

Final test / Applications NMR

Acceptance Solid State NMR Test Procedure

for Avance NMR Systems

Manual P/N B92999

Acceptance Solid State NMR Test Procedures

for AVANCE systems

- 1. Purpose
- 2. Area of application
- 3. Referenced documents
- 4. NMR experiments for probe tests
 - 4.1 Introduction
 - B₀-Field Adjustment, Referencing 4.1.1
 - Sample Preparation 4.1.2
 - 4.1.3 MAS Monitoring
 - 4.2 Setting the magic angle with KBr
 - 4.3 ¹H $\pi/2$ pulse Adamantane
 - 4.4 Direct polarization ¹³C on Adamantane / resolution test 4.5 Cross polarization ¹H ¹³C on Adamantane

 - 4.6 Sensitivity ¹³C Glycine
 - 4.7 ¹³C $\pi/2$ pulse determination (optional experiment) 4.8 Sensitivity ¹⁵N Glycine

 - 4.9 ¹⁵N $\pi/2$ pulse determination (optional experiment)
 - ³¹P CPMAS experiment 4.10
 - ³¹P $\pi/2$ pulse determination (optional experiment) 4.11
 - Double CP experiment 4.12
 - Double CP experiment tuning stability test 4.13
 - 4.14 HFX experiments
 - 4.14.1 HF experiment and FH experiment
 - 4.14.2 FC CPMAS experiment
 - 4.14.3 FC(H) CPMAS experiment
- 5. Setup 4Phase Modulator
- 6. Shimming a CP MAS probe

Revision Record:

<u>Index</u> 00 01 02	<u>Date</u> 02/01/2001 06/11/2001 03/27/2002 04/28/2003 09/03/2003 02/24/2004	Text Created Revised Edited Revised Revised	<u>Initials</u> JOS HCL, JOS ASF, JOS JOS JOS JOS
	02/24/2004	Revised	JOS
03 04	12/22/2004 11/11/2005	Revised Extended with DCP and HFC experiments	JOS, BRC JOS

1. Purpose

This manual describes the procedures for the NMR tests that are necessary to set up Solid State NMR MAS experiments in order to demonstrate the high performance of Bruker Avance Instruments. It includes basic specification tests such as ¹³C resolution (line width at half height) and sensitivity tests, as well as some advice on shimming MAS probes. More advanced experiments and their setup can be found in the help menu of XWIN-NMR (other topics - solids users' manual) or using NMR-Guide.

All test procedures are subject to change without notice.

2. Area of application

This manual is for all Bruker Service personnel engaged in final testing, service and installation of NMR instruments, as well as for customers. The manual is a complement to the Acceptance and Test Procedures for Avance NMR systems, ZUEP0102. The manual complements the solids part of the ATP program and can be used only for systems with the software Release XWIN-NMR 3.1 patch level 11 and higher with AQS electronics.

Note: The CP pulse programs and related parameter sets do not work on systems with AQX/AQR electronics. Pulse programs for D*X systems are available in the software release under '<Xwinnmrhome>/exp/stan/nmr/lists/pp.dsolids'. Appropriate adjustments to the parameter sets need to be done as well.

3. Referenced documents

ZUEP0102	Acceptance test procedures for Avance spectrometers
	and documents referenced in ZUEP0102
H9321	Solids user manual
Z31401	SB MAS Operation Manual
B3072	SB Wideline Probe Manual
Bxxx	HR-MAS Standard Test Procedures

4. NMR experiments for probe tests

4.1 Introduction

4.1.1 B₀-Field Adjustment, Referencing

Solid-state NMR probes have no ²H lock channel. As a result, referencing is done for each nucleus with standard samples. For a general spectrometer setup one basic referencing is needed and one convenient standard sample is used. The built in frequency list - following R.K. Harris IUPAC recommendations - guarantees appropriate cross-referencing.

The general spectrometer referencing is done using the most convenient sample and related nucleus. If, for example, one uses the ¹H resonance of water or TMS if available, the liquid sample is centered in a MAS rotor as outlined below.

The parameter set **ZGSOLIDS** is loaded, using **rpar ZGSOLIS all** in the command line of XWIN-NMR. The nucleus ¹H is selected either in the **eda** or in the **edsp** editor. Before starting, make sure that in **eda** the parameter **locnuc** is set to *off*, and that neither the lock nor the sweep buttons on the BSMS keypad are lit. If no keypad is available, open the BSMS display/lock window and check the state of field sweep and lock. Both must be off.

The ¹H transmitter offset O1P is set to 4.7 ppm, temperature should be around room temperature, furthermore, a recycling delay d1 = 0.5 seconds, td = 4096 and sw = 20ppm is chosen. For excitation one uses a power level of pl1 = 10 dB and a pulse length p1 = 5 us. The interactive experiment is started by typing gs into the command line. In order to observe the signal, switch to the acquisition window by typing acqu. Dial the field (BSMS keyboard or BSMS display / shim window) while pulsing, until the FID is on resonance. Then the experiment is stopped by typing stop and an acquisition is started with ns =1 and ds = 0, by typing zg into the command line. The signal is processed with ft and appropriately phased. When TMS is used in the sample, change the BSMS field until the TMS signal is exactly on Zero the Zero frequency position.

Sample	Nucleus	Shift (ppm)
Water	$^{1}\mathrm{H}$	4.7
TMS	$^{1}\mathrm{H}$	0
KBr	⁷⁹ Br	About 60 ppm R.K. Harris IUPAC recommendation, updated in TOPSPIN release from XWINNMR 3.1 where it was 41.1ppm
Adamantane	¹³ C	29.5 38.56 (Earl et al. JMR 48, 50 (1982)
TTMSS	²⁹ Si	-8.9
Glycine	¹³ C	176 (Carbonyl line)

Table 1: Some chemical shifts that one can use for referencing.

Final test / Applications NMR

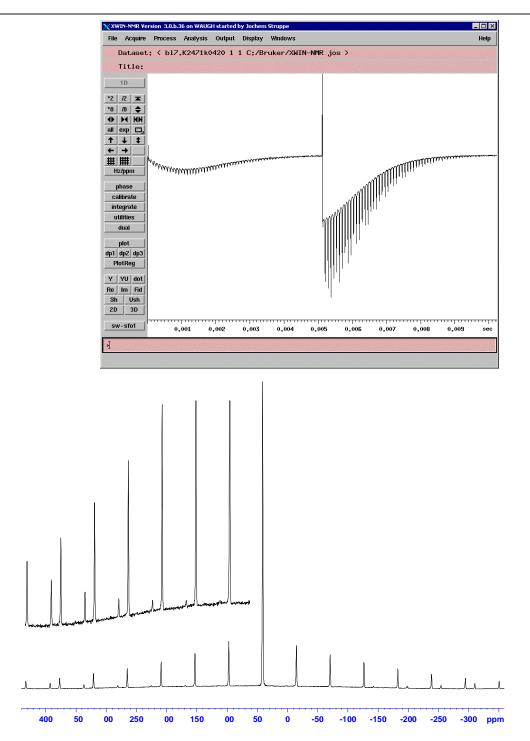
The procedure has the advantage of allowing the spectrometer frequencies in the parameter sets to be used more easily on other spectrometers (if these spectrometers are referenced as well and use Bruker's frequency list). With O1 and O2 in ppm, different magnetic fields do not matter for parameter transfer.

4.1.2 Sample Preparation

A water sample should be made with a CRAMPS insert or, if that is not available, with some Teflon tape at the bottom of the rotor to center the sample. A drop of water with or without TMS is set on top of the insert or Teflon tape and the upper part of the rotor remains unfilled. Insert the rotor into the probe and do not spin. Some shimming may be done on this sample to improve the line width, using the x or y and z shims.

It is advantageous to prepare one rotor with a mixture of KBr and adamantine (except for the 2.5 mm rotors, for reasons of signal intensity). This sample is easier to pack than a pure KBr sample and a number of setup experiments can be done without changing the sample. The ⁷⁹Br resonance of KBr is used to set the magic angle. This process is described in section 4.2. Pulse lengths for ¹³C and ¹H and the HH contact are determined on the adamantane ¹³C (and ¹H) signals. A second rotor filled with Glycine is needed to determine the ¹³C and ¹⁵N sensitivity. A rotor filled with ammonium-dihydrogenphosphate is used to measure ³¹P signals, determine pulse lengths and sensitivity (³¹P has no official sensitivity specification but the experiment is useful for obtaining an overall impression of the probe).

For SB CPMAS probes and 2.5 mm probes it is advantageous to have a sample with ¹⁵N labeled glycine or ammonium chloride available to determine pulse lengths and power levels needed for the ¹⁵N cross polarization (CP) experiment.


4.1.3 MAS monitoring

In order to monitor the spinning speed of the rotor, the **mascontrol** window must be opened. To do this, type **mascontrol** into the command line. Within this window the present probe needs to be selected, open the button **etc...** and select *Write log file ON*. This will write spin rates to log file so that spin stability can be determined. A printout of this file must be attached to the other test results.

X
1
1

Final test / Applications NMR

Spectrum with spinning sidebands at 7 kHz sample spinning using 100 kHz sweep width, **digmod** = ANALOG. Insert shows the folding back of spinning sidebands.

4.2 Setting the magic angle with KBr

For more information on how to adjust the angle using the FID in the gs mode, see manual Z31401 page 45 ff..

Test Sample: Spinning rate:	KBr o 7 kHz	r KBr +Adamant	tane
Spectrometer edsp:	NUC1	⁷⁹ Br	
Parameter set :	KBr		
Pulse program:	1 2 exit ph1 =	ude <avance.inc ze d1 p1 ph1 go=2 ph31 wr #0 = 0 2 2 0 1 3 3 1 = 0 2 2 0 1 3 3 1</avance.inc 	cl> ;pl1=power level f1 channel ;p1 =f1 channel high power pulse ;d1 =relaxation delay = 1 - 5* T1 ;write data to disk
	Ph51-	02201331	
Parameters:	Acquisition:	PULPROG	zg
		NS P1 DW D1 PL1 DIGMOD O1P AQ MASR	4 4us 5us 500ms as determined in the following: analog 41 ppm <i>about 8 msec</i> 6000 Hz and higher NOT a multiple of 5 kHz

Setting Transmitter power: If the correct power level for the X-channel is not already known, start using 50% of the maximum power for the used channel using the power handling data sheet that comes with each probe. For the appropriate power level settings use 50% of the nominal transmitter power for the power level 0 if **CORTAB** has not been done and 25% if it has been done. Then use the fact that the power decreases or increases by 50% for a 3dB change above 0dB and below 0dB only if **CORTAB** has been done. As an example we want to use 75W on a 2.5 mm CPMAS probe with a linearized (**CORTAB** done) 1000W transmitter. Then we have 250W at 0 dB, 125W at 3 dB and 75 W at about 5.5 dB. As a reminder dB is defined as:

Final test / Applications NMR

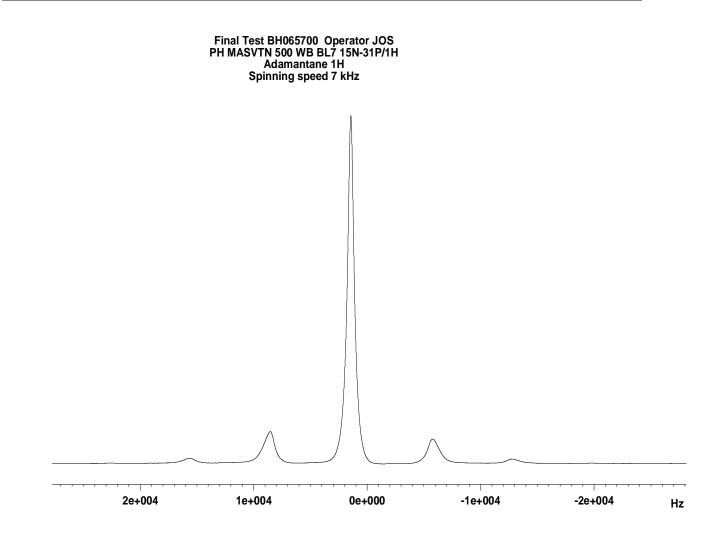
$$ydB = 10 \cdot \log\left(\frac{power_1}{power_2}\right)$$

That is exactly what you can use to calculate the power level change for a certain change of the pulse width or a nutation frequency, but as you are using amplitudes and not power it changes to:

$$ydB = 20 \cdot \log\left(\frac{pulsewidth_1}{pulsewidth_2}\right)$$

In order to find a new pulse width for a given power level it reads:

pulsewidth 2 = pulsewidth $1 \cdot 10^{(powerlevel_1 - powerlevel_2)/20}$


- 1. Read in the parameter set **KBr**, by typing *rpar KBr all* into the command line.
- 2. Set the power level PL1 following the suggestions above; match and tune the probe.
- 3. Type *edasp* and check the default button, the routing should now go through the high power amplifiers.
- 4. Type *wobb* and toggle with *acqu* into the acquisition window.
- 5. Match and tune the probe.
- 6. Type *gs* in the command line and switch with *acqu* to the acquisition window.
- 7. Make fine adjustment of O1 in the gs-window until the signal is full on resonance and set the receiver phase, *phref*, so that the full signal is in one channel in the *ush* (unshuffle) mode.
- 8. Adjust the magic angle, observing the FID and dialing the MA adjustment so that the spinning sidebands extend as far as possible. The spinning sidebands are seen in the time domain signal, the free induction decay (FID), as spikes riding on the on resonance signal of the central transition. The sidebands should extend as far as possible to the end of the 8-10 ms acquisition time.
- 9. Stop *gs* and start zg to get a spectrum.

Plotting: Plot the whole spectrum

Note: A sweep width of 250 kHz can also be used to see the whole spinning sideband pattern. Such a sweep width can be achieved either in analog mode or in digital mode with DSPFIRM on smooth. At a spinning rate of 6 to 8 kHz, one can see the sidebands going almost all the way out to the end of the spectral window (depends on S/N! i.e. rotor size) and being reflected. Print the spectrum as proof for good setting of magic angle, use 16 to 64 transients to obtain a good enough intensity of the reflected signal. A sweep width of 250 kHz cannot be achieved on systems using SADC digitizers. For such systems use **swh** = 100 kHz and digmod=analog.

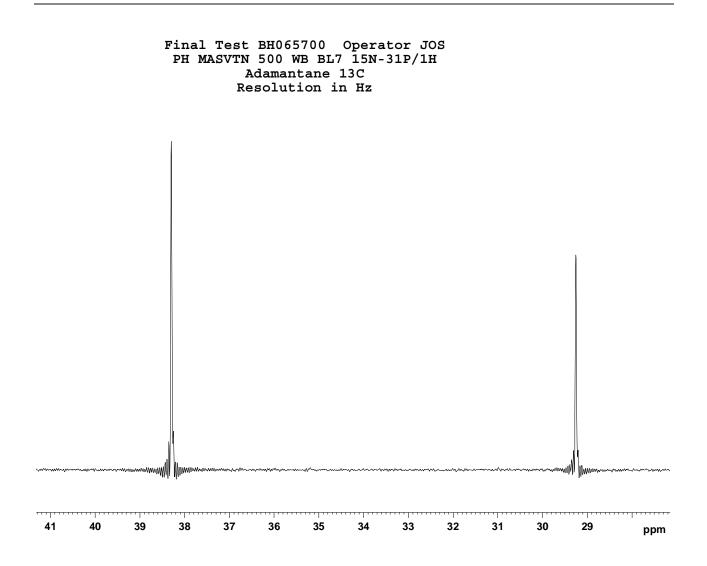
Final test / Applications NMR

Final test / Applications NMR

4.3 ¹H 90 degree pulse Adamantane

The Adamantane sample is used to determine the ¹H 90° pulse. While this is done a check of sample spinning needs to be performed order to check whether the probe spins well and to demonstrate stability of MAS controller. 7mm, 4mm and 2.5mm MAS probes need to run at the limit of 7 kHz, 15 kHz and 35 kHz respectively. A log file of the MAS controller must be created according to the procedures outlined in sections 4.1.3. Print this file as proof that stable spinning at the highest spinning speed was achieved. Make sure that the rotor is not too old if going to the fastest rotation speeds. With normal wear and tear I would suggest that for acceptance tests in the field the rotor should not be older than 50 high speed tests. It is advised to maintain a usage log for all rotors, speed, when filled last, trips and special issues (dropped etc.). Indeed, it is annoying to have a rotor crash in the field.

Test Sample:		Adamantane	
Spinning rate		limit of probe	
Spectrometer <i>edsp</i> :		NUC1	$^{1}\mathrm{H}$
Parameter Set Pulse program	zg	ZGSOLIDS	
Parameters	Acquisition:	PULPROG TD NS P1 DW DE D1 PL1 DIGMOD 01P	zg 2048 4 4us 5us 6us 2s as determined in the following: digital 2.3 ppm


Transmitter power: see 4.1

Plotting: Plot the whole spectrum. Choose Hz for x-axis units.

Note: Use the experiment to determine the pl1 for a 4 us 90-degree pulse on 1H, the power level for the decoupling pulse (e.g. 2.5 us for 4mm CPMAS probe) and write the obtained value for the high power decoupling pulse into edprosol 1H F1A1 in the field for p90 (see appendix). Having those data available allows a fast setup of the CP as well as the sensitivity experiment. With CORTAB done, write the power level and for a 2, 3 and 4 us ¹H pulse into the prosol table on F1 use either all solvents or create a solvent solids following the instructions on the ICONNMR manual extension for solid state NMR.

Final test / Applications NMR

Final test / Applications NMR

4.4 ¹³C Direct Polarization on Adamantane

Direct detection of ¹³C is done on Adamantane in order to determine the 90-degree ¹³C pulse at various pulse lengths and power levels. The experiment can, in principle, be used for shimming, however, more signal is available through the CP experiment (see 4.5). Begin with $\mathbf{aq} = 100$ ms and adjust 90-degree pulses at various pulse lengths as deemed necessary. For shimming, \mathbf{aq} can be increased up to 500ms if the ¹H decoupling is kept moderately low, see note. Attention: Be extra careful during that experiment: check \mathbf{aq} if \mathbf{sw} , \mathbf{dw} , or \mathbf{td} values are changed and make sure it stays below 0.1 s, otherwise the probe could be damaged. Use power levels that provide a 5us 90-degree pulse for a 4mm probe - see **note** below.

Parameter Set: Pulse program:	DirectC13 hpdec.av	
	NUC2	${}^{1}\mathbf{H}$
Spectrometer edsp:	NUC1	¹³ C
Spinning rate:	5 kHz or higher	
Test Sample:	Adamantane	

;hpdec.av ;acquisition on X with hp proton decoupling

	1 ze 2 d1 do:f2 (p1 ph1):f1 1u cpds2:f2 go=2 ph31 1m do:f2 wr #0 exit	;recyc ;trans ;use c] ;make	CU to replace mode le delay mitter pulse on F1 with power level pl1 pdprg2 cw or tppm at power pl12 e sure the adc is finished, turn decoupling off data in current data set
	ph0= 0 ph1= 0 1 2 3 ph31=0 1 2 3	;simpl	ant phase for acquisition le pulse phase list l routing corresponds to pulse phase list
Parameters:	Acquisition:	PULPROG TD NS P1 DW CPDPRG2 PL1 PL12	hpdec.av 2048 4 4us 50 μ s tppm15 (or cw at low field instruments) approach as determined in 4.2 and 4.3 pl for 5.5us 90degree on ¹ H (45 kHz B1 field) for 4 mm and 6.3 us (40 kHz) for 7 mm probes

	P31	2*p3-0.2us as start value – optimize! Might require a decent shim already.
	O1P	32 ppm
	O2P	2.3 ppm
	ZGOPTNS	-Dtppm
Plotting:	1	of spectrum and determine line width with the au <i>l</i> . Note the line width in title, if the experiment was ning.

Note 1: If no previous referencing has been done using the BSMS field or the BSMS display/lock window, set the right hand line to 29.5 ppm. If the spectrometer is referenced properly with the field and spectrometer frequency, use the values given in the parameter set. If the '**sr**' command is used to set the reference, use a frequency right between both lines as the O1 for the experiment. Then, measure the absolute frequency of the left line and multiply that frequency by 3.976787 in order to find the right SFO2 for the ¹H decoupling.

Note 2: This experiment can also be used for shimming the probe. Then it might be necessary to set **aq** to higher values, up to 500ms. In that case, we reduce the decoupling power as much as possible but try to stay high enough so that dipolar coupling cannot influence the line width. A maximum of 500 ms for **aq** can be used with reduced decoupling power. This is at the power level of a 5 us pulse, equivalent to a B_1 field of approximately 50 kHz. for 4 mm probes and 40 kHz for 7mm probes. Pay attention that in such cases the recovery delay D1 is 10 s. One must not exceed a maximum of 500 ms for **aq**.

Note 3: In the most recent release the au-program au_cp, changes the decoupler power level used for the experiment based on the acquisition time. The au_program uses and sets a hidden pulse programs permitting *aq* up to 1s by reducing the amplitude of the decoupler rf signal by 25% for 50 ms < aq < 200 ms and by 50% for 200 ms < aq < 1 s. The decoupler power in the prosol table must be 80% of the max. value, i.e. 80kHz for 4mm (3.1us), 56 kHz for 7mm (4.5us) and 125 kHz for 2.5mm (2.1us) CPMAS probes.

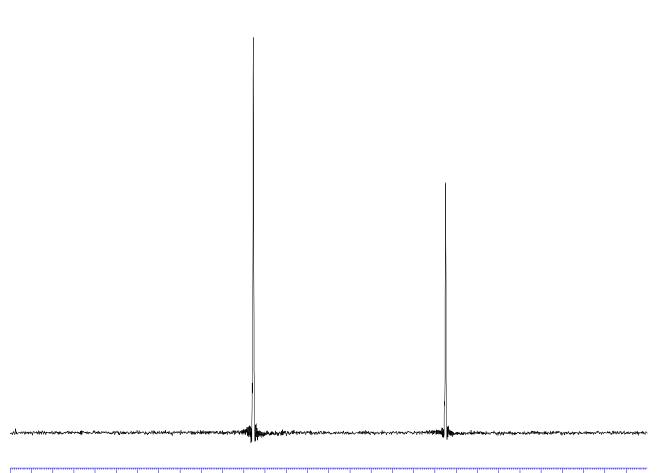
Decoupling programs:

The decoupling program **cw**:

0.5u pl=pl12 1 100up:0 fq=cnst21 jump to 1

TPPM decoupling: TPPM (Two Pulse Phase-Modulation) has been invented 1995 by the Griffin group at MIT:

A.E. Bennett, C.M. Rienstra, M. Auger, K.V. Lakshmi, and R.G. Griffin; *Heteronuclear decoupling in rotating solids*, J. Chem. Phys. 103 (16); 6951 – 6958 (1995)


TPPM decoupling surpasses the traditional cw decoupling and is now standard in solid state NMR experiments. TPPM is not needed for the experiment with adamantane.

The decoupling programs tppm: (the frequency offset cnst21 can be set to 0 for these setup experiments)

tppm15	tppm20
0.3u fq=cnst21	0.3u fq=cnst21
0.5u pl=pl12	0.5u pl=pl12
1 p31:0	1 p31:0
p31:15	p31:20
p31:0	p31:0
p31:15	p31:20
p31:0	p31:0
p31:15	p31:20
p31:0	p31:0
p31:15	p31:20
p31:0	p31:0
p31:15	p31:20
p31:0	p31:0
p31:15	p31:20
p31:0	p31:0
p31:15	p31:20
p31:0	p31:0
p31:15	p31:20
p31:0	p31:0
p30:15	p30:20
jump to 1	jump to 1

Final test / Applications NMR

49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 ppm

4.5 ¹H - ¹³C Cross Polarization on Adamantane

NOTE: The following experiment uses the same power level PL12 for the 90°-pulse p3 and the decoupling pulse in order to allow control and direct measure of the nutation¹ frequency of the decoupling field. PL2 drives the power of the fast shape during the contact. The 3.1 us (80 kHz) pulse for 4 mm probes are known from the previous experiment (¹H on adamantane). Use parameter set **CPADAM**, edit the pulse program and disable the *acquisition time* protection feature by commenting out the line #include <praq.prot> with a ";". Save the pulse program under the original name with your initials as extension, e.g. if xyz is your extension cp.av is renamed to cp.av.xyz. Subtract 3 or 6 dB from p112 if it is set for the 80 kHz decoupling power level, i.e. if p112 for 80 kHz is 5dB, use 8 dB for acquisition time 50ms < *aq* < 200ms and 11 dB if the acquisition time is 200ms < *aq* < 1s. The decoupler power in the prosol table must be 80% of the max. value, i.e. 80kHz for 4mm (3.1us), 56 kHz for 7mm (4.5us) and 125 kHz for 2.5mm (2.1us) CPMAS probes.

Set pl1 to the same power level achieved for a 5us $90^{\circ 13}$ C pulse from the previous hpdec experiment and adjust pl2 for best HH match using **popt**.

Test Sample: Spinning rate:	5 kHz	Adamantane
Spectrometer edsp:	NUC1	¹³ C
	NUC2	${}^{1}\mathbf{H}$
Parameter set:	CPADA	М
Pulse program:		

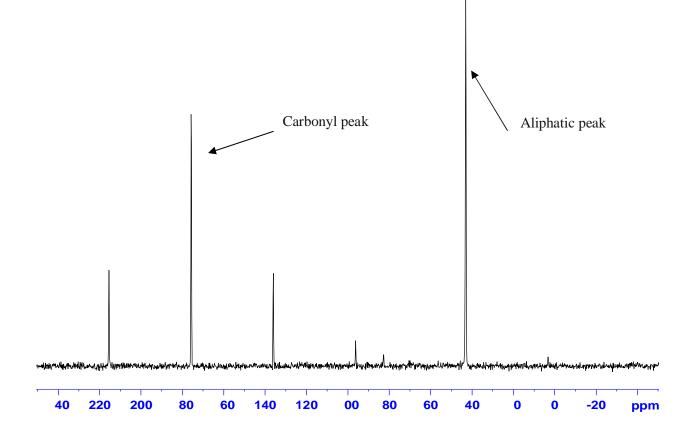
Parameters: cp.av or cp90.av Acquisition: PULPROG 1024 TD P1 0 P15 5ms SWH 10 kHz D1 5sPL1 for 4 or 4.5 us pulse as determine in 4.4 **PL11** 120 dB PL2 power level of shaped contact pulse if one uses the

¹ The spin nutation frequency is the frequency at which the spins rotate around the rf-field; $f_{nut} = \gamma/2\pi * B_1$, B1 is the field strength of the rf field

. .

.

.


SPNAM0 PL12 P3	ramp and pl1 for 4 us excitation pulse we need then the power level for 4 or 4.5 us 1H as determined in 4.3 minus 3 dB ramp.100 see text goes with pl12 – if pl12 was changed by 3 dB, multiply the original pulse with with 1.4, if it was changed by 6 dB double the original pulse width. If e.g. original pulse parameters were 3.1us at 5 dB, change to 8 dB gives 3.1*1.4=4.3us, and a change to 11 dB gives a 6.2 us pulse width.
CPDPRG P31 ZGOPTNS	 tppm15 (or cw for low field instruments) 2*p3-0.2us (see above) -Dlacq (switches protection file off for long acquisition times – see note below for decoupling power limitations at long acquisition times)

Note: This experiment is used for shimming the probe and demonstration of power handling capability. It might be necessary to set aq to higher values. In that case, <u>make sure</u> that the decoupling pulse does not exceed 50 kHz (for 4 mm probes and 40 kHz for 7mm probes) and that the recovery delay D1 is 10 s. Save parameter setas **CPADAM**. Do not exceed a maximum of 500 ms for **aq**.

Attention: If aq >50ms, then the probe protection increases the attenuation (the power level) by 3dB for 50ms < aq < 200ms and by 6dB for 200ms < aq < 1s in recent pulse programs

Final test / Applications NMR

4.6 ¹³C Sensitivity on Glycine

Having the best HH match from the previous experiment, it is necessary to optimize the HH match on for the glycine sample again if the spinning speed was changed. Spin at N kHz where N is defined by the 1H spectrometer frequency divided by 100MHz (e.g. for a 500.13MHz spectrometer N=5). Then p3 is measured in a nutation experiment (increment p3 using popt) in order to verify the measurements at the ¹H experiment. Then calculate the power level for a 2.5 us pulse, which is a 100 kHz B₁ field (4mm probe) or 75 kHz (7mm probe), using **pulse** in the ¹H adamantane experiment (section 4.3.) Remember, using the au program pulse requires values be placed in pl1 and p1, not pl2 and p3. Set to the obtained new values for p3 and pl12 and repeat the measurement. The obtained pl value in dB is then used for pl12. Measure p3 with **popt** in order to verify the calculation. A good p31, the pulse for TPPM decoupling, is estimated from p3 using p31=2*p3-0.2us.

The power handling test should be done at that stage of the test procedure. The experiment must be done with the pulse program **cp90.av** (**cp4c.98 for D*X** spectrometers) with the protection features implemented.

NOTE: In more recent releases, the pulse program uses the relations file **solids_cp**. If this is not the case, the use of the relations file can be obtained by adding the line prosol relations=<solids cp>

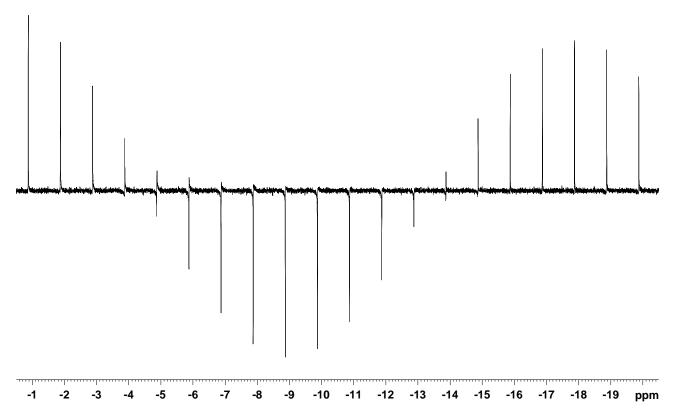
between the comments and the first line with an include statement into the pulse program. This requires that the power levels and pulses are entered correctly into the prosol table (see appendix).

Test Sample:	Glycine	
Spinning speed: Spectrometer <i>edsp</i> :	frequency div	z where N is defined by the 1H spectrometer ided by 100MHz 0.13MHz spectrometer N=5). ¹³ C
	NUC2	¹ H
Parameter set: Pulse program: Parameters: Acquisition:	CPGLY cp.av PULPROG TD SW D1 NS PL1	cp90.av 2048 300ppm 5s 4 for 4 or 4.5 us pulse as determine in 4.4
	P15 PL2 SPNAM0	2000 μs power level for 4 - 4.5 us ¹ H pulses minus 3 dB ramp.100 r level for excitation pulse P3 and decoupling. Use
100% of the	maximum value	es for sensitivity specs and 80% for the PROSOL

table (56kHz, 80 kHz and 120 kHz for 7, 4 and 2.5 mm probes)! Max. decoupling is 75 kHz, 100 kHz and 150 kHz for 7 mm, 4mm and 2.5 mm MAS probes, respectively. Acquire one experiment with maximum decoupling and aq=50 ms to document power handling.			
P3	Use the maximum values, 2.5us, 3.3us and 2us		
	for 4mm, 7mm and 2.5mm MAS probes,		
	respectively. Measure the 80% values and put		
	those into the PROSOL table, i.e. use 3us, 4.5		
	and 2.1 us for 4mm, 7mm and 2.5mm MAS		
	probes, respectively.		
P31	2*P3-0.2us to be optimized		
O1P	100 ppm		
O2P	3.5 ppm (to be optimized in steps <=500 Hz		
CPDPRG2	tppm15 or SPINAL64 (cw for 300MHz and		
	Lower field spectrometers)		
Processing: LB	0 Hz		

Note: If the carbonyl peak comes properly up at 176 ppm the O2 parameter above can be used. If not, set the carbonyl peak to 176 ppm. In order to get the right decoupler frequency, measure SFO1 at the carbonyl peak and multiply this number with 3.976245. Using *popt* with 400 Hz steps can also be used to find the best position for the decoupler frequency. For more advice, consult one of the references given above.

Sensitivity is determined by measuring the signal height of the aliphatic peak and noise over a 10 ppm wide region. Use the au program **sinocal**. *Signal region* 50 ppm to 30 ppm, *range for noise determination* from 250 ppm to -50 ppm and *noise* 10 ppm. When using ATP the appropriate parameters for sinocal are readily available and **sinocal** loads those parameters automatically.



Final test / Applications NMR

Acceptance Test Procedure Determination of 90 deg pulse for 13C

poptau for p1 finished. ZERO at experiment 4.671153: p1 = 4.671153

NEXP=20

4.7 ¹³C $\pi/2$ Pulse determination

Test Sample:	Glycine
Spinning speed: Spectrometer <i>edsp</i> :	Spin at N kHz where N is defined by the 1H spectrometer frequency divided by 100MHz (e.g. for a 500.13MHz spectrometer N=5). NUC1 ¹³ C
	NUC2 ¹ H
Parameter set: Pulse program: Parameters: Acquisition: Set:	CPGLY cp90.av PULPROG cp90.av PL11 = PL1 all other parameters used as in 4.6
Processing	as above

Note: Use *popt* for this experiment.

A $\pi/2$ pulse on ¹³C with the right phase after the spin lock gives no signal! See figure.

Note: Enter the value pl11 and p1 into P90 of the prosol table.

Final test / Applications NMR

Final Test Probe B0628/101: PH MAS WB BL-4 1H/X/Y Done by: JOS Glycine 15N CP experiments Spinning speed 11000Hz Signal to Noise: 40 to 25 ppm Signal from Noise from 179 to 129 ppm 300 250 200 150 100 50 0 -50 -100 -150 -200 -250 рр

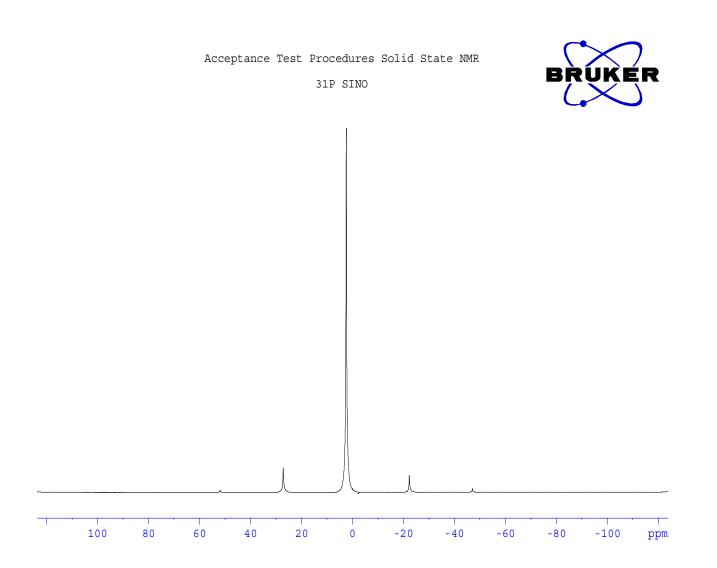
4.8 ¹⁵N Sensitivity on Glycine

Test sample: Spinning speed: Spectrometer <i>edsp</i> :	Glycine, ¹⁵ N natural abundance For parameter optimization: use ¹⁵ N enriched Glycine Spin at N kHz where N is defined by the 1H spectrometer frequency divided by 100MHz (e.g. for a 500.13MHz spectrometer N=5). NUC1 ^{15}N NUC2 ^{1}H	
Parameter set: Pulse program:	CPN15 cp90.av	
Parameters: Acquisition:	PULPROG TD P1 P15 SW D1 RG PL1 PL11 PL2 SPNAM0 PL12 O1P O2P	cp90.av 2024 5.5us (goes with PL11) 3 ms 400ppm 5s 8096 Power level for 5 or 5.5 us pulse 120 dB power level for 5 or 5.5 us 1H pulse + 3dB ramp.100 Use same decoupling as in previous experiment with ¹³ C 0 ppm 5 ppm optimize

Note: A good starting point for the choice of power levels is to use the power level of the ¹³C and subtract 3dB (double the power) and add 3dB to the proton power level *pl2* used for ¹H-¹³C CP-MAS experiment. The ¹⁵N peak is approximately at 33 ppm if the reference procedure was used following chapter 4.1 or 4.4. For **o2p** use **o2p** from Glycine sensitivity experiment and add 5.5 ppm. The best decoupler position can also be found using *popt* with 400 Hz steps. In order to setup HH and all other parameters it is advantageous to use a ¹⁵N labeled glycine, if available. Another good and easy sample is ¹⁵N enriched ammonium nitrate (allows direct polarization almost without any decoupling).

Sensitivity is determined by measuring the signal integral over the peak and noise over a 20-ppm wide region. Use the au program *sinocal*. *Signal region* = 35 ppm to 25 ppm, *whole spectrum* 300 ppm to -300 ppm and *noise* 50 ppm.

Then the program will look for the best noise region and return the values for noise region, signal region and S/N.


Final test / Applications NMR

4.9 ¹⁵N $\pi/2$ Pulse determination

Use same parameters as in 4.8 ¹⁵N Sensitivity on Glycine and measure the pulse width as described in 4.7 ¹³C $\pi/2$ Pulse determination.

Final test / Applications NMR

4.10 ³¹P Sensitivity

Test sample: Spinning speed:	Ammoniumdihydrogen Phosphate See Glycine experiments	
Spectrometer edsp:	NUC1 NUC2	³¹ P ¹ H
Parameter set: Pulse program:	CPP31 cp.av	
Parameters: <i>Acquisition:</i>	PULPROG AQ P15 SW D1 PL1 PL2 PL12 P3 P31 O1P O2P	cp90.av 50 ms 5 ms 300 ppm 5s for 5 us pulse for 5 us 1H pulse + 3dB see ¹³ C sensitivity experiment see ¹³ C sensitivity experiment see ¹³ C sensitivity experiment 0 ppm 2.5 ppm

Note: The ³¹P peak is at 2.5 ppm. A good starting value can be obtained by adding 3 dB to the power level of HH match for ¹³C (power reduction by 50%), and using the same pl12.

Sensitivity is determined by measuring the signal level of the peak and noise over a 20-ppm wide region. Use the au program **sinocal**. *Signal region* = 15 ppm to -15 ppm, *whole spectrum* 125 ppm to -125 ppm and *noise bandwidth* is 20 ppm.

Then the program will look for the best noise region and return the values for noise region, signal region and S/N.

4.11 ³¹P $\pi/2$ Pulse determination

Use same parameters as in 4.10 and measure the pulse width as described in 4.7 $^{13}C \pi/2$ Pulse determination

Final test / Applications NMR

4.12 Double CP (DCP) experiment

Setup using ${}^{13}C - {}^{15}N$ labeled glycine in center-packed rotor and rotate at 11 kHz The Setup is done in three steps. Step one is CP parameter determination and measurement for ${}^{15}N$, Step 2 is CP parameter determination and measurement for ${}^{13}C$ at 11 kHz sample rotation and step 3 is the optimization of the second CP step in the DCP experiment.

In edasp the signal should be routed for each experiment as needed for the final DCP experiment. The routing for the ${}^{15}N$ ${}^{1}H$ CP experiment is shown in figure 1. The DCP routing can be used for the ${}^{13}C$ ${}^{1}H$ CP setup as well and is shown in figure 2.

frequent	SY	lo	gical channel	amplifier	preamplifier
BF1 70. SFO1 70.	943557 946395	MHz MHz	NUC1 F1	FCU1/SGU1 X 500 W	
OFS1 28	137.74	Hz	15N 👻		XBB19F 2HS
BF2 700 SFO2 700).13).134201	MHz MHz	NUC2	- FCU2/SGU2	2H
OFS2 42	01.0	Hz	1H 🖌	H/F 300 W	
BF3 176 SFO3 176	6.047829 3.053221	MHz MHz	NUC3		
OFS3 53	and the second	Hz	13C 👻		
BF4 700		MHz	NUC4		
SFO4 700 OFS4 0.1		MHz Hz	F4	FCU4/SGU4	
				2H 20 W	
🔍 : cc	ırtab available				

Figure 1: Setup for ¹⁵N ¹H CP experiment, can be obtained from routing as in figure 3 by checking the Switch F1/F3 button.

frequ	lency	lo	gical channel		amplifier	preamplifier
BF1 SFO1 OFS1	176.047829 176.056631 8802.39	MHz MHz Hz	NUC1 F1 13C	- FCU1/SGU1	• X 500 W	1H LNA XBB19F 2HS
SFO2	700.13 700.134201 4201.0	MHz MHz Hz	NUC2 F2 1H	FCU2/SGU2	× 500 W	VF 300 W
SF03	70.943557 70.948949 5392.0	MHz MHz Hz	NUC3 F3 15N V	FCU3/SGU3	▶	H 50 W
SFO4	700.13 700.13 0.0	MHz MHz Hz	NUC4 F4 off 🖌	FCU4/SGU4	2H 20 W	
•	: cortab availabl	е				

Figure 2: Routing for CP experiment with ¹³C and the double CP experiment

Even if the CP conditions are known, it is advantageous to determine the 90 pulse of the X and Y nucleus using *cp90.av*. The 90 degree pulse is found, where the signal crosses Zero (see 4.7 and 4.9). The knowledge of the 90 degree pulse allows calculating the right HH condition by: $B1_{15}^{15}N$ (Hz) = $B1_{15}^{15}C$ (Hz) + spinning rate in Hz.

Run a CP experiment ${}^{13}C{}^{1}H$ with 16 scans as reference to measure DCP yield..

Call the pulse program <i>doubcp</i>		e parameters from CP experiments:
Test sample:	center-packed	$U^{13}C - {}^{15}N$ enriched glycine
Spinning speed:	11 kHz	
Spectrometer <i>edsp</i> :	NUC1 NUC2 NUC3	13C ¹ H ¹⁵ N
Parameter set: Pulse program:	DCPNC doubcp1.av	
Parameters: Acquisition:	PULPROG	doubcp1.av

TD	2048
P15	2 - 3 ms
P16	4 – 10 ms optimize start with 4ms
SW	300 ppm
D1	58
PL1	for 5 us pulse on ¹³ C
PL2	for best ¹ H power level of HH match ¹⁵ N{ ¹ H}
PL3	for 5 us pulse on ¹⁵ N (or best rf-field achieved)
PL5	for 35 kHz rf field on ¹⁵ N (calculate)
PL12	see ¹³ C sensitivity experiment
PL13	80 – 120 kHz cw decoupling (depending on
	specs)
P3	see ¹³ C sensitivity experiment
P31	see ¹³ C sensitivity experiment
O1P	50 ppm
O2P	3.5 ppm
O3P	40 ppm

Write all know pulse parameters into the parameter set, **pl1**, **pl2**, **pl3**, **pl12**, **pl13**, **p3** and **p31**. Then calculate **pl5** to achieve a rf field of 36 kHz and enter **pl5** into parameter set. e.g. if **pl3** is 0 dB for 50 kHz (5us 90° pulse) we calculate: $20 * \log 36/50 = -2.85$ dB; **pl5=pl3-2.85** dB, i.e. **pl5 = -2.8 dB** is the power level to use. Of course this calculation requires that **CORTAB** is done.

Note: pl1 is the power level for a 50 kHz carbon pulse. Loading the shape **spnam1** = **tancn** gives a tangential pulse at 50% of the full pulse amplitude, i.e. at 25 kHz which is the exact Hartmann Hahn (HH) cross polarization condition, $f_{rf}(^{15}N) = f_{rf}(^{13}C) + 1*f_{rot}$, with f_{rf} the ¹⁵N and ¹³C spin nutation frequencies and f_{rot} the sample rotation. This is called the +1 HH condition. If everything is setup carefully one should see a good double CP signal with 8 scans. Default is 16 scans, but for parameter optimization 4 scans suffice. Optimize **pl1** in steps of 0.1dB for ± 0.5 dB if a good signal was obtained, for ± 1 dB if a poor DCP signal was obtained. Do the optimization on the alphatic carbon resonance and use the full phase cycle **ns = 16** to exclude artifacts. Run one experiment with 16 scans when all parameters are fully optimized and compare the intensity of the aliphatic resonance with the aliphatic resonance from the ¹³C{¹H} CPMAS experiment.

Acceptance Solid State NMR Test Procedure

Final test / Applications NMR

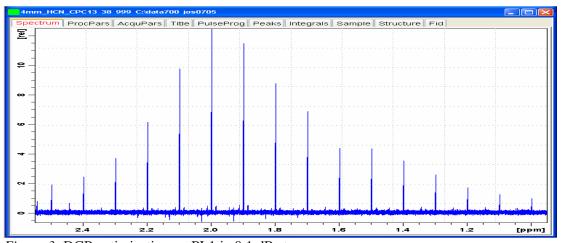
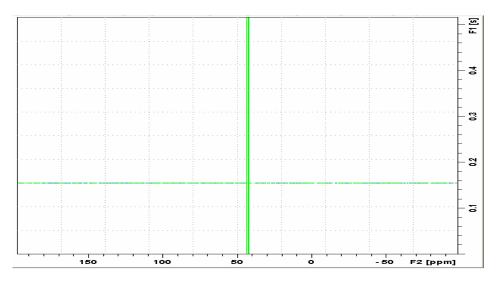
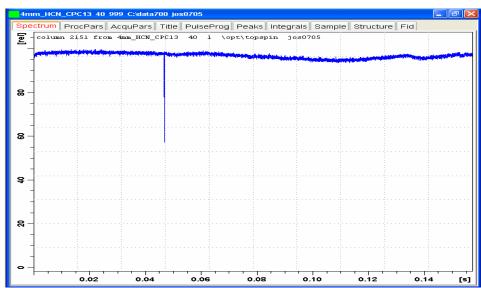



Figure 3: DCP optimization on PL1 in 0.1 dB steps.


4.13 Tuning Stability Test (optional)

Having setup DCP create a new experiment with edc, load pulse program doubcp1_stab.av change in eda to 2D experiment and set td to 1 - 8k, set pl12 to 100 kHz decoupling, D1 = 5s, ns = 8 and start experiment for an overnight run.

Figure 4: Double CP experiments in a hard instrument stability test over night with 8192 experiments 2 scans per experiment. Note the horizontal line from an arcing event.

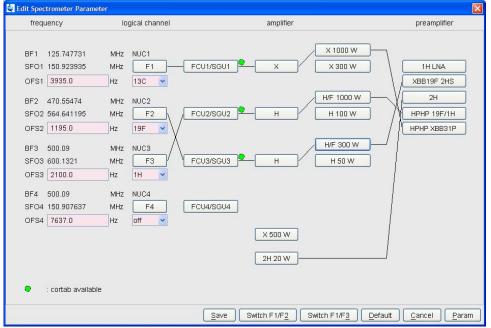


Figure 5: Double CP experiments column extracted from above 2D data set. The signal amplitude varies between 90% and 100% except for the arcing event. The tuning stability is well within the acceptance limits (20% instability).

4.14 HFX Probes: HF – Setup

General cannel setup for HFC experiments benefits from ¹⁹F preamplifier module like for example the XBB19F 2HS module (figure 6)

Figure 6: HFC experiment setup example with routing table and preamplifier selection.

4.14.1 FH – HF experiment

Use the pulse program *hpdec.av*. Use all the known parameters from CP experiments. And do 19 F and 1 H detect experiment with 1 H and 19 F decoupling experiments.

Test sample: Spinning speed:	PVDF 15 kHz or 35 kHz if possible	
Spectrometer <i>edsp</i> :	NUC1 NUC2	¹⁹ F ¹ H
Parameter set: Pulse program:	FH_dp hpdec.av	
Parameters: <i>Acquisition:</i>	PULPROG TD DW D1 PL1 PL12 O1P O2P	hpdec.av 2048 5us 5s for 3.1 us pulse on ¹⁹ F see probe specs for 80 kHz ¹ H decoupling – 100 ppm 3.5 ppm

4.14.2 ¹³C{ ¹⁹F} CPMAS experiments

Use all the known parameters from CP experiments and from above HF – experiments. With 2.5 mm probes at high spinning speed, > 20 kHz, use for the contact pulse **spnam0** = ramp80.100.

Test sample: Spinning speed:	PVDF 15 kHz or 35 kHz if possible		
Spectrometer <i>edsp</i> :	NUC1 NUC2 NUC3	¹³ C ¹⁹ F or ¹ H ¹ H or ¹⁹ F	
Parameter set: Pulse program:	CPCF cp.av		
Parameters: <i>Acquisition:</i>	PULPROG TD DW D1 PL1	cp.av 2048 5us 5s CP power level for 4 us pulse f1	

PL2	CP power level f2
PL12	for 80 kHz ¹ H decoupling / ¹⁹ F decoupling on f2
O1P	50 or 100 ppm
O2P	-80 – -100 ppm

Set ¹⁹F carrier frequency on one of the ¹⁹F resonances and optimized HH condition having ¹³C contact pulse at 62.5 kHz for moderate spinning speeds < 20 kHz and for high spinning speed on 50 kHz. For ¹³C{¹⁹F} experiment with ¹⁹F decoupling use cp.av pulse program. For ¹³C{¹⁹F} experiment with ¹H decoupling use cpfh1.av pulse program.

4.14.3 ¹³C{¹⁹F - ¹H} CPMAS experiments

Use all the known parameters from CP experiments and from above HF - experiments. With 2.5 mm probes at high spinning speed use for the contact pulse **spnam0** = ramp80.100.

Test sample: Spinning speed:	PVDF 15 kHz or 35 kHz if possible							
Spectrometer edsp:	NUC1 NUC2 NUC3	¹³ C ¹⁹ F ¹ H						
Parameter set: Pulse program:	CPCFH cpfh.av or cpf	h1.av						
Parameters: <i>Acquisition:</i>	PULPROG TD DW D1 PL1 PL2 PL12 PL12 PL13 O1P O2P O3P	cpfh.av or cpfh1.av 2048 5us 5s CP power level for 4 us pulse f1 CP power level f2 for 80 kHz ¹ H decoupling / ¹⁹ F decoupling on f2 for 80 kHz ¹⁹ F decoupling / ¹ H decoupling on f3 50 or 100 ppm -80100 ppm or 3.5ppm 3.5ppm or -80110 ppm						

Set ¹⁹F carrier frequency on one of the ¹⁹F resonances and optimized HH condition having ¹³C contact pulse at 62.5 kHz for moderate spinning speeds < 20 kHz and for high spinning speed on 50 kHz. For ¹³C{¹⁹F} experiment with ¹H decoupling use cpfh1.av pulse program. For ¹³C{¹⁹F} experiment with ¹H and ¹⁹F decoupling use cpfh.av pulse program.

4.14.4 ¹³C{ ¹H - ¹⁹F} CPMAS experiments

Use all the known parameters from CP experiments and from above HF - experiments. With 2.5 mm probes at high spinning speed use for the contact pulse **spnam0** = ramp80.100.

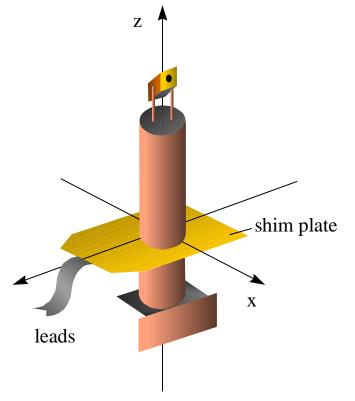
Test sample: Spinning speed:	PVDF 15 kHz	
Spectrometer <i>edsp</i> :	NUC1 NUC2 NUC3	¹³ C ¹ H ¹⁹ F
Parameter set: Pulse program:	CPCFH cpfh.av or cpf	h1.av
Parameters: <i>Acquisition:</i>	PULPROG TD DW D1 PL1 PL2 PL12 PL12 PL13 O1P O2P O3P	cpfh.av or cpfh1.av 2048 5us 5s CP power level for 4 us pulse f1 CP power level f2 for 80 kHz ¹ H decoupling / ¹⁹ F decoupling on f2 for 80 kHz ¹⁹ F decoupling / ¹ H decoupling on f3 50 or 100 ppm -80 – -100 ppm or 3.5ppm 3.5ppm or -80 – -110 ppm

Use optimized HH condition from ¹³C sensitivity experiment. For ¹³C{¹H} experiment with ¹⁹F decoupling use cpfh1.av pulse program. For ¹³C{¹H} experiment with ¹H and ¹⁹F decoupling use cpfh.av pulse program. Set ¹⁹F carrier frequency on one of the ¹⁹F resonances.

7. Shimming a CP MAS probe

When shimming a high-resolution liquids probe there is a distinction between on-axis (Z) and offaxis (X, Y etc.) shims. Spinning the sample parallel to the magnetic field direction averages the off-axis inhomogeneity, which may result in spinning sidebands.

In MAS spectroscopy the spinner axis is at an angle, θ_m with the magnetic field direction and the distinction between the traditional on-axis and off-axis shims no longer holds. The spinning rates in MAS spectroscopy, however, are typically at least a few kilohertz; much larger than the magnetic



Final test / Applications NMR

field inhomogeneity. As a result, the amplitudes of the sidebands are small and shimming may be done with a set of shims that is cylindrically symmetric about the MAS spinner axis.

Such a set of shims can be constructed from combinations of the standard laboratory frame shims, via a transformation to the tilted magic angle frame. In the simplest implementation, the MAS probe is aligned such that the spinner axis is in the laboratory YZ-plane which holds for WB probes in Figure 1 the configuration for SB probes is shown, with the alignment in the XY-plane.

The 'magic angle z-shims' are listed below for orders Z through Z^5 (Sodickson and Cory 1997). The simplest approach is to use the laboratory shims with the largest coefficient, so for instance the Y shim is used as the normal high resolution Z shim. Complete shimming can then in principle be accomplished using only Y, ZY, Z^2Y , Z^4 and Z^5 as the surrogate nth order on-axis shims. Note, however, that the coefficients given for the magic angle shims do not take into account the efficiencies of the shim coils and the use of the other shims listed below may be needed.

Figure 1: *TFor HRMAS probes and BioSolids Probes, the magic angle spinner axis is aligned with the xz-plane of the shims by positioning the front plate of the probe parallel to the direction of the shim leads. For WB probes, the positioning of the MAS –rotor is by 90° shifted, and the long axis is parallel to the front plate. The y-direction of the shim system is parallel to the direction of the leads / the long side of the RT-shim base plate.*

Acceptance Solid State NMR Test Procedure

Final test / Applications NMR

MAS shims	Laboratory shims
Z _m	$\frac{1}{\sqrt{3}}Z - \frac{\sqrt{2}}{\sqrt{3}}\mathbf{Y}$
Z ² _m	$(X^2 - Y^2) - 2\sqrt{2} \mathbf{Z} \mathbf{Y}$
z ³ _m	$\frac{-2}{3\sqrt{3}}Z^{3} - \frac{1}{\sqrt{6}}Z^{2}Y + \frac{5}{\sqrt{3}}(X^{2} - Y^{2})Z - \frac{5}{3\sqrt{6}}Y^{2}$
z _m ⁴	$\frac{-7}{18}$ Z ⁴
Z ⁵ _m	$\frac{-1}{6\sqrt{3}}\mathbf{Z^5}$

To shim the MAS probe, a sample of adamantane is suggested. Make sure the magic angle is adjusted before shimming the probe. Spin the sample at a rate suggested in the following section. It is always best to shim up the probe already under the conditions used later for the real samples. See also chapter 4.4 and 4.5 for discussion regarding the use of direct polarization or cross polarization to shim. Cross polarization is needed if shimming a 2.5 mm CPMAS probe as it gives more signal intensity. Alternatively, make use of a lock control board if available, fill the rotor with D_2O and lock through the X channel on D_2O . Then, shimming on the lock signal is easily possible.

Lock the sample if D_2O is used, tune the probe and start shimming using the Y, ZY, Z²Y, Z⁴ and Z⁵ shims as described above. If one of the shims requires an excessive shim current, reduce the current and continue shimming by adding current to another shim from the same group as shown in the table. For instance if the current in ZX is too high, reduce the value and optimize the line shape by adding current to the (X₂-Y₂)Z shim. If the probe is not exactly aligned with the xz plane (see Figure 1), then a small amount of X and XZ may be needed for optimal shimming. A second shim set should be obtained for rotors with spacers (CRAMPS or *hr*-MAS rotors), and the optimal shim settings for these will be somewhat different. Under normal conditions the shim values obtained as described above, will be close to optimal for all other samples. When changing samples, only Y, Z (and ZY) need to be adjusted. Both shim value sets should be stored on disk. Make sure when the shim values are stored that the MAS probe is defined as the current probe in the EDHEAD command.

Note: The alignment of the spinner axis in *hr*-MAS probes is shifted by 90 degrees. The spinner lies in the XZ plane. Through symmetry, the appropriate shims to use are now X, Z, XZ, XZ^2 etc.. See table 3 in the reference.

Reference: A. Sodickson and D.G. Cory, *Shimming a High-Resolution MAS Probe*, J. Magn. Reson. 128, 87-91 (1997)

8. Prosol table and relations file for CP MAS experiments

¹H Pulses and power levels entry:

Prepare the prosol table for the CPMAS use by entering the ramped pulse into the table to the decoupler channel (F2) with the shaped pulses for PSH16, last row, last column for nucleus ¹H (see figure).

🕻 edit prosol para	meters														_	
Eile																Help
dit prosol parar	neters f	or:								Prob	e's nam	ie 4 mi	m MAS 1H/I	3B H12048/1 [33]		
												Sol	vent(s)	41		
														Nucleus	1H	
fere you can ent	ter two '	comme	nt li	nes':												
			~~~~			_										
Please select the	logical	l channe	el:	9	F1 + F	2 0	F3 C	F4 (	C Globa	d						
psh4	PSH4	0		120	calc.	0.5	Gaus1.1000 🛓	Cali/CO 90 on	PSH4	0	120	calc.	0.5	Gaus1.100	2 <b>1</b>	-
psh5	PSH5	0	Г	120	calc.	0.5	Gaus1.1000 🛓	Cali/CO 90 tr	PSH5	0	120	calc.	0.5	Gaus1.100	ĭ <b>±</b>	
psh6	PSH6	0	Г	120	calc.	0.5	Gaus1.1000 🛓	Cali/CO 180	PSH6	0	120	calc.	0.5	Gaus1.100	5 <b>±</b>	
off-reson.presat	PSH7	0	Г	120	calc.	0.5	Gaus1.1000 🛓	Calpha sel 90	PSH7	0	120	calc.	0.5	Gaus1.100	ō 🛨	
90 flip-back	PSH8	0	Г	120	calc.	0.5	Gaus1.1000 🛓	Calpha sel 90 tr	PSH8	0	120	calc.	0.5	Gaus1.100	ō 🛨	
psh9	PSH9	0		120	calc.	0.5	Gaus1.1000 🛓	Calpha sel 180	PSH9		120	calc.	0.5	Gaus1.100	₀₹	
psh10	PSH10	0		120	calc.	0.5	Gaus1.1000 🛓	Ca or CO dec.	PSH10	0	120	calc.	0.5	Gaus1.100	ō₹	
psh11	PSH11	0		120	calc.	0.5	Gaus1.1000 🛓	C sel 2 90	PSH11	0	120	calc.	0.5	Gaus1.100	ō₹	
psh12	PSH12	0		120	calc.	0.5	Gaus1.1000 🛓	C sel 2 90 tr	PSH12	0	120	calc.	0.5	Gaus1.100	ō 🛨	
psh13	PSH13	0		120	calc.	0.5	Gaus1.1000 🛓	Cbeta dec.	PSH13	0	120	calc.	0.5	Gaus1.100	0 <b>±</b>	
psh14	PSH14	0		120	calc.	0.5	Gaus1.1000 🛓	Sim. Ca+Co dec.	PSH14		120	calc.	0.5	Gaus1.100	• ±	
psh15	PSH15	0	Г	120	calc.	0.5	Gaus1.1000	psh15	PSH15	0	120	calc.	0.5	Gaus1.100	0 <b>±</b>	
psh16	PSH16	0	Г	120	calc.	0.5	Gaus1.1000	psh16	PSH16		120	calc.	0.5	ramp.10	ī 🛨	
			1		-				-							Ļ
•			_											_		
		O Sta	ande	ard he	ard puls	ses				•	Stand	ard sot	t pulses			
		i i					-			D.				-		
Save	8				popy to	probe		opy to solvent		Prin	tscree	∋n		E	at	



Then return to the standard hard pulses.

Write pulses and power levels into the prosol table as usual for the ¹H experiment with adamantane into F1. Use for the decoupling pulse a pulse width of 120% as compared to the maximum possible decoupling field, i.e. for a 4mm WB CPMAS probe this would be 2.5us (100 kHz) for the maximum and then 3.1us (80kHz) for the entry into the field PCPDP. Enter the obtained value for the power level also into the next field for PLCPD2. If P3 is measured – during the CP experiments with glycine, this value is entered as P90 into the appropriate field on the right block, F2, with the power level from PL12 of the experiment, "1H on channel F2 routed to amplifier A2". The power level for the contact pulse is calculated in the field PLNOE using 62500 Hz. The adjustment for the ramped contact pulse is done in the prosol file automatically during loading!

% edit prosol paramet	ers									_ 🗆 ×
Eile										Help
Edit prosol paramete	ers for:					Probe's n	ame 4 mm	MAS 1H/BB	H12048/1 [33]	±
							Solv	ent(s) Al		±
									Nucleus	
Here you can enter t	wo 'comment li	ines':								
Please select the log	gical channel:	• F1 + F2	O F3	C F4 C	Global					
				T						<b>.</b>
Standard parameter	rs for 1H on cha	annel F1 routed to	o amplifier A2:	Standard parameters	; for 1H o	n channel F	² routed	to amplif.	ier A2:	
Description		pulse (usec		Description			pulse (usec	power leve	I	
90 deg. transmitter	P90	2.55	7	90 deg. decoupler	P90		2.55	7		
cpd	PCPDP	9.2	7 calc.	cpd	PCPDP		2.55	7	calc.	
	mixt	time (sj. pulse (usec	power level	bilev (second cpd)	PLCPD2			120		
tocsy spin lock	PTOC	0.06 0	120 calc.			mix time [s]	pulse (usec	power leve	L	
roesy spin lock	PROE	0.2 0	120 calc.	tocsy spin lock	PTOC	0.06	0	120	calc.	
		field [Hz]	power level	roesy spin lock	PROE	0.2	0	120	calc.	
cw irradiation	PLCW	50	11.8 calc.				field [Hz]	power leve	·	
				cw irradiation	PLCW		62500	10.91	calc.	
				NOE diff. irradiation	PLNOE		88000	7.94	calc.	
				homo decoupling	PLHD	· · · · ·		120	calc.	
				band homo decoupling	PLHC			120	calc.	
										-
<b> </b>	<u></u>									•
	Standa	ard hard pulses				C Star	ndard soft	pulses		
Save		Copy to prob	e	Copy to solvent		Print scr	een		E	kit



### ¹³C pulses and power levels:

Enter the value for the 4us 90 degree pulse into the field for P90 and calculate the HH match power level for 62500 Hz in the field PLCW.

7 edit prosol paramet	ers.											_ 🗆 🗙
Eile												Help
Edit prosol paramete	ers for:							Probe's n		MAS 1H/BB H ent(s) All	12048/1 [33] Nucleus	13C ±
Here you can enter t	wo 'comm	ent lines':										
Please select the log	gical chanı	nel: 📀	F1 + F2	O F3		O F4 O	Global					
Standard parameter	rs for 13C o	on channe	IF1 routed	to amplif	ier A1:	Standard parameters	for 13C	on channel	F2 routed	l to amplif	ier A1:	<b>^</b>
Description			pulse (usec	power level		Description			pulse (usec	power level		
90 deg. transmitter	P90		4	3.9		90 deg. decoupler	P90		0	120		
cpd	PCPDP		0	120	calc.	cpd	PCPDP		0	120	calc.	
		mix time [s]	pulse (usec	power level		bilev (second cpd)	PLCPD2			120		
tocsy spin lock	PTOC	0.06	0	120	calc.			mix time [s]	pulse (usec	power level		
roesy spin lock	PROE	0.2	0	120	calc.	tocsy spin lock	PTOC	0.06	0	120	calc.	
			field [Hz]	power level		roesy spin lock	PROE	0.2	0	120	calc.	
cw irradiation	PLOW		62500	3.9	calc.				field [Hz]	power level		
						cw irradiation	PLCW		50	120	calc.	
						NOE diff. irradiation	PLNOE			120	calc.	
						homo decoupling	PLHD			120	calc.	
						band horno decoupling	PLHC			120	calc.	
L						]						
	e د	tandard ha	rd pulses					O Stai	ndard soft	pulses		
Save			copy to prol	be		Copy to solvent		Print scr	reen		Ex	it

# 9. Listings: Relations file, pulse program:cp.av.xyz



**Final test / Applications NMR** 

```
#
# $Id: solids cp,v 0.0.0 2003/04/26 14:48:33 bau Exp $
#
#../conf/instr/spect/prosol/relations/solids cp
P[0] = P90[F1];
P[1]=P90[F1];
                        # 90 degree pulse at power level pl11 for x or y
                        # nucleus
                       # 180 degree pulse at pl11
P[2]=P90[F1]*2;
                       # 90 degree pulse on 1H at pl12
P[3] = PCPDP[F2];
                       # 180 degree pulse on 1H at pl12
P[4]=P90[F2]*2;
                       # 90 degree pulse on F3
P[11]=P90[F3];
P[12]=P90[F3]*2;  # 180 degree pulse for REDOR on F3
P[22]=P90[F2]*2;  # 180 degree pulse for pi decoupling
P[31] = PCPDP[F2] *2-0.2u; # TPPM decoupling pulse width
                       # power level for HH contact pulse F1 set to 62.5kHz
PL[1]=PLCW[F1];
                        # power level for HH contact pulse F2 62.5kHz -3dB as
PL[2] = PLNOE[F2] - 3;
                        # we use ramp.100 in parameter set which is a 6dB
                        # amplitude change
                        # set PLNOE to 62.5kHz
PL[3]=PL90[F3];
                        # power level for pulse on F3
PL[11]=PL90[F1];
                        # power level for hard pulse F1
                       # set PLCPD to 80 kHz (3.1us pulse with for 4mm probe
PL[12]=PLCPDP[F2];
                        #(80% of max. possible decoupling field
PL[13]=PLHD[F2];
                        # power level for homonuclear decoupling, e.g FSLG set
                        # to 80 kHz
SPNAM0=PNSH16[F2];
                       # set to ramp.100 as default for 1H on F2
P[15]=P grad1*2;
                       # HH contact pulse width for 1H-X polarization transfer
```

;cp.av

prosol relations=<solids_cp>

#include <lgcalc.incl>
;cnst20=RF field achieved at pl13
;cnst24:additional LG-offset

#include <trigg.incl>

;10 usec trigger pulse at TCU connector I cable 6 #include <tppm.incl>



### Final test / Applications NMR

1 ze if "aq < 1.0s" goto print "acquisition goto HaltAcqu	;accumulate into an empty memory o 2 time exceeds 1s time limit!"
2 d1 do:f2 #include <prp15.pr< td=""><td>;recycle delay, decoupler off in go-loop rot&gt;</td></prp15.pr<>	;recycle delay, decoupler off in go-loop rot>
	;make sure p15 does not exceed 10 msec ;let supervisor change this pulseprogram if ;more is needed ble protection file for long acquisition change decoupling power !!! or you risk probe
/* if yo	ou set the label lacq (ZGOPTNS -Dlacq), the protection is disabled $*/$
#include <praq.pro< td=""><td><ul> <li>;allows max. 50 msec acquisition time, supervisor</li> <li>;may change to max. 1s at less than 5 % duty cycle</li> <li>;and reduced decoupling field</li> </ul></td></praq.pro<>	<ul> <li>;allows max. 50 msec acquisition time, supervisor</li> <li>;may change to max. 1s at less than 5 % duty cycle</li> <li>;and reduced decoupling field</li> </ul>
1u fq=cnst21:f2	;preselect pl12 drive power for F2, pl1 for F1 ;trigger for scope, 10 usec ;proton 90 pulse
(p15 ph2):f1 (p15 1u cpds2:f2	:spf0 pl2 ph10):f2 ;contact pulse with square or ramp ;shape on F2, at pl2 proton power level
go=2 ph31	;select appropriate decoupling sequence, cw or ;tppm, both executed at power level 12, or lgs ;executed at power level pl13
1m do:f2 wr #0 HaltAcqu, 1m exit	;decoupler off ;save data to disk ;jump address for protection files ;quit
ph0= 0 ph1= 1 3 ph2= 0 0 2 2 1 1 3 ph10= 0 ph31= 0 2 2 0 1 3 3	