2D only HETCOR pulse program for topSpin2.1 operating system

Home and Applets > Pulse Program > Topspin 2.1, Avance III > HPdec and CPMAS > 2D only HETCOR for TopSpin2.1
Hx-hetcor pulse sequence

No homonuclear H-H decoupling during t1 period; inf1 = in0.

Hx-hetcor pulse sequence with FSLG homonuclear dipole decoupling

FSLG homonuclear H-H decoupling during t1 period.

Hx-hetcor pulse sequence with DUMBO homonuclear dipole decoupling

DUMBO homonuclear H-H decoupling during t1 period.

*** Outline ***

Code for Avance III spectrometers with topSpin2.1 operating system

;hxhetcor (TOPSPIN 2.0)

; heteronuclear correlation between protons and X nuclei
; with or without homonuclear decoupling during t1
; possible decoupling schemes are FSLG, PMLG, and DUMBO
; see e.g.: B.-J. van Rossum, H. Foerster, and H.J.M. deGroot, J. Magn. Reson. 124 (2003) 516-519
; create dumbo pulse using AU program dumbo
; create pmlg pulse using AU program pmlg_shape

; written by Stefan Steuernagel (031201)

;Avance II+ version
;parameters:
;ns : 2, n*4
;d1 : recycle delay
;pl1 : power level for X contact
;sp0 : proton power level during contact
;pl2 : =120dB, not used
;spnam0 : e.g. ramp.100 
;spnam1 : lgs-1, lgs-4 or pmlg-36, or dumbo1, set p10 to appropriate multiple of LG period
;pl12: for decoupling and excitation 1H
;sp1: for homonuclear decoupling DUMBO, PMLG
;pl13: for homonuclear decoupling FSLG
;p3 : 1H 90 degree pulse
;p10 : duration of phase modulated shape pulse
;p15 : contact time, short: 50 - 200 us
;pcpd2 : pulse length in decoupling sequence
;phcor3 : phase correction for optimal FSLG peformance: minimize zero frequency glitch in F1
;cpdprg2 : cw, tppm15, spinal64
;cnst20 : LG-RF field as adjusted, in Hz used to calculate cnst22 and cnst23 +and - LG frequency
;cnst21 : additional LG offset, usually =0
;cnst22 : +ve LG offset
;cnst23 : -ve LG offset
;cnst24 : offset for proton evolution under LG, usually 0 - -2000
;l0 : =0, increment for t1
;l3 : 1, 2, or 4 for dwell in t1
;zgoptns : -Dfslg, -Ddumbo, -Dpmlg, -Dnodec
;FnMode : States-TPPI, States, or TPPI for zgoptns -Dnodec
;         undefined for all other zgoptns
;mc2 : States-TPPI, if FnMode undefined, in case of States the statement "1m rp0" must be activated
;      by removing semicolon at the beginning of the corresponding line
;d0 : =3u
;in_010 : =1/swh {f1}, calculated in program
;nd_010 : 1

;$COMMENT=HETCOR (CP based), with or w/o homonuclear decoupling during t1, various schemes possible
;$CLASS=Solids
;$DIM=2D
;$TYPE=cross polarisation
;$SUBTYPE=heteronuclear correlation
;$OWNER=Bruker

define loopcounter nfid
"nfid=td1/2"

;cnst11 : to adjust t=0 for acquisition, if digmod = baseopt
"acqt0=1u*cnst11"

define pulse pma                        ;54.7° = magic angle
"pma=(p3*547)/900"

#ifdef fslg
#include <lgcalc.incl>
;in0 : =(0.578*l3*4*p5)             1/sqrt(3) = 0.578, the scaling factor
"in0=(0.578*l3*4*p5)"
#endif /* fslg */

#ifdef dumbo
;in0 : =0.578*l3*p10
"in0=(0.578*l3*p10)"
#endif /* dumbo */

#ifdef pmlg
;in0 : =0.578*l3*p10
"in0=(0.578*l3*p10)"
#endif /* pmlg */

1 ze
2 10m do:f2
  d1                                    ;recycle delay
  1u fq=cnst21:f2
  (p3 pl12 ph0):f2                      ;proton 90° pulse

#ifdef nodec                            ;no homonuclear H-H decoupling during t1 period
;d0 : =0
;inf1 : =1/swh(f1), increment for t1
"in0 = inf1"
  d0
#endif /* nodec */

#ifdef dumbo
  (pma ph1):f2
  1u fq=cnst24:f2
3 (p10:sp1 ph3):f2
  lo to 3 times l0
  (pma ph7 pl12 fq=cnst21):f2
#endif /* dumbo */

#ifdef pmlg
  (pma ph1):f2
  1u fq=cnst24:f2
3 (p10:sp1 ph3:r):f2
  lo to 3 times l0
  (pma ph7 pl12 fq=cnst21):f2           ;magnetization back to the xy plane for spin-locking
#endif /* pmlg */

#ifdef fslg
  (pma ph1):f2                          ;magnetization in the plane perpendicular to the 
                                        ;effective magnetic field
  1u fq=cnst24:f2
3 (p5 fq=cnst22 pl13 ph3):f2
  (p5 fq=cnst23 ph4):f2
  (p5 fq=cnst22 ph3):f2
  (p5 fq=cnst23 ph4):f2
  lo to 3 times l0
  (pma ph7 pl12 fq=cnst21):f2           ;magnetization back to the xy plane for spin-locking
#endif /* fslg */

  (p15 pl1 ph2):f1 (p15:sp0 ph10):f2    ;CP contact time
  1u cpds2:f2
  go=2  ph31
  1m do:f2
#ifdef nodec
  10m mc #0 to 2 F1PH(ip0,id0)
#else
  10m wr #0 if #0 zd
  1m ip0          ;increment all phases of ph0 by 90° 
                  ;for quadrature detection in F1 dimension
  lo to 2 times 2
4 1m iu0          ;increment counter l0 by 1
  lo to 4 times l3
; 1m rp0          ;in case of States remove semicolon at beginning of line
  lo to 2 times nfid
#endif /* nodec */
exit

ph0=1 3
ph1=1
ph2=0 0 2 2 1 1 3 3
ph3=0 
ph4=2
ph7=3
ph10=0
ph31=0 2 2 0 1 3 3 1
  

Example1: 1H -> 31P in NH4H2PO4 with AV500

proton 90°pulse

1H 90° pulse duration of NH4H2PO4 in a 4-mm diameter rotor spinning at 14 kHz.

Pulseprogram parameters:

General  
PULPROG zg
TD 2048
NS 4
DS 0
SWH [Hz] 100000.00
AQ [s] 0.0102950
RG 4
DW [µs] 10.000
DE [µs] 6.50
D1 [s] 5.00000000
Channel f1  
NUC1 1H
P1 [µs] 5.00
PL1 [dB] 10
SFO1 [MHz] 500.2137120
  1. Collin M. Kowalchuk, Harald Rösner, Dieter Fenske, Yining Huang, and John F. Corrigan
    Copper tellurolate clusters in trimethylsilylated MCM-41 — Preparation and condensation,
    Can. J. Chem. 84, 196-204 (2006).
    Abstract
  2. Robert W. Schurko, Roderick E. Wasylishen, Scott J. Moore, Luigi G. Marzilli, and John H. Nelson
    Solid-state phosphorus-31 NMR study of phosphine- and phosphite-substituted cobaloximes,
    Can. J. Chem. 77, 1973-1983 (1999).
    Abstract
  3. K. D. Behringer and J. Blümel
    Immobilization of carbonylnickel complexes: A solid-state NMR study,
    Inorg. Chem. 35, 1814-1819 (1996).
    Abstract
  4. Klaus Eichele and Roderick E. Wasylishen
    31P NMR study of powder and single-crystal samples of ammonium dihydrogen phosphate: Effect of Homonuclear Dipolar Coupling,
    J. Phys. Chem. 98, 3108-3113 (1994).
    Abstract

Example2: 1H -> 31P in NaH2PO4 with AV500

1H MAS spectrum of NaH2PO4

1H MAS spectrum of NaH2PO4 in a 4-mm diameter, 50 µLitre HRMAS rotor spinning at 10 kHz.

Pulseprogram parameters:

General  
PULPROG zg
TD 2048
NS 4
DS 0
SWH [Hz] 100000.00
AQ [s] 0.0102950
RG 4
DW [µs] 5.000
DE [µs] 6.50
D1 [s] 5.00000000
TD0 1
Channel f1  
NUC1 1H
P1 [µs] 5.00
PL1W [W] 10.00
SFO1 [MHz] 500.2137120

1H DUMBO spectrum of NaH2PO4

1H windowed DUMBO spectrum of NaH2PO4 in a 4-mm diameter, 50 µLitre HRMAS rotor spinning at 10 kHz.

Pulseprogram parameters for dumbod2:

General  
PULPROG dumbod2
TD 700
NS 4
DS 0
SWH [Hz] 8012.82
AQ [s] 0.0437924
RG 4
DW [µs] 62.400
DE [µs] 4.50
CNST11 0.0000000
D1 [s] 5.00000000
D3 [s] 0.00000300
d9 [s] 0.00000260
L11 26
P9 [µs] 2.60
P10 [µs] 24.00
PL13 [dB] 2.50
acqu [s] 0.00000130
count 748
cycle [s] 0.00005850
dead [s] 0.00000120
rest [s] 0.00003440
Channel f1  
dumbop [µs] 24.00
NUC1 1H
P1 [µs] 2.00
PL1 [dB] 3.80
PL12 [dB] 3.80
SFO1 [MHz] 500.2155921
SP1 [dB] 2.50
SPNAM1 dumbo_1+0
SPOAL1 0.500
SPOFFS1 [Hz] 0.00
  1. Olivier Lafon, Qiang Wang, Bingwen Hu, Julien Trébosc, Feng Deng, and Jean-Paul Amoureux
    Proton-proton homonuclear dipolar decoupling in solid-state NMR using rotor-synchronized z-rotation pulse sequences,
    J. Chem. Phys. 130, 014504/1-014504/13 (2009).
    Abstract

1H-31P 2D hetcor spectrum

31P{1H} hetcor spectrum of NaH2PO4 in a 4-mm diameter rotor spinning at 14 kHz, no homonuclear H-H decoupling during t1 period.

Pulseprogram parameters:

General  
PULPROG hxhetcor
TD 3494
NS 128
DS 0
SWH [Hz] 50000.00
AQ [s] 0.0349900
RG 4
DW [µs] 10.000
DE [µs] 6.50
CNST11 0.0000000
D0 [s] 0.00000300
D1 [s] 5.00000000
IN0 [s] 0.00002500
ST1CNT 16
ZGOPTNS -Dnodec
Channel f1  
NUC1 31P
P15 [µs] 1000.00
PL1 [dB] 9.50
PL1W [W] 39.34462738
SFO1 [MHz] 202.4856427
Channel f2  
CNST21 0.0000000
CPDPRG2 spinal64
NUC2 1H
P3 [µs] 5.2
PCPD2 [µs] 9.50
PL2 [dB] 120
PL2W [W] 0.00000000
PL12 [dB] 10.00
PL12W [W] 32.07678986
SFO2 [MHz] 500.2167400
SP0 [dB] 7.00
SP0W [W] 64.00160980
SPNAM0 ramp.100
SPOAL0 0.500
SPOFFS0 [Hz] 0.00

Acquisition parameters:

  F2 F1
Experiment    
PULPROG hxhetcor  
AQ_mod DQD  
FnMODE   STATES
TD 3494 128
NS 128  
DS 0  
TD0 1  
Width    
SW [ppm] 246.9311 79.9653
SW [Hz] 50000.00 40000.000
IN_F [µs]   25.00
AQ [s] 0.0349900 0.0016000
Nucleus1    
NUC1 31P  
O1 [Hz] 971.70  
O1P [ppm] 4.799  
SFO1 [MHz] 202.4856427  
BF1 [MHz] 202.4846710  
Nucleus2    
NUC2   1H
O2 [Hz]   16740.00
O2P [ppm]   33.467
SFO2 [MHz]   500.2167400
BF2 [MHz]   500.2000000

References

  1. Kanmi Mao and Marek Pruski
    Directly and indirectly detected through-bond heteronuclear correlation solid-state NMR spectroscopy under fast MAS,
    J. Magn. Reson. 201, 165-174 (2009).
    Abstract
  2. Kanmi Mao, Jerzy W. Wiench, Victor S.-Y. Lin, and Marek Pruski
    Indirectly detected through-bond chemical shift correlation NMR spectroscopy in solids under fast MAS: Studies of organic-inorganic hybrid materials,
    J. Magn. Reson. 196, 92-95 (2009).
    Abstract
  3. Xianyu Xue and Masami Kanzaki
    Proton distributions and hydrogen bonding in crystalline and glassy hydrous silicates and related inorganic materials: Insights from high-resolution solid-state nuclear magnetic resonance spectroscopy,
    J. Am. Ceram. Soc. 92, 2803-2830 (2009).
    Abstract
  4. Harris E. Mason, Andrew Kozlowski, and Brian L. Phillips
    Solid-state NMR study of the role of H and Na in AB-type carbonate hydroxylapatite,
    Chem. Mater. 20, 294-302 (2008).
    Abstract
  5. Yao-Hung Tseng, Yi-Ling Tsai, Tim W. T. Tsai, Chun-Pin Lin, Shih-Hao Huang, Chung-Yuan Mou, and Jerry C. C. Chan
    Double-quantum filtered heteronuclear correlation spectroscopy under magic angle spinning,
    Solid State Nucl. Magn. Reson. 31, 55-61 (2007).
    Abstract
  6. Gregory P. Holland and Todd M. Alam
    Multi-dimensional 1H-13C HETCOR and FSLG-HETCOR NMR study of sphingomyelin bilayers containing cholesterol in the gel and liquid crystalline states,
    J. Magn. Reson. 181, 316-326 (2006).
    Abstract
  7. Kinsei Anzai, Hiroyuki Kono, Jun-ichi Mizoguchi, Toshiharu Yanagi, Fumitoshi Hirayama, Hidetoshi Arima, and Kaneto Uekama
    Two-dimensional 13C-1H heteronuclear correlation NMR spectroscopic studies for the inclusion complex of cyclomaltoheptaose (β-cyclodextrin) with a new Helicobacter pylori eradicating agent (TG44) in the amorphous state,
    Carbohydr. Res. 341, 499-506 (2006).
    Abstract
  8. Piero Sozzani, Angiolina Comotti, Silvia Bracco, and Roberto Simonutti
    Cooperation of multiple CH…π interactions to stabilize polymers in aromatic nanochannels as indicated by 2D solid state NMR,
    Chem. Commun., 768-769 (2004).
    Abstract
  9. Piero Sozzani, Silvia Bracco, Angiolina Comotti, Roberto Simonutti, and Isabella Camurati
    Stoichiometric compounds of magnesium dichloride with ethanol for the supported Ziegler-Natta catalysis: First recognition and multidimensional MAS NMR study,
    J. Am. Chem. Soc. 125, 12881-12893 (2003).
    Abstract
  10. Dominique Massiot, Bruno Alonso, Franck Fayon, Florence Fredoueil, and Bruno Bujoli
    New NMR developments for structural investigation of proton-bearing materials at different length scales,
    Solid State Sci. 3, 11-16 (2001).
    Abstract
  11. B.-J. van Rossum, H. Förster, and H. J. M. de Groot
    High-field and high-speed CP-MAS 13C NMR heteronuclear dipolar-correlation spectroscopy of solids with frequency-switched Lee-Goldburg homonuclear decoupling,
    J. Magn. Reson. 124, 516-519 (1997).
    Abstract

Solid-state NMR bibliography for:

Aluminum-27
Antimony-121/123
Arsenic-75
Barium-135/137
Beryllium-9
Bismuth-209
Boron-11
Bromine-79/81
Calcium-43
Cesium-133
Chlorine-35/37
Chromium-53
Cobalt-59
Copper-63/65
Deuterium-2
Gallium-69/71
Germanium-73
Gold-197
Hafnium-177/179
Indium-113/115
Iodine-127
Iridium-191/193
Krypton-83
Lanthanum-139
Lithium-7
Magnesium-25
Manganese-55
Mercury-201
Molybdenum-95/97
Neon-21
Nickel-61
Niobium-93
Nitrogen-14
Osmium-189
Oxygen-17
Palladium-105
Potassium-39/41
Rhenium-185/187
Rubidium-85/87
Ruthenium-99/101
Scandium-45
Sodium-23
Strontium-87
Sulfur-33
Tantalum-181
Titanium-47/49
Vanadium-51
Xenon-131
Zinc-67
Zirconium-91
[Contact me] - Last updated February 24, 2020
Copyright © 2002-2024 pascal-man.com. All rights reserved.