
Manual for TopSpin 2.1

Version 2.1.1

Pulse Programming

DONE

INDEX

INDEX

TopSpin 2.1
Version 2.1.1

Pulse Programming

January 28th 2008

Bruker software support is available via phone, fax, e-mail, Internet, or
ISDN. Please contact your local office, or directly:

Address: Bruker BioSpin GmbH
Service & Support Department
Silberstreifen
D-76287 Rheinstetten
Germany

Phone: +49 (721) 5161 456
Fax: +49 (721) 5161 91 456
E-mail: nmr-software-support@bruker.de
WWW: www.bruker-biospin.com
FTP: ftp.bruker.de / ftp.bruker.com

Copyright (C) 2007 by Bruker BioSpin GmbH
All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form, or by any means without the
prior consent of the publisher.
Product names used are trademarks or registered trademarks of their hold-
ers. Words which we have reason to believe constitute registered trade-
marks are designated as such. However, neither the presence nor the
absence of such designation should be regarded as affecting the legal sta-
tus of any trademarks.
Bruker Biospin accepts no responsibility for actions taken as a result of use
of this manual.
Computer typset by Bruker BioSpin GmbH, Rheinstetten 2007.

http://www.bruker.com
http://www.bruker.com
http://bruker-biospin.com

3

Contents

Chapter 1 Basic pulse program writing . 3
1.1 Introduction .3

Spectrometer naming conventions .3
1.2 Pulse program library .4
1.3 Pulse program display. .4
1.4 Basic syntax rules .4
1.5 Pulse generation .9
1.6 Delay generation .37

Chapter 2 Decoupling . 51
2.1 Decoupling .51
2.2 Composite Pulse Decoupling (CPD) .53

Chapter 3 Loops and conditions . 61
3.1 Loop statements .61
3.2 Conditional pulse program execution .63
3.3 Suspend/resume pulse program execution.70

Chapter 4 Data acquisition and storage . 73
4.1 Start data acquisition .73
4.2 Acquisition memory buffers .82
4.3 Writing data to disk .84

Chapter 5 The mc macro statement . 89
5.1 The mc macro statement in 2D .89
5.2 The mc macro statement in 3D .94
5.3 Additional mc clauses .96
5.4 General syntax of mc .98

Chapter 6 Subroutines . 101
5.6 Definition .101

Chapter 7 Miscellaneous . 103
6.1 Multiple receivers .103
6.2 Real time outputs .104
6.3 Gradients. .109
6.4 Miscellaneous statements . 115

DONE

INDEX

INDEX

4

 3

DONE

INDEX

INDEX

Chapter 1

Basic pulse program writing

1.1 Introduction

A pulse program is an ASCII text consisting of a number of lines. Each line
may contain one or more pulse program statements which specify actions
to be performed by the acquisition hardware and software. You can set up
a pulse program with the XWIN-NMR commands edpul or edcpul (see the
Acquisition Reference manual). The XWIN-NMR acquisition commands gs,
go, and zg execute the pulse program defined by the acquisition parame-
ter PULPROG which can be set with eda or pulprog. Pulse program exe-
cution is a two-step process: After entering gs, go, or zg, the pulse
program compiler is invoked which translates the pulse program text into
an internal binary form that can be be executed. Possible syntax errors are
reported. If errors are found, the acquisition will not be started. If, however,
the compilation is successful, the compiled pulse program is loaded into
the acquisition hardware and the measurement begins.

Spectrometer naming conventions
This manual is written for AV spectrometers. Nevertheless, a large part of it
is also valid for older spectrometers like AMX, ARX, ASX, and Avance. You
can easily find out which type of spectrometer you have at the cabinet

door; the name is AV, AV II or AV III (sometimes also AV II+)

1.2 Pulse program library

Routine users normally use Bruker pulse programs that delivered with TOP-
SPIN. The edpul command displays a list of these pulse programs and
allows you to view their contents. Viewing Bruker pulse programs requires
that the expinstall command was executed once after the installation of
TOPSPIN. This command copies the pulse programs suitable for your spec-
trometer into the data bank.

If you want to write your own pulse programs, it can be helpful to start with
a Bruker pulse program and modify it to your needs.

1.3 Pulse program display

A graphical representation of a pulse program for AV spectrometers can be
obtained with the command spdisp, which is described in the Acquisition
Reference manual.

The command hpdisp, which is also described in the Acquisition Refer-
ence manual, displays the pulse program showing the signals as produced
by the spectrometer hardware with exact timing of pulses, phases and
amplitudes.

1.4 Basic syntax rules

Table 1.1 shows zgcw30 as an example of a simple Bruker pulse program.
Here the following pulse programming rues are used:
1. Pulse programs are line oriented. Each line specifies an action to be

performed by the acquisition hardware or software.
2. A semicolon (;) indicates the beginning of a comment. You can put it

anywhere in a line. The rest of the line will then be treated as a com-
ment.

3. #include <filename> or #include “filename“
This statement allows you to use pulse program text that is stored in a

 5

DONE

INDEX

INDEX

different file. It allows you to keep your pulse program reasonably sized,
and to use the same code in various pulse programs. If the filename is
given in angle brackets (< >), the file is searched for in the directory
$XWINNMRHOME/exp/stan/nmr/lists/pp/. Alternatively, double quotes (“ “)
can be used to specify the entire path name of the file to be included.

4. 1 ze
Any pulse program line can start with a label (“1“ in the example above).
Labels are only required for lines which must be reached by loop or
branch statements such as go=label, lo to label times n or goto label. You
can, however, also use labels for numbering the lines. A label can be a

;zgcw30
;avance-version
;1D sequence with CW decoupling
;using 30 degree flip angle

#include <Avance.incl>

1 ze
d11 pl26:f2
d11 cw:f2

2 d1
p1*0.33 ph1
go=2 ph31
wr #0
d11 do:f2
exit

ph1=0 2 2 0 1 3 3 1
ph31=0 2 2 0 1 3 3 1

;pl1 : f1 channel - power level for pulse (default)
;pl26: f2 channel - power level for cw/hd decoupling
;p1 : f1 channel - 90 degree high power pulse
;d1 : relaxation delay; 1-5 * T1
;d11: delay for disk I/O [30 msec]

Table 1.1 Pulse program example

number or, an alphanumeric string followed by a comma. An example of
the latter is:

firstlabel, ze

The statement ze has the following function:
• Reset the scan counter (which is displayed during acquisition) to 0
• Enable the execution of dummy scans. This will cause the pulse

program statement go=label to perform DS dummy scans before
accumulating NS data acquisition scans. If you replace ze with zd,
go=label will omit the dummy scans

• The statement zd automatically resets all program pointers to the
first element, whereas the statement ze sets all phase program
pointers such that they are at the first element after DS dummy
scans.

5. d11 pl14:f2
Execute a delay whose duration is given by the acquisition parameter
D[11]. Behind any delay statement, you can specify further statements
to be executed during that delay (note that the delay must be long
enough for that statement). In this example, the power level of channel
f2 is switched to the value given by the acquisition parameter PL[14].

6. d11 cw:f2
Execute a delay whose duration is given by the acquisition parameter
D[11] and, at the same time, turn on continuous wave (cw) decoupling
on frequency channel f2. Decoupling will remain active until it is explic-
itly switched off with the statement do:f2. This delay and cw decoupling
will begin immediately with the delay on which it is specified.
Items 5 and 6 illustrate a general feature of pulse programs: the actions
specified in two consecutive lines are executed sequentially. Actions
specified on the same line are executed simultaneously.

7. 2 d1
Execute a delay the duration of which is given by the acquisition param-
eter D[1]. This line starts with the label “2“, the position where the state-
ment go=2 will loop back to.

8. p1*0.33 ph1
Execute a pulse on frequency channel f1. The pulse length of this pulse
is given by the acquisition parameter P[1] multiplied by 0.33. P[1] is nor-

 7

DONE

INDEX

INDEX

mally used for the pulse width of a 90° flip angle. The statement p1*0.33
would then execute a 30° pulse. In general, you can specify the operator
* behind (not before!) a pulse or delay statement, followed by a floating
point number. Note that the channel f1 is not specified; it is the default
channel for p1, i.e.:

p1*0.33

is identical to:

p1*0.33:f1

The pulse is executed with a power (amplitude) defined by the acquisition
parameter PL[1]. PL[1] is the default power level for channel f1, but you
can also use a different parameter. For example, the statement pl7:f1 sets
the channel f1 power to the value of PL[7]. It must be put on a separate
line, with a delay, before the line with the pulse statement.

The phase of this pulse in our example is selected according to ph1, the
name of a phase program or phase list. It must be specified behind the
pulse and defined after the pulse program body. In this example we use
the phase program

ph1=0 2 2 0 1 3 3 1

The phase of the pulse varies according to the current data acquisition
scan. For the first scan, p1 will get the phase 0*90°, for the second scan
2*90, for the third scan 2*90, for the fourth scan 0*90, etc. After 8 scans,
the list is exhausted. The phase program is cycled so with scan 9 the
phase will be set to the first element of the list: 0*90°. Phase cycling is a
method of artefact suppression in the spectrum to be acquired. The re-
ceiver phase must be cycled accordingly to ensure that coherent signals
of subsequent scans are accumulated, not cancelled. This is achieved by
the receiver phase program ph31 in our example.

9. go=2 ph31
Execute one data acquisition scan, then loop to the pulse program line
with label “2“. Repeat this until NS scans have been accumulated. Note
that NS is an acquisition parameter. The data acquisition scans are pre-
ceded by DS dummy scans (because the statement ze is used at the
beginning of the pulse sequence rather than zd). A dummy scan does
not acquire any data, but requires the same time (given by the acquisi-
tion parameter AQ) as a real scan. Dummy scans are used to put the

spin system of the sample into a steady state before acquisition starts.
The receiver phase is changed after each scan as described above for
the pulse phase. Phase cycling is done according to the phase program
ph31. Phase cycling is also used during the execution of dummy scans.
Both DS and NS must therefore be a multiple of the number of phases
in the list.

The go=label statement executes a delay, the so-called pre-scan delay to
avoid pulse feed through before it starts digitizing the NMR signal. During
this time the receiver gate is opened. For AQ_mod = DQD and for any
value of AQ_mod if you have an RX22 receiver, the frequency is
switched from transmit to receive. DE is an acquisition parameter that
can be set from eda or by entering de on the command line. It consists
of the sub-delays DE1, DE2, DEPA, DERX and DEADC that can be set
with the command edscon (see the Acquisition Reference manual). Nor-
mally, you can accept the default values for DE value and its sub-delays.
The total time the go=label statement requires to execute a scan is
DE+AQ+3 millisec. The duration of 3 millisec is required for preparation
of the next scan. It is valid for all Avance type spectrometers.

wr #0
Writes the accumulated data as file fid into the EXPNO directory of the
current data set. Note that with the zgcw30 pulse program, data are only
stored on disk after all NS scans have been accumulated. You can, how-
ever, store the data to disk after any scan during the acquisition by enter-
ing the command tr on the command line. You can process and plot
these data while the acquisition continues. If you want to protect your
data against power failures during long term experiments, we recom-
mend that you write the data on disk in regular intervals, for example eve-
ry 100 scans. To accomplish this, you can set NS=100 and TD0=300 (if
the pulse program is written using the mc-syntax). The pulse program
then accumulates a total of 30.000 scans, but stores the result every 100
scans.

Please note that the loop must include the ze statement. The reason for
this is that wr #0 adds the last acquired data to the data already present
in the file.

The real time FID display will only show the data currently present in the
acquisition processor’s memory.

 9

DONE

INDEX

INDEX

10.exit
Specifies the end of the pulse program.

1.5 Pulse generation

Table 1.2 shows the available types of statements for the generation of
high frequency pulses.

A high frequency pulse is described by its:
• duration (= pulse width)
• frequency
• phase
• power (= amplitude) and shape

The following paragraphs will describe these items.

p0, p1, ... , p63 Generate a pulse whose length is given by
the acquisition parameter P[0], ..., P[63].

p0:r, ...,p63:r

Generate a pulse whose length is given by
the acquisition parameter P[0], ..., P[63]
and which is randomly varied. The maxi-
mum variation (in percent) is defined by
the acquisition parameter V9.

3.5up, 10mp, 0.1sp Generate a pulse of fixed length: up = a
μsec pulse (mp = millisec, sp = sec).

P135, p30d1H

Generate a pulse, whose name is defined
by a define pulse statement, and
whose duration is defined by an expres-
sion.

vp
Generate a pulse whose length is taken
from a pulse list.

Table 1.2 Pulse generation statements

1.5.1 Pulse duration

The pulse duration is selected according to the name of the pulse state-
ment.

1.5.1.1 p0-p63

The statement:
p0

executes a pulse of width P[0]. P[0] is an acquisition parameter that can be
set from eda, or by typing p0 on the command line. Likewise, the state-
ment:

p1

executes a pulse of width P[1].

1.5.1.2 Fixed length pulses

The statement:
10mp

executes a pulse of width 10 millisec (called a fixed pulse because its dura-
tion cannot be manipulated, see below). The duration must be followed by
up, mp or sp. These units indicate microseconds, milliseconds, and sec-
onds, respectively. If you would omit the terminating “p“, a delay would exe-
cuted instead of a pulse.

1.5.1.3 Random pulses

The statement:
p0:r

executes a pulse of length P[0] which is varied randomly. The parameter
V9 specifies, in percent, the maximum amount which is added to or sub-
tracted from P[0]. As such, the effective pulse varies between 0 and 2*P0.
It can be set from eda, or by typing v9 on the command line.

Please note that the gs command ignores the :r option.

 11

DONE

INDEX

INDEX

1.5.1.4 User defined pulses

The statement:
p30d1H

executes a pulse whose name is defined by the user, and whose duration
is determined by an arithmetic expression. For example, the line:

define pulse p30d1H

defines p30d1H to be a pulse statement, and the line:
“p30d1H=p1*0.33“

defines the expression for its duration. Note that the definition must be
within double-quotes (“) .

Both the define statement and the defining expression must be placed
before the beginning of the actual pulse sequence. It is evaluated at com-
pile time of the pulse program, not at run time. User defined pulses can
consist of alphanumeric characters, where the first character must be a
alphabetic. The maximum length of the name is 11 characters. Make sure
you do not use any of the reserved words like ‚adc‘, ‚go‘, ‚pulse‘ etc.

1.5.1.5 Variable list pulses (obsolete)

The statement:
vp

executes a pulse whose duration is given by the current value of a pulse
list. A pulse list is a text file that contains one pulse duration per line. It can
be set up with the command edlist (described in the Acquisition Reference
manual). The statement vp uses the list file given by the acquisition param-
eter VPLIST. When the pulse program begins, the first duration in the list is
used. The statement ivp moves the list pointer to the next duration. If the
end of the list is reached, the pointer is set to the first item. The statement
ivp must be specified behind a delay, for example:

d1 ivp
0.1u ivp

The length of the delay is irrelevant; any value is allowed.

You can also set a specific list position with an equation. For example:
“vpidx=5“
vp

The statement vp will execute the pulse defined at position 5 of the pulse
list. To the right of the equal sign, any dimensionless expression is allowed.
It may contain any of the parameters listed in Table 1.3.

1.5.1.6 Pulse lists defined in the pulse program

Instead of setting up a pulse list with edlist, a list of pulses can also be
specified within the pulse program using a define statement, e.g.:

define list<pulse> Plist = { 10 20 30 }

This statement defines the pulse list Plist with values 10 msec, 20 msec
and 30 msec. User defined pulse lists must be initialized within the defini-
tion. There are two alternatives to assigning values directly in {}-brackets.
You can specify the filename of a pulse list or the variable that contains
such a filename, both in angle brackets. Examples,

define list<pulse> P2list = <mypulselist>

define list<pulse> P3list = <$VPLIST>

In both cases, the file that contains the pulse list can be created with the
command edlist vp.

According to the define statements above:
P1list

executes a pulse of 10 msec the first time it is invoked. In order to access
different list entries, you can append the .inc, .dec or .res postfix to the pulse
statement to increment, decrement or reset the index, respectively. Any
index operations are performed cyclically i.e. when the pointer is at last
entry of a list, the next increment will move it to the first entry. Furthermore,
list entries can be specified directly in squared brackets counting from 0,
i.e. the statement:

P1list[1]

executes a pulse of 20 msec according to the above definition. Lists can be
executed and incremented with one statement, using the caret postfix

 13

DONE

INDEX

INDEX

operator. As such, the statement:
P1list^

is equivalent to:
P1list P1list.inc

Finally, you can set the index directly in an arithmetic expression within
double quote characters, appending .idx to the pulse statement. The follow-
ing example shows the use of a pulse list that is assigned within its defini-
tion:

define list<pulse> locallist = {10 20 30 40}

locallist locallist.inc ; pulse of 10 msec, change index from 0 to
1
locallist locallist.res ; pulse of 20 msec, set index to 0
locallist[2] ; pulse of 30 msec (do not interpret the
index)
locallist locallist.dec ; pulse of 10 msec, change index from 0 to
3
locallist ; pulse of 40 msec
"locallist.idx = 3" ; set index to 3
locallist^ ; pulse of 40 msec, move index to 0
locallist ; pulse of 10 msec

Caution: index operations on pulse lists only take effect in the next line.
Furthermore, you cannot access two different entries of the same list on
one line. This is illustrated in the following example:

define list<pulse> locallist = {10 20 30 40}

locallist^ locallist ;uses the same list entry (10 ms)
twice
locallist ;the ^ operator takes effect: 20ms
locallist[2] locallist[3] ;executes locallist[3] (40 ms) twice

Note that names for user defined items may consist of up to 19 characters,
but only the first 7 are interpreted: i.e Pulselist1 and Pulselist2 are allowed
names but they would address the same symbol.

1.5.1.7 Manipulating pulse durations: The operator “*“

A pulse duration can be manipulated with the operator “*“. Examples of
allowed statements:

p1*1.5

p30d1H*3.33

p3*oneThird

vp*3

The operator must be placed behind the pulse statement. oneThird is the
name of a macro which must have been defined at the beginning of the
pulse program, e.g.:

#define oneThird 0.33

Note that fixed pulses cannot be manipulated. So the statement 10mp*0.33
would be incorrect.

1.5.1.8 Manipulating pulse durations: Changing p0-p31 by a constant value

Each pulse statement p0-p31 has been assigned an acquisition parameter
INP[0]-INP[31] These parameters take a duration value, in msec. The
pulse program statements ipu0-ipu31 add the value of INP[0]-INP[31] to the
current value of p0-p31, respectively. Likewise, dpu0-dpu31 subtract the
value of INP[0]-INP[31] from the current value of p0-p31. The statements
rpu0-rpu31 reset p0-p31 to their original values, i.e. to the values of the
parameters P[0]-P[31]. The statements presented in this paragraph must
be specified behind a delay of any length (³ 0) . Some examples:

d1 ipu3
0.1u dpu0
d1 rpu0

1.5.1.9 Manipulating pulse durations: Redefining p0-p63 via an expression

The duration of the pulses p0-p63 is normally given by the parameters P[0]-
P[63]. You can, however, replace these values by specifying an expression
in the pulse program. The following examples show how you can do this:

“p13=3s + aq - dw*10“
“p13=p13 + (p1*3.5 + d2/5.7)*td“

 15

DONE

INDEX

INDEX

The result of such an expression must have a time dimension. You can
therefore include acquisition parameters such as pulses, fixed pulses,
delays, fixed delays, the acquisition time AQ and the dwell time DW within
the expression. Furthermore, you can include parameters without a dimen-
sion such as the time domain size TD. The complete list is shown in Table

1.3.

An expression must be specified between double quote characters (“ “). It
can be placed anywhere in the pulse program, as long as it occurs before
the line that contains the corresponding pulse statement (which would be
p13 in our example). Note that the second expression in the example
above assigns a new value to p13 each time the expression is encoun-
tered, e.g. if it is contained in a pulse program loop.

Expressions cannot be used in labelled pulse program lines. You can, how-

d0-d31 [sec]
p0-p31 [μsec]
l0-l31 (loop counters)
in0-in31[sec]
inp0-inp31 [μsec]
aq [sec]
dw [μsec]
dwov [μsec]
de1, depa, derx, deadc [μsec]
vd [sec]
vp [μsec]
nbl, ds, ns, nsdone, td, td1, td2
decim

cpdtim1-cpdtim8 [sec]
cnst0-cnst31

Table 1.3

ever, put a small duration behind a label and put the expression in the next
line.

Expressions do not cause an extra delay in the pulse program. Pre-evalua-
tion is applied before the pulse program is started, and the result is stored
in the available buffer memory to be accessed at run time. At run time, pre-
evaluation is performed during the cycle time of the loops in which the
statements are embedded. If loops are executed too fast, a run time mes-
sage is printed.

1.5.1.10 Manipulating the durations of user defined pulses

User defined pulses, as described in section 1.5.1.4, can be manipulated in
the same way pulses defined by p0-p63 are manipulated (see sections
above).

1.5.2 Pulse frequency

1.5.2.1 Frequency channels

The RF frequency of a pulse is selected via the spectrometer channel num-
bers f1, ... ,f8 (the actual numbers of the channels depend on your spec-
trometer type and accessory). A pulse on a particular channel is executed
with the frequency defined for that channel. The statements:

p1:f2
p2*0.33:f2
p30d1H*3.33:f2
vp:f2

all execute a pulse on channel f2, with the duration P[1], P[2]*0.33,
p30d1H*3.33 and a values from VPLIST, respectively. The pulse frequency
is the value of the acquisition parameter SFO2; the default frequency for
channel f2. If the channel is not specified in the pulse statement, p1, p2, ...,
p31 all use the default channel f1. The default frequencies of the channels
f1-f8 are given by the parameters SFO1-SFO8 (see the description of
SFO1, NUCLEI, and edasp in the Acquisition Reference manual for more
information about defining frequencies for a particular channel). These
parameters are loaded into the synthesizer(s) before the pulse program

 17

DONE

INDEX

INDEX

starts. This gives the hardware time to stabilize before the experiment
begins.

1.5.2.2 Using frequency lists

You can change the frequency of a channel within a pulse program with the
statements fq1-fq8. They take the current value from a frequency list. A fre-
quency list is a text file whose lines contain frequency values (see the com-
mand edlist in the Acquisition Reference manual). For example, the
statement:

d1 fq2:f3

which is equivalent to:
d1 fq=fq2:f3

uses the frequency list whose file name is defined by the acquisition
parameter FQ2LIST (fq1 would use FQ1LIST, etc.). You can set FQ1LIST
etc. from the eda dialog box, and you can modify a selected list with edlist.
The example above sets the frequency of channel f3 by taking the current
value from the list defined by FQ2LIST. When fq2 is executed the first time,
the current value is the first value in the list . The next time fq2 is encoun-
tered (e.g. because it occurs several times in the pulse program, or
because it is contained in a loop) the current value will be the next value in
the list, etc. At the end of the list, the pointer will be set to the first entry of
the list. The statements fq1-fq8 not only set a frequency, but also increment
the list pointer to the next entry of the list. The list can, optionally, contain a
frequency offset in MHz. If it does, the frequency list values in Hz are
added to this offset. If it doesn’t, the list values are added to the channel
frequency (SFO1 for f1, SFO2 for f2, etc.).

The frequency can also be set to the values of the parameters CNST0-31
or to any number, for example:

d1 fq=cnst20:f1 ; SFO1 [MHz] + CNST[20] [Hz]

d1 fq=3000:f1 ; SFO1 [MHz] + 3000[Hz]

set the frequency on channel f1 to the value of CNST20 and to 3000 Hz,
respectively. The default settings refer to SFOn as base frequency and the
offsets are in Hz. But the offset can be given in PPM as well, and the base

channel frequency can be BFn instead of SFOn. This is achieved by speci-
fying options after the frequency setting command. Example:

d1 fq=cnst20 (bf ppm):f1

The resulting frequency will be Fn = BFn[MHz](1 + 1.0e-
6*CNST[20][PPM]). The following options are possible:

1.5.2.3 Frequency lists applied to the reference frequency

The reference frequency is the intermediate frequency which is used by the
receiver to mix the observed signal down to a lower frequency which can
be digitized there. Normally this frequency is the same as the frequency of
the transmitter pulse (except for DQD). If this frequency must be changed
during pulse program execution, use the (receive) option, like for instance:

1u FQ1(receive):f1

1.5.2.4 Frequency lists defined in the pulse program

For AV spectrometers, frequency lists can also be defined in the pulse pro-
gram using the define statement. The name of a list can be freely chosen,
for example:

define list<frequency> username = { 200 300 400 }

The list must be initialized, specifying a list of frequency offsets between
braces, separated by white spaces. By default, the entries are taken as fre-
quency offsets (in Hz) to the default frequency (SFOx) of the channel, for
which the list is used. However, this behaviour can be changed by specify-
ing a modifier before the first entry of the list, e.g.:

define list<frequency> absfq = {O,300.13,4000,5000,6000}

Option Meaning
sfo base frequency SFOn
bf base frequency BFn
hz offset in Hz
ppm offset in ppm

Table 1.4 frequency command options

 19

DONE

INDEX

INDEX

The modifiers are shown in the following table.

The usage of these modifiers is deprecated now. Instead the options from
table 1.4 should be specified before the first element, separated by a
comma:

define list<frequency> absfq = {ppm bf, 4000, 5000, 6000}

Instead of list entries, a list definition can also contain the name of a list file
between angle brackets, e.g.:

define list<frequency> filefq = <freqlist>

The specified file can be created with the command edlist f1. Alternatively,
you can specify $FQxLIST between angle brackets, where x is a digit
between 1 and 8. For example:

define list<frequency> f1list = <$FQ1LIST>

In this case the value of the parameter FQxLIST will be used as filename.
The format of frequency lists is the following: the first line contains the mod-
ifiers according to either table 1.4 or 1.5, the following lines contains the
frequencies, one item per line.

A maximum of 32 different frequency lists can be defined within a pulse
program. The name can be of arbitrary length, but only the first 7 charac-
ters are interpreted.

A difference between a regular frequency lists (interpreted by the fqn state-
ments) and a frequency list defined within the pulse program is that the lat-
ter is not autoincremented. The list index can, however, be manipulated
with postfix operators. The operators .inc, .dec, .res increment, decrement
and reset the index, respectively. Furthermore, you can use a caret opera-
tor (^) to execute the list and increment the pointer with one statement. You

O <basic frequency [MHz]> offset is in Hz and relative to basic freq. O
p (lower case) offset is in PPM and relative to SFOx
P (upper case) offset is in PPM and relative to BFx
no modifier offset is in Hz and relative to SFOx

Table 1.5 deprecated modifiers in frequency lists

can also address a list entry by specifying its index in square brackets [].
Note that index manipulation statements are executed at the end of the
duration. This, for example, means that the statement:

d1 fqlist^:f1 fqlist:f2

sets both channels f1 and f2 to the same frequency and afterwards incre-
ments the list pointer.

Note that the index runs from 0 and will be treated modulo the length of the
list. As such, by incrementing the index, the frequency can be cycled
through a list.

You can also set the index with a relation adding the .idx postfix to the list
name.

Example:
define list<frequency> fqlist = { 100 200 300}
ze
1 p1

d1 fqlist:f1 fqlist.inc ; set freq. to SFO1+100, incr. pointer
p1:f1 ; use frequency SFO1+100Hz
d1 fqlist^:f1 ; set frequency and increment

pointer
p1:f1 fqlist.res ; use freq. SFO1+200, set pointer to

0
d1 fqlist:f1 ; set frequency to SFO1+100
p1:f1 ; use frequency SFO1+100

d1 fqlist[2]:f1 ; set frequency to SFO1 +300
p1:f1 ; use frequency SFO1+300

"fqlist.idx = 1" ; set pointer to entry 1
d1 fqlist:f1 ; set the frequency SFO1+200
p1:f1 ; use frequency SFO1+200
d1 fqlist.dec ; decrement pointer
go=1

exit

 21

DONE

INDEX

INDEX

1.5.3 Pulse phase

1.5.3.1 Phase programs: definition

Pulse phases are relative phases with respect to the reference phase for
signal detection. A phase must be specified behind a pulse statement with
the name of a phase program. For example, the statements:

10mp:f1 ph3
p2*0.33:f2 ph4
p30d1H*3.33:f3 ph5
vp:f4 ph6

execute pulses on the channels f1, f2, f3 and f4, respectively. As such, the
channel frequencies would be SFO1, SFO2, SFO3, and SFO4. The chan-
nel phases are set according to the current value of the phase programs
ph3, ph4, ph5, and ph6, respectively. If a pulse is specified without a phase
program, it will have the last phase that was assigned to the channel on
which the pulse is executed. Note that at pulse program start, before any
pulse has been executed, the phase on all channels is zero.

The four examples above can also be written in the following form:
(10mp ph3):f1
(p2*0.33 ph4):f2
(p30d1H*3.33 ph5):f3
(vp ph6):f4

This form expresses more clearly that a phase is a property of a spectrom-
eter channel.

1.5.3.2 Phase programs: syntax

A phase program can be specified as shown in the following examples:
ph1 = 0 0 1 1 2 2 3 3 ;(1)
ph1 = (5) 0 3 2 4 1 ;(2)
ph1 = {0}*4 {2}*4 ;(3)
ph1 = {0 2}^1 ;(4)
ph1 = {0 2}^1^2^3 ;(5)
ph1 = {1 3}^1^2*2 ;(6)
ph1 = {{0 2}*2}^1^2 ;(7)
ph1 = {{{0}*2}^2^3^1}^2 ;(8)

ph1 = (5) {1 2}*2^1 ;(9)
ph1 = ph2*2 + ph3 ;(10)
ph1 = (float, 90.0) 30 60 95.5 ;(11)

A phase program can contain an arbitrary number of phases.

Furthermore, the list of phases in a phase program can be spread over
several lines, for example:

ph1 = 0 2 2 0
1 3 3 1

In (1), the phases are expressed in units of 90°. The actual phase values
are 0, 0, 90, 90, 180, 180, 270, 270.

In (2), the phases are expressed in units of 360/5 degrees, corresponding
to the actual phase values 0*72, 3*72, 2*72, 4*72, 1*72 = 0, 216, 144, 288,
72 degrees. The divisor, to be specified in parentheses () and before the
actual phase list, can be as large as 65536 (corresponding to 16 bits). This
corresponds to a digital phase resolution of 360/65536, which is better than
0.006°.

In (3) - (9), the operators “ * “ and “ ^ “ are used, which allow you to write
long phase programs in a compact form. For phase programs with less
than 16 phases, the explicit forms (1) and (2) are usually easier to read.
The operator “*n“ (with n = 2, 3, ...) must be specified behind a list of
phases that is enclosed in braces { }. It repeats the contents of the braces
(n-1) times. The operator “^m“ (with n = 1, 2, 3, ...) must be specified
behind a list of phases that is enclosed in braces { }, or behind a previous
“^m“ or behind an “*“ operator. Each “^m“ operator repeats the contents of
the braces exactly once, but the repeated phase list will be incremented by
m*360/d degrees (modulo d) where d is the divisor of the phase program. If
no divisor is specified, the default value of 4 is used. The following lines
display the phase programs (3) - (9) in their explicit forms:

ph1 = 0 0 0 0 2 2 2 2 ;(3’)
ph1 = 0 2 1 3 ;(4’)
ph1 = 0 2 1 3 2 0 3 1 ;(5’)
ph1 = 1 3 2 0 3 1 1 3 ;(6’)
ph1 = 0 2 0 2 1 3 1 3 2 0 2 0 ;(7’)
ph1 = 0 0 2 2 3 3 1 1 2 2 0 0 1 1 3 3 ;(8’)
ph1 = (5) 1 2 1 2 2 3 ;(9’)

 23

DONE

INDEX

INDEX

In (10), the phase program is the sum of two other phase programs, one of
which is multiplied with an integer constant. This principle is illustrated by
the following example. Assume the following phase programs:

ph2 = 0 2 1 3
ph3 = 1 1 1 1 3 3 3 3

In order to calculate ph5 = ph2*2 + ph3, we first calculate ph2*2:
ph2*2 = 0 0 2 2

Then we extend ph2 to the same size as ph3:
ph2 = 0 0 2 2 0 0 2 2
ph3 = 1 1 1 1 3 3 3 3

Now we calculate the sum of the two:
ph1 = 1 1 3 3 3 3 1 1

In cases where phase programs are added and the size of one of them is
not a multiple of the size of the other, the resulting phase program will have
the length of the smallest common multiple of the two phase programs.

In (11), the phases are defined as floating point numbers in degree. In case
an ’ip’ command is used, the increment is specified as the second argu-
ment in parentheses.

1.5.3.3 Phase program position

Phase programs must be specified at the end of the pulse program after
the "exit" statement (see the pulse program example in Table 1.1 at the
beginning of this chapter). Any pulse program can contain up to 32 different
phase programs (ph0-ph31).

1.5.3.4 Phase cycling

At the start of a pulse program, the first phase of each phase program is
valid. The next phase becomes valid with the next scan or dummy scan.
When the end of a phase program is reached, it starts from the beginning
(phase cycling).

1.5.3.5 Phase pointer increment

The phase pointer in all phase programs is automatically incremented by
the go statement. However, it is also possible to explicitly switch to the next
phase as shown in the following example:

p1:f2 ph8^
p2:f2 ph8

p1 is executed with the currently active phase of ph8, then p2 is executed
with the next phase in ph8. The caret (^) postfix in the first line, increments
the phase pointer to the next phase in the list. This phase will become valid
with the next pulse program statement that includes this phase program
(note that this can be the same statement if it is included in a loop).

The following example is equivalent to the one above:
p1:f2 ph8 ipp8
p2:f2 ph8

Only in this case the statement ipp8 is used to increment the pointer in the
phase program ph8. Please note that ipp8 is specified on the same line as
p1 and therefore does not cause an extra delay between p1 and p2. The
increment statements ipp0-ipp31 are available for the phase programs ph0-
ph31. Increment statements can also be specified with a delay rather than a
pulse. For example,

d1 ipp7

moves the pointer to the next phase in ph7.

If explicit phase program manipulation is used in the pulse program, the
phase program concerned will no longer be incremented with the go com-
mand.

The statements rpp0-rpp31 can be used to reset the phase program pointer
to the first element. The statement zd automatically resets all phase pro-
gram pointers to the first item, whereas the statement ze sets the pointer
such that after DS dummy scans the pointer will be at the first element of
each phase program. Phase programs that use the autoincrement feature
or explicit incrementation with ipp are not incremented by the go statement
at the end of a scan.

dpp0 - dpp31 can be used analogously to go back to the previous phase

 25

DONE

INDEX

INDEX

program item.

1.5.3.6 Adding a constant to a phase program

You can change all phases in a phase program by a constant amount with
the :r option. Each phase program ph0-ph31 has a constant assigned to it,
PHCOR[0]-PHCOR[31]. These can be set from eda, or by entering phcor0
etc. on the command line. For example, with ph8 = 0 1 2 3 and
PHCOR[8]=2°, the phases of the pulse:

(p1 ph8:r):f2

are 2, 92, 182, 272 degrees. Without the :r option, the phase cycle of p1
would be 0, 90, 180, 270 degrees. The :r option can be used together with
the caret postfix, e.g.:

(p1 ph8^:r):f2

1.5.3.7 Phase program arithmetic

Each of the phase programs ph0-ph31 has 3 associated statements:

ip0-ip31, dp0-dp31, rp0-rp31.

They can also be used with an integer multiplier n:

ip0*n - ip31*n, dp0*n - dp31*n.

Consider the phase programs ph3 = 0 2 2 0 and ph4 = (5) 0 1 2 3. The pulse
program statement:

20u ip3

increments all phases of ph3 by 90°. The next time that ph3 is encountered,
its phase cycle will be “1 3 3 1“. Likewise, the pulse program statement:

20u ip4

increments all phases of ph4 by 360/5 degrees. The next time that ph4 is
encountered in the pulse program, its phase cycle will be “(5) 1 2 3 4“.

The statements dp0-dp31 decrement all phases of the associated phase
program. The statements rp0-rp31 reset all phases of a phase program to
their original values, i.e. to the values they had before the first ip0-ip31 or
dp0-dp31.

The statements:
6u ip3*2
7.5u dp4*2

increment ph3 by 2*90=180° and decrement ph4 by 2*360/5=144°.

An increment/decrement phase program statement must always be speci-
fied behind a delay, which must be long enough for the increment/decre-
ment to be calculated. The required time depends on the number of phases
in the phase program and amounts to 1.5 msec per phase and channel.

1.5.3.8 Phase Program Modifications at Runtime

For AV and AV II spectrometers, the commands in this and the following
section cause the pulse program to be executed from the TCU, whereas
normal phase program commands are executed from the FCU. (Execution
from the TCU makes the TCU performance slower. It can be forced for nor-
mal phase programs as well with the command ’phaseOnTcu’ somewhere
in the pulse program.) For AV III spectrometers, there is no such difference.

(1) p1 ph=91.5
(2) (d1 p21:sp2 ph=cnst30):f2
(3) p1 ph1+ph2
(4) p1 ph1+90
(5) p1 ph=cnst30+90

In (1), a phase is set to a value given explicitly in degrees.

In (2), the phase is set from the parameter cnst30, which can be calculated
in a relation at some other place in the pulse program before.

In (3), the phases of 2 phase programs are added together.

In (4), a constant offset is added to a phase program. This is especially
useful in subroutines, where a phase program is defined in the main pro-
gram and phases in the subroutine are set relative to this phase program.

In (5), the parameter cnst30 is used with an offset.

1.5.3.9 Calculation and Usage of Phase Programs at Runtime

There are 2 ways to calculate constants from phase programs and set

 27

DONE

INDEX

INDEX

phases at runtime:

(1)
"cnst30=ph1+nsdone*90"
p1 ph=cnst30

(2)
"ph1=(nsdone%8)*45"
p1 ph1

In example (1), cnst30 is calculated, using a phase program and adding a
variable amount to it depending on the current scan counter. cnst30 the is
used some time later in the pulse program to set the phase of pulse p1.

In (2), the current value of phase program ph1 is overwritten with some
value calculated from the scan counter. The pulse p1 will have this phase
as long as no phase program manipulation command is executed between
the two statements. Any such command will replace the current phase
value with the value from the original phase program.

1.5.3.10 Runtime Changes of the Phase Program Increments

The ip statement can also be used to add increments other than the
amounts defined in the definition of the phase program. This is done using
the parameters CNST[0]-CNST[31] (which can have a positive or negative
value). For example, the statement:

d11 ip1+cnst23

adds the value of CNST[23] to each phase of the phase program ph1.

A constant can also be defined in the pulse program. As such it is calcu-
lated at runtime. For example, the section:

"cnst23=d0*360/24;"
d11 ip1+cnst23

calculates a phase from the current value of d0 and then puts it into the
parameter cnst23. Then it adds this value (in degrees) to each phase of the
phase program ph1. Note that ip1+cnst23 works on the original phase pro-
gram ph1 whereas ip1(*n)works on the current phase program ph1.

As an example, the next pulse program section increments the phase at

runtime depending on the number of scans done:
"cnst5 = 20"
2 d1
p1 ph1
6u ip1+cnst5 ; set the phase program to the original values + cnst5 °
"cnst5= nsdone*30"
go =2 ph31
ph1 = 0 2 2 0 1 3 3 1

1.5.3.11 Phase setting without executing a pulse

Phases can be set after pulses or delays. TOPSPIN allows you set the
phase for a particular spectrometer channel without executing a pulse. In
that case, you must specify a phase program behind a delay. Example:

(d1 ph1):f3
(p11:spf1):f3

Note that on AV spectrometers there is no frequency while there is no
pulse. This kind of phase setting makes sense only if there is no time to set
the phase during the pulse (e.g. for ultrafast shape pulses).

1.5.3.12 Definition of phase programs using list syntax

Instead of setting up ph0-ph31 at the end of the pulse program, a phase
program may also be defined by a list definition, which must then occur
before the actual start of the pulse program (beginning with ze):

define list<phase> PhList1={0.0 180.0 90.0 270.0}

This statement defines the phase program PhList1 with phase values of 0°,
180°, 90° and 270°. Note that in contrast to the previously described defini-
tions of phase programs, all angles are written in degree in this syntax.
Instead of initializing the phase program directly with {}-brackets, you may
also specify the file name of a phase program or the variable PHLIST
which contains such a filename, both in angle brackets. Examples,

define list<phase> PhList2=<myphaseprogram>
define list<phase> PhList3=<$PHLIST>

In both cases, the file that contains the phase program can be created with
the command edlist phase.

 29

DONE

INDEX

INDEX

Phase setting from user-defined phase programs is done in exactly the
same way as with the standard phase programs by specifying the phase
program after a pulse statement.

After initialization, the current value of a user-defined phase program is its
first entry. You can access other entries by using the list operations .inc,
.dec, or .res to increment, decrement, or to reset the index. By using the
caret postfix operator (^) you can combine phase setting with an increment
operation, as with other list types or with the standard phase programs.
However, in contrast to other list types, you can neither retrieve a particular
entry using the []-bracket notation, nor set the index directly by assigning to
PhList1.idx. Furthermore, no equivalents to the ipX, dpX, and rpX state-
ments available with the standard phase programs ph0-ph31 exist for user-
defined phase programs.

Note that user-defined phase program names may consist of up to 19 char-
acters, but only the first 15 are interpreted. Up to 32 user-defined phase
programs may be defined in a single pulse program. It is furthermore possi-
ble to define the standard phase programs ph0 to ph31 with the above syn-
tax. In this case the phase program base (used for the ip0-ip31, and dp0-
dp31 statements) is implicitly 65536 (equivalent to 16 bits). Using an ipX
command on a standard phase program defined with the above syntax will
shift all of its phase entries by . After 65536 ipX state-
ments, the phase program entries would have returned to their initial val-
ues. To make a 90o phase increments use ipX*16384.

1.5.4 Pulse power and shape

1.5.4.1 Rectangular pulses

A rectangular pulse has a constant power while it is executed. It is set to
the current power of the spectrometer channel on which the pulse is exe-
cuted. The default power for channel f1, f2, ... , f8 is PL[1], PL[2], .., PL[8].
Here, PL is an acquisition parameter that consists of 32 elements PL[0] -
PL[31]. It can be set from eda or by entering pl0, pl1, etc. on the command
line. You can set the power for a particular channel with the statements pl0-
pl31. For example:

d1 pl5:f2

360° 65536⁄ 0 006°,≈

sets the transmitter power for channel f2 to the value given by PL[5]. Any
pulse executed on this channel will then get the frequency SFO2 and the
power PL[5]. The pl0-pl31 statements must be written behind a delay. The
power setting occurs within this delay, which must be at least 0.2 msec.

The power can be set not only from these parameters but also from con-
stants, from the parameters SP0..31 and directly as a number:

d1 pl=cnst23:f1
d1 pl=sp7:f1
d1 pl=3:f1

1.5.4.2 Power lists

In addition to the above possibilities, you can use user defined power lists
on Avance spectrometers. A user defined power list is defined and initial-
ized in a single define statement, e.g.:

define list<power> pwl = { -6.0 -3.0 0 }

The define list<power> key is followed by the symbolic name, under which
the list can be accessed in the pulse program. The name is followed by an
equal sign and an initialization clause, which is a list of high power values,
in dB, enclosed in braces. Entries must be separated by white spaces.

You can access a power list by specifying its name, e.g.:

d1 pwl:f1

sets the power of channel f1 to -6.0 dB, when it is used for the first time.
You can move the pointer within a power list with the increment, decrement
and reset postfix operators .inc, .dec, .res. For example, you can switch to
the next entry of the above list with the statement:

pwl.inc

Alternatively, you can use the caret (^) operator to set the power and incre-
ment the list pointer within one statement. For example, the statement:

d1 pwl^:f1

is equivalent to:

d1 pwl:f1 pwl.inc

 31

DONE

INDEX

INDEX

You can also access the list index in a relation, appending .idx to the sym-
bolic name, e.g:

"pwl.idx = pwl.idx + 1"

The above expression is equivalent to:
pwl.inc

Furthermore it is possible to access a certain list element by specifying its
number in square brackets, for example:

pwl[2]

Note that list indices start with 0. All index calculations are performed mod-
ulo the length of the list. In the above example pwl[3] = pwl[0] = -6.0.

Note that index manipulations are executed at the end of the duration. This
means, for example, that the statement:

d1 pwl^:f1 pwl:f2

will set both the f1 and f2 channel to the same power level.

As an alternative to initializing a list, you can specify a list file in angle
brackets, e.g.:

define list<power> fromfile = <pwlist>

Such a file can be created or modified with the command edlist va. Instead
of a filename you can also specify $VALIST, for example:

define list<power> fromva = <$VALIST>

In this case, the filename is defined by the VALIST acquisition parameter.

Note that the number of user defined lists is limited to 32 for each list type.
The length of the name is arbitrary, but only the first 7 characters are inter-
preted.

The following example shows the use of an initialized power list:

Example:
define list<power> pwl = { 10 30 50 70 }
ze

1 d1 pwl:f1 pwl.inc ; set power on f1 to 10dB, incr.

pointer
d1 pwl:f2 pwl.dec ; set power on f2 to 30dB, decr.

pointer
d1 pwl[2]:f3 ; set power on f2 to 50dB
"pwl.idx = pwl.idx + 3" ; set the pointer to 0 to 3
d1 pwl^:f4 ; set power on f4 to 70dB, incr.

pointer
(p1):f1 (p2):f2 (p3):f3 (p4):f4

go=1
exit

1.5.4.3 Shaped pulses

A shaped pulse changes its amplitude (and possibly phase) in regular time
intervals while it is executing. The pulse shape is a sequence of numbers
(stored in a file, see below) describing the amplitude and phase values
which are active during each time interval. The interval length is automati-
cally calculated by dividing the pulse duration by the number of amplitude
values in the shape file. If this is less than the minimum duration, an error
message is displayed which tells you what is the minimum pulse duration
for this shaped pulse.

The next 3 examples generate shaped pulses:

(10mp:sp2 ph7):f1
(p1:sp1 ph8):f2
(p30d1H*3.33:sp3 ph9):f3

The pulse durations are 10 millisec, P[1], and p30d1H*3.33, respectively.
The pulses are executed on the frequency channels f1, f2, and f3 (i.e. the
pulse frequencies are SFO1, SFO2, and SFO3), respectively. The pulse
shape characteristics are described by the entries 2, 1, and 3 (correspond-
ing to :sp2, :sp1, and :sp3) of the shaped pulse parameter table. This table is
displayed when you click the SHAPE button within eda. The table has 32
entries with the indices 0-31. You may use the statements :sp0 - :sp31 to
refer to the entries 0-31, respectively. As you can see from the examples, a
phase program can be appended to a shaped pulse in the same way it can
be appended to a rectangular pulse. The current phase of the phase pro-
gram is added to the phase of each component of the shaped pulse.

Note that the statement:

 33

DONE

INDEX

INDEX

(vp:sp4 ph10):f4

is incorrect because shaped pulses with vp are not supported.

Each entry of the shaped pulse parameter table has 4 parameters
assigned to it: a power value, an offset, a file name and a phase alignment.

File name
The name of a shape file. A shape file can be generated with the command
st. or from the Shape Tool interface (command stdisp). Shape files are
stored on disk in the so called JCAMP format. They reside in the directory:

$XWINNMRHOME/exp/stan/nmr/lists/wave/

After its header, a shape file contains a list of entries, one entry for each
pulse shape interval. Each entry consists of an amplitude value (in percent)
and a phase value (in degree). The amplitude value defines the percentage
of the absolute power value (see below).

Offset frequency [Hz]
The shape offset frequency allows you to shift the frequency of the shaped
pulse by a certain amount (in Hertz). This shift is realized by applying
phase changes during the shaped pulse’s time intervals. In this way, phase
coherency of the frequency is maintained.

Power value [dB]
This is the absolute power value of the pulse shape. The actual power
value of a particular shape interval is the absolute power value multiplied
by the relative power value of that interval, as specified in the shape file.
The power of the shape is set in the interval before the start of the shape
and reset to the default power setting of the channel (in this case PL[1] for
channel F1) after the shape. The power setting which was actual before the
shape is lost. For this reason it is not possible to execute pulses immedi-
ately before and after the shape, because there must be delays in which
the power setting is done. (For AV instruments these delays must be 3ms
before and after the shape and 4ms between two shapes, for AV III instru-
ments no such extra delay is required, but the minimum length of a shape
segment which is normally 25ns can be executed only if there is no power
setting and phase setting associated with this shape.)

d20 pl9:f1 ; set power on channel f1 to PL[9]
p1:sp0:f1 ; shaped pulse with abs. power

SP[0]
d11
p2:f1 ; rectangular pulse with power PL[1]

Rather than using power values specified in SHAPE, you can also use the
power value that is currently active on the channel that you use. You can
do that with the (currentpower) modifier of the sp statement as shown the fol-
lowing example:

d20 pl9:f1 ; set power on channel f1 to PL[9]
p1:sp0(currentpower):f1 ; shaped pulse with abs. power PL[9]
p2:f1 ; rectangular pulse with power PL[9]

If, in this example, the value of PL[9] is very different from the value of
SP[1], the pulse shape may be compressed. The reason for this is that the
CORTAB correction table for SP[1] is applied rather than for PL[9]. The
advantage of this method is that you can use pulses immediately before
and after the shape.

You can access the SHAPE table entries from eda. However, you can also
set the entries from the command line. For example, spnam5 allows you to
set the file name of entry 5, spoffs2 sets the frequency offset of entry 2 and
sp15 sets the absolute power value of entry 15.

Phase alignment

Shapes with frequency offsets do vary the phase in order to efficiate the
frequency shift. By this variation the total phase of the shape is affected as
well. The parameter SPOAL[0..31] determines whether the phase is
aligned relative to the start or the end of the pulse. SPOAL has a range of 0
to 1. If SPOAL = 0, the relative phase shift is 0 at the beginning of the pulse
whereas it is determined by the frequency offset SPOFFS and the pulse
length at the end of the pulse. If SPOAL = 1 the relative phase shift is 0 at
the end of the pulse.

Using shapes with variable pulse length
A shaped pulse can be used in connection with a variable duration. For
example, the pulse p1 has a duration P[1] and can be varied with state-
ments like ipu1 or "p1=p1+0.5m".

For a shape consisting of 1000 points the following restrictions apply (not
for AV III instruments):

 35

DONE

INDEX

INDEX

• the minimum execution length is 1000*7*50 ns = 200 msec.
• the increment must be a multiple of 50*1000 ns. Any other increment

values might result in spikes after the shape.

When a shape is specified too short or too long, an error message will be
printed and the shape will be used with the previous settings!

The length of a shaped pulse can be varied with a statement like:
ipu1

or with a relation like:
"p1 = p1 + 0.5m"

In both cases, the variation of a shape pulse length takes 4 msec per chan-
nel.

Note that varying the length of a shape with non-zero-offset-frequency will
change the offset frequency, as the frequency shift is obtained via phase
shifting. This phase shift won’t be recalculated during execution, so the off-
set will be changed inverse proportional to the duration. (Doubling the
duration means cutting the offset in half). An warning will be printed, when
you change the duration of a shape with offset.

1.5.4.4 Fast Shapes

(AV and AV II instruments only.) Regular pulse shapes as described above
need a short delay before and after the pulse of ~4 msec. On Avance-AQS,
you can also generate the so-called fast shapes. They do not require this
delay so fast shaped pulses can be executed consecutively in a loop or
they can be executed right before or right after a rectangular pulse. Fast
shape pulses and can be executed with the options :spf0 - :spf31. They dif-
fer from normal shapes in the following respects:
• They do not change the power setting but use the current setting.
• The minimum time for each interval is 350 nsec whereas for normal

shapes it is between 50 and 100 nsec. If this limit is violated, the pulse
programs will stop with the error message: "AQNEXT while FIFO busy".

• The timing of the shape cannot be changed during pulse program exe-
cution.

• The total time of the entire shape must be exactly the time for one inter-
val times the number of intervals in the shape pulse, where the timing
resolution of the time for the intervals is 50 ns (whereas the time resolu-
tion for normal shapes is 12.5 ns).

Fast shapes are typically used for solid states experiments.

1.5.4.5 Shape lists

Instead of a single shape, one can also use different shapes from a shape
list and toggle through the list with the list increment command.

define list<shape> shl=<wavelist>

This statement defines a new object called shl which represents a shape
list and can be used in the same way as the normal shapes sp0-sp31. With
the command

shl.inc

the next item from the shape list becomes active.

A shape list file has a format similar to the shape parameter list in the editor
where each entry consists of a line containing 4 items:

1.5.4.6 Amplitude Lists

On AV you can define amplitude lists in a pulse program, for example:
define list<amplitude> am1={70}

The amplitude values represent the percentage of the power of a rectangu-
lar pulse. The above list is interpreted by a statement like:

d11 am1:f1

which reduces the power on the f1 channel to 70% of PL[1] (assuming it

#Power[dB] Offset[Hz] Offset alignment Shape file name

1.0 0.0 0.5 Gauss
...

 37

DONE

INDEX

INDEX

was at its default value PL[1]). All rectangular pulses on f1 will then be exe-
cuted with this reduced power. A statement like:

d12 pl1:f1

will reset the power on channel f1 to 100% of PL[1]. Furthermore, a shape
pulse like

p11:sp1:f1 ph1

sets the power on f1 to either
• 100% of PL[1] on AV or AV II systems
• to the power SP[1] and the last amplitude of the shape after it has fin-

ished.

An example of a pulse program segment using an amplitude list is:
define list<amplitude> am1={70}

p1 ph1 ; rectangular pulse on f1 with power PL[1]
d11 am1:f1 ; set the power on f1 to 70% of PL[1]
p1 ph2 ; rectangular pulse on f1 with 70% of PL[1]
...

Amplitudes can be set also with the following statements;

d11 amp=amp1:f1 ; set the amplitude on f1 to the value AMP[1]
d11 amp=cnst2:f1 ; set the amplitude on f1 to the value CNST[2]
d11 amp=70:f1 ; set the amplitude on f1 to 70%

1.6 Delay generation

Table 1.6 shows the available types of statements for the generation of
delays. The duration of a delay corresponds to the name of the delay state-
ment.

1.6.1 d0-d31

The statement:

d0

executes a delay of width D[0], where D[0] is an acquisition parameter. It is
set from eda, or by typing d0 on the command line. Likewise, the state-
ment:

d1

executes a delay of width D[1].

1.6.2 Random delays

The statement:
d0:r

executes a delay of width D[0] which is varied randomly. The parameter V9
specifies, in percent, the maximum amount which is added to or subtracted

d0, d1, ... , d31 Generate a delay whose duration is taken from the
acquisition parameter D[0], ..., D[31], respectively.

d0:r, ... d31:r

Generate a delay whose duration is taken from the
acquisition parameter D[0], ..., D[31] and which is
randomly varied. The maximum variation (in per-
cent) is defined by the acquisition parameter V9.

3.5u, 10m, 0.1s Generate a delay of fixed length: u = μsec , m =
msec, s = sec.

compensationTime
Generate a delay whose name is defined with a
define delay statement, and whose duration is
defined by an expression.

vd
Generate a delay whose duration is taken from in a
delay list.

de1, de, depa, derx,
deadc

Generate a delay of length DE1, DE, DEPA,
DERX, DEADC, respectively.

dw, dwov Generate a delay of length DW, DWOV.
aq Generate a delay of length AQ.
acqt0 Determines 0-point of FID

Table 1.6 Delay generation statements

 39

DONE

INDEX

INDEX

from D[0]. As such, the effective delay varies between 0 and 2*D0. It can
be set from eda, or by typing v9 on the command line.

Please note that the gs command ignores the :r option.

1.6.3 Fixed length delays

The statement:
10m

executes a delay of 10 msec (called a fixed delay because its duration can-
not be manipulated, see below). The duration must be followed by u, m, or
s. These units indicate microseconds, milliseconds, and seconds, respec-
tively.

1.6.4 User defined delays

The statement:
define delay compTime

defines compTime to be a delay statement and the statement:
“compTime=d1*0.33“.

is the expression that defines its duration. Note that the double-quote char-
acters (“) are obligatory.

With the above statements, the statement:
compTime

executes a delay whose name is defined in the pulse program, and whose
duration is determined by an arithmetic expression. The define statement
must be inserted somewhere at the beginning of the pulse program, before
the actual pulse sequence.The defining expression must also occur before
the actual pulse sequence. It is evaluated at compile time of the pulse pro-
gram, not at run time.

Names for user defined delays must consist of alphanumeric characters,
and the first character must be an alphabetic character. The maximum
length of the name is 11 characters. Caution, do not use any of the
reserved words like ‚adc‘, ‚go‘, ‚pulse‘ etc. as a delay name.

1.6.5 Variable list delays (obsolete)

The statement:
vd

executes a delay whose duration is given by the current value of a variable
delay list. A delay list is a text file that contains one delay per line. Delay
lists are set up with the command edlist vd (described in the Acquisition
Reference manual). The statement vd uses the list file defined by the acqui-
sition parameter VDLIST. When the pulse program is started, the first dura-
tion in the list is used. The pulse program statement ivd can be used to
move the list pointer to the next duration. If the end of the list is encoun-
tered, the pointer is reset to the beginning. The statement ivd must be
specified behind a delay, for example:

d1 ivd
0.1u ivd

The length of the delay is irrelevant, any value is allowed.

It is also possible set the list position with an equation. Example:
"vdidx=5"
vd

Here, vd will execute a delay whose duration is selected from position 5 of
the delay list. To the right of the equal sign any dimensionless expression is
allowed. This may contain parameters from Table 1.3.

1.6.6 User Defined Delay Lists

As an alternative to using the vd statement, a list of delays can also be
specified with a define statement in the following way:

define list<delay> Dlist = { 0.1 0.2 0.3 }

This statement defines the delay list Dlist with the values 0.1sec, 0.2sec
and 0.3sec. Instead of delay values, you can specify a list filename in the
defined statement. There are two way of doing this: you can specify the
actual filename or $VDLIST, both in <>. In the latter case, the file defined
by the acquisition parameter VDLIST is used. For example:

define list<delay> D2list = <mydelaylist>
define list<delay> D3list = <$VDLIST>

 41

DONE

INDEX

INDEX

In both cases, the file an be created or modified with the command edlist
vd.

In a pulse program that contains the statements above, the statement:

D1list

executes a delay of 0.1seconds the first time it is invoked. In order to
access different list entries, the list index can be incremented by adding
.inc, decremented by adding .dec or reset by adding .res. Index operations
are performed modulo the length of the list, i.e. when the pointer reaches
the last entry of a list, the next increment will move it to the first entry. Fur-
thermore, a particular list entry can be specified as an argument, in
squared brackets, to the list name. For example, the statement:

D1list[1]

executes a delay of 0.2 seconds. Note that the index runs from 0 to n-1,
where n is the number of list entries.

Lists can also be executed and incremented with one statement, using the
caret postfix operator. For example, the statement:

D1list^

is equivalent to:
D1list D1list.inc

Finally, you can set the index with an arithmetic expression within double
quotes using .idx postfix. The following example shows the usage of an ini-
tialized delay list:

define list<delay> locallist = {0.1 0.2 0.3 0.4}

locallist locallist.inc ; delay of 0.1s, set index from 0 to 1
locallist locallist.res ; delay of 0.2s, set index to 0
locallist[2] ; delay of 0.3s
locallist locallist.dec ; delay of 0.1s, set index from 0 to 3
locallist ; delay of 0.4s
"locallist.idx = 3" ; set index to 3
locallist^ ; delay of 0.4s, set index from 3 to 0
locallist ; delay of 0.1s

Note that there are two restrictions on the multiple use of delay lists within

the same line:
• Index operations take effect from the next line on
• Furthermore, you cannot access two different entries of the same list

in one pulse program line as illustrated in the following example:
locallist^ locallist ; executes the first list entry (0.1s)
twice
locallist ; increment takes effect now (0.2s
delay)
locallist[2] locallist[3] ; executes the third entry (0.4s) twice

Note that names for user defined items may consist of up to 19 characters
but only the 7 first are interpreted: i.e Delaylist1 and Delaylist2 are allowed
names but would address the same symbol.

1.6.7 Special Purpose Delays

These are the delay statements de1, depa, derx, deadc, de as listed in
Table 1.6. They are used in pulse programs in which the acquisition is
started with the adc statement rather than with go=label. Implicitly they are
used in the go macro as well and can be set in the edscon table or explicitly
within the pulse program. dw and aq are determined by setting the sweep
width and cannot be redefined within the pulse program.

The delay acqt0 is a delay which is not used by the pulse program compiler
but in connection with the baseopt option of DIGMOD. It serves to deter-
mine the point where t=0 for the FID. This point is for a simple zg program
somewhere in the middle of the excitation pulse. One therefore defines this
delay as

"acqt0=-p1*3.14159/2"

The linear prediction software takes this value to reconstruct the part of the
FID which could not be measured.

1.6.8 Manipulating Delays: The Operator *

A delay can be manipulated by the “*“ operator. Examples of allowed state-
ments are:

d1*1.5
compensationTime*3.33

 43

DONE

INDEX

INDEX

d3*oneThird
vd*3

The * operator must be specified behind the delay statement, not before.
oneThird is the name of a macro that must be defined at the beginning of
the pulse program with a statement like #define oneThird 0.33. Note that a
statement like 10m*0.33 would be incorrect, since 10m is a fixed delay.

1.6.9 Manipulating Delays: Changing d0-d63 by a Constant Value

The delays executed by d0-d63 can be incremented or decremented
according to the acquisition parameters IN[0]-IN[63]. These parameters
contain a duration (in seconds). The pulse program statements id0-id63 add
IN[0]-IN[63] to the current value of d0-d63, respectively. Likewise, dd0-dd63
subtract IN[0]-IN[63] from the current value of d0-d63. The statements rd0-
rd63 reset d0-d63 to their original value, i.e. to the values of the parameters
D[0]-D[63]. The statements presented in this paragraph must be specified
behind a delay of any length. Examples:

d1 id3
0.1u dd0
d1 rd0

In Bruker pulse programs, D[0] and D10 are used as incrementable delays
for 2D and 3D experiments, IN0 and IN10 are the respective increments
which are used to calculate the sweep widths SW(F1) and SW(F2), respec-
tively (see the description of IN0, IN10 in the Acquisition Reference man-
ual).

1.6.10 Manipulating Delays: Redefining d0-d63

The duration of the d0-d63 statements is normally given by the parameters
D[0]-D[63]. However, you can overwrite these values in the pulse program
using an expression in C language syntax. The following examples show
some of the possibilities:

"d13=3s + aq - dw*10"
"d13=d13 + (p1*3.5 + d2/5.7)*td"

The result of such an expression must have a time dimension. You can
therefore include acquisition parameters such as pulses, fixed pulses,
delays, fixed delays, acquisition time AQ, dwell time DW etc. within the

expression. Furthermore, you can include parameters without a dimension
such as the time domain size TD. The complete list is shown in Table 1.3.
An expression must be double-quoted (“ “). It can be inserted anywhere in
the pulse program, as long as it occurs before the delay statement that
uses the expression (d13 in our example). Please note that the second
expression in the example above assigns a new value to d13 each time the
expression is encountered, for example in a loop.

1.6.11 Manipulating the Durations of User Defined Delays

You can define your own delay statements using a define statement like:
define delay compensationTime

at the beginning of the pulse program. This delay is executed by the state-
ment:

compensationTime.

The delay length must be defined with a statement like:
"compensationTime=d1*0.33".

For such an expression the same rules apply as for the manipulation of d0-
d31, described in the previous section.

Note: The defining expression of a user defined delay must occur before
the start of the actual pulse sequence. It is evaluated at compile time of the
pulse program, not at run time.

1.6.12 larger and random

In order to avoid complicated expressions for the assignment of delays and
pulses, the comparison of two delays and can be made like this:

define delay delta
"delta=larger(p4,d2)"

In this expression the length of p4 and d2 are compared, and the delay
delta will become equal to the longer one.

In order to randomize a delay or a pulse only at a certain point of the pro-
gram, one can use the following:

"p4=random(p1,20)"

 45

DONE

INDEX

INDEX

which will assign p4 the value of p1*(100+20*R)/100, where R is a random
number in the range of -1 to +1. This can be used, where the pulse p4
should be changed not each time it is used, but for instance only after ns
scans. (The usage of p4:r within the pulse program randomizes the pulse
each time when it occurs).

1.7 Simultaneous Pulses and Delays

1.7.1 Rules

The following rules apply in pulse programs:
1. Pulses and delays specified on subsequent lines are executed sequen-

tially.
2. Pulses and delays which are specified on the same line, and which are

enclosed in the same set of parentheses or without parenthesis are exe-
cuted sequentially. Such a sequence is called pulse train in the follow-
ing.

3. Pulse trains on the same line are executed simultaneously. The first item
within a pulse train is started at the same time as the first item in any
other pulse train. You can specify an arbitrary number of sets of paren-
theses on a line.

4. Pulse trains on different lines which are enclosed by an extra set of
parentheses are executed simultaneously.

1.7.2 Examples

1.7.2.1 Rule 1

The pulse program section:
(p1 ph1):f1
100u
(p2 ph2):f2

executes a pulse on channel f1, followed by a delay, followed by a pulse on
channel f2 (Figure 1.1).

1.7.2.2 Rule 2

The pulse program section:
(p1 ph1 100u):f1
(p2 ph2):f2

executes a pulse on channel f1, followed by a delay, followed by a pulse on
channel f2 (Figure 1.1).

1.7.2.3 Rule 3

The pulse program section:
(p1 ph1):f1 (100u)
(p2 ph2):f2

executes a pulse on channel f1.

At the same time, the 100 msec delay begins, since it is enclosed in a sep-
arate set of parentheses. The pulse on channel f2 is not executed before
either p1 or 100u have passed, whichever is longer (Figure 1.1)..

The following example is a typical section of a DEPT pulse program:
(p4 ph2):f2 (p1 ph4 d2):f1
(p0 ph3):f2 (p2 ph5):f1

The pulses p4 and p1 begin at the same time, p4 on channel f2 and p1 on
channel f1. The pulses p0 and p2 start simultaneously, but not before the
sequence with the longest duration of the previous line has finished (Figure
1.3).

Figure 1.1 Rules 1 and 2: An example

f1

f2

p1

p2

100u

 47

DONE

INDEX

INDEX

The following 2 lines have been extracted from the colocqf Bruker pulse
program.

(d6) (d0 p4 ph2):f2 (d0 p2 ph4):f1
(p3 ph3):f2 (p1 ph5):f1

We have three sets of parentheses in this case. The first item in each set of
parenthesis, i.e. d6 and d0, start at the same time. After d0, p4 on channel
f2 and p2 on channel f1 start simultaneously. Assuming that d6 is larger
than d0+p4 and d0+p2, the second line is executed after d6 has finished.

A final example for rule 3 is a line from the hncocagp3d Bruker pulse pro-
gram:

(p13:sp4 ph1):f2 (p21 ph1):f3

The shaped pulse p13 on channel f2 is started simultaneously with the rec-
tangular pulse p21 on channel f3.

Figure 1.2 Rule 3: example 1

Figure 1.3 Rule 3: DEPT example

f1

f2 100u p2

p1

f1

f2

p1 d2

p4 p0

p2

1.7.2.4 Rule 4:

The example in the previous section can be rewritten according to this rule
(

(d6)
(d0 p4 ph2):f2
(d0 p2 ph4):f1

)
(p3 ph3):f2 (p1 ph5):f1

It still produces the same pulse sequence.

1.7.3 Pulse Train Alignment

Pulse trains written in the style of rule 4 can be aligned in different ways.

1.7.3.1 Global Alignment

There are three global alignment possibilities for the pulse trains: left align-
ment (lalign) is the default, right alignment (ralign) will arrange the pulse
sequences such that all of them end at the same time, and center align-
ment (center) will start the pulse trains in such a way that they are centered
according to the mid-point of the longest of them. The global alignment
must be specified after the first opening bracket:

(center
(d6)
(d0 p4 ph2):f2
(d0 p2 ph4):f1

)

1.7.3.2 Individual Alignment

Single pulse trains can be aligned individually as well. In this case, the first
pulse train in a sequence must be defined as the reference (refalign):

(
refalign (d0 p1 ph1 d0):f1
center (p2 ph2):f2
ralign (p3 ph4):f3

)

 49

DONE

INDEX

INDEX

Pulse train 3 is now right-aligned relative to pulse train 1, pulse train 2 is
centered relative to pulse train 1. From this piece of code several situations
may result which are not obvious but best can be shown graphically: only in
2 of the 6 possible cases the sequence begins with the reference pulse
train.

If the length of individual pulse trains change during pulse program evolu-
tion, the alignment conditions will still be true.

p2>2*d0+p1

p3>d0

f3
f2
f1

f3
f2
f1

f3
f2
f1

f3
f2
f1

 51

DONE

INDEX

INDEX

Chapter 2

Decoupling

2.1 Decoupling

2.1.1 Decoupling Statements

Table 1.6 shows the available types of decoupling statements. Composite
pulse decoupling is discussed in more detail in the next section of this
chapter.

cw continuous wave decoupling
hd homodecoupling

cpds1, .. ,cpds8 composite pulse decoupling with CPD sequence 1, ...,
8, synchronous mode

cpd1, .. ,cpd8 composite pulse decoupling with CPD sequence 1, ...,
8, asynchronous mode

cpdhd1,.. cpdhd8 homodecoupling using CPD seq. 1,...
do switch decoupling off

Table 2.1 Decoupling statements

Each pulse program line can contain one (and only one) decoupling state-
ment. For example, the line:

d1 cw:f1

turns on cw-decoupling on channel f1 at the beginning of delay d1. The
line:

go=2 cpds1:f2

turns on composite pulse decoupling on channel f2 at the start of the FID
detection.

Decoupling statements are allowed in pulse program lines that contain a
delay statement or the go statement, but not in lines with pulses, expres-
sions or any lines with any of the statements adc, rcyc, lo, if or goto.

Once decoupling is turned on, it remains on, until it is explicitly turned off
with do. For example:

0.1u do:f1

turns decoupling off on channel f1.

cpdhd1..8 is used for homodecoupling during the acquisition for AV III sys-
tems. It uses the cpd programs CPDPRG1..8 but chopped in the HD man-
ner. The decoupling is turned off after the scan automatically and needs no
do statement:

go=2 ph31 cpdhd1:f2

2.1.2 Decoupling Frequency

The decoupling frequency is selected by specifying the spectrometer chan-
nel behind the decoupling statement. In contrast to pulse statements,
decoupling statements must be specified with! For example:

d1 cw:f2

turns on cw decoupling on channel f2, i.e. with the frequency SFO2. This
syntax is the same as used for selecting pulse frequencies (see the chapter
1.5.2). The statement:

0.1u cpds1:f3

turns on the composite decoupling sequence 1 on channel f3, i.e. with the

 53

DONE

INDEX

INDEX

frequency SFO3. The statement:
3m do:f3

terminates decoupling on channel f3 at the beginning of the 3 msec delay.

2.1.3 Decoupling Phase

The relative phase of the decoupling frequency can be controlled using a
phase program. This is equivalent to controlling the phases of pulses (see
chapter 1.5.3). Examples:

(d1 cpds1 ph2):f3
0.1u (cw ph1):f2

Note that phase cycling (see chapter 1.5.3.4) is applied to phase programs
specified behind decoupling statements in the same way that phase pro-
grams are specified with pulses. A simple example demonstrating this fea-
ture is the pulse program section:

1m (cw ph1):f2
d1 do:f2

which is equivalent to:
(1mp ph1):f2
d1

A 1 millisecond pulse is executed on channel f2, followed by a delay d1. Its
phase is cycled according to phase program ph1.

2.2 Composite Pulse Decoupling (CPD)

2.2.1 General

Composite pulse decoupling, as opposed to cw and hd decoupling, offers a
large degree of freedom to set up your own decoupling pulse sequences.
Up to 8 different CPD sequences can be used in a pulse program. For
example, the line:

d1 (cpds1 ph2):f3 (cpds2 ph4):f2

starts, at the beginning of duration d1, CPD sequence 1 on channel f3 and,
simultaneously, CPD sequence 2 on channel f2. CPD sequence 1 is

obtained from a text file defined by the acquisition parameter CPDPRG1.
Likewise, CPD sequence 2 is obtained from a text file defined by the acqui-
sition parameter CPDPRG2, etc. A CPD sequence (= CPD program) can
be a Bruker delivered sequence like WALTZ16, GARP or BB or it can be a
user defined sequence. CPD sequences can be set up with the command
edcpd (as described in the Acquisition Reference manual). Table 2.2
shows the statements available to start a CPD sequence; and Table 2.3

shows the statements available to build a CPD sequence.

2.2.2 Syntax of CPD Sequences

The syntax of CPD sequences is demonstrated by examples. Table 2.4
shows the realization of Broadband and Garp decoupling with CPD
sequences. Each sequence is an infinite loop as indicated by the last state-
ment:

jump to 1

As in pulse programs, the pulse width in CPD programs can be specified
as a fixed pulse, (e.g. 850up) or with the statements p0-p31. The Garp

cpds1, ... ,cpds8
Start decoupling using the CPD program
CPDPRG1, ... , CPDPRG8. The decoupling
sequence will start at line 1.

cpd1, ... ,cpd8
Like cpds1-cpds8, however, the decou-
pling sequence will continue from the line
where it was stopped using do.

:f1, ..., :f8 Channel selector. To be appended to the cpd
statements.

cpdngs1, .. ,cpdngs8
cpdng1, ... ,cpdng8

Same as the cpd(s) statements above,
except that the transmitter gate for the speci-
fied channel will not be opened. Gating is
controlled by the main pulse program, and
can be tailored by the user.

Table 2.2 Available cpd statements

 55

DONE

INDEX

INDEX

sequence shows the usage of the lo to statement.

The Garp sequence, as well as the sequences in Table 2.5, make use of
the statement pcpd to generate pulses. This enables the execution of the
same sequence for different nuclei on different channels. For example,
when executed on channel f2 (f3), the pulse duration of pcpd is given by the
parameter PCPD[2] and PCPD[3], respectively. This allows you to specify
the 90° pulse width for two different nuclei in PCPD[2] and PCPD[3], and
decouple both nuclei within the same pulse program using the same CPD
program.

p0, ... , p31
10up, 5mp, 2.5sp
pcpd1, ... , pcpd8

Generate pulses with durations P[0], ... , P[31].
Generate pulses in micro-, milli-, and seconds
Generate a pulse with duration according to PCPD[1],
... , PCPD[8], depending on the channel where the
CPD sequence is executed (use eda to set PCPD).

d0, ... , d31
10u, 5m, 2.5s

Generate delays with durations D0, ... , D31.
Generate delays in micro-, milli-, and seconds.

*3.5
:135.5

Multiplier. Can be appended to p0-p31 or d0-d31.
Phase in degrees. Can be appended to pulses.

:sp0, ... , :sp31 Shaped pulse selectors. Can be appended to pulses.
pl=

pl=5
pl=sp13
pl=pl25

Power specifier (see example in Table 2.5):
in dB
according to shaped pulse parameters SP[0]-[15]
according to PL[0]-[15]

fq=
fq=2357

fq=cnst25
fq=fq2

Frequency change
in Hz (relative to SFO1 for channel 1, SFO2 for 2...)
from the parameters CNST[0]-[31]
from the frequency list specified in FQ2LIST

; Begin of a comment (until end of line)
lo to label times n

jump to label
Loop to label n times
Branch to label. Usually the last statement.

#addphase
#setphase

Special phase control statements

Table 2.3 statements available to build CPD sequences

Table 2.5 shows two CPD sequences based on shaped pulses. Shapes are
specified in the same way they are specified in pulse programs using the
:sp0, ... , :sp31 pulse selector options. The examples demonstrate the order
in which duration multiplier, shape selector and phase must be specified.

The sequences in Table 2.4 and Table 2.5 do not contain a power setting

statement. Therefore, the current power setting of the main pulse program
for the respective channel is valid.

cpdngs is used for sequences which do not need the transmitter. For
instance the dwell time can be generated in this way (see pulse program
zgadc in the Bruker library). Another field of application is broadband hd
with AV II systems, where the first SGU is used to generated the HD
decoupling and the second to generate the cpd sequence, but the gating of
the sequence is taken from the HD pattern from the first SGU.

2.2.3 Phase Setting in CPD Programs: #addphase, #setphase (AV I
and AV II only)

The phase specified within a CPD program can be added to the phase

1 90up:0
160up:180
240up:0
........
570up:0
680up:180

 810up:0
960up:180

 1140up:0
 1000up:180

850up:0
710up:180
.........
200up:0
110up:180

jump to 1

1 pcpd*0.339:0
 pcpd*0.613:180
 pcpd*2.864:0
 pcpd*2.981:180
 pcpd*0.770:0

.......
 pcpd*0.593:0
lo to 1 times 2

2 pcpd*0.339:180
 pcpd*0.613:0

.......
pcpd*2.843:180

 pcpd*0.729:0
 pcpd*0.593:180
lo to 2 times 2

jump to 1

Table 2.4 Broadband and GARP CPD sequences

 57

DONE

INDEX

INDEX

specified in the pulse program (#addphase) or it can overwrite the pulse pro-
gram phase (#setphase). Note that #addphase is the default mode. It only
needs to be specified if #setphase was used and you want to switch back to
#addphase.

Example 1:

Pulse program statement to start the CPD sequence:

d1 cpds2:f2 ph2

CPD program statements:

#addphase
pcpd:180

Resulting phase of the pcpd pulse: 180 plus the current phase in ph2.

Example 2:

Pulse program statement to start the CPD sequence:

d1 cpd2:f2 ph2

1 pcpd*2:sp15:0
 pcpd*2:sp15:0
 pcpd*2:sp15:180
 pcpd*2:sp15:180
 pcpd*2:sp15:180
 pcpd*2:sp15:0
 pcpd*2:sp15:0
 pcpd*2:sp15:180
 pcpd*2:sp15:180
 pcpd*2:sp15:180
 pcpd*2:sp15:0
 pcpd*2:sp15:0
 pcpd*2:sp15:0
 pcpd*2:sp15:180
 pcpd*2:sp15:180
 pcpd*2:sp15:0
jump to 1

1 pcpd*14.156:sp15:60
 pcpd*14.156:sp15:150
 pcpd*14.156:sp15:0
 pcpd*14.156:sp15:150
 pcpd*14.156:sp15:60
2 pcpd*14.156:sp15:240
 pcpd*14.156:sp15:330
 pcpd*14.156:sp15:180
 pcpd*14.156:sp15:330
 pcpd*14.156:sp15:240
 lo to 2 times 2
3 pcpd*14.156:sp15:60
 pcpd*14.156:sp15:150
 pcpd*14.156:sp15:0
 pcpd*14.156:sp15:150
 pcpd*14.156:sp15:60
jump to 1

Table 2.5 MLEVSP and MPF7 CPD sequences

CPD program statements:

#addphase
pcpd:sp15

Resulting phase of the pcpd shaped pulse: shaped pulse phase
(according to the phases in the shape file) the current phase in plus
ph2.

Example 3:

Pulse program statement to start the CPD sequence:

d1 cpd2:f2

CPD program statements:

#setphase
pcpd:sp15:180

Resulting phase of the pcpd shaped pulse: shaped pulse phase
(according to the phases in the shape file) plus 180.

Please note that, on Avance-AQX, a phase program should not be
used with a cpdn statement since the FCU does not support the real-
time addition of more than two phases. On Avance-AQS, however,
you can use cpdn statements with phase programs.

2.2.4 Frequency Setting in CPD Programs

There are three ways to change the frequency of the channel where the
CPD sequence is applied. Frequency setting in CPD programs is the same
as in pulse programs except that the channel specification after the state-
ment is not necessary.

2.2.4.1 Frequency Setting from Lists

The first method to set the frequency is using a frequency list. The state-
ments fq1-fq8 interpret the parameters FQ1LIST-FQ8LIST, set the fre-
quency from the current list entry and move the list pointer to the next entry.
In contrast to the lists used pulse programs, lists used in CPD programs
are expanded at compile time, not at run time. In the following example, the

 59

DONE

INDEX

INDEX

first fq1 statement uses the first entry of the frequency list, the next state-
ment the second entry. If the frequency list contains more than 2 entries,
only the first two will be used.

1 pcpd:0 fq=fq1
pcpd:180 fq=fq1
jump to 1

Like in pulse programs, the frequency offset can be specified in two ways:
either the offset is at the top of the list in MHz, or no offset is specified in the
list. In the latter case, the measure frequency of the appropriate channel
(SFO1 for F1, SFO2 for F2, etc.) is used as list offset.

2.2.4.2 Frequency Setting Using the Parameters CNST0-63

The statement fq=cnst25 will set the frequency SFO1 + CNST25 [Hz]. The
parameter CNST25 can also be modified from the gs window. If used on
channel F2, the basic frequency SFO2 instead of SFO1 will be used etc.

2.2.4.3 Direct Specification of Frequencies

The statement fq=3000 will set the frequency SFO1(2,3...) + 3000 Hz.

2.2.5 Loop Statements in CPD Programs

The general form of a loop statement is:
lo to label times n

where label can be any number. The loopcounter n can be a number or a
symbolic loopcounter l0 - l31, where the latter interpret the parameters L[0]
- L[31]. It must be equal to or greater than 1.

Loop counters defined in the pulse program can also be used in the CPD
program.

For infinite CPD programs (which are terminated from the pulse program
by the statement do:fn) there is a special jump to label statement which exe-
cutes an unconditional jump to the specified label. For calculated jumps
forward (see next section), there exists the command jumpf ln where ln is a
loopcounter L0 .. L31.

2.2.5.1 Manipulation of Loop Counters During Execution (BILEV Decoupling)

You can manipulate the loopcounter of a CPD program after each scan
according to an arithmetic expression in the following way (this statement
must be on the first line of the CPD program):

bilev: "l5=nsdone%4+1"

This means that the loopcounter l5 will be modified after each scan accord-
ing to the above equation. The modification will take effect immediately
after the scan. The expression should be written such that the loopcounter
is always greater than zero. The variable loop counter then can be used
within the CPD program such that the first section changes with each scan.
This can be done in two ways:
• the CPD program contains a loop using this loop counter.
• the CPD program uses a jump instruction to jump to a calculated label:

bilev: "l31=nsdone%4+1"
jumpf l31
1 pcpd*3:180

pcpd*4:0
...
2 pcpd*2:0
...
3 pcpd*3:180
...

The jumpf l31 instruction has the effect that the cpd program continues at
the label which corresponds to the current value of the loopcounter calcu-
lated above. Of course, each possible loopcounter value must have a cor-
responding label.

A bilev statement in a CPD program automatically changes the cpd state-
ment in the pulse program into the corresponding cpds. This means that the
CPD sequence is not continued at the point where it was stopped before,
but starts from the beginning each time it is called.

 61

DONE

INDEX

INDEX

Chapter 3

Loops and conditions

3.1 Loop statements

The general form of a loop statement is:
lo to label times n

Example 1:
label1, d1

p1:f2
lo to label1 times 10
p2:f2

Note that a label can be an arbitrary string, such as label1, followed
by a comma, or a number, such as 2, without a comma. The lo state-
ment in this example, although specified on a separate line, does not
cause an extra delay between the p1 and p2 pulse statements.

Example 2:
label1, p1:f1
label2, d1

p1:f2
lo to label2 times 10
lo to label1 times 5

p2:f2

The first lo statement in this example does not cause an extra delay
in the pulse program. However, any further lo statement will add a
delay of 2.5 msec. XWIN-NMR will display a corresponding message
when the pulse program compiler is invoked, i.e. when entering one
of the commands gs, zg, go, or pulsdisp.

The lo statement exists in a number of variations as shown in Table 3.1.

lo to label times 5 The loop counter is a constant.

lo to label times td
The loop counter is TD, the time domain size in the
acquisition dimension (to be set with the command
td, or in the left column in eda).

lo to label times td1
Only used in 2D or 3D pulse programs. The loop
counter is F1-TD (to be set with command 1 td for
2D data sets or in the right column in eda).

lo to label times nbl
The loop counter is the parameter NBL (see the
statements wr, st, st0)

lo to label times l0
...........
lo to label times l31

The loop counter is L[0] - L[31] (to be set with the
commands l0, ..., l31, or the L array in eda).
The pulse program statements iu0- iu31 increment
the counters l0-l31 by 1, du0-du31 decrement
them by 1, and ru0-ru31 reset them to L[0] - L[31].

lo to label times c

The loop counter is taken from the list defined by the
acquisition parameter VCLIST. The list can be cre-
ated with edlist vc. The statement ivc advances
the list pointer by 1. The list pointer position can also
be set with an equation, e.g. vcidx=5.

lo to label times
myCounter

The loop counter must be defined at the beginning of
the pulse program by means of a define statement
and an expression, e.g.
define loopcounter myCounter
“myCounter=aq/10m +1“
The result of the expression must be dimensionless.

Table 3.1 The lo statements

 63

DONE

INDEX

INDEX

Example 3:
ze

label1, (d1 p1):f1
 lo to label1 times l2
1u iu2
p2:f2
go=label1

Assume the parameter L[2] is set to 1 using the command l2 1, or by
setting L[2]=1 in eda. Then, (d1 p1):f1 would be executed once before
scan 1, twice before scan 2 etc. The lo statement does not cause an
extra delay in the sequence. The increment statement iu2 is executed
during the specified 1 msecond delay. You could replace the loop
counter l2 with c in this example, and replace iu2 with ivc to use the
number of loops specified in a list file.

Example 4:
define loopcounter myCounter
“myCounter=aq/10m +1“

ze
label1, (d1 p1):f1

lo to label1 times myCounter
go=label1

Here the variable myCounter represents a loop counter. An arithme-
tic expression assigns a value to it: the parameter AQ, divided by 10
millisec, plus 1. The compiler truncates the quotient aq/10m to give
an integer. The expression may include any of the parameters shown
in Table 1.3.

3.2 Conditional pulse program execution

3.2.1 Conditions evaluated at precompile time

Consider the pulse program at the left part of Table 3.2. It combines two
experiments in one pulse program, a simple Cosy and a Cosy with presatu-
ration during relaxation. The required pulse program statements to select
or deselect presaturation are:

#define aFlag
#ifdef aFlag
#ifndef aFlag
#endif

and correspond to C language pre-processor syntax where it is mandatory
that the "#" is the very first character on the line. Note that aFlag is just a
place holder, it can be any name. If the pulse program contains the state-
ment:

#define aFlag

the identifier aFlag is considered to be defined, otherwise it is considered to
be undefined. If aFlag is undefined, the statement:

#ifdef aFlag

causes the pulse program to ignore all subsequent statements until the
statement:

#endif

If aFlag is defined, these statements will be executed. The statement:

#define PRESAT

1 ze
2 d11
3 0.1u
#ifdef PRESAT
 d12 pl9:f1

 d1 cw:f1
 d13 do:f1
 d12 pl1:f1
#endif
 p1 ph1
 d0
 p0 ph2
 go=2 ph31
 d11 wr #0 if #0 id0 zd
 lo to 3 times td1
exit

#define PRESAT

1 ze
2 d11
3 0.1u
#include <Presat.incl>
 p1 ph1
 d0
 p0 ph2
 go=2 ph31
 d11 wr #0 if #0 id0 zd
 lo to 3 times td1
exit

Table 3.2 Using #define, #ifdef, #include statements

 65

DONE

INDEX

INDEX

#ifndef aFlag

has the opposite effect.

In Table 3.2, #define PRESAT enables the presaturation statement block.
Commenting out this line in C-syntax style (/*#define PRESAT*/), (not in
pulse program style ;#define PRESAT), would make the PRESAT flag
undefined, and the presaturation block would not be executed.

The #ifdef and #ifndef statements are evaluated by a pre-processor. The
pulse program compiler will use the pre-processed pulse program. For this
reason, these statements do not cause any timing changes. You can view a
pre-processed pulse program from the pulse program display. Just enter
the pulsdisp command and and click the button Show program. Note that
in the pre-processed pulse program, all conditional statements beginning
with a ’#’ have been removed.

The example could be extended to include double quantum filtering. For
this purpose, an additional flag (e.g. #define DQF) could be defined.

The right part of Table 3.2 shows the same pulse program in a more con-
densed form. The presaturation block is now contained in a separate file,
Presat.incl, which is included with the #include statement.

3.2.1.1 Setting of Precompiler Conditions

Conditions can be set or unset not only within the pulse program but also
on the command line with the zg command using the option -D. For exam-
ple, the command zg -DDQF has the same effect as the line:

#define DQF

at the beginning of the pulse program. The argument must follow the -D
option with or without white space in between. The -D option can be given
more than once. As an alternative to command line options to zg, you can
also set the acquisition parameter ZGOPTNS. Once this parameter is set,
the corresponding option is used by zg and go. Thus, setting ZGOPTNS to
"-DDQF -DPRESAT" and typing zg has the same effect as the command
’zg -DDQF -DPRESAT’.

Please note:
All statements beginning with a ’#’ character must start at the beginning of

a line. Spaces or tabs before ’#’ are not allowed.

3.2.1.2 Macro Definitions

You can use the statement #define not only to define a flag, but also, as in C
language, to define a macro.

Example 1:
#define macro1 (p1 d1) (p2):f2
macro1

This pulse program section is equivalent to:
(p1 d1) (p2):f2

Example 2:
#define macro2 (p1 d1) \n\

(p2):f2
macro2

This pulse program section is equivalent to:
(p1 d1)
(p2):f2

The definition of macro2 extends over 2 lines using the \n\ character se-
quence. In example 1, p1 and p2 start at the same time, while in this ex-
ample p2 starts after (p1 d1) has finished.

Example 3:
#define macro3 (p1 d1) \n (p2):f2
macro3

This pulse program is equivalent to:
(p1 d1)
(p2):f2

The definition of macro3 requires only one line. However, the \n character
sequence enforces a new line when the macro is evaluated. As such, the
pulse programs of the examples 2 and 3 are identical.

Attention: Macro symbols are replaced by the body of the macro every-
where in the text, even in comments and strings. If you use a macro in a
comment, where you don’t want it to be replaced, you should use a C-style

 67

DONE

INDEX

INDEX

comment instead.

Example:
; the macro3 produces two pulses on two channels

This will be expanded by the precompiler to
; the (p1 d1)
(p2):f2 produces two pulses on two channels

which will produce a syntax error. The following statement is correct:
/* the macro3 produces two pulses on two channels */

because the C-precompiler removes the line entirely.

3.2.2 Conditions evaluated at compile time

Whereas conditions controlled by #if statements are evaluated at precom-
pile time, conditions controlled by if statements are evaluated at compile
time.

The if statement can be used in connection with the parameters L[0] - L[31]
as shown in the following example:

The condition must be followed by an if-block and, optionally, can be fol-
lowed by an else-block. The statement ‘else if’, as it is used in C language,
is not allowed in pulse programs.

Example: See Table 3.4

The if-block is executed if the condition is true at compile time; in the above

if (l7==0) if l7 is zero
if (l8!=0) if l8 is not zero
if (l9 op(arith. expression)) op can be ==, !=, >, <, >=, or

<=

Table 3.3

example if l5 is greater than 2, p1 is executed with phase program ph1, if
not, it is with phase program ph2. If l5 changes during the experiment, and
the condition becomes false, the execution mode doesn‘t change.

3.2.3 Conditions evaluated at run time

The spectrometer TCU has four trigger inputs. Trigger events can be posi-
tive or negative edges or levels.

XWIN-NMR supports branching and evaluation of conditions within a pulse
program while the pulse program execution is in progress. Table 3.5 lists
the available statements. These statements do not cause a delay in the
pulse program. At run time, pre-evaluation is performed during the cycle
time of the loops in which the statements are embedded. If, in a particular
pulse program, loops are executed too fast, a run time message is printed.

Example 1:
ze

lab1, d1
p1
d0
if "d0*2 + 7m > 500m" goto lab2

 "d0 = d0 + 10m"
p2

lab2, go=lab1

Assume that we will start with d0=10m. The pulse p2 will no longer be
executed when the expression “d0*2 + 7m > 500m“ becomes true.

Example 2:

if (l5 > 2)
{

p1 ph1
}
else
{

p1 ph2
}

Table 3.4 a condition evaluated at compile time

 69

DONE

INDEX

INDEX

ze
lab1, if (trigpl2) goto lab3
lab2, d1

p1
aq
lo to lab2 times ds
goto lab1

lab3, d1
p1
go=lab1

The TCU has 4 trigger input channels (on the TCU3 they are num-
bered 0-3 and correspond to the trigger commands 1-4); signals
arriving at the TCU can be checked using the trig specifiers. This
example performs DS dummy scans to maintain steady state condi-
tions as long as no positive level is detected on input channel 2. If
such a level is detected, NS data acquisition scans are executed,

goto label Unconditional jump to label

if expression goto label Branch to label if expression evaluates
to true.

if (trigger) goto label

Branch to label if the trigger condition is
true.
Positive level trigger specifiers:
trigpl1, trigpl2, trigpl3, trigpl4

Negative level trigger specifiers:
trignl1, trignl2, trignl3, trignl4

aDelay trigger

The same trigger specifiers as above are
allowed. The next pulse program statement
will not be executed until the trigger con-
dition becomes true. Example:1u trigpl1
Positive edge trigger specifiers:
trigpe1, trigpe2, trigpe3, trigpe4

Negative edge trigger specifiers:
trigne1, trigne2, trigne3, trigne4

Table 3.5 Conditional pulse program execution

then the pulse program again checks the external trigger signal.

Example 3:
ze

lab1, d1 trigpl2
p1
go=lab1

This example starts executing the pulse sequence as soon as a posi-
tive level is detected on input channel 2. After each scan, the pulse
program will wait until the next trigger signal is detected.

Example 4:
ze

lab1, d1
p1
 lo to lab1 times l2
 0.1u iu1 ;count number of scans
0.1u iu2 ;increment l2
if “l1 <= 3“ goto lab2 ;if scancounter < 4
0.1u ru2 ;reset l2 to L2

lab2, go=lab1

This example repeats the sequence (d1 p1) L[2] times before scan 1,
L2+1 times before scan 2, and L2+2 times before scan 3. Then, l2 is
reset to its initial value L[2]. Before all remaining scans the sequence
(d1 p1) is generated L[2] times. L[1] must be set to 1 before starting
the sequence.

3.3 Suspend/resume pulse program execution

XWIN-NMR allows you to stop (suspend) the pulse program execution at
specified positions in the pulse program. Pulse program suspension can be
done conditionally or unconditionally using the statements shown in Table
3.6.

After suspension, the program execution can be resumed with the XWIN-
NMR command resume.

If you use suspend or autosuspend, you should not try to change any acqui-

 71

DONE

INDEX

INDEX

sition parameters between suspending and resuming the acquisition,
because this will not have the wanted effect. The reason is that the acquisi-
tion uses the principle of precalculation which means a part of the pulse
program is interpreted (precalculated) before it is actually executed. After
resume, the precalculated part which was calculated before the parameter
change is executed without considering the parameter change.

The statement calcsuspend or calcautosuspend, however, stop precalcula-
tion. Here you can change parameters between suspending and resuming
the acquisition. Note that you must specify a delay which is long enough to
start and do a reasonable amount of precalculation after resume. For
example:

calcsuspend
2s

If, after resuming the acquisition, you would get the error message "timing
too short", you must increase this delay.

suspend stop execution on the command suspend
autosuspend stop execution
calcsuspend stop precalculation and stop execution on suspend
calcautosuspend stop precalculation and stop execution

Table 3.6 statements to suspend pulse program execution

 73

DONE

INDEX

INDEX

Chapter 4

Data acquisition and storage

4.1 Start data acquisition

XWIN-NMR provides 5 basic pulse program statements to start data acquisi-
tion:

go=label, gonp=label, gosc, goscnp and adc.

The most commonly used statement is go=label. Actually, go is a macro
statement, i.e. it includes a number of different actions required for data
acquisition. The statement adc can be used to control fine details of the
acquisition process. All five acquisition statements place the digitized sig-
nal into a memory buffer. The wr statement, described in a later section,
writes the buffer contents to disk.

4.1.1 The statements go=label, gonp=label, gosc, goscnp

The left column of Table 4.4 shows a simple example of how to use go=label
in a pulse program. All go type statements perform the 8 actions described
below. A parallel sequence of 5 pre-scan subdelays is executed (see the
description of DE1/DERX/DEPA/DEADC in the Acquisition Reference Man-
ual). Note that all these delays end simultaneously, at the end of DE. The
sequence in which the actions are performed, depends upon the length of

the individual delays. The sequence must be

1. At the end of DE-DEPA (preamplifier blanking delay), the preamplifier is
switched to observe mode.

2. At the end of DE-DERX (delay for receiver blanking) the receiver gate is
opened.

3. At the end of DE-DE1, the intermediate frequency (if used) is added to
the frequency of the observe channel and the observe SGU switches
from transmit to observe mode. This corresponds to the execution of the
statement syrec. The intermediate frequency is only used for AQ_mod =
DQD.

4. At the end of DE-DEADC (delay for ADC blanking), the digitizer is ena-
bled.

5. After a total delay of DE the digitizer is started. Please refer to the
description of the parameters DW/DWOV/DIGMOD on how the sam-
pling rate is selected. The result will be a digitized FID signal of TD data
points, where the time domain size TD is defined by the user (from eda,
or by typing td). The FID will be put into the current memory buffer. The
contents of memory buffers can be transferred to disk with the wr pulse
program statement or with the tr command. The section Acquisition
memory buffers discusses the usage of memory buffers and the size
restrictions of TD.

6. At the time the digitizer is started, a delay AQ is executed. This delay
lasts until the digitization of the FID is finished.

7. A delay of 3 millisec is executed. During this time the following tasks are
performed:
a) The scan counter, visible during real time FID display, is incremented

to inform the user about the number of scans performed since the
last executed ze or zd statement.

b) The frequency of the observe channel is switched back to the fre-
quency of the observe nucleus (if the intermediate frequency is
used). This corresponds to the execution of the statement sytra
(which is inverse to syrec). The intermediate frequency is only used
for AQ_mod = DQD or, if your spectrometers has an RX22 receiver,
for any value of AQ_mod.

DE DEPA> DE1 DERX DEADC≥ ≥ ≥

 75

DONE

INDEX

INDEX

c) The pointers of all phase programs are incremented to the next
phase, corresponding to the execution of the statements ipp0, ... ,
ipp31. This step is skipped by gonp=label and goscnp.

d) The statements go=label and gonp=label perform a loop to label,
whereas gosc and goscnp do not loop. The pulse program statements
between label and go or gonp are executed DS+NS times. During the
first DS loops (dummy scans to achieve steady state conditions), the
digitizer is not activated. In all other respects, the dummy scans are
identical to the NS data acquisition scans. If no dummy scans are
desired, DS must be set to 0.
Please note: Even if DS > 0, no dummy scans will be executed if the
pulse program statement zd (rather than ze) was executed before a
go loop is entered (see the description of ze and zd). This feature is,
for example, used in 2D experiments where dummy scans are only
required before the first FID is measured.

e) Commands after an additional finally statement are executed during
this delay. In this way decoupling can be switched on during the
acquisition time only and need not be terminated outside the go com-
mand.

Table 4.1 shows that the go statements can be specified in conjunction with
other statements. PH_ref is an acquisition parameter to be defined by the
user.

4.1.2 The statements rcyc=label, rcycnp=label

The statement rcyc executes step 7 of the actions performed by go=label
and gonp=label (see the previous section). The rcycnp statement skips step
7c.

The rcyc statements can be used for acquisition loops based on adc rather
than go=label or gonp=label. You must not specify phase programs behind
rcyc and rcycnp. Decoupling statements are allowed although it would not
make sense to use them here. Table 4.4 shows an example of an acquisi-
tion loop with rcyc. Note that the adc statement is part of the DE1 macro
statement.

The rcyc statements can also be specified behind a delay, e.g. 100u rcyc=2.
They are then executed during that delay instead of the default 3 millisec.

Such a delay must be at least 100 msec.

4.1.3 The statements eosc, eoscnp

The statement eosc executes steps 7a-7c of the actions performed by
go=label and gonp=label (see the previous section). The eoscnp statement
only executes steps 7a and 7b.

The eosc statements can be used in pulse programs with data acquisition
based on adc. In contrast to rcyc, you must add the appropriate loop state-
ments.

You must not specify phase programs behind eosc and eoscnp. Decoupling
statements are allowed but it would not make much sense to use them
here. Table 4.4 shows an example of an acquisition loop based on eosc.
Note that the adc statement is part of the DE1 macro statement.

The statement eosc or eoscnp can also be specified behind a delay of at

1 go=2 ph31

Receiver phase = ph31, realized via add/
subtract and channel A/B switching.
Allowed phase values: 0, 90 180, 270
degrees.

2 go=2 ph30:r

Receiver phase = ph30 + PH_ref, realized
via the phase of the reference frequency
of the observe channel. Allowed phase
values: any.

3 go=2 ph31 ph30:r Combination of (1) and (2). The receiver
phase is the sum: ph31 + ph30 + PH_ref

4 go=2 ph31 ph30:r cpd1:f2
Decoupling starts at the same time the
receiver is opened, and automatically
stops when the loop is executed.

5 go=2 ph31 ph30:r cpd1:f2 ph29
As example 4, with a phase program for
the CPD sequence.

6 go=2 cpd1:f2 finally do:f2
As example 4, but decoupling ends after
the acquisition time

Table 4.1 Examples of the usage of the go or gonp statement

 77

DONE

INDEX

INDEX

least 100 msec, e.g.:
100u eosc

In that case, they are then executed during the specified delay rather than
during the default 3 millisec.

4.1.4 The statements ze and zd

The statements ze and zd perform the following actions:
1. They set the scan counter, which is visible during real time FID display,

to 0 or to -DS. A negative value indicates that dummy scans are in
progress.

2. They set a flag which triggers the next go, gonp, gosc, goscnp, or adc
statement to replace any existing data in the acquisition memory rather
than add to them. This counts for all NBL memory buffers. If ze or zd are
placed outside an acquisition loop, the replace mode will only be valid
for the first scan performed by the loop. The FID’s of all the scans that
follow will be added to the data present in the memory buffer.

3. The statement zd automatically resets all phase program pointers to the
first element, whereas the statement ze sets all phase program pointers
such that they are at the first element after DS dummy scans.

4. The difference between ze and zd is that zd prevents the execution of
dummy scans by go, gonp, gosc, goscnp, and by adc (combined with rcyc
or eosc), even if DS > 0.

The statements ze and zd can be written behind a delay statement. They
are then executed during the delay. If they are not specified with a delay
their execution will require 3 millisec.

The statement zd is normally part of one of the specifications of the mc
macro statement. One example where it is specified explicitly is the pulse
program selno.

4.1.5 The statement adc

The statement adc starts the digitizer and, at the same time, opens the
receiver. Please refer to the description of the parameters DW/DWOV/DIG-
MOD in the Acquisition Reference Manual for information on how the sam-

pling rate is calculated. The result of adc will be a digitized FID signal of TD
data points. TD is an acquisition parameter that must be set by the user.
The FID will be placed in the current memory buffer (see the section Acqui-
sition memory buffers).

When you use the adc statement rather than go, you must consider the fol-
lowing:

• Whereas the go statement automatically executes the required
switching delays, these must be specified explicitly when you use
adc. For this purpose, the macros DE1, DE2, DE3, DEPA, DERX and
DEAC are available. They are defined in the file De.incl that can be
included in the pulse program with the statement:

#include <De.incl>

The contents of this file is shown in Table 4.2.

Note that adc is implicitly defined with DE1

define delay rde1
define delay rdepa
define delay rderx
define delay rdeadc

"rde1=de-de1;"
"rdepa=de-depa;"
"rderx=de-derx;"
"rdeadc=de-deadc;"

#define DE1(phrec) (rde1 de1 adc phrec syrec)
#define DE2(phref) (1u 1u phref:r):f1
#define DE3 (de)
#define DEPA (rdepa depa RGP_PA_ON)
#define DERX (rderx derx RGP_RX_ON)
#define DEADC (rdeadc deadc RGP_ADC_ON)

#define ACQ_START(phref,phrec) DE1(phrec) DE2(phref) DERX
DEADC DEPA DE3

Table 4.2 The contents of the file De.incl for AV and AV-II spectrometers

 79

DONE

INDEX

INDEX

Here, the statement de executes the delay defined by the acquisition
parameter DE. The statements de1, derx, deadc and depa execute a
delay that is defined by the corresponding edscon parameters. In the

case of an AV-III spectrometer, the three delays DEPA, DERX and
DEADC are generated automatically by the hardware and can be re-
placed by one single DE2. The DE1 and DE2 macros have the argu-
ments phrec and phref which are used to define the phase program
used by the receiver and the reference frequency, respectively. The
latter phase program can be specified after the go macro using the
syntax phnn:r.

• For end-of-scan handling, you must specify one of the statements
eosc, eoscnp, rcyc, or rcycnp. Multiple adc statements can be used in
conjunction with, for example, a single eosc statement. Table 4.4
shows the same pulse program realized via go=label, adc in conjunc-
tion with rcyc, and adc in conjunction with eosc.

• You must enable the intermediate frequency using the statement
syrec. This, however, is only necessary for AQ_mod = DQD or, if your
spectrometers has an RX22 receiver, for any value of AQ_mod.

• The dwell time is generated during aq. For Avance-AQX, the adc
statement starts dwell generation on the RCU (here the macro
DWELL_GEN has no effect). For Avance-AQS, the dwell time is gen-
erated on the SGU with the macro DWELL_GEN.

define delay rde1

"rde1=de-de1"

#define DE1(phrec) (rde1 sync de1 adc phrec syrec)
#define DE2(phref) (1u 1u phref:r):f1
#define DE3 (de)

#define ACQ_START(phref,phrec) DE1(phrec) DE2(phref) DE3

Table 4.3 The contents of De.incl for AV-III spectrometers

For an example of how to use the adc statement rather than go, please look
at the Bruker pulse program zgadc (enter edpul zgadc). This program will
produce exactly the same result as the program zg.

4.1.5.1 The receiver phase

In pulse programs using the adc statement, the receiver phase must be
specified behind adc, e.g.:

adc ph31

This statement tells the receiver which phase is to be used for the next
scan to account for the receiver phase setting. Note that there must be suf-
ficient time between the end-of-scan interrupt signal of one scan and the
receiver phase interrupt signal of the next scan. Normally, the recycle delay
is long enough for this purpose. However, for some applications (like imag-
ing experiments) the recycle delay can be too short for correct interrupt
handling. In that case, the receiver phase should be specified before the
scan loop using the statement recph ph31 (see Table 4.5). The statement
ip31 after the recycle loop increments all entries of the phase program ph31
but does not set the phase. As such, the receiver phase is not changed
after each scan but after NS scans.

4.1.6 Real Time Control

On spectrometers equipped with a DRU-M unit and an Real-Time-Control-

ze
2 d1

(p1 ph1):f1
;---------

go=2 ph31
;--------

wr #0
exit

#include De.incl
ze
2 d1

(p1 ph1):f1
;------------------
DE1 DEPA DERX DEADC DE3
aq DWELL_GEN
rcyc=2

;------------------
wr #0
exit

#include De.incl
ze

2 d1
(p1 ph1):f1

;------------------
DE1 DEPA DERX DEADC DE3
aq DWELL_GEN
eosc
lo to 2 times ns

;------------------
wr #0
exit

Table 4.4 The same pulse program based on go, adc/rcyc, and adc/eosc

 81

DONE

INDEX

INDEX

ler board (RCTRL), the command rcen, issued before an acquisition com-
mand (adc/go), will cause the next scan to be transferred from the
addressed DRU-unit to the connected RCTRL board. There are no spe-
cific timing requirements for the command.

Example:
1u rcen ; transfer scan to R-Controller
go=1

4.1.7 External dwell pulses

The go and adc statements instruct the digitizer to acquire the desired
number of data points with a rate given by the dwell time. On AQX sys-
tems, the dwell pulses, which activate the digitizer in regular time intervals,
are generated internally (on the RCU) so that the detection of a complete
FID is automatically accomplished once initialized via go or adc. This
occurs during the delay aq as displayed in the middle and the right columns
of Table 4.4. On AQS systems, the dwell pulses are generated by the SGU
which is dedicated to the observe channel. This is the meaning of the
macro DWELL_GEN which evaluates to the statement:

aq cpdngs29:f1

Certain experiments, however, require the control of the detection of each

1 ...
...

2 d1
10u adc ph31
aq DWELL_GEN:f1
rcyc=2
10u ip31
lo to 1 times l1
...

1 ...
...
2u recph ph31

2 d1
10u adc
aq DWELL_GEN:f1
d2 rcyc=2
10u ip31
lo to 1 times l1
...

Table 4.5 Receiver phase setting without and with recph

individual data point of an FID. In this pulse program the waiting time aq
has been replaced by a loop that generates as many dwell pulses as
required to measure TD data points. Use the command setrtp to generated
the dwell pulses and the receiver gating pulses.

Please refer to the Bruker pulse program libraries for high resolution, sol-
ids, and imaging experiments for examples using the the setrtp command.

For AV II and AV III systems, the digitizer has a constant rate of 20 MHz
and cannot be stopped and started, instead it can be gated and the result-
ing data stream is filtered and decimated according to the chosen sweep
width and decimation. If single data points are needed, for each gating
pulse ANAVPT points of the digitizer can be averaged to one resulting
point. Therefore for DRU systems, if DIGMOD is set to analog, there must
be a statement like

"anavpt=512"

in the pulse program which tells the digitizer how many points should be
averaged. The generation of the dwell pulses can be done as described
above.

4.2 Acquisition memory buffers

The acquisition statements go=label, gonp=label, and adc put the acquired
data points into a memory buffer where they reside until new data points
are added, or until they are replaced by new data (replace mode is turned
on by the statements ze and zd). A memory buffer provides space for TD
data points, where TD must be set by the user.

In most 1D experiments, one FID is measured and stored in one memory
buffer. After NS scan have been accumulated, the contents of that memory
is written to disk (with the wr statement). Multi-dimensional experiments,
imaging experiments, experiments varying parameters such as the decou-
pling frequency or recovery time generate several FID’s. In that case you
can use one or several memory buffers. If a single buffer is used, the buffer
contents must be transferred to disk before the next FID can be measured.
If several buffers are used, several FID’s can be measured before a disk
transfer is required. The latter method is appropriate if the FID’s of the
experiment succeed one another so quickly that no disk transfer is possible

 83

DONE

INDEX

INDEX

in between them.

The acquisition parameter NBL determines the number of memory buffers
used (default: NBL=1). Each buffer has a size TD. If TD is not a multiple of
256, the buffer size will be rounded to the next multiple of 256 data points .
The acquisition commands will put the FID into the current buffer. The
default current buffer is buffer 1. The pulse program statement st makes the
next buffer the current buffer whereas the statement st0 makes the first
buffer the current buffer. When the number of buffers is exhausted, i.e.
when st is executed for the NBL’th time, the first buffer becomes the current
buffer.

The statements st and st0 must be specified behind a delay which must be
at least 10 msec, e.g.:

10u st

Table 4.6 shows an example, the Bruker pulse program noedif. The FID’s

acquired with different decoupling frequencies are stored in two memory
buffers.

The size of NBL is limited by the constraint that NBL times TD must not
exceed the available RCU or DRU memory. For example, an RCU
equipped with 4 Mb DRAM allows for about 3.8 Mb FID data to be stored

1 ze
d11 pl14:f2
d11 fq2:f2 st0

2 d1
3 d20 cw:f2

d13 do:f2
p1 ph1
go=2 ph31
d1 fq2:f2 st
lo to 3 times l4
d11 wr #0 if #0

exit

Table 4.6 Usage of st and st0: noedif pulse program

(the remainder is needed by the acquisition parameters). If necessary, you
can upgrade your spectrometer with more RCU DRAM.

The commands ze and zd reset the scan counters for all nbl buffers. Of
course, the pulse program must do ns (ns+ds) scans in each buffer before
advancing to the next buffer with the command st. If dummy scans should
be done only before acquisition starts in the first block, it is better to write a
separate loop before the actual acquisition loop in the pulse program.

4.3 Writing data to disk

Data acquisition statements go=label, gonp=label, gosc, goscnp, and adc put
the digitized data into a memory buffer, but do not store them to disk.
Therefore, every pulse program must contain at least one disk write state-
ment to transfer the acquired data to disk. Table 4.7 shows the available
pulse program statements to access disk files.

Transferring data to disk means adding the data to the data contained in an
existing fid or ser file, or replacing these data.If no such file exists, it will be
created. Replacement will take place if started with zg, addition will take
place if the pulse program is started with the command go. However, data
replacement only occurs the first time a memory buffer is transferred to
disk. Any further execution of the mc or wr statement will cause the buffered
data to be added to the data in the file.

It is allowed to specify the statements if, zd, id0-id31, ip0-ip31, and decou-
pling statements behind the same delay that is used for wr. It is important to
use either a zd or ze statement after each wr before the next scan. Other-
wise the data will be added to data previously acquired in the same mem-
ory region.

The name of the output file is fid or ser. An fid file contains a single FID,
whereas a ser file contains a series of FID’s. The appropriate name is auto-
matically chosen by the pulse program compiler: if a pulse program con-
tains one of the increment, decrement, or reset file pointer statements, or
st/st0, a ser file will be created.

If the pulse program uses a ser file, the acquisition command checks if a
ser file already exists and if it has the correct size. If this is the case, the

 85

DONE

INDEX

INDEX

mc #0
Macro statement that executes the statements wr #0,
if and zd. Normally mc is specified with one or
more clauses which expand to loop structures.

wr #0

Transfer the acquisition buffer to the file fid, or
transfer NBL acquisition buffers to the file ser of the
current data set. For ser files: wr starts writing into
the file at the current position of the disk file pointer,
which initially is at the beginning of the file.

wr #1, wr #2, wr #3, ...
Transfer is performed to the file fid or ser of the data
set with the number 1, 2, 3, ... contained in the data
set list defined by the acquisition parameter DSLIST.

wr ##

Transfer is performed to the file fid or ser of the data
set which is pointed to by the dataset list pointer. Its
initial position is #0 which always corresponds to the
foreground dataset. The dataset list pointer itself can
be manipulated with the commands ifp, rfp and
dfp.

if #0, if #1, if #2, ...
Advance the disk file pointer for ser files by
TD*NBL (note that TD is rounded to the next multi-
ple of 256 data points if it is not a multiple of 256).

if ## Advance file pointer of current file (see wr ##)
df #0, df #1, df #2, ... Decrement the file pointer (inverse of if).
rf #0, rf #1, rf #2, ... Reset the file pointer to the beginning of the ser file.
rf #0 m, rf #1 m,
rf #2 m, ...

Set the file pointer to position m*TD*NBL of the ser
file, where m is an integer number.

ifp The dataset list pointer ## is incremented by 1. It ini-
tially points to the foreground dataset (#0), after the
first increment to the first item of the dataset list (#1)
and so on (NB: there is no automatic wraparound).

dfp The dataset list pointer ## is decremented by 1
rfp The dataset list pointer ## is reset to the first item (the

foreground data set #0).

Table 4.7 Writing acquisition buffers to disk

first occurrence of a wr statement will overwrite the ser file section defined
by the current file pointer, TD, and NBL. If a ser file does not exist or has
the wrong size, a new ser file will be created filled it with zeroes before
acquisition starts. As such, the ser file is not required to grow during the
experiment. This method avoids the risk of running out of disk space while
acquisition is in progress.

In a 2D experiment, the TD value must be set such that TDF1*TDF2*4 cor-
responds to the size (in bytes) of the ser file. In a 3D experiment, the TD
values must be set such that TDF1*TDF2*TDF3*4 corresponds to the size
(in bytes) of the ser file. If they are not, a warning is displayed even though
the experiment can still be executed. If, for some reason you have per-
formed a 2D experiment with TD values that do not match the size of the
ser file, you must set the status TDF1 value before you process the data.
You can do that with 1s td. For 3D experiments you can adjust the TD val-
ues of the indirect dimension with 2s td and 1s td.

These rules apply to acquisition dimensions higher than 3 in a similar way.
TOPSPIN allows acquisition dimensions up to 8D.

In 3D pulse programs, the acquisition status parameter AQSEQ describes
the order (321 or 312) in which the 1D FID’s of a 3D acquisition are written
into the ser file (3 = the acquisition dimension, 1 and 2 = the orthogonal
dimensions). AQSEQ is automatically set and stored in the parameter file
acqus according to the pulse program loop structure. A 3D pulse program
usually contains a double nested loop with loop counters td1 and td2. If td1
is used in the inner loop and td2 in the outer loop, AQSEQ is set to 312.
Otherwise it is set to 321. Note that in most 3D pulse programs, the td1 and
td2 loop is implicitly defined by an mc statement. If a 3D pulse program con-
tains a different loop structure (not defined by td1/t2d or mc) AQSEQ should
be explicitly set with one of the statements:

aqseq 321
aqseq 312

before the actual pulse sequence. Without this statement, the status
parameter AQSEQ would be set to an arbitrary value. In that case you can
still set it after the acquisition has finished (before processing) is with the
command 3s aqseq . In dimensions higher than 3D only the natural order
(e.g. 4321) is supported and there is no corresponding aqsec command.

 87

DONE

INDEX

INDEX

The wr statements (and all other statements in Table 4.7) can be specified
behind a delay (see the example in Table 4.6). The delay must be at least
10 msec. The only timing requirement for wr is that the disk transfer is fin-
ished before wr is called again. If it is not, a run-time error message is
printed. The actual execution time of a disk write depends on the computer
hardware, the operating system, and the system load according to cur-
rently active processes and users. Bruker recommends to acquire data
only to a disk that is physically connected to the computer that controls the
spectrometer.

However, there is another limit if wr is used in conjunction with other com-
mands for data handling. The commands wr, if and zd may be combined on
a single line. Other commands, like ze must be on a separate line. Any
sequence containing one of these commands more than once must have a
delay of 10 ms between two of them.

 89

DONE

INDEX

INDEX

Chapter 5

The mc macro statement

5.1 The mc macro statement in 2D

A 1D experiment can be based on the following pulse program sequence:
1 ze ; initialisation
2 d1 ; starting delay

p1 ; pulsing
d0 ; waiting
go=1 ; acquiring FID and loop for adding
d1 wr #0; write to buffer

You can turn this sequence into a 2D sequence by taking the following
steps:

• increment the file pointer after each disk write
• initialize the buffer after each disk write
• increment a delay, by convention d0, in each loop
• add a loop outside of the wr #0 statement to a second label - the size

of which is usually td1

• for phase sensitive acquisition: add a phase increment

When the indirect dimension is acquired phase insensitive, the 2D pulse

program would have the following form:
1 ze
2 d1
3 p1

d0
go=2
d1 wr #0 if #0 zd id0
lo to 3 times td1

The last two lines can be replaced by the mc statement. In the above
sequence, this would take the form:

d1 mc #0 to 2 F1QF(id0)

The statement mc is a macro that includes a disk write (wr), a file increment
(if) and memory initialization (zd). It can be used with one or more clauses,
e.g. F1QF, which expands to a loop structure. Each clause can take one or
more pulse program statements, e.g. id0, as arguments. These statements
are executed within the loop created by the clause. Different mc clauses
are used for phase sensitive, phase insensitive and echo-antiecho experi-
ments. However, the same mc clause, i.e. the same pulse program, can be
used for different types of phases sensitive experiments like QSEQ, States,
TPPI and States-TPPI. The experiment type is determined by the F1 acqui-
sition parameter FnMODE. The allowed combinations of FnMODE and mc
clauses are listed in Table 5.1.

If an incorrect combination of FnMODE and mc clause is used, such as
F1PH - QF, the zg command will show an error message and quit.

2D and 3D processing commands interpret the acquisition status parame-
ter FnMODE and set the processing status parameter MC2 accordingly.
However, if FnMODE = undefined, they interpret the processing parameter

mc clause Mode Possible values of FnMODE[F1]

F1QF phase insensitive QF
F1PH phase sensitive QSEQ, States, TPPI, States-TPPI
F1EA Echo-Antiecho Echo-Antiecho

Table 5.1 : allowed combinations of FnMODE and mc clauses

 91

DONE

INDEX

INDEX

MC2 and set the processing status parameter MC2 accordingly.

By using mc instead of the wr and lo to label statements the same 2D (and
3D) pulse programs can be used for TPPI, States-TPPI and States, respec-
tively. We will look at the expanded forms of cosyph for different values of
FnMODE[F1]. The unexpanded pulse program as it appears with edpul
cosyph:

"d0=3u"

1 ze
2 d1
3 p1 ph1

d0
p0 ph2
go=2 ph31
d1 mc #0 to 2 F1PH(ip1, id0)
exit

ph1 =0 2 2 0 1 3 3 1
ph2 =0 2 0 2 1 3 1 3
ph31=0 2 2 0 1 3 3 1

The mc command will put into the expanded pulse programs the following
header which is the same for the different values of FnMODE[F1]:

define delay MCWRK
define delay MCREST
"MCREST = d1 - d1"

As such, it is not specified in the expanded pulse programs below. Note
that MCWRK, MCREST are general delays that are defined during the
expansion of the mc statement. MCREST is zero for all expansions of
cosyph but can be non-zero for other pulse programs. MCWRK, however, is
different for different expansions. Note that the phase programs are, for
each value of FnMODE, the same as in the unexpanded pulse program.

FnMODE[F1] = QSEQ:
define loopcounter ST1CNT
"ST1CNT = td1 / (2) "
"MCWRK = 0.500000 * d1"

1 ze

"in0 = in0 / 2"
2 MCWRK

LBLSTS1, MCWRK
LBLF1, MCREST

3 p1 ph1
 d0
 p0 ph2
 go=2 ph31

MCWRK wr #0 if #0 zd ip1 id0
 lo to LBLSTS1 times 2
 MCWRK rp1
 lo to LBLF1 times ST1CNT

exit

FnMODE[F1] = States
define loopcounter ST1CNT
"ST1CNT = td1 / (2) "
"MCWRK = 0.500000 * d1"

1 ze
2 MCWRK

LBLSTS1, MCWRK
LBLF1, MCREST

3 p1 ph1
 d0
 p0 ph2
 go=2 ph31

MCWRK wr #0 if #0 zd ip1
 lo to LBLSTS1 times 2
 MCWRK rp1 id0
 lo to LBLF1 times ST1CNT

exit

FnMODE[F1] = TPPI
"MCWRK = d1"

1 ze
"in0 = in0 / 2"

2 MCWRK
LBLF1, MCREST

3 p1 ph1
 d0
 p0 ph2

 93

DONE

INDEX

INDEX

 go=2 ph31
MCWRK wr #0 if #0 zd ip1 id0

 lo to LBLF1 times td1
exit

FnMODE[F1] = States-TPPI
define loopcounter ST1CNT
"ST1CNT = td1 / (2) "
"MCWRK = 0.500000 * d1"

1 ze
2 MCWRK

LBLSTS1, MCWRK
LBLF1, MCREST

3 p1 ph1
 d0
 p0 ph2
 go=2 ph31

MCWRK wr #0 if #0 zd ip1
 lo to LBLSTS1 times 2
 MCWRK id0
 lo to LBLF1 times ST1CNT

exit

The expanded version of the pulse program can be found in the expno
directory of the dataset in the file pulseprogram. Note that the mc statement
performs the following actions:

• In QSEQ, States, States-TPPI and Echo-Antiecho mode, mc creates
two loops and sets the corresponding labels and delays. The delay at
the line to which mc loops back to is split into two equal parts: one for
the inner loop label and one for the outer loop label.

• For FnMODE[F1] = QSEQ or TPPI, the value for the delay increment
is divided by 2 during run time. The parameter ND0, which repre-
sents the number of occurrences d0 within the loop, must have same
value for all values of FnMODE.

• For FnMODE[F1] = QSEQ or States, an rp1 statement is included
within the outer loop. This causes the phases of ph1 to be reset to
their original values.

• For FnMODE[F1]= States, States-TPPI and Echo-Antiecho, the
statements specified in the first argument of the mc clause are exe-

cuted in the inner loop and the statements specified in the second
argument are executed in the outer loop.

• For FnMODE = QSEQ, the statements specified in the first and sec-
ond argument of the mc clause are executed in the inner loop.

• For FnMODE = TPPI, only one loop is created so the statements
specified in the first and second argument of the mc clause are exe-
cuted in that loop.

• For FnMODE = QF, the mc clause contains only one argument whose
statements are executed in the only loop that is created.

For large 2D data sets, it is often useful to test the experiment with the first
increment. This can be done by setting the parameter TD[F1] to 1. The
dimension of the generated dataset will be 1D and can be processed as
such. Note that you do not have to change the value of the parameter PAR-
MODE; it is still set to 2D. In the same way, you can acquire a plane of a 3D
dataset by setting TD[F1] or TD[F2] to 1, and a single row by setting TD[F1]
and TD[F2] to 1.

5.2 The mc macro statement in 3D

The mc statement can also be used in 3D pulse programs. In this case,
there are two indirect dimensions, F1 and F2. For the F1 dimension, mc
uses the clauses F1PH, F1EA and F1QF, for the F2 dimension, it uses the
clauses F2PH, F2EA and F2QF.

The F2PH clause creates a second loop within which a second delay is
varied.

The pulse program noesyhmqcpr3d:
aqseq 312

1 d11 ze
2 d11 do:f2
3 d12 pl9:f1 pl2:f2
 ...

go=2 ph31 cpd2:f2
 d11 do:f2 mc #0 to 2
 F1PH(ip1 & ip29, id0)

 95

DONE

INDEX

INDEX

 F2PH(rd0 & ip5, id10)
exit

with

FnMODE[F2] = States-TPPI
FnMODE[F1] = States-TPPI:

expands to:
aqseq 312

define delay MCWRK
define delay MCREST
define loopcounter ST2CNT
"ST2CNT = td2 / (2) "
define loopcounter ST1CNT
"ST1CNT = td1 / (2) "
"MCWRK = 0.166667 * d11"
"MCREST = d11 - d11"

1 d11 ze
2 MCWRK*2 do:f2

LBLSTS2, MCWRK
LBLF2, MCWRK*2

LBLSTS1, MCWRK
LBLF1, MCREST

3 d12 pl9:f1 pl2:f2
...
go=2 ph31 cpd2:f2
MCWRK do:f2 wr #0 if #0 zd ip1 MCWRK ip29

 lo to LBLSTS2 times 2
 MCWRK id0
 lo to LBLF2 times ST1CNT
 MCWRK rd0 MCWRK ip5
 lo to LBLSTS1 times 2
 MCWRK id10
 lo to LBLF1 times ST2CNT

exit

If you reverse the acquisition order of this pulse program, i.e. if you specify:
aqseq 321

you have to change the mc clauses to:

F1PH(rd10& ip1 & ip29, id0)
F2PH(ip5, id10)

5.3 Additional mc clauses

Apart from the mc clauses specified above two further clauses are availa-
ble:

• F1I
this clause is typically used for interleaved experiments where
parameters have to be varied independently from the ip/id scheme
required for the actual 2D.

• F0
this clause is used when a parameter needs to be varied without
incrementing the data file pointer.

Both F1I and F0 expand to an additional inner loops.

As an example of the F1I clause, we will take the pulse program noesygp-
phprxf; with FnMODE[F1] = States-TPPI:

1 ze
 d11 pl12:f2
2 d11 do:f2
3 d12 pl9:f1

...
go=2 ph31 cpd2:f2

 d11 do:f2 mc #0 to 2
 F1I(ip3*2, 2, ip13*2, 2)
 F1PH(ip4 & ip5 & ip29, id0)

exit

will expand to
"ST1CNT = td1 / (2 * 2 * 2) "
"MCWRK = 0.166667 * d11"
"MCREST = d11 - d11"

1 ze
 d11 pl12:f2

2 MCWRK do:f2
LBLF1I1, MCWRK
LBLF1I2, MCWRK*3

 97

DONE

INDEX

INDEX

LBLSTS1, MCWRK
LBLF1, MCREST

3 d12 pl9:f1
 ...

go=2 ph31 cpd2:f2
MCWRK do:f2 wr #0 if #0 zd ip3*2

 lo to LBLF1I1 times 2
 MCWRK ip13*2
 lo to LBLF1I2 times 2
 MCWRK ip4 MCWRK ip5 MCWRK ip29
 lo to LBLSTS1 times 2
 MCWRK id0
 lo to LBLF1 times ST1CNT

exit

The pulse program line below shows how the F0 clause can be used:
d1 mc #0 to 1 F0(id9) F1QF(id0)

will be expanded to:
...
d1*0.5 id9
lo to 2 times td0
d1*0.5 wr #0 if #0 zd id0
...

As a loop counter, the parameter TD0 is evaluated.

In order to be able to switch dimensions, timing of statements within the
loops must be controlled by the mc statement. So delays or pulses should
not be used as argument to the F0, F1PH ... clauses of the mc statement.
But in some cases statements must be separated by an delay. Precautions
have been taken for this case: the & symbol used within an argument of
F0,... will be substituted by an equal fraction of the delay with which the mc
statement was specified, e.g

d1 mc #0 to 1 F0(ip1 & ip3)

will expand to
MCWRK ip1 MCWRK ip3
lo to 3 times td0

For 3D pulse programs, the clauses F1I and F2I are available for the two

indirect dimensions.

5.4 General syntax of mc

The syntax for the mc statement is
label <delay1> <options>

...

...
<delay2> <options> mc #<buffer> to <label>

F0(<statements>)
F1I(<sts>,<no. of loops>,<sts>,<no. of loops>, ...)
F1PH(<statements>,<statements>)
F1QF(<statements>)
F1EA(<statements>,<statements>)
F2I(<sts>,<no. of loops>,<sts>,<no. of loops>, ...)
F2PH(<statements>,<statements>)
F2QF(<statements>)
F2EA(<statements>,<statements>)

The following rules hold:
• <label> must be followed by one delay and can be followed by options
• <delay1> must be greater than or equal to <delay2>

• multiple clauses like F0(), F1PH(),.. can be specified on the same line or
on consecutive lines. Do not specify any other statements between the
clauses.

• The order in which F0(), F1PH(),... clauses occur is irrelevant
• In 3D, the statement aqseq 312 determines the order of the F1 and F2

loop
• The pulse program must contain a ze statement after the parameter def-

initions.
• The symbol & is required between multiple statements of the same type

(e.g. multiple phase increments) that are specified within one argument.

 99

DONE

INDEX

INDEX

After expansion, each statement will appear with a separate delay (see
the example in section 5.3). Multiple statements of a different type (e.g.
a phase increment and a delay increment) can be specified with a &
symbol or with a white space in between. In the latter case, after expan-
sion, they will appear together behind one delay.

Table 5.2 shows, which expansions will be done for different values of
FnMODE.

Note the following things when you view the expanded pulseprogram:
• MCWRK is a fraction of <delay2> and is calculated according to the

number of arguments of the mc clauses
• MCREST is the difference between <delay1> and <delay2>

• the generated labels have names like LBLF*. Please do not use labels
with these names in your own user-defined pulse programs.

• a line starting with # is a comment to the statement(s) that follow it. The
comment contains the respective line number in the original pulse pro-
gram, and, if applicable, the expansions that were made.

FnMODE

create a
double
loop

delay-
increment
div. by 2 phase reset

phase inc
inserted

delay inc
in inner
loop

QF √

QSEQ √ √ √ √ √

TPPI √ √ √

States √ √ √

States-
TPPI √ √

EA √ √

Table 5.2 Results of use of different FnMODEs

5.5 Enhancements of the mc Syntax

While in traditional nD acquisition each plane is measured completely
before the next plane begins, there are new techniques where planes are
not measured completely and in various orders. The new techniques are
described by the parameter FnTYPE where FnTYPE="traditional" stands
for the conventional technique, FnTYPE="full(points)" stands for a tech-
nique where all 2n-1 FIDs belonging to a complex point of an nD acquisition
are measured together. For this kind of acquisition the conventional form of
the mc command is no longer sufficient. Instead, the increments of the
incrementable delays and the phase programs must be calculated fom the
indices of the complex point in each dimension. For this purpose 2 new
commands are available which can be used to calculate these increments:

calph(phX, increment) calculates the phase program increment and

caldel(dX, increment) calculates the delay which is necessary for a set of
indices. An example from a 3D pulse program illustrates this:

Conventional pulse program:
F1PH(ip5, id0)
F2PH(rd0 & rp5 & ip7 & ip9, dd10 & id20 & id30)

Using the the new syntax the same is expressed as
F1PH(calph(ph5), caldel(d0))
F2PH(calph(ph7) & calph(ph9, caldel(d10, -in10) & caldel(d20) & cal-
del(d30))

The second argument of calph and caldel describes the increment, for
calph it is the increment of the phase program in degrees, for caldel it is the
increment of the delay in sec. The argument can be omitted, in this case it
defaults to 90o for phases and for delays to the IN parameter of the delay
specified in the first argument (IN0 for d0 etc.).

One can see that the new form of the command needs less arguments
than the conventional one since it is no longer necessary to reset delays
and phase programs.

Each FnTYPE requires a different kind of processing. The new mc syntax
is compatible for all FnTYPEs and no modification in the pulse program is

 101

DONE

INDEX

INDEX

necessary if different FnTYPEs are used.

Subroutines

5.6 Definition

A subroutine definition can be in the header of a pulse program or in an
include file. It consists of the keyword subroutine and the subroutine name
followed by the argument list in parentheses and by the subroutine body in
curly braces:

subroutine SR1(<arguments>)
{

<subroutine body>
}

A class name may optionally be appended to the subroutine name. This
serves to identify the subroutine and to prevent it from illegal usage:

subroutine SR1:CLASS1(...)

The subroutine parameters can be pulses, delays, phase programs, loop-
counters, channel specifications, gradients etc.. The name of a parameter
may be any name which is not reserved in the pulse program language.
The parameter types are checked as far as they are known.

subroutine SR1:CLASS1(pulse px, channel fx)
{

px:fx ; a pulse with a channel in a subroutine
}

Subroutines 102

DONE

INDEX

INDEX

Subroutine calls within subroutines are possible.

Labels in subroutines are local to this subroutine and may be used by loops
within the same subroutine.

5.7 Subroutine Execution

A subroutine is called with the keyword subr:
subr SR1:CLASS1(p3, f2)

This call together with the definition in the previous section will generate
the code

p3:f2

If subroutines are defined with a class specification, it is mandatory that the
same specification is added to the call of the subroutine. If labels are spec-
ified, the pulse program compiler changes them into unique names to avoid
multiple definitions.

5.7.1 Subroutines with Variable Names

Different subroutines can be called from a pulse program without changing
the pulse program itself by using the parameters SUBNAM1-16:

subr <$SUBNAM1>(p3, f2)

The compiler will insert the subroutine whose name is in SUBNAM1 at this
place.

The precompiled pulse program pulseprogram in the raw data directory
always shows the expanded subroutine together with lines which mark its
begin and end.

 103

DONE

INDEX

INDEX

Chapter 6

Miscellaneous

6.1 Multiple receivers

If your spectrometer is equipped with multiple receivers, you can specify in
the pulse program which receiver you want to use to acquire the data. The
receiver number (1-8) can be appended to the following statements:

go, gonp, gosc, goscnp, adc, rcyc, rcycnp, eosc, eoscnp, ze, zd, st, st0, aq,
dw, dwov, recph, wr, if

For example the statement:
go5=label

acquires the data with receiver 5

If no number is specified, 1 is assumed, i.e. go is equivalent to go1):

Parameters for the first RCU are taken from the current dataset. Parame-
ters for the nth RCU are taken from data set n-1 of the data set list DSLIST.

The following parameters are taken from the dataset in the DSLIST data-
set:

Miscellaneous 104

DONE

INDEX

INDEX

AQ_mod, DECIM, DIGMOD, DIGTYP, DR, DSPFIRM, DSPFVS,
FTLPGN, NBL, OVERFLW, SEOUT, SFO1, SW, SW_h, TD.

All other parameters are taken from the current dataset.

The command wrn, of course, then writes out the data of this n-th RCU to
the dataset n-1 of the dataset list.

6.2 Real time outputs

The spectrometer TCU provides a number of real time outputs which are
used to control various spectrometer components, such as gating and
blanking the transmitters. Please refer to your hardware documentation to
find out which output is connected to a particular device. The pulse pro-
gram compiler will select the correct output automatically, e.g. for a state-
ment like p1:f2.

The file $XWINNMRHOME/exp/stan/nmr/lists/pp/Avance.incl contains a
number of macro definitions based on the outputs, which can be used in
pulse programs. This file can be viewed with the command edpul
Avance.incl. Depending upon the spectrometer type this file can have dif-
ferent contents after ’expinstall’.

The hardware documentation will also inform you which of the outputs are
free for special purposes, e.g. for controlling a laser from a pulse program.

6.2.1 Type 1 outputs (“NMR control words“)

On AV systems, there are 3 outputs called RCP32, RCP33, and RCP34 in
NMR0 and 32 outputs in NMR3 and 4, respectively. They can be enabled
or disabled from the pulse program in a way illustrated by the examples
below.

1u setnmr0 | 32 ; set gradient blanking for z gradient

activates output channel 15 (using active=low logic). The channel remains
active until it is explicitly deactivated, e.g. with the statement:

1u setnmr0 ^ 32

The characters “|“ (vertical bar) and “^“ (circumflex) can be used to set and
clear a bit in a register consisting of 3 bits. As such, several outputs can be

 105

DONE

INDEX

INDEX

enabled or disabled simultaneously. For example, the statement:
1u setnmr3 ^8^9 ; switch QNP to X

disables the output channels 8 and 9 of NMR3.

The statement setnmr must be specified behind a delay (in the above
examples it is 1 msec). The minimum delay is 50 ns.

An alternative format for the setnmr command allows the input of whole
words in hexadecimal:

setnmr3 0xffff0000 ;set the high 16 bits of nmr word 3.

6.2.2 NCO control in AV I and AV II spectrometers:

The assignment of the bits in NMR0 is shown in table 6.1. Bits 0, 8 and 16

are used to control which NCO is used in SGU1, bits 1, 9 and 17 for SGU2,
and so on. If NCOs are switched, it is possible either to keep the phase set-
ting of the destination NCO, or to take over the phase setting of some other
NCO to the destination NCO. The second possiblity is called phase contin-
uous frequency switching, the first phase coherent. One can control this
behaviour with bits 24-31. The details are described in table 6.2. The phase
of NCO1 can only be set from the accumulator, the phase of NCO2 can be
set from NCO1, and that of NCO3 from either NCO1 or NCO2. Different
bits can be combined, but, of course, it is not possible to set the phase of

Bit # Connector on TCU Meaning Destination
Bit 0-7 - NCO1 SGU1-8
Bit 8-15 - NCO2 SGU1-8
Bit 16-23 - NCO3 SGU1-8
Bit 24-31 - NCO update SGU1-8
Bit 32 T2-A4 BLK_GRAD_X GRASP
Bit 33 T2-A5 BLK_GRAD_Y GRASP
Bit 34 T2-A6 BLK_GRAD_Z GRASP

Table 6.1 Assignment of bits in NMR control word 0

Miscellaneous 106

DONE

INDEX

INDEX

NCO3 to that of NCO2 and NCO1 at the same time. Examples:
d1 cw:f1
d1 setnmr0|8 ; set to NCO2, keep the phase of NCO2
d1 setnmr0^8|0 ; set back to NCO1 frequency
d1 setnmr0|8^0|26 ;switch to NCO2, use the phase of NCO1 ; for
NCO2

This example refers to F1. If the same should be achieved on F2, the corre-

sponding bits for this channel 1, 9 and 17 have to be used instead of 1, 8
and 16.

6.2.3 NCO control for AV III spectrometers

For AV III the control of the NCOs has been simplified and put together into
the reset command. Reset of each NCO in each channel can be done indi-
vidually. Different reset commands for different channels can be combined:

reset:f1:f2 ; reset all NCOs on channel f1 and f2
reset1:f2 reset4:f3 ; reset NCO1 on channel f2 and NCO3 ;from NCO2 on
f3

Bit # Source NCO Destination NCO
24 NCO2 NCO3
25 NCO1 NCO3
26 NCO1 NCO2
27 Accumulator NCO1

Table 6.2 Phase coherence setting

 107

DONE

INDEX

INDEX

6.2.4 Real Time Pulses RTP

The real time outputs are used for the control of the digitizer. They are set
implicitly with the go command in pulseprograms. If an explicit control is
needed, the command setrtp<channel>|<bit>^<bit> can be used. Its usage
is analogous to the setnmr commands. Table 6.4 describes the assignment
of these bits for AV I and II, Table Figure 6.3. The whole register can be set
with

setrtp<channel> 0x<number>

6.2.5 Fast Real Time Pulses FRTP

Each SGU has 4 FRTP outputs. They can be set with the command

Command Action

reset set accumulator to 0, reset NCO1, 2 and 3 from accum.
reset1 reset NCO1 to 0
reset2 reset NCO2 to 0
reset3 reset NCO3 to 0
reset4 reset NCO3 with phase from NCO2
reset5 reset NCO3 with phase from NCO1
reset6 reset NCO2 with phase from NCO1
reset7 reset NCO3 from NCO2, reset NCO2 from NCO1
reset8 reset NCO3 and NCO2 from NCO1
reset9 reset NCO1 from accumulator
reset10 reset NCO2 and NCO1 from accumulator

reset11 reset NCO3 from NCO2, NCO2 and NCO1 from
accum.

reset12 = reset

Miscellaneous 108

DONE

INDEX

INDEX

setfrtp<channel>|<bit>^<bit>

The syntax is analogous to the setnmr command. Bit 1 is used for the
amplifier blanking of the amplifier to which the SGU is routed. The blanking
information is routed in the same way as the frequency. (see edasp com-
mand and parameter RSEL). Bit 2 is used to control the NCO selection of
another SGU (used in bandselective homodecoupling experiments).

For AV III a different meaning of the bits has become necessary. The
receiver gating pulses RGP_ADC, RGP_RX and RGP_HPPR are gener-
ated automatically from one gating pulse called RGP_PAUTO. The individ-

Bit symbolic name action
0 RTP_DWELL_ENABLE switch dwell enable on/off
1 RTP_INTERLEAVE_INCR turn on/off interleave increment pulse for RX and HPPR
2 RGP_HPPR switch off/on receive mode of HPPR
3 RGP_RX switch off/on receiver blanking
4 RGP_ADC turn off/on digital ADC blanking
5 RGP_PAUTO turn on/off receiver (ADC, RX, and HPPR)
6 RGP_HD enable homodecoupling

Table 6.3 : real time pulses for AV III

Bit # Name Meaning
0 RGP_ADC ADC gating pulse
1 RGP_RX Receiver gating pulse
2 RGP_HPPR Preamplifier gating pulse
3-5 reserve
6 interleave selector for switching receiver and HPPR
7 DWL_CLK dwell time for receiver ADC
8 ADC_SEL0 selects HADC/2 and SADC, resp.
9 ADC_SEL1 selects FADC

Table 6.4 real time pulses for AV I and AV II

 109

DONE

INDEX

INDEX

ual setting of these pulses is not possible.

6.3 Gradients

The term gradient refers to a magnetic field gradient that is added to the
homogeneous field of the spectrometer magnet. A gradient is supplied by a
gradient coil and can be applied in the x, y and/or z spacial dimension. If a
gradient is applied in the x-dimension, the magnetic field will be constant
within a y-z plane. In the y-z plane through the center of the receiver coil,
the x-gradient field is zero. In a y-z plane at one edge of the receiver coil
the x-gradient field is +M, whereas in a y-z plane at the opposite edge it is -
M. Here, M is the maximum gradient strength which depends on the gradi-
ent amplifier. For y and z-gradients, the same principle holds concerning
the x-z plane and x-y plane, respectively.

A rectangular gradient has a constant strength during the time it is applied,
whereas a shaped gradient has a variable strength.

6.3.1 Rectangular gradients

A rectangular gradient has a strength that is constant during its execution.
It can be created with one of the statements gron0, gron1, ..., gron31. The
statement gron0 creates a gradient whose strength is determined by the
parameters GPX0, GPY0 and GPZ0. Similarly, gron1 creates a gradient
whose strength is determined by the parameters GPX1, GPY1 and
GPZ1etc. The groff statement switches off all gradients that were switched
on by a gron* statement.
For example, the pulse program section:

300u gron2
1m
100u groff

switches on a gradient defined by GPX2, GPY2 and GPZ2, at the begin-
ning of a 300 msec delay. This gradient remains on during a period of 1.3
msec.

The parameters GPX0, GPY0 and GPZ0 can be set by entering gpx0,
gpy0, gpz0, respectively, on the command line. As the gradient strength is
expressed as a percentage of the maximum strength, it takes a values

Miscellaneous 110

DONE

INDEX

INDEX

between 0 and 100. The parameter, GPX1, GPY1, GPX2 etc. can be set
from the command line in a similar way. Alternatively, you can set all gradi-
ent parameters from the eda window by clicking the GP031 edit button.

6.3.2 Shaped gradients

A shaped gradient has a strength that varies during its execution. The gra-
dient strength as a function of time is called the gradient shape. It is defined
by a list of values between -1.0 and 1.0. The number of values in the list
defines the number of time intervals. Each element in the list defines the
relative gradient strength during a particular time interval. The interval
length is defined by the length of the entire gradient shape divided by the
number of intervals. The length of the shape (duration) must be specified in
the pulse program The gradients are reset to zero at the end of the shape,
if no gradient statement is immediately following.

The following 3 examples generate shaped gradients:
10mp:gp2

p1:gp1

gradPulse*3.33:gp3

vp:gp4 ; Incorrect! Shaped gradients with vp are not supported.

They are applied for 10 millisec, P[1], and gradPulse*3.33 and are
described by the gradient parameter table entries 2, 1, and 3, respectively.
This table can be opened by clicking on the GP031 button in eda. It has 32
entries with indices 0-31. The statements :gp0 interprets entry 0, :gp1 inter-
prets entry 1, etc.

Each entry of the gradient parameter table has 4 assigned parameters:
GPX, GPY, GPZ (the gradient strength multipliers for the 3 spatial dimen-
sions), and a file name (of the file that contains the gradient strength val-
ues).

GPX, GPY, GPZ
These are multipliers with values between 0 to 100. They are applied to the
gradient strength values (which range from -1.0 to 1.0) in the shape file to
obtain the total gradient field strength.

File name

 111

DONE

INDEX

INDEX

File name is the name of a gradient file. A gradient file can be generated
from Shape Tool window (command stdisp) or from the command line with
the command st (for more information click Help ’ Online Manual from the
Shape Tool window).

Gradient shape files are stored in JCAMP-DX format in the directory:

$XWINNMRHOME/exp/stan/nmr/lists/gp/

Note that if you specify an internal gradient shape, you don’t need a shape
file, however you should define the length of the shape as described below.

All gradient parameters can be set from from the eda window by clicking
the GP031 edit button. Alternatively, they can can be set by entering gpx0,
gpy0, gpz0, gpnam0, gpx1 etc. on the command line. As the gradient
strength is expressed as a percentage of the maximum strength, it takes a
values between 0 and 100.

As described in the next section, you can also define gradient shape func-
tions in the pulse program rather than using shaped gradient files.

6.3.3 Gradient Functions

You can use gradient shapes as gradient functions. Then the current func-
tion value is used to calculate the gradient.

Shaped gradients can be defined in the pulse program as a gradient func-
tion. At each moment, the gradient strength is set to the current function
value.

The function index can be manipulated with the following statements:
zgrad sin ; zero index -> use 1st function value
igrad sin ; increment index
dgrad sin ; decrement index
sgrad sin ; save index (stack with depth = 1)
rgrad sin ; restore index

sgrad sin ; save the current index
rgrad sin ; restore the last saved index

The length of an internal gradient function (or shape) must be specified at
the beginning of the pulse program, e.g.:

Miscellaneous 112

DONE

INDEX

INDEX

lgrad sin = 100; sine function with 100 values

Internal Gradient Functions:
A gradient function is either a gradient shape that is defined in a gradient
file, or an internal function that is calculated during pulse program compila-
tion. The following internal functions are available:

• plusminus
can take the value 1 or -1.

• r1d, r2d and r3d
linear ramps from -1 to 1, where the final value is never reached.

• step
linear ramp from 0 to 1 and the final value will always be reached.

• sin
sine function from 0 to p (excluding p). The angle increment depends
on the length of the function (see above).

• cos
cosine function from 0 to p (excluding p).

• sinp
sine function from 0 to p (including p).

• gauss <truncval>
which is a gaussian function with truncation level (e.g. gauss2.5 for
2.5% truncation level)

• rnd
random function.

6.3.4 Manipulation of rectangular or shaped gradients

Both rectangular and shaped gradients can be manipulated with a constant
and/or a gradient function. Here, manipulation can be addition or multiplica-
tion.

Example:
1 300m gron2 * - 0.5 * plusminus
p1 gp1 * sin(100) * cnst0
igrad plusminus
igrad sin

 113

DONE

INDEX

INDEX

lo to 1 times 100

If a rectangular gradient is manipulated with a gradient function, the latter
must be specified without parameters. For example:

300m gron2 *sin

If, however, a shaped pulse is manipulated with a function, the latter can be
specified with or without parameters. For example:

p1 gp1 * sin

p2 gp2 * sin(100)

6.3.5 General Gradient Statements

Since the TOPSPIN gradient software is also used by ParaVision, it has fea-
tures, that actually designed for medical imaging. With gradient statements
of the form:

delay grad{<1st dim> | <2nd dim> | <r3d dim>}

you can use these features even without ParaVision, but in a restricted
manner:
• You can specify Object Oriented Gradients, that are converted into

Physical Gradients. This allows for:

- Acquisition of images with different slice orientation while using the
same pulseprogram. The gradients may be specified in spatial coor-
dinates other than x, y and z. The pulse program compiler multiplies
the gradients with a rotation matrix (see below) to get x, y and z.

- Acquisition of images with different slice thickness and field of view,
every spatial dimension may be multiplied by a scaling factor.

• The gradients are defined as a percentage of maximum_gradient
strength, as scalar values or functions, which may be combined by addi-
tion and multiplication.

• The functions are either Internal functions, which are handled accord-
ingly by the compiler, or gradient files containing the function values
(see above).

• Scaling and rotation can be suppressed with the following options:

Miscellaneous 114

DONE

INDEX

INDEX

no_scale: Gradient is not scaled

direct_scale or shim_scale: Gradient is not scaled and not rotated

• Hardware dependencies can be accounted for by specifying different
values for xyz.

Examples:

10u grad{(0)|r2d(100)|(0)}; Ramp in the 2nd (or phase) dimension.
1m grad{sin(50,200)*r3d(89|90|91)+cos(50,200) | (20)|(2|1|3,direct_scale)}

The 1st (or read) dimension contains sin(50,200), that means: a sine func-
tion with 50 % amplitude. The 2nd parameter indicates a gradient shape,
consisting of 200 values, every value applied 1/200 ms = 5 us.

Every sine value is multiplied with the current value of r3d(89|90|91). The
amplitude of r3d is different for xyz to account for hardware dependencies.

The 1st dimension also contains a 2nd gradient shape cos(50,200). You
can combine several gradient shapes in one statement, but the same
length should be used.

The 2nd (or phase) dimension contains (20), indicating a scalar gradient
with 20 per cent amplitude.

The 3rd (or slice) dimension contains (2|1|3, direct_scale), indicating a sca-
lar gradient with 2 per cent amplitude in x direction, 1 per cent in y and 3
per cent in z, independent of rotation and scaling.

6.3.6 Rotation and Scaling

If the EXPNO directory of the current data set contains a text file cag_par,
the
rotation and scaling is done, as specified in this file.

Else if $XWIN-NMRHOME/exp/stan/nmr/lists/gp contains a text file cag_par,
the rotation and scaling is done, as specified in this file:

Example:

0.5 ; Scaling of 1st (or read) dimension

 115

DONE

INDEX

INDEX

0.5 ; Scaling of 2nd (or phase) dimension

0.8 ; Scaling of 3rd (or slice) dimension

In this case you can acquire 2 slices with different orientation. Like function
indices, you can manipulate slice indices with the statements zslice, islice,
dslice, sslice, rslice.

6.4 Miscellaneous statements

6.4.1 Switching on/off Presetting of Blanking Pulses: preset

The preset off statement switches off the presetting of blanking pulses. The
program will then behave as if all preset parameters (command edscon)
are set to 0. Switching of the presetting must occur at the beginning of the
pulse program and can not be undone.

6.4.2 Assignment of Transmitter Blanking Pulses: blktr

The transmitter blanking pulses are normally set by the edscon preset
parameters (BLKTR[1...8]). They can, however, also be declared at the

1.0 0.0 0.0 ; Scaling of 1st (read or x) dimension
0.0 1.0 0.0 ; Scaling of 2nd (or y) dimension
0.0 0.0 1.0 ; Scaling of 3rd (or z) dimension

1.0 0.0 0.0 ; 1st rotation matrix
0.0 1.0 0.0
0.0 0.0 1.0

0.707 0.707 0.0 ; 2nd rotation matrix
-.707 0.707 0.0 ; the 1st and 2nd dimensions are rotated by
0.0 0.0 1.0 ; 45 degrees

Table 6.5 example of a cag_par file

Miscellaneous 116

DONE

INDEX

INDEX

beginning of the the pulse program using the syntax:
blktr<channel number> = <duration>

Example:
"blktr1=3u"

NB: for AV I and II the assignment of the BLKTR parameters to channels is
different to those of AV III. In the former the assignment was a logical
assignment, i.e. if F1 controlled SGU2 and from there amplifier 3, BLKTR1
was applied to channel F1 and in this way to amplifier 3, whereas in AV III
BLKTR is always applied to the amplifier with the same number (which is
determined by the blanking signal of this amplifier).

6.4.3 Generation of Blanking Pulses: gatepulse

Blanking pulses are automatically generated according to the edscon pre-
set parameters. If, however, the pulse program contains the statement pre-
set off the generation of blanking pulses is disabled. In that case, you can
selectively enable the generation of blanking pulses on a particular chan-
nel. This can be done with the gatepulse statement. The syntax is:

delay gatepulse 1 [| 2...]

Example:
3u gatepulse 1 ;generate blanking pulse for f1
p1:f1
d1
2u gatepulse 1|2 ;generate blanking pulses for f1 and f2
(p1):f1 (p2):f2

Note that gatepulse statement will only generate the blanking pulse for the
transmitter, the preamplifier and the ASU.

6.4.4 Printing messages

The statement
print "Hello World"

prints the message Hello World during runtime of an experiment. The tim-
ing of the printout follows the interpretation of the pulse program on the
TCU and may be therefore ahead in time of the execution of the pulse pro-

 117

DONE

INDEX

INDEX

gram. However, for debugging complex pulse programs it could be helpful.

Miscellaneous 118

DONE

INDEX

INDEX

I-1

Index

Symbols

:f1 - :f8 option 16, 17, 20, 21, 30, 32, 46,
52, 116
:gp0 - :gp31 options 110
:r option 9, 10, 25, 38, 39, 76
:sp0 - :sp31 option 32, 56
:sp0 - :sp31 options 55
.dec postfix 12, 19, 30, 41
.idx postfix 13, 20, 31
.inc postfix 12, 19, 30, 41
.res postfix 12, 19, 30, 41
* operator 7, 14, 42
#addphase statement 55, 57
#define statement 14, 43, 65
#endif statement 64
#ifdef statement 64
#ifndef statement 64
#include statement 65
#setphase statement 55, 57

A

absolute power of a shaped pulse 33
acquisition scan 7
ADC blanking 74
adc statement 42, 73, 77, 79, 80, 81, 84
amplitude lists 36
AMX spectrometer 3
AQ parameter 7, 8, 15, 38, 74

aq statement 15, 38, 42, 81
AQ_mod parameter 74
AQS rack 4
AQSEQ parameter 86
aqseq statement 86
AQX rack 4
artefact suppression 7
ARX spectrometer 3
ASX spectrometer 3
Avance.incl include file 104
Avance-AQS spectrometer 35, 36, 58,
79, 81
Avance-AQX spectrometer 58, 79

B

BILEV decoupling 60
bilev statement 60
blanking pulses 115
BLKTR[1]-BLKTR[8] parameter ar-
ray 115
blktr1-blktr8 statements 116
Broadband decoupling 54
Bruker pulse programs 4

C

cag_par file 114
caret postfix 12, 19, 24, 25, 30, 41
CNST[0]-CNST[31] parameter array
27

DONE

INDEX

INDEX

I-2

cnst0-cnst31 statements 15, 27
compilation of a pulse program 3
composite pulse decoupling 51, 53
conditional pulse program execution
63
continuous wave decoupling 6, 51
cos gradient function 112
CPD sequences 54
cpd1-cpd8 statements 51, 54
cpdng1-cpdng8 statements 54
cpdngs1-cpdngs8 statements 54
cpdngs29 statement 81
CPDPRG1 - CPDPRG8 parameters
54
cpds1-cpds8 statements 51, 53, 54
cpdtim1-cpdtim8 statements 15
currentpower statement 33, 34
cw statement 6, 51, 52

D

D[0]-D[31] parameter array 38
d0-d31 statements 15, 38, 43, 55
data set list 85
dd0-dd31 statements 43
DE parameter 8, 38, 74, 79
de statement 38, 79
De.incl include file 78
DE1 macro 78
DE1 parameter 8, 38, 74
de1 statement 15, 38, 42, 79
DE2 parameter 8, 38
de2 statement 15, 38, 42
DE3 macro 78
de3 statement 42

DEADC macro 78
DEADC parameter 8, 38, 74
deadc statement 15, 38, 79
decim statement 15
decoupling 51

frequency 52
phase 53

default
channel 7
power level 7

define delay statement 39, 44
define list<amplitude> statement 36,
37
define list<delay> statement 40, 41
define list<frequency> statement 18,
20
define list<power> statement 30, 31
define list<pulse> statement 12, 13
define loopcounter statement 63
define pulse statement 9
DEPA macro 78
DEPA parameter 8, 38, 74
depa statement 15, 38, 79
DERX macro 78
DERX parameter 8, 38, 74
derx statement 15, 38, 79
df statement 85
dgrad statement 111
digitizer 74, 75, 77, 81
disk file pointer 85
do statement 6, 51, 52, 59
double quantum filtering 65
dp0-dp31 statements 25
dpu0-dpu31 statements 14
DS parameter 6, 7, 24, 69, 75, 77

DONE

INDEX

INDEX

I-3

ds statement 15
dslice statement 115
DSLIST parameter 85, 103
du0-du31 statements 62
dummy scans 6, 7, 24, 69, 75, 77
DW parameter 15, 38
dw statement 15, 38, 42
dwell time 79, 81
DWELL_GEN macro 79
DWOV parameter 38
dwov statement 15, 38

E

eda command 3, 10, 17, 25, 29, 32, 34,
38, 39, 63, 74, 110, 111
edasp command 16
edcpd command 54
edcpul command 3
edlist command 11, 17, 31, 40, 41, 62
edpul command 3, 4, 80, 104
edscon command 8, 79, 115, 116
end-of-scan handling 79
eosc statement 76, 77, 79
eoscnp statement 79
exit statement 8, 9
expinstall command 4

F

F0 clause 96, 98
F1EA clause 90, 98
f1-f8 channels 16
F1I clause 96, 98
F1PH clause 90, 98

F1QF clause 90, 98
F2EA clause 94, 98
F2I clause 98
F2PH clause 94, 98
F2QF clause 94, 98
fast shapes 35
fid file 8, 84, 85
finally 75, 76
fixed delay 39
FnMODE parameter 90
fq statement 17, 55, 59
fq1-fq8 statements 17, 58
FQ1LIST-FQ8LIST parameters 17,
58
frequency

channel 16
list 17, 18, 55, 58

frequency offset 59
frequency setting

in CPD programs 58

G

Garp decoupling 54
Garp sequence 54
gatepulse statement 116
gauss gradient function 112
go command 3, 62, 65, 84
go statement 5, 7, 8, 24, 42, 73, 75, 76,
77, 78, 81, 84
go1-go8 statements 103
gonp statement 73, 75, 77, 84
gosc statement 73, 75, 77, 84
goscnp statement 73, 75, 77, 84
goto statement 5

DONE

INDEX

INDEX

I-4

GP031 gradient parameter table 110,
111
GPX0-GPX31 parameter 109
GPY0-GPY31 parameter 109
GPZ0-GPZ31 parameter 109
grad statement 113
gradient

coil 109
filename 111
function 111, 113
rectangular 109, 113
shaped 109, 110
strength 109, 110

groff statement 109
gron0-gron31 statements 109
gs command 3, 10, 39, 59, 62

H

hd statement 51
homodecoupling 51

I

id0-id31 statements 43, 84
if statement 84, 85
igrad statement 111
in0-in31 statements 15
inp0-inp31 statements 15
intermediate frequency 74, 79
interrupt handling 80
interrupt signal 80
ip0-ip31 statements 25, 84
ipp0-ipp31 statements 24, 75
ipu0-ipu31 statements 14

islice statement 115
iu0- iu31 statements 62
ivc statement 63
ivd statement 40
ivp statement 11

J

jump to label statement 55, 59

L

L[0]-L[31] parameter array 59, 62
l0-l31 statements 15, 59, 62
LBLF1 label 99
level triggers 69
lgrad statement 112
lo to label statement 5, 55, 59, 61, 62
loop counters 15
loop statements 61

in CPD programs 59
in pulse programs 61

M

m option (delay) 38
mc statement 77, 84, 85, 90
MC2 parameter 90
MCREST delay 99
MCWRK delay 99
memory buffer 74, 82
mp option (pulse) 9, 10
multiple receivers 103
N
NBL parameter 62, 77, 83, 85, 86

DONE

INDEX

INDEX

I-5

nbl statement 15
noedif pulse program 83
noesyi4pr3d pulse program 94
NS parameter 6, 7, 8, 69, 75
ns statement 15
nsdone statement 15
NUCLEI parameter 16

O

observe channel 74, 76

P

P[0]-P[31] parameter array 10
p0-p31 statements 9, 10, 14, 15, 16, 55
ParaVision software 113
pcpd1-pcpd8 statements 55
ph0-ph31 statements 23, 24, 25
phase

coherency 33
cycling 7, 23
increment 24
list 7
multiplier 25
pointer 24
resolution 22

phase program 7
arithmetic 25
definition 21
position 23

PHCOR[0]-PHCOR[31] parameters
25
PH_ref parameter 75, 76
pl statement 55

PL[0]-PL[31] parameter array 29
pl0-pl3 statements 29
plusminus gradient function 112
power level 6
power lists 30
preamplifier 74
precompiler Conditions 65
pre-evaluation of a pulse program 16
pre-processed pulse program 65
pre-processor 65
pre-scan delay 8
preset off statement 115
PULPROG parameter 3
pulsdisp command 4, 62, 65
pulse

duration 10, 14
frequency 16
generation 9
list 9, 11, 13
phase 21
shape 32

pulse program
compiler 3, 62, 65, 84, 104, 113
display 4, 65

pulse shape absolute power 33

R

r1d gradient function 112
r2d gradient function 112
r3d gradient function 112
random delay 10, 38
RCP0-RCP34 outputs 104
RCU DRAM 84
RCU unit 79, 80, 81, 83, 103

DONE

INDEX

INDEX

I-6

rcyc statement 75, 77, 79
rcycnp statement 75, 79
rd0-rd31 statements 43
real time outputs 104
receiver

blanking 74
coil 109
gate 74
number 103
phase 7, 76, 80

rectangular
gradient 109, 112
pulse 29

recycle delay 80
reference frequency 76
replace mode 77, 82
resume command 70, 71
rf statement 85
rgrad statement 111
rnd gradient function 112
rotation matrix 113
rp0-rp31 statements 25
rpp0-rpp31 statements 24
rpu0-rpu31 statements 14
rslice statement 115
ru0-ru31 statements 62
RX22 receiver 74, 79

S

s option (delay) 38
scan counter 6, 77
selno pulse program 77
ser file 84, 85
setnmr0-setnmr8 statements 104

SFO1-SFO8 parameters 16
sgrad statement 111
SGU unit 79, 81
shape

file 32, 33
offset frequency 33

Shape Tool 33, 111
shaped

gradient 109, 110, 112
pulse 32

shaped pulse
offset frequency 35

sin gradient function 112
sinp gradient function 112
solid states experiments 36
sp option (pulse) 9, 10
SP07 parameter 32, 34
spf0-spf31 statements 35
sslice statement 115
st command 33, 111
st statement 62, 83, 84
st0 statement 62, 83, 84
stdisp command 33, 111
steady state condition 8
steady state conditions 69, 75
step gradient function 112
suspend command 71
syrec statement 74, 79

T

tabRTP 108
TCU unit 68, 69, 104
TD parameter 15, 62, 74, 78, 82, 83, 85,
86

DONE

INDEX

INDEX

I-7

td statement 15
td1 statement 15, 86
td2 statement 15, 86
tr command 8, 74
trigger

events 68
inputs 68
specifiers 69

U

u option (delay) 38
up option (pulse) 9, 10
user defined delay 39

V

V9 parameter 10, 38
VALIST parameter 31
variable list delay 40
vcidx statement 62
VCLIST parameter 62
vd statement 15, 38, 40
VDLIST parameter 40
vp statement 9, 11, 14, 15, 33
VPLIST parameter 11, 16

W

wr statement 8, 62, 84, 85, 89, 90

Z

zd statement 6, 24, 75, 77, 82, 84, 90
ze statement 5, 6, 7, 24, 75, 77, 82, 84

zg command 3, 62, 65, 84, 90
zg pulse program 80
zgadc pulse program 80
zgcw30 pulse program 4
ZGOPTNS parameter 65
zgrad statement 111
zslice statement 115

DONE

INDEX

INDEX

I-8

	Basic pulse program writing
	1.1 Introduction
	1.2 Pulse program library
	1.3 Pulse program display
	1.4 Basic syntax rules
	1.5 Pulse generation
	1.6 Delay generation

	Decoupling
	2.1 Decoupling
	2.2 Composite Pulse Decoupling (CPD)

	Loops and conditions
	3.1 Loop statements
	3.2 Conditional pulse program execution
	3.3 Suspend/resume pulse program execution

	Data acquisition and storage
	4.1 Start data acquisition
	4.2 Acquisition memory buffers
	4.3 Writing data to disk

	The mc macro statement
	5.1 The mc macro statement in 2D
	5.2 The mc macro statement in 3D
	5.3 Additional mc clauses
	5.4 General syntax of mc

	Subroutines
	5.6 Definition

	Miscellaneous
	6.1 Multiple receivers
	6.2 Real time outputs
	6.3 Gradients
	6.4 Miscellaneous statements

