High-Field Solid-State NMR: The Tools and Their Application in Materials Research

Arno Kentgens
Department of Physical Chemistry / solid-state NMR, Institute for Molecules and Materials, Radboud University Nijmegen, The Netherlands.
Outline

- Basic NMR Introduction
- Solid-State NMR
 - NMR tools for spin 1/2
 - Case Study: melaminephosphate flame retardants
 - NMR tools for quadrupolar nuclei
- NMR tools for the future
 - NMR above 30 T (1.27 GHz)
 - Microcoil NMR
 - Polarization Enhancement Techniques
 - Mechanical Detection of Magnetic Resonance
Nijmegen Science Faculty &
Goudsmit Pavilion for NMR Research
The Concept of Spin

Goudsmit en Uhlenbeck 1925: Electrons have an intrinsic magnetic moment caused by the rotation of the electron.

Goudsmit - Pauli – Stern 1926: nuclear spin.

Zeeman effect

Goudsmit Pavilion for NMR Research
Nuclear Spin Hamiltonian

- Quantum state of the entire sample is fully described by a wave function $|\psi_{\text{full}}(t)\rangle$
 \[
 \frac{d}{dt}|\psi_{\text{full}}(t)\rangle = -i\hat{H}_{\text{full}}|\psi_{\text{full}}(t)\rangle
 \]

- Effects of rapidly moving electrons is blurred out, their "average" effect is contained in the spin Hamiltonian:
 \[
 \frac{d}{dt}|\psi_{\text{spin}}(t)\rangle = -i\hat{H}_{\text{spin}}|\psi_{\text{spin}}(t)\rangle
 \]

Study Malcolm H. Levitt
Spin Dynamics, Wiley, 2001
Nuclear Zeeman Interaction

Spin interacts with external magnetic field:

\[
\hat{H}^j_{\text{Zeeman}} = -\mu_j \cdot \vec{B} = -\gamma_j \hat{I}_j \vec{B} \quad \overset{B_0 \parallel z}{\longrightarrow} \quad \hat{H}^j_{\text{Zeeman}} = -\gamma_j \hat{I}_{j,z} B_0
\]
Transverse RF field

\[\hat{H}_{RF}^j = \frac{1}{2} \gamma_j B_1 \{ \cos(\omega_0 t + \phi_p) \hat{I}_{j,x} + \sin(\omega_0 t + \phi_p) \hat{I}_{j,y} \} \]

nutation frequency \(\omega_{nut} = \frac{1}{2} \gamma_j B_1 \)
Precession in the Magnetic Field

Larmor precession frequency

B₀
The basic NMR experiment as viewed from the rotating frame

- The magnetization is tipped over by a rf-pulse. The precession of the magnetization in the field induces a voltage in the receiver coil.
From Free Induction Decay to Spectrum

Fourier Transform
Chemical Shift

diamagnetism

\[\vec{B}_{j,loc} = \vec{B}_0 + \vec{B}_{j,induced} \]

\[\vec{B}_{j,induced} = \begin{bmatrix} \delta_{j,xx} & \delta_{j,xy} & \delta_{j,xz} \\ \delta_{j,yx} & \delta_{j,yy} & \delta_{j,yz} \\ \delta_{j,zx} & \delta_{j,zy} & \delta_{j,zz} \end{bmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ B_0 \end{pmatrix} \]

secular approximation: \(\hat{H}_{CS}^j \equiv -\gamma_j B_0 \delta_{j,zz} (\theta) \hat{I}_{j,z} \)
Ethanol: $\text{CH}_3\text{CH}_2\text{OH}$

C–H O–H

In isotropic liquids motionally averaged chemical shift:

$$\hat{H}^j_{\text{CS,iso}} \equiv -\gamma_j B_0 \delta^j_{\text{iso}} \hat{I}^j_{j,z}$$

$$\delta^j_{\text{iso}} = \frac{1}{3} (\delta^j_{j,xx} + \delta^j_{j,yy} + \delta^j_{j,zz})$$

Packard, Stanford 1951

Purcell: “Indeed certain branches of this work are now being pursued in chemical laboratories.”
Anisotropic Interactions

Liquid: rotational and translational motions

Single crystal

Powder Spectrum

Individual Peaks
What Information Can NMR Give

Site Identification

- **Chemical Shift**
 - Identification of structural building blocks (1H, 13C).
 - Coordination of 27Al, 69,71Ga, 29Si etc).
 - Hydrogen bonding (1H, 15N, 17O)
 - Majority of periodic table is accessible

- **Knight shifts, Fermi-contact shifts etc (Lecture Berthier).**
 - Li-ions in paramagnetic battery materials
Anisotropic ^{13}C interactions

Identification

Alignment

Molecular motions

Fig. 6.5 Some chemical shift anisotropy line shapes under conditions of molecular motion. Three different models of molecular motion are considered: (a) two-site hopping, chemical shift tensor principal z-axis reorientates by 109.5°; (b) two-site hopping, chemical shift tensor principal z-axis reorientates by 120° and (c) three-site hopping about a rotation axis orientated at 70.5° to the chemical shift tensor principal z-axis in each site. In all cases, the chemical shift tensor is axially symmetric and the populations of each site are equal. The τ^{-1} (s) for each case are given with the spectra.
Site Identification

27Al NMR of oxides

- 4-fold coordinated Al: 80 - 40 ppm
- 5-fold coordinated Al: 40 - 20 ppm
- 6-fold coordinated Al: 20 - -10 ppm

δ_{cs} Tetrahedral Al-O-Si in aluminosilicates

\[\delta_{iso} = -0.50 \theta + 132 \]
Anisotropic Interactions

😊 Broad lines
😊 Structural information
😊 study dynamics
😊 Manipulation in ordinary and spin space

😢 use adequate tools

31P powder spectra

Na₃PO₄

Na₄P₂O₇

(NaPO₃)ₙ

δ [ppm]
Tool: Magic-Angle Spinning

Averaging of anisotropic interactions in ordinary coordinate space.

12000 Hz

870 Hz

static

\[\omega/2\pi \text{ [kHz]} \]
Direct dipole-dipole interactions

\[
\hat{H}_{DD}^{jk} = b_{jk} \left(3 (\hat{I}_j \cdot e_{jk})(\hat{I}_k \cdot e_{jk}) - \hat{I}_j \cdot \hat{I}_k \right)
\]

\(e_{jk}\) is the unit vector connecting spin \(j\) and \(k\)

secular approximation:

homonuclear: \(\hat{H}_{DD}^{jk}(\theta_{jk}) = b_{jk} \left(3 \cos^2(\theta_{jk}) - 1 \right) \left(3\hat{I}_j \hat{I}_k - \hat{I}_j \cdot \hat{I}_k \right)\)

heteronuclear: \(\hat{H}_{DD}^{jk}(\theta_{jk}) = b_{jk} \left(3 \cos^2(\theta_{jk}) - 1 \right) \left(2\hat{I}_j \hat{I}_k \right)\)
Anisotropic Dipolar Interaction

Pake doublet

For abundant spins MAS is only effective if spinning speed significantly exceeds the line width
What Information Can NMR Give

Intersite correlations

- *Dipolar Interactions (through space)*
 - Spatial proximity of nuclei (~1/r^3)
 - Homonuclear
 - Heteronuclear

- *J-couplings (mediated through chemical bonds)*
 - Existence of chemical bonds.

- *Hyperfine interactions (coupling to electron spin > Lecture Berthier).*
Tool: Radio Frequency Irradiation

- Heteronuclear decoupling of nuclei by CW-irradiation with resonant RF waves. Pulsed alternatives TPPI, XiX etc.

- Homonuclear decoupling by CW irradiation at the magic angle (Lee-Goldburg decoupling). Pulsed alternatives: WAHUHA, MREV-8, FSLG, Dumbo etc.

Manipulation of interactions in spin space.
Combining Tools

👍 Combined Rotational and Multiple Pulse Decoupling

👍 Recoupling of dipolar interactions using radio-frequency sequences synchronized with sample spinning and matched rf-field strength.

👍 Transfer of coherence of coupled nuclei
1H Spectroscopy

FSLG
12.5 kHz MAS

RF

30 kHz MAS

NH$_3^+$

CH

CH$_2$

Alanine

MAS

static

proton chemical shift (ppm)

14 12 10 8 6 4 2 0 -2 -4

100 80 60 40 20 0 -20 -40 -60 -80

Combining Tools

13C Single Pulse Excitation

+ 1H CW Decoupling

+ Magic Angle Spinning

+ MAS + 1H LG decoupling

+ MAS + 1H CW decoupling
Two-dimensional NMR

\[(\pi/2)_{\phi_1} \rightarrow t_1 \rightarrow (\pi/2)_{\phi_2} \rightarrow t_2 \rightarrow \phi_{\text{rec}}, \phi_{\text{dig}} \]

Fourier Transform \(t_2 \) and \(t_1 \)
Case Study: Environment-Friendly Condensed Phase Flame Retardants

Melamine Phosphates:
- MP
- (MP)$_2$ (Pyrophosphate)
- M Polyphosphate

Conversion ~200°C - 260°C
Above 260 °C decomposition

Crystal structures unknown
Polymerization process unknown
FR Mechanism unknown

A. Brinkmann, E.R.H van Eck & A.P.M. Kentgens
Magnetic Resonance in Chemistry, 2007 submitted
Site ID
with added *anisotropic* information

\[\sigma_{11} = 46 \text{ ppm} \]
\[\sigma_{22} = 4 \text{ ppm} \]
\[\sigma_{33} = -51 \text{ ppm} \]

\[\sigma_{11} = 68 \text{ ppm} \mid 64 \text{ ppm} \]
\[\sigma_{22} = -12 \text{ ppm} \mid -8 \text{ ppm} \]
\[\sigma_{33} = -84 \text{ ppm} \mid -91 \text{ ppm} \]

\[\sigma_{11} = 77 \text{ ppm} \]
\[\sigma_{22} = 14 \text{ ppm} \]
\[\sigma_{33} = -168 \text{ ppm} \]
1D 1H Spectra at 18.8 T

- **MP**
- **(MP)$_2$**
- **MPpoly**

1H Spectra
- **MAS**
- $\omega_r/2\pi = 49$ kHz
- $B_0 = 18.8$ T

$\omega_r/2\pi = 12$ kHz
- $B_0 = 7.1$ T
Heteronuclear Correlation $^{1}\text{H}-^{31}\text{P}$

Diagram Description:
- **FSLG** and **LG-CP** pulses are applied during t_1.
- **TPPM** pulse is applied during τ_{ct}.
- **RAMP** is used during t_2.
- **^{31}P** and **^{1}H** are detected.

Parameters:
- $\omega_r/2\pi = 12$ kHz
- $\tau_{ct} = 0.1$ ms
- $\tau_{ct} = 2.5$ ms

Equation:
$$\tau_{ct} = 0.1 \text{ ms}$$

Graph:
- 2D correlation spectroscopy plots showing δ_1 and δ_2.
- The spectra display distinct peaks corresponding to ^{31}P and ^{1}H.

Institution:
- Institute for Molecular and Materials
Heteronuclear Correlation $^{1}\text{H}-^{13}\text{C}$

^{1}H Spectrum
$B_0=18.8$ T

$\omega_r/2\pi = 12$ kHz
$B_0 = 7.1$ T
Homonuclear: $^{15}\text{N}-^{15}\text{N}$ in MP

$\omega_r/2\pi = 12 \text{ kHz}$
$B_0 = 7.1 \text{ T}$
15N-1H distance measurements

Dipolar recoupling

Echo: refocus 15N chemical shift, keep 15N-1H dipolar interaction
MP: Assignment

H22: 11.1 ppm
P1: -0.2 ppm
H21: 13.7 ppm
C13: 156 ppm
H17: 6.2/8.0 ppm
N7: -291.3 ppm
H18: 8.0/6.2 ppm
N10: -215.6 ppm
H19: 6.8 ppm

H23: 13.2 ppm
N8: -258.0 ppm
H16: 9.1 ppm
N6: -290.5 ppm
H15: 5.6 ppm
C12: 156 ppm
N9: -213.3 ppm
C14: 164 ppm
H20: 8.7 ppm
N11: -280.0 ppm
Hydrogen Bonding & π–π Stacking

Combined NMR and X-ray Powder Diffraction

V. Brodski, R. Peschar and H. Schenk
Univ. Of Amsterdam
Hydrogen bonding in biological molecules

N-H...O

O-H...O

Proteins and Peptides

Polysaccharides

^{17}O is a quadrupolar I=5/2 nucleus
Quadrupolar Interaction

secular approximation: \(\hat{H}_Q^j(\theta) = \omega_{j,Q} \left(3 \hat{I}_{jz}^2 - \hat{I}_j \cdot \hat{I}_j \right) \)

with \(\omega_{j,Q}(\theta) = \frac{3eQ_j}{4I_j(2I_j - 1)} V_{j,zz}(\theta) \)
First order quadrupolar interaction

23Na (I=3/2) in NaNO$_3$
Second order quadrupolar interaction

As Coordinations in AlGaAs

\[^{75}\text{As NMR @ 18.8T} \]
\[\text{Al}_{0.47}\text{Ga}_{0.53}\text{As} \]
What Information Can NMR Give

Site Identification

• Quadrupolar Interaction
 - Determination of local symmetry (distortions).
 - \(^{17}\)O NMR parameters are sensitive to H-bond formation.
 - Majority of periodic table has I>1/2
Quadrupolar Interaction:
Site Symmetry

Framework aluminosilicate glasses with varying charge-balancing cations (Li, Na, K, Rb, Cs)
Tool: Magic Angle Spinning

- Fast magic-angle spinning
- Averaged: P_2
- Not averaged: P_4

Spin-½:
- $\omega_2/2\pi = 870$ Hz
- $[^{13}\text{C}_2]$-glycine
- ^{13}C

Spin-½:
- $\omega_2/2\pi = 12$ kHz

Use high fields!
Tools: Double Rotation (DOR)
Dynamic Angle Spinning (DAS)

\[\nu_{m,-m} = C_0(1,m) \cdot \nu_0 + C_2(1,m) \cdot \nu_2(\alpha, \beta) \cdot P_2(\cos(\theta)) + C_4(1,m) \cdot \nu_4(\alpha, \beta) \cdot P_4(\cos(\theta)) \]

Multiple-Quantum MAS

\[\nu_{m,-m} = C_0(I,m) \cdot \nu_0 + C_2(I,m) \cdot \nu_2(\alpha, \beta) \cdot P_2(\cos(\theta)) + C_4(I,m) \cdot \nu_4(\alpha, \beta) \cdot P_4(\cos(\theta)) \]

Sensitivity issue (multiple-quantum excitation and conversion)

Dehydrated H-ZSM5

- High Field (14.1 T)
- Fast MAS (27 kHz)
- MQ→1Q DFS conversion

27Al MQMAS

$\bar{\sigma}_{iso} = 55 \text{ ppm}$
$\bar{C}_{qcc} = 16.4 \text{ MHz}$
$\eta = 0.1$
rDFS 17O MAS NMR

17O MAS NMR

17O challenging because of low γ and large C_Ω

~ 4.3 S/N Enhancement for biologically relevant material

17O MAS (25 kHz) @ 14.1T
1968 transients
Heteronuclear Recoupling: \(^{17}\text{O}-^{1}\text{H} \) distance measurement

\[r_{\text{OH}} \text{ distance } 104 \text{ pm is within 5\% of the distance determined by neutron diffraction (99 pm).} \]

O-H libration slightly averages dipolar interaction.
Heteronuclear Recoupling: 17O-1H distance measurement

Heteronuclear Recoupling:

Distance measurement

$\eta_{O-H''}$ distance 161 pm

A. Brinkmann & A.P.M. Kentgens
Summary of Internal Hamiltonians

\[\hat{H}_{\text{int}} \]

- Magnetic (all spins)
 - One-spin
 - Chemical shift
 - Spin-rotation
 - Dipole-dipole
 - J-coupling
 - Quadrupole coupling
 - Two-spin
 - Electric (spin >1/2 only)
Conclusions

- Solid state NMR is a powerful analysis technique
 - Probes microscopic interactions (1-100Å)
 - Study structure and dynamics
 - Works in crystalline, partly disordered and amorphous compounds
 - Non-destructive technique needing no special sample preparation

- Novel methodological developments will open new applications in advanced materials science
Sensitivity enhancement is driving methodological developments

Options for signal enhancement: Potential gain

- *Double* B_0 3
- Cryo-cooled rf coils 3
- Population transfer in coupled or quadrupolar spin systems 2-5
- Low temperature MAS 10
- Microcoil detection 100
- Dynamic Nuclear Polarization (DNP) 10^3
- Optical polarization (ODMR / OPMR) 10^4
- Hyper polarized Xe, He, Kr 10^4
- Para-Hydrogen 10^4
- Force detection 10^3-10^6
SSNMR Beyond 1 GHz

- 33 T
- 40 kA
- 20 MW
Opportunities and Problems

Opportunities
- Sensitivity ($\sim B^{7/4}$)
- Resolution ($\sim B - B^2$)
- High speed (proton) MAS
- Quadrupolar nuclei

Problems
- Intrinsic homogeneity ($\sim 10^{-3}$/cm)
- Temporal stability ($\sim 10^{-5}$)
 - power supply
 - temperature and flux changes
 - Operation time

- Ferro-shims
- High speed MAS
- Reference deconvolution
- Follow-B
Field profile of a uniformly magnetized cylinder

Field profile of a uniformly magnetized cylinder

Field profile Ferroshim

Magnet field profile before and after Ferroshim

Shifting the shim off-axis allows reduction of radial gradients

Magic Angle Spinning averages residual gradients
Field map with ferroshim

Field map \(D_2O \), after x-y optimization ferroshim

Field x-y gradient < 5 kHz (drift dominated) <25 ppm/cm
Reference Deconvolution

\[c(t) = \left(\frac{S_{\text{ideal-ref}}(t) \times W(t)}{S_{\text{exp-ref}}(t)} \right)^{\frac{\gamma_1}{\gamma_s}} \]

\[S_c(\omega) = \text{FT}[S_{\text{exp}}(t) \times c(t)] \]

Morris, Barjat and Horne, PNMRS 31 (1997) 197-257.
Reference Deconvolution

- Discrete field steps
- MAS: resolution is stability limited
- Fourier spectrum distorted (chirp)
- Length of FID determines resolution
Triple-tuned MAS probe

2D reference channel

\[\text{ND}_4\text{Cl} \text{ reference signal lasts 30 - 50 msec, i.e. intrinsic homogeneity of about 0.15 ppm.} \]
Field Stability

Field stability 10-50 ppm on 13C

13C MAS of alanine

Field stability 10-50 ppm on 13C
Follow B option

Use first 200 μsec of reference FID to determine field
Reset spectrometer frequencies
Use remaining part of ref-FID for deconvolution
Follow B + reference deconvolution
At 21.1 T separation of the two Sc sites is nearly achieved…
Systems with large quadrupolar interactions

45Sc 309.5 MHz

1: $C_q=15.4$ MHz $\eta_Q=0.61$
2: $C_q=23.4$ MHz $\eta_Q=0.10$

Intensity ratio
exp 1:2.995
theor 1:3

64 scans
MAS 38 kHz
Fixed phase
Averaging
=> follow B
=> Ref. dec.
Important technical issues are weight, volume, discharge/recharge rates, reaction heat, safety and cost.

IEA (International Energy Agency) targets:
- at least 5-10 wt.%
- H₂ recoverable at < 80°C
- Loading/unloading at 1 atm absolute pressure.

Solid H₂ storage
- (Complex) Metal hydrides, like NaAlH₄, NaBH₄, LaNi₅H₆.

NaAlH₄ ↔ Na₃AlH₆ + 2 Al + 3 H₂
Na₃AlH₆ ↔ 3 NaH + Al + 3/2 H₂
Static 1H NMR on Ti-doped NaAlH$_4$

- Partly release of H$_2$ -> NaAlH$_4$ and Na$_3$AlH$_6$ are present
- Hahn-Solid-Hahn Echo to avoid spectral distortions
- Two fractions with different relaxation times T_1 and different line widths.
- Na$_3$AlH$_6$: Narrowing of the line shape -> proton mobility in the crystal -> fast rotating AlH$_6$ clusters

Na$_3$AlH$_6$ ↔ NaAlH$_4$ + 2 Al + 3 H$_2$
Na$_3$AlH$_6$ ↔ 3 NaH + Al + 3/2 H$_2$
^{1}H and ^{27}Al high-speed (40 kHz) MAS of Ti-doped Alanates at 30 T

$\text{NaAlH}_4 \leftrightarrow \text{Na}_3\text{AlH}_6 + 2\text{Al} + 3\text{H}_2$

$\text{Na}_3\text{AlH}_6 \leftrightarrow 3\text{NaH} + \text{Al} + 3/2\text{H}_2$

M. Verkuijlen, E. van Eck, J. van Bentum, B. Dam (Free University of Amsterdam)
C. Baldé, K. de Jong (Utrecht University)
Broadband homonuclear recoupling

^2H

synchronize

90°

t_1

90°

τ_{mix}

$synchronize$

90°

t_2

$\text{[R}_6^{2}\text{]}_0$

$\text{[R}_6^{2}\text{]}_0$

$\text{[R}_6^{2}\text{]}_{120}$

$\text{[R}_6^{2}\text{]}_{120}$

$\text{[R}_6^{2}\text{]}_{240}$

$\text{[R}_6^{2}\text{]}_{240}$

$\text{[R}_6^{2}\text{]}_{240}$

$\text{SR}_6^{2}\text{-RFDR}$

$36\tau_r$

180_{60}

180_{-60}

$2\tau_r$

Andreas Brinkmann, Jorge Garibay
$^{13}\text{C}-^{13}\text{C}$ homonuclear correlation

^{13}C labeled L-alanine

$\tau_{m} = 3.6 \text{ ms}$
$^{13}\text{C}-\text{H}$ heteronuclear correlation of L-alanine

CP match $\nu_1=70$ kHz; $\nu_1=30$ kHz; $\nu_r=40$ kHz
Conclusion High Field NMR

- Using a combination of hardware solutions and NMR tricks, one- and two-dimensional solid-state NMR at 30 Tesla is feasible.
- Quadrupolar systems with either very large or very small quadrupolar interactions
- High resolution proton NMR
Acknowledgements

Physical Chemistry / solid-state NMR
Jan van Bentum
Ernst van Eck

Andreas Brinkmann
Jorge Villenueva Garibay

Paul Knijn
Margriet Verkuijlen
Sureskumar Vasa
Chandrakala Gowda
Anna-Jo de Vries

Gerrit Janssen
Jan van Os
Hans Janssen

IMM groups of
Jan-Kees Maan
Rob de Groot
Gilles de Wijs
Floris Rutjes
Jan van Hest
Alan Rowan
Roeland Nolte

Universiteit Twente
Han Gardeniers
Jacob Bart

KBFI Tallinn
Ago Samoson
Tiit Anupold
Jan Paast

Free University of Amsterdam
Bernard Dam
Ronald Griessen

TechnoCentrum
E. Sweers
B. van den Berg

University of Utrecht
Cees Baldé
Krijn de Jong

ETH Zürich
Jeroen van Bokhoven
Roel Prins

NWO
FOM

Nederlandse Organisatie voor Wetenschappelijk Onderzoek