C14_4^-51d: 1D double quantum / single quantum correlation C144-5 pulse program for TopSpin2.1




Home and Applets > Pulse Program > 2Q/1Q Correlation > 1D C14_4^-5 Pulse Program
Double-quantum excitation with C14 pulse sequence

Since non-phase cycling is applied to the C14_4^-5 excitation pulse, four-phase cycling is applied to the detection pulse P1 for selecting the 0Q -> -1Q coherence order jump, and four-phase cycling is applied to the C14_4^-5 reconversion pulse for filtering DQ coherences.


*** Outline ***


Code for Avance III spectrometers with topSpin2.1 operating system

;c14_4_-51d (TopSpin 2.0)

;C14_4^-5 1D sequence to set up C14_4^-5 power level pl11

;Avance II+ version
;parameters:
;d1 : recycle delay

;p1 : f1 presaturation pulses and detection pulse at pl1

;pl1  : Power level for detection pulse
;pl11 : Power level for C14_4^-5 recoupling sequence B1=3.5*cnst31 in Hz

;cnst31 : spinning frequency
;l0  : number of excitation composite C14_4^-5 cycles (usually a multiple of 14)
;l1  : number of reconversion composite C14_4^-5 cycles (usually a multiple of 14)
;l20 : # of pulses in saturation pulse train
;ns  : = 16*n
;zgoptns :-Dpresat or blank

;$COMMENT=DQ excitation C14_4^-5 sequence
;$CLASS=Solids
;$DIM=1D
;$TYPE=direct excitation
;$SUBTYPE=homonuclear correlation
;$OWNER=Bruker

define pulse tau2
  "tau2=((1s/cnst31)/7)"       ;180° pulse

  "d31=1s/cnst31"              ;one rotor period

;cnst11 : to adjust t=0 for acquisition, if digmod = baseopt
"acqt0=1u*cnst11"

#include <rot_prot.incl>
            ;protect for too slow rotation

  ze                           ;acquire into a cleared memory
1 d31

#ifdef presat                  ;set with -Dpresat
pres, d20                      ;delay between saturation pulses
  (p1 pl1 ph1):f1              ;saturation loop
  lo to pres times l20
#endif /* presat */

2 d1                           ;recycle delay

  1m rpp11                     ;reset the phase ph11 pointer to the first element
  1m rpp12                     ;reset the phase ph12 pointer to the first element
  1m rpp13                     ;reset the phase ph13 pointer to the first element
  1m rpp14                     ;reset the phase ph14 pointer to the first element
  10u reset:f1
  1u pl11:f1                   ;switch to C14_4^-5 RF condition

                               ;C14_4^-5 excitation
3 tau2 ph11 ipp11 ipp13 ipp14  ;first 180° C14_4^-5 excitation pulse at pl11
                               ;increment phase ph11 pointer
                               ;increment reconversion phase ph13 and ph14 pointers
  tau2 ph12 ipp12              ;second 180° C14_4^-5 excitation pulse, 
                               ;increment phase ph12 pointer
  lo to 3 times l0             ;l0 = multiple of 14

                               ;C14_4^-5 reconversion
4 tau2 ph13 ipp13              ;first 180° C14_4^-5 reconversion pulse, 
                               ;increment phase ph13 pointer
  tau2 ph14 ipp14              ;second 180° C14_4^-5 reconversion pulse, 
                               ;increment phase ph14 pointer
  lo to 4 times l1             ;l1 = multiple of 14

  (p1 pl1 ph5):f1              ;detection pulse flips magnetization into the xy plane
  2u
  gosc ph31                    ;gosc does not loop to 1
                               ;start ADC with ph31 signal routing

                               ;DQ filtering (four phase cycling):
  1m ip13*16384                ;increments all phases of ph13 by 90°
  1m ip14*16384                ;increments all phases of ph14 by 90°
  lo to 1 times ns             ;next scan

  100m wr #0                   ;save data on disk
HaltAcqu, 1m
exit

ph1= 0

ph11=(65536)    0 42130 18725 60855 37449 14043 56174     ;C14_4^-5(0..6)
            32768  9362 51493 28087  4681 46811 23406     ;C14_4^-5(7..13)
ph12=(65536)    0 42130 18725 60855 37449 14043 56174
            32768  9362 51493 28087  4681 46811 23406

ph13=(65536)    0 42130 18725 60855 37449 14043 56174
            32768  9362 51493 28087  4681 46811 23406
ph14=(65536)    0 42130 18725 60855 37449 14043 56174
            32768  9362 51493 28087  4681 46811 23406

                               ;;C14_4^5 excitation and reconversion pulse phases
                               ;are identical

ph5=   0 0 0 0 2 2 2 2 1 1 1 1 3 3 3 3
ph31 = 0 2 0 2 2 0 2 0 1 3 1 3 3 1 3 1    ;ph31 = ph5 + 2*ph13
  

References

  1. Hélène Roussière, Gilles Montavon, Samia Laïb, Pascal Janvier, Bruno Alonso, Franck Fayon, Marc Petit, Dominique Massiot, Jean-Michel Bouler, and Bruno Bujoli
    Hybrid materials applied to biotechnologies: coating of calcium phosphates for the design of implants active against bone resorption disorders,
    J. Mater. Chem. 15, 3869-3875 (2005).
    Abstract
     
  2. Jana Sopkova-de Oliveira Santos, Valérie Montouillout, Franck Fayon, Christian Fernandez, Lise Delain-Bioton, Didier Villemind, and Paul-Alain Jaffrès
    Assembly of benzene-1,3,5-tris(methylenephosphonic acid) and guanidinium salt: Single crystal-X-ray characterisation and 31P solid state NMR investigations,
    New J. Chem. 28, 1244-1249 (2004).
    Abstract
     
  3. Morten Bjerring and Niels Chr. Nielsen
    Solid-state NMR heteronuclear dipolar recoupling using off-resonance symmetry-based pulse sequences,
    Chem. Phys. Lett. 370, 496-503 (2003).
    Abstract
     
  4. Colan E. Hughes, Jörn Schmedt auf der Günne, and Malcolm H. Levitt
    A test for the number of coupled spins I=1/2 in magic-angle-spinning solids: Zero-quantum recoupling of multiple-quantum coherences,
    ChemPhysChem 4, 457-465 (2003).
    Abstract
     
  5. C. E. Hughes, R. Pratima, T. Karlsson, and M. H. Levitt
    Double-quantum solid-state NMR of 13C spin pairs coupled to 14N,
    J. Magn. Reson. 159, 25-35 (2002).
    Abstract
     
  6. Andreas Brinkmann and Malcolm H. Levitt
    Symmetry principles in the nuclear magnetic resonance of spinning solids: Heteronuclear recoupling by generalized Hartmann–Hahn sequences,
    J. Chem. Phys. 115, 357-384 (2001).
    Abstract
     
  7. Andreas Brinkmann, Mattias Edén, and Malcolm H. Levitt
    Synchronous helical pulse sequences in magic-angle spinning nuclear magnetic resonance: Double quantum recoupling of multiple-spin systems,
    J. Chem. Phys. 112, 8539-8554 (2000).
    Abstract
     
  8. Mattias Edén and Malcolm H. Levitt
    Pulse sequence symmetries in the nuclear magnetic resonance of spinning solids: Application to heteronuclear decoupling,
    J. Chem. Phys. 111, 1511-1519 (1999).
    Abstract
     

Other references

  1. P. K. Madhu, Elena Vinogradov, and Shimon Vega
    Multiple-pulse and magic-angle spinning aided double-quantum proton solid-state NMR spectroscopy, (C914; phase cycling; PMLG5; SQ-SQ correlation peaks or remote connectivity peaks)
    Chem. Phys. Lett. 394, 423-428 (2004).
    Abstract
     
  2. Jörn Schmedt auf der Günne
    Distance measurements in spin-1/2 systems by 13C and 31P solid-state NMR in dense dipolar networks, (C713; phase cycling; sample size; symmetric, asymmetric, and constant time excitation schemes; presat; cogwheel phase cycling; candidate C-/R-symmetries suitable for γ-encoded dipolar DQ excitation)
    J. Magn. Reson. 165, 18-32 (2003).
    Abstract
     

(top)

[Contact me] - Last updated December 16, 2012
Solid-state NMR bibliography for
Aluminum-27
Antimony-121/123
Arsenic-75
Barium-135/137
Beryllium-9
Bismuth-209
Boron-11
Bromine-79/81
Calcium-43
Cesium-133
Chlorine-35/37
Chromium-53
Cobalt-59
Copper-63/65
Deuterium-2
Gallium-69/71
Germanium-73
Gold-197
Hafnium-177/179
Indium-113/115
Iodine-127
Iridium-191/193
Krypton-83
Lanthanum-139
Lithium-7
Magnesium-25
Manganese-55
Mercury-201
Molybdenum-95/97
Neon-21
Nickel-61
Niobium-93
Nitrogen-14
Osmium-189
Oxygen-17
Palladium-105
Potassium-39/41
Rhenium-185/187
Rubidium-85/87
Ruthenium-99/101
Scandium-45
Sodium-23
Strontium-87
Sulfur-33
Tantalum-181
Titanium-47/49
Vanadium-51
Xenon-131
Zinc-67
Zirconium-91



Copyright © 2002- pascal-man.com. All rights reserved.