C14_4^5bsw-2d: 2D big F1 spectral width double quantum / single quantum correlation C1445 pulse program (TopSpin2.1)




Home and Applets > Pulse Program > 2Q/1Q Correlation > 2D Big F1 Spectral Width C14_4^5 Pulse Program
Double-quantum excitation with C14 pulse sequence

Since non-phase cycling is applied to the C14_4^5 excitation pulse, four-phase cycling is applied to the detection pulse P1 for selecting the 0Q -> -1Q coherence order jump, and four-phase cycling is applied to the C14_4^5 reconversion pulse for filtering DQ coherences.

space-spin selection diagram for C14_4_5 pulse sequence

CN pulse sequence

Andreas Brinkmann, Mattias Edén, and Malcolm H. Levitt, Synchronous helical pulse sequences in magic-angle spinning nuclear magnetic resonance: Double quantum recoupling of multiple-spin systems, J. Chem. Phys. 112, 8539-8554 (2000).


*** Outline ***


Code for Avance III spectrometers with topSpin2.1 operating system

;c14-4-52dbsw (TopSpin 2.1)

;2D SQ-DQ correlation experiment with C14_4^5 sequence
;by GALT, Nov. 2, 2001
;DQ correlation - inadequate type sequence
;C14_4^5 sequence for lower RF requirements (as compared e.g. to C7)
;for setup use c14-4-51d
;requires high spin rates to cover large frequency range (e.g. 20 kHz at 600 MHz)

;Avance III version
;parameters:
;d0 : =0.1u, t1 evolution
;d1 : recycle delay

;p1 : f1 presaturation pulses and detection pulse at pl1
;p9 : used as t1 increment for d0

;pl11 : Power level for C14_4^5 recoupling sequence B1=3.5*cnst31 in Hz

;cnst10 : =-180*cnst31*d0, recalculated during acquisition
;cnst31 : spinning frequency
;l0 : number of composite C14_4^5 cycles (usually a multiple of 7)
;ndo : 1
;FnMode : undefined
;mc2 : STATES-TPPI
;WDW : f1 QSINE 3, f2 QSINE 2 or EM
;use "xau xfshear rotate" to shift spectrum suitably along f1
;ns  : = 16*n
;zgoptns :-Dpresat or blank

;$COMMENT=SQ-DQ experiment with C14_4^5 sequence
;$CLASS=Solids
;$DIM=2D
;$TYPE=direct excitation
;$SUBTYPE=homonuclear correlation
;$OWNER=Bruker

define loopcounter count       ;for STATES-TPPI procedure
  "count=td1/2"                ;and STATES cos/sin procedure
                               
define pulse tau2
  "tau2=((1s/cnst31)/7)"       ;180° pulse

  "d31=1s/cnst31"              ;one rotor period

;cnst11 : to adjust t=0 for acquisition, if digmod = baseopt
"acqt0=1u*cnst11"

#include <rot_prot.incl>
           ;protect for too slow rotation

  ze
  "d0=0.1u"                    ;make sure a short d0 is used initially
1 d31

#ifdef presat                  ;set with -Dpresat
pres, d20                      ;delay between saturation pulses
  (p1 pl1 ph1):f1              ;saturation loop if required
  lo to pres times l20
#endif /* presat */

2 d1                           ;recycle delay

  "cnst10=-180*cnst31*d0"      ;phase correction for C14_4^5 reconversion pulse,
                               ;due to t1 DQ evolution period,
                               ;defined by the phase-time relationships

  1m rpp11                     ;reset the phase ph11 pointer to the first element
  1m rpp12                     ;reset the phase ph12 pointer to the first element
  1m rpp13                     ;reset the phase ph13 pointer to the first element
  1m rpp14                     ;reset the phase ph14 pointer to the first element
  1u pl11:f1                   ;switch to C14_4^5 RF condition

                               ;C14_4^5 excitation
3 (tau2 ph11 ipp11 ipp13 ipp14):f1  ;first 180° C14_4^5 excitation pulse at pl11
                               ;increment phase ph11 pointer
                               ;increment reconversion pulse phase ph13 and ph14 pointers
  (tau2 ph12 ipp12):f1              ;second 180° C14_4^5 excitation pulse, 
                               ;increment phase ph12 pointer
  lo to 3 times l0             ;l0 = multiple of 14

  d0                           ;DQ evolution period

                               ;C14_4^5 reconversion
4 (tau2 ph13+cnst10 ipp13):f1       ;first 180° C14_4^5 reconversion pulse, 
                               ;increase ph13 by cnst10 due to evolution period, 
                               ;increment phase ph13 pointer
  (tau2 ph14+cnst10 ipp14):f1       ;second 180° C14_4^5 reconversion pulse, 
                               ;increase ph14 by cnst10 due to evolution period, 
                               ;increment phase ph14 pointer
  lo to 4 times l0             ;l0 = multiple of 14

  (p1 pl1 ph5):f1              ;detection pulse flips magnetization into the xy plane
  2u
  gosc ph31                    ;gosc does not loop to 1
                               ;start ADC with ph31 signal routing

                               ;DQ filtering (four phase cycling):
  1m ip13*16384                ;increments all phases of ph13 by 90°
  1m ip14*16384                ;increments all phases of ph14 by 90°
  lo to 1 times ns             ;next scan

  100m wr #0 if #0 zd          ;delay for disk I/O, store signal,
                               ;increase FID number
                               ;delete memory data
                               ;do not perform dummy scans
                               ;with next acquisition

  1m ip11*8192                 ;increments all phases of ph11 by 45°, 
                               ;90° phase for DQ coherence
  1m ip12*8192                 ;increments all phases of ph12 by 45°,
                               ;90° phase for DQ coherence
  lo to 1 times 2              t1 quadrature detection

  "d0=d0+p9"                   ;set p9=increment for F1 (to make it usec!)

  ;1m rp11                     ;reset all phases of ph11, ph12, ph13, and ph14 
  ;1m rp12                     ;to their original values, i.e. to the values they 
  ;1m rp13                     ;had before the first ip11, ip12, ip13, and ip14
  ;1m rp14                     ;in case of STATES remove semicolon at beginning of the 4 lines

  lo to 1 times count          ;count=td1/2
HaltAcqu, 1m
exit

ph1= 0                                    ;for saturation pulses

ph11=(65536)    0 23406 46811  4681 28087 51493  9362     ;C14_4^5(0..6)
            32768 56174 14043 37449 60855 18725 42130     ;C14_4^5(7..13)
ph12=(65536)    0 23406 46811  4681 28087 51493  9362
            32768 56174 14043 37449 60855 18725 42130

ph13=(65536)    0 23406 46811  4681 28087 51493  9362
            32768 56174 14043 37449 60855 18725 42130
ph14=(65536)    0 23406 46811  4681 28087 51493  9362
            32768 56174 14043 37449 60855 18725 42130

                               ;;C14_4^5 excitation and reconversion pulse phases
                               ;are identical

ph5=   0 0 0 0 2 2 2 2 1 1 1 1 3 3 3 3
ph31 = 0 2 0 2 2 0 2 0 1 3 1 3 3 1 3 1    ;ph31 = ph5 + 2*ph13
  

Example: 31P in VPI-5 zeolite with AV700

31P 2D spectrum acquired with C14 pulse sequence

31P C1445 DQ-SQ spectrum of VPI-5 zeolite with large DQ F1 spectral width; 3.2 mm-diameter rotor spinning speed: 15 kHz; high frequency Trigamma probehead, P-Al setting.


Pulseprogram parameters for c14a2d.ppm:

General  
PULPROG c14a2d.ppm
TD 1024
NS 48
DS 0
SWH [Hz] 25000.00
AQ [s] 0.0205500
RG 256
DW [µs] 20.000
DE [µs] 5.00
CNST11 0.0000000
CNST31 15000.0000000
D0 [s] 0.00000100
D1 [s] 10.00000000
D20 [s] 0.00800000
d31 [s] 0.00006667
L0 40
L20 20
P9 [µs] 28.57
ZGOPTNS -Dpresat
count 64
Channel f1  
CNST10 1.0000000
NUC1 31P
P1 [µs] 4.30
PL1 [dB] -1.50
PL11 [dB] 0.00
SFO1 [MHz] 283.4113792
tau2 [µs] 9.52

Acquisition parameters:

  F2 F1
Experiment    
PULPROG c14a2d.ppm  
AQ_mod DQD  
FnMODE   undefined
TD 1024 128
NS 48  
DS 0  
TD0 1  
Width    
SW [ppm] 88.2110 123.5016
SWH [Hz] 25000.000 35001.750
IN_F [µs]   28.57
AQ [s] 0.0205500 0.0018285
Nucleus1    
NUC1 31P 31P
O1 [Hz] -6439.85 -6439.85
O1P [ppm] -22.722 -22.722
SFO1 [MHz] 283.4113792 283.4113792
BF1 [MHz] 283.4178190 283.4178190


References

  1. Hélène Roussière, Gilles Montavon, Samia Laïb, Pascal Janvier, Bruno Alonso, Franck Fayon, Marc Petit, Dominique Massiot, Jean-Michel Bouler, and Bruno Bujoli
    Hybrid materials applied to biotechnologies: coating of calcium phosphates for the design of implants active against bone resorption disorders,
    J. Mater. Chem. 15, 3869-3875 (2005).
    Abstract
     
  2. Jana Sopkova-de Oliveira Santos, Valérie Montouillout, Franck Fayon, Christian Fernandez, Lise Delain-Bioton, Didier Villemind, and Paul-Alain Jaffrès
    Assembly of benzene-1,3,5-tris(methylenephosphonic acid) and guanidinium salt: Single crystal-X-ray characterisation and 31P solid state NMR investigations,
    New J. Chem. 28, 1244-1249 (2004).
    Abstract
     
  3. Morten Bjerring and Niels Chr. Nielsen
    Solid-state NMR heteronuclear dipolar recoupling using off-resonance symmetry-based pulse sequences,
    Chem. Phys. Lett. 370, 496-503 (2003).
    Abstract
     
  4. Colan E. Hughes, Jörn Schmedt auf der Günne, and Malcolm H. Levitt
    A test for the number of coupled spins I=1/2 in magic-angle-spinning solids: Zero-quantum recoupling of multiple-quantum coherences,
    ChemPhysChem 4, 457-465 (2003).
    Abstract
     
  5. C. E. Hughes, R. Pratima, T. Karlsson, and M. H. Levitt
    Double-quantum solid-state NMR of 13C spin pairs coupled to 14N,
    J. Magn. Reson. 159, 25-35 (2002).
    Abstract
     
  6. Andreas Brinkmann and Malcolm H. Levitt
    Symmetry principles in the nuclear magnetic resonance of spinning solids: Heteronuclear recoupling by generalized Hartmann–Hahn sequences,
    J. Chem. Phys. 115, 357-384 (2001).
    Abstract
     
  7. Andreas Brinkmann, Mattias Edén, and Malcolm H. Levitt
    Synchronous helical pulse sequences in magic-angle spinning nuclear magnetic resonance: Double quantum recoupling of multiple-spin systems,
    J. Chem. Phys. 112, 8539-8554 (2000).
    Abstract
     
  8. Mattias Edén and Malcolm H. Levitt
    Pulse sequence symmetries in the nuclear magnetic resonance of spinning solids: Application to heteronuclear decoupling,
    J. Chem. Phys. 111, 1511-1519 (1999).
    Abstract
     

Other references

  1. P. K. Madhu, Elena Vinogradov, and Shimon Vega
    Multiple-pulse and magic-angle spinning aided double-quantum proton solid-state NMR spectroscopy, (C914; phase cycling; PMLG5; SQ-SQ correlation peaks or remote connectivity peaks)
    Chem. Phys. Lett. 394, 423-428 (2004).
    Abstract
     
  2. Jörn Schmedt auf der Günne
    Distance measurements in spin-1/2 systems by 13C and 31P solid-state NMR in dense dipolar networks, (C713; phase cycling; sample size; symmetric, asymmetric, and constant time excitation schemes; presat; cogwheel phase cycling; candidate C-/R-symmetries suitable for γ-encoded dipolar DQ excitation)
    J. Magn. Reson. 165, 18-32 (2003).
    Abstract
     

(top)

[Contact me] - Last updated December 16, 2012
Solid-state NMR bibliography for
Aluminum-27
Antimony-121/123
Arsenic-75
Barium-135/137
Beryllium-9
Bismuth-209
Boron-11
Bromine-79/81
Calcium-43
Cesium-133
Chlorine-35/37
Chromium-53
Cobalt-59
Copper-63/65
Deuterium-2
Gallium-69/71
Germanium-73
Gold-197
Hafnium-177/179
Indium-113/115
Iodine-127
Iridium-191/193
Krypton-83
Lanthanum-139
Lithium-7
Magnesium-25
Manganese-55
Mercury-201
Molybdenum-95/97
Neon-21
Nickel-61
Niobium-93
Nitrogen-14
Osmium-189
Oxygen-17
Palladium-105
Potassium-39/41
Rhenium-185/187
Rubidium-85/87
Ruthenium-99/101
Scandium-45
Sodium-23
Strontium-87
Sulfur-33
Tantalum-181
Titanium-47/49
Vanadium-51
Xenon-131
Zinc-67
Zirconium-91



Copyright © 2002- pascal-man.com. All rights reserved.