CPMAS pulse program for topSpin2.1 operating system




Home and Applets > Pulse Program > HPdec and CPMAS > CPMAS for TopSpin2.1
CP pulse sequence


*** Outline ***


Code for Avance III spectrometers with topSpin2.1 operating system

;cp (TopSpin 2.0)

;basic cp experiment
;written by HF 1.3.2001
;changed by JOS 05/06/03
;comments added by STE 4.4.2006

;Avance II+ version
;parameters: 
;p3 : proton 90 at power level pl12
;p15 : contact time at pl1 (f1) and sp0 (f2)
;pl1 : X power level during contact
;sp0 : proton power level during contact
;pl2 : =120dB, not used
;pl12 : decoupling power level (if not pl13)
;pl13 : special decoupliong power level
;d1 : recycle delay
;cnst21 : on resonance, usually = 0
;pcpd2 : pulse length in decoupling sequence
;cpdprg2 : cw, tppm (at pl12), or lgs, cwlg, cwlgs (LG-decoupling) 
;here pl13 is used instead of pl12)
;spnam0 : use e.g. ramp.100 for variable amplitude CP
;zgoptns : -Dfslg, -Dlacq, or blank

;$COMMENT=basic cp experiment, arbitrary contact and decoupling schemes
;$CLASS=Solids
;$DIM=1D
;$TYPE=cross polarisation
;$SUBTYPE=simple 1D
;$OWNER=Bruker
prosol relations=<solids_cp>

#include <Avancesolids.incl>

#ifdef fslg
#include <lgcalc.incl>
;cnst20 : RF field achieved at pl13
;cnst21 : on resonance, usually = 0
;cnst22 : positive LG offset
;cnst23 : negative LG offset
;cnst24 : additional LG-offset
#endif /* fslg */
;cnst11 : to adjust t=0 for acquisition, if digmod = baseopt
"acqt0=1u*cnst11"

1 ze        ;accumulate into an empty memory

2 d1 do:f2  ;recycle delay, decoupler off in go-loop
#include <p15_prot.incl>
            ;make sure p15 does not exceed 10 msec
            ;let supervisor change this pulseprogram if 
            ;more is needed
#ifndef lacq
            ;disable protection file for long acquisition change decoupling power !!!
            ;or you risk probe damage
            ;if you set the label lacq (ZGOPTNS -Dlacq), the protection is disabled

#include <aq_prot.incl>
            ;allows max. 50 msec acquisition time, supervisor
            ;may change  to max. 1s at less than 5 % duty cycle
            ;and reduced decoupling field
#endif

  1u fq=cnst21:f2
  (p3  ph1):f2 (1u pl12):f2            ;proton 90° pulse
  (p15 pl1 ph2):f1 (p15:sp0 ph10):f2   ;contact pulse with square or ramp shape ramp.100 on F2
  go=2 ph31 cpds2:f2                   ;select appropriate decoupling sequence 
                                       ;pl12 is used here with cw, tppm, spinal, pl13 with cwlg, cwlgs,
                                       ;pmlg-36 (x, -x, -x, x with PMLG-9), pmlg-2 (2 * pmlg-36), pmlg-4 (4 * pmlg-36), dumbo_1+0
  1m do:f2                             ;decoupler off
  wr #0                                ;save data to disk
HaltAcqu, 1m                           ;jump address for protection files
exit                                   ;quit

ph0=  0
ph1=  1 3
ph10= 0
ph2=  0 0 2 2 1 1 3 3
ph31= 0 2 2 0 1 3 3 1
  

Example1: FSLG 1H -> 13C in adamantane with AV500

Frequency Switched Lee Goldberg heteronuclear decoupling

CP pulse sequence with fslg decoupling

CP MAS pulse sequence with fslg decoupling



C13 CP spectrum of adamantane with fslg decoupling

13C CP MAS spectrum of adamantane with fslg decoupling

Pulseprogram parameters for fslg:

General  
PULPROG cp
TD 3468
NS 8
DS 0
SWH [Hz] 34722.22
AQ [s] 0.0499892
RG 64
DW [µs] 14.400
DE [µs] 6.50
CNST11 0.0000000
CNST20 100000.0000000
CNST22 1.0000000
CNST23 1.0000000
CNST24 -4000.0000000
D1 [s] 5.00000000
ZGOPTNS -Dfslg
Channel f1  
NUC1 13C
P15 [µs] 5000.00
PL1 [dB] 2.00
PL1W [W] 232.18685913
SFO1 [MHz] 125.7814508
Channel f2  
CNST21 0.0000000
CPDPRG2 cwlgs
NUC2 1H
P3 [µs] 5.33
P5 [µs] 8.17
PL2 [dB] 120.00
PL2W [W] 0.00000000
PL12 [dB] 9.80
PL12W [W] 33.58852005
PL13 [dB] 5.20
PL13W [W] 96.87036133
SFO2 [MHz] 500.2134968
SP0 [dB] 7.30
SP0W [W] 59.72977448
SPNAM0 ramp.100
SPOAL0 0.500
SPOFFS0 [Hz] 0.00

  1. Cristina Coelho, João Rocha, P. K. Madhu, and Luís Mafra
    Practical aspects of Lee-Goldburg based CRAMPS techniques for high-resolution 1H NMR spectroscopy in solids: Implementation and applications,
    J. Magn. Reson. 194, 264-282 (2008).
    Abstract
     
  2. Matthias Ernst, Aswin Verhoeven, and Beat H. Meier
    High-speed magic-angle spinning 13C MAS NMR spectra of adamantane: Self-decoupling of the heteronuclear scalar interaction and proton spin diffusion,
    J. Magn. Reson. 130, 176-185 (1998).
    Abstract
     
  3. P. Tekely, P. Palmas, and D. Canet
    Effect of proton spin exchange on the residual 13C MAS NMR linewidths. Phase-modulated irradiation for efficient heteronuclear decoupling in rapidly rotating solids,
    J. Magn. Reson. A 107, 129-133 (1994).
    Abstract
     
  4. T. Terao, H. Miura, and A. Saika
    Measurements of the 13C-1H coupling constants in solid adamantane: Resolution enhancement by multiple-pulse decouplings,
    J. Magn. Reson. 49, 365-367 (1982).
    Abstract
     

Example2: PMLG 1H -> 13C in adamantane with AV500

Phase Modulated Lee Goldberg heteronuclear decoupling

CP pulse sequence with pmlg decoupling

CP MAS pulse sequence with pmlg decoupling



C13 CP spectrum of adamantane with pmlg decoupling

13C CP MAS spectrum of adamantane with pmlg decoupling

Pulseprogram parameters for pmlg:

General  
PULPROG cp
TD 3398
NS 2
DS 0
SWH [Hz] 34722.22
AQ [s] 0.0489812
RG 64
DW [µs] 14.400
DE [µs] 6.50
CNST11 0.0000000
D1 [s] 5.00000000
ZGOPTNS  
Channel f1  
NUC1 13C
P15 [µs] 5000.00
PL1 [dB] 2.00
PL1W [W] 232.18685913
SFO1 [MHz] 125.7814508
Channel f2  
CNST21 1.0000000
CPDPRG2 lgs
NUC2 1H
P10 [µs] 72.00
P3 [µs] 5.33
PL2 [dB] 120.00
PL2W [W] 0.00000000
PL12 [dB] 9.80
PL12W [W] 33.58852005
PL13 [dB] 6.00
PL13W [W] 80.57324982
SFO2 [MHz] 500.2134968
SP0 [dB] 7.30
SP0W [W] 59.72977448
SPNAM0 ramp.100
SPNAM1 pmlg-2
SPOAL0 0.500
SPOAL1 0.500
SPOFFS0 [Hz] 0.00
SPOFFS1 [Hz] 0.00


Example3: DUMBO-1 1H -> 13C in adamantane with AV500

Decoupling Under Mind Boggling Optimisation-1 heteronuclear decoupling

CP pulse sequence with dumbo decoupling

CP MAS pulse sequence with DUMBP-1 decoupling



C13 CP spectrum of adamantane with dumbo decoupling

13C CP MAS spectrum of adamantane with DUMBO-1 decoupling

Pulseprogram parameters for dumbo:

General  
PULPROG cp
TD 3398
NS 2
DS 0
SWH [Hz] 34722.22
AQ [s] 0.0489812
RG 64
DW [µs] 14.400
DE [µs] 6.50
CNST11 0.0000000
D1 [s] 5.00000000
ZGOPTNS  
Channel f1  
NUC1 13C
P15 [µs] 5000.00
PL1 [dB] 2.00
PL1W [W] 232.18685913
SFO1 [MHz] 125.7814508
Channel f2  
CNST21 1.0000000
CPDPRG2 lgs
NUC2 1H
P10 [µs] 32.00
P3 [µs] 5.33
PL2 [dB] 120.00
PL2W [W] 0.00000000
PL12 [dB] 9.80
PL12W [W] 33.58852005
PL13 [dB] 9.00
PL13W [W] 40.38228607
SFO2 [MHz] 500.2134968
SP0 [dB] 7.30
SP0W [W] 59.72977448
SPNAM0 ramp.100
SPNAM1 dumbo_1+0
SPOAL0 0.500
SPOAL1 0.500
SPOFFS0 [Hz] 0.00
SPOFFS1 [Hz] 0.00


References

  1. Ségolène Laage, Joseph R. Sachleben, Stefan Steuernagel, Roberta Pierattelli, Guido Pintacuda, and Lyndon Emsley
    Fast acquisition of multi-dimensional spectra in solid-state NMR enabled by ultra-fast MAS,
    J. Magn. Reson. 196, 133-141 (2009).
    Abstract
     
  2. Erin E. Wilson, Ayorinde Awonusi, Michael D. Morris, David H. Kohn, Mary M. J. Tecklenburg, and Larry W. Beck
    Three structural roles for water in bone observed by solid-state NMR,
    Biophys. J. 90, 3722-3731 (2006).
    Abstract
     
  3. Pellegrino Conte, Riccardo Spaccini, and Alessandro Piccolo
    State of the art of CPMAS 13C-NMR spectroscopy applied to natural organic matter,
    Prog. Nucl. Magn. Reson. Spectrosc. 44, 215-223 (2004).
    Abstract
     
  4. Riqiang Fu, Jun Hu, and Timothy A. Cross
    Towards quantitative measurements in solid-state CPMAS NMR: A Lee-Goldburg frequency modulated cross-polarization scheme,
    J. Magn. Reson. 168, 8-17 (2004).
    Abstract
     
  5. S. Reinhard and J. Blümel
    31P CP/MAS NMR of polycrystalline and immobilized phosphines and catalysts with fast sample spinning,
    Magn. Reson. Chem. 41, 406-416 (2003).
    Abstract
     
  6. Mei Hong, Xiaolan Yao, Karen Jakes, and Daniel Huster
    Investigation of molecular motions by Lee-Goldburg cross-polarization NMR spectroscopy,
    J. Phys. Chem. B 106, 7355-7364 (2002).
    Abstract
     
  7. Vladimir Ladizhansky and Shimon Vega
    Polarization transfer dynamics in Lee-Goldburg cross polarization nuclear magnetic resonance experiments on rotating solids,
    J. Chem. Phys. 112, 7158-7168 (2000).
    Abstract
     
  8. B.-J. van Rossum, C. P. de Groot, V. Ladizhansky, S. Vega, and H. J. M. de Groot
    A method for measuring heteronuclear (1H-13C) distances in high speed MAS NMR,
    J. Am. Chem. Soc. 122, 3465-3472 (2000).
    Abstract
     
  9. P. Tekely, V. Gérardy, P. Palmas, D. Canet, and A. Retournard
    Measurement of Hartmann-Hahn cross-polarization dynamics with quenching of proton T1ρ relaxation dependence,
    Solid State Nucl. Magn. Reson. 4, 362-367 (1995).
    Abstract
     
  10. S. Hediger, B. H. Meier, and R. R. Ernst
    Rotor-synchronized amplitude-modulated nuclear magnetic resonance spin-lock sequences for improved cross polarization under fast magic angle sample spinning,
    J. Chem. Phys. 102, 4000-4011 (1995).
    Abstract
     
  11. G. Metz, X. Wu, and S. O. Smith
    Ramped-amplitude cross polarization in magic-angle-spinning NMR,
    J. Magn. Reson. A 110, 219-227 (1994).
    Abstract
     
  12. P. Tekely, P. Palmas, and D. Canet
    Effect of proton spin exchange on the residual 13C MAS NMR linewidths. Phase-modulated irradiation for efficient heteronuclear decoupling in rapidly rotating solids,
    J. Magn. Reson. A 107, 129-133 (1994).
    Abstract
     

(top)

[Contact me] - Last updated December 16, 2012
Solid-state NMR bibliography for
Aluminum-27
Antimony-121/123
Arsenic-75
Barium-135/137
Beryllium-9
Bismuth-209
Boron-11
Bromine-79/81
Calcium-43
Cesium-133
Chlorine-35/37
Chromium-53
Cobalt-59
Copper-63/65
Deuterium-2
Gallium-69/71
Germanium-73
Gold-197
Hafnium-177/179
Indium-113/115
Iodine-127
Iridium-191/193
Krypton-83
Lanthanum-139
Lithium-7
Magnesium-25
Manganese-55
Mercury-201
Molybdenum-95/97
Neon-21
Nickel-61
Niobium-93
Nitrogen-14
Osmium-189
Oxygen-17
Palladium-105
Potassium-39/41
Rhenium-185/187
Rubidium-85/87
Ruthenium-99/101
Scandium-45
Sodium-23
Strontium-87
Sulfur-33
Tantalum-181
Titanium-47/49
Vanadium-51
Xenon-131
Zinc-67
Zirconium-91



Copyright © 2002- pascal-man.com. All rights reserved.