PC72dbigsw: 2D big double-quantum F1 spectral width POST_C7 pulse program




Home and Applets > Pulse Program > 2Q/1Q Correlation > 2D Big DQ F1 Spectral Width POST_C7 Pulse Program
2D double-quantum excitation with PC7 pulse sequence

Since non-phase cycling is applied to the PC7 excitation pulse, four-phase cycling is applied to the detection pulse P1 for selecting the 0Q -> -1Q coherence order jump, and four-phase cycling is applied to the PC7 reconversion pulse for filtering DQ coherences.

space-spin selection diagram for C7 pulse sequence

CN pulse sequence

Andreas Brinkmann, Mattias Edén, and Malcolm H. Levitt, Synchronous helical pulse sequences in magic-angle spinning nuclear magnetic resonance: Double quantum recoupling of multiple-spin systems, J. Chem. Phys. 112, 8539-8554 (2000).


*** Outline ***


Code for Avance III spectrometers with topSpin2.1 operating system

;pc72dbigsw (TopSpin 2.0)

;SQ-DQ experiment using POST_C7 sequence
;for setup of the 2D INADEQUATE type experiments
;Hohwy, M. Jakobsen, H.J. Eden, M. Levitt, M.H., Nielsen, N.C., 
;J. Chem. Phys. 108, 2686-2694 (1998)
;revised 09/09/03 JOS

;Avance II+ version
;parameters:
;d1 :recycle delay
;d0 : incremented delay (2D) [1 usec]
;d20 :delay between saturation pulses

;pl1 : f1 power level for presaturation pulses and detection pulse
;pl7 : for C7 recoupling sequence, B1=7*cnst31 in Hz
;pl2 : =120 dB, not used here

;p1 : detection pulse at pl1
;p9 : used as t1 increment (= inf1) for d0

;cnst31 : spinning speed, make sure cnst31>1000
;l1  : number of composite C7 cycles for DQ excitation 
;l20 : # of pulses in saturation pulse train, 0 if undesired
;FnMode : undefined because the pulse program contains no mc statement
;mc2 : STATES-TPPI
;nd0 : 1
;ns  : n*16
;WDW : F1 QSINE 3,  F2 QSINE 2 or EM
;zgoptns :-Dpresat or blank

;$COMMENT=SQ-DQ experiment with post-C7 sequence
;$CLASS=Solids
;$DIM=2D
;$TYPE=direct excitation
;$SUBTYPE=homonuclear correlation
;$OWNER=Bruker

define loopcounter count       ;for STATES-TPPI procedure
  "count=td1/2"                ;and STATES cos/sin procedure

define pulse tau1
  "tau1=((0.25s/cnst31)/7)"    ; 90° pulse
define pulse tau4
  "tau4=((1s/cnst31)/7)"       ;360° pulse
define pulse tau3
  "tau3=((0.75s/cnst31)/7)"    ;270° pulse

  "d31=1s/cnst31"

;cnst11 : to adjust t=0 for acquisition, if digmod = baseopt
"acqt0=1u*cnst11"

#include <rot_prot.incl>

  ze                           ;acquire into a cleared memory

  "d0=0.1u"                    ;make sure a short d0 is used initially

1 d31

#ifdef presat                  ;set with -Dpresat
pres, d20                      ;delay between saturation pulses
  (p1 pl1 ph1):f1              ;saturation loop
  lo to pres times l20
#endif /* presat */

2 d1                           ;recycle delay

  "cnst1=180*cnst31*d0"        ;phase correction for PC7 reconversion pulse
                               ;due to t1 DQ evolution period,
                               ;defined by the phase-time relationships

  1m rpp11                     ;reset the phase program ph11 pointer to the first element
  1m rpp12                     ;reset the phase program ph12 pointer to the first element
  1m rpp13                     ;reset the phase program ph13 pointer to the first element
  1m rpp14                     ;reset the phase program ph14 pointer to the first element
  1u pl7:f1                    ;switch to PC7 RF condition

3 tau1:f1 ph11 ipp13 ipp14     ;pc7 excitation, 1 loop = 2*Tr/7,
                               ;increment reconversion pulse phase ph13 and ph14
                               ;pointers to the next phase in the lists
  tau4:f1 ph12 ipp12           ;increment phase ph12 pointer
  tau3:f1 ph11 ipp11           ;and phase ph11 pointer
                               ;to the next phase in the lists
  lo to 3 times l1

  d0                           ;double-quantum evolution period

6 tau1:f1 ph13+cnst1           ;pc7 reconversion, 1 loop = 2*Tr/7,
                               ;increase ph13 by cnst1 due to evolution period
  tau4:f1 ph14+cnst1 ipp14     ;increase ph14 by cnst1 due to evolution period, 
                               ;increment phase ph14 pointer to the next phase in the list
  tau3:f1 ph13+cnst1 ipp13     ;increase ph13 by cnst1 due to evolution period, 
                               ;increment phase ph13 pointer to the next phase in the list
  lo to 6 times l1

  (p1 pl1 ph5):f1              ;detection pulse
  2u
  gosc ph31                    ;gosc does not loop to 1
                               ;start ADC with ph31 signal routing

                               ;DQ filtering (four phase cycling):
  ;1m ip13                      ;increments all phases of ph13 by 90°
  ;1m ip14                      ;increments all phases of ph14 by 90°
  1m ip13*16384                ;increments all phases of ph13 by 90°
  1m ip14*16384                ;increments all phases of ph14 by 90°
  lo to 2 times ns             ;next scan

  100m wr #0 if #0 zd          ;delay for disk I/O, store signal,
                               ;increase FID number
                               ;delete memory data
                               ;do not perform dummy scans
                               ;with next acquisition

  ;1m  ip11                     ;increments all phases of ph11 by 45°, 
                                ;90° phase for DQ coherence
  ;1m  ip12                     ;increments all phases of ph12 by 45°,
                                ;90° phase for DQ coherence
  1m  ip11*8192                ;increments all phases of ph11 by 45°,
                               ;90° phase for DQ coherence
  1m  ip12*8192                ;increments all phases of ph12 by 45°,
                               ;90° phase for DQ coherence
  lo to 1 times 2              ;t1 quadrature detection

  "d0=d0+p9"                   ;set p9=inf1=increment for F1 (to make it usec!)

  ;1m rp11                     ;reset all phases of ph11, ph12, ph13, and ph14 
  ;1m rp12                     ;to their original values, i.e. to the values they 
  ;1m rp13                     ;had before the first ip11, ip12, ip13, and ip14
  ;1m rp14                     ;in case of STATES remove semicolon at beginning of the 4 lines

  lo to 1 times count          ;count = td1/2

HaltAcqu, 1m
exit

ph1= 0                         ;for saturation pulse

;ph11 = (float,45.0)   0.00  51.43 102.86 154.29 205.71 257.14 308.57
;ph12 = (float,45.0) 180.00 231.43 282.86 334.29 385.71 437.14 488.57
;ph13 = (float,90.0)   0.00  51.43 102.86 154.29 205.71 257.14 308.57
;ph14 = (float,90.0) 180.00 231.43 282.86 334.29 385.71 437.14 488.57

ph11=(65536)     0  9362 18725 28087 37449 46811 56174
ph12=(65536) 32768 42130 51493 60855  4681 14043 23406
ph13=(65536)     0  9362 18725 28087 37449 46811 56174
ph14=(65536) 32768 42130 51493 60855  4681 14043 23406

ph5=   0 0 0 0 2 2 2 2 1 1 1 1 3 3 3 3
ph31 = 0 2 0 2 2 0 2 0 1 3 1 3 3 1 3 1    ;ph31 = ph5 + 2*ph13
  

References

  1. N. Chandrakumar
    1D double quantum filter NMR studies,
    in Annual Reports on NMR Spectroscopy, Graham A. Webb (Ed.), Elsevier, Amsterdam, vol. 67, pages 265-329 (2009).
    Abstract
     
  2. Giuseppe Pileio, Maria Concistrč, Neville McLean, Axel Gansmüller, Richard C. D. Brown, and Malcolm H. Levitt
    Analytical theory of γ-encoded double-quantum recoupling sequences in solid-state nuclear magnetic resonance,
    J. Magn. Reson. 186, 65-74 (2007).
    Abstract
     
  3. M. J. Potrzebowski, J. Gajda, W. Ciesielski, and I. M. Montesinos
    Distance measurements in disodium ATP hydrates by means of 31P double quantum two-dimensional solid-state NMR spectroscopy, (PC7, asymmetric peaks)
    J. Magn. Reson. 179, 173-181 (2006).
    Abstract
     
  4. Sebastian Olejniczak, Pawel Napora, Jaroslaw Gajda, Wlodzimierz Ciesielski, Marek J. Potrzebowski
    31P double-quantum solid-state NMR study of phosphoroorganic compounds with (O)P-O-P-(O), (S)P-O-P(S) and (S)P-S-P(O) unit, (PC7)
    Solid State Nucl. Magn. Reson. 30, 141-149 (2006).
    Abstract
     
  5. Colan E. Hughes and Marc Baldus
    Magic-angle-spinning solid-state NMR applied to polypeptides and proteins,
    in Annual Reports on NMR Spectroscopy, Graham A. Webb (Ed.), Elsevier, Amsterdam, vol. 55, pages 121-158 (2005).
    Abstract
     
  6. Ingo Schnell
    Dipolar recoupling in fast-MAS solid-state NMR spectroscopy,
    Prog. Nucl. Magn. Reson. Spectrosc. 45, 145-207 (2004).
    Abstract
     
  7. Yoh Matsuki, Hideo Akutsu, and Toshimichi Fujiwara
    Precision 1H-1H distance measurement via 13C NMR signals: utilization of 1H-1H double-quantum dipolar interactions recoupled under magic angle spinning conditions,
    Magn. Reson. Chem. 42, 291-300 (2004).
    Abstract
     
  8. T. Karlsson, J. M. Popham, J. R. Long, N. Oyler, and G. P. Drobny
    A study of homonuclear dipolar recoupling pulse sequences in solid-state nuclear magnetic resonance, (DRAWS, PC7, SPC5, R1426, R2246; phase cycling)
    J. Am. Chem. Soc. 125, 7394-7407 (2003).
    Abstract
     
  9. M. Bjerring, T. Vosegaard, A. Malimendal, and N.C. Nielsen
    Methodological development of solid-state NMR for characterization of membrane proteins, (PC7, C7)
    Concepts Magn. Reson. A 18, 111-129 (2003).
    Abstract
     
  10. G. P. Drobny, J. R. Long, T. Karlsson, W. Shaw, J. Popham, N. Oyler, P. Bower, J. Stringer, D. Gregory, M. Mehta, and P. S. Stayton
    Structural studies of biomateriaux using double-quantum solid-state NMR spectroscopy,
    Annu. Rev. Phys. Chem. 54, 531-571 (2003).
    Abstract
     
  11. Wyndham Bolling Blanton
    High Performance Computations in NMR,
    Berkeley, 2002.
    Ph.D
     
  12. Juraj Pivarč
    Application of the Multiple Quantum NMR Spectroscopy for Investigation of the Dipole-Dipole Couplings in Amorphous Polymers,
    Halle, 4 July 2000.
    Dissertation
     
  13. Andreas Brinkmann, Mattias Edén, and Malcolm H. Levitt
    Synchronous helical pulse sequences in magic-angle spinning nuclear magnetic resonance: Double quantum recoupling of multiple-spin systems, (CNnν: C721, C1445, C144-5, SC1445; phase cycling)
    J. Chem. Phys. 112, 8539-8554 (2000).
    Abstract
     
  14. Mattias Edén, Andreas Brinkmann, Henrik Luthman, Lars Eriksson, and Malcolm H. Levitt
    Determination of molecular geometry by high-order multiple-quantum evolution in solid-state NMR,
    J. Magn. Reson. 144, 266-279 (2000).
    Abstract
     
  15. T. Karlsson, A. Brinkmann, P. J. E. Verdegem, J. Lugtenburg, and M. H. Levitt
    Multiple-quantum relaxation in the magic-angle-spinning NMR of 13C spin pairs, (C7, phase cycling)
    Solid State Nucl. Magn. Reson. 14, 43-58 (1999).
    Abstract
     
  16. Mei Hong
    Solid-state dipolar INADEQUATE NMR spectroscopy with a large double-quantum spectral width,
    J. Magn. Reson. 136, 86–91 (1999).
    Abstract
     
  17. Chad M. Rienstra, Mary E. Hatcher, Leonard J. Mueller, Boqin Sun, Stephen W. Fesik, and Robert G. Griffin
    Efficient multispin homonuclear double-quantum recoupling for magic-angle spinning NMR: 13C-13C correlation spectroscopy of U-13C-erythromycin A, (combined MLEV refocusing and C7: CMR7; dependence of DQF efficiency on 1H CW decoupling field strength during mixing; sample size)
    J. Am. Chem. Soc. 120, 10602-10612 (1998).
    Abstract
     
  18. M. Edén and M. H. Levitt
    Excitation of carbon-13 triple quantum coherence in magic-angle-spinning NMR,
    Chem. Phys. Lett. 293, 173-179 (1998).
    Abstract
     
  19. M. Hohwy, H. J. Jakobsen, M. Edén, M. H. Levitt, and N. C. Nielsen
    Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: A compensated C7 pulse sequence,
    J. Chem. Phys. 108, 2686-2694 (1998).
    Abstract
    PC7 pulse sequence

    Definition of PC7 excitation pulse.

     
  20. Helen Geen, Johannes Gottwald, Robert Graf, Ingo Schnell, Hans W. Spiess, and Jeremy J. Titman
    Elucidation of dipolar coupling networks under magic-angle spinning,
    J. Magn. Reson. 125, 224-227 (1997).
    Abstract
     
  21. W. A. Dollase, M. Feike, H. Förster, T. Schaller, I. Schnell, A. Sebald, and S. Steuernagel
    A 2D 31P MAS NMR study of polycrystalline Cd3(PO4)2,
    J. Am. Chem. Soc. 119, 3807-3810 (1997).
    Abstract
     
  22. Y. K. Lee, N. D. Kurur, M. Helmle, O. G. Johannessen, N. C. Nielsen, and M. H. Levitt
    Efficient dipolar recoupling in the NMR of rotating solids. A sevenfold symmetric radiofrequency pulse sequence, (C7, phase cycling)
    Chem. Phys. Lett. 242, 304-309 (1995).
    Abstract
    C7 pulse sequence

    Definition of C7 excitation pulse.

     
  23. Yoshitaka Ishii, Jun Ashida, and Takehiko Terao
    13C---1H dipolar recoupling dynamics in 13C multiple-pulse solid-state NMR,
    Chem. Phys. Lett. 246, 439-445 (1995).
    Abstract
     
  24. A. Wokaun and R. R. Ernst
    Selective detection of multiple quantum transitions in NMR by two-dimensional spectroscopy,
    Chem. Phys. Lett. 52, 407-412 (1977).
    Abstract
     

(top)

[Contact me] - Last updated December 16, 2012
Solid-state NMR bibliography for
Aluminum-27
Antimony-121/123
Arsenic-75
Barium-135/137
Beryllium-9
Bismuth-209
Boron-11
Bromine-79/81
Calcium-43
Cesium-133
Chlorine-35/37
Chromium-53
Cobalt-59
Copper-63/65
Deuterium-2
Gallium-69/71
Germanium-73
Gold-197
Hafnium-177/179
Indium-113/115
Iodine-127
Iridium-191/193
Krypton-83
Lanthanum-139
Lithium-7
Magnesium-25
Manganese-55
Mercury-201
Molybdenum-95/97
Neon-21
Nickel-61
Niobium-93
Nitrogen-14
Osmium-189
Oxygen-17
Palladium-105
Potassium-39/41
Rhenium-185/187
Rubidium-85/87
Ruthenium-99/101
Scandium-45
Sodium-23
Strontium-87
Sulfur-33
Tantalum-181
Titanium-47/49
Vanadium-51
Xenon-131
Zinc-67
Zirconium-91



Copyright © 2002- pascal-man.com. All rights reserved.