R14_4^5bsw-2d: 2D big double-quantum F1 spectral width R1445 pulse program for TopSpin2.1




Home and Applets > Pulse Program > 2Q/1Q Correlation > 2D Big DQ F1 Spectral Width R14_4^5 Pulse Program
Double-quantum excitation with R14-4-5 pulse sequence

Since non-phase cycling is applied to the R1445 excitation pulse, four-phase cycling is applied to the detection pulse P1 for selecting the 0Q -> -1Q coherence order jump, and four-phase cycling is applied to the R1445 reconversion pulse for filtering DQ coherences.

Double-quantum excitation with RN pulse sequence

Per Eugen Kristiansen, Dan J. Mitchell, and Jeremy N. S. Evans
Double-quantum dipolar recoupling at high magic-angle spinning rates,
J. Magn. Reson. 157, 253-266 (2002). Abstract


Double-quantum excitation with RN pulse sequence

Marina Carravetta and coworkers
Estimation of carbon-carbon bond lengths and medium-range internuclear distances by solid-state nuclear magnetic resonance,
J. Am. Chem. Soc. 123, 10628-10638 (2001). Abstract


*** Outline ***


Code for Avance III spectrometers with topSpin2.1 operating system

;r14-4-5_2dbsw (TopSpin 2.0)

;2D SQ-DQ correlation experiment with R14_4^5, use r14-4-5_1d for setup
;M. Carravetta, M. Eden, X. Zhao, A. Brinkmann and M.H. Levitt, 
;Symmetry principles for the design of radiofrequency pulse seqeunces in
;the nuclear magnetic resonance of rotating solids, Chem. Phys. Lett 321 (2000) 205-215 
;by JOS 02/28/03

;Avance II+ version
;parameters:
;d1  : recycle delay
;d0  : incremented delay (2D) [1 usec]
;d20 : delay between saturation pulses

;p1 : detection pulse with pl1 power
;p9 : used as t1 increment (= inf1) for d0

;pl1  : f1 power level
;pl11 : for R14_4^5 recoupling sequence B1=(N/2n)*cnst31=1.75*cnst31 in Hz

;cnst31 : spinning speed
;l0  : number of basic R14_4^5 cycles for DQ excitation
;l20 : # of pulses in saturation pulse train
;ns  : n*16
;FnMode : undefined
;mc2 : STATES-TPPI
;nd0 : 1
;WDW : F1 QSINE 3,  F2 QSINE 2 or EM
;use "xau xfshear rotate" to shift spectrum suitably along f1
;zgoptns :-Dpresat or blank

;$COMMENT=SQ-DQ experiment with R14_4^5
;$CLASS=Solids
;$DIM=2D
;$TYPE=direct excitation
;$SUBTYPE=homonuclear correlation
;$OWNER=Bruker

define loopcounter count    ;for STATES-TPPI procedure
  "count=td1/2"             ;and STATES cos/sin procedure
                            
define pulse pul180
  "pul180=(2.0s/cnst31)/7"  ;180° pulse

  "d31=1s/cnst31"

;cnst11 : to adjust t=0 for acquisition, if digmod = baseopt
"acqt0=1u*cnst11"

#include <rot_prot.incl>
                            ;protect for too slow rotation

  ze                        ;acquire into a cleared memory

  "d0=0.1u"                 ;make sure a short d0 is used initially

1 d31

#ifdef presat               ;set with -Dpresat
pres, d20                   ;delay between saturation pulses
  (p1 pl1 ph1):f1           ;saturation loop if required
  lo to pres times l20
#endif /* presat */

2 d1                        ;recycle delay

  "cnst1=-180*cnst31*d0"    ;phase correction for R14_4^5 reconversion pulse,
                            ;due to t1 DQ evolution period,
                            ;defined by the phase-time relationships

  1m rpp11                  ;reset the phase ph11 pointer to the first element
                            ;in the DQ excitation pulse
  1m rpp13                  ;reset the phase ph13 pointer to the first element
                            ;in the DQ reconversion pulse
  10u reset:f1
  1u pl11:f1                ;switch to R14_4^5 RF condition

                            ;R14_4^5 DQ excitation
3 (pul180  ph11 ipp11):f1   ;increment phase ph11 pointer
  (pul180  ph11 ipp11):f1   ;increment phase ph11 pointer
  lo to 3 times l0

  d0                        ;DQ evolution

                            ;R14_4^5 DQ reconversion
4 (pul180  ph13+cnst1 ipp13):f1
                            ;increase ph13 by cnst1 due to evolution period
                            ;increment phase ph13 pointer
  (pul180  ph13+cnst1 ipp13):f1
                            ;increase ph13 by cnst1 due to evolution period
                            ;increment phase ph13 pointer
  lo to 4 times l0

  (p1 pl1 ph5):f1           ;detection pulse
  gosc ph31                 ;gosc does not loop to 1

                            ;DQ filtering (four phase cycling):
  1m ip13*16384             ;increments all phases of ph13 by 90°

  lo to 1 times ns          ;next scan
  100m wr #0 if #0 zd       ;save data

  1m ip11*8192              ;increments all phases of ph11 by 45°, 
                            ;90° phase for DQ coherence
  lo to 1 times 2           ;t1 quadrature detection

  "d0=d0+p9"                ;set p9=increment for F1 (to make it usec!)

  ;1m rp11                  ;reset all phases of ph11 and ph13 
                            ;to their original values, i.e. to the values they 
  ;1m rp13                  ;had before the first ip11 and ip13
                            ;in case of STATES remove semicolon at beginning of the 2 lines

  lo to 1 times count       ;count=td1/2
HaltAcqu, 1m
exit

ph1=0                       ;for saturation pulse

ph11=(65536) 11704 53832    ; 64.29°  295.71°  or  64.29°   -64.29°
ph13=(65536) 28088  4680    ;154.29°   25.71°  or  ph11 + 90°

ph5= 0 0 0 0 2 2 2 2 1 1 1 1 3 3 3 3
ph31=0 2 0 2 2 0 2 0 1 3 1 3 3 1 3 1
  

r14-4-5_2dbswvar: 2D big F1 spectral width R1445 double-quantum excitation, t1 increment inf1 = p9, variable phase correction with CNST21.

Example: 31P in VPI-5 zeolite with AV700

DQ excitation versus pl11 with r12-2-5-1d.ppm for 31P in VPI-5 zeolite

31P MAS spectra of VPI-5 zeolite versus the excitation power pl11 (l0 = 50) in r14-4-5_1d.ppm, acquired with a 2.5-mm diameter rotor spinning at 30 kHz, D1 = 10 sec recycle delay, and recorded with Bruker Avance III, 700 MHz SB US magnet.

Pulseprogram parameters for r14-4-5_1d.ppm:

General  
PULPROG r14-4-5_1d.ppm
TD 2048
NS 16
DS 0
SWH [Hz] 50000.00
AQ [s] 0.0205300
RG 256
DW [µs] 10.000
DE [µs] 5.00
CNST11 0.0000000
CNST31 30000.0000000
D1 [s] 10.00000000
D20 [s] 0.00800000
d31 [s] 0.00003333
L0 50
L20 20
ZGOPTNS -Dpresat
Channel f1  
NUC1 31P
P1 [µs] 4.00
PL1 [dB] 8.00
PL1W [W] 55.57575989
PL11 [dB] 10.90
PL11W [W] 28.50266457
pul180 [µs] 9.52
SFO1 [MHz] 283.4086637


DQ excitation versus l0 with r14-4-5-1d.ppm for 31P in VPI-5 zeolite

31P MAS spectra of VPI-5 zeolite versus the number l0 of basic unit (pl11 = 10.9 dB) in r14-4-5_1d.ppm, acquired with a 2.5-mm diameter rotor spinning at 30 kHz, D1 = 10 sec recycle delay, and recorded with Bruker Avance III, 700 MHz SB US magnet.

Pulseprogram parameters for r14-4-5_1d.ppm:

General  
PULPROG r14-4-5_1d.ppm
TD 2048
NS 16
DS 0
SWH [Hz] 50000.00
AQ [s] 0.0205300
RG 256
DW [µs] 10.000
DE [µs] 5.00
CNST11 0.0000000
CNST31 30000.0000000
D1 [s] 10.00000000
D20 [s] 0.00800000
d31 [s] 0.00003333
L0 150
L20 20
ZGOPTNS -Dpresat
Channel f1  
NUC1 31P
P1 [µs] 4.00
PL1 [dB] 8.00
PL1W [W] 55.57575989
PL11 [dB] 10.90
PL11W [W] 28.50266457
pul180 [µs] 9.52
SFO1 [MHz] 283.4086637


31P spectrum in VPI-5 zeolite after two row data in F1

31P R14_4^5 DQ/SQ spectrum of VPI-5 zeolite with big DQ F1 spectral width (P9 = 45 µsec), acquired with a 2.5-mm diameter rotor spinning at 30 kHz, after two row data are recorded in F1 dimension.


31P spectrum in VPI-5 zeolite after four row data in F1

31P R14_4^5 DQ/SQ spectrum of VPI-5 zeolite with big DQ F1 spectral width (P9 = 45 µsec), acquired with a 2.5-mm diameter rotor spinning at 30 kHz, after four row data are recorded in F1 dimension.


31P 2D DQ/SQ spectrum of VPI-5 zeolite

31P R14_4^5 DQ/SQ spectrum of VPI-5 zeolite with big DQ F1 spectral width (P9 = 45 µsec), acquired with a 2.5-mm diameter rotor spinning at 30 kHz, D1 = 10 sec recycle delay, and recorded with Bruker Avance III, 700 MHz SB US magnet. The spectrum is not at resonance in F1 dimension due to a small offset of the spectrum in F2 dimension.

Pulseprogram parameters for r14-4-52dbsw.ppm:

General  
PULPROG r14-4-52dbsw.ppm
TD 2048
NS 48
DS 0
SWH [Hz] 50000.00
AQ [s] 0.0205300
RG 256
DW [µs] 10.000
DE [µs] 5.00
CNST11 0.0000000
CNST31 30000.0000000
D0 [s] 0.00000300
D1 [s] 10.00000000
D20 [s] 0.00800000
d31 [s] 0.00003333
L0 160
L20 20
P9 [µs] 45.00
ZGOPTNS -Dpresat
count 128
Channel f1  
CNST1 1.0000000
NUC1 31P
P1 [µs] 4.00
PL1 [dB] 8.00
PL1W [W] 55.57575989
PL11 [dB] 10.90
PL11W [W] 28.50266457
pul180 [µs] 9.52
SFO1 [MHz] 283.4086637

Acquisition parameters:

  F2 F1
Experiment    
PULPROG r14-4-52dbsw.ppm  
AQ_mod DQD  
FnMODE   undefined
TD 2048 256
NS 48  
DS 0  
TD0 1  
Width    
SW [ppm] 176.4237 78.4105
SWH [Hz] 50000.000 22222.223
IN_F [µs]   45.00
AQ [s] 0.0205300 0.0057600
Nucleus1    
NUC1 31P  
O1 [Hz] -9155.27 -9155.27
O1P [ppm] -32.303 -32.303
SFO1 [MHz] 283.4086637 283.4086637
BF1 [MHz] 283.4178190 283.4178190


31P 2D DQ/SQ spectrum of VPI-5 zeolite

31P R14_4^5 DQ/SQ spectrum of VPI-5 zeolite with big DQ F1 spectral width (P9 = 19 µsec), acquired with a 2.5-mm diameter rotor spinning at 30.1 kHz, D1 = 10 sec recycle delay, and recorded with Bruker Avance III, 700 MHz SB US magnet, BLAX500W.

Pulseprogram parameters for r14-4-52dbsw.ppm:

General  
PULPROG r14-4-52dbsw.ppm
TD 1024
NS 32
DS 0
SWH [Hz] 12500.00
AQ [s] 0.0410500
RG 256
DW [µs] 40.000
DE [µs] 5.00
CNST11 0.0000000
CNST31 30100.0000000
D0 [s] 0.00000300
D1 [s] 10.00000000
D20 [s] 0.00800000
d31 [s] 0.00003322
L0 50
L20 20
P9 [µs] 19.00
ZGOPTNS -Dpresat
count 100
Channel f1  
CNST1 1.0000000
NUC1 31P
P1 [µs] 5.75
PL1 [dB] 8.00
PL11 [dB] 7.00
pul180 [µs] 9.49
SFO1 [MHz] 283.3494808

Acquisition parameters:

  F2 F1
Experiment    
PULPROG r14-4-52dbsw.ppm  
AQ_mod DQD  
FnMODE   undefined
TD 1024 200
NS 32  
DS 0  
TD0 1  
Width    
SW [ppm] 44.1151 75.1982
SWH [Hz] 12500.000 52637.258
IN_F [µs]   19.00
AQ [s] 0.0410500 0.0018998
Nucleus1    
NUC1 31P  
O1 [Hz] -7617.20 0.00
O1P [ppm] -26.882 0.000
SFO1 [MHz] 283.3494808 699.9800000
BF1 [MHz] 283.3570980 699.9800000


References

  1. Lena Seyfarth and Jürgen Senker
    An NMR crystallographic approach for the determination of the hydrogen substructure of nitrogen bonded protons,
    Phys. Chem. Chem. Phys. 11, 3522-3531 (2009).
    Abstract
     
  2. M. Carravetta, A. Danquigny, S. Mamone, F. Cuda, O. G. Johannessen, I. Heinmaa, K. Panesar, R. Stern, M. C. Grossel, A. J. Horsewill, A. Samoson, M. Murata, Y. Murata, K. Komatsu, and M. H. Levitt
    Solid-state NMR of endohedral hydrogen-fullerene complexes,
    Phys. Chem. Chem. Phys. 9, 4879-4894 (2007).
    Abstract
     
  3. M. Carravetta, M. Edén, O. G. Johannessen, H. Luthman, P. J. E. Verdegem, J. Lugtenburg, A. Sebald, and M. H. Levitt
    Estimation of carbon-carbon bond lengths and medium-range internuclear distances by solid-state nuclear magnetic resonance,
    J. Am. Chem. Soc. 123, 10628-10638 (2001).
    Abstract
     
  4. Marina Carravetta, Mattias Edén, Xin Zhao, Andreas Brinkmann, and Malcolm H. Levitt
    Symmetry principles for the design of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids,
    Chem. Phys. Lett. 321, 205-215 (2000).
    Abstract
     

Other references

  1. Subhradip Paul, Rajendra Singh Thakur, M. H. Levitt, and P. K. Madhu
    1H homonuclear dipolar decoupling using rotor-synchronised pulse sequences: Towards pure absorption phase spectra, (RNnN/2)
    J. Magn. Reson. 205, 269-275 (2010).
    Abstract
     
  2. Mattias Edén
    Two-dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs, (R221; R241)
    J. Magn. Reson. 204, 99-110 (2010).
    Abstract
     
  3. B. Hu, L. Delevoye, O. Lafon, J. Trébosc, and J. P. Amoureux
    Double-quantum NMR spectroscopy of 31P species submitted to very large CSAs, (BR221; BABA-4; SPIP; fp-RFDR)
    J. Magn. Reson. 200, 178-188 (2009).
    Abstract
     
  4. Q. Wang, B. Hu, O. Lafon, J. Trébosc, F. Deng, and J. P. Amoureux
    Double-quantum homonuclear NMR correlation spectroscopy of quadrupolar nuclei subjected to magic-angle spinning and high magnetic field, (BR221; SR221)
    J. Magn. Reson. 200, 251-260 (2009).
    Abstract
     
  5. Mattias Edén and Andy Y. H. Lo
    Supercycled symmetry-based double-quantum dipolar recoupling of quadrupolar spins in MAS NMR: I. Theory, (R221; R241; R442; C120; C241)
    J. Magn. Reson. 200, 267-279 (2009).
    Abstract
     
  6. Jakob J. Lopez, Christoph Kaiser, Sarika Shastri, and Clemens Glaubitz
    Double quantum filtering homonuclear MAS NMR correlation spectra: a tool for membrane protein studies, (R2249)
    J. Biomol. 41, 97-104 (2008).
    Abstract
     
  7. Gregor Mali, Venčeslav Kaučič, and Francis Taulelle
    Measuring distances between half-integer quadrupolar nuclei and detecting relative orientations of quadrupolar and dipolar tensors by double-quantum homonuclear dipolar recoupling nuclear magnetic resonance experiments, (R221)
    J. Chem. Phys. 128, 204503/1-204503/11 (2008).
    Abstract
     
  8. Darren H. Brouwer, Per Eugen Kristiansen, Colin A. Fyfe, and Malcolm H. Levitt
    Symmetry-based 29Si dipolar recoupling magic angle spinning NMR spectroscopy: A new method for investigating three-dimensional structures of zeolite frameworks, (SR26411)
    J. Am. Chem. Soc. 127, 542-543 (2005).
    Abstract
     
  9. Mattias Edén, Hans Annersten, and Ĺsa Zazzi
    Pulse-assisted homonuclear dipolar recoupling of half-integer quadrupolar spins in magic-angle spinning NMR, (R441)
    Chem. Phys. Lett. 410, 24-30 (2005).
    Abstract
     
  10. Per Eugen Kristiansen, Marina Carravetta, Wai Cheu Lai, and Malcolm H. Levitt
    A robust pulse sequence for the determination of small homonuclear dipolar couplings in magic-angle spinning NMR, (SR26411)
    Chem. Phys. Lett. 390, 1-7 (2004).
    Abstract
     
  11. Per Eugen Kristiansen, Dan J. Mitchell, and Jeremy N. S. Evans
    Double-quantum dipolar recoupling at high magic-angle spinning rates, (RN)
    J. Magn. Reson. 157, 253-266 (2002).
    Abstract
     
  12. Andreas Brinkmann, Jörn Schmedt auf der Günne, and Malcolm H. Levitt
    Homonuclear zero-quantum recoupling in fast magic-angle spinning nuclear magnetic resonance, (R662)
    J. Magn. Reson. 156, 79-96 (2002).
    Abstract
     

(top)

[Contact me] - Last updated December 16, 2012
Solid-state NMR bibliography for
Aluminum-27
Antimony-121/123
Arsenic-75
Barium-135/137
Beryllium-9
Bismuth-209
Boron-11
Bromine-79/81
Calcium-43
Cesium-133
Chlorine-35/37
Chromium-53
Cobalt-59
Copper-63/65
Deuterium-2
Gallium-69/71
Germanium-73
Gold-197
Hafnium-177/179
Indium-113/115
Iodine-127
Iridium-191/193
Krypton-83
Lanthanum-139
Lithium-7
Magnesium-25
Manganese-55
Mercury-201
Molybdenum-95/97
Neon-21
Nickel-61
Niobium-93
Nitrogen-14
Osmium-189
Oxygen-17
Palladium-105
Potassium-39/41
Rhenium-185/187
Rubidium-85/87
Ruthenium-99/101
Scandium-45
Sodium-23
Strontium-87
Sulfur-33
Tantalum-181
Titanium-47/49
Vanadium-51
Xenon-131
Zinc-67
Zirconium-91



Copyright © 2002- pascal-man.com. All rights reserved.