

TOPSPIN 简明操作手册

整理:高玉波 校对:单 璐

目 录

目	5	录	•••••	•••••		•••••	•••••		•••••		3
第	∶—j	章!	界面	ī介纟	沼						5
1.1	子智	賢口	切换	键:	•••••	•••••	•••••	•••••	•••••		.5
1.2	ТJ	1.₩									.5
				P	8	Þ	6	2d	3d		5
	4	Ŷ	N	,t.	J	<u></u>	¥				.5 6
	ĥ∕₀	ŧ٨.	Ť			_			•••••		۰. م
	*2	/2	*8	/8	\$	₹		•••••	•••••		.0 6
1	KH	Q	Ð	\odot	Q	E	6	₫.	•••••		.0 7
	+	+	→	+	→				•••••		. ' 7
	Ŧ	t	Ŧ				•••••	•••••	•••••		. / 7
	•	•	-	•••••	•••••	•••••	•••••	•••••	•••••		. /
1.3	命令	令行	:		•••••	•••••	•••••	•••••	•••••		.8
14	状。	いまた									8
1.1			• •••	••••••	••••••	•••••	••••••	•••••	•••••		••
1.5	数	居刘	览器	:	•••••••	۰۰۰۰۰۰ مرا الح	пп о	•••••	•••••		.8
(Ѹ 纠 (○ 力⊓	何れ 石力	廾/: : 粉排	大团: 星河世	剱店 を哭!	浏觅 見示	畚? Evn	 No	 Tit	ام؟	9. م
(◉如 ◎如	何有	Br	ر برمانه owse	en 页	w小 面中	LAP 新增	答料	·夹?		.9
(◎如	何将	子图译	事复制]回	自己自	的计算	算机;	?		.9
第	i	章 纟	实验	设计	置向	导			•••••	1	1
第	Ξī	章丨	图谱	处理	里	•••••	•••••		•••••		3
3.1	手⋧	力处	理图	谱							13
	• •										
3.2	半日	自动	处理	图谱	•••••	•••••	••••••	•••••	•••••		13
<u>^</u>	· mt -	±z⊱, I	रू। २२	; == -	F					4	F
矛	447	早!	到旧	17F	巴	•••••	•••••		•••••	1	J
4.1	1D	图谱	界面	•••••	••••••	•••••	•••••	•••••	•••••		15
4	4.1.1	资	科区	:	•••••	•••••					15
4	4.1.2	标	题区	:	•••••	•••••	•••••	•••••	•••••		16
4	1.1.3	标	签区	:	•••••	•••••		•••••	•••••		16

4.2 2D图谱界面	17
4.3 3D图谱界面	18
第五章 1D图谱处理	19
5.1 相位校正模式	19
5.2 积分模式	20
5.3 图谱重叠模式	21
◎如何将多份图谱重叠比较?	22
◎如何在重叠模式下选择单个图谱?	22
5.4 化学位移校正	22
55 其线调整	23
5.6 Peak picking/标定 Peak	24
第六章 2D图谱处理	25
6.1. 相位调整模式	25
6.2 2D化学位移校正	26
6.3 2D图谱重叠显示	
◎如何将多份 2D 图谱重叠比较?	
◎如何在重叠模式下选择单个图谱?	
	20
6.4 2D Peak picking	28
6.5 2D Peak integration	29
	_
第七章 打印/输出	
◎如何打印Rook List?	
© 9111931 Gireak List:	
第八音 团进八七	22
第八章 图相分例	
8.1 测量两点之间的距离/ Distance Measurement	
8.2 计算信噪比/ Signal to Noise Calculation	
8.3 T1,T2 弛豫分析/Relaxation Analysis	34
8.4 重叠峰拆解/ Deconvolution	35
8.5 J-耦合分裂分析/ Multiplet Analysis	

第一章 界面介绍

1.1 子窗口切换键:

当在图谱窗口内打开多个窗口,或其它功能窗口(如 temperature monitor 功能),每个子窗口会以一个有颜色的小方块表示,按下小方块即可切换子窗口。

1.2 工具栏:

Topspin 简明操作手册

3. Open other file: 打开其它类型数据

	保存目前的实验数据集
P	将目前的实验数据集以 e-mail 寄出
8	打印实验数据集
LÊ)	复制当前的实验数据集路径
Ē	贴上复制下来的实验数据集路径
2d	回到最近的 2D 图谱
3d	回到最近的 3D 图谱

ʰ∕p 跶 央 🔳

*2 /2 *8 /8 🗢 至

*2

图谱强度比例乘 2

/2	图谱强度比例除 2
*8	图谱强度比例乘 8
/8	图谱强度比例除 8
+	按住鼠标左键, 上下拖动调整图谱强度比例
€	将图谱强度重设至窗口最合适大小

💌 & 🕀 🥺 Q 🔍 🗠 🏛

	将图谱宽度重设至窗口最合适大小
Q	显示全图谱
Ð	放大图谱宽度
Θ	按住鼠标左键,上下拖动调整图谱宽度比例
Q	缩小图谱宽度
©,	出现对话框,自行填入显示左右边界
$\mathbf{k} \mathbf{\hat{n}}$	回到上一次图谱宽度范围
<u>п</u>	梯宁日前月子英国 方灯工甘宁图述时 今月

₩₩ 锁定目前显示范围,在打开其它图谱时,会显示锁定时的 范围,按钮呈绿色即锁定,再按一次即解除。

$\leftarrow \leftrightarrow \rightarrow |\leftarrow \rightarrow|$

+	图谱显示向右移动
+	按住鼠标左键, 左右拖动移动图谱显示范围。
→	图谱显示向左移动
₩ -	移至图谱最左侧
→	移至图谱最右侧

₹ ‡ ±

移至图谱最上方

按住鼠标左键,上下拖动移动图谱显示范围。

➡ 移至图谱最下方

1.3 命令行:

命令输入栏,使用键盘的↑、↓按键可来回搜寻输入过的命令。或从主菜 单→View→Command Line History 查看所有执行过的命令。

输入 cmdindex 时,可察看所有命令并可点击查看说明。或直接以"help+ 命令名"查看说明。如"help ft"会出现 ft 命令说明。

1.4 状态栏:

显示命令执行状况。

1.5 数据浏览器:

共分 Browser, PFolio, Alias 三项,如下图示:

1. Browser: 以树状结构图表示目录层次,在含实验资料的目录上,以左 键拖动到右侧图谱区即可打开,或按右键有其它选项。

2. PFolio: 近期内打开过的图谱,以实验名称,编号等信息显示出来方便 点选。

3. Alias:为图谱取一个别名,以便更快速索引。打开图谱窗口后,于 Alias 页面按右键,选择 Define Alias for data in selected window,输入一个 别名(必须以英文字母开头)即完成别名建立。

◎如何打开/关闭数据浏览器?

从主菜单→View→Browser panel On/Off 来切换。

◎如何在数据浏览器显示 Exp No.、Title?

在 Browser 页面中,于目录名称上按右键,选择 Expand & Show pulseprog/title

◎如何在 Browser 页面中新增资料夹?

在已存在的资料夹上按右键,点选 Add New Data Dir。TopSpin 的目录资料结构 为<dir>/data/<user>/nmr/<name>/expno/pdata/<procno>,输入<dir>的路径即可。

◎如何将图谱复制回自己的计算机?

将图谱打开后,于命令行输入 expl 会打开一个数据总管窗口,并且路径为 <dir>/data/<user>/nmr/<name>/expno/pdata/<procno>, <dir> / data / <user> / nmr /

<name>里面的数据即是使用者每个实验编号等资料,复制出来即可。

第二章 实验设置向导

以下介绍在 TopSpin 中,实验设置的操作界面。关于详细的实验设置参数,请参阅 Help \rightarrow Acquisition reference manual.

点选主菜单→ Spectrometer→ DataAcquisitonGuide 打开实验设置向导, 如下图:

¹调整Match/Tune的动作,若探头本身没有自动化功能,则需仪器负责人同意才能操作,以免伤害探头。 ²在此页面下,要确认的有图谱的中心点(O1P、O2P),图谱宽度(SW),扫瞄次数(NS),依使用者样本特 性而有所调整。其余参数不需改动,参数详细说明请参阅acquisition reference manual。

12. To processing: 切换进入图谱处理功能(请参阅第三章)。

第三章 图谱处理

3.1 手动处理图谱

图谱处理的参数记载在 Processing Parameter 表格中³。 将图谱转换的 命令输入于命令行中,即会套用参数进行处理,命令列举如下: apk

apk: automatic phase correction (自动相位校正)

fp: Fourier transform +phase correction (傅立叶转换+相位校

正)

abs:	automatic baseline correction (自动基线校正)
efp:	Exponential multiplication +fp (套用 EM 窗口函数+fp)

3.2 半自动处理图谱

主菜单→processing → Data Processing Guide 会出现图谱处理向导,如图:

若选取右上角 AutomaticMode,则所有步骤中的参数都自动设置,按照流

³此页面的参数已设置好,通常不需要改动。关于详细参数说明,请参阅 processing reference manual。

程图依序点选即可完成。此方法并不建议使用于 2D 图谱上,因在"window

function"选项中,只会自动采用 sin 和 SSB = 0,且仍需手动调整相位。 若不选取右上角的 AutomaticMode,则每点选一个步骤,即会出现此步骤的参 数调整窗口。

- 1. Open dataset
- 2. Window function
- 打开一个数据集
- 选择窗口函数⁴高级处理 FID
- 3. Fourier Transform 进行傅立叶转换
- 4. Phase correction 相位校正(参照第五章)
- 5. Axis Calibration 化学位移校正(参照第五章)
- 6. Baseline Corr. 基线校正(参照第五章)
- 7. Advanced 高级选项,可进行图谱相加/相减/重叠峰拆解

等(参照第八章)

- 8. Peak picking 标定 Peak(参照第五章)
- 9. Integration Peak
- 积分(参照第五章)
- 10. Plot / Print
- 11. E-mail / Archive
- 图档排版/打印(参照第七章)
 - 将图谱制成压缩档/以 e-mail 寄出

- 1D 氢谱实验 EM LB = 0.3
- 1D 碳谱实验 EM LB = 3
- 2D 同核实验 F1:sine F2:sine F1: SSB = 2, F2: SSB = 2

⁴窗口函数是一种数学函数,用以和最原始收集到的 Fid 信息做相乘处理,使得转换出来的图谱更能符合 期望。对于 1D 图谱常用的窗口函数有 EM、GM,对于 2D、3D 则常用 Sine、QSine。一般建议值如 下:

第四章 图谱界面

4.1 1D 图谱界面

1D图谱,可以分成以下区块:

4.1.1 资料区:

显示图谱

类

在图谱显示区上按右键, 会有如下选项:

Display Properties... Save Display Region To... Restore Display Region From Params. F1/2 File Properties... Files...

选择 Display Properties 会出现如下窗口,用以选择图谱上要显示信息种

🎃 .dopt	×
Please select the components t together with the spectrum (if a	o be displayed vailable):
Cursor information	V
Title	
Status parameters	
Integrals	
Integral labels	
Peak labels	
Multiplets	
Show data points	
<u>ok</u>	Cancel

4.1.2 标题区:

显示实验名称、路径等。

4.1.3 标签区:

切换各种功能页面。

其中标签区分为:

1. Spectrum: 图谱显示,图谱显示的调整请参阅第一章工具栏介绍。

2. ProcPars: 设置图谱处理参数 此页面的参数已设置好,通常不需要更

动。(关于详细参数说明请参阅 processing reference manual)

3.工具栏按钮:

⊾∩ I	恢复上一次的更动
S	查看上次图谱处理的参数状态
123	改变图谱处理实验维度
4. AcquPars:	输入关键词搜寻参数 设置实验参数 见注二,工具栏按钮说明如下:
<u>6</u>	恢复上一次的更动
л	进入"ased"模式,调整实验参数
S	查看上次做此实验的参数状态
U	执行"getprosol",以取得脉冲校正值
123	该变实验维度,可在 1D、2D、3D 之间做切换。

取消正在校正的编写区,恢复到保存值

6. PulseProg: 显示脉冲程序内文及显示实验设置的参数与提示等。

7. Peaks: Peak 列表,若有执行 Peak 标定的动作,则从此 页面可以看到 Peak 标定信息。

8. Integrals: 积分列表 若有执行积分的动作,则从此页面可以看 到积分列表。

9. Sample: 样品备注 此页面可以输入样品的相关信息,方便以后查询。

10. Structure: 分子结构, 若在实验目录中含有结构资料文件 (xyz, .mol, .pdb, .cml, .out, .res)则会显示出分子结构。

11. Fid: Fid 画面,显示图谱原始 FID 图形。

4.2 2D 图谱界面

2D 图谱界面的操作模式,类似 1D 操作,并多了以下功能按钮:

切换是否显示 2D 图谱中,两个维度的投影 1D 图

将图谱以等高线圈模式显示

将图谱以渐层色表示

将图谱以立体图画出,如下图

₽ *X

-111

۲

锁定目前图谱等高线圈参数值 按住左键拖动,以改变等高线倍率值 **在** 设置等高线参数,当图谱以等高线圈表示时,由此来设置 圈数及每圈的倍率值。

4.3 3D 图谱界面

3D 图谱类似 1D / 2D 操作, 但多了以下功能按钮:

•	将抽取出的 2D 平面以等高线圈模式显示
	将抽取出的 2D 平面以渐层色表示
<u>~</u>	将抽取出的 2D 平面以立体图画出
12	切 F3,显示 F1、F2 平面
23	切 F1,显示 F2、F3 平面
31	切 F2,显示 F1、F3 平面
+	切换到下一个平面(平面数等于图谱处理参数中各轴 SI 值)
-	切换到上一个平面(平面数等于图谱处理参数中各轴 SI 值)
‡	按住鼠标左键, 上下拖动以浏览各平面
E	出现窗口,输入想要观察的平面数值
3	将 3D 方块沿着 X 轴旋转
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	将 3D 方块沿着 Y 轴旋转
z')	将 3D 方块沿着 Z 轴旋转
۲	将 3D 图谱以立体图显示总览,如下图

第五章 1D 图谱处理

图谱的处理上,可由图谱处理工具栏选择需要的功能。

5.1 相位校正模式

点选上图最左边按钮

进入相位校正模式后窗口如上,其中:

以左键拖动,调整相位零阶校正参数。 0: 1: 以左键拖动,调整相位一阶校正参数。 R: Reset,恢复到未调整前的值。 90: 将相位正向转 90 度 -90: 将相位反向转 90 度 将相位旋转 180 度 180: 1 增加鼠标灵敏度, 使拖动速度增加 L 减少鼠标灵敏度,使拖动速度减少 重设鼠标灵敏度 <u>2</u>6 将相位值存入 2D dataset 将相位值存入 1D dataset, 并离开 不保存离开

5.2 积分模式

按下工具栏中 5 按钮则会出现以下画面。

2	增加鼠标拖动灵敏度
	减少鼠标拖动灵敏度
	重设鼠标拖动灵敏度
<u>×</u>	删除所选取的积分区间
- 	选取所有的积分区间
*2	将积分曲线乘 2 显示
/2	将积分曲线除 2 显示
÷	上下拖动鼠标调整积分曲线大小
*X	按此钮出现小窗口, 自行输入积分曲线倍率值
=	所有的积分曲线显示成等高度
및	保存积分值并离开
- L	不保存离开

5.3 图谱重叠模式

◎如何将多份图谱重叠比较?

1.在"data browser"中,将"数据"以鼠标左键拖动进入图谱区

2.在命令行以"re"命令进行呼叫,如键入 re 3 1 即是呼叫 Expno = 3, Procno = 1 的图谱进行重叠

◎如何在重叠模式下选择单个图谱?

1.若在分隔显示模式中(如上图)可点击每个图谱右侧小方框即选取

2.若在重叠显示模式下,因所有图谱重叠在一起,所以不会有小方框提示,于是需要点击主窗口最左² (左图红色方框处),打开各图谱信息,里面

5.4 化学位移校正

点击工具栏 🔥 图标。

于图谱区上,将光标移到参考信号上,点击左键即会出现一个小窗口,填入想要 定义的化学位移值,如图:

🎃 calibrate	×
Spectrum calibration frequency	
Cursor frequency in ppm: -0.0050	
<u>O</u> K <u>C</u> ancel	

5.5 基线调整

点击工具栏 🔍 图标。

基线校正,于一般 1D 图谱,只需在命令行键入 abs (auto baseline correction),即可获得良好的校正结果。2D 图谱则打入 abs2, abs1 表示把两个轴皆进行基线校正。

点击后出现如下窗口:

5.6 Peak picking/标定 Peak

▲ 点选此模式,可在图谱区上拉出方框,方框内若含有 Peak 峰顶,则此 peak 将被标记。方框的左右即代表想要标记的图谱宽度; 方框的高低即代表上下限(peak 峰顶低于方框下边缘的不取, Peak 峰顶高于方 框上边缘也不取),可同时画出许多方框。

第六章 2D 图谱处理

2D 图谱处理与 1D 类似,但需顾虑到两个维度都要处理。

6.1. 相位调整模式

2D 图谱的相位调整模式如下图示:

当进入"横/纵轴相位调整模式"时,即类似 1D 的相位调整模式,按钮功能

奵	财	相	同	:

Phase 2D : exam2d_HC 1 1 C:\bio guest
$\frac{1}{\sqrt{-\frac{1}{2}}} + \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}$
pivot = 128.44 ppm Phase increment = 0.20 ph0 = 0.00 ph1 = 0.00
Column 417 / 7.2569 ppm
Column 644 4.2983 ppm
Г
Υ V
Column 899 / .9748 ppm

将 Row, Column 两个维度单个进行相位调整完成后,即完成 2D 相位调整。

6.2 2D 化学位移校正

点 🔥 进入化学位移校正模式,并在参考信号上面按左键,出现以下窗口

再分别填入两个轴的校正值。

6.3 2D 图谱重叠显示

于工具栏上按下 益 按钮,进入以下画面:

🛶 exam2d_HC 1 1 C:\bio guest	
<mark>击</mark> 砦 R 浜 壯│ ◎ └\$ 共 岩 + − ↓	••
	60 F1 [ppm]
6.2 6.0 5.8 5.6 5.4 5.2 5.0 F2 [p	pm]

◎如何将多份 2D 图谱重叠比较?

1.在"data browser"中,将"数据"以鼠标左键拖动进入图谱区;

2.在命令行以"re"命令进行呼叫,如键入 re 3 1 即是呼叫 Expno = 3, Procno = 1 的图谱进行重叠。

◎如何在重叠模式下选择单个图谱?

1.若在分隔显示模式中(如上图)可点击每个图谱右侧小方框选取

2.若在重叠显示模式下,因所有图谱重叠在一起,所以不会有小方框提示,于是需要点击主窗口最左侧(左图红色方框处),打开各图谱信息,里面

示,于是需要点击王窗□最左侧➡ (左图红色方框处),打开各图谱信息,里面 显示颜色方框与图谱对照,可直接点击选取。

也可做 1D - 2D 的重叠,如下图:

七 取消对单个图谱的选取,此时进行移动,缩放等动作将对 所有重叠的图谱一起动作

▲ 点选此模式,鼠标在图谱上移动会显示光标处横轴(Row) 的 1D 图像,转动鼠标中键(即滚轮)可调整 1D 图像大小,此时按右键可从选单选"Grab Row / Column"获得此时的 1D 图像,或按右键从选单选"Extract

Row / Column"将 1D 图像另存一个 Proc no.

▲ 点选此模式,鼠标在图谱上移动会显示光标处纵轴

(Column)的 1D 图像,转动鼠标中键(即滚轮)可调整 1D 图像大小,此时 按右键可从选单选"Grab Row / Column"获 得此时的 1D 图像,或按右键从选 单选"Extract Row / Column"将 1D 图像另存一个 Proc no.

进进进进入计算投影模式,可将 Row / Column 维度的投影量存成一个 Proc no.

+ → 当执行"Grab Row / Column"获得 1D 时,以此钮来调整 所 显示的层数往"上/下"移动

6.4 2D Peak picking

手动 peak picking:	选取工具栏 业 图标,并在 Peak 上面按
右键 →Add Peak to list 自动 peak picking:	选取 主菜单→Peak Picking 会出现如下窗
· · · · · · · · · · · · · · · · · · ·	-

Options			
Z Aj	ppend peaks to list		
Di	iscard new peak(s) if a	Iready in list	
D B	port results as XWinN	MR peak list	
Parameters			
Region			
	From (F1P)	To (F2P)	Set to 🕨
F2 (ppm)	11.5371	-0.5371	
F1 [ppm]	11.5371	-0.5371	
Sensitivity			
Minimum intensity [rel] (MI)		0.0000	Set to 🕨
Maximum intensity [rel] (MAXI)		1.0000	
Diagonal gap [points] (PPDIAG)		0	
Resolution (points) (PPRESOL)		1	
Miscellaneous			
Maximum # of peaks (PPMPNUM)		100	
Interpolation type (PPIPTYP)		None 💌	
Pick peaks of sign (PSIGN)		Positive 💌	
			Reset all to 🕨

1.从"Region"设置想要 Peak Picking 的范围; 可由"Set to"选择"Full

Range /displayed Range"

2.再将"Minimum Intensity [rel] (MI)"以"Set to"选择"Lowest contour level" (需先将图谱强度调到合适值)

3.依目测预估值,来评估是否需要更动 Peak 最大数量(Maximum # of peaks)的值

4.按 OK 即进行 auto peak picking

6.5 2D Peak integration

当 2D 图谱完成 Peak picking 后,即可进行 Peak integration。 点选主菜 单 \rightarrow Analysis \rightarrow Integration 出现以下窗口:

Integrationint2d	×
Options	
Auto-integrate all peaks in the peaks in	peak list, relative threshold
C Auto-integrate all peaks in the	peak list, absolute threshold
Required parameters	
Relative threshold 0 <mi<1 =<="" th=""><td>0.003892632</td></mi<1>	0.003892632
Absolute threshold =	262783.0
	1 1
<u> </u>	<u>Cancel</u> <u>H</u> elp

选取"relative threshold / absolute threshold"皆可,从积分列表会显示两个信息。

第七章 打印/输出

Print [Ctrl+P] - plot -f	
Options C Print active window [prnt] Frint with layout - start Plot Editor Print with layout - plot directly [a	r (plot) utoplot]
Required parameters LAYOUT = Use plot limits Image: Training screen / CY Image: T	Fill data set list C from your default portfolio C from portfolio saved in data set
Ontions 选项.	OK Cancel Help

→ Print active window [prnt] 将目前窗口所显示的图谱格式直接打印出来 → Print with layout – start Plot Editor [plot]

进入"Plot Editor"窗口,此时会套用"LAYOUT"的格式,再进一步编辑。(关于编辑部份,请参阅 XWinPlot 说明)

→ Print with layout – plot directly [autoplot] 套用"LAYOUT"格式,直接输出成数据。

LAYOUT:此栏位的选项,都是图谱打印模板文件,用以套用打印格式。除了预设的模板文件,亦可自行在 Plot Editor 中保存自己设置的模板文件。

◎如何打印积分列表?

在图谱窗口中,将页面切换到积分列表,如图:

exam1d_1H	l 1 1 C:\bio gue	st			_ 8 ×
Spectrum Pr	rocPars AcquPa	rs Title Pul	sProg F	Peaks Integrals	Sample 🚺
△ Object	Integral [abs]	Integral [rel]	Peaks	Range (F1) from	Range (F1) to
📕 🖂 Integral 1	21786348.44	1.6650	0	7.872	8.603
Integral 2	20849330.78	1.5934	0	7.410	7.870
🛛 🕀 – Integral 3	45796921.97	3.5000	1	7.056	7.408
Integral 4	131363188.00	10.0393	0	4.491	6.158
Integral 5	20473381.47	1.5647	0	3.979	4.489
⊡-Integral 6	1068216295.19	81.6376	32	0.304	3.977

再于命令行中输入"print"即可打印。

◎如何打印 Peak List?

将图谱窗口切换到 Peaks 页面,如图:

exam1d	_1H 1 1 C:\bio gue	st	_ 뭔 ×
Spectrum	ProcPars AcquPa	rs Title Pu	ilsProg Peaks Integrals Sample 💶
Peak	▼ v(F1) [ppm]	Intensity	
1	7.260	7.26	<u> </u>
2	3.818	6.03	
3	3.321	6.38	
4	3.178	6.78	
5	3.069	5.96	
6	3.033	6.41	_

再于命令行中输入"print"即可打印。

第八章 图谱分析

8.1 测量两点之间的距离/ Distance Measurement

按下工具栏 图标,使其呈现绿色,即进入测量模式。按鼠标左键定义 起点并拖动至终点处,即会显示两点之间的距离。按下鼠标右键则离开测量模 式。

8.2 计算信噪比/ Signal to Noise Calculation

按下菜单→ Analysis → Signal/Noise Calculation。先拖动一段范围做为信号范围,再拖动一段范围做为背景噪声范围。信号范围需涵盖想计算的信号,背景 噪声范围则挑平坦没有信号的背景区间即可。举例如下:

选"Clear NOISEREG / Clear SIGREG"取消所选取的范围信号/噪声范围

选"Edit Regions"手动输入信号/噪声范围

选"Change Region Widths"改变所选取范围的宽度

选"Quit"离开"Signal/ Noise Calculation"模式

8.3 T1,T2 弛豫分析/Relaxation Analysis

当完成一个 T1/T2 实验,点击主菜单 \rightarrow Analysis \rightarrow T1/T2Relaxation 进入 T1/T2 计算功能。如下图:

1.按 Extract Slice → FID 取出第一个 FID

2.按 DefineRanges 进入积分模式,将需要计算的 peak 进行积分(可选择 多根 peak)。选择完毕后按 → Export regions to Relaxation Module。
3.按 Relaxation Window

此时从 Fitting type 可以选择用 Intensity 或 Area 做为计算标准。 4. Current Peak 显示目前表示的是全部 Peak 的第几个 5. Brief Report 即显示这个 peak 的计算结果及一些参数 功能键:

>	计算目前这一个 Peak
>>	计算全部的 Peak
-	至前一个 Peak
+	至下一个 Peak
Ξ¥	计算公式的微调选项
	时间轴以线性函数表示法
i	时间轴以对数函数表示法
K.	时间轴以次方函数表示法
Exp	离开
٩	显示详细报告

8.4 重叠峰拆解/ Deconvolution

使用目的:将波峰重叠严重的地方,用 Gaussian/Lorentzian 曲线去求出 每个 Peak 所占的比重,如图:原本重叠的图谱:

将显示范围移到需要执行重叠峰拆解的地方,按下主菜单 \rightarrow Analysis \rightarrow Deconvolution 会出现以下画面:

1	Lorentz/Gauss deconvolution - mdcon auto				
	Options				
	O Use Lorentzian shape				
	O Use Gaussian shape				
	Ose mixed shape, auto peak pick into file 'peaklist'				
	O Use mixed shape, use peaks from file	'peaklist'			
	O Generate file 'peaklist', no deconvolut	ion			
	O Display result of the last deconvolution	n			
	O Display the Lorentz/Gauss curves of the	he last deconvolution			
	Required parameters				
	Left deconvolution limit F1P (ppm) =	3.5206045438198013			
	Right deconvolution limit F2P [ppm] =	3.3494435517480925			
	Minimum intensity MI [rel] =	0.2			
	Maximum intensity MAXI [rel] =	19.50951			
Ĩ	Detection sensitivity PC =	1			
	Peak overlapping factor AZFW [ppm] =	0.1			
	Destination PROCNO for fitted data =	999			
		OK Cancel Help			
Options	(选项)				
\rightarrow Use I	orentzian shape				
使田 10	_orentzian 函数				
\rightarrow Use (Gaussian shape				
使用 10	0% Gaussian 函数				
→ Use i	mixed shape auto peak pick in	ito file 'peaklist'			
使用混合	全函数,将自动判定出的 peak	值存入 peaklist			
→ Use i	mixed shape use peaks from f	ile 'peaklist'			
使用混合	予函数,并以 peaklist 所记载的) peak 做为依据			
\rightarrow Gene	erate file 'peaklist', no deconvol	lution			
只将自动判定出的 peak $\overline{a}\lambda$ neaklist. 不执行重叠峰拆解					
\rightarrow Display result of the last deconvolution					
显示最后	后一次做的结果				
\rightarrow Displ	av the Lorentz / Gauss curves	of the last deconvolution			
显示重叠	叠峰拆解之后,每个 peak 的组	成			
Require	d parameters (需填入的参数)				
\rightarrow Left of	deconvolution limit F1P[ppm]				
设置左界	₽ (预设为窗口所见左侧)				
\rightarrow Right	deconvolution limit F1P[ppm]				
设置右界	₹(预设为窗口所见右侧)				
\rightarrow Minin	num intensity MI (rel)				
自动判定	E peak 的最低高度				
→ Maxi	\rightarrow Maximum intensity MAXI (rel)				
自动判定	自动判定 peak 的最高高度				
→ Desti	nation PROCNO for fitted data				
将重叠峭	锋拆解结果存入一个 PROC NO				

备注:

2D 的图谱亦可进行 Deconvolution, 但须先自行 peak picking

8.5 J-耦合分裂分析/ Multiplet Analysis

将 Peak 定义为同一组 J-耦合分裂的方式有三个

1 以鼠标框选范围,范围内的 Peak 会被定义成同一组 J 耦合分裂(范围内必须先 peak picking)

2 手动定义 J 耦合分裂,先以左键点出每个 Peak 的位置,再按右键出现选单→Define Multiplet

3 Ⅲ 以等距网格线一次定义 J 耦合分裂内所有 Peak,先按右键出现选单,选择 Peak 数量,再将光标移至 Peak 群中最中间者,按左键即会出现与 Peak 相等数量的等距网格线。将每个网格线的位置调至每个 Peak 的峰顶,再按一次左键即完成定义。

将已存在的J耦合分裂再合并成一个J耦合分裂丛集,将想要合并的J耦合分裂以左键选取,再按右键选Define Multiplet

□□□□ 以等距网格线合并已存在的 J 耦合分裂成一个 J 耦合分裂丛集。先选取 其中一个 Multiplet 再点选此按钮,则会出现与此 Multiplet 相同分裂数 的网格线,将其放置于另一个 multiplet 对齐再按左键即可。按右键可选择分裂数。

▲ _ 将 J 耦合分裂中定义的位置(即指在 Peak 上方的网格线) 做左右移动的 动作

#-	选择前一个 J 耦合分裂定义
1	选择下一个 J 耦合分裂定义
1.	选择 J 耦合分裂丛集的上一个层次

μ	选择 J 耦合分裂丛集的下一个层次
<u>+</u>	调整 J 耦合分裂网格线的水平高度
×	删除所选择的 J 耦合分裂
K)	取消最后一次的动作
2	重做最后一次的动作
<u> </u>	调整 Multiplet 参数值
G→	查看 Report