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backbone structure with the RET chromophore is pre-
sented in Figure 3. The structure discussed in this review
is that of the A chain in the crystal unit cell dimer.

As an integral membrane protein, Rho comprises
three topological domains: the extracellular surface, the
membrane-embedded domain, and the intracellular sur-
face. Because of the location of Rho in the disk membrane
of the rod outer segment, the extracellular domain is

sometimes referred to as intradiscal. The amino terminus
of Rho is extracellular and the carboxy terminus is intra-
cellular. The membrane-embedded domain consists of
seven transmembrane segments (H1 to H7), which are
predominantly a-helical. The helical segments form a
compact bundle that contains the binding site for the RET
chromophore.

B. Extracellular Surface Domain of Rhodopsin

1. Crystal structure of the extracellular

surface domain

The extracellular surface domain of Rho comprises
the amino-terminal tail (NT) and three interhelical loops
(E1, E2, and E3) (Fig. 1). There is significant secondary
structure in the extracellular domain and several intra-
and interdomain interactions. The extracellular domain
essentially provides a stable foundation from which the
transmembrane segments extend (Fig. 3).

NT extends from the amino terminus to Pro-34 and
contains five distorted strands (b1, b2, S3, S4, and S5). It
is located in the crystal structure just outside of loop E3,
with the side chain of Asn-2 close to that of Asp-282 in E3.
The NT domain also seems to be in contact with the
E3 loop in the area near Pro-12. The short segment from
Gly-3 to Pro-12 forms the first two antiparallel strands in
the structure (b1 and b2), which seem to lie roughly
parallel to the plane of the membrane. The segment
Phe-13 to Pro-34 forms strands S3 to S5, and they appear
almost as a right triangle. S3 runs just outside E3 and
parallel to the long axis of the molecule. S4 connects the
dipeptide Ser-14/Asn-15 in NT with Pro-23, which is lo-
cated close to E1. S5 (Pro-27 to Pro-34) runs along the
surface of the membrane covering the extracellular space
between H1 and H2. NT is glycosylated at Asn-2 and
Asn-15. The oligosaccharides extend away from the ex-
tracellular domain and do not seem to interact with any
part of the molecule.

In addition to the NT segment, the extracellular sur-
face domain comprises three extracellular interhelical
loops: loop E1 (amino acids 101–106) connects H2 and
H3, loop E2 (amino acids 174–199) connects H4 and H5,
and loop E3 (amino acids 278–285) connects H6 and H7.
The E1 loop runs along the periphery of Rho. Tyr-102
interacts with Pro-23 and Gln-28 to maintain proper ori-
entation between E1 and NT. The E2 loop is extremely
interesting in that it is folded deeply into the core of the
membrane-embedded region of Rho. In addition to con-
tacts with the RET chromophore, E2 forms extensive
contacts with other extracellular regions. Gly-174 and
Met-183 cross the membrane surface. The Met-183 side
chain points toward a hydrophobic pocket around H1,
while the extended side chain of Gln-184 is surrounded by
relatively hydrophilic groups and a water molecule lo-

FIG. 3. A molecular graphics ribbon diagram of Rho prepared from
the 2.8-Å crystal structure coordinates. The amino terminus (N) and
extracellular (or intradiscal) surface is toward the top of the figure, and
the carboxy terminus (C) and intracellular (or cytoplasmic) surface is
toward the bottom. Seven transmembrane segments (H1 to H7), which
are characteristic of G protein-coupled receptors, are shown. They are
color coded according to the rainbow spectrum starting with blue and
ending with red. The RET chromophore is shown in magenta, and the
side chains of Lys-296 and Glu-113 are shown to highlight the Schiff base
region of the RET binding pocket. The Schiff base imine nitrogen is
shown in deep blue. The Rho crystal structure does not resolve a small
segment of the C3 loop linking H5 and H6 or a longer segment of the
carboxy-terminal tail distal to H8. The transmembrane segments are
tilted with respect to the presumed plane of the membrane bilayer. They
are generally a-helical, but they contain significant kinks and irregular-
ities as described in text. The figures were produced using the program
MOLSCRIPT (130) and represent the A chain of the published crystal
structure coordinates (194).
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Abstract

This thesis deals with developments and applications of new solid-state NMR
experiments on rotating solids, with particular attention to biological systems for
which NMR spectroscopy can be an invaluable analysis tool, in conjunction with
other techniques. After an introduction to NMR spectroscopy and to some basic
experiments, a rigorous description of symmetry-based pulse sequences is given.

The emphasis is put on applications of such sequences for the establishment
of an accurate methodology to measure bond lengths between carbon pairs. The
technique is demonstrated on model systems of known structure and then applied
to the investigation of the chemical bonding in the membrane protein rhodopsin,
in which the retinylidene chromophore is selectively labelled for this purpose. The
experimental results on the dark state of rhodopsin are compared with the latest
theoretical models and a possible mechanism for the conformation change after
light absorption is proposed.

A new method for excitation of triple-quantum coherences in multiply-labelled
13C-spin systems under magic angle spinning is presented.

i





Contents

1 Why Solid-State NMR ? 1

1.1 What is NMR ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Nuclear Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Overview over Spin Interactions . . . . . . . . . . . . . . . . . . . . 3

1.4 NMR of Powders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Sensitivity and Resolution Enhancement . . . . . . . . . . . . . . . 5

1.6 Recoupling of Spin Interactions . . . . . . . . . . . . . . . . . . . . 5

1.7 NMR in Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The Tools of Solid State NMR 10

2.1 Definition of Angular Momentum Operators . . . . . . . . . . . . . 10

2.2 Wigner Matrices and Euler Angles . . . . . . . . . . . . . . . . . . 11

2.3 Tensors and Spherical Tensors . . . . . . . . . . . . . . . . . . . . 12

2.4 Secular Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Spin Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Reference Frame Transformations . . . . . . . . . . . . . . . . . . . 15

2.7 The Zeeman Interaction . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Interaction with a Radio-Frequency Field . . . . . . . . . . . . . . . 18

2.9 Chemical Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.10 J-coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.11 Through-Space Dipolar Coupling . . . . . . . . . . . . . . . . . . . 21

2.12 Quadrupolar Interaction . . . . . . . . . . . . . . . . . . . . . . . . 22

2.13 Experimental Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.13.1 Magic-Angle-Spinning . . . . . . . . . . . . . . . . . . . . . 22

2.13.2 Rotational Resonance . . . . . . . . . . . . . . . . . . . . . . 23

2.13.3 Heteronuclear Spin Decoupling . . . . . . . . . . . . . . . . 25

2.13.4 Homonuclear Spin Decoupling . . . . . . . . . . . . . . . . . 26

2.13.5 Cross Polarization . . . . . . . . . . . . . . . . . . . . . . . 26

2.14 Theoretical Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.14.1 Density Operator . . . . . . . . . . . . . . . . . . . . . . . . 27

2.14.2 Average Hamiltonian Theory . . . . . . . . . . . . . . . . . 28

2.14.3 Other Effective Hamiltonian Theories . . . . . . . . . . . . . 29

2.15 Computer Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.15.1 Powder Averaging . . . . . . . . . . . . . . . . . . . . . . . 30

2.15.2 The Direct Method . . . . . . . . . . . . . . . . . . . . . . . 31

iii



Contents

3 Symmetry-Based Recoupling Sequences 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Definitions for Symmetry-Based Sequences . . . . . . . . . . . . . . 33

3.3 CNν
n-sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 RNν
n-sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Time-Phase Relationship . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Second-Order Average Hamiltonian . . . . . . . . . . . . . . . . . . 39

3.7 Supercycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7.1 π-supercycles . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7.2 ν-inverted supercycles . . . . . . . . . . . . . . . . . . . . . 42

3.8 Field Imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8.1 RF Field Inhomogeneity . . . . . . . . . . . . . . . . . . . . 43

3.8.2 RF Transients . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8.3 Phase Modulation Transients . . . . . . . . . . . . . . . . . 47

3.8.4 First Order Average Hamiltonian in a Model Case . . . . . . 49

4 Homonuclear Dipolar Recoupling of 13C2 Pairs and Applications 52

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Pulse Sequence for Distance Measurement . . . . . . . . . . . . . . 53

4.3 Distance Measurements on Model Systems . . . . . . . . . . . . . . 56

4.4 Dipolar Recoupling on Oriented Samples . . . . . . . . . . . . . . . 59

4.5 Torsion Angle Measurements . . . . . . . . . . . . . . . . . . . . . . 61

5 NMR on Membrane Proteins 63

5.1 Membrane Proteins and G Protein Coupled Receptors . . . . . . . . 63

5.2 Rhodopsin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Data about Rhodopsin . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Optical Studies and Identification of Photointermediates . . 69

5.3.2 Diffraction Data . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.3 Vibrational Data . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.4 Previous NMR Data . . . . . . . . . . . . . . . . . . . . . . 74

5.3.5 Quantum Mechanical Calculations . . . . . . . . . . . . . . 75

5.4 Distance Measurements on Rhodopsin . . . . . . . . . . . . . . . . 76

5.4.1 Sample Preparation and Technical Details . . . . . . . . . . 77

5.4.2 NMR Measurements on Rhodopsins . . . . . . . . . . . . . . 78

5.4.3 Vibrational Corrections . . . . . . . . . . . . . . . . . . . . . 79

5.4.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.5 NMR-Based Model . . . . . . . . . . . . . . . . . . . . . . . 83

6 Triple-Quantum 13C Coherence 87

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Pulse Sequence for TQ Excitation . . . . . . . . . . . . . . . . . . . 87

6.2.1 Phase Cycling . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Triple-Quantum Coherence on Model Systems . . . . . . . . . . . . 95

iv



Contents

7 Concluding Remarks 98
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.2 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A Operators 102
A.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.2 Dirac Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.3 Eigenvalue Problems and Observables . . . . . . . . . . . . . . . . . 103
A.4 Single-Transition Operators . . . . . . . . . . . . . . . . . . . . . . 104

B More on tensors and rotations 105
B.1 Wigner Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.2 Spherical Representation of Tensors . . . . . . . . . . . . . . . . . . 105
B.3 Spin-1/2 Angular Momentum Operators . . . . . . . . . . . . . . . 106

C Included Papers 117

v



PAGINA VUOTA



Contents

List of Papers

I Symmetry Principles for the Design of Radiofrequency Pulse Sequences in
the Nuclear Magnetic Resonance of Rotating Solids,
M. Carravetta, M. Edén, A. Brinkmann, X. Zhao and M. H. Levitt
Chem. Phys. Lett. 321, 205 (2000)

II Estimation of Carbon-Carbon Bond Lengths and Medium-Range Internu-
clear Distances by Solid-State Nuclear Magnetic Resonance
M. Carravetta, M. Edén, O. G. Johannessen, H. Luthman, P. J. E. Verdegem,
J. Lugtenburg, A. Sebald and M. H. Levitt
J. Am. Chem. Soc. 123, 10628 (2001)

III Towards dipolar recoupling in macroscopically oriented samples of membrane
proteins rotating at the magic angle
C. Glaubitz, M. Carravetta, M. Edén and M. H. Levitt
in ”Perspectives on Solid State NMR in Biology”,
S. Kiihne and H. J. M. de Groot, eds., Kluwer, Dordrecht, The Netherlands,
pages 83-92 (2001).

IV Enhanced Triple-Quantum Excitation in Solid-State MAS NMR
M. Carravetta, J. Schmedt auf der Günne and M. H. Levitt
submitted to J. Magn. Res.

V Bond distance measurements on bovine rhodopsin via solid state MAS NMR
M. Carravetta, X. Zhao, S. Kiihne, M. Verhoeven, P. J. E. Verdegem,
H. Luthman, P. Bovee-Geurts, J. Lugtenburg, H. J. M. de Groot and M. H.
Levitt
in manuscript

The papers are reproduced with permission from the publishers: Elsevier Science
B. V., Copyright 2000 (Paper I), The American Chemical Society, Copyright 2001
(Paper II), Kluwer Academic Press, Copyright 2001 (Paper III).

vii



PAGINA VUOTA



Chapter 1

Why Solid-State NMR ?

1.1 What is NMR ?

Nuclear magnetic resonance (NMR) is a spectroscopy that involves the interac-
tion between certain nuclei and magnetic fields. Normally, there is a strong, static
magnetic field that splits the energy levels and a modulated magnetic field capable
to induce transitions between these levels and generate and observable response.
NMR spectroscopy is a powerful technique for investigating structural and dynam-
ical properties of molecules in a variety of physical states. NMR was developed as
a technique for studying the magnetic properties of nuclei and their interactions
and, as such, was mainly used by physicists. Nonetheless, a widespread of NMR
in several fields of science and medicine took place due to the strong correlation
between the NMR response and the environment surrounding the nuclei, i.e, the
molecular bonds, proximities between specially chosen groups and the lattice.

In the liquid state, NMR is used as a standard tool in the research and in-
dustry world and is now well established. The information provided by magnetic
resonance in different physical states are quite different and sometimes comple-
mentary. In the general case, structure investigation is supported by data coming
from other methodologies.

All spectroscopies involve an interaction between electromagnetic radiation and
matter. To be effective, the energy of the radiation must match the energy dif-
ference between two energy levels within the matter and this is known as the
resonance condition. NMR is rather special, since the observed spectra can be
manipulated to accentuate some features and suppress others by a proper sequence
of low-energy radio-frequency (rf) pulses, a pulse sequence, while the spin system
under investigation can often be considered as a perturbation. The structure of
the internal energy levels depends upon the physical state and the chemical en-
vironment and makes NMR very useful for chemical investigation. In NMR the
energy levels can also depend upon the applied rf field, as for the case of spin
decoupling.

The form of the NMR Hamiltonian (energy operator) for model systems can
often be simplified enough to allow analytical calculation at least up to first order,
giving insight in what is happening very clearly. On the other hand, numerical
simulation is a invaluable tool for developing new sequences and in many cases
it is essential for investigating complex issues. Of course no NMR spectroscopist

1



1.2. Nuclear Spin

Table 1.1: a selection of NMR active nuclei and their properties

Species Nuclear Spin Nat. Abundance γI (106 rad T−1s−1)
1H 1/2 99.985 267.522
13C 1/2 1.1 67.283
15N 1/2 0.366 -27.126
31P 1/2 100 108.3
19F 1/2 100 251.665
79Br 3/2 50.69 67.023
2H 1 0.015 41.063
14N 1 99.634 19.338
17O 5/2 0.038 -36.264

expects to get the final answer just from a simulation. In many real cases there can
still be discrepancy between simulations and experiments because the real system
is frequently too idealized and oversimplified in the computer analysis, i.e, inter-
molecular interactions, non-ideal decoupling and relaxation are often neglected.
Moreover, the precise structure is often unknown and the assumptions made have
to be tested and verified experimentally.

This thesis focuses on certain aspects of NMR applied to solid powders and
biomolecules with the aim of structural investigation of biologically relevant sam-
ples.

1.2 Nuclear Spin

From classical physics, we are familiar with the concepts of angular momentum
and magnetic moment. A charge carrier moving on a loop has both an orbital
angular momentum and a magnetic angular momentum associated with it, which
originates from its movement. In quantum mechanics there is an additional form
of angular momentum, known as spin angular momentum, which is not associated
with any motion in real space but it is an intrinsic property of fundamental particles
and has no macroscopic counterpart. The existence of the spin was first derived
theoretically for electrons: the spin angular momentum comes naturally out from
a relativistic treatment of the electrons using the Dirac equation and is at the
heart of modern quantum elecrodynamics.1

The building blocks of atoms, electrons and nucleons, all possess spin-1/2.
The overall nuclear spin results from a combination of all angular momentum
contributions from its components. It is quantized and the total spin quantum
number can be any integer or half-integer. In NMR, each nucleus is labelled
according to its nuclear spin, its natural abundance and its gyromagnetic ratio γI ,
which determines the resonance frequency of the nucleus I in an external static
magnetic field. The properties of some common nuclei are listed in Table 1.1 and
they are of direct impact for the absolute receptivity of each species. The nuclear
structure is rather complex. Even though a satisfactory model for the nucleus has

2



1.3. Overview over Spin Interactions

been developed, the potential function that appears in the nuclear Hamiltonian
makes the equations intractable by analytical means and so no closed expression
for the nuclear energies is available.2 This makes the prediction of the ground-state
energy levels, and therefore of the nuclear spin, rather challenging in the general
case and the deduction a priori of the nuclear spin may rely on the knowledge of
other nuclear properties. Nevertheless, it is an empirical fact that all nuclei with
an even number of protons and neutrons have spin 0 in their ground state. As far
as the NMR spectroscopist is concerned, the detailed structure of the nuclear levels
can be ignored and all excited states for stable nuclei are so far up in energy that
their population is negligible and they can not be reached under usual experimental
conditions.

The nuclei of interest in NMR spectroscopy all have at least one unpaired
proton and/or one unpaired neutron: in order for a nucleus to be NMR observable,
it must have a non-vanishing total spin. As a consequence, different isotopes can
differ completely in behavior from the NMR point of view. This is quite a unique
feature of NMR, which allows to easily distinguish certain classes of isotopomers,
which are hardly distinguishable from the chemical point of view in most cases.

1.3 Overview over Spin Interactions

A typical system of interest in NMR can seldom be described in terms of isolated
spins. A spin can interact with electric and magnetic fields.

The only electric interaction involves nuclei with spin greater than 1/2, which
possess an intrinsic quadrupole moment. The quadrupole moment can couple
with an external electric field gradient, giving rise to the so-called quadrupole
interaction. It is therefore dependent upon the symmetry around the nucleus. For
quadrupolar nuclei, this is often the dominant interaction.

For spins-1/2, all interactions are magnetic. Spin-1/2 interactions can be di-
vided into two groups: (i) external interaction, i.e., the magnetic field is created
from outside the sample; (ii) internal interaction, i.e., the magnetic field originates
from the sample itself.

In the first group we have the Zeeman term (Sect. 2.7), which accounts for the
splitting between spin energy levels in the presence of a strong, static field, and the
interaction with a transverse rf-field (Sect. 2.8), inducing transitions between such
levels and generating an observable response. Additionally, each spin experiences a
slightly different field depending upon its chemical environment and upon the way
that the surrounding electrons are affected by the external magnetic field. This
is known as the chemical shift (Sect. 2.9), as it reflects the electronic structure of
the molecules.

There are two forms of spin coupling. The scalar coupling (J-coupling, Sect. 2.10)
is mediated by the bonding electrons and is usually significant only for nuclei lying
a few bonds apart, at least in the case of non-conjugated systems. The direct cou-
pling (dipolar or though-space coupling, Sect. 2.11) is proportional to the product
of gyromagnetic ratios of the coupled spins and depends upon their distance as r−3.
This term can be very large between nuclei and unpaired electrons, affecting in
many ways the spin-system and its relaxation. Heteronuclear spin coupling terms

3



1.4. NMR of Powders

are important for the understanding of magnetization transfer between different
spin species.

The importance of different terms is very much dependent upon the nucleus
and the physical state of the sample. In isotropic liquids, quadrupolar and dipolar
couplings as well as the anisotropic parts of chemical shifts are averaged out due
to fast isotropic molecular motions. In anisotropic systems, such as liquid crystals
or solids, molecular motion is much reduced and so the spectrum has a struc-
ture which heavily depends upon these interactions and on the allowed molecular
motions.

1.4 NMR of Powders

There is a wide interest towards solid-state physics in many fields of research
involved with materials as ceramics, glasses, polymers and some biomolecules, to
mention a few. Solid-state NMR has always been popular between physicists,
while it has spread in the chemistry and biochemistry communities much later
than NMR in isotropic or partially oriented phases. This is probably due to the
very broad features of solid-state spectra of non-crystalline samples, which makes
the data interpretation a challenging task in many cases.

In NMR, the solid under investigation is often not a perfect crystal, but rather
a powder or a glass and as such is not suitable for diffraction studies, where the
current technology requires well shaped and medium sized crystals. On the one
hand, solid-state NMR does not suffer from this limitation, being quite flexible
for the structural analysis of powder samples. On the other hand, many NMR
experiments require isotopic labelling and sometimes the production of several
samples, labelled in different positions, while diffraction studies can provide the
entire information from one good crystal.

A crystalline powder is made up of millions of crystallites randomly oriented.
In such a system, the anisotropic part of the spin interactions (described by a
second-rank tensor) does not vanish and the spectrum arising from each crystallite
depends upon its own orientation with respect to the surroundings and the external
field.3,4

The overall spectrum is the sum of all these contributions and is generally very
broad, not easy to analyze and computationally heavy to simulate. NMR is in-
trinsically a low-sensitivity technique, in part because the acquired NMR signal is
proportional to the small population difference between energy levels, correspond-
ing to a small equilibrium magnetization (see Sect. 2.7). To compensate for this
limitation, NMR samples need to be much more massive than samples used in
other forms of spectroscopy in which the energy levels involved in the transitions
are several order of magnitude bigger, and so correspond to a greater population
difference. This limit is even more evident in solid-state NMR, where the signal
coming from different crystallites is spread over a wide spectral range, due to the
anisotropic nature of spin interactions.

In many ways, some biological solids are rather similar to powder samples and
most techniques developed for powders can be extended to them. The lack of
sensitivity in NMR is a serious limitation for biological samples, given that the

4



1.5. Sensitivity and Resolution Enhancement

portion of system which is to be investigated by NMR can be a tiny fraction of the
available sample, reducing the observed spin-system to just a fraction of a µmole.
As a consequence, much effort has been put into developing methods to increase
the resolution and the sensitivity in NMR.

1.5 Sensitivity and Resolution Enhancement

In anisotropic phases, an increase in resolution can be achieved by suppressing the
orientation dependence of spin interactions, as well as the interactions between
spins. In this way, every spin with a particular local environment would ideally
give an NMR signal at its isotropic chemical shift, in analogy with a spin-decoupled
liquid-state spectrum.

A uniform rotation of the solid sample about an axis at the magic angle to
the field, βm = tan−1

√
2, can be shown to remove the anisotropic effects due

to second-rank tensors if the spinning frequency exceeds in magnitude all the
anisotropic interactions. This is known as Magic-Angle-Spinning (MAS),5 as dis-
cussed in Sect 2.13.1. In reality, even state-of-the-art technology does not allow
this condition to be completely fulfilled, but a considerable resolution enhancement
is nevertheless observed. Other forms of spatial averaging have been exploited in
the case of quadrupolar nuclei in order to increase the resolution, as discussed in
Sect. 2.12.

While MAS is the result of a purely spatial averaging process, the spin Hamil-
tonian can also be manipulated to improve the resolution by using pulse sequences
which, for instance, decouple spins (see Sect 2.13.3) and which enhance the signal
by magnetization transfer between different spin species, often using the cross-
polarization (CP) method (see Sect 2.13.5).

It is important to stress that the sample rotation and the pulse sequences must
be analysed together since in some cases they interfere with each other.

1.6 Recoupling of Spin Interactions

A static spectrum is rich in information about the system under investigation
but such information is very difficult to extract due to the broad features of the
spectrum. On the other hand, fast MAS has an averaging effect over the anisotropic
interactions and a great deal of structural information is lost. The goal of many
solid-state NMR experiments is to re-introduce some spin interactions selectively,
while averaging out undesired terms.6–12 This is called recoupling. Chapter 3
describes the basis for developing symmetric, rotor-synchronized pulse sequences
which achieve this task to a first approximation.

One important application of recoupling techniques is homonuclear dipolar
recoupling. For a sample containing a pair of well-chosen, labelled, rare nuclei, it
is possible to get detailed information about the spin pair and its surroundings
while filtering out the signal from natural abundance nuclei of the same species
in the rest of the sample, using a so-called double-quantum (DQ) filter.13 In the
case of spins-1/2, the concept of spin coherence is connected to the existence of a

5



1.7. NMR in Biology

O
Figure 1.1: [11,12-13C2]-all-E-
retinal. The label positions
are marked by a solid circle

correlated state between a certain set of spins. In very loose terms, the coherence
order reflects directly the number and state of the correlated spins. For instance,
a DQ coherence can be made up of two spins such that each individual spin has
a random orientation with respect to the external field, but it has a preferential
orientation with respect to the other spin participating in the DQ state. A more
mathematical definition of the coherence order is given in Sect. 2.14.1. This feature
is quite important when dealing with biological samples. A demonstration of this
idea is given in Fig. 1.2 for a simple spin system, where the cross-polarization14,15

spectrum of [11,12-13C2]-all-E-retinal, diluted in a 10-fold excess of non enriched
all-E-retinal (Fig. 1.1), is compared with the corresponding DQ filtered signal.
Another application of recoupling sequences is given in Fig. 1.3. In this case the
dipole-dipole interaction between the labelled nuclei in [11,12-13C2]-all-E-retinal is
recoupled and the observed signals are modulated with a frequency which can be
related to the strength of the dipole-dipole coupling constant and, hence, to the
internuclear distance. The determination of 13C-13C bond length is one of the key
subjects of this thesis.

a

0−20 20
Frequency/ kHz

b

0−20 20
Frequency/ kHz

Figure 1.2: (a) 13C spectrum of 10%-[11,12-13C2]-all-E-retinal at 9.4 T and a spin-
ning frequency of ωr/2π=5.5 kHz. (b) Double quantum filtered 13C spectrum using
the pulse sequence R146

2 (see Paper II). Only the peaks from the 13C2 pairs are
visible.

1.7 NMR in Biology

The techniques briefly described in the previous paragraphs are essential tools for
working with many biologically-relevant samples in the solid-state. A thorough
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τexc /ms
0 0.5 1 1.5 2

Figure 1.3: 13C DQF spectra of [11,12-13C2]-all-E-retinal at a static magnetic field
of 9.4 T and ωr/2π=5.5 kHz as a function of DQ excitation time. The oscillation
reveals the dipole-dipole interaction between the 13C spins.

description of spin interactions will be given in the following chapter. For the
time being it suffices to stress that there is a noticeable wealth of information
within different spin interactions, in terms of the electronic environment (CS), the
geometry (DD) and orientation (anisotropic terms) of key fragments.

Some more insight into how NMR can be of help for studying biological system
can be found in recent reviews.16,16,17 As stressed already, the information provided
by NMR is related to the physical state of the system and by the mobility of
the molecules under investigation. Liquid-state NMR is widespread as a tool for
general investigation of structure and conformation of rather big systems (up to
approximately 30 kDa) with relatively low resolution, normally of the order of
Ångström (Å). Nowadays solid-state NMR is a competitive technique for studying
macromolecules, but it also provides localized information with higher precision
and this aspect will be emphasized in what follows.

The structural information obtained from liquid-state NMR studies are often
obtained from relaxation studies, for which the dipolar interaction is of great im-
portance and lead to distances and relative orientations (i.e., giving insight into
the protein secondary structure). The presence of paramagnetic centers within
the biosystem can increase the range of the techniques up to several tens of Å.
Therefore, liquid-state techniques can give a general overview about the molecular
structure, without defining clearly the details. The data obtained from NMR are
used together with simulations to get a series of optimized structures and the set
of structures with energy lower than a certain threshold is the final result, but it
is not easy to specify exactly the precision of these data. Roughly speaking, the

7
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best structures are superimposed and the structural variations provide a measure
of the uncertainty in the geometry.

NMR in anisotropic phases can provide geometrical information in a more di-
rect way. The anisotropy can be induced by dissolving the molecules of interest
in an orienting medium, like liquid crystals or micelles, and the extent of orien-
tation determines the range of information that can be extracted. Many recent
developments rely on the presence of very weak orienting media which allow for a
small portion of the residual dipolar couplings to be visible without degrading the
spectral resolution: this simplifies the spectral analysis by just allowing the largest
anisotropic interactions to be clearly visible and therefore reducing drastically the
number of parameters to be extracted.18,19

When applied to abundant nuclei, i.e., 31P, 19F or 1H, solid state NMR can give
insight into structure and proximities without much synthetic effort. As such, it
is an invaluable tool for materials science.

On the other hand, few examples of complete structural determination by solid-
state NMR of medium-sized organic samples (i.e., small peptides and so on) are so
far available using fully labelled samples (for instance, Refs. 20–22). Until recently,
such studies have required the synthesis of many different samples, specifically
labelled in key positions with 13C or 15N. For instance, Cα chemical shifts and
15N-1H couplings/15N chemical shifts are of invaluable importance in proteins since
they can be related to the backbone secondary structure.23,24

A completely different philosophy is behind other types of NMR studies, in
which solid-state NMR of biological molecules is used to answer very specific ques-
tions about the system, while the less-detailed background knowledge is obtained
from other methods. A good example of this is the investigation of chemical bond-
ing and atomic short-range interaction, for instance Van der Walls interactions,
hydrogen bonding, bond-length determinations, torsion angle measurements and
refinement of the hydrogen positions (which is only reliably provided by neutron
diffraction).

In the context of this thesis, we will focus on one particular class of biomolecules,
the trans-membrane G protein coupled receptors, for which solid-state NMR can
be of great use. After a general description of the functionality of these proteins, we
will shift our attention to one specimen of this class, rhodopsin, and demonstrate
how solid state NMR can aid the understanding of its function.

8
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Chapter 2

The Tools of Solid State NMR

To understand NMR in rotating solids, some introductory concepts about quantum
mechanics and angular momentum theory are necessary, together with some other
mathematical tools to treat the spin system evolution under general space-spin
rotations. More information about the operator formalism and the Dirac notation
are to be found in Appendix A.2.

2.1 Definition of Angular Momentum Operators

In classical physics, angular momentum is associated with the rotational properties
of a system and we want to understand the role of the angular momentum operator
in quantum mechanics in this respect.

Let R(n, θ) be a rotation operator by an angle θ about some direction n in the
three-dimensional space. When acting on the wavefunction ψ it will rotate it into
a new state ψ

′

, i.e.,

ψ
′

= R(n, θ)ψ (2.1)

The rotation operator is unitary by definition, so it can be expressed as

R(n, θ) = e−i S(n,θ) (2.2)

without loss of generality, with the only constraint that S(n, θ) is Hermitian. Let
J be the vector operator associated with the angular momentum and let Jx, Jy Jz

be its components along the Cartesian axes. It can be shown25 that S(n, θ) is the
rotation angle times the angular momentum operator component in the direction
of the rotation axis n, S(n, θ) = θ(n · J), or

R(n, θ) = e−iθ(n·J) (2.3)

As known from standard quantum mechanics, the angular momentum of a system
is quantized. J2 commutes with each individual component, therefore a good
set of quantum numbers for the system is the set of eigenvalues of J2 and one
of the components, which is taken to be Jz by convention. The common set
of eigenfunctions of J2 and Jz constitutes a complete basis set. The angular
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momentum components do not commute with each other but are related by the
relationship

[Ji, Jj] = iεijkJk (2.4)
[

J2, Ji

]

= 0 (2.5)

where εijk is the totally asymmetric tensor. Operators following these commutation
rules are known as Casimir operators.26,27 It is possible to obtain the complete
set of eigenvalues for the angular momentum operators (App. A.3) by exploiting
the above definitions and commutation rules. Let the eigenvalues of J2 and Jz

be j and m respectively and |j,m〉 be the corresponding eigenfunctions in Dirac’s
notation (see appendix A.2), then

J2 |j,m〉 = ~2 j(j + 1) |j,m〉 (2.6)

Jz |j,m〉 = ~ m |j,m〉 (2.7)

The eigenvalue derivation does not rely on the assumption that j is an integer and
so this result holds for both orbital and spin angular momentum. Let us define
rising and lowering operators as

J+ = Jx + iJy (2.8)

J− = Jx − iJy (2.9)

The eigenvalue problem for the rising and lowering operator has the solution

J± |j,m〉 = ~
√

j(j + 1) − m(m ± 1) |j,m ± 1〉 (2.10)

The eigenbasis |j,m〉 is useful to give a matrix representation of operators rele-
vant in NMR. For integer j values, the eigenfunction set is given by the so-called
spherical harmonics,

Ylm(θ, φ) = Pl(cos θ) eimφ (2.11)

where Pl are the Legendre polynomials.28 The symmetry of the spherical harmonics
reflects the symmetry of atomic orbitals and represents faithfully the transforma-
tion properties of spherical tensors.

2.2 Wigner Matrices and Euler Angles

Many different ways to describe general rotations are available. In NMR it is
convenient to decompose a rotation about R(n, θ) about an arbitrary axis n by
θ into a set of three rotations. If we label the starting reference frame axes as
{x, y, z} and put primes on the axes to mark rotated frames, then the rotation
R(n, θ) can be decomposed as

• rotation about the z-axis by an angle α

• rotation about the y
′

-axis by an angle β

11
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• rotation about the z
′′

-axis by an angle γ

and each rotation is performed in a different frame than the others. The same
effect can be achieved by performing all rotation in the initial frame in inverted
order, i.e.,

exp{−iθ(n · J)} = exp{−iγJz′′} exp{−iβJy′} exp{−iαJz} (2.12)

= exp{−iαJz} exp{−iβJy} exp{−iγJz} (2.13)

The set of angles Ω = {α, β, γ} is known as Euler angles. The matrix representa-
tion of rotation operators associated with it is expressed in the spherical basis of
the angular momentum, {|j,m〉}, and is known as the Wigner matrix

Dj

m
′
m

(Ω) =
〈

jm
′
∣

∣e−iαJz e−iβJy e−iγJz
∣

∣ jm
〉

= e−im
′

α
〈

jm
′
∣

∣e−iβJy
∣

∣ jm
〉

e−imγ

= e−im
′

α dj

m
′
m

(β) e−imγ (2.14)

where dj

m′m
(β) is the reduced Wigner matrix element. The size of the matrix

depends on the j value as (2j + 1). The reduced matrix elements for j = 0, 1, 2
and some useful properties of the Wigner matrices are given in Appendix B.1.

2.3 Tensors and Spherical Tensors

The physical properties of a system can be described in terms of entities of different
dimensionality. For instance, the electric charge is a scalar quantity, because it is
orientation independent and it can be fully described by a number. The magnetic
field generated in the vacuum by a moving charge can not be fully defined by a
number, in fact a full description requires the knowledge of its magnitude and
direction. The magnetic field is a three-dimensional vector quantity.

There is a third class of object, tensors, which manifest different behavior in
different directions and which can be fully represented in a matrix form. A tensor is
defined by its transformation properties under a transformation of the coordinate
system (i.e., rotation and inversion). The magnetic susceptibility, conductivity,
compressibility belong to the class of tensorial properties, just to mention a few.

In general, all three quantities can be considered as tensor of different rank.
The rank of a tensor is given by the number of indices of the tensor, so a rank-0
tensor is a scalar, a rank-1 tensor is a vector and a rank-2 tensor is a matrix.
Tensors of order higher than 2 can be defined as well, but they are not needed in
the context of this thesis.

In the description of NMR interactions, it is common to start from a description
of the physical property in tensor form within a Cartesian frame. Even though it
is easy to visualize the meaning of different terms clearly in this basis, it is not
an ideal choice from the mathematical point of view since the Cartesian represen-
tation is reducible.25 A Cartesian tensor T contains nine real components and it
can be decomposed into three irreducible tensors: a rank-0 tensor, proportional
to the trace of T , an asymmetric rank-1 tensor and a symmetric rank-2 tensor.
Even though such decomposition is possible without any basis change, it is more

12



2.4. Secular Approximation

convenient to use the spherical coordinate representation in order to obtain quan-
tities which transform simply under rotation. The matrix expressing the basis
transformation between Cartesian and spherical basis is conventionally denoted T

(App. B.2) and tensors of ranks 1 and 2 transform as

A
(1)
sph = A

(1)†
CartT (2.15)

A
(2)
sph = T†A

(2)
CartT (2.16)

In its irreducible representation, a tensor of rank J possesses (2J +1) components
which transform under the (2 J + 1)-dimensional representation of the rotation as

R(n, θ) TJMR(n, θ)−1 =
∑

M
′

DJ
MM

′ (Ω)TJM
′ (2.17)

or in other words, an irreducible spherical tensor operator (ISTO) is defined by its
transformation under a rotation of the reference frame from F to F

′

as

[TJM ]F
′

=
∑

M ′

DJ
MM ′ (ΩFF

′ ) [TJM
′ ]F (2.18)

where the tensors’ components in a specified frame are indicated witin square
brackets. In its principal axis frame (PAS), i.e., in the frame that makes the
symmetric part of Cartesian tensor diagonal, a rank-2 ISTO can be expressed as

〈

T (2)
∣

∣ =

√

3

2
(T P

zz − Tiso)

(

− 1√
6
η, 0, 1, 0,− 1√

6
η

)

(2.19)

where we define

Tiso =
1

3

∑

i

Tii =
1

3
Tr(T ) (2.20)

η =
T P

xx − T P
yy

T P
zz − Tiso

(2.21)

This formulae will be used in what follows in the context of spin interactions. More
informations on spherical tensors are in Appendix B.2 and in Ref 25.

2.4 Secular Approximation

Before discussing the spin interactions in details, it is worth introducing the sec-
ular, or high-field, approximation. The Zeeman Hamiltonian is several order of
magnitude bigger than all other spin interactions in fields of a few Tesla (with the
exclusion of the quadrupolar interaction, in some cases). As a consequence, it is
possible to treat the spin interactions as a perturbation of the Zeeman term and
calculate the new energy levels by considering only the first-order time-independent
perturbation theory correction.28 If we decompose the interaction Hamiltonian HQ

into two terms,

HQ = Hcom
Q + Hncom

Q (2.22)

13



2.5. Spin Interactions

Table 2.1: Classification of interactions in terms of their ranks in terms of spin
(λ), space (l) and field (B).

Interaction HQ [Al0] T
int
λµ λ l B

Zeeman Hj
Z ωj

0T
j
10 1 0 1

RF-Field Hrf(t) ωS
nut(t)Rz(φ)IxRz(−φ) 1 0 1

Spin-Spin Hij
J,iso 2πJijT

ij
00 0 0 0

Hij
anti

〈

A
(1)
ij

∣

∣

∣
T

(1)
ij

〉

1 1 0

Hij
aniso

√
6bij d2

00(β
ij
PL) T ij

20 + Hij
J,aniso 2 2 0

Chemical Hσ,iso
j −ωj

0 δj
iso T j

10 1 0 1

Shift Hj
CS,anti 0 1 1 1

Hj
CSA

∑

m

[

ACSA
2m

]P
D2

m0

(

Ωj
PL

)

Ijz 1 2 1

such that

[

Hcom
Q ,HZeeman

]

= 0 (2.23)
[

Hncom
Q ,HZeeman

]

6= 0 (2.24)

only the portion of which commutes with the Zeeman Hamiltonian need to be
considered to calculate the perturbed energy levels and therefore determines the
positions of the resonances in the spectrum. Given an interaction described by a
tensor A, this corresponds to taking just the tensor component in the direction of
the Zeeman field, i.e., Azz. In terms of spherical tensors, this corresponds to the
selection of all spin operators of the form Tλ0. The non-commuting term affects
the perturbed eigenfunctions, higher order energy corrections and the relaxation
of the system,4 thereby the lineshape.

2.5 Spin Interactions

Now all the tools for a detailed treatment of spin interactions are available. Each
interaction is first compared to the corresponding classical interaction using the
correspondence principle,28 when possible, then the Hamiltonian is described in
terms of spherical tensors and referred to its own principal axis frame. A list of
the spin interactions is given in Table 2.1, where the emphasis is on their different
space-spin-field ranks.

The NMR Hamiltonian for any interaction Q can always be expressed as a
product of a tensor AQ with two operators, one is a spin vector operator I while the
other, labelled R here, can either be a field vector or a spin vector operator,3,29,30

14
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i.e.,

HQ = cQ I† AQ R = 〈I|AQ |R〉 (2.25)

where the term cQ depends on the interaction under consideration. The equation
above can be rewritten by condensing the I and R operators into a new field-spin
tensor T (see Ref. 3 for more details)

HQ = cQ

∑

l

〈

AQ(l)|TQ(l)
〉

= cQ

∑

l

l
∑

m=−l

(−1)l−m
[

AQ
lm

] [

TQ
l−m

]

(2.26)

by expanding the scalar product between the two tensors31 in terms of the tensor
components. This separates the spatial part of the Hamiltonian (AQ tensor) and
the field-spin part (T tensor). The concept of a field-spin tensor is very convenient
for calculation, but it is often easier to understand the physics behind the spin
interactions by sepatating the field term from the spin term. In those cases, the
tensor for spin j will be explitcitly labelled as T j, while the field component will
be indicated as B (see Sects. 2.7 and 2.8). For a sample rotating with spinning
frequency ωr (in angular units), the total spin Hamiltonian is denoted

HTot =
∑

Q

∑

λ,µ,l,m

HQ
lmλµe

imωrt (2.27)

In the high-field approximation

HQ = cQ

∑

l

[AQ
l0] [TQ

l0 ] (2.28)

2.6 Reference Frame Transformations

It is always possible to write the NMR Hamiltonian as in Eq. 2.28 as long as
both tensors are referred to the same reference frame. The discussion of many
NMR properties relies on transforming the overall Hamiltonian, or portions of it,
between different reference frames. It is useful to list some of the common reference
frames relevant for describing the solid-state NMR Hamiltonian: the laboratory
frame (L), the Molecular frame (M), the Rotor frame (R) and Principal axis frame
(PAS, or P ).32 The relationships between them are illustrated in Fig. 2.1.

It is very common, but soon cumbersome, to use the notation defined above for
tensors. In what follow we will drop the square brackets when dealing with tensors
in the L frame, all tensor components will be assumed as components of a Bra,
if not otherwise specified and in all scalar products defining the spin interactions
the first spin or field tensor is intended to be a Bra and the second a Ket.

In practice, it is convenient to express the spin part of the interaction in the
frame L (so we write [Tλµ](L) as Tλµ) and the spatial part in a different frame,
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Ω MR

Ω
RL

Ω
IS

PM

IS

Ω Ω
I

PM
S

PM

M

R

L

I S

Figure 2.1: Important reference frames and their relationship. The frame L is the
laboratory frame. The z axes of the rotor frame and the laboratory frame are at
the magic-angle with respect to each other and rotates about zR with a frequency
matching the spinning frequency. R and L are related by the Euler angles ΩRL.
The molecular frame is expressed with respect to the rotor frame by ΩMR. For
each spin interaction we can define a different principal axis frame with respect to
the molecular frame, i.e., ΩI

PM , ΩS
PM and ΩIS

PM refer respectively to the orientation
of two CSA tensors and the dipolar tensor.

i.e., R or P . Such transformation can be easily performed in terms of Wigner
matrices,25,33 as

〈

A(J)
∣

∣

F2
=

〈

A(J)
∣

∣

F1
DJ (ΩF1F2) (2.29)

where ΩF1F2 contains the Euler angles ΩF1F2 = (αF1F2 , βF1F2 , γF1F2) relating the
two reference frames. It is important to take into account the way the spin part
and the angular part of the Hamiltonian are affected by rotations. Let λ, µ, l,m
be quantum numbers summarizing the transformation of the Hamiltonian under
rotation: l is the spatial rotational rank and λ is the rank with respect to rotations
of the spin polarizations by the resonant rf field. The component indices m and µ
take values m = −l,−l + 1,..., +l and µ = −λ,−λ + 1,... +λ. It follows that

Hlmλµ = [Alm]R Dl
mµ (ΩRL) Tλµ (2.30)

= [Alm]R e−iα
RL

m dl
mµ (βRL) e−iγRLµ Tλµe

imωrt (2.31)
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2.7. The Zeeman Interaction

where ΩRL = (αRL − ωrt, βRL, γRL) are the Euler angles relating R and L frames.
In the high-field approximation, only the terms with µ = 0 needs to be taken into
account, so the value of γRL is irrelevant. Under conditions of fast-MAS we have

βRL = arctan
√

2 ⇐⇒ d2
00 (βRL) = 0

and the spin Hamiltonian simplifies to:

Hlmλ0 = [Alm]R Dl
m0

(

ΩRL
)

Tλ0 (2.32)

2.7 The Zeeman Interaction

We start analysing the NMR Hamiltonian from the simplest possible case, i.e., an
ensemble of isolated spins of the same type. In the absence of an external field, all
spin energy levels are degenerate and the spins are randomly oriented, with no net
magnetization. A strong, static field breaks the degeneracy by giving a preferential
direction to the nuclear spins, parallel to the applied field: this corresponds in the
quantum world to unequally populated energy levels.

Classically, the one-spin ensemble is equivalent to a set of isolated magnetic
dipole moments µj in an external magnetic field B. The classical energy for the
magnetic dipole moment is

Ej = −µj · B (2.33)

and its equation of motion can be obtained by considering the torque acting on it
as

dJj

dt
= µj ∧ B (2.34)

The angular momentum Jj is proportional to the magnetic moment µj via

µj = γjJj = γj~ Ij (2.35)

where γj is the gyromagnetic ratio for the nucleus and Ij is an adimensional quan-
tity proportional to the angular momentum through ~. For a constant magnetic
field, the equation of motion for the magnet is a rotation around the direction of
the magnetic field along a conical trajectory with angular frequency ω0 = −γjB0,
known as the Larmor frequency. Since energy is conserved, the magnet maintains
its initial angle with respect to the applied field. In reality, friction or relaxation
act on the magnet by gradually reducing the angle between the dipole and the
external magnetic field.

The classical results coincide with the quantum mechanical picture for the spin
ensemble, with the Zeeman Hamiltonian for a spin labelled j given, in units of ~,
as

Hj
Z = −γjB0Ijz = ω0Ijz (2.36)

= ω0T
j
10 (2.37)
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where B0 is the magnitude of the magnetic field in the z-direction, Ijz is the z-
component of the spin operator, ω0 is the energy spacing between adjacent levels in
rad/s and equals the Larmor frequency. In terms of ISTOs, T j

10 is a first-rank ISTO
for one spin j. The eigenvalues and eigenfunctions of the Zeeman Hamiltonian can
be deduced by noticing that Hj

Z is proportional to Ijz, i.e.,

Hj
Z |l,m〉 = −γjB0 m |l,m〉 (2.38)

The thermal equilibrium condition corresponds to a set of equally-spaced energy
levels whose population follows the Boltzmann distribution as

pk =
exp {−Ek/kBT}

∑

n exp {−En/kBT}
where Ek is energy for the k-th energy level, kB is Boltzmann’s constant, T is
the temperature in Kelvin and the sum is extended over all possible levels. The
presence of a static field gives rise to a macroscopic spin magnetization, M, pro-
portional both to the field B0 and to the gyromagnetic ratio γj for the nucleus.
This amounts to a very small population difference in the normal temperature
range, i.e., above 10 K, and is the main reason for the intrinsically low sensitivity
of NMR spectroscopy.

2.8 Interaction with a Radio-Frequency Field

In order to observe an NMR spectrum, it is necessary to use electromagnetic
radiation with frequency close to the Larmor frequency to excite transitions in the
spin system. In general, the interaction between the spin and an external magnetic
field is given by

Hj(t) = −γjIj · B(t)

The oscillating radio-frequency (rf) field has the form

Brf(t) = Bpeak
rf cos(ω1t + φ)ex (2.39)

where Bpeak
rf is the amplitude, ω1 is the frequency and φ is its phase. This can be

decomposed into two components rotating in opposite directions: only the compo-
nent rotating in the same direction as the spins is effective in inducing transitions.
The situation is best described after a transformation from the laboratory frame
L to a frame R whose z-axis coincides with z(L) and whose x-axis rotates in the
same direction as the resonant rf field component. The rotation angle of the mag-
netization vector away from z(L) depends on the duration and intensity of the rf
perturbation, expressed as

βp = ωj
nutτp (2.40)

where τp is the pulse duration, βp is the flip-angle and ωj
nut/2π is the nutation

frequency of the rf field, defined as

ωj
nut =

1

2

∣

∣

∣γjB
peak
rf

∣

∣

∣ (2.41)
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Figure 2.2: 90x pulse on a system in thermal equilibrium: (a) M is along z and the
rf field B1 induces a x-rotation. (b) after a 90x pulse, M is along the −y direction
in the rotating frame and starts precessing around z.

In the rotating frame, the rf Hamiltonian becomes time independent and can be
written as

Hrf = ωj
nut(Ijx cos φ + Ijy sin φ) (2.42)

For isolated spins, the effect of the static field and of a resonant rf field on the spin
magnetization can be described by a vector representation. Fig 2.2 demonstrates
the effect of a 90x pulse on a system in equilibrium.

2.9 Chemical Shift

When molecules are immersed in an external magnetic field, the nuclei feel not
only the effect of the external field but also an induced field, dependent on the
local environment. The chemical shift interaction for one spin j can be expressed
as

Hj
CS = γjI σj B = −γjI δj B (2.43)

where δj is the chemical shift (CS) tensor following the deshielding convention and
B is the applied field. After the secular approximation, only the portion of Hj

CS in
the z-direction needs to be considered. As for all spin interactions, it is convenient
to decompose the CS interaction in terms of spherical tensors of several orders (see
Sect. 2.3) in order to separate terms with different orientation dependence.

The rank 0 interaction is the isotropic chemical shift and is related to the trace
of the matrix representation of the CS tensor (in any basis)

δj
iso =

1

3
Tr(δj) (2.44)

This term is normally expressed together with the Zeeman term to form a chemically-
shifted Larmor frequency

Hj,iso
CS = ω0(1 + δj

iso) Ijz = ωj
0 Ijz (2.45)
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2.10. J-coupling

The rank 1 part of the tensor is known as the antisymmetric CS; this term is purely
non-secular and is usually neglected from the analysis. The rank 2 tensor is the so-
called chemical shift anisotropy (CSA) and is of great importance for many nuclei.
The magnitude and orientation of the CSA tensor contain information about the
bond nature and geometry around the nucleus and can give strong indication for
the orientation of the molecular fragment with respect to some reference direction
within the molecular system.3 As for all second-rank tensors, the orientation
dependence of this term contributes significantly to the broadness of the NMR
signal from solid, static samples. The convention used here for CSA tensors relies
on the following definitions:

η =
δj
xx − δj

yy

δj
zz − δj

iso

δj
aniso = δj

zz − δj
iso (2.46)

where the three components, expressed in the PAS, are arranged as

|δj
zz − δj

iso| ≥ |δj
xx − δj

iso| ≥ |δj
yy − δj

iso| (2.47)

The CSA frequency is given by ωj
aniso = ωj

0 δj
aniso. This is called the deshielding

convention, and coexists with many others.30,34 A full agreement about it has not
been achieved within the NMR community. In terms of ISTOs, the chemical shift
and Zeeman Hamiltonian have the form

Hj
CS = ωj

0T
j
10 +

2
∑

m=−2

ωj
aniso[A

CS
2m]LT j

10 (2.48)

where ACS
2m here indicates in an implicit way the components of the second rank

tensor, defined according to Eq. 2.19.

2.10 J-coupling

The indirect, or J , coupling is a coupling between nuclear spins which is mediated
by the bonding electrons. Its properties and magnitude are therefore strongly
dependent upon the nature of the chemical bond and on the orbitals involved in
such interaction. Recently J-couplings have been observed mediated by hydrogen
bonds.35 The Hamiltonian for a J-coupling between spins i and j can be expressed
in the form

Hij
J = Ii J Ij (2.49)

where J is the scalar coupling tensor and Ii and Ij are the spin operators associated
with the interacting nuclei. After decomposition into spherical tensors, the rank 0
interaction is

Hij,iso
J = 2πJij Ii · Ij (2.50)

= 2πJij(IziIzj +
Ii+Ij− + Ii−Ij+

2
) (2.51)
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where Jij is the indirect coupling constant in Hertz, corresponding to the isotropic
part of the tensor, called the scalar coupling. This is the interaction determining
the multiplet patterns well-known in liquid-state NMR spectroscopy. This contri-
bution, even though still present in solid state spectra, is often hidden within wide
lines. The rank 1 tensor is usually neglected since it is purely non-secular. The
J-anisotropy, even though present, has the same transformation properties of the
through-space dipolar coupling (Sect. 2.11) and it is difficult to distinguish from
it. In tensor form, the J-coupling can be expressed as

Hij
J,homo = 2πJijT

ij
00 + Janiso

ij T ij
20 (2.52)

In practice, for light nuclei the J-anisotropy is much smaller than the through-
space coupling.

For cases in which the coupled spins have very different isotropic chemical shifts,
or in the case of heretonuclear J-couplings, the Hamiltonian is further semplified.
The second term in Eq. 2.51, known as flip-flop operator, can be removed according
to the same ideas behind the secular truncation.

2.11 Through-Space Dipolar Coupling

The through-space, or direct, dipolar coupling Hamiltonian can be obtained by
applying the correspondence principle to the expression defining the energy for
the interaction between two magnetic dipoles,

E = − µ0~

4πr3
ij

[3(µi · eij)(µj · eij) − (µi · µj)] (2.53)

where rij is the distance between the dipoles and eij is a unitary vector in the
direction of the vector joining the nuclei i and j. This can be written in terms of
the dipolar tensor as

Hij
D = Ii D Ij (2.54)

or, in a more explicit form, after the secular truncation

Hij
D = −µ0~

4π

γiγj

r3
ij

3 cos2 Θij − 1

2
(3 IziIzj − Ii · Ij) (2.55)

= bij d2
00(Θij)(3 IziIzj − Ii · Ij) (2.56)

= dij T ij
20 (2.57)

where

bij = −(µ0/4π)γ2~/r3
ij (2.58)

is the dipolar coupling constant, expressed in angular units, and Θij accounts for
the orientation of the dipolar vector with respect to the external magnetic field.
The dipolar tensor has a vanishing 0-th rank component and so does not have any
direct effect on isotropic-phase spectra (neglecting relaxation) and only the rank-2
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2.12. Quadrupolar Interaction

component is important for spectra in anisotropic phases. This interaction is of
great importance for many purposes and the geometrical information content is
evident.

For the heteronuclear case, the dipolar Hamiltonian is further semplified

Hij
D,hetero = 2dijT

i
10T

j
10 (2.59)

= 2dijIziSzj (2.60)

by removing the flip-flop term from the homonuclear Hamiltonian. A few ways to
exploit the dipolar interaction for structural investigations will be discussed in the
chapters to follow.

2.12 Quadrupolar Interaction

For nuclei with spin higher than 1/2, the nucleus has a non-spherical charge dis-
tribution, which gives rise to a coupling with an external electric field gradient.
The quadrupolar interaction for a spin j can be expressed in the form

Hj
Q = Ij Q Ij (2.61)

where Q is the quadrupolar tensor. The truncated Hamiltonian after the high-field
approximation can be expressed as

Hj
Q = ωj

Q(3I2
jz − Ij · Ij) (2.62)

where ωj
Q is the nuclear quadrupolar frequency. However the size of the quadrupole

coupling is such that higher order effects can be significant. In this case Eq. 2.62 is
not sufficient to describe the system. The spatial dependence of quadrupolar terms
is such that only the first order terms, described by the second order Legendre
polynomial, are averaged out by MAS. A better averaging would require a removal
of the second order terms whose dependence follow Legendre polynomials of fourth
order. Unfortunately P2 and P4 have no common zeroes and more complicated
schemes are required in order to remove both.

The quadrupolar interaction is usually more than a small perturbation of the
Zeeman Hamiltonian. A full spectroscopy branch, known as nuclear quadrupolar
resonance (NQR), consists in performing NMR experiments in zero field, under
the effect of the quadrupolar Hamiltonian as the main interaction instead of the
Zeeman field. On the other hand, it is advantageous to work in very high magnetic
field when dealing with quadrupolar nuclei because the size of the second order
terms decreases with the field as ω−2

0 .

2.13 Experimental Tools

2.13.1 Magic-Angle-Spinning

A widespread method of increasing resolution in solid state NMR is known as
Magic-Angle-Spinning (MAS)5,31 and consists of rotating the sample rapidly about
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z (R)z (L)

ωr

mβ

Figure 2.3: Rotor position under
MAS. ωR is the spinning frequency
in angular units, z(L) defines the z di-
rection of the laboratory frame while
z(L) gives the direction of the rotor-
fixed frame.

an axis subtending the ‘magic angle’ βm = arctan
√

2 with respect to the main field
(see Fig 2.3). The understanding of MAS requires an analysis of the signal coming
from a rotating solid. Depending on the spinning speed used and the magnitude of
the anisotropic interactions, it is possible to increase resolution by averaging out
chemical shift anisotropies (CSA) and through-space dipole-dipole couplings, i.e.,
all the terms whose anisotropic part can be described by a second rank irreducible
spherical tensor.25 If the angular spinning frequency ωr exceeds the magnitude of
all the anisotropic interactions, then the NMR spectrum reduces to the isotropic
spectrum with sharp lines at the isotropic chemical shift of each nucleus, while all
orientation information disappears (fast-MAS).

An important classification of Hamiltonians is due to Maricq and Waugh,31 who
distinguish two classes: (i) a homogeneous Hamiltonian which does not commute
with itself at different times (i.e., homonuclear dipolar interaction), (ii) an inhomo-
geneous Hamiltonian commutes with itself at different times (i.e., chemical shift).
Under MAS, the behaviour of spin interaction belonging to these two groups is very
different. In fact, moderate MAS (i.e., not sufficiently fast to average completely
all rank 2 tensors) can increase the spectral resolution significantly for cases where
the spectrum is dominated by inhomogeneous interactions, while very fast-MAS
is needed in the case of homogeneous interactions. This is illustrated in Fig. 2.4,
where the cross-polarization spectra of U-13C-glycine are shown at several spinning
speeds. In Fig. 2.4a, the static spectrum presents two broad, partly overlapped
signals. In Fig. 2.4b the sample is spun at the magic-angle at moderate speed
and the broad patterns are broken up into a set of relatively narrow peaks. The
fast-MAS condition is not fulfilled, but the resolution still increases. In addition
to the main peak (central band) there are some extra peaks, known as spinning
sidebands, positioned at a frequency separation equal to multiples of the spinning
frequency and whose amplitude is dominated by homogeneous anisotropic inter-
actions, in this case the 13C CSA. In Fig. 2.4c the fast-MAS condition is nearly
fullfilled are two small spinning sidebands are just about visible.

2.13.2 Rotational Resonance

The phenomenon of rotational resonance32,36 is revealed as a peakshape distortion
which occurs when the spinning frequency matches the isotropic chemical shift
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Figure 2.4: (a) Static spectrum of [1,2-13C2]-glycine, 99% labelled, at 4.7 T. (b)
MAS spectrum acquired with a spinning frequency of ωr/2π=870 Hz. Notice
that the broad pattern is split into many narrow lines whose intensity envelope
mimicks the static spectrum (c) MAS spectrum acquired with a spinning frequency
of ωr/2π=8 kHz. The fast-MAS regime is achieved and only two narrow lines at
the 13C-isotropic chemical shifts are left.
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difference between a pair of coupled spins according to the rule

nωr = ωiso
∆ =

∣

∣ωiso
i − ωiso

j

∣

∣ (2.63)

The n = 1 rotational resonance condition is commonly used for the extraction of
structural information. A full lineshape analysis at n = 1 can lead to geometrical
information, due to its strong dependence upon the dipolar coupling between the
coupled nuclei. An analysis of magnetization exchange experiments also provides
distance information and these are most useful for long distance measurement (the
lineshape can be dominated by stronger interactions than the dipolar). In general,
contributions from other terms, such as CSA, TZQ

2 and inhomogeneous ZQ line-
shape, make the parameters’ extraction more difficult but different modifications
of the basic RR experiment reduce this dependence and facilitate the parameters’
extraction.37 The situation gets more complicated in the case of high order rota-
tional resonance, n > 1. Nevertheless, this method has been successfully applied
to measure distances up to 6Å for 13C-pairs and for determining CSA magnitude
and orientation.38,39 Another advantage of RR recoupling is that the anisotropic
interactions are reintroduced without the need of rf fields, with an advantage in
terms of experimental setup (often quite easy) and with a significant reduction
of rf heating problems. Among the many applications of rotational resonance,
it is worth mentioning the distance measurements performed in rhodopsin40 and
bacteriorhodopsin.41

2.13.3 Heteronuclear Spin Decoupling

In protonated samples such as most organic compounds, the spectral lines are
never as narrow as in liquid state even under fast MAS conditions, unless proton
decoupling is applied as well. In fact, proton couplings are usually too high to be
averaged out completely at accessible speeds and so some kind of radio-frequency
decoupling method must be used. The simplest form of heteronuclear decoupling
involves irradiation near the 1H Larmor frequency with a continuous, unmodulated
rf field. This is called continuous-wave (CW) decoupling. In simple terms, this
process can be understood by monitoring the variation of the heteronuclear cou-
pling Hamiltonian term, proportional to IzSz, under the action of the continuous
field on the I channel. The state of the S spin is unchanged, while the rf field
causes the I term to rotate and the dipolar term is averaged out every 2π rotation.

It is possible to modulate the proton rf field in terms of its phase, frequency or
amplitude. Proper tuning of these parameters according to certain schemes,3,42–46

known to give better decoupling performance than a continuous irratiation without
any modulation. The better the decoupling between the observed nuclei and 1H,
the narrower the lines.

Most modulation schemes involve the experimental optimization of one or more
parameters and in our experience their performance is appreciably better than con-
ventional CW decoupling only for spinning frequencies above 7 kHz. Therefore all
experiments we performed at moderate spinning frequencies involve CW through-
out the sequence. All data referred to spinning frequencies above ωr/2π > 10 kHz
combine intervals of time-proportional phase modulation43 (TPPM) decoupling
with intervals of CW decoupling.
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The problem of decoupling in solid state NMR (both homo- and heteronuclear)
is very open and, even though much progress has been made, there is still lots of
room for improvement.

2.13.4 Homonuclear Spin Decoupling

As stated before, proton couplings are hardly averaged out by MAS and for many
applications it is desirable to remove the homonuclear proton coupling for certain
length of time, while maintaing the couplings between the protons and other spin
species. This offers a tool for measuring not only internuclear distances but also
to correlate the direction of dipolar vectors to provide torsion angles, as discussed
briefly in Sect. 4.5.

Some homonuclear decoupling schemes have been known for many years.47,48

Many of the most common sequences for homonuclear decoupling derive from the
Lee-Goldburg (LG) scheme,47 where the rf field on the proton channel is applied off-
resonance so as to produce an effective field tilted at the magic angle with respect
to the external static magnetic field. Modifications of the basic LG decoupling
by frequency shifts44 (FSLG) or phase modulation49,50 (PMLG) lead to improved
performance. Other approaches for suppressing the homonuclear couplings have
been recently proposed, making use of symmetry-based sequences.51

2.13.5 Cross Polarization

Frequently, sensitivity is the main constraint on the feasibility of an experiment,
especially when dealing with biological samples. From Eq. 2.39, it is clear that,
for a given temperature and field, the observable magnetization is proportional
to the gyromagnetic ratio of each nucleus. The sensitivity problem is critical for
nuclei with low abundance and low gyromagnetic ratio, called from now on ‘rare’
nuclei. A clever method to increase the amount of signal consists of using cross
polarization (CP)14 to transfer spin polarization from ‘abundant’ nuclei to the rare
species, according to the scheme shown in Fig. 2.5.

To start with, the I magnetization is flipped into the xy-plane by a π/2 pulse
and then spin-locked for a certain interval of time, known as the contact time,
during which an rf field is applied on the S channel as well. A proper choice of the
nutation frequencies of the two fields leads to enhanced transverse S magnetization.
For static samples the nutation frequencies on the two channels must be tuned
to match the Hartmann-Hahn condition, ωI

nut = ωS
nut. Under fast MAS the CP

condition becomes ωI
nut = ωS

nut + kωr, with k integer. In the standard CP this
matching condition is quite stringent and the performance of the sequence in case
of mismatch decreases steeply, expecially for high spinning speed.

In many experiments it is routine to have some improved, broader form of CP15

from spin I to spin S as a first step and the increase in signal is expected to be
the ratio γI/γS in theory. In the case of a 13C-1H system, the 13C-signal usually
increases by a factor of around 3.
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I

S

Figure 2.5: Cross-polarization
from spin species I to S: the
rf nutation frequencies are care-
fully tuned to achieve polar-
ization transfer from I to S,
followed by acquisition of the
FID under heteronuclear spin
decoupling

2.14 Theoretical Tools

2.14.1 Density Operator

A macroscopic sample is made up of a huge number of interacting spins but its
description is simplified if the system can be considered as a multitude of indepen-
dent systems of just N interacting spins. Properties can be studied over individual
spin systems and then statistical arguments can be invoked to describe the overall
system.4,52 Let |r〉 be a basis set, i.e., any state function can be described as a
linear combination of the basis functions according to

|ψ〉 =
∑

r

cr |r〉 , cr ∈ C (2.64)

and each coefficient cr gives the amplitude for a contribution from |r〉 to the overall
wave function. The density operator is defined as

ρ =
∑

r,s

crc∗s |r〉 〈s| (2.65)

where the bar denotes averaging over an ensemble of spin systems. Each element
of the density matrix (i.e., the matrix representation of the density operator)
gives information about how different states are related to one another. Diagonal
elements of the density matrix, ρrr, are the populations of the corresponding states.
Off-diagonal elements, ρrs, are known as coherences and are non-zero only when
the states |r〉 and |s〉 are statistically correlated. A convenient basis set is given
by the angular momentum eigenfunctions and in such basis the coherence order of
the state ρrs is given by prs = Mr − Ms.

The evolution of the spin system under any pulse sequence can be followed by
using the density matrix formalism. Two things are needed: a good description for
the starting condition of the system and a law to predict its evolution. The answer
to the first problem is simple: the status of the system at thermal equilibrium
in the presence of a strong magnetic field can be obtained using the Boltzmann
distribution:

ρeq =
1

2

(

I + βÎz

)

→ Îz (2.66)
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where I is the identity operator and β is a factor related to universal constants
and to the specific nuclear isotope, field and temperature. In practice, the only
term which needs to be considered in calculations is Îz, since I is always constant.
In what follows we will drop the ~ symbol to simplify the notation and all energies
will be expressed in frequency units, if not otherwise stated. The evolution of the
density operator under the effect of a time dependent perturbation H(t) can be
described by

dρ

dt
= i [ρ,H] (2.67)

which is known as the Liouville-Von Neumann equation and derives directly from
the time dependent Schrödinger equation. If the perturbation described by the
Hamiltonian H is time independent, the Liouville-Von Neumann equation simpli-
fies to

ρ(t) = e−iH(t−t0)ρ(t0) eiH(t−t0) (2.68)

which relates the density operator at a time t with its value at t0 and defines the
propagator operator U(t, t0) associated to the Hamiltonian H as

U(t, t0) = e−iH(t−t0) (2.69)

For time dependent Hamiltonians is possible to define the propagator U as a
unitary operator which relates the evolution of the system between two time points
as

ρ(t) = U(t, t0) ρ(t0) U †(t, t0) =
ˆ̂
U(t, t0) ρ(t0) (2.70)

The notation is simplified by defining a superoperator53 ˆ̂
A as

ˆ̂
A B = A B A† (2.71)

2.14.2 Average Hamiltonian Theory

It is generally not straightforward to relate the original Hamiltonian with the
corresponding propagator. It is common to perform a transformation into the so-
called interaction frame, in order to put the problem into a form which is easier
to handle. If an exact solution is still not possible, average Hamiltonian theory54

or other approaches13 can be used to get an approximate solution.
Suppose the total Hamiltonian can be written as

Htot(t) = HA(t) + HB(t)

where, generally, [HA,HB] 6= 0. A transformation to the interaction frame is aimed
at factorizing the propagator associated with the whole Hamiltonian into two parts:
a term which is easy to calculate, UA, and a term which can be computed in an
approximate form, so that we get:

U = UAŨB with H̃B =
ˆ̂
U †

AHB (2.73)
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The transformation into the interaction frame is denoted by the symbol ˜. The
interaction frame Hamiltonian can be expanded according to the Magnus series
expansion,55 defined as:

H̄(tb, ta) =
∞

∑

k=0

H̄(k)(tb, ta)

The first terms in the expansion are:

H̄(1) = T−1

∫ T

0

H̃(t)dt (2.74)

H̄(2) = (2iT )−1

∫ T

0

dt
′

∫ t
′

0

[

H̃(t
′

), H̃(t)
]

dt (2.75)

H̄(3) = (6T )−1

∫ T

0

dt
′′

∫ t
′′

0

dt
′

∫ t
′

0

{[

H̃(t
′′

),
[

H̃(t
′

), H̃(t)
]]

+

[[

H̃(t
′′

), H̃(t
′′

)
]

, H̃(t)
]}

dt (2.76)

This approach is convenient only if the series converges quickly. The Magnus
expansion of an operator H over a time interval τba is convergent if

‖Hτba‖ ¿ 1

The norm of H can be taken to be its biggest eigenvalue. For a periodic Hamilto-
nian it suffices to prove the thesis over one period. For solid state MAS-NMR, it
is common to assume that HA = Hrf and HB = Hspin.

2.14.3 Other Effective Hamiltonian Theories

The average Hamiltonian thoery is not the only approach to analyze the Hamilto-
nian describing the system. In particular, Floquet theory56 is also used by many
researchers. Additionally, very recently a new approach has been unveiled and is
the so-called exact effective Hamiltonian theory. For a detailed treatment we refer
to Ref. 57. The idea behind this exact treatment is that, given a finite operator
basis set, it must be also possible to express the effective Hamiltonian for the sys-
tem as a finite series of terms with at most the same dimensionality as the basis
itself.

2.15 Computer Simulation

The state of a spin system can be fully described using the density matrix for-
malism. The time evolution of the density operator under the effect of a time
dependent perturbation H(t) can be described by Eq. 2.67. In general we deal
with time dependent Hamiltonians and it is possible to define the propagator U
as a unitary operator which relates the evolution of the system between two time
points as

ρ(t) = U(t, t0) ρ(t0) U−1(t, t0) (2.77)
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Any pulse sequence can be decomposed into a series of pulses and delays, each as-
sociated with a time dependent propagator. Once the final density matrix ρ(tfinal)
is obtained, it can be used to evaluate the observable signal s(t), associated with
the operator Qobs, as

s(t) =< Qobs > (t) = Tr{ρ(t)Qobs} (2.78)

The NMR observable is the transverse magnetization and conventionally the signal
is associated with the operator Qobs = I+.

2.15.1 Powder Averaging

In a powder sample, the final response does not only depend on time but also on
orientation parameters, best expressed in terms of Euler angles and summarized
as s(t, Ω), with Ω = (α, β, γ). Each crystallite is subject to a slightly different
perturbation throughout the sequence due to the orientation dependence in the
anisotropic part of the Hamiltonian and so the final signal is the result of a powder
average over all relevant orientations

s̄(t) =
1

8π2

∫ 2π

0

dα

∫ π

0

dβ sin β

∫ 2π

0

dγ s(t, Ω) (2.79)

The powder average defined in Eq. 2.79 can sometimes be simplified by separating
the γ-angle averaging from the rest, so that

s̄(t) =
1

4π

∫ 2π

0

dα

∫ π

0

dβ sin β s(t, α, β) (2.80)

The integral is evaluated as a weighted sum over an ensemble of orientations

s̄(t) =
N

∑

i=1

M
∑

j=1

wij s(t, αij, βij) (2.81)

where the integers N, M depend on the model chosen to generate the angular
distribution. The weight of each orientation is proportional to the solid angle it
subtends. One of the goals in designing powder averaging schemes is to produce
a distribution of weighted crystallite orientations as homogeneous as possible over
a unit sphere with the least number of terms. Some popular schemes are, for
instance, the Zaremba-Conroy-Wolfsberg scheme (ZCW)58,59 and REPULSION.60

A full simulation must be able to evaluate the density matrix and the powder
averages efficiently. Several approaches are available for simulating solid state
NMR experiments and they all are based on the evaluation of Eq. 2.77 and of the
powder average in order to get the observable signal, but there is no unique way
to do this in practice and the fastest calculation approach may depend on the type
of experiment under consideration.

All of the simulation described in the chapters to follow are performed using the
ZCW angle distribution, using typically a set of 144 orientations for the {α, β, γ}
angles. In general, a comparison of the simulation output using angle distributions
of different size should be performed in order to ascertain that the ensemble of
orientations is covered with sufficient accuracy.
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2.15.2 The Direct Method

The direct method is the implementation of the equation of motion for the density
matrix, integrated numerically. The time dependent Hamiltonian H(t) over an
interval τ is divided into N sufficiently small intervals ∆τ , with τ = N ∆τ , such
that each Hamiltonian H(ti) is approximately constant within each interval ∆τi,

(i − 1)∆τ ≤ ti ≤ i∆τ (2.82)

The propagator associated with a time independent Hamiltonian is given by Eq. 2.69,
otherwise the full propagator is computed numerically as a time-ordered product
of all individual propagators on ∆τi

eiH(t∗N ) (tN−(N−1)∆τ) . . . eiH(t∗2) (t2−∆τ)eiH(t∗1) t1 (2.83)

where t∗i here indicates the time-point in the middle of ∆τi. In the general case,
when [H(ti),H(tj)] 6= 0, the time order is essential because the exponential opera-
tors do not commute. This approach is easily implementable and is certainly valid,
as long as the chosen time segment ∆τ is small enough to satisfy the hypothesis.
On the other hand, the direct method can be computationally heavy. As in a
real experiment, the spectral resolution is related to the overall acquisition time,
which implies that the necessary number of sampled points rapidly increases with
an increase in the desired frequency resolution, leading to extensive calculations.
The direct method is not the best choice when the problem under investigation has
some periodicity and this is often the case when dealing with rotating samples.
Alternative procedures have been developed for fast calculation of the spectral
response under periodic perturbations (e.g. COMPUTE,61 γ-COMPUTE62).

Even though in recent years some rather general simulation packages for solid
state NMR experiments have become available,63 the work presented here uses
programs developed within our group, written for simulating rotor-synchronized
sequences and based on the COMPUTE algorithm.
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Chapter 3

Symmetry-Based Recoupling
Sequences

3.1 Introduction

Solid-state NMR has the potential of providing detailed information on molecular
structure and electron distribution, but in order to obtain reliable results it is
necessary to distinguish different contributions and study the property of interest
with as little perturbation as possible from all other interactions. For this reason
many solid-state NMR experiments are specific towards the recoupling of certain
spin interactions. Selective recoupling reduces the number of parameters that
influence the data set and makes the results more precise.

For the case of static samples, the internal Hamiltonian contains the full struc-
tural information and is time independent, therefore easier to manipulate; on the
other hand, the resolution is quite poor and it may be difficult to identify the
property of interest. In rotating samples, MAS at common spinning speeds (up
to 30kHz) partly averages out all Hamiltonian terms described by a rank 2 spatial
tensor, so it is essential to devise experiments which reintroduce some terms only,
while aiding the rotor-driven averaging effect of other interactions and providing
high-resolution spectra as well as geometrical information. This implies that the
evolution in the spin space and in the real space can not be treated separately.

It is a challenging task to select certain spin interactions while suppressing
others. Here we aim at investigating spin interactions and molecular structure by
using sequences derived on the basis of symmetry arguments.64 In MAS NMR,
spin interactions differ in their transformation properties under rotation both in
real space and in spin space. The interactions are distinguished on the basis of
their rank with respect to different sorts of rotations (see Table 2.1). So far, the
two major classes of symmetry-based recoupling sequences are known with the
names of CN ν

n
8,65 and RN ν

n
9,66 sequences.

3.2 Definitions for Symmetry-Based Sequences

In order to analyse a symmetry-based sequence unambiguously, one must establish
the notation for times and propagators during the sequence, as this convention will
be used in what follows. See Ref. 66 for more details
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nτ r

t t t t tN−1

0 0 0 0 0

0 1 2 q

210 N−1

Figure 3.1: Example of a rotor-synchronized pulse sequence fitting N element of
equal duration τE within n rotor periods, τr. The pulse sequence has no gaps with
free evolution between pulses.

The symbol “t” is reserved to indicate time points while “τ” is a time interval.
The time-point at which the k-th element starts is denoted t0k, tk is the time
variable within the k-th element and τk is a time interval within the k-th element.
An rf propagator U(t, t00) can always be described in terms of three time dependent
Euler angles Ω(t) = {α(t), β(t), γ(t)} as

U(t, t00) = Rz(α(t))Ry(β(t))Rz(γ(t)) (3.1)

Given a periodic, rotor-synchronized sequence consisting of a continuous series N
elements within n rotor periods, according to the scheme and numbering shown in
Fig. 3.1. The general element is Eq where q = 0, 1, . . . , N −1 and its duration τE is
such that T = NτE = nτr. Without any detail on a particular class of sequences,
according to the notation introduced in ref. 66, we can define

• Sq as the rf propagator from t0q to a time tq within Eq

Sq = U(tq, t
0
q) (3.2)

• Eq as the propagator over one complete Eq

Eq = U(t0q+1, t
0
q) (3.3)

• Aq as the accumulated propagator from t00 to tq

Aq = U(tq, t
0
0) = SqEq−1 . . . E0 (3.4)

Similarly, the time dependence in the Euler angles can be expressed as

{αq, βq, γq} = {α(tq), β(tq), γ(tq)} (3.5)

Sequences can be built around desirable symmetry property of the Euler angles,
without the need of specifying further details about the exact sequence. This
approach is quite general, because there might be different sequences obeying the
same symmetry ideas in the Euler angles. We will consider sequences made up of
elements Eq obtained from a basic element E

0, which does not have to coincide
with any of the elements Eq, even though all Eq derive from it. All properties
related to E

0 will be labelled with an superscript ‘0’.
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3.3 CNν

n-sequences

The Euler angle symmetry defining CN ν
n sequences8,64–66 is given by:

βq = β0

γq = γ0 −
2πν

N
q (3.6)

where symbols N , n and ν are three integers defining the properties of the CN ν
n

sequence. The above transformation is achieved by choosing as E
0 a propagator

such that

E0 = Rx(Zgπ), Zg = even integer (3.7)

which is an rf cycle (indicated C), i.e., E0 returns the spin to their initial state, if
all other interactions are ignored. A possible choice is to use a cycle with phase
given by 2πνq/N ,

Eq = C2πνq/N (3.8)

with S0 = S0
0 and

Sq = Rz

(

2πν

N
q

)

S0 Rz

(

−2πν

N
q

)

(3.9)

Eq = E0 (3.10)

This leads to the interaction Hamiltonian symmetry

H̃lmλµ(tq) = H̃lmλµ(t0) exp

{

i
2πq

N
(−µν + mn)

}

The interaction frame Hamiltonian can be derived66 and leads to the following
selection rule for the first order average Hamiltonian:

H̄(1)
lmλµ = 0 if mn − µν 6= NZ (3.11)

where Z is any integer. This implies that pulse sequences selective for specific
interactions can be devised by careful choice of the three symmetry numbers N ,
n and ν. Many CN ν

n sequences have been designed for a variety of purposes.
Examples include torsion angle measurements,67 multiple-quantum coherence ex-
citation,68,69 heteronuclear dipolar recoupling,70 heteronuclear decoupling45 and
shift correlation,71 to mention a few.

3.4 RNν

n-sequences

A general discussion of RN ν
n sequences and a set of possible applications are given

in Paper I and in refs.9,64,66 The Euler angle symmetry defining RN ν
n sequences

is given by:

βq = β0 + qπ

γq = γ0 −
2πν

N
q (3.12)
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This can be achieved by choosing as E
0 a propagator such that

R = E0 = Rx(Zuπ), Zu = odd integer (3.13)

which means that the basic element must be an effective π rotation, indicated R.
The RN ν

n sequences can be built by using as basic elements R and R
′

, where the
primed element is given by

R
′

= E0′ = ΠxE
0Π†

x (3.14)

The RN ν
n sequence is built by concatenating N/2 pair of elements of the form

Rφ0
R

′

−φ0
, i.e.,

Eq = (Πx)
qRφ0

(Π†
x)

q (3.15)

with a proper choice of φ0 . Define Sq as the rf propagator at a generic time tq
within Eq, starting from the beginning of the element, Eq as the propagator over
one complete Eq and Aq as the accumulated propagator from t00 to tq, given by

Aq = (Πx)
q S0Rz(−2qφ0) (3.16)

The next step is to consider the action of such an rf field on the spin Hamiltonian.
We want to evaluate the effective Hamiltonian during one full period T = N×τR =
n × τr of the rf sequence. This requires the evaluation of the spin Hamiltonian in
the interaction frame, followed by an Average Hamiltonian Theory treatment over
one period. The interaction frame Hamiltonian can be obtained using Eq. 2.73.
Let us consider first only the spin-operator part of the spin Hamiltonian, i.e., Tλ0

ˆ̂
A†

qTλ0 =
ˆ̂
R z(2qφ0)

ˆ̂
S†

0

(

ˆ̂
Π†

x

)q

Tλ0 = eiπλq
∑

µ

Tλµe
−i2qµφ0Dλ

µ0 (Ωrf (t0))(3.17)

The interaction frame Hamiltonian is given by terms of the form:

H̃lmλµ(tq) = [Alm]R dl
m0

(

βRL
)

e−im(αRL+ωrt00−ωrt0) TλµD
λ
µ0 (Ωrf (t0)) ×

exp {iq(πλ − 2µφ0 + mωrτR)}

= H̃lmλµ(t0) exp

{

i
2πq

N
(πλ − µν + mn)

}

(3.18)

This can be separated into two parts: (i) a term dependent upon the nature of
the spin interaction and the form of the pulse sequence element R over the first
τR interval and (ii) a complex exponential dependent upon both the quantum
numbers and the number of R elements, q, defining Aq. The first-order Average
Hamiltonian over one period (Eq. 2.74) is given by:9,72

H̄(1)
lmλµ = [Alm]R κlmλµe

−im(αRL+ωrt00)Tλµ S (3.19)

with

κlmλµ = dl
m0

(

βRL
)

τ−1
R

∫ t00+τR

t00

Dλ
µ0(Ωrf(t))e

imωrtdt (3.20)

S =
1

N

N−1
∑

q=0

exp(iq {πλ − 2µφ0 + mωrτR}) (3.21)
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were κlmλµ is the so-called scaling factor.72 It depends upon the symmetry numbers
N , n and upon the basic element and it measures how efficiently the sequence
builds up the desired state. It is possible to rewrite φ0 = πν

N
, ν ∈ R, without loss

of generality. Moreover, ωrτR = 2πn/N , which gives

S =
1

N

N−1
∑

q=0

exp

{

i2πq

N

(

λN

2
− µν + mn

)}

(3.22)

therefore S is zero, unless the argument of the exponential function is equal to an
integer multiple of 2πi. If we define Zλ as any integer with the same parity as λ
it follows that

H̄(1)
lmλµ = 0 if mn − µν 6= N

2
Zλ (3.23)

The RN ν
n first-order selection rules, Eq. 3.23, depend upon the spin rotational

rank λ, while the CN ν
n selection rules (3.11) do not. This allows RN ν

n sequences
to discriminate between spin interactions on the basis of the parity of the spin
rotational rank λ, which creates many new possibilities.

As for the CN ν
n -sequences, it is possible to visualize the RN ν

n selection rules
in the form of a space-spin selection diagram (SSSD), in which the selection rule
itself is represented as a wall, with holes corresponding to the allowed space-spin
terms and spacings given by the winding numbers. As an example, Fig. 3.2 shows
the SSSD for the symmetry R146

2 both for even and odd λ values. This symmetry
produces a pure dipolar DQ Hamiltonian, to first order, while suppressing all other
interactions, including the CSA terms. Additionally, the fact that only the average
Hamiltonian terms H̄2−122 and H̄212−2 are recoupled to first order implies that the
DQ signal depends on the γ Euler angle only as a complex exponential, so that the
intensity of the DQ signal does not depend on it. All such sequences are labelled as
γ-encoded. The full powder average for this class of symmetries leads to an upper
limit for DQ filtering efficiencies of 73%. On the other hand, sequences which
recouple more than one spin tensor terms for each m value are not γ-encoded
and are generally expected to have lower theoretical efficiencies, even though some
counter examples are available from simulations.73

Paper I gives the theoretical basis for the RN ν
n sequences, together with first

and second-order selection rules for the average Hamiltonian. A discussion of the
improved performance of RN ν

n sequences with respect to other well-established
sequences is accounted for by comparison between the number of terms in the
second-order average Hamiltonian. Several symmetries are demonstrated exper-
imentally for a variety of cases, i.e. for homonuclear double-quantum and zero-
quantum recoupling, heteronuclear decoupling and heteronuclear recoupling. A
list of symmetries for selecting different spin interactions is also given.

Soon after their demonstration on a few test samples in Paper I, the RN ν
n

sequences have been successfully implemented for a variety of tasks, including
high-resolution 1H-spectroscopy,51 hereronuclear recoupling,66,74,75 zero-quantum
recoupling,76 homonuclear dipolar recoupling77 and correlation spectroscopy.78
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Figure 3.2: SSSD for R146
2 . (a) The spin rank λ = 2 corresponds to even Zλ

the gaps in the selection-rule wall come at 0,±N,±2N, . . .. (b) The spin rank
λ = 1 corresponds to odd Zλ values and the gaps in the selection-rule wall come
at ±N/2,±3N/2,±5N/2, . . .
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3.5 Time-Phase Relationship

In the discussion above, we considered a windowless series of pulses. The presence
of a time delay between two blocks can be accounted for by monitoring the de-
pendence of the Hamiltonian term Hlmλµ to phase and time variations. Let τ be
a generic time interval and φ an arbitrary phase, then

Hlmλµ(τ, φ) = Hlmλµ(0, 0) exp{−i(µφ − mωrτ)} (3.24)

Time and phase shifts can both be explained in terms of an overall phase shift of
the Hamiltonian. For µ 6= 0, it is always possible to compensate for the presence of
a time interval by phase adjustements, chosing a phase φ such that the argument
of the exponential vanishes,

φ =
mωrτ

µ
(3.25)

This relationship is used in many 2D experiments and applies not only to symmetry-
based sequence.

3.6 Second-Order Average Hamiltonian

The selection of certain interaction is facilitated by symmetry rules for obtaining
sequences with the desired first order average Hamiltonian. However, the first order
average Hamiltonian is often not sufficient to fully describe the spin system evolu-
tion on its own. Unwanted interactions can still give significant contributions if all
conditions for truncating the Magnus expansion are not satisfied. Therefore higher
order average Hamiltonian terms can discriminate between “good” sequences and
“bad” sequences, even though H̄(1)

lmλµ is the same. Unfortunately, when dealing

with H̄(k), with k ≥ 2 the formulae tend to get much more complicated than in
the H̄(1) case. It is convenient to make all equations as compact as possible, so we
use the following abbreviations (following the notation in Ref.45):

Mj = mjn − µjν +
λjN

2
(3.26)

xj = exp{i2πMj/N} (3.27)

f(t2, t1) =
[

H̃l2m2λ2µ2(t2), H̃l1m1λ1µ1(t1)
]

(3.28)

= dl2
m20

(

βRL
)

Dλ2
µ20 (Ωrf(t2)) dl1

m10

(

βRL
)

Dλ1
µ10 (Ωrf (t1)) ei(m1t1+m2t2)ωr ×

[

Al1m1

]R [

Al2m2

]R
e−i(m1+m2)(αRL+ωrt00) [Tλ2µ2 , Tλ1µ1 ]

[Tλ2µ2 , Tλ1µ1 ] =

λ1+λ2
∑

λ=|λ1−λ2|
cλTλ(µ2+µ1) (3.29)

where the cλ are related to the Clebsch-Gordan coefficients.25 The time relation-
ship between R element is translated in the form

f(t2 + q2τR, t1 + q1τR) = (x1)
q1(x2)

q2f(t2, t1) (3.30)
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Apart from multiplicative constants, the second order Average Hamiltonian is

H̄(2)
l2m2λ2µ2;l1m1λ1µ1

= (2iT )−1

∫ T

0

dt2

∫ t2

0

f(t2, t1)dt1 ∝ S(2)
¤

A(2)
¤

+ S(2)
4 A(2)

4

(3.31)

where

S(2)
¤

=
N−1
∑

q2=1

xq2

2

q2−1
∑

q1=0

xq1

1 (3.32)

A(2)
¤

=

∫ t00+τR

t00

dt2

∫ t00+τR

t00

f(t2, t1)dt1 (3.33)

S(2)
4 =

N−1
∑

q=0

xq
2 xq

1 (3.34)

A(2)
4 =

∫ t00+τR

t00

dt2

∫ t2

t00

f(t2, t1)dt1 (3.35)

S(2) terms depend upon symmetry-based rules. Second order rules and size of
the symmetry allowed terms for RN ν

n sequences can be estimated using symmetry
arguments.73

3.7 Supercycles

Given a well-behaved first order average Hamiltonian obtained through symmetry
arguments, it may be desirable to improve its performance by simple modification
of the basic sequence. This is often achieved by building up a so-called supercycle.
One of the goal of supercyling is to invoke some higher symmetry to get rid of
undesired high-order terms and thereby to achieve better performance. In what
follows we will explore two different kind of supercycles and consider their effects
to first and second order in average Hamiltonian theory.

3.7.1 π-supercycles

Let us consider as an example the supercycle CC̄, where C corresponds to a set of
N contiguous elements of any RN ν

n sequence and C̄ denotes the same block but
with a global phase shift of π. The accumulated propagator is

Aq = (Πx)
q S0Rz(−2qφ0) 0 ≤ q ≤ N − 1 (3.36)

Aq = Πz (Πx)
q S0Rz(−2(q − N)φ0)Π

†
z I

= Πz (Πx)
q S0Rz(−2qφ0)Π

†
z N ≤ q ≤ 2N − 1 (3.37)

If we consider the effect of such terms on the equilibrium density operator, Tλ0,
there is an additional π phase-shift, depending if we are in the first block or in the
second. If we define k to be 0 for the first block and 1 for the second, then

ˆ̂
A†

qTλ0 = eiπλq
∑

µ

Dλ
µ0 (Ωrf (t0)) e−i2qµφ0 Tλµ × (−1)kµ (3.38)
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It follows that the interaction frame Hamiltonian is

H̃lmλµ(tq) = [Alm]R dl
m0

(

βRL
)

e−im(αRL+ωrt00)eimωrt0 TλµD
λ
µ0 (Ωrf (t0)) ×

exp {iq(πλ − 2µφ0 + mωrτR)} (−1)kµ

and, recalling Eqs. 3.20 and 3.21, the average Hamiltonian is

H̄(1)
lmλµ = [Alm]R κlmλµe

−im(αRL+ωrt00) Tλµ S S ′

with (3.39)

S ′

=
1

2

1
∑

k=0

(−1)kµ =

{

0 µ = odd
1 µ = even

(3.40)

Terms with odd µ values are forbidden by the selection rule S ′

, even though they
might be allowed from S alone.

The behaviour of H̄(2) with this two-step supercycle can be related to the basic
block by

S(2)
¤,2 =

N−1
∑

q2=1

xq2

2

q2−1
∑

q1=0

xq1

1 + (−)µ2

2N−1
∑

q2=N

xq2

2

N−1
∑

q1=0

xq1

1 + (−)µ2+µ1

2N−1
∑

q2=N+1

xq2

2

q2−1
∑

q1=N

xq1

1

=
(

1 + (−1)µ2+µ1
)

N−1
∑

q2=1

xq2

2

q2−1
∑

q1=0

xq1

1 + (−1)µ2

N−1
∑

q2=0

xq2

2

N−1
∑

q1=0

xq1

1

=
(

1 + (−1)µ2+µ1
)

S(2)
¤

+ (−1)µ2S(1)
1 S(1)

2 (3.41)

S(2)
4,2 =

(

1 + (−1)µ2+µ1
)

N−1
∑

q=0

xq
2 xq

1 =
(

1 + (−1)µ2+µ1
)

S(2)
4 (3.42)

The first term in S(2)
¤,2, as well as S(2)

4,2, resemble what we had for the basic sequence
and the multiplicative factor makes them vanish if (µ1 + µ2) is odd; the second

term in S(2)
¤,2 is related to the first order selection rule S(1) and it exists only if

both terms are allowed in H̄(1); its sign is µ-dependent and might affect the way
that different terms in H̄(2) add together, but has no direct effect on a single term.
Similarly for 4-step supercycle CC̄C̄C we get

S(2)
¤,4 = 2

(

1 + (−)µ2+µ1
)

S(2)
¤

+ S(1)
1 S(1)

2

(

1 + (−)µ2+µ1 + 2(−)µ1 + 2(−)µ2
)

S(2)
4,4 = 2

(

1 + (−1)µ2+µ1
)

S(2)
4

The only difference is that another factor vanishes when (µ1 + µ2) is odd (and
has different values if both terms are odd or even). If we consider γ-encoded
sequences for pure DQ dipolar recoupling, the number of terms in H̄(2) varies but
there is a subset of terms which remain. For any sequence, H̄(2) can be simplified
by supercycling and for all sequences this leads to the same minimum number of
terms. The fact that the sequence performance does not always improve might
depend on: (i) higher order terms, (ii) increase in the period of pulse sequence and
its consequence in terms of average Hamiltonian theory, (iii) scaling factor.
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3.7.2 ν-inverted supercycles

For (RN ν
n)(RN−ν

n ), the accumulated propagator in the second block is

Aq = Πx (Πx)
q S0Rz(−2(q − N)φ0)Π

†
x I = (Πx)

q+1 S0 Rz(−2qφ0)Π
†
x (3.43)

As before, we can define a block counter k and write the effect of Aq on the
equilibrium density operator, Tλ0, in a general way as

Aq = (Πx)
q+k S0 Rz(−2qφ0)(Π

†
x)

k (3.44)

ˆ̂
A†

qTλ0 = eiπλq
∑

µ

Dλ
µ0 (Ωrf (t0)) e−i2qµφ0 Tλ(−)kµ (3.45)

The interaction frame Hamiltonian is

H̃lmλµ(tq) = [Alm]R dl
m0

(

βRL
)

e−im(αRL+ωrt00)eimωrt0 Tλ(−)kµD
λ
µ0 (Ωrf (t0)) ×

exp {iq(πλ − 2µφ0 + mωrτR)} (3.46)

and now the block dependence is in the tensor, instead of being in the complex
exponential. The selection rule coincides with normal RN ν

n sequences in the case
µ = 0. For the general case, it is better to take into account all together terms
associated with opposite µ values. Recalling Eqs. 3.20 and 3.21, the average Hamil-
tonian is

H̄(1)
lmλµ =

1

2
[Alm]R κlmλµe

−im(αRL+ωrt00) (Tλµ + Tλ−µ) S (3.47)

which doesn’t look particularly nice. Let’s remove k from the tensor and redefine
it in terms of a blending of µ values and blocks, as

H̃lmλµ(tq) = [Alm]R dl
m0

(

βRL
)

e−im(αRL+ωrt00)eimωrt0 TλµD
λ
µ0 (Ωrf (t0)) ×

(−)kµei2kµφ0 exp
{

iq(πλ − 2(−)kµφ0 + mωrτR)
}

leading to

H̄(1)
l±mλµ = H̄(1)

lmλµ,0 + H̄(1)
lmλ−µ,1 =

1

2
[Alm]R e−im(αRL+ωrt00)κlmλµTλµ ×

(

S+ + (−)µ ei2µφ0S−
)

S+ =
1

N

N−1
∑

q=0

exp

{

i2πq

N

(

λN

2
− µν + mn

)}

S− =
1

N

N−1
∑

q=0

exp

{

i2πq

N

(

λN

2
+ µν + mn

)}

The selection rule 3.21 still holds, but this supercycle leads to the loss of γ encoding:
given a specific tensor element Tλµ, ±m components are selected. If we use Eq. 3.46
for the interaction Hamiltonian, we decompose H̄(2) in a convenient way, as

f(t2, t1) =
[

H̃l2m2λ2µ2, k2(t2), H̃l1m1λ1µ1, k1(t1)
]

= g(t2, t1)
[

Tλ2(−)k2µ2
, Tλ1(−)k1µ1

]

A(2)
¤,2 =

∫ t00+τR

t00

dt2

∫ t00+τR

t00

g(t2, t1)dt1

A(2)
4,2 =

∫ t00+τR

t00

dt2

∫ t2

t00

g(t2, t1)dt1
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and the second order selection rules become

S(2)
¤,2 =

N−1
∑

q2=1

q2−1
∑

q1=0

xq2

2 xq1

1 [Tλ2µ2 , Tλ1,µ1 ] +
2N−1
∑

q2=N

N−1
∑

q1=0

xq2

2 xq1

1 [Tλ2−µ2 , Tλ1,µ1 ]

+
2N−1
∑

q2=N+1

q2−1
∑

q1=N

xq2

2 xq1

1 [Tλ2−µ2 , Tλ1,−µ1 ]

= S(2)
¤

([Tλ2µ2 , Tλ1,µ1 ] + [Tλ2−µ2 , Tλ1,−µ1 ]) + S(1)
1 S(1)

2 [Tλ2−µ2 , Tλ1,µ1 ](3.48)

S(2)
4,2 = S(2)

4 ([Tλ2µ2 , Tλ1,µ1 ] + [Tλ2−µ2 , Tλ1,−µ1 ]) (3.49)

I have verified numerically that

[Tλ2µ2 , Tλ1,µ1 ] + [Tλ2−µ2 , Tλ1,−µ1 ] = 0 if µ2 + µ1 = 0 (3.50)

which eliminates the z-rotation perturbation, as expected. Unfortunately, this
condition does not hold for any λ1, λ2 but only for certain cases, i.e. it always holds
when the tensors refer to the same interaction and order and it holds sometimes for
some cross-terms between different interactions, but not generally. All cross-term
between +1 and −1 components of the CSA tensor disappear.

3.8 Field Imperfections

Sometimes the discrepancy between experimental results and simulation is quite
evident. In the case of pulse sequences made up by a series of continuous pulses,
with no windows, some interference between neighboring pulses might affect the
experiment. Such effects can be minimised by designing sequences with good
compensation of these problems.

3.8.1 RF Field Inhomogeneity

In Table 2.1 are summarized the transformation properties of several interactions,
including rf terms. In presence of rf field inhomogeneity, crystallites occupying
different positions might experience at a certain time point slightly different rf
fields. The effective Hamiltonian in Eq. 3.19 is derived for a system with an
initial Hamiltonian whose spin part is simply Tλ0. That is not the case for rf
inhomogeneities, for which the spin part is T1±1. Therefore the rf term must be
treated separately and can be included in the average Hamiltonian treatment by
transforming to the interaction frame not only the spin Hamiltonian but also the
difference between the nominal amplitude and the actual value as follows

HB(t) = Hlmλ0(t) + ∆ωS
nut(t, r) Rz(φ)Ixtot

Rz(−φ) = Hlmλ0(t) + Hε(t) (3.51)

It is customary to write rf inhomogeneities in a form which assumes that the
additional term describing the imperfection is proportional to the “nominal” rf
Hamiltonian at any time:

Hε (t) = εHrf(t) (3.52)
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where ε(r) accounts for the position dependence. As for the main rf field,

Hε (tq) =
(

ˆ̂
Πx

)q

Hε (t0) (3.53)

We have already calculated the first term of Eq. 3.51 in the interaction frame and
its average over one period and the results in Eq. 3.23 still apply. For the second
term, the interaction frame Hamiltonian is given by

H̃ε(tq) =
ˆ̂

A†
qHε (tq) =

ˆ̂
R z(2qφ0)

ˆ̂
S†

0(
ˆ̂
Π†

x)
q
(

ˆ̂
Πx

)q

Hε (t0)

=
ˆ̂
R z(2qφ0)

ˆ̂
S†

0 Hε (t0)

=
ˆ̂
R z(2qφ0) H̃ε(t0)

=
1

∑

µ=−1

ω̃ε
1µ (t0) T1µ × exp

{

−i2π q

N
µν

}

(3.54)

where the exact form of ω̃ε
1µ (t0) depends on the form of the R element. If

[Hrf(tq), Sq] = 0, this simplifies to

H̃ε(tq) =
ˆ̂
R z(2qφ0) Hε (t0) =

∑

µ=±1

ωε
1µ (t0) T1µ × exp

{

−i2π q

N
µν

}

(3.55)

with ωε
1µ (t0) = ε ωS

nut(t0) e−iµφ0

since Hε (t) is proportional to the main rf term. Eq. 3.55 is fulfilled if the pulse
sequence element R consists of pulses whose representation Hamiltonians commute
with one another, as when the individual pulses within R are rotations around the
same axis, i.e. with relative phase shift equal either 0 or π. This situation is
indicated in the following as the amplitude-modulation (AM) case. In this case the
µ = 0 component of the T1µ tensor is absent. Introducing a λ

′

= 0 for convenience,
we get

H̄ε
00λ

′
µ

= τ−1
R T1µ

∫ t00+τR

t00

ω̃ε
1µ (t) dt × S ′

(3.56)

with S ′

=
1

N

N−1
∑

q=0

exp

{

−i2π q

N
µν

}

(3.57)

It follows that

S ′

=

{

0 µν 6= N
2
Zλ

′

1 µν = N
2
Zλ′

(3.58)

where Zλ
′ is an even integer, while the real spin rank is λ = 1. This analysis

shows that rf field inhomogeneity may be represented in the selection rule 3.23 by
including a term with an even effective spin rank.
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3.8.2 RF Transients

There are two kinds of rf transients: real transients (same phase as the generating
pulse) and quadrature transients (90◦ phase shifted with respect to the pulse).
Both give rise to symmetric (leading and falling transients have same sign) and
asymmetric transients (leading and falling transients have opposite sign). I define
a rise and a fall coefficient respectively as b↑(t) and b↓(t), containing the combined
effect of symmetric and asymmetric part. These coefficients do not depend upon
the q-interval, i.e.,

b↑(tq) = b↑(t0) = b↑ (3.59)

and their time dependence will be made implicit. The rf transients can be expressed
as

Hε
rf(tq) = Hε

rf,real(tq) + Hε
rf,quad(tq) (3.60)

For relatively long rf pulses it is reasonable to assume that the transient effect
from one pulse dies out within the next one. The form of the rf field at each time
point depends on the amplitude and phase of the current pulse and on amplitude
and phase of the previous pulse. To start with a simple case, let R= Πx. The ideal
rf Hamiltonian is constant thoughout each pulse

Hrf(tq) =
ˆ̂
R z(φq)H

0
0 = Hq (3.61)

where H0
0 is proportional to Ix and Hq includes the ±φ0 phase alternation and Hq

indicates the Hamiltonian for the q-th element. For the real transients

Hε
rf,real(tq) = b↑ Hq + b↓ Hq−1

= b↑(
ˆ̂
Πx)

q H0 + b↓(
ˆ̂
Πx)

q−1 H0 (3.62)

leading to the interaction frame Hamiltonian

H̃ε
rf,real(tq) =

ˆ̂
R z(2qφ0)

ˆ̂
S†

0

{

b↑ + b↓ (
ˆ̂
Π†

x)
}

H0

=
1

∑

µ=−1

(

b↑ω
rf
1µ + b↓ω̃

b,rf
1µ

)

T1µ × exp

{

−i2πq µν

N

}

where ωrf
1µ and ω̃b,rf

1µ are coefficients accounting for the action of S0, which commutes
with the first term but not with the second, therefore the µ = 0 component must
be considered. The average Hamiltonian is given by

H̄rf
00λ

′
µ

= τ−1
R T1µ

∫ t00+τR

t00

f(t) dt × S ′

(3.63)

with S ′

=
1

N

N−1
∑

q=0

exp

{

−i2π q

N
µν

}

(3.64)
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Figure 3.3: Sketch of two consecutive R elements, related to each other by complete
phase inversion.

The selection rule follows Eq. 3.58. For the quadrature term we have

Hrf,quad(tq) = b
′

↑
ˆ̂
R z(π/2)Hq + b

′

↓
ˆ̂
R z(π/2)Hq−1

= b
′

↑(
ˆ̂
Πx)

q ˆ̂
R z ((−)qπ/2) H0 + b

′

↓(
ˆ̂
Πx)

q−1 ˆ̂
R z

(

(−)q−1π/2
)

H0

= b
′

↑
ˆ̂
Πq

x
ˆ̂
Πq

zHqd + b
′

↓
ˆ̂
Πq−1

x
ˆ̂
Πq−1

z Hqd (3.65)

with Hqd =
ˆ̂
R z (π/2) H0. This corresponds to the interaction frame Hamiltonian

H̃rf,quad(tq) =
ˆ̂
R z(2qφ0)

ˆ̂
S†

0

{

b
′

↑
ˆ̂
Πq

z + b
′

↓(
ˆ̂
Π†

x)
ˆ̂
Πq−1

z

}

Hqd

=
ˆ̂
R z(2qφ0)

ˆ̂
S†

0

∑

µ=±1

(−)qλ
{

b
′

↑ω1µ(t0) + b
′

↓ω1−µ(t0)
}

T1µ

=
1

∑

µ=−1

{

b
′

↑ω̃
rf
1µ(t0) + b

′

↓ω̃
b,rf
1µ (t0)

}

T1µ exp

{

−i
2πq

N
(µν + λ

N

2
)

}

(3.66)

since the µ = 0 component is missing in the second step and we replaced µ with
λ in (−)qµ, so

S ′

=

{

0 µν 6= N
2
Zλ

1 µν = N
2
Zλ

(3.67)

More generally, the effective π rotation can be described as R = (β1)α1(β2)α2 , with
different flip angles and phases, constant amplitude and respectively of duration
τ1 and τ2, as described in Fig. 3.3 (R elements containing three or more pulses can
be described similarly).

The first of the two pulses in the q-th R element, whose Hamiltonian is labelled

H
1©

q , is influenced by the phase of the last pulse in the (q−1)-th R element, while

the second (or any more) pulse in Rq, associated with H
2©

q , is only influenced by
the previous pulse in the same element, without any additional phase alternation:

H
2©

q depends only upon Hq, while H
1©

q contains both Hq and Hq−1.

Hε
rf,real(tq) =







H
1©

q =
ˆ̂
Πq

x

{

b↑
ˆ̂
R z(α1) + b↓

ˆ̂
Πx

ˆ̂
R z(α2)

}

H0

H
2©

q =
ˆ̂
Πq

x

{

b↑
ˆ̂
R z(α2) + b↓

ˆ̂
R z(α1)

}

H0
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For an R element made up of more than 2 pulses, all intervals after 1© resemble
2©. This can be simplified as

H̃ε
rf,real(tq) =







H
1©

q =
ˆ̂
R z(2qφ0)

ˆ̂
S

1©,†
0

{

b↑
ˆ̂
R z(α1) + b↓

ˆ̂
Πx

ˆ̂
R z(α2)

}

H0

H
2©

q =
ˆ̂
R z(2qφ0)

ˆ̂
A

1©,†
0

ˆ̂
S

2©,†
0

{

b↑
ˆ̂
R z(α2) + b↓

ˆ̂
R z(α1)

}

H0

The terms in curly brackets give rise to a z rotation of the spin operators in H0

and affect its magnitude differently. Both terms can be written in closed form
introducing a time dependent coefficient fµ,α1,α2(t0) which only depends on the
specific time point considered within each R element but does not otherwise affect
the selection rules:

H̃ε
rf,real(tq) =

1
∑

µ=−1

fµ,α1,α2(t0) T1µ × exp

{

−i2πq µν

N

}

For the quad term,

Hε
rf,quad(tq) =







H
1©

q =
ˆ̂
Πq

x
ˆ̂
Πq

z

{

b
′

↑
ˆ̂
R z(α1) + b

′

↓
ˆ̂
Πx

ˆ̂
Πz

ˆ̂
R z(α2)

}

Hqd

H
2©

q =
ˆ̂
Πq

x
ˆ̂
Πq

z

{

b
′

↑
ˆ̂
R z(α2) + b

′

↓
ˆ̂
R z(α1)

}

Hqd

=







H
1©

q =
ˆ̂
R z(2qφ0)

ˆ̂
S

1©,†
0 (−)qλ

{

b
′

↑
ˆ̂
R z(α1) + b

′

↓
ˆ̂
Πx

ˆ̂
Πz

ˆ̂
R z(α2)

}

Hqd

H
2©

q =
ˆ̂
R z(2qφ0)

ˆ̂
A

1©,†
0

ˆ̂
S

2©,†
0 (−)qλ

{

b
′

↑
ˆ̂
R z(α2) + b

′

↓
ˆ̂
R z(α1)

}

Hqd

=
1

∑

µ=−1

fµ,α1,α2(t0) T1µ × exp

{

−i
2πq

N
(µν + λ

N

2
)

}

The interaction frame Hamiltonian obeys the same symmetry-based selection rules
as we obtained with a simple Πx pulse, Eqs. 3.64 and 3.67. The use of a composite
AM pulses affects the size of the average Hamiltonian by removing some of the
µ = 0 components but does not change the first-order selection rules. Higher order
effects may be important. Also the size and form of the transient will affect the
actual performance of the sequence, but not its symmetry-based properties.

Fig. 3.4 shows a simulation of the amplitude and phase of the rf field in the
coil during the first two R elements of the R146

2 sequence and with the composite
pulse R=900 270π using for a realistic case and are shown in Fig. 3.4(b) and (c).
More details on these simulations are to be found in Paper II.

3.8.3 Phase Modulation Transients

Let us consider a different kind of transients which affect the way the the rf field
is modulated, as

φ(t) = φ0 + φ(0) cos(mωrt + φ(1)) (3.68)

where φ0 is the exact phase, φ0 is a small, transient deviation (i.e., φ0 < π/4). This
type of modulation has been shown to be responsible for certain artifacts in rotary
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Figure 3.4: (a) The first two elements of a R146
2 sequence. (b) Rf field amplitude

in the coil for an exact match of the coil natural oscillation frequency and the rf
frequency (no quadrature transient, solid line) and for a tuning offset of 200 kHz
(small quadrature transient, dashed line). (c) Phase of the rf field in the coil under
the same conditions.
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x

φ0

φ0

y

Figure 3.5: The x axis is defined as the
expected direction of the rf field and the
deviation from idealitity gives rise to a
parallel component always positive and a
negative component with zero average.

resonance recoupling experiments.79 The rf field at any time can be decomposed
as

Hrf(tq) =
ˆ̂
R z(φ

(0) cos(mωrtq + φ(1))) H0
rf(tq) (3.69)

=
ˆ̂
R z(φ

(0) cos(mωrt0 +
2πnm

N
q + φ(1))) H0

rf(tq)

This can not be separated into two parts to apply average Hamiltonian theory, but
the resulting field is still in the xy plane. As represented in Fig. 3.5, the “exact”
direction is labelled as x for convenience and ±φ0 gives the maximum deviation
from it. If we project Hrf onto the x axis, the parallel components is always reduced
but always consistently positive, while the orthogonal component oscillates around
zero between positive and negative values, therefore it has a vanishing average and
we neglect it. Based on this approximation, we can put our problem into an easier
form for analytical manipulation:

Himp
rf (tq) = −φ(0) ei(mωrtq+φ(1)) H0

rf(tq)

= −φ(0)ei(mωrt0+φ(1)) exp

{

i
2πmn

N
q

}

(

ˆ̂
Πx

)q

H0
rf(t0)

corresponding to the interaction frame Hamiltonian

H̃rf(tq) = φ(0)ei(mωrt0+φ(1)) exp

{

i
2πmn

N
q

}

ˆ̂
R z(2qφ0)

ˆ̂
S†

0H0
rf(t0)

= φ(0)ei(mωrt0+φ(1))

1
∑

µ=−1

ω̃
′ rf
1µ (t0) T1µ exp

{

−i2πq

N
(µν − mn)

}

(3.70)

and the selection rule becomes

S ′

=

{

0 µν − mn 6= NZ
1 µν − mn = NZ

Z = integer (3.71)

3.8.4 First Order Average Hamiltonian in a Model Case

Now that we have summarised the first order selection rules for the spin Hamilto-
nian and the rf transients, it is useful to consider a common sequence, like R146

2 ,
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and consider explicitly which terms will be present to first order. For instance, the
sequence used for distance measurements, R146

2 with R0=900 270180, uses ampli-
tude modulated rf fields. This is compensated to first order for all the transients
described in the previous sections (±6 6= 7×Z, with Z ∈ N and ±6−2m 6= 14×Z).
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Chapter 4

Homonuclear Dipolar Recoupling
of 13C2 Pairs and Applications

4.1 Introduction

One of the key goals of this work is to illustrate how to use rotor-synchronized
sequences to measure distances between two nuclei of the same species with high
precision. Paper II introduces a new approach for 13C-13C distance determination
for directly bonded carbon atoms, as well as for medium-distance determination.
The typical C-C distance range for different bond orders is shown in Fig. 4.1. From
these figures, it is apparent that an accuracy of at least 5 pm is necessary in order to
study bond conjugation. The precision of the diffraction measurement is related to
the quality and the size of the crystals which can be obtained. For good crystals of
small molecules, it is often possible to localize carbon atoms and other relatively
heavy atoms with X-ray diffraction with a precision of about 1 pm or better.
For larger molecules containing thousands or millions of atoms, the resolutions
seldom gets below a threshold of 15 pm to 20 pm, it may be even difficult to
distinguish small molecules like water from cations with a similar electron density.
This is often the case in many structural determinations of biomolecules, where the
common resolution is of the order of 10 pm to 30 pm. Under such conditions, it is
possible to get a clear picture of the overall molecular structure and on how various
fragments are related to each other, but nothing can be said about bond-lengths.

The precise estimation of distances between carefully-chosen pairs of nuclear
spins allows the elucidation of important mechanistic details. Such applications
require the construction of robust sequences for exciting DQ coherences. Other
features, like the dependence upon CSA amplitude and orientation also determine
achievable DQ efficiency as well as the long-term behaviour of the DQ build-up
curve. The task of measuring distances is of central importance in NMR, both in

C C C C C C

153 pm 140 pm 133 pm

Figure 4.1: typical distances between directly bonded carbon atoms
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homonuclear and heteronuclear spin systems. When dealing with solid-state NMR
on rotating solids, it is essential to use methods which recouple the interaction
which is normally suppressed completely or partly by the sample rotation at the
magic angle. There is no unique answer to what is the best approach for measuring
distances, since it depends on many parameters related both to the specific system
under investigation and to the experimental setup.

For instance, when working with biological solids it is desirable to operate
in “mild” conditions, both in terms of spinning speed and rf power, in order to
minimize the physical and thermal stress on the sample, which might otherwise
decompose. On the other hand, for many other organic and inorganic compounds
there is no such constraint and the use of high spinning speeds is preferable, due
to a better suppression of CSA and of all terms related to second-rank tensors.

For measuring distances between homonuclear pairs, some well established
methods exploit: (i) ZQ-recoupling (rotational resonance32,36), (ii) transverse mag-
netization exchange between the two sites of interest (DRAWS80–83 and RFDR84,85)
and (iii) DQ recoupling methods.9,65,86

DRAWS, for instance, is widely used for medium and longe-range distance
measurements and is therefore the most common method, together with rota-
tional resonance, for homonuclear long-range distance measurements. The main
limitation of DRAWS for short distance measurements is related to its limited
time resolution, which limits the sampling of the fast dipolar oscillation. The
method we propose here is intended for precise bond-length measurements and is
not meant to compete with the techniques mentioned above for measuring inter-
nuclear distances above about 3Å, due to the unsatisfactory CSA compensation
of the R sequences tested so far at long excitation times.87 However, the situation
may change as the understanding of supercycled sequences advances.

4.2 Pulse Sequence for Distance Measurement

The sequence used for homonuclear distance measurements is shown in Fig. 4.2
and is fully described in Paper II. Enhanced carbon magnetization is created via
ramped-CP, then it is transferred into longitudinal magnetization by a π/2 pulse.
At this point, an RN ν

n sequence for pure DQ dipolar recoupling is applied for an
interval τexc to generate DQ coherences. The DQ state is then reconverted back
in the following interval with an R sequence of duration τrec, phase shifted by 90o

with respect to the excitation block. Finally, the DQ filtered spectrum is acquired
after a π/2 reading pulse. Additionally, in order to avoid phase distortion in the
DQF spectra, it is advisable to include a z-filter by introducing a short delay of
free evolution, or an extra level of phase cycling.

In our case, the experiment aims at determining distances and so the sequence
is repeated for different values of the excitation and/or reconversion intervals. The
set of DQF efficiencies plotted against the duration of the RN ν

n sequence is called
a “build-up” curve. There is no need for τexc and τrec to be equal. On the contrary,
it is convenient to acquire a DQF build-up curves with the asymmetric scheme,
resulting in a much wider dynamic range and in a shortening of the irradiation
time. Fig. 4.3 gives the experimental comparison between the build-up curve for
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R φ R−φ

τ exc recτ

90φ 270 π−φ

x

y y

2QC

CWCW DecouplingCP

S

I

270 π+φ 90−φ

Figure 4.2: Pulse sequence for excitation of DQ coherences and for distance mea-
surement. The duration of the excitation and reconversion periods (shaded block)
are not necessarily equal. The shaded block is subjected to phase cycling in order
to select the DQ coherence at the end of the excitation period and transfer it
into longitudinal magnetization. CW decoupling is applied during the recoupling
sequence and acquisition. In our experiment, the I channel denotes 1H irradiation
while the S channel denotes 13C.
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Figure 4.3: Experimental 13C DQF efficiencies for [2,3-13C2]-L-alanine at 9.4 T
and a spinning frequency ωr/2π=6.0 kHz, together with the best fit simulations,
using R146

2 (a) Symmetric procedure (τexc = τrec). (b) Asymmetric procedure
(τrec=523.8 µs).

the symmetric excitation and reconversion (τexc = τrec) and for the asymmetric
case (τexc 6= τrec). In this respect, it is convenient to select symmetries which give
rise to wide oscillations in the build-up curve. The symmetries which have been
used for distance measurement correspond to the rotational numbers (l,m, λ, µ) =
(2,−1, 2, 2) and (2, 1, 2,−2). The resulting signal in the DQF spectrum for a pair
of dipolar coupled spins is modulated as

sin(ωij
Dτexc) sin(ωij

Dτrec) (4.1)

using a first-order average Hamiltonian model and with ωij
D being the dipolar

coupling constant between spins i and j, expressed in angular units.

ωij
D =

√
6 bij κ2−122 D2

0−1(Ω
ij
PR) ei(α0

RL+ωrt0) (4.2)

κ2−122 = d2
−10

(

βRL
)

τ−1
R

∫ t00+τR

t00

D2
20(Ωrf(t))e

−iωrtdt (4.3)

where bij is the dipolar coupling constant, defined in Eq. 2.58, while the scaling
factor κ depends upon the selected symmetry and basic element.72 Even though a
simple π pulse corresponds to high scaling factor, most often the requirement for
a broadband excitation makes it more convenient to use composite pulses.9,65

The same scheme presented in Fig. 4.2 can be used with a variety of sequences
for pure dipolar DQ excitation other than RN ν

n sequences but we found that choos-
ing an RN ν

n sequence is advantageous when dealing with strongly coupled 13C-13C
systems due to their robustness for short recoupling times. Once the DQ state is
generated, it can be manipulated for several purposes to study the local molecular
environment. For instance, the DQ state can be exploited to measure a torsion an-
gle around the dipolar vector by adding a period during which the DQC is allowed
to evolve under the influence of its couplings to neighboring nuclei (see Sect. 4.5).
It can be a part of a experiment designed in getting the proximities between active
nuclei, to aid the assignment of complex spectra. It can be used as starting point
towards the excitation of higher order coherences.68
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Figure 4.4: Diamonium-[2,3-13C2]-fumarate at 4.7 T and ωr/2π=11.85 kHz using
R269

8. The phase is adjusted around the theoretical value φ0 = 62.31◦. Note the
extremely high sensitivity to the value of this phase shift. The rather irregular
dependence on the phase shift may reflect the limited phase resolution of the
hardware.

4.3 Distance Measurements on Model Systems

RN ν
n sequences are rather robust with respect to variations in magnitude and

orientation of the CSA tensor, when applied for bond-length measurements. This
is an important feature because the exact details of the CSA tensor magnitude
and orientation are not known in many interesting systems and it is desirable to
get a distance estimate which does not depend much on unknown parameters.

To increase DQ efficiency and reduce the discrepancy between the theoretical
73% limit and the simulated efficiency, we compared the ideal first-order RN ν

n

Hamiltonian at the end of a full block of N contiguous R elements (ideally equal
to I) with the one obtained through numerical simulation on one- and two-spin
systems. It emerged that one of the terms in the real Hamiltonian which affects
the sequence performance is a z-rotation, or more generally a Tλ0 tensor, which
accumulates period after period. Many such terms can be identified as allowed
in H̄(2). Since each R element gives rise to a π rotation and a z-rotation, an
obvious way to partly compensate for this problem is to alter the phase of the R
element in such a way as to cancel out the two terms. Tiny phase adjustments can
improve the short and long-term behaviour of the DQ build-up curve. Experiments
confirmed this effect, as shown in Fig. 4.4. In practice, a few curves are monitored
in order to establish the optimal phases, all recorder with τexc=τrec (see Fig. 4.5).
The aim is to select the phase that makes the entire symmetric build-up curve
positive, not simply to maximize the DQ-filtering efficiency at short times. Another
approach for removing Tλ0 terms from H̄(2) relies on a supercycle of the form CνC−ν .
Unfortunately, such a supercycle removes those terms at the expenses of the γ-
encoding. The ν − ν supercycle has been applied successfully in RN ν

n sequences
for ZQ recoupling,76 which are not γ encoded in any case. This supercycle has also
been used in DQ recoupling experiments for weakly coupled systems88 without any
significant loss in DQF efficiency.
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Figure 4.5: Experimental DQ-filtering efficiency using R229
4 on 11,2-[13C2]-all-E-

retinal at 9.4 T and 5.5 kHz, as a function of the phase. Each curve corresponds
to a different number of R elements (indicated in the legend) and the arrow marks
the phase value corresponding to exact R229

4 symmetry. Note the extremely high
phase sensitivity for large numbers of elements.

For 13C-13C distance measurements we use a symmetry-based sequence for ex-
citation of pure double-quantum coherence between the two labelled nuclei, while
averaging out all other interactions. By changing the duration of the DQ excita-
tion and/or reconversion sequence, it is possible to relate the shape of the build-up
curve to the dipolar coupling between the labelled pair. The selection of a specific
interaction in the first-order average Hamiltonian is possible by a proper choice of
the symmetry numbers, but the real performance of the sequence depends also on
experimental imperfections and on the behaviour of higher order terms in the aver-
age Hamiltonian, as discussed in Sect. 3.6. The number of higher-order terms can
be further reduced by supercycles, expecially for medium-range distances which
involve more than just a few ms of DQ irratiation, but it is not sufficient by itself to
establish the optimal sequence. Hence the necessity to compare simulations with
the experimental performance. Additionally, the maximum DQ efficiency is only
one of the parameters which needs to be taken into account. As shown in Paper I
and II it is essential to have a well behaved sequence with respect to rf offset and
amplitude missets. In Paper II the symmetries R146

2 and R229
4 are successfully

used to estimate 13C-13C distances with an accuracy of 5 pm or better.

The results on bond-length and medium-range distance measurement are sum-
marized in Fig. 4.6. These are the “pure” NMR data with the corresponding
error bars, with the assumptions that the nuclei are fixed in space. In reality, the
molecules undergo vibrational motions and the bond lengths estimated by NMR
suffer of a systematic overestimate error of about 1 to 4 pm, as a result of motional
averaging.89 For the shorter distances, we observe a consistent 2.3 ± 1.1 pm dis-
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Figure 4.6: The NMR distances (filled diamonds) are plotted together with their error bars against the XRD data (asterisk). On the
left hand side, we have the bond-length measurements on a set of 6 reference compounds (data from Paper II). As can be been, the
NMR distance is always above the dotted line passing through the XRD data, indicating the presence of a systematic overestimate
of the internuclear distances by 2.3 ± 1.1 pm. The right-hand side shows medium-range distance measurements. The precision of
this method is poor for distances above 350 pm.
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ωr

Figure 4.7: Scheme of the rotor with an alligned sample in it. The sample (typically
a biomembrane) is allinged on disks within the rotor and spun at the magic angle

crepancy between the solid-state NMR estimate and the X-ray diffraction (XRD)
distance, which is attributed mainly to vibrational effects and is consistent with
Ref. 89. Part of the discrepancy may also be due to J-anisotropy, but this contri-
bution is expected to be very small (< 5 Hz) for 13C-13C J interactions.90

4.4 Dipolar Recoupling on Oriented Samples

Most of the experiments discussed so far involve powder samples, i.e., the sample
is made up of a myriad of crystallites with random relative orientations. Another
interesting case occurs when dealing with samples which are aligned with respect
to some direction. This is the case when dealing with liquid crystals, for example,
where the magnetic field can induce the molecules to align in some special direc-
tion with respect to it. In other cases the alignment can be forced onto the sample
by mechanical means. In the past few years a new methodology has been in-
troduced by Glaubitz and Watts, named Magic-Angle-Oriented-Sample-Spinning
(MAOSS),91,92 in which the sample, made up of well ordered biomembranes, is
aligned on thin glass dishes which are stacked on top of each other within the
rotor. The membrane normal tends to be orthogonal to the glass plates and this
gives macroscopically ordered samples, as depicted in Fig. 4.7. In general, the
spinning of the sample is a disturbance for the molecular alignment and there-
fore only moderate spinning speeds can be used (i.e., below 6 kHz). The level
of macroscopic order is estimated by monitoring the 31P signal in the polar head
group of the lipid bilayers. The shape and width of this 31P signal reflects directly
the alignment level and measures the mosaic spread is in the sample.

Once the orientation of the sample with respect to the rotor axis is known,
the measurements of some well-chosen NMR interactions can give insight into
the orientation of the selected molecular fragment with respect to the rest of the
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0 π/4 π/2

Figure 4.8: Angle dependence of the reduced Wigner matrix elements determining
the behaviour of some DQ recoupling sequences, as sin 2β for m = 1 (solid line)
and sin2 β for m = 2 (dotted line).

molecules. This method has been applied to many interesting systems.93–95 In
particular, the quadrupolar interaction has been used in specifically labelled 2H
proteins to provide precise orientation information. Now several groups are imple-
menting this technique and MAOSS is becoming a more common experiment.

In this context, it is possible to devise experiments that exploit dipolar re-
coupling to measure the orientation of molecular fragments. These experiments
require a knowledge of the internuclear coupling, therefore it is convenient to use
both unoriented and oriented samples, to get the precise internuclear distance from
the first and orientational information from the second.

The recoupling sequence must be chosen so as to allow an unambiguous deter-
mination of the orientation. It is possible to use symmetry arguments to obtain
a recoupling sequence with the derired first-order average Hamiltonian. All re-
coupling sequences listed in Paper II do not fulfil this requirement, since the pure
dipolar DQ recoupling sequences which recouple (l,m, λ, µ) = (2,−1, 2, 2) and
(2, 1, 2,−2) involve the reduced Wigner matrix element d2

21(β) which has an an-
gular dependence of the form sin(2βMR), according to the notation introduced in
Sect. 2.6. This is not a monotonic function in the interval between 0 and π/2. On
the other hand, symmetries which recouple terms (l,m, λ, µ) = (2,−2, 2, 2) and
(2, 2, 2,−2) depend on the β angle as sin2 βMR. This is a good choice for pure DQ
recoupling in oriented samples, as can be seen from Fig. 4.8.

There is no RN ν
n sequence for pure DQ recoupling which involves the m = ±2

components, even though recoupling sequences for this particular DQ Hamilto-
nian and the CSA interaction are available. One possible way to get around this
proplem would be to choose a sequence in this class and supercycle it to remove
the CSA dependence (as shown in Sect. 3.7.1, this supercycle averages out inter-
actions with odd spin components). Another approach is to look for a suitable
solution within a different symmetry class: there are many CN ν

n sequences with
the desired transformation properties. Some preliminary results (see Paper III)
have been achieved using the symmetry C83

1 and the element C=900360π2700 (see
Paper III). The sequence performs well on the model compound and provides a
reliable distance estimate. The method will be demonstrated on an oriented sam-
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Figure 4.9: Pulse sequence for HCCH torsion angle determination

ple of bacteriorhodopsin, labelled with 10,11-13C2-all-E-retinal. This work is in
progress.

4.5 Torsion Angle Measurements

The methodology for measuring one HCCH torsion angle using a correlated DQ
state has been already described elsewhere67 and here we just recall a few features
to clarify the experimental results reported in the next chapter. The HCCH torsion
angle determination consists of the following steps:

• create a DQ correlated state involving the two 13C sites by DQ homonuclear
dipolar recoupling

• let the DQ coherence evolve in presence of the heteronuclear CH couplings
for a variable period of time

• convert back the DQ coherence into observable signal

The sequence is sketched in Fig. 4.9. For this application, τexc=τrec and they
are kept fixed. In the DQ evolution period, we apply a homonuclear decoupling
sequence, i.e., FSLG44 or PMLG49,50 for a time τLG and heteronuclear decoupling
for τr − τLG. The choice of the most convenient homonuclear decoupling sequence
depends on the spectrometer capabilities in terms of switching phase or frequency
with sufficient speed. The signal corresponding to different tLG values encodes the
relative orientaion of the two heteronuclear dipolar vectors with respect to each
other. The data set can be analysed to extract the HCCH torsion angle. This
experiment has been applied to rhodopsin,96 rhodopsin photointermediates97 and
bacteriorhodopsin.98
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Chapter 5

NMR on Membrane Proteins

5.1 Membrane Proteins and G Protein Coupled

Receptors

In nature, about 60% of the human genome is encoded via soluble proteins. The
remaining are insoluble proteins and among them we have the prominent class
of membrane protein, in which the protein is in contact with the cell membrane,
either on the surface or more deeply. Thousands of structures of soluble proteins
have been solved while only about 20 membrane protein structures are known.
For membrane-bound proteins, the protein action and functions are strictly con-
nected to their natural environment but unfortunately this makes the structure
determination more complex, due to their limited solubility and to the difficulty
of crystallizing the proteins without disruption of the plasma membrane. On the
other hand, solution state NMR is not an appealing approach because the size of
the protein limits the motions in solution, leading to very broad features which
are difficult to interprete or exploit for structural investigation.

Membrane proteins are of great interest because they govern to a large extent
the interaction of the cell with the outside-world, aiding the cell to perform all its
functions. It is therefore important to get an idea of the position of the protein
with respect to the membrane, as well as its structure, in order to understand how
it works.

The cell membrane is made up of a lipid bilayer in which the apolar, hydropho-
bic tails of the phospholipids (one of the main components) converge towards the
middle of the plasma membrane while the hydrophilic phosphate groups constitute
the polar surface, as shown in Fig. 5.1. A protein can interact with the membrane
while being fully outside (extrinsic), or it can be embedded into the membrane (in-
trinsic). Here we consider transmembrane proteins, i. e., the protein goes through
the lipid bilayer and extends beyond it in both directions. There are two main
arrangements of the polypeptide chain that constitute the transmembrane protein.
In one, the portion of the chain the goes through the membrane is curled into one
or more α helices which traverse the membrane, leaving the most hydrophilic seg-
ments outside of the lipid bilayer. Another arrangement is the so-called β-barrel,
i.e., wide portions of the protein form β-sheets which curl to form the sides of
a barrel. Deviations from this simplified model can be expected and no general
structural description can be given for the protein portions outside the membrane,
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Figure 5.1: Scheme of a lipid bi-
layer. A typical phospholipid, the
phosphatidyl ethanolamine (also
known as cephalin), is shown on
the left hand side. The long apolar
aliphatic chains differ by the pres-
ence of one double bond, which af-
fects their relative orientation. In
the sketch of the cell membrane
(right hand side), the wiggles repre-
sent the lipid chain pairs while the
circles represent the polar end.

with highly variable structure. A first classification of membrane proteins is made
in terms of their functions:

• the transporters aid the migration of ions or molecules through the lipid
bilayer and in and out of the cell. The membrane on its own is impermeable
to many molecules,

• the linkers work as an anchor, connecting the membrane to some specific
molecule either inside or outside the membrane surface,

• the enzymes are highly selective catalysts for specific reactions,

• the receptors pass information to the cell about the outside world and
regulate its response, by sending specific signals inside the cell.

There are many different kinds of membrane protein but we will only focus on
the so-called G protein-coupled receptors (GPCRs). This means that the trans-
membrane protein is mechanistically coupled to another protein, called G protein,
to carry messages across the cell membrane. The label “G” comes from the fact
that the protein state is determined by the form of guanine nucleotide that it
binds. In the pharmaceutical industry, many of the drugs being produced and
developed have GPCRs as targets. Hence there is great interest not only in the
general structure of GPCRs but also about the detailed structure of their active
site. All GPCRs are seven-helix transmembrane bundles: the receptor protein
forms α-helices, it passes through the cell membrane seven times and the helices
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Figure 5.2: (a) Sketch of the protein
receptor and of the G protein with re-
spect to the lipid bilayer before activa-
tion (signalling molecule out of reach).
The α, β and γ units of the G protein
are labelled. (b) the signalling molecule
reaches the receptor, which as a conse-
quence modifies its shape (open mouth)
and hence interacts selectively with the
α complex of its own G protein, which
starts releasing GDP. (c) GTP binds to
the G protein, which dissociates and be-
comes active. (d) The activated G pro-
tein (in particular, the α subunit) in-
teracts with the target protein, which
sends further signals into the cell. After
this step the GTP gets hydrolysed and
the G protein returns to the state shown
in (a). Each ativated receptor can ac-
tivate hundreds of G protein molecules
(Figure modified from Ref. 99).

coexist with non-helical regions (mostly outside the membrane). Within the cell,
the corresponding G protein is inactive but it readily modifies its state when re-
ceiving a signal from its GPCR. All G proteins are characterized by two states,
active and inactive. The G protein is made up of three units: an α unit, which is
bound to the guanine complex, a β and γ unit.

The activation process of the G protein is sketched in Fig. 5.2. The G protein
is drawn near the receptor in an inactive state (as it is bound to guanosinediphos-
phate, or GDP, Fig. 5.2a). When the receptor is activated (Fig. 5.2b), it is able to
interact with the G protein. The G protein itself switches into an active state, by
releasing GDP and binding guanosinetriphosphate (GTP), as shown in Fig. 5.2c.
The activated G protein can now interact with the target protein (normally an ion
transporter or an enzyme), which induces further reactions inside the cell. Both
the activated α subunit or the activated βγ complex can bind to the target pro-
tein, even though just the first case is shown in Fig. 5.2d. After this step, GTP
gets hydrolyzed into GDP and the α subunit binds the βγ complex, so that the
G protein is finally deactivated and ceases stimulating intracellular signals. The
GPCR is deactivated and set back to its initial form after some time, often due to
the action of enzymes. For the sake of simplicity, Fig. 5.2 shows the interaction
of the GPCR with just one G protein and one target protein. In reality, many G
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5.2. Rhodopsin

proteins get activated after the signal enters the cell.
The activation mechanism involves three dimensional structural changes both

in the receptor and in the G protein that induce biochemical signals inside the cell
and initiates a cascade amplification, without the signalling molecule ever entering
it. The activation of the target protein induces a chain of reactions inside the cell.
The molecules moving within the cell to transfer the gathered information are
conventionally called the second messengers and they can activate a wide variety
of functions, by interacting with other proteins. We will look at the details of what
happens for a specific case in the next section.

Given the importance of this kind of receptor for many cellular processes, a
great interest in their structure is understandable. Normally the isolation of a
transmembrane protein requires rather harsh methods and the disruption of the
membrane. When the protein is membrane-free, its structure and 3D conformation
may be different from the membrane-bound state, so the information content of
this protein form is quite limited in the general case, unless otherwise proven. Un-
fortunately, it is often difficult to crystallize membrane proteins and only a handful
of successful x-ray structure of membrane proteins are known. In most cases, the
membrane protein structure is either unknown or known but with poor resolution.
This background information can suffice as a basis for an NMR investigation of
the protein’s functions.

5.2 Rhodopsin

We now focus on a particular GPCR, rhodopsin, and describe its function in more
detail. Rhodopsin is located in the retina, and consist of 348 amino acids that
form seven α helices, for an overall size of 41 kDa (see Fig 5.3). The light receptor
cells in the retina are of two kinds and are shaped as rods and cones. In both cases
members of the rhodopsin family are responsible for the process controlling the
light-absorption by the eye. Rhodopsin is formed from the opsin protein when this
binds 11-Z-retinal. The conformational change in the receptor which is responsible
for activating the G protein is due to a small conjugated molecule, the chromophore
11-Z-retinylidene, linked to the lysine residue Lys-296 as a protonated Schiff base
(PSB).

Rhodopsin receives the signal by a photon (instead of a “signalling molecule”)
which is absorbed by the chromophore, with a quantum yield of 67%. The observed
quantum yield is very high and also temperature independent. It corresponds to
storage of about 60% of the photon energy, i.e., approximately 33 kcal/mol (or
146 kJ/mol) and the mechanism through which such a large amount of energy
is stored in the photointermediates is not clear. The transmission of the signal
further inside the membrane is initiated by a change of conformation in the chro-
mophore from an 11-Z-retinal PSB to the all-trans isomer. Later in the cycle,
the unprotonated Schiff base dissociates into opsin plus free all-trans-retinal, ac-
cording to the cycle described in Fig. 5.4. The first step of vision takes place in
200 fs101 and is one of the fastest known process in nature.

In the photoreceptor cell, the second messenger is a molecule called cyclic GMP
(cGMP). The role of cGMP is to bind the Na+ ion channels in the membrane in
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5.2. Rhodopsin

Figure 5.3: Ribbon representation of rhodopsin using the coordinates in the pdb
file 1L9H based on XRD studies with 2.6 Å resolution.100 Notice the position
of the retinylidene chromophore (in black), attached to the seventh α-helix and
the position of some water molecules (dark circles) in the neighbourhood of the
chromophore.

order to keep them open. In the dark state, cGMP is generated continuously and
the open channels guarantee an equilibrium between the cell and outside environ-
ment. After the light trigger, the metarhodopsin II receptor (M II) communicates
with the heterotrimeric G protein transducin, which gets activated following the
scheme discussed in the previous section. The activated α subunit sets into action
another membrane protein, the cyclic nucleotide phosphodiesterase, which breaks
cGMP into GMP. The decrease in the amount of cGMP in the photoreceptor cell
shifts the internal equilibrium in a way that the cGMP bound to the ion channels
dissociate and, as a consequence, the channels close. One rhodopsin can activate
a few hundred molecules of transducin, and the level of amplification is higher at
low light intensity. This generates a difference of potential between the cell and its
environment of about 1 mV for one second, so that electrical impulses are sent to
the brain along the optic nerves. This part of the visual process is well understood
and more details can found in Refs. 102 and 103.

In the context of this thesis, further details on the intracellular reactions taking
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Figure 5.4: The photocycle for rhodopsin, from the moment of light absorption
to the release of all-E-retinal, for several intermediates. At the end of the photo-
cycle, the all-E-retinal is isomerized back to 11-Z-retinal by enzymatic action, to
bind opsin and regenerate rhodopsin. The duration of each step at physiological
temperature is given, together with the approximate temperatures below where
each intermediate can be isolated, in parantheses. The maxima in the absorption
spectra, λmax, for the retinal fragment are also indicated beside each intermediate.
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5.3. Data about Rhodopsin

place in the photoreceptor cell will not be given here. These are best investigated
using other techniques than solid-state NMR. Instead, we will focus on the struc-
ture and conformational changes of the chromophore retinylidene and try to get
an insight about the detailed structure of the conjugated chain.

5.3 Data about Rhodopsin

The precise geometrical changes in the chromophore that lead the GPCR to ac-
tivate its G protein are not yet known in detail. What is known is that the
activation is due to the absorption of a photon by rhodopsin, which is isomerized
within 200 fs.101 This first step is believed to be associated with the Z to E confor-
mation change in the retinal fragment,104–107 while the surrounding protein cavity
stays approximately the same. The determination of the structure of rhodopsin
and its photointermediates, together with the understanding of the energy storage
mechanism, has been the motivation of many studies. Many researchers tried to
justify the mechanism for energy storage in bathorhodopsin, but no clear mech-
anism for the energy storage is yet available. Possible hypotheses invoke energy
storage through charge separation and geometrical strain.

The efficiency and speed of the first step of vision is deeply linked to the precise
structure of the chromophore, as has been shown by incorporating modified retinals
into rhodopsin . In all cases, the effect is to have a substrate which is less efficient
than the natural one. The discussion which follows is related to one particular
type of rhodopsin, i.e., bovine rhodopsin, on which we have performed some C-C
distance measurements along the retinal chain. Before discussing our results, it is
necessary to give at least a very short overview on what has been already done.
The information come from several sources, i.e., diffraction, vibrational and optical
studies, NMR spectroscopy and quantum-mechanical simulations.

5.3.1 Optical Studies and Identification of Photointerme-
diates

Thanks to optical studies at variable temperature,108 the main intermediate states
of rhodopsin have been isolated and the temperature below which they can be
trapped are listed in Fig. 5.4. Each intermediate of rhodopsin is clearly distinguish-
able in terms of a shift in absorbance band, λmax, in its UV-Vis spectrum.101,108

The absorbance band in bovine rhodopsin has its maximum near 500 nm (in the
yellow-green region) while only minimal absorption above 600 nm (red region) is
observed. This implies that the samples can be safely handled under dim red light.

The frequencies of maximum absoption for several photointermediates are also
reported in Fig. 5.4. This information is important not only because it specifies
the regime under which different forms of rhodopsin, after illumination, can be
selectively investigated, but also because it gives some insight over the energy
content of the ground state and first excited state of each form. An estimate of
the time-scales for the formation of the different photointermediates, as listed in
Fig. 5.4, comes from optical measurements.
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5.3. Data about Rhodopsin

To be strict, bathorhodopsin is the first stable intermediate. Studies at physi-
ological temperature using time-resolved resonance Raman spectroscopy indicate
the existence of another species, called photorhodopsin, which is formed within
200 fs. It has not yet been possible to trap photorhodopsin by sample cooling. It
is considered as a “hot” intermediate and relaxes to bathorhodopsin within 5 ps.

On this basis, there is some evidence that the C11=C12 double bond may
already isomerize within 1 ps, maybe even in 200 fs.106,107 Pioneering studies108

showed that it is possible to convert lumirhodopsin back and forth to bathorhodopsin
and rhodopsin at temperatures as low as liquid nitrogen temperature (-195oC),
which suggests that opsin is only slightly affected in conformation during the two
initial steps. The light-driven interconversion between metarhodopsin and the pre-
vious photointermediates is possible at -20oC but not -65oC, which suggests that
the bulk protein structure undergoes major rearrangements when metarhodopsin
is formed, i.e., the reconversion requires more thermal energy than is available at
-65o C.

The next photointermetiate, metarhodopsin, exists in two forms: metarhodopsin
I (M I) is the protonated form while M II is deprotonated, after hydrolysis. The
proton migration is a key step in the activation of the G protein since only M II
interacts with alpha transducin and starts the chain of reactions within the cell.

5.3.2 Diffraction Data

Rhodopsin has been the subject of much research for many years, not only to
obtain the overall protein structure but also the retinylidene PSB structure. The
knowledge of the precise structure of the chromophore has motivated the syn-
thesis and XRD structure determination of many compounds in this family, with
structural motifs similar to the rhodopsin chromophore. The available XRD struc-
tures include all-E-retinal,109 11-Z-retinal,110 three all-E-retinal PSBs: N-methyl-
N-phenylretinal iminium perchlorate111 (labelled PSBI in what follows), N-tert-
butyl-retinal with perchlorate (PSBII) and triflate (PSBIII) as counterions112). A
comparison of bond-lengths between these compounds shows a strong bond-length
alternation throughout the chain for the aldehydes and an alternation reduction
close to the end of the tail in the PSB, due to the presence of the positive charge.
The extent of bond-length alternation in the PSBs changes is significantly different,
with bond-lengths differing up to 3 pm on some sites. The terminal imino groups
strongly influence the local chain structure. The aliphatic PSBs are expected to
be electronically closer to the state in the protein, but even there a variation of
the counterion induces significant bond length variations on some positions. The
large environment difference between the model PSBs and the 11-Z-retinal in the
protein makes any extrapolation rather uncertain, even though a bond-alternation
reduction is expected also there.

A crystal structure of bovine rhodopsin is now available113,114 and the chro-
mophore appears to have the configuration 6s-cis, 11-cis, 12s-trans, anti C=N.
The latest structural refinement has a resolution of 2.6 Å.100 This allows the iden-
tification of the protein fragments determining the size and shape of the binding
pocket as well as functionally important water molecules within rhodopsin, also

70



5.3. Data about Rhodopsin

130

134

138

142

146

11−Z

8−9 9=10 10−11 11=12 12−13 13=14 14−15

D
is

ta
n

c
e
 (

p
m

)

C−atom labelling

PSB

PSB 

PSB III

II

I

Figure 5.5: CC bond lengths from XRD data for three all-E-retinal PSB: N-
methyl-N-phenylretinal iminium perchlorate111 (PSBI), N-tert-butyl-retinal per-
chlorate112 (PSBII), triflate112 (PSBIII) and 11-Z-retinal.110 Notice the wide struc-
tural changes between different PSBs, due to a modification of the imino group or
even by a simple change in the counterion.

in the proximity of the chromophore. These structural data are of great impor-
tance for a deeper understanding of the chromophore structure, since they reveal
which groups are in a range to affect the retinylidene, either directly or through a
hydrogen-bonding network, and thereby allow for a better description of the elec-
trostatic and steric interaction between the chromophore and the surroundings. A
view of the binding pocket is given in Fig. 5.6, where the chromophore (black),
the closest amino acid residues and some water molecules (all explicitly labelled)
are drawn using the coordinates from the protein data-base (PDB) file100 and the
programs Rasmol and Xfig. One water molecule interacts closely with Glu-181
and Ser-186 and is expected to have some role in color regulation. The water
closer to Glu-113 is not located between the carboxylate and the retinal PSB, but
close to the Glu-113 chain. This indicates a more subtle influence on the Glu-113
pKa value through side-chain interactions rather than the existence of a complex
counterion, as postulated on the basis of NMR data. On the other hand, water
can exchange fast and this may affect the XRD data.

In the case of rhodopsin, it is necessary to analyse carefully the constraints
coming from XRD since its limited resolution (so far) is not always sufficient to
completely prove or disprove some experimental evidences or models obtained with
other techniques.
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Figure 5.6: Retinal binding pocket,100 with 11-Z-retinal (black) and the closest
amino acids determining the main steric and electrostatic interactions with the
protein
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5.3.3 Vibrational Data

Vibrational studies of compounds belonging to the retinal family (vitamin A and
retinal derivatives) by FT-IR and resonance Raman spectroscopy provide insight
into the bond distribution and the general conformation of the observed molecule.
The information on bond distances and angles is not quantitative, due to the
complexity of the system and to the strength of the coupling between vibrational
modes of similar frequency. On the other hand, the presence of methyl groups
along the conjugated chain breaks up some normal modes into subsets which can
be clearly associated with different portions of the chain.

One important feature of resonance Raman spectroscopy is that the frequency
of the normal modes gives insight into the ground-state structure, while the inten-
sities give information on the excited state. The intensities of the modes that get
mostly shifted upon electronic excitation are highly enhanced and reflect the dy-
namics of the excited state. Many vibrational modes (especially the modes at high
frequency) are well understood and assigned by comparing similar compounds and
specifically labelled retinals (isotope enrichment shifts some modes with the help
of small mass differences). In addition, it is also possible to perform theoretical
ab initio calculation to match the observed pattern to the suggested theoretical
model. A theoretical model properly describing the experimental data115 is now
available. Many lower frequency modes are not fully accounted for, even though
the general trend is well-reproduced and the mode shifts due to structural modi-
fications can be predicted to a good extent. For instance, torsional modes for the
skeletal region and C11=C12 have been identified near 570 cm−1 and 260 cm−1

and are considered important coordinates in the photoreaction.
Resonance Raman spectroscopy gives a clear indication of the following facts:

• the fingerprint regions of 11-Z-PSB in solution and rhodopsin are quite simi-
lar, confirming a general similarity in conformation and bond orders.116 The
differences may be related to the protein environment and to the photoreac-
tion pathway.

• there is a significant hydrogen out-of-plane (HOOP) distortion about the
C11=C12 bond,117 believed to be an important normal coordinate in the
fast isomerization115

• there is a significant chain distortion out of the molecular plane in the
C10. . . C13 region due to the steric interaction between C10 and the methyl
group C20. This is of key importance for the efficient conversion to the first
photointermediate118

• bathorhodopsin seems to have a highly twisted all-E structure (indicated by
the large difference in HOOP and in C-C stretch frequencies with respect to
all-E-retinal PSB).

• precise time measurements for the first steps in the photocycle show only
minor differences in the vibrational spectra of photo- and bathorhodopsin,
indicating high similarity of their interactions with the protein pocket and
of their structures106
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• indication of the skeletal and torsional normal motions involved in the pho-
toreaction

5.3.4 Previous NMR Data

Many NMR experiments have been aimed at localizing the chromophore and ori-
enting it within the protein pocket with respect to some relevant amino acids in
the pocket. Some of the structural hypotheses based on NMR data have been
confirmed by the high-quality XRD structure. Here we recall some of the previous
NMR data, with particular attention towards the constraints on the chromophore
structure:

• study of isotropic chemical shifts and CSA tensors in positions C5 and C14
provide evidence of an 6-s-cis conformation in rhodopsin and of a C=N anti
configuration,119

• low-temperature determination of isotropic chemical shifts for selectively 13C-
labelled rhodopsin, bathorhodopsin and isorhodopsin120,121 support a macha-
nism of energy storage that does not involve significant charge separation.122

Chemical shift differences between some labelled sites in rhodopsin and model
compounds suggest electrostatic interactions within the protein pocket in the
vicinity of C13,

• confirmation of the retinal PSB counterion as the residue Glu-113, about 3 Å
away from C12 from 13C chemical shift calculations,123

• HCCH torsion angle measurement around the C10-C11 bond,96,97 ψ = 160o±
10o in rhodopsin and ψ = 180o in M I,

• rotational resonance distance determinations between C20 and respectively
C10 (rij = 304 ± 15pm) and C11 (rij = 293 ± 15pm). These data have
been used to determine the torsion angle between the C6-C10 and C13-C15
conjugation planes to 44o. Corresponding measurements in M I indicate
r10,20 > 430 pm, which is compatible with an all-E configuration of the
chromophore.40

• Evidence of a complex counterion, possibly made up of Glu-113 and a struc-
tural water molecule based on the 15N-lysine isotropic chemical shift and
430 pm from 15N,124,125

• 2H-NMR of aligned samples (Sect. 4.4), deuterated at specific methyl groups,
provide the orientation of the C-CH3 bond with respect to the membrane long
axis.95,126 The data indicate a 6s-trans conformation as more favourable.

• Studies on fully 13C labelled retinylidene chain127,128 and determination of
isotropic 13C (compatible with Ref. 120) and 1H chemical shifts: insight
on electronic distribution and intermolecular interactions through chemical
shift comparisons with model retinals and calculations (complex counterion,
unique 6s-cis configuration of β-ionone ring and interaction between the β-
ionone ring and aromatic amino acid side chains).
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While geometrical constraints can be of direct use for calculation and structural
refinements, the isotropic chemical information have a less direct interpretation
and can be compared to theoretical calculations. A simple comparison between
the isotropic chemical shift of the PSB within the receptor and other retinal-like
chains gives insight about the charge delocalization and the bond alternation for
the different retinal-like compounds. On the other hand, these observations are
often inconclusive due to the complexity of the system and do not directly lead
to quantitative information about charge distribution, distances and conforma-
tions.129

This thesis adds a few more pieces of information to the knowledge of rhodopsin
by adding some experimental data on bond lengths along the retinylidene chain
by solid-state NMR.

5.3.5 Quantum Mechanical Calculations

The dark state of rhodopsin is expected to have delocalized electric charge within
the conjugated chain. In this context, many theoretical models stress that this is
the key role of the positive charge on the PSB and the presence of a neighbouring
glutamate counterion. One of the main goal of theoretical calculation is to obtain
the structure of the chromophore. This includes estimates of geometry (bond
lengths, bond angles and so on). From these, models are provided which may
justify the observed spectroscopic properties and the chemical shift distribution.

The ground state of rhodopsin was investigated by Buda et al. in 1996,130 using
density functional thery (DFT) and the Car-Parrinello ab initio approach. The
counterion of the retinal PSB was modelled as a chlorine ion, 4 Å away from C12,
approximately in the same region where Glu-113 was expected to be but much
simpler to simulate. This model of rhodopsin came before the three-dimensional
structure became available from diffraction studies. The calculation used distance
constraints from solid-state NMR. Nevertheless, as can be seen from the bond-
distance calculation on a model 11-Z-retinal compound (for which an accurate
XRD is available110) the DFT calculations tend to overestimate the conjugation
effect (underestimate the bond length alternation) and the computed bond-lengths
do not faithfully reproduce the XRD data, as shown in Fig. 5.7. This issue is ad-
dressed in Ref. 129, where a comparison between distances in two different retinal
PSBs from XRD and the corresponding DFT structures confirms this systematic
calculation error, but also points out that the presence of a positive charge in
the chain can be qualitatively accounted for. On the other hand, the increased
conjugation towards the end of the chain is correctly predicted.

More recently, Sugihara et al. investigated the structure of the retinal PSB in
rhodopsin using a molecular dynamics DFT calculation, starting from 11-Z-retinal
PSB on which some strain mimicking the protein cavity is applied. He used a car-
boxylate anion and a water molecule to describe a more complex counterion131,132

(instead of the chloride ion), which may have an important effect for stabilizing the
positive charge, leading to a less pronounced delocalization along the chain and to
a strong double-bond component for the C11=C12 bond. The resulting structure
exibits a stronger bond-length alternation than in Ref. 130. This is confirmed
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Figure 5.7: Comparison between experimental110 and calculated130 bond-lengths
for 11-Z-retinal. The bond alternation is systematically underestimated by the
DFT calculation with local density approximation (LDA)

in a more recent work,133 where the known three-dimensional crystal structure of
rhodopsin with 2.8 Å resolution is explicitly included in the calculation to refine
the structure of the chromophore. The adopted calculation method in this case
is the self-consistent charge (SCC) DFT. 27 amino acid fragments in a range of
4.5 Å from the retinylidene were included, using the coordinates from the PDB
structure taken from Ref. 113.

As mentioned before, another target of theoretical calculation is the isotropic
chemical shift distribution, which depends upon the electronic strucure and inter-
actions between the chromophore and the residues within the protein pocket. This
makes the data interpretation rather difficult. Theoretical 13C isotropic chemical
shift and CSA calculations have been used to predict conformation of specific frag-
ments and charge delocalization,129 but the authors themselves suggest caution in
the data interpretation. For instance, it is found that the correlation between
isotropic 13C chemical shifts and partial charges along the chain is sample depen-
dent.129

5.4 Distance Measurements on Rhodopsin by DQ

Solid State NMR

A set of distance measurements on the conjugated chain of the retinylidene chro-
mophore of bovine rhodopsin has been recently performed in our group. Although
crystal structures of rhodopsin have been published, the resolution of 2.6Å is not
sufficient to answer questions relative to the bond order within the chromophore
chain. Our goal is to investigate the structure of the chain and obtain experimental
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data on the amount of delocalization of the electron charge.

5.4.1 Sample Preparation and Technical Details

The labelled retinals were prepared by full organic synthesis according to the
procedure described in Ref. 134. The labelled retinals were partly prepared in our
laboratory and partly provided by Lugtenburg et al. The labelled all-E-retinals
were converted to the desired isomer, in this case 11-Z-retinal by dissolving the
compound in a solution of dry acetonitrile under controlled illumination conditions.
The desired isomer was isolated from the mixture by using high-performance liquid
chromatography (HPLC) using normal phase, i.e., polar column and apolar eluent.

Bovine opsin was isolated from cow eyes and the 11-Z-retinal inserted in its
natural membrane protein. This part of the sample preparation was entirely per-
formed in de Grip’s group (Petra Bovee-Geurtz) and the details of the methodology
can be found in Ref. 135. The protein/membrane ratio was typically ca. 50% (by
mass).

The insertion of the chromophore in the protein opsin was verified by opti-
cal measurements, due to the difference in optical absorbance between rhodopsin
and 11-Z-retinal (respectively 498 nm and 440 nm). The regenerated protein,
centrifuged and frozen into small pellets, was transferred into a standard 4 mm
zirconia rotor by centrifugation, increasing gradually the rotation frequency from
500 rpm to 16000 rpm at a temperature of +2o C, for a total time of ca. 40 min-
utes. To perform this operation, the zirconia rotor and the sample were placed
inside a purpose built teflon holder.

The amount of labelled protein used in each 4 mm rotor was estimated to be
between 15 mg and 20 mg, i.e., about 0.45 µmol of labelled rhodopsin per sample.
The overall mass of sample transferred into the rotor was much larger, since each
protein sits in its natural plasma membrane (about 60 mg).

It is important to stress that the handling of rhodopsin samples must be per-
formed in the dark or in rooms equipped with dim red light at all times. The
protein samples and the retinals are best stored in light-tight containers within
the -80o C freezer and in a nitrogen atmosphere. This is to minimise light-induced
isomerization of the retinal chain, water absorption and side reactions with oxy-
gen. One model all-E-retinal compound was used for the temperature calibration
set-up. A small amount of lead nitrate was packed in the bottom and in the top of
the 4 mm rotor, separated from the retinal by a thin layer of teflon tape. The sam-
ple was spun at 5.5 kHz at room temperature and the temperature of the air was
established via a digital thermometer. This moderate spinning frequency regime
was previously observed to induce a temperature discrepancy of less than one de-
gree in the sample. Subsequent cooling of the spinning sample leads to a shift of
the 207Pb resonance which is dependent on the temperature shift136 according to
the equation

∆δiso = 0.753 × ∆T ppm/K (5.1)

There are several models137–139 for relating the shift in 207Pb resonance to a tem-
perature variation but they are in good agreement, within a few degrees.
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Figure 5.8: (a) 1408 scans CP spectrum of 10,11-13C2-labelled rhodopsin performed
at -100oC and ωr/2π = 5.5 kHz (b) 5120 scans DQF spectrum acquired in the same
conditions and using τexc=τrec=468 µs.

In this thesis, all temperatures refer to the true sample temperature, as cali-
brated by the 207Pb resonance of PbNO3, not to the spectrometer readings from
the thermocouple, which were typically lower. The discrepancy between readings
and real temperature increases at low temperature, due to frictional heating in the
rotor bearings and to the use of room temperature nitrogen gas for bearings and
drive.

5.4.2 NMR Measurements on Rhodopsins

For all dipolar recoupling experiment, the R146
2 sequence with R0=900 270π,

already demonstrated for distance measurements in Paper II, was used for exciting
DQ coherences at a spinning frequency of ωr/2π=5.5 kHz. The temperature was
calibrated to 173 K for all experiments.

The pulse sequence parameters were first optimized on all-E-retinal samples as
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model compounds, doubly-labelled in the same position as the protein. A reference
build-up curve on the labelled retinal was acquired as part of the calibration pro-
cedure and followed by the distance measurement experiment on the protein. The
resulting NMR measured distance for the retinals are compatible with the XRD
data.109 For each protein sample, the ramped CP spectrum and a build-up curve
of 8 points were acquired, the points being chosen in a way to show at least a full
dipolar oscillation. Fig. 5.8 compares the CP spectrum for 10,11-13C2-rhodopsin
with the corresponding DQF spectrum, corresponding to the maximum DQF effi-
ciency. The DQ filtered spectrum shows very clearly the signal coming from the
labelled retinylidenes and the isotropic chemical shifts fully agree with values ob-
tained in previous studies.127 The build-up curve for this same sample is shown
in Fig. 5.9, together with a possible fit of the data set. The bovine rhodopsin
samples examined so far are labelled in positions (10,11), (11,12), (12,13), (13,14)
and (14,15).

5.4.3 Vibrational Corrections

As discussed in Sect. 4.3, the internuclear distance estimated from solid state
NMR suffer a systematic overestimate error, partly due to molecular vibration.
We estimated the average discrepancy and the standard deviation in our 13C-
13C bond-length measurements to be 3.0± 1.3 pm and in the data analysis of the
measurements on rhodopsin we apply a correction of 3.0 pm to the NMR estimated
distance,

rjk = rNMR
jk − 3.0 pm (5.2)

since the error on the NMR data analysis is statistically independent from the
error on due to molecular vibrations, it is possible to recalculate the total error for
the internuclear distances as

∆rjk =
√

(∆rNMR
jk )2 + (∆rV ib

jk )2 (5.3)

where ∆rV ib
jk = 1.3 pm.

5.4.4 Data Analysis

The bond distances measured in the rhodopsins are summarised in Table 5.1,
together with additional information.

For the error analysis, the signal is calculated by integrating the peaks in the
same region in each spectrum (and is always clearly visible in most elements of
the array), while the noise is estimated by integration over a comparable spectral
range in signal-free regions to determine the uncertainty on each point in the build-
up curve. For the analysis, a distribution of build-up curve functions is created
around the integrated values, which is our signal, with an error bar given by the
noise itself. Statistically, the noise is expected to be the same for all elements of
the build-up curve, all corresponding to the same number of scans. The analysis
program iterates to obtain the internuclear distance according to the procedure
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Figure 5.9: (a) experimental spectra from the distance measurement experiment on
10,11-13C2-labelled rhodopsin performed at -100oC. Each experiment correponds
to 5120 transients. The reconversion time is fixed to τrec=468 µs while τexc is
incremented from 208 µs to 2.29 ms in steps of 260 µs (b) integrated intensities
with an error bar corresponding to the estimated noise uncertainty, together with
the best simulation fit
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Table 5.1: Some bond lengths within the retinylidene chain for different retinal-like compounds, as obtained from crystallography,
quantum-mechanical simulations and solid-state NMR measurements on all-E-retinal and rhodopsin, using several models for the
CSA for the latter (with vibrational correction).

XRD data DFT Calculations Solid-State NMR
all-E 11-Z PSBI PSBII PSBIII rhodopsin RPSB retinal rhodopsin

Reference 109 110 111 111 111 100 130 133 a a b c
C8—C9 146.7 146.1 145.5 144.7 146.0 148 144.2 144.3
C9=C10 134.5 134.7 135.4 133.3 134.1 134 138.8 138.6
C10—C11 144.2 145.5 142.9 145.7 143.0 148 142.2 142.6 143.91.6

1.6 143.72.9
2.7 143.52.5

2.4

C11=C12 133.8 133.9 135.7 132.6 132.0 136 138.9 137.8 134.42.1
2.0 135.82.5

2.4 136.02.6
2.6

C12—C13 145.2 147.2 141.9 143.5 142.6 148 142.3 143.5 141.52.9
2.8

C13=C14 134.4 135.8 136.8 134.6 135.1 135 140.6 139.2 136.22.2
2.2 137.02.4

2.3

C14—C15 145.5 146.7 139.9 140.2 139.8 150 139.1 142.0 146.12.3
2.2 144.23.0

3.0 142.52.6
2.5 142.82.6

2.4
a Solid-state NMR using the known CSA parameters for all-E-retinal
b Solid-state NMR using CSA parameters estimated from the spectrum
c Solid-state NMR using CSA parameters estimated from 2D PASS at 16.7 T
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Table 5.2: Chemical shift anisotropy (in ppm units) used in simulation as reported
in Ref. 77 for all-E-retinal; the rhodopsin CSA values at 9.4 T are estimated from
the spinning sideband pattern in the DQF spectrum with no explicit correction for
the effect of dipolar couplings; the parameters at 17.6 T are determined from 2D
PASS on the fully 13C-labelled chromophore (private communication from Suzanne
Kiihne).

13C-position all-E-retinal rhodopsin (9.4 T) rhodopsin (17.6 T)
δaniso
10 80.8 78.7 ± 11.8

η10 0.98 1.0 ± 0.25
δaniso
11 -101.5 −107.5 ± 16.1 −105 ± 9.5

η11 0.77 0.5 ± 0.25 0.82 ± 0.16
δaniso
12 81.7 106.1 ± 15.9

η12 0.93 0.65 ± 0.25
δaniso
13 -125.0 131 ± 10.5

η13 0.50 0.44 ± 0.18
δaniso
14 -70.0 88.3 ± 13.2 −80 ± 2.9

η14 0.99 1.0 ± 0.25 0.63 ± 0.19
δaniso
15 -92.5 −118.5 ± 17.8 −112 ± 9.5

η15 0.51 1.0 ± 0.25 0.33 ± 0.27

described in detail in Paper II. The error margins in the determination come from
a set of distance optimizations for a distribution over the Euler angles defining
the orientation of the CSA tensors (fully randomized) and over the rf field, with
a standard deviation of 3%. This approach is used to analyse the data acquired
on our standard all-E-retinal compounds and is expected to be a reliable upper
bound to the error.

For the analysis of rhodopsin, we introduce two additional distributions, i.e., a
rather large distribution over the CSA principal values, with a standard deviation
of 15%, and a distribution over the asymmetry parameter, with standard deviation
0.25. These distributions are very broad, given that the two CSA sets used in the
data analysis as origin of the Gaussian distribution are likely to be not too accu-
rate: (i) all-E-retinal may well have different CSA values than the corresponding
11-Z-PSB; (ii) the CSA estimated from the DQF spectra from doubly-labelled pro-
teins by analysing the sideband pattern, using the procedure described in Ref.,140

suffer from the presence of a strong dipolar interaction, which is not included in the
analysis but is known to affect the spinning sideband intensities, thereby introduc-
ing an error. (iii) CSA estimated by 2D PASS140 on rhodopsin with U-13Clabelled
retinylidene at 17.6 T and 6.0 kHz. These last data are expected to be more accu-
rate since the relative error due to the presence of homonuclear couplings decreases
with increasing field. The corresponding datasets for all-E-retinal, rhodopsin at
9.4 T and 16.7 T are listed in Table 5.2
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Figure 5.10: Distance measurements on all-E-retinals used as model compounds
for the protein meausrements. The NMR results agree very well with the XRD
data109 after vibrational correction.

5.4.5 NMR-Based Model

A summary of the distances determined by solid-state NMR is in Table 5.1.
Fig. 5.10 shows a good agreement between the NMR data and the XRD data
on all of the model compounds used to set up the measurements in the protein.
The results for the distance estimate are plotted in Fig. 5.11 and 5.12, compared
with the distances for other retinal-like samples coming from XRD and theoretical
calculations (described in Sect. 5.3.5). As can be seen, our measurements indicate
that the retinylidene chromophore maintains clear single bond-double bond alter-
nation. The bond lengths show the conjugation effect to a similar extent as in
11-E-retinal but with a slightly higher delocalization towards the very end of the
chain. Due to the great geometrical variations among PSBs as a function of the
counterion and of the imino group, the comparison between these and rhodopsin
can only suggest some similarities but with a remarkable bond length difference
for C14–C15. To date, there is no XRD structure of unprotonated SB due to
the difficulty of crystallizing it, but it would be certainly interesting to obtain its
structure. The conjugation level within rhodopsin is much less than predicted by
the theoretical models (see Sect. 5.3), but it is compatible with the recent model
in Ref. 133.

A comparison between the bond distances determined so far is sufficiently pre-
cise to allow for discrimination between different theoretical models and allow for
a reasonable comparison between the bond length distribution in rhodopsin and in
other retinals. This results are preliminary, as the data refinement is in progress.
The reduction of the error bars on the largest CSAs would allow to reduce the
error bars in our measurements to some extent.

The presence of bonds with a clear single bond order can give some insight
on the structure of the ground state molecule which undergoes a conformation
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Figure 5.11: Selected C-C bond lengths in rhodopsin, as obtained from solid-
state NMR and from diffraction studies on three model compounds, the all-E-PSB
model compounds from Refs. 111 and 112
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Figure 5.12: Selected C-C bond lengths in rhodopsin from solid-state NMR plotted
against two theoretical models, from Refs. 130 and 133 and the retinilydene data
from XRD at 2.6 Å resolution100
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change within 200 fs. Any model to describe the isomerization of rhodopsin needs
to justify some important experimental facts, i.e., how the energy is stored, why
is the conversion so fast and efficient as well as data coming from other studies.
The work is still in progress, but the presence of bonds with a strong alternation
may suggest that torsions around the single bonds is facilitated, leading to a chain
which is highly twisted and trans about the C11=C12. This would not necessarily
correspond to structure as highly strained as the one modelled assuming strong
electron delocalization all over the chain, due to the flexibility of single bonds.
We anticipate the importance of these experimental results for future theoreti-
cal attempts to predict the transformation of a well-characterized rhodopsin into
bathorhodopsin. A deeper understanding of the chromophore structure may also
give more insight in the observed isotropic chemical shift distribution and in the
CSAs.
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Chapter 6

Triple-Quantum 13C Coherence

6.1 Introduction

In the previous chapters we discussed some examples of the importance of multiple
quantum filtration for extracting specific information on the system, in particular
by using double-quantum coherences. A natural extension to higher order coher-
ence orders is obvious, not only for the good suppression of signals coming from
the so-called natural abundance background but also for providing an alternative
route to a more precise definition of molecular properties. On the other hand, the
amount of signal passing through a MQ filter decreases with increasing MQ order.
This limitation affects both spin 1/2 systems and quadrupolar nuclei, but many
methods for increasing efficiency and resolution for half-integer quadrupolar nuclei
have been developed in the last few years and the field is in continuous develop-
ment. Many demonstrations of MQC in abundant, high-γ spins, like protons141–144

and on static solids145,146 or liquid crystals147–149 are available too. Not so much
has been done on low-γ nuclei under MAS, the main contribution being due to
Edén et al.68,150 and Oyler et al.151 The TQ-filtering efficiency achieved so far is
approximately 4% in the first case and not quoted in the second, maybe too low
to be conveniently extended to biomolecules. It is therefore important to make
the high-order MQ more efficient to increase the applicability of the MQ excita-
tion to real systems. Here we describe a new technique to excite triple-quantum
coherences (TQC) under MAS with improved efficiency. The proposed method is
very selective to certain spin systems: it is not meant to excite all possible TQC
in a fully labelled sample, but rather to select TQC from a subset of spins with
a specific relative arrangement. While this can sometimes be a drawback, it can
be advantageous in other cases because it allows to look in detail at a specific
portions of a fully labelled molecule, for instance. The experiment is performed on
fully-13C-labelled model compounds and it is not likely to be applicable to natural
abundance 13C compounds due to the low natural abundance of 13C nuclei and to
the steep decrease in efficiency for excitation of high MQ orders.

6.2 Pulse Sequence for TQ Excitation

In Paper IV, we present a new pulse sequence for TQ coherence excitation, demon-
strated on a fully 13C labelled model three-spin system, [U-13C]-L-alanine. The
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Figure 6.1: Pulse sequence for exciting TQ coherences: enhanced 13C longitudinal
magnetization (point 1©) is transferred into selective DQ coherence for two of
the three spins (point 2©), followed by a period of free evolution under rotational
resonance during which the two-spin coherence in transformed into three spin
coherence, in 3©; the selective pulse generates TQC in 4© and then the sequence
is reverted in a symmetric fashion, leading to observable signal.

pulse sequence for TQ coherence excitation is shown in Fig. 6.1. This can be
divided into a series of block whose action can be explained separately. To each
block we associate explicitly a reference offset frequency, ωref

block and a phase φblock.
The pulse sequence works as follows:

• Step P: preparation of enhanced longitudinal magnetization with ωref
P =

(ωiso
1 + ωiso

3 )/2, i.e., approximately in the center of the spectrum.

• Step A1: selective excitation of DQC between spin 1 and 2, with ωref
A =

(ωiso
2 + ωiso

3 )/2.

• Step B1: Rotational Resonance (RR) evolution with a spinning frequency
matching the n = 1 condition for spin 1 and 2, ωr=∆ωiso

12 and ωref
B = ωref

P to
generate a correlated spin state of the form

a I1+I2zI3+ + a∗ I1−I2zI3−

• Step C1: selective pulse on resonance with ωref
C = ωiso

2 to generate TQC by
rotating spin 2 by π/2 while leaving the states of spins 1 and 3 unmodified.
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Figure 6.2: Spin state during the pulse sequence, using the time-point labelling
specified in Fig. 6.1

• Step E: the TQ coherence is evolved with ωref
E = ωref

P by adding a period
τE = t1 of free evolution between blocks C1 and C2 to obtain a correlation
between the TQ spectrum (indirect dimension) and TQ-filtered spectrum
(not shown in Fig. 6.1.

• The TQ coherence is converted back in steps C2, B2 and A2 by reversing
the order of the above blocks and applying the necessary phase corrections

• Step R: read pulse and acquisition, with ωref
R = ωref

P

The pulse sequence is graphically explained in Fig. 6.2, where we show the typical
spin system for which such sequence is designed, together with the status of the
density operator after each block. The presence of well resolved chamical shifts is
a stringent requirement for this scheme to apply.

This block-wise scheme is very advantageous in that each block can be opti-
mized individually. The optimal condition for the individual terms nearly corre-
spon to the optimal condition for the whole experiments. It may be possible to
improve the TQ efficiency slightly by refining the individual parameters on the
TQ-filtered spectrum.
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6.2. Pulse Sequence for TQ Excitation

6.2.1 Phase Cycling

Blocks P to C1 are phase cycled in six steps to select TQ-coherences. Block R
undergoes a 4-step phase cycle to achieve a z-filter. The duration of the rotational
resonance evolution locks B1 and B2 were both contrained to be equal to a half
integer multiple of the rotor period, τr. The phase cycle can be written as

φP = φA1 = φB1 = φC1 =
2πk2

6
+

π

6
k1 +

2

3
ωrt1,

φA2 = φB2 = φC2 = 0,

φR =
π

2
floor

(

k2

6

)

, (6.1)

φrec = 0,

φdig = k2π +
π

2
floor

(

k2

6

)

,

were the k2 is the transient counter, k2 = 0, . . . , 23, k1 is the transient counter
in the indirect dimension for 2D experiments (t1 = kt1=0 in the 1D case) and
the function floor(x) returns the largest integer not greater than x, as defined
in Ref. 52. In the TQ excitation block (P to C1) the phase dependence upon t1
includes a πk1/6 term for TPPI13 to obtain 2D data sets with pure absorption line-
shape. The additional term, 2ωrt1/3, compensates the incremental phase shift in
blocks A2 and B2 due to the time-phase relationship already discussed in Sect 3.5.

Step A: Selective DQ excitation

Block A1 of the pulse sequence consists of a recoupling sequence for converting
sum longitudinal magnetization of spins 2 and 3 into DQ coherence between spins
2 and 3. This task is achieved using an R-sequence for pure dipolar DQ recoupling,
with suppression of CSA and rf inhomogeneities to first order. In the experiments
shown here, we chose the symmetry R145

4 because it allows efficient DQ dipolar
recoupling at the spinning frequency imposed by the n = 1 RR condition and
moderate rf field on the 13C channel. The use of the basic element R= 1800

guarantees DQ excitation within a narrow band-width around the carrier frequency
and only excites spins 2 and 3, leaving spin 1 untouched. This is demonstrated
by simulations in Fig 6.3 and experimentally in Fig. 6.5c for the symmetry R145

4

on rotational resonance, ωr=∆ωiso
12 = |ω1 − ω2|/2π. The DQ coherence is excited

between two of the three spins with a low power, non-compensated R sequence (see
Sect. 3.4, Papers I and II) with an experimental efficiency of 39% with respect to
the three-spin system. This is very close to the maximum theoretical efficiency for
selective DQ excitation over a three-spin system, which is 73%×2/3 = 48.7%. An
additional advantage of the simple π pulse is that it gives a very fast DQ build-up,
as can be seen by a direct comparison of the scaling factor for the RN ν

n sequences
with a straight 180x and 900270π, thereby minimizing losses related to relaxation
of the spin system. Given the high-selectivity of the DQ excitation, only two of
the three spins are involved at this stage and, using the notation from Figs. 6.1
and 6.2a and Paper IV, we can write the density operator the end of the interval
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Figure 6.3: DQ excitation profile for [U-13C]-L-alanine at 9.4 T, ωr/2π = 12.750 Hz
as a function of the carrier frequency offset ∆ωA

ref = ωA
ref − (ωiso

2 +ωiso
3 )/2, using the

R symmetry R145
4 and two different R elements, R0= 1800 (solid line) and R0=

900270180 (dotted line). In order to maintain the same spinning frequency in the
two simulations, the nutation frequency of the rf field equals |ωS

nut/2π| =22.3 kHz
for the simple 1800 pulse and 44.6 kHz for the sequence using the composite pulse
900270180. The DQF efficiency is defined with respect to the total longitudinal
magnetization for the three-spin system
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6.2. Pulse Sequence for TQ Excitation

A1

ρ 2© ≈ (S2z + S3z) cos |ωAτA| + S+
2 S+

3 ieiφA sin |ωAτA| − S−
2 S−

3 ie−iφA sin |ωAτA| . . .(6.2)

where the effective dipolar recoupling amplitude ωA depends upon the orientational
angles, the dipolar coupling constant as

ωA = b23κ2−122

2
∑

m=−2

d2
0m(θ)D2

m−1(ΩMR) exp
{

i(α0
RL − ωrt 1©)

}

(6.3)

and

ωA = |ωA|eiφA (6.4)

φA(γMR) = φ0
A + γMR (6.5)

since the {l,m, λ, µ} = {2,−1, 2, 2} and {2, 1, 2,−2} space-spin components are
selected by R145

4, then

Step B: Rotational Resonance three-spin Evolution

The two-spin DQ coherence is transformed into a correlated three-spin state using
free evolution under n = 1 rotational resonance between spins 1 and 2. This
constrains the spinning frequency for the experiment to match the chemical shift
difference of the sites to be recoupled, ωr=∆ω12.

Rotational resonance is known to possess a pure, narrow-band, zero-quantum
(ZQ) Hamiltonian. This is confirmed by full numerical simulation, measuring
the selectivity of the zero-quantum Hamiltonian by monitoring the ZQ transfer
efficiency for a transfer of polarization from spin 1 of L-alanine to the other two
spins, as shown in Fig. .

This selectivity semplifies the calculation of the evolution of the three-spin
density operator during the interval B. The propagation operator for the spin
system over the interval τB may be written as follows:

UB ≈ U0
B(t 3©) exp{−iH̄BτB}U0

B(t 2©) (6.6)

where the recoupled ZQ Hamiltonian during the RR interval B is

H̄B ≈ 1

2

(

ωBS+
1 S−

2 + ω∗
BS−

1 S+
2

)

(6.7)

and, as in step A, we can express the ZQ amplitude and its phase as

ωB = |ωB|eiφB (6.8)

φB(γMR) = φ0
B + γMR (6.9)

This is of great advantage, as both sequences in blocks A and B have the same ori-
entational dependence and that guarantees that no destructive interference takes
place between the two blocks. It is possible to derive some commutation relation-
ships which help dealing with the evolution of the density operator analytically
(see Paper IV), leading to

ρ 3© ≈ −2 ei(φA+φB) sin |ωAτA| sin |ωBτB|
(

S+
1 S2zS

+
3 + S−

1 S2zS
−
3

)

+ . . . (6.10)

The DQ coherence between spins 2 and 3 are converted into DQ coherences be-
tween spins 1 and 3, antiphase with respect to 2.
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Figure 6.4: Polarization transfer curve at 9.4 T from S1 to S2 (solid line) and S3

(dotted line), in arbitrary units. In particular, the solid curve shows a peak at
ωr=∆ω12 which indicates a good transfer efficiency within a bandwidth of about
±100 Hz from the resonance conditions.

Step 3 : Selective Pulse

Robust selective pulses are available for inversion and selective excitation (by de-
stroying the signal from the non-selected spins). We need a selective pulse such
that the state of spin 2 is rotated by 90o while the other spins are unaffected.

A simple sequence that can achieve this task is 90Φ900. Each 90o pulse has
the duration of one rotor period and this is the shortest (non-shaped) frequency
selective pulse we found in our numerical search. To understand this pulse se-
quence, it is convenient to consider the off-resonance Hamiltonian (made up by
the rf terms and the isotropic chemical shifts for each of the three spins) for
three one-spin systems separately and calculate the corresponding Euler angles,
ΩC(j) . In this framework, spin 2 is subjected to a perfect 90orotation. Spin 1

(Ω
(1)
C = {124.3o, 4.1o,−145.7o}) and spin 3 (Ω

(3)
C = {53.4o, 16.3o, 143.4o}) experi-

ence a small transverse rotation and their propagators mainly induce a z rotation
of the spin state. When acting on the anti-phase DQ coherence,

UCS+
1 S2zS

+
3 U †

C =
1

8
(1 + cos β

(1)
C )(1 + cos β

(3)
C ) sin β

(2)
C S+

1 S+
2 S+

3

exp{−i ∗ (α
(1)
C + γ

(1)
C + α

(3)
C + γ

(3)
C + α

(2)
C )} + . . . (6.11)

The selective pulse is demonstrated on a state of longitudinal magnetization in
Fig. 6.5b. Here the selective pulse sequence is applied over a state of enhanced
longitudinal magnetization (created by ramped-CP followed by a strong 90opulse)
and the ratio between the integrated signal in the spectra Fig. 6.5b and Fig. 6.5a
results a 97% efficiency of the pulse sequence. The performance of this pulse
sequence on the full three-spin system has also been inferred by simulation, mon-
itoring the transfer efficiency between the TQ state and the DQ antiphase state
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Figure 6.5: Experimental spectra for U-13C-L-alanine at 9.4 T, ωr/2π=12.750 kHz,
24 transients each: (a) ramped-CP; (b) DQF spectrum, corresponding to 39%
efficiency; (c) Selective pulse demonstration; (d) TQF spectrum, corresponding to
8.7% efficiency with respect to the total longitudinal magnetization
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6.3. Triple-Quantum Coherence on Model Systems

created immediately after period C.
As also verified experimentally, the composite pulses used for TQ excitation

and reconversion are sensitive to the sign of the phase, on the contrary of many
other sequences. This requires a knowledge of the rf hardware in order to know
how the phases are generated. If this is not known by the user, it is convenient to
use a trial-and-error approach to the problem, comparing the performance of the
pulse sequences using both positive and a negative sign of the input phases within
the TQ sequence. Only one set of phases will perform well.

6.3 Triple-Quantum Coherence on Model Sys-

tems

The TQ-filtered spectrum of alaline is shown in Fig. 6.5. A two-dimensional ex-
periment comparing the indirect TQ dimendion and the direct SQ dimension has
been acquired with TPPI13 on U-13C-L-alanine, 98%, as shown in Fig. 6.6. The
TQ coherence is allowed to evolve under continuous 1H spin decoupling. As can
be seen, the indirect dimension contains one single peak, the unique TQ peak for
the TQ coherence is visible. The peak is at the sum of the isotropic chemical
shifts, as expected. There is no evidence of other possible TQ peaks deriving from
intermolecular contacts, due to the high specificity of the sequence and the short
duration of each block, i.e., only short range interaction are reintroduced. The
phases in the reconversion block of the R sequence are affected by the presence of
the TQ evolution interval. As pointed out many times, the R sequences give rise
to a z rotation modulating the interaction Hamiltonian in the interaction frame.
The presence of a time delay for t1 incrementation needs to be compensated by
shifting the relative phase of the reconversion block66 by a quantity which depends
on the time interval t1 and on the recoupled spin-space component. A similar
effect is observed in the RR period (µ = 0). The total phase correction in Eq. 6.1
includes both effects.
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Figure 6.6: Experimental 2D correlation spectrum correlationg between triple-
quantum and siggle-quantum dimensions. The unique TQ peak using 1024 t1
increments with a step of 25 µs and 6 transients per t2 slice.
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Chapter 7

Concluding Remarks

7.1 Conclusions

The theory presented here is a summary of general NMR concepts and of how they
can be applied for developing new experiments in solid-state NMR. The work here
exploits multiple-quantum filtration over 13C spin systems and therefore sample
labelling is an unavoidable requirement. Extension to other spin-1/2 systems is
possible.

Some of the tricks to improve the performance of symmetry-based pulse se-
quences are discussed, with particular attention towards high-order terms and
supercycling. The improvement in double-quantum efficiency is of great impor-
tance as this correlated spin state is a key step in many NMR experiment that
lead to structural information.

We introduce a roboust method for measuring bond lengths on 13C-13C spin
pairs and demonstrate it on a series of model compounds. The NMR data are in
good agreement with diffraction data.

The technique for distance measurement is demonstrated on the dark state of
the photoreceptor rhodopsin to determine the bond lengths within the conjugated
chain of the chromophore. These data are expected to have a big impact on
the understanding of the protein functions. Future work on this system will help
clarifying the mechanism of the primary photoreaction and the way that the energy
of the incident photon is stored so efficiently.

This stresses the importance of solid state NMR for precise determination of
structural details in biomolecules, where the precision of diffraction studies is nor-
mally much worse.

An extension to excitation of multiple-quantum coherences of order 3 is under-
taken, with an improvement in the triple-quantum filtering efficiency for coupled
13C systems under magic-angle spinning. Applications on proteins are in progress
but no data are yet available.
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Appendix A

Operators

A.1 Definitions

In mathematical terms, an operator is a mapping. Most of the operators we will
be working with are also linear. If T is a linear operator and D(T ) is the space on
which it is defined, then

T (x + y) = Tx + Ty (A.1)

T (αx) = αTx ∀x, y ∈ D(T ) (A.2)

where α is a scalar. All the treatment that follows is intended to be for linear
vector spaces. Without being too formal, it is useful to introduce some definitions,
i.e.,

• I is the identity operator

• the adjoint of an operator A is defined as the transpose of the complex
conjugate of A, and indicated as

A† = (A∗)T = (AT )∗ (A.3)

• a linear operator A is called Hermitian, or self-adjoint, if

A = A† (A.4)

• a operator is unitary if

U−1 = U † (A.5)

• the commutator between two operators A and B is defined as

[A,B] = AB − BA (A.6)

Two operators are said to commute if their commutator vanishes

• the anticommutator between two operators A and B is defined as

{A,B} = AB + BA (A.7)
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A.2. Dirac Notation

It is possible to build functions of operators and their definition is usually related
to the Taylor series expansion of the function itself. For instance, the exponential
of an operator eA can be defined as

eA =
∞

∑

n=0

An/(n!) (A.8)

Operators are often expressed in matrix form and, as matrices, they do not gen-
erally commute. In order to express an operator in matrix form, it is essential
to have a complete set spanning the whole space D(A). This form is particularly
useful when this complete basis set, {fn}, is finite in size, or at least countable.
The matrix representation of A is then

Amn =

∫

D(A)

f ∗
mAfndτ (A.9)

where dτ is a volume element of D(A).

A.2 Dirac Notation

The Dirac notation leads to a great simplification of the formulae. In this formal-
ism, we have

〈m|n〉 =

∫

f ∗
mfndτ (A.10)

〈m|A |n〉 =

∫

f ∗
mA fndτ (A.11)

where 〈m| is called “bra” and is the complex conjugate (or adjoint, if using matrix
notation) of the function, |n〉 is called “ket” and is the function itself, and the two
bra-ket terms together imply the computation of the scalar product according to
the metric of the space, in this case the integration, by hypothesis.

A.3 Eigenvalue Problems and Observables

It is often convenient to work in a basis which makes the operator A diagonal.
The basis set in this case is given by the (complete) set of eigenfunctions of the
operator

A |n〉 = an |n〉 (A.12)

If the operator A is expressed in a matrix form with respect to a basis different
from its eigenbasis, then the eigenvalues and eigenvectors are obtained by solving
the problem

(A − ΛI)X = 0 (A.13)
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where Λ is a diagonal matrix whose diagonal elements are the eigenvalues, while
X is made up of the eigenvectors. For Hermitian operators, all eigenvalues are real
and the eigenvectors are orthogonal (or can be made such). All physical property
which are observables are described by Hermitian operators, by hypothesis, and
the only possible results of a measurement of the observable associated with A is
one of its eigenvalues. If the function describing the state of the system is not
an eigenfunction, there is no certain prediction of the measurement result in an
individual case, but is still possible to compute the average value < A > of the
property in many identical observations, namely

< A >=
〈ψ|A |ψ〉
〈ψ|ψ〉 (A.14)

All these formulae are extensively used throughout this thesis to compute NMR
observables.

A.4 Single-Transition Operators

Single-transition operators152 are spin operators connecting specific energy eigen-
states and they are labelled according to what transitions they refer to. For in-
stance, the single transition shift operators connecting states r and s are defined
as

I
(rs)
+ = I(rs)

x + i I(rs)
y = |r〉 〈s| (A.15)

I
(rs)
− = I(rs)

x − i I(rs)
y = |s〉 〈r| (A.16)

On the other hand, the diagonal terms correspond to populations and are repre-
sented by projection operators of the form

Irr = |r〉 〈r| (A.17)

The easiest way to build the single transition operators is usually to start from the
ket-bra multiplication of the basis functions in their vector form, and then derive all
relevant operators from these. In general, it is possible to represent MQ coherences
of any order with this formalism. The single transition shift operator Irs

± connects
states with ∆M = ±(Mr − Ms). This formalism is of great help when dealing
with spin pairs, allowing one to simplify a real two-spin system into a ficticious
spin-1/2 system. For instance, if we label the states as {|αα〉 , |αβ〉 , |βα〉 , |ββ〉} =
{|1〉 , |2〉 , |3〉 , |4〉} we can describe many of the properties of ZQ coherences by just
considering states |2〉 and |3〉, while DQ coherences involve a correlation between
states |1〉 and |4〉.
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Appendix B

More on tensors and rotations

B.1 Wigner Matrices

The general form of Wigner matrices of rank l is

Dl
mm′ (Ω) = e−imαdl

mm′ (β)e−im
′

γ (B.1)

The explicit forms of the reduced Wigner matries are given below, using a short
notation “c” and “s” to indicate cosine and sine functions:

d1 =





(1 + cβ)/2 −sβ/
√

2 (1 − cβ)/2

sβ/
√

2 cβ −sβ/
√

2

(1 − cβ)/2 sβ/
√

2 (1 + cβ)/2



 (B.2)

d2 =























(1+cβ)2

4
−(1 + cβ)sβ/2

√

3
8
s2β (1 − cβ)sβ/2 (1−cβ)2

4

(1 + cβ) sβ
2

−1+cβ
2

+ c2β −
√

3
8
s2β 1+cβ

2
− c2β −(1 − cβ) sβ

2
√

3
8
s2β

√

3
8
s2β (3c2β − 1)/2

√

3
8
s2β

√

3
8
s2

(1 − cβ) sβ
2

1+cβ
2

− c2β
√

3
8
s2β −1+cβ

2
+ c2β −(1 + cβ) sβ

2

(1−cβ)2

4
(1 − cβ)sβ/2

√

3
8
s2β (1 + cβ)sβ/2 (1+cβ)2

4























(B.3)

The useful properties of Wigner matrices include

dl
m0 = (−)mdl

−m0 (B.4)

B.2 Spherical Representation of Tensors

When dealing with vecrors and tensors in this thesis, we often assume that they are
expressed as column vectors, or in Dirac’s notation as Kets. The matrix defining
the transormation from the spherical basis {〈+1| , 〈0| , 〈−1|} to the cartesian basis
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B.3. Spin-1/2 Angular Momentum Operators

{〈ex| , 〈ey| , 〈ez|} can be obtained directly from the basis definition

〈+1| = − 1√
2
(〈ex| − i 〈ey|) (B.5)

〈0| = 〈ez| (B.6)

〈−1| =
1√
2
(〈ex| + i 〈ey|) (B.7)

(B.8)

by taking the scalar product between elements of different bases and exploiting
the completeness of each set, leading to

T =





− 1√
2

i√
2

0

0 0 1
1√
2

i√
2

0



 (B.9)

All transformation are always intended within the same reference frame, if not
otherwise specified. Some useful properties of spherical tensors are recalled here,
together with the explicit form of the irreducible spherical tensors with respect to
the Cartesian components:

|A〉lm = (−1)l−m |A〉∗l −m (B.10)
∣

∣A(0)
〉

= − 1√
3
(axx + ayy + azz) (B.11)

∣

∣A(1)
〉

=





1
2
(axz − azx + iayz − iazy)

i√
2
(ayx − axy)

1
2
(axz − azx − iayz + iazy)



 (B.12)

∣

∣A(2)
〉

=















1
2
(axx − ayy + iaxy + iayx)

−1
2
(axz + azx + iayz + iazy)

− 1√
6
(axx + ayy) +

√

2
3
azz

1
2
(axz + azx − iayz − iazy)

1
2
(axx − ayy − iaxy − iayx)















(B.13)

When it comes to rotations, it is conventional to notate rotation matrices in a
Cartesian basis by R(θ,n), while the corresponding rotation in a spherical basis
are the Wigner matrices. If the rank-J tensor A is in its irreducible spherical form,
then it transforms from frame F to F

′

as

〈

A(J)
∣

∣

F
′

=
〈

A(J)
∣

∣

F
′

DJ(ΩFF
′ ) (B.14)

For further information, see for instance Refs.25

B.3 Spin-1/2 Angular Momentum Operators

The spin-1/2 angular momentum operators are proportional to the Pauli matrices,
which are an important tool in modern quantum physics and they constitute the
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basis for the matrix representation of the wavefunction and Hamiltonian in NMR.52

Below are listed the matrix representations for single spin-1/2 operators

Ix =
1

2

(

0 1
1 0

)

=
1

2
(|α〉 〈β| + |β〉 〈α|) (B.15)

Iy =
1

2i

(

0 1
−1 0

)

=
1

2i
(|α〉 〈β| − |β〉 〈α|) (B.16)

Iz =
1

2

(

1 0
0 −1

)

=
1

2
(|α〉 〈α| − |β〉 〈β|) (B.17)

I+ =

(

0 1
0 0

)

= |α〉 〈β| (B.18)

I− =

(

0 0
1 0

)

= |β〉 〈α| (B.19)
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