

Title: Bruker NMR Manual for MSMAS Experiment

Introduction

MQMAS stands for Multi Quantum Magic Angle Spinning which is a 2D solid state NMR Experiment for quadruple hetero-nuclei, such as B11 (spin 3/2), Al27 (spin 5/2), Rb87 (spin 3/2), etc. Due to the quadrupole effect, the 1D spectrum peaks are usually very broad. MQMAS 2D spectrum helps to separate the overlapping peaks in the second dimension.

Preparation

Spectrometer: NMR-Hg400-Solid only

Probe: Bruker 4mm HX probe

Prerequisite: users have done the basic NMR training and solid NMR training.

Sample: must be in powder form; and about 80 mg

Rotor: Bruker https://bruker-labscape.store/products/4mm-mas-rotor-kit Part# H14355

Experiment Setup (quick procedures)

- 1) Use Rb87 as an example. Run a regular 1D MAS of Rb87 at a certain spin rate, e.g. 5000
- 2) Edit a new data set with a pulse program "mp3qzqf"
- 3) Keep 1d mode first and run a quick Rb87 with 12 scans
- 4) Optimize p1, p2, p3 back and forth
- 5) Edit another new data set and convert it to 2D
- 6) Check all parameters (see detailed procedures below)
- 7) Acquire data
- 8) Process data by **xfb** or **xfshear**

Ending Work

- 1) Stop spinning
- 2) eject rotor out of probe
- 3) Remove sample out of rotor by special tools and clean up the rotor
- 4) Keep desk top clean
- 5) Logout from NUcore

Manual Created by: IMSERC Lab, Department of Chemistry, Northwestern University Manual Revised Date: November 2019

For PUBLICATION

Experimental Section

Solid state NMR data were collected at room temperature on a Bruker Avance III HD spectrometer equipped with a 4mm HX probe. Spinning rate 5000-15000 (4mm) or 5000-40000 (1.6mm). The other parameters can be seen from topspin Tab AcqPar.

Acknowledgement

Funding: National Science Foundation (CHE-9871268) and International Institute of Nanotechnology

Experiment Setup (detailed procedures)

- Run a regular 1D first. You can use pulse program "onepulse" without proton decoupling, or use "hpdec" with proton decoupling. Note there's a tuning concern: you can tune both X and H, or just X, because when you use mqmas pulse program "mp3qzqf", H1 channel is off for both 1D and 2D.
- After regular 1D is done, edit a new data set for mqmas preparation. In the PULPROG input frame type "mp3qzqf" or click the icon to select.
- 3) Using ns=12*n to run 1D. Zoom in the peak region, then type **dpl**.
- 4) Optimize parameters, p1, p2, p3. Type **popt**. It will pop up a new window (shown below). You will go back and forth several times, until the 3 parameters are optimized. Note: for the first round of optimization, you can use relatively large value range and step size, then, reduce the range and step size.

OPTI	GROUP	PARA	OPTI	STAR	ENDVAL	NEXP	VARM	INC
No opti	0	p1	POSMAX	4	8.0	9	LIN	0.5
No opti	0	p2	POSMAX	0.5	4	8	LIN	0.5
No opti	0	р3	POSMAX	40	80.0	11	LIN	4
No opti	0	р3	POSMAX	30	54.0	13	LIN	2
No opti	0	p2	POSMAX	2	5.0	7	LIN	0.5
No opti	0	p1	POSMAX	6	10.5	10	LIN	0.5
No opti	0	p1	POSMAX	8	20.0	61	LIN	0.2
Step by	0	p2	POSMAX	2	5.0	16	LIN	0.2

Ť.

- 5) Edit another new data set for 2D. Underneath the Tab ACQUPAR, click an icon 1,2,...
- 6) Setting up conditions can be referred as below:

	F2		F1
 Experiment 			
PULPROG	mp3qzqf		E
AQ_mod	DQD		
FnTYPE	traditional(planes)		~
FnMODE		States	~
TD	512	64	
DS	0		
NS	24		
TD0	1		
TDav	0		

Note: NS must be 12*n. you can increase TD F1 to 128.

→ Width		
SW [ppm]	152.9185	38.2296
SWH [Hz]	20000.000	5000.000
IN_F [µsec]		200.00
AQ [sec]	0.0128000	0.0064000
FIDRES [Hz]	78.125000	156.250000
FW [Hz]	4032000.000	

Note: SWH for F1 must be the same as spinning rate for the frequency synchronization. For instance, if you spin 5000, input 5000 here.

Receiver		
RG	203]
DW [µsec]	25.000	
DWOV [µsec]	0.025	
DECIM	1000	
DSPFIRM	rectangle	~
DIGTYP	#RU (digitizer not insta	lled!) ~
DIGMOD	baseopt	~
DR	22]
DDR	10	
DE [µsec]	6.50	
NBL	1]
HPPRGN	normal ~	
PRGAIN	high ~]
DQDMODE	add ~	
PH_ref [degree]	46.000	
OVERFLW	check ~	

Note: DSPFIRM must be rectangle

Nucleus 1			
NUC1	87Rb	Edit	87Rb ~
O1 [Hz]	-5800.00		-5800.00
O1P [ppm]	-44.344		-44.344
SFO1 [MHz]	130.7886520		130.7886520
BF1 [MHz]	130.7944520		130.7944520
Nucleus 2			
Nucleus 2	off	Edit	
Nucleus 2 NUC2 O2 [Hz]	off 0	Edit	
Nucleus 2 NUC2 O2 [Hz] O2P [ppm]	off 0 0	Edit	
Nucleus 2 NUC2 O2 [Hz] O2P [ppm] SFO2 [MHz]	off 0 0 399.7330000	Edit	

Note: NUC1 must be the same for F2 and F1, and NUC2 must be checked off.

 Durations 	
P [µsec]	Edit
D [sec]	Edit
IN [sec]	Edit
INP [µsec]	Edit
HDDUTY [%]	20.0
HDRATE	1
PCPD [µsec]	Edit
V9 [%]	5.00

Note: must use optimized values for p1, p2 and p3. Check p15=2000, d4=0.000020.

Power	
PLW [W]	Edit
PLdB	Edit
PLSTRT [dB]	-6
PLSTEP	0.1
SHAPE	Edit
GRADIENT	Edit
CAGPARS	Edit
AMP [%]	Edit

Note: use same power level for plw1, plw11 and plw12. Check plw21 about 0.2-0.3 W.

Program parameters			
L	Edit		
CNST	Edit		
CPDPRG	Edit		
PHCOR [degree]	Edit		
SUBNAM	Edit		

Note: all the others use default

- 7) Command **zg** to collect data. During data acquisition, you can check data quality by **xfb** or **xfshear**.
- 8) When experiment is finished, follow the steps from Ending Work Part (see above)