme AMARES [16]. See Table I.
The true value of the estimated metabolite amplitudes
is 5.0. All calculations were performed with the freely
availablein vivo MRS signal processing package jMRUI
equipped with a Java-based graphical user interface [21].

Finally, all simulations were carried out for three noise
levels, namelyσnoise = 0.5, 1.0, 2.0.

TABLE I
Results of a Monte Carlo experiment using 128 different noise
realizations for each row of the Table. Averages of nonlinear

least-squares time-domain estimates of metabolite signal
amplitudesc−385, c90, c265 are given, along with their standard
deviationsσc, after handling of the background according to i,
ii, iii, iv, described in Sec. IV-B. The true amplitudes are 5.0.

See also graphical presentation in Fig. 6.

σnoise # c−385 σc c90 σc c265 σc

i 5.00 0.06 5.00 0.06 5.00 0.06
0.5 ii 5.02 0.23 5.00 0.20 5.02 0.23

iii 5.01 0.23 5.03 0.21 5.02 0.23
iv 5.03 0.11 4.99 0.33 5.01 0.19
i 5.01 0.13 4.99 0.12 5.00 0.12

1.0 ii 5.05 0.49 5.01 0.42 5.06 0.46
iii 5.04 0.49 5.05 0.42 5.06 0.46
iv 5.02 0.20 5.05 0.52 5.06 0.36
i 5.02 0.25 4.99 0.23 4.99 0.24

2.0 ii 5.21 1.23 5.09 0.86 5.19 0.98
iii 5.21 1.23 5.12 0.87 5.19 0.98
iv 5.05 0.40 4.98 1.13 5.31 0.87

C. Discussion
Judging from Fig. 5, background parameterization and

subsequent subtraction without using prior knowledge
works well. Table I, rows iii and iv for eachσnoise, reveals
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σnoise= 1.0

265 90 -385

Fig. 5. Background removal by HSVD. Bottom-right: Three metabolite doublets superimposed on the broad background shown in
Fig. 2. Middle-right: HSVD-parameterized background comprising 16 components. Upper-right: Difference between the previous
two, showing clearly the three metabolite doublets, at 265 Hz, 90 Hz, and -385 Hz. The amplitudes and damping factors of all
doublet components are 5.0 (in arbitrary units) and 10 Hz, respectively.
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Fig. 6. Graphical presentation of the results in Table I.

that the trade-off between bias and standard deviation can
yet be improved. This is important becausein vivo MRS
usually offers time for only one measurement. Rows i and
ii pertain to absence of background and therefore yield def-

inite lower bounds on the overall error.
Study of the Craḿer-Rao lower bounds (CRB’s), includ-

ing background estimation, for rows iv of Table I is highly
desirable [7]. But in absence of the true background model
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function – for in vivo MRS – this seems impossible. As
substitute, we plan calculation of the CRB’s using back-
ground modelling as shown in Fig. 5, along the lines of
Ref. [20].

V. CONCLUDING REMARKS

• The State Space approach HSVD automatically parame-
terizes complicated background signals. Fine-tuning is yet
to be finalized.
• Subtraction of a parameterized background signal sal-
vages the metabolite contribution to the initial samples.
This improves the quantitation of metabolites.
• In some cases, mere omission of initial samples yields
equally good quantitation of metabolites.
• We derived formulae for realistic, non-exponentially
damped,in vivo MRS background signals. Their exact
continuous Fourier transforms are given for future compar-
ison of time- and frequency-domain background-handling
methods.
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