
Java™ Application Development
on Linux®

Java™ Application Development
on Linux®

Carl Albing
Michael Schwarz

Prentice Hall Professional Technical Reference
Boston

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.phptr.com

Library of Congress Cataloging-in-Publication Data:

CIP data on file.

© 2005 Pearson Education, Inc.

ISBN 0–13–143697-X

Text printed in the United States on recycled paper at Pheonix Color in Hagerstown Maryland.

First printing, November 2004

To my mother, for her love of words.

—Michael

To my wife, Cynthia.

—Carl

xxiPreface ..

xxviiIntroduction ...

1Getting Started ..PART I

3An Embarrassment of Riches: The Linux EnvironmentChapter 1

3What You Will Learn ...1.1

4The Command Line: What’s the Big Deal? ..1.2

5Basic Linux Concepts and Commands ...1.3

6Redirecting I/O ...1.3.1

9The ls Command ...1.3.2

9Filenames ..1.3.3

10Permissions ...1.3.4

12File Copying ...1.3.5

13Seeing Stars ..1.3.6

15File Contents ..1.3.7

19The grep Command ..1.3.8

vii

Contents

20The find Command ..1.3.9

21The Shell Revisited ..1.3.10

26The tar and zip Commands ...1.3.11

29The man Command ...1.3.12

30Review ..1.4

30What You Still Don’t Know ..1.5

30Resources ..1.6

33An Embarrassment of Riches: EditorsChapter 2

33What You Will Learn ...2.1

34Eye to Eye with vi ...2.2

40Exiting ..2.2.1

41Search and Replace ..2.2.2

43The Joy of Regular Expressions ..2.2.3

44Starting Off Right: .exrc ...2.2.4

45Editors Galore ...2.3

47Editing Your Pipes (sed, the Stream EDitor)2.3.1

47Simple Graphical Editors ...2.3.2

49Review ..2.4

49What You Still Don’t Know ..2.5

49Resources ..2.6

51An Experienced Programmer’s Introduction to JavaChapter 3

51What You Will Learn ...3.1

52Fundamental Language Elements ..3.2

53Scalar Types ..3.2.1

57Object Types ..3.2.2

65Statements ...3.2.3

74Error Handling, Java Style ...3.2.4

78print(), println(), printf()3.2.5

82Using (and Making) Java APIs ...3.3

82The package Statement ...3.3.1

84The import Statement ...3.3.2

85Encapsulation, Inheritance, and Polymorphism3.4

85Encapsulation ..3.4.1

86Inheritance ...3.4.2

Contentsviii

91Polymorphism ..3.4.3

93O, Templates! Where Art Thou? ...3.5

94Virtually Final ..3.6

95A Useful Simple Application ...3.7

95Review ..3.8

97What You Still Don’t Know ..3.9

97Resources ..3.10

98Exercises ..3.11

99Where Am I? Execution Context ..Chapter 4

100What You Will Learn ...4.1

100A Simple Start ...4.2

100Command-Line Arguments ..4.2.1

102Unit Testing Made Easy ...4.2.2

102The System Class ...4.3

102Java and Standard I/O ...4.3.1

104Environment Variables ...4.3.2

105Java and Environment Variables ...4.3.3

109The Properties Class ...4.4

111The Runtime Class ...4.5

111exec() ..4.5.1

113Portability ...4.5.2

113Review ..4.6

113What You Still Don’t Know ..4.7

114Resources ..4.8

115The Sun Microsystems Java Software Development KitChapter 5

116What You Will Learn ...5.1

116All You Need, and Not One Thing More ...5.2

117The Java Compiler ...5.3

117Compiler Behavior, Defaults, and Environment Variables5.3.1

119javac Options ...5.3.2

121The Java Runtime Engine ..5.4

121The Basics ...5.4.1

122java Options ...5.4.2

122Complete, Up-to-Date Program Documentation Made Easy5.5

ixContents

123Running javadoc ...5.5.1

124Javadoc Command-Line Options ...5.5.2

128Javadoc Comments ...5.5.3

131Dispensing with Applets ...5.6

132Going Native ...5.7

137Introducing RMI ..5.8

137A Brief Introduction to RMI ...5.8.1

143The rmic Tool ..5.8.2

144The rmiregistry Tool ...5.8.3

144Setting Up Servers and Clients ..5.8.4

147RMI Summary ..5.8.5

148The Java Debugger ..5.9

157Return to the Source: The Java Decompiler5.10

157Bundling a Java Program: Put It in a JAR ..5.11

160Deploying Applications ...5.11.1

163Basic jar Operation ..5.11.2

164The Rest of the Toolkit ...5.12

166Review ..5.13

166What You Still Don’t Know ..5.14

166Resources ..5.15

167The IBM Developer Kit for Linux, Java 2 Technology Edition ...Chapter 6

167What You Will Learn ...6.1

168
Use Linux Features to Make Multiple Java SDKs Play Nicely
Together ...

6.2

168Links ...6.2.1

173Switching Java Versions by Symlink6.2.2

174How the IBM JDK Differs from the Sun JDK6.3

175Performance ..6.3.1

175Differences in the Commands ..6.3.2

175IBM Classes ...6.3.3

176What Are All These “_g” Versions? ..6.4

176Review ..6.5

177What You Still Don’t Know ..6.6

177Resources ..6.7

Contentsx

179The GNU Compiler for Java (gcj) ...Chapter 7

179What You Will Learn ...7.1

179A Brand GNU Way ...7.2

180The GNU Compiler Collection ..7.3

181Compiling Our Simple Application with gcj ..7.4

182Compiling FetchURL with gcj ..7.4.1

184Compiling a Multiclass Program ..7.4.2

185Options and Switches ...7.5

186Reasons to Use gcj ..7.6

187Reasons Not to Use gcj ...7.7

187Review ..7.8

187What You Still Don’t Know ..7.9

188Resources ..7.10

189Know What You Have: CVS ..Chapter 8

190What You Will Learn ...8.1

190Source Control: Whys and Hows ..8.2

193Setup ..8.2.1

195Import ...8.2.2

198Normal Use ..8.2.3

201Update ...8.2.4

201Merges ...8.2.5

203Log ...8.2.6

205cvs status ..8.2.7

205cvs tag ..8.2.8

207Branching Tags ..8.2.9

210cvs export ..8.2.10

210A Quick Look behind the Scenes ...8.2.11

211A GUI: jCVS ..8.3

211Installing jCVS ..8.3.1

213Review ..8.4

214What You Still Don’t Know ..8.5

214Resources ..8.6

xiContents

215Ant: An Introduction ...Chapter 9

215What You Will Learn ...9.1

216The Need for a Different Build Tool ..9.2

217Obtaining and Installing Ant ..9.3

217Installing a Binary Tarball ...9.3.1

219Installing a Source Tarball ...9.3.2

220A Sample Ant Buildfile ..9.4

220XML for the Uninitiated ..9.4.1

222The Buildfile Tags ..9.4.2

229A Real, Live Buildfile ..9.4.3

232Review ..9.5

232What You Still Don’t Know ..9.6

232Resources ..9.7

235Integrated Development EnvironmentsChapter 10

236What You Will Learn ...10.1

236NetBeans: The Open Source IDE ..10.2

236A Brief History of NetBeans ...10.2.1

237Installing NetBeans ..10.2.2

241Getting Around in NetBeans ..10.2.3

245Integration with CVS ..10.2.4

248Integration with Ant ..10.2.5

250Other Add-on Tools ..10.2.6

251SunONE Studio Community Edition ...10.3

251Eclipse: The Source of SWT ..10.4

251Selecting and Installing Eclipse ...10.4.1

254Using Eclipse for a New Project ...10.4.2

256Using Eclipse for an Existing Project10.4.3

257Working with Eclipse ..10.4.4

258Review ..10.5

259What You Still Don’t Know ..10.6

259Resources ..10.7

Contentsxii

261Developing Business LogicPART II

263Balancing Acts: An Imaginary ScenarioChapter 11

263What You Will Learn ...11.1

264Statement of the Need ..11.2

264How to Develop Software ...11.3

267What Makes a Good Requirement ...11.4

268Whom to Ask for Requirements ..11.5

269Requirements for the Budget Application ...11.6

269Monday Morning, 10 A.M. ..11.6.1

272Back at His Desk ..11.6.2

272Documenting, Prototyping, and Stakeholder Buy-In11.7

272Documenting ..11.7.1

274Stakeholder Buy-In ..11.7.2

275Prototyping ...11.7.3

276Review ..11.8

276What You Still Don’t Know ..11.9

276Resources ..11.10

277Exercises ..11.11

279Analysis and Design: Seeking the ObjectsChapter 12

279What You Will Learn ...12.1

280Facing the Blank Page ...12.2

280Using CRC Cards ...12.3

280Finding the Objects ...12.4

283Finding the Methods and Attributes ..12.5

284Essential and Nonessential ..12.6

287Analysis Paralysis ...12.7

288Real Software Engineering ...12.8

289Core Classes ..12.9

289Review ..12.10

289What You Still Don’t Know ..12.11

289Resources ..12.12

292Exercises ..12.13

xiiiContents

295JUnit: Automating Unit Testing ...Chapter 13

295What You Will Learn ...13.1

296JUnit: Why All the Fuss? ..13.2

296Design Then Test Then Code ..13.3

297Installing and Running JUnit ...13.4

299Downloading and Unzipping ..13.4.1

301Using JUnit ...13.4.2

303Writing Test Cases ...13.5

306JUnit Assertions ...13.5.1

308Running a Test Case ...13.5.2

309Running Test Suites ...13.6

312Review ..13.7

312What You Still Don’t Know ..13.8

313Resources ..13.9

313Exercises ..13.10

315Storing the Data ..Chapter 14

315What You Will Learn ...14.1

316Follow the Objects ..14.2

316Of Persistence ..14.3

316Thinking of the Future, or Painting in Corners14.4

316Oracle, PostgreSQL, MySQL ...14.5

317MySQL ...14.5.1

317PostgreSQL ...14.5.2

318Oracle ..14.5.3

318Selection Criteria ..14.5.4

318Being Self-Contained ..14.6

319Beyond the Basics ..14.7

322Persistence Is Not the Whole Story ..14.8

322Setting Up PostgreSQL for BudgetPro ...14.9

322Installing PostgreSQL ..14.9.1

323Creating a postgres User ...14.9.2

324Creating Our Database ..14.9.3

325Straight JDBC ..14.9.4

325Review ..14.10

Contentsxiv

326What You Still Don’t Know ..14.11

326Resources ..14.12

326Exercises ..14.13

327Accessing the Data: An Introduction to JDBCChapter 15

327What You Will Learn ...15.1

328Introducing JDBC ...15.2

329Making Connections ...15.3

332Downloading JDBC for MySQL ..15.3.1

332Querying Data ..15.4

334Getting Results ...15.5

336Updates, Inserts, Deletes ...15.6

336Review ..15.7

336What You Still Don’t Know ..15.8

337Resources ..15.9

338Exercises ..15.10

339Developing Graphical User InterfacesPART III

341
Getting in the Swing of Things: Designing a GUI for
BudgetPro ..

Chapter 16

341What You Will Learn ...16.1

342A Simple Swing Program ..16.2

343Stompin’ at the Savoy, or The Swing Paradigm16.3

345Slow, Slow, Quick-Quick, Slow: The Basic Swing Objects16.4

347Layout Managers ..16.5

348Beyond Arthur Murray: Actions, Listeners, Events16.6

348Getting Down to Cases: Designing a GUI for BudgetPro16.7

350Overview ..16.7.1

352Creating Pieces ..16.7.2

373Review ..16.8

374What You Still Don’t Know ..16.9

375Resources ..16.10

375Exercises ..16.11

xvContents

377Other Ways: Alternatives to Swing ...Chapter 17

377What You Will Learn ...17.1

378The IBM SWT Toolkit ...17.2

378Another GUI Toolkit. Why? ..17.2.1

379Duplicated Effort. Why Cover It? ..17.2.2

380Portability: Better and Worse ..17.2.3

380The Rest of the Chapter ...17.2.4

380SWT: Close to the Metal ..17.2.5

381“Hello, world” SWT Style ..17.2.6

384Porting BudgetPro to SWT ...17.3

387Step 1: Convert the Class Members17.3.1

389Step 2: Converting the main() Method17.3.2

391
Step 3: Converting the GUI build() and init()
Methods ...

17.3.3

394Completing the Conversion of the BudgetPro Class17.3.4

395Completing the Conversion of the Application17.3.5

395Closing Thoughts ...17.3.6

396SWT and gcj ..17.4

398Review ..17.5

398What You Still Don’t Know ..17.6

398Resources ..17.7

399Exercises ..17.8

401Developing Web InterfacesPART IV

403Servlets: Java Pressed into Service ..Chapter 18

403What You Will Learn ...18.1

404Servlets: Program-Centric Server-Side Documents18.2

405Perspective ...18.3

407How to Write a Servlet ..18.4

411Input, Output ...18.5

413
Matters of State: Cookies, Hidden Variables, and the Dreaded
“Back” Button ..

18.6

414Cookies ..18.6.1

416Designing a BudgetPro Servlet ..18.7

Contentsxvi

416Prototype ..18.7.1

417Design ..18.7.2

420Review ..18.8

420What You Still Don’t Know ..18.9

421Resources ..18.10

421Exercises ..18.11

423JSP: Servlets Turned Inside Out ...Chapter 19

424What You Will Learn ...19.1

424Servlets Turned Inside Out: JSP ..19.2

426How to Write a JSP Application ..19.3

427Scriptlet ..19.3.1

429Declaration ...19.3.2

430Expression ...19.3.3

431Directive ...19.3.4

434New Syntax ..19.3.5

434JavaBeans in JSP ..19.3.6

437Tag Libraries ..19.3.7

438Using JSP with BudgetPro ...19.4

439Review ..19.5

440What You Still Don’t Know ..19.6

440Resources ..19.7

441Exercises ..19.8

443Open Source Web Application ServersChapter 20

443What You Will Learn ...20.1

444Downloading JBoss ..20.2

444Be an Enabler, or “Let’s Be Codependent!” ..20.3

445Nonroot-Installed Software ..20.3.1

450Finer Grained Control ..20.3.2

450Installing JBoss ...20.4

451Things That Make It Go ..20.5

451System V Init System ...20.5.1

458RedHat/Fedora chkconfig ..20.5.2

463Other Distributions ...20.5.3

464IDE Integration ...20.5.4

xviiContents

464Disposition of Forces ..20.6

464Apache Geronimo ...20.7

467Installing Geronimo ...20.8

468Running the Geronimo Server ..20.9

468Review ..20.10

469What You Still Don’t Know ..20.11

469Resources ..20.12

471Developing Enterprise Scale SoftwarePART V

473Introduction to Enterprise JavaBeans ..Chapter 21

473What You Will Learn ...21.1

473Expanding to EJBs ...21.2

474EJB Concepts ..21.2.1

477Bean Types ..21.2.2

482Under the Hood ..21.2.3

482What’s in a Name? An Introduction to JNDI21.3

482Naming and Directory System Concepts21.3.1

484Common Directory Services ..21.3.2

487Putting a Face to a Name: JNDI ..21.3.3

491Using JNDI with JBoss ...21.3.4

491Review ..21.4

492What You Still Don’t Know ..21.5

492Resources ..21.6

493Building an EJB ...Chapter 22

493What You Will Learn ...22.1

493EJBs: You Don’t Know Beans? ..22.2

495SessionBean ..22.2.1

497EJBObject ...22.2.2

498EJBHome ..22.2.3

499Summarizing the Pieces ..22.2.4

499EJBLocalHome and EJBLocalObject22.2.5

501Compiling Your Beans ...22.2.6

502Review ..22.3

Contentsxviii

502What You Still Don’t Know ..22.4

503Resources ..22.5

505Deploying EJBs ...Chapter 23

505What You Will Learn ...23.1

506Lend Me Your EAR: Enterprise Packaging and Deployment23.2

508What’s in an EJB-JAR File ...23.2.1

511Using Our Bean ...23.2.2

512Packaging the Servlet ..23.2.3

514Deploying the EAR ...23.3

515JBoss ...23.3.1

515Geronimo ...23.3.2

516Maintaining a Distributed Application ...23.4

516Ant and CVS ..23.4.1

517XDoclet ..23.4.2

518Abstracting Legacy Applications ...23.5

518Review ..23.6

519What You Still Don’t Know ..23.7

519Resources ..23.8

521Parting Shots ...Chapter 24

521The Future’s So Bright, I Squint and Look Confused24.1

522Our Book Is Yours ..24.2

522Came the Revolution ..24.3

523What You Still Don’t Know ..24.4

523Resources ..24.5

525ASCII Chart ..Appendix A

527A Java Swing GUI for BudgetPro ..Appendix B

539GNU General Public License ..Appendix C

549Index ...

xixContents

JAVA AND LINUX

Why another book on Java? Why a book on Java and Linux? Isn’t Java a plat-
form-independent system? Aren’t there enough books on Java? Can’t I learn
everything I need to know from the Web?

No doubt, there are a host of Java books on the market. We didn’t wake
up one morning and say, “You know what the world really needs? Another book
about Java!” No. What we realized was that there are a couple of “holes” in the
Java book market.

First, Linux as a development platform and deployment platform for Java
applications has been largely ignored. This is despite the fact that the *nix
platform (meaning all UNIX and UNIX-like systems, Linux included) has long
been recognized as one of the most programmer-friendly platforms in existence.
Those few resources for Java on Linux that exist emphasize tools to the exclu-
sion of the Java language and APIs.

Second, books on the Java language and APIs have focused on pedagogical
examples that serve to illustrate the details of the language and its libraries, but
very few of these examples are in themselves practically useful, and they tend

Preface

xxi

to deal only with the issues of writing programs, and not at all with deploying
and maintaining them. Anyone who has worked on a major software project,
especially a software project that is developed and deployed in a business for a
business, knows that designing and coding are only about half of the work in-
volved. Yes, writing Java code is only slightly affected by the development and
the deployment platform, but the process of releasing and maintaining such
applications is significantly different between platforms.

To address these missing pieces, we decided to cover development and
deployment of a Java application that has command-line, GUI, servlet, and
enterprise components on a Linux platform. We’re writing the guide book we
wish we had had when we started writing and deploying Java applications on
Linux. We’re going to show you a simplistic enterprise application, “from cradle
to grave,” but along the way cover issues of design process, production environ-
ment, setup, administration, and maintenance that few books bother to cover.1

If you are considering buying this book and you are wondering if there is
any information in here that you can’t get for free on the Web, then, no. There
is not. In fact, there is little information in any Java or Linux book that is not
available for free on the Internet. In fact, in each of our chapters we will tell
you where on the Web to find virtually all of the information we present, and
then some. And yet books continue to sell, and we have the chutzpah to ask
you to buy the book. The reason is that Web information is scattered, unorga-
nized, and of highly variable quality. We will be trying to bring all the relevant
information together in this book, in a clearly organized manner (and, we
would like to believe, at an acceptably high level of quality). We think that
has value.

Also, this book is part of the Bruce Perens’ Open Source Series. This book
is part of the Web literature. And you may freely read it and use it on the Web.
We hope this book will be one of those you use on the Web and buy on paper.
We don’t know about you, but we like to use Web books for reference, but for
reading, we like books. We own at least three books that are available for free
on the Web: Thinking in C++, Thinking in Java, and O’Reilly’s Docbook: The
Definitive Guide. We hope that open publishing will be the new model.

1. This is not to say this book is without purely pedagogical examples. Especially in Part I we
make use of your typical “throwaway” examples and single classes. To try to illustrate the basics
with a complete application would obscure and confuse the points being illustrated.

Prefacexxii

FREE SOFTWARE AND JAVA

GNU/Linux2 is Free Software. It is Open Source. I don’t even want to start
the debate on what each term means and which one is “right.” One of the two
authors of this book is a Free Software advocate, and the other is of a purely
laissez-faire attitude towards the question (we won’t tell you which, although
we invite you to guess). But even with a deliberate decision to cease-fire, the
question remains: Is Java Open Source or Free Software?

The answer is mixed. Neither Sun’s nor IBM’s Java implementations are
Open Source or Free Software. You may download and use them for free, but
you do not have the source code to them, nor do you have the right to make
modifications to them.3 This book will cover the GNU Compiler for Java,
which compiles Java source code to native machine code. The GNU Compiler
for Java (gcj) is both Open Source and Free Software. It is, however, supporting
differing levels of the Java APIs (some packages are current, some are back at
1.1.x levels) and does not fully support the AWT or Swing GUIs.

However, none of this means that you cannot write your own Java pro-
grams and release them under a Free Software or Open Source license. So you
can certainly develop Free Software in Java. Staunch Free Software partisans
(such as Richard Stallman and the Free Software Foundation) would question
the wisdom of doing so. Their argument would be that a Free Software product
that depends on non-Free tools isn’t really Free Software, since to compile, use,
or modify it, you need to make use of a proprietary tool.

There is more than one effort to produce a Free Software Java runtime
implementation. None of them is “ready for prime time.” It would, in our
opinion, be a very good thing for Sun to release their SDK and Java Virtual
Machine as Free Software. But so far, they have steadily resisted calls to do so.

2. This is the only time we will refer to it as “GNU/Linux.” See Section 7.3 for the story of
why GNU/Linux is the preferred name of some. We understand Stallman and the FSF’s posi-
tion, but “Linux” is much easier on the eyes and ears than “GNU/Linux.” And that, not prin-
ciple, is how names and words go into the language. For better or for worse, “Linux” is the
name of the operating system.

3. As we write this, a very public discussion is taking place between Sun, IBM, and Eric Ray-
mond, founder of the Open Source Initiative, about opening Java under some sort of open
source license. At this time, no one knows how this will turn out, but it is possible that Java
will be Free Software in the future.

xxiiiPreface

The fact, however, that two distinct vendors (Sun and IBM) produce ef-
fectively interchangeable development and runtime environments reduces some
of the risk that you face when you select a platform available only from a single
vendor who does not provide source code.

So, to put the case firmly: Java is free for use, but it is certainly not Free
Software as defined in The GNU Manifesto4 or the GNU General Public Li-
cense.5 This is a political and philosophical issue of interest only to those
aforementioned Free Software partisans. For the rest of us, this has no bearing
on Java’s technical or business merits. As for us, obviously we like the language
or we wouldn’t be writing about it.

YOU CAN HELP!

This book is part of the Bruce Perens’ Open Source Series. Shortly after this
book is published in dead-tree form, it will be on the Web,6 free for use, redis-
tribution, and modification in compliance with the terms of the Open Publica-
tion License,7 with no options taken. You can immediately create your own
version as permitted in that license.

Naturally enough, we plan to maintain our “official” version of the online
book, so we encourage you to send suggestions, corrections, extensions, com-
ments, and ideas to us. Please send any such to javalinux@multitool.net
and we will try to keep our little tome up-to-date so it continues to serve the
needs of the Java and Linux development communities.

ACKNOWLEDGMENTS

First off, we naturally wish to thank Mark L. Taub, our acquisitions editor at
Prentice Hall PTR, for believing in the book and in open publishing as the way
to put it out there. We also want to thank Bruce Perens for lending his name
and powers of persuasion to open-content publishing through the Prentice Hall
PTR Bruce Peren’s Open Source Series. Thanks, too, to Patrick Cash-Peterson

4. http://www.gnu.org/gnu/manifesto.html

5. http://www.gnu.org/copyleft/gpl.html

6. http://www.javalinuxbook.com/

7. http://www.opencontent.org/openpub/

Prefacexxiv

and Tyrrell Albaugh, who worked as our in-house production contacts, for all
the behind-the-scenes work they did, including overseeing the cover.

In more direct terms of content, we owe major thanks to Kirk Vogen of
IBM Consulting in Minneapolis for his article on using SWT with gcj, and
for his kind help in allowing us to use the ideas he first presented in his IBM
developerWorks articles. In more direct terms of content, we owe major thanks
to: Kirk Vogen of IBM Consulting in Minneapolis for his article on using SWT
with gcj, and for his kind help in allowing us to use ideas he first presented in
his IBM developerWorks articles; and to Deepak Kumar8 for graciously allow-
ing us to base our build.xml file for EJBs off of a version that he wrote.

Thanks, too, to Andrew Albing for his help in drawing some of our dia-
grams, and to George Logajan and to Andy Miller for sharing their insights on
the more intricate details of Swing.

We also wish to express our great indebtedness to our technical reviewers,
especially Andrew Hayes, Steve Huseth, and Dan Moore. A very large thank-
you is also due to Alina Kirsanova whose eye for detail, endless patience, and
tenacity, and overall talent with proofing, layout, and more added so much
refinement and improvement to the book. We are greatful for all their contri-
butions. Any errors or omissions in this text are our fault and certainly not
theirs. The book is much stronger for all their efforts.

There are likely many more people we ought to thank, especially those at
Prentice Hall PTR, whose names and contributions we may never know, but
we do know that this was an effort of many more people than just the authors,
and we are grateful to them all.

8. http://www.roseindia.net/

xxvPreface

This book has the unfortunate burden of serving a diverse set of audiences. We
realize that this book might appeal to both experienced Java programmers who
are new to Linux, and to experienced Linux programmers who are new to Java,
with all possible shadings in between.

In addition to balancing these two poles, we are also trying to strike a bal-
ance between the size of the book and the range of our topic. Fortunately, there
is today quite a range of both book and Web publishing on both Java and
Linux, so we are able to do our best within the limits of a book a normal person
may lift, and we can make recourse to a number of outside references you might
wish to use to supplement our efforts.

WHO SHOULD BUY THIS BOOK

If you are an experienced Java programmer, but quite new to Linux, and you
have been looking for information on the tools available to develop and deploy
Java applications on Linux systems, this book will provide a lot of useful
information.

Introduction

xxvii

If you are an experienced Linux user or developer, and you are interested
in using the Java language on that platform, this book will guide you through
some advanced Java development topics and will present, we hope, some novel
uses for familiar Linux and GNU tools.

If you are a rank beginner to either Linux or Java, we still think this book
has value, but we would recommend that you use it in conjunction with more
introductory books. For a basic introduction to Java and object-oriented pro-
gramming, we recommend Bruce Eckel’s excellent book, Thinking in Java
(ISBN 0-13-100287-2). For an introduction to Linux and its tools, we can
recommend The Linux Book by David Elboth (ISBN 0-13-032765-4)1 as an
all-around title. We also list several other books in sections titled Resources
throughout this book. Many books we recommend are not actually Linux-
specific. Since Linux duplicates (in most respects) a UNIX platform, we do
occasionally recommend books that are general to all *nix systems.

If you are a developer, contractor, or MIS development manager with
more projects than budget, our book will introduce you to many solid tools
that are free of license fees for the development and deployment of production
Java applications. We are all being asked to do more with less all the time. In
many (but certainly not all) cases, Free and Open Source software is an excellent
way to do that.

WHO SHOULD NOT BUY THIS BOOK

Those looking for complete documentation on Java APIs and Linux-based Java
application servers will be disappointed. Complete reference material on Free
Software and Open Source Software may be found in book form, but it is most
certainly out-of-date. And while this is an open-content book, we know full
well that we will only be updating it as our “day jobs” permit. In other words,
those seeking complete and current reference material should go to the Web.

Those who have a multimillion-dollar budget for applications development
will probably be well served by commercial application server products. While
we very much believe that Linux and Java on Linux are fully capable of support-
ing production environments, we recognize that products such as BEAWeblogic
and IBM’s WebSphere have large support organizations behind them, and

1. Note that we do tend to recommend titles from Pearson Education (our publishers), but
that we by no means confine ourselves to that publisher.

Introductionxxviii

(at least for now) a larger base of developers and contracting organizations with
staff (variably) experienced in writing and supporting applications in these en-
vironments. Please note that you can run these products on Linux systems, and
that they are part of the Linux-Java world. Our book does not cover them,
however, both because they are well-covered elsewhere, and because we have
chosen to emphasize the Free and Open Source tools merely to keep the book
small enough to lift, while still covering those tools most in need of well-written
supporting documentation.

HOW TO USE THIS BOOK

There are many approaches to a book. Some people like to start with the last
chapter to see how it all turns out in the end; others like to start at the front
and master each topic before moving on; some read through quickly, then
reread for detail; still others prefer to skip around, “cherry picking” topics as
whim and fancy strike. We hope this book will work for you, whatever
your style.

Each chapter is not really free-standing, nor is it intricately tied to the
previous chapters. If we were writing in depth on a single topic we might be
able to build chapter by chapter. Instead, we’ve tackled an immense amount
of information in hopes of condensing it down to give a good overview, to give
you a glimpse of the possibilities, and to whet your appetite for more. Some
chapters will be strongly related to previous chapters; others you may be able
to read without having read any of the preceding chapters—it will depend on
the topic.

Many Paths

What we’re describing below are a few possible paths that you might take
through the book, depending on what you bring to the task—your experience
and skills, your patience and persistence. We have tried to pack a lot of useful
and practical information into these few chapters, distilling down the most
important topics for each subject area. We hope that, even for the most experi-
enced of our readers, we still offer, if not some new facts, at least some fresh
explanations that might give you new insight into familiar topics.

xxixIntroduction

The Linux Newbie Path

If you are new to Linux, then you’ll want to start with the first two chapters.
If you are already experienced in Java, feel free to skip Chapter 3, but you may
want at least to skim Chapters 4 and 5. You will definitely want to check out
Chapter 7 as we are almost sure that it is something you didn’t know about.

Chapter 8 is another topic you may not have encountered outside of
Linux, although CVS is not limited to Linux environments. Beyond that, it
will depend on what else you already know. See what other categories, below,
might fit your situation.

The Java Newbie Path

If you are new to Java, then be sure to read Chapters 3 and 4, but if you are
not already an experienced programmer you should probably bring along
another, more introductory text.

Chapters 5 and 10 will give you some good background for choosing your
Java development tools. So many Java projects these days are tied to Ant that
you should also cover Chapter 9 if you don’t already know the tool.

With your experience in other languages you may have done a lot of unit
testing; read about the approach most popular with Java developers in
Chapter 13.

The Client-Side Path

Depending on what type of Java development that you hope to do, you may
want to concentrate on certain parts of the latter half of the book. Those most
interested in the front end or client side should focus on the middle chapters.
Of most interest to you will be Chapters 16 and 17. Your client-side emphasis
should also include Chapters 18 and 19.

The Server-Side Path

For those with an emphasis on the middle and third tier, or those with a general
server emphasis, all of Part IV will be helpful. This is in addition to a solid
grounding in the previous chapters in Parts I and II.

The Enterprise Path

The final Part V will discuss enterprise scale software. Such software also typi-
cally includes JSP and Servlet software, as covered in Chapters 18, 19, and 20.

Introductionxxx

For those working at this level, the projects are usually large enough to be
staffed with a variety of roles. Even if your role doesn’t include the deployment
of the software, we encourage you to read these chapters (20 and 24) so as to
get some understanding of what is needed and how it fits together.

Now, let’s get to work, and discover some of the amazing capabilities
available to you when you combine two of the most powerful software trends
in the history of computing—Java and Linux.

xxxiIntroduction

Part I

Getting Started

The reader is introduced to the vast possibilities of the Linux command line,
and excuses are made for its eclecticism.

WHAT YOU WILL LEARN1.1

Some basic shell commands are described in this chapter, especially those relat-
ed to some common programming tasks. Used as a toolkit, they can be a handy
collection of tools for everyday use.

Linux provides an incredible array of such tools, useful for any develop-
ment effort, Java or otherwise. They will be important not only for the develop-
ment of your Java code, but for all the hundreds of related housekeeping tasks
associated with programming and with managing your development environ-
ment. A few tools are described briefly in this chapter, to hint at what can be
done and to whet your appetite for more.

We will also describe a command which will help you learn about other
commands. Even so, it may be quite worth your while to have another book
about UNIX/Linux handy. If there is something you, as a programmer, need

Chapter 1

An Embarrassment of Riches:
The Linux Environment

3

to do on a Linux system, chances are there is already a command (or a sequence
of commands) which will do it.

Finally, we will discuss the extent of our remaining ignorance upon
finishing the chapter.

Let us take a moment to explain that last comment. As readers of comput-
er books ourselves, we are often frustrated when we discover how lightly a topic
has been covered, but particularly so when other parts of the same book are
found to fully explore their topics. When only some parts of a book are thor-
ough, you often don’t know that you don’t know it all. We will introduce some
basic shell concepts and commands here, and we may expand on some of these
in later chapters, but each of our chapters covers topics that could each fill its
own book. Therefore we need to leave out lots of material. We will also let you
know when we have left things out because they are off-topic, or because we
don’t have room. We’ll also try to tell you where to look for the rest of the
knowledge. We try to sum this up in a final section of each chapter entitled
What You Still Don’t Know. But we do have a lot of information to impart,
so let’s get going.

THE COMMAND LINE: WHAT’S THE BIG DEAL?1.2

One of the revolutionary things that UNIX (and thus Linux) did was to sepa-
rate operating system commands from the operating system itself. The com-
mands to display files, show the contents of directories, set permissions, and so
on were, in the “olden days,” an integral part of an operating system. UNIX
removed all that from the operating system proper, leaving only a small “kernel”
of necessary functionality in the operating system. The rest became executables
that lived outside of the operating system and could be changed, enhanced, or
even replaced individually by (advanced) users without modifying the operating
system. The most significant of these standalone pieces was the command
processor itself, called the shell.

The shell is the program that takes command-line input, decides what
program(s) you are asking to have run, and then runs those programs. Before
there were Graphical User Interfaces, the shell was the user interface to UNIX.
As more developers began working with UNIX, different shells were developed
to provide different features for usability. Now there are several shells to
choose from, though the most popular is bash. Some BSD/UNIX die hards

Chapter 1 An Embarrassment of Riches: The Linux Environment4

still swear by csh, a.k.a. the C-shell, though most of its best features have been
incorporated into bash.

TIP

There are actually quite a few shells to choose from, and several editors for
entering text. Our recommendation: If you learn only one shell, learn bash. If
you learn only one editor, learn vi. Some basic shell scripting will go a long way
to eliminating mundane, repetitive tasks. Some basic vi editing will let you do
things so much faster than what GUI editors support. (More on editing in
Chapter 2.)

Since commands could be developed and deployed apart from the operat-
ing system, UNIX and Linux have, over the years, had a wide variety of tools
and commands developed for them. In fact, much of what is called Linux is
really the set of GNU tools which began development as Open Source long
before Linux even existed. These tools, while not technically part of the operat-
ing system, are written to work atop any UNIX-like operating system and pro-
grammers have come to expect them on any Linux system that they use. Some
commands and utilities have changed over the years, some are much the same
as they first were in the early days of UNIX.

Developers, encouraged by the openness of Open Source (and perhaps
having too much free time on their hands) have continued to create new utili-
ties to help them get their job done better/faster/cheaper. That Linux supports
such a model has helped it to grow and spread. Thus Linux presents the first
time user with a mind-boggling array of commands to try to learn. We will
describe a few essential tools and help you learn about more.

BASIC LINUX CONCEPTS AND COMMANDS1.3

There are some basic Linux commands and concepts that you should know in
order to be able to move around comfortably in a Linux filesystem. Check your
knowledge of these commands, and if need be, brush up on them. At the end
of the chapter, we list some good resources for learning more about these and
other commands. Remember, these are commands that you type, not icons for
clicking, though the windowing systems will let you set up icons to represent
those commands, once you know what syntax to use.

51.3 Basic Linux Concepts and Commands

So let’s get started. Once you’ve logged in to your Linux system, regardless
of which windowing system you are using—KDE, Gnome, Window Maker,
and so on, start up an xterm window by running xterm (or even konsole) and
you’ll be ready to type these commands.1

Redirecting I/O1.3.1

The second great accomplishment of UNIX,2 carried on into its Linux descen-
dants, was the concept of redirecting input and output (I/O). It was based on
the concept of a standardized way in which I/O would be done, called
standard I/O.

Standard I/O1.3.1.1

A familiar concept to Linux developers is the notion of standard I/O. Virtually
every Linux process begins its life with three open file descriptors—standard
in, standard out, and standard error. Standard in is the source of input for the
process; standard out is the destination of the process’ output; and standard
error is the destination for error messages. For “old fashioned” command-line
applications, these correspond to keyboard input for standard in and the output
window or screen for both standard out and error.

A feature of Linux that makes it so adaptable is its ability to redirect its
I/O. Programs can be written generically to read from standard in and write to
standard out, but then when the user runs the program, he or she can change
(or redirect) the source (in) or destination (out) of the I/O. This allows a
program to be used in different ways without changing its code.

Redirecting I/O is accomplished on the Linux shell command line by the
“<” and “>” characters. Consider the ls program which lists the contents of a
directory. Here is a sample run of ls:

$ ls
afile more.data zz.top
$

1. If you’re not using a windowing system, these commands are typed at the shell prompt that
you get after you log in. But if you’re not using a windowing system, either you’re not a begin-
ner (and don’t need this introduction) or you can’t get your windowing system to work, in
which case you may need more help that we can give you here.

2. Yes, we are aware that much of UNIX actually comes from the Multics project, but we
credit UNIX with popularizing it.

Chapter 1 An Embarrassment of Riches: The Linux Environment6

We can redirect its output to another location, a file, with the “>”
character:

$ ls > my.files
$

The output from the ls command no longer appears on the screen (the
default location of standard out); it has been redirected to the file my.files.

What makes this so powerful a construct (albeit for a very simple example)
is the fact that not only was no change to the program required, but the pro-
grammer who wrote the ls program also did nothing special for I/O. He simply
built the program to write to standard out. The shell did the work of redirecting
the output. This means that any program invoked by the shell can have its
output similarly redirected.

Standard error is another location for output, but it was meant as the des-
tination for error messages. For example, if you try to list the contents of a
nonexistent directory, you get an error message:

$ ls bogus
ls: bogus: No such file or directory
$

If you redirect standard out, nothing changes:

$ ls bogus > save.out
ls: bogus: No such file or directory
$

That’s because the programmer wrote the program to send the message to
standard error, not standard out. In the shell (bash) we can redirect standard
error by preceding the redirect symbol with the number 2, as follows:3

$ ls bogus 2> save.out
$

3. The use of the number 2 comes from an implementation detail: All the I/O descriptors for
a UNIX process were kept in an array. The first three elements of the array, numbered 0, 1,
and 2, were defined to be the standard in, out, and err, in that order. Thus in the shell you can
also redirect standard out by using “1>” as well as the shorter “>”.

71.3 Basic Linux Concepts and Commands

Note there is no output visible from ls. The error message, ls: bogus:
No such file or directory, has been written to the file save.out.

In a similar way standard input (stdin) can be redirected from its default
source, the keyboard.

As an example, we’ll run the sort program. Unless you tell it otherwise,
sort will read from stdin—that is, the keyboard. We type a short list of
phrases and then type a ̂ D (a Control-D) which won’t really echo to the screen
as we have shown but will tell Linux that it has reached the end of the input.
The lines of text are then printed back out, now sorted by the first character of
each line. (This is just the tip of the iceberg of what sort can do.)

$ sort
once upon a time
a small creature
came to live in
the forest.
^D
a small creature
came to live in
once upon a time
the forest.

Now let’s assume that we already have our text inside a file called
story.txt. We can use that file as input to the sort program by redirecting
the input with the “<” character. The sort doesn’t know the difference. Our
output is the same:

$ sort < story.txt
a small creature
came to live in
once upon a time
the forest.

Pipes1.3.1.2

The output from one command can also be sent directly to the input of another
command. Such a connection is called a pipe. Linux command-line users also
use “pipe” as a verb, describing a sequence of commands as piping the output
of one command into another. Some examples:

$ ls | wc > wc.fields
$ java MyCommand < data.file | grep -i total > out.put

Chapter 1 An Embarrassment of Riches: The Linux Environment8

The first example runs ls, then pipes its output to the input of the wc
program. The output of the wc command is redirected to the file wc.fields.
The second example runs java, giving it a class file named MyCommand. Any
input that this command would normally read from keyboard input will be
read this time from the file data.file. The output from this will be piped
into grep, and the output from grep will be put into out.put.

Don’t worry about what these commands really do. The point of the ex-
ample is to show how they connect. This has wonderful implications for devel-
opers. You can write your program to read from the keyboard and write to a
window, but then, without any change to the program, it can be instructed to
read from files and write to files, or be interconnected with other programs.

This leads to a modularization of functions into small, reusable units. Each
command can do a simple task, but it can be interconnected with other com-
mands to do more, with each pipeline tailored by the user to do just what is
needed. Take wc for example. Its job is to count words, lines, and characters
in a file. Other commands don’t have to provide an option to do this; any time
you want to count the lines in your output, just pipe it into wc.

The ls Command1.3.2

The ls command is so basic, showing the names of files in a directory. Be sure
that you know how to use these options:

• ls lists the files in a directory.

• ls -l is the long form, showing permissions, ownership, and size.

• ls -ld doesn’t look inside the directory, so you can see the directory’s
permissions.

• ls -lrt shows the most recently modified files last, so you can see what
you’ve just changed.

Filenames1.3.3

Filenames in Linux can be quite long and composed of virtually any character.
Practically speaking, however, you’re much better off if you limit the length to
something reasonable, and keep to the alphanumeric characters, period, and
the underscore (“_”). That’s because almost all the other punctuation characters
have a special meaning to the shell, so if you want to type them, you need to
escape their special meaning, or suffer the results of unintended actions.

91.3 Basic Linux Concepts and Commands

Filenames are case sensitive—upper- and lowercase names are different.
The files ReadMe.txt and readme.txt could both be in the same directory;
they are distinct files.

Avoid using spaces in filenames, as the shell uses whitespace to delineate
between arguments on a command line. You can put a blank in a name, but
then you always have to put the name in quotes to refer to it in the shell.

To give a filename more visual clues, use a period or an underscore.
You can combine several in one filename, too. The filenames
read_me_before_you_begin or test.data.for_my_program may be
annoyingly long to type, but they are legal filenames.

NOTE

The period, or “dot,” in Linux filenames has no special meaning. If you come
from the MS-DOS world, you may think of the period as separating the filename
from the extension, as in myprogrm.bas where the filename is limited to eight
characters and the extension to three characters. Not so in Linux. There is no
“extension,” it’s all just part of the filename.

You will still see names like delim.c or Account.java, but the .c or
.java are simply the last two characters or the last five characters, respective-
ly, of the filenames. That said, certain programs will insist on those endings for
their files. The Java compiler will insist that its source files end in .java and
will produce files that end in .class—but there is no special part of the file-
name to hold this. This will prove to be very handy, both when you name your
files and when you use patterns to search for files (see below).

Permissions1.3.4

Permissions in Linux are divided into three categories: the owner of a file
(usually the user who created it), the group (a collection of users), and others,
meaning everyone who is not the owner and not in the group. Any file belongs
to a single owner and, simultaneously, to a single group. It has separate
read/write/execute permissions for its owner, its group, and all others. If you
are the owner of a file, but also a member of the group that owns the file, then
the owner permissions are what counts. If you’re not the owner, but a member
of the group, then the group permissions will control your access to the file. All
others get the “other” permissions.

If you think of the three permissions, read/write/execute, as three bits of
a binary number, then a permission can be expressed as an octal digit—where
the most significant bit represents read permission, the middle bit is write

Chapter 1 An Embarrassment of Riches: The Linux Environment10

permission, and the least significant bit is execute permission. If you think of
the three categories, user/group/others, as three digits, then you can express the
permissions of a file as three octal digits, for example “750”. The earliest ver-
sions of this command required you to set file permissions this way, by specify-
ing the octal number. Now, although there is a fancier syntax (for example,
g+a), you can still use the octal numbers in the chmod command. See the
example below.

The fancier, or more user-friendly, syntax uses letters to represent the var-
ious categories and permissions. The three categories of user, group, and other
are represented by their first letters: u, g, and o. The permissions are similarly
represented by r, w, and x. (OK, we know “x” is not the first letter, but it is a
reasonable choice.) For both categories and permissions, the letter a stands for
“all.” Then, to add permissions, use the plus sign (+); to remove permissions,
use the minus sign (-). So g+a means “add all permissions to the group catego-
ry,” and a+r means “add read permissions to all categories.”

Be sure that you know these commands for manipulating permissions:

• chmod changes the mode of a file, where mode refers to the
read/write/execute permissions.

• chown changes the owner of a file.4

• chgrp changes the group owner of a file.

Table 1.1 shows some common uses of these commands.

Table 1.1 Changing permissions

ExplanationCommand

Gives everyone read permission.chmod a+r file

Takes away write permission from group, others.chmod go-w file

Sets up a shell script so you can execute it like a command.chmod u+x file

Sets permission to read and write for the owner but no permissions
for anyone else.

chmod 600 file

4. On Linux the use of this command is restricted to the superuser, or “root.”

111.3 Basic Linux Concepts and Commands

File Copying1.3.5

Do you know these commands?

• mv

• cp

• ln

The mv command (short for “move”) lets you move a file from one place
in the hierarchy of files to another—that is, from one directory to another.
When you move the file, you can give it a new name. If you move it without
putting it in a different directory, well, that’s just renaming the file.

• mv Classy.java Nouveau.java

• mv Classy.java /tmp/outamy.way

• mv Classx.java Classz.java ..

• mv /usr/oldproject/*.java .

The first example moves Classy.java to a new name, Nouveau.java,
while leaving the file in the same directory.

The second example moves the file named Classy.java from the current
directory over to the /tmp directory and renames it outamy.way—unless the
file outamy.way is an already existing directory. In that case, the file
Classy.java will end up (still named Classy.java) inside the directory
outamy.way.

The next example just moves the two Java source files up one level, to the
parent directory. The “..” is a feature of every Linux directory. Whenever you
create a directory, it gets created with two links already built in: “..” points to
its parent (the directory that contains it), and “.” points to the directory itself.

A common question at this point is, “Why does a directory need a refer-
ence to itself?” Whatever other reasons there may be, it certainly is a handy
shorthand to refer to the current directory. If you need to move a whole lot of
files from one directory to another, you can use the “.” as your destination.
That’s the fourth example.

The cp command is much like the mv command, but the original file is
left right where it is. In other words, it copies files instead of moving them. So:

cp Classy.java Nouveau.java

Chapter 1 An Embarrassment of Riches: The Linux Environment12

will make a copy of Classy.java named Nouveau.java, and:

cp Classy.java /tmp

will make a copy of Classy.java in the /tmp directory, and:

cp *.java /tmp

will put the copies of all the Java sources in the current directory to the /tmp
directory.

If you run this command,

ln Classy.java /tmp

you might think that ln copies files, too. You will see Classy.java in your
present working directory and you will see what appears to be a copy of the file
in the /tmp directory. But if you edit your local copy of Classy.java and
then look at the “copy” that you made in the /tmp directory, you will see the
changes that you made to your local file now also appear in the file in the /tmp
directory.

That’s because ln doesn’t make a copy. It makes a link. A link is just an-
other name for the same contents. We will discuss linking in detail later in the
book (see Section 6.2.1).

Seeing Stars1.3.6

We need to describe shell pattern matching for those new to it. It’s one of the
more powerful things that the shell (the command processor) does for the
user—and it makes all the other commands seem that much more powerful.

When you type a command like we did previously:

mv /usr/oldproject/*.java .

the asterisk character (called a “star” for short) is a shorthand to match any
characters, which in combination with the .java will then match any file in
the /usr/oldproject directory whose name ends with .java.

There are two significant things to remember about this feature. First, the
star and the other shell pattern matching characters (described below) do not
mean the same as the regular expressions in vi or other programs or languages.
Shell pattern matching is similar in concept, but quite different in specifics.

131.3 Basic Linux Concepts and Commands

Second, the pattern matching is done by the shell, the command inter-
preter, before the arguments are handed off to the specific command. Any text
with these special characters is replaced, by the shell, with one or more filenames
that match the pattern. This means that all the other Linux commands (mv,
cp, ls, and so on) never see the special characters—they don’t do the pattern
matching, the shell does. The shell just hands them a list of filenames.

The significance here is that this functionality is available to any and every
command, including shell scripts and Java programs that you write, with no
extra effort on your part. It also means that the syntax for specifying multiple
files doesn’t change between commands—since the commands don’t implement
that syntax; it’s all taken care of in the shell before they ever see it. Any com-
mand that can handle multiple filenames on a command line can benefit from
this shell feature.

If you’re familiar with MS-DOS commands, consider the way pattern
matching works (or doesn’t work) there. The limited pattern matching you
have available for a dir command in MS-DOS doesn’t work with other com-
mands—unless the programmer who wrote that command also implemented
the same pattern matching feature.

What are the other special characters for pattern matching with filenames?
Two other constructs worth knowing are the question mark and the square
brackets. The “?” will match any single character.

The [...] construct is a bit more complicated. In its simplest form, it
matches any of the characters inside; for example, [abc] matches any of a or
b or c. So Version[123].java would match a file called Version2.java
but not those called Version12.java or VersionC.java. The pattern
Version*.java would match all of those. The pattern Version?.java would
match all except Version12.java, since it has two characters where the ?
matches only one.

The brackets can also match a range of characters, as in [a-z] or [0-9].
If the first character inside the brackets is a “^” or a “!”, then (think “not”) the
meaning is reversed, and it will match anything but those characters. So
Version[^0-9].java will match VersionC.java but not Version1.java.
How would you match a “-”, without it being taken to mean a range? Put it
first inside the brackets. How would you match a “^” or “!” without it being
understood as the “not”? Don’t put it first.

Some sequences are so common that a shorthand syntax is included. Some
other sequences are not sequential characters and are not easily expressed as a
range, so a shorthand is included for those, too. The syntax for these special

Chapter 1 An Embarrassment of Riches: The Linux Environment14

sequences is [:name:] where name is one of: alnum, alpha, ascii, blank,
cntrl, digit, graph, lower, print, punct, space, upper, xdigit. The
phrase [:alpha:] matches any alphabetic character. The phrase [:punct:]
matches any punctuation character. We think you got the idea.

Escape at Last1.3.6.1

Of course there are always times when you want the special character to be just
that character, without its special meaning to the shell. In that case you need
to escape the special meaning, either by preceding it with a backslash or by en-
closing the expression in single quotes. The commands rm Account\$1.class
or rm 'Account$1.class' would remove the file even though it has a dollar
sign in its name (which would normally be interpreted by the shell as a vari-
able). Any character sequence in single quotes is left alone by the shell; no spe-
cial substitutions are done. Double quotes still do some substitutions inside
them, such as shell variable substitution, so if you want literal values, use the
single quotes.

TIP

As a general rule, if you are typing a filename which contains something other
than alphanumeric characters, underscores, or periods, you probably want to
enclose it in single quotes, to avoid any special shell meaning.

File Contents1.3.7

Let’s look at a directory of files. How do you know what’s there? We can start
with an ls to list the names:

$ ls
ReadMe.txt Shift.java dispColrs moresrc
Shift.class anIcon.gif jam.jar moresrc.zip
$

That lists them alphabetically, top to bottom, then left to right, arranged
so as to make the most use of the space while keeping the list in columns.
(There are options for other orderings, single column, and so on.)

An ls without options only tells us the names, and we can make some
guesses based on those names (for example, which file is Java source, and which

151.3 Basic Linux Concepts and Commands

is a compiled class file). The long listing ls -l will tell us more: permissions,
links, owner, group, size (in bytes), and the date of last modification.

$ ls -l
total 2414
-rw-r--r-- 1 albing users 132 Jan 22 07:53 ReadMe.txt
-rw-r--r-- 1 albing users 637 Jan 22 07:52 Shift.class
-rw-r--r-- 1 albing users 336 Jan 22 07:55 Shift.java
-rw-r--r-- 1 albing users 1374 Jan 22 07:58 anIcon.gif
-rw-r--r-- 1 albing users 8564 Jan 22 07:59 dispColrs
-rw-r--r-- 1 albing users 1943 Jan 22 08:02 jam.jar
drwxr-xr-x 2 albing users 48 Jan 22 07:52 moresrc
-rw-r--r-- 1 albing users 2435522 Jan 22 07:56 moresrc.zip
$

While ls is only looking at the “outside” of files,5 there is a command that
looks at the “inside,” the data itself, and based on that, tries to tell you what
kind of file it found. The command is called file, and it takes as arguments a
list of files, so you can give it the name of a single file or you can give it a whole
long list of files.

NOTE

Remember what was said about pattern matching in the shell: we can let the
shell construct that list of files for us. We can give file the list of all the files
in our current directory by using the “*” on the command line so that the shell
does the work of expanding it to the names of all the files in our directory (since
any filename will match the star pattern).

$ file *
ReadMe.txt: ASCII text
Shift.class: compiled Java class data, version 45.3
Shift.java: ASCII Java program text
anIcon.gif: GIF image data, version 89a, 26 x 26,
dispColrs: PNG image data, 565 x 465, 8-bit/color RGB, non-interlaced
jam.jar: Zip archive data, at least v2.0 to extract
moresrc: directory
moresrc.zip: Zip archive data, at least v1.0 to extract
$

5. Technically, ls (without arguments) need only read the directory, whereas ls -l looks at
the contents of the inode in order to get all the other information (permissions, size, and so
on), but it doesn’t look at the data blocks of the file.

Chapter 1 An Embarrassment of Riches: The Linux Environment16

The file looks at the first several hundred bytes of the file and does a statis-
tical analysis of the types of characters that it finds there, along with other spe-
cial information it uses about the formats of certain files.

Three things to note with this output from file. First, notice that
dispColrs was (correctly) identified as a PNG file, even without the .png
suffix that it would normally have. That was done deliberately to show you that
the type of file is based not just on the name but on the actual contents of
the file.

Second, notice that the .jar file is identified as a ZIP archive. They really
do use a identical internal format.

Thirdly, file is not foolproof. It’s possible to have perfectly valid, compil-
able Java files that file thinks are C++ source, or even just English text. Still,
it’s a great first guess when you need to figure out what’s in a directory.

Now let’s look at a file. This simplest way to display its contents is to
use cat.

$ cat Shift.java
import java.io.*;
import java.net.*;
/**
 * The Shift object
 */
public class
Shift
{
 private int val;

 public Shift() { }

 // ... and so on

} // class Shift

When a file is longer than a few lines you may want to use more or less
to look at the file.6 These programs provide a screen’s worth of data, then pause

6. Like any open marketplace, the marketplace of ideas and open source software has its “me-
too” products. Someone thought they could do even better than more, so they wrote a new,
improved and largely upward compatible command. They named it less, on the minimalist
philosophy (with apologies to Dave Barry: “I am not making this up”) that “less is more.”
Nowadays, the more is rather passe. The less command has more features and has largely
replaced it. In fact, on many Linux distributions, more is a link to less. In the name of full

171.3 Basic Linux Concepts and Commands

for your input. You can press the space bar to get the next screen’s worth of
output. You can type a slash, then a string, and it will search forward for that
string. If you have gone farther forward in the file than you wanted, press “b”
to go backwards.

To find out more about the many, many commands available, press ?
(the question mark) while it’s running.

Typical uses for these commands are:

• To view one or more files, for example more *.java, where you can type
:n to skip to the next file.

• To page through long output from a previous pipe of commands, for ex-
ample, $ grep Account *.java | more, which will search (see more
on grep below) for the string Account in all of the files whose names end
in .java and print out each line that is found—and that output will be
paginated by more.

If you need only to check the top few lines of a file, use head. You can
choose how many lines from the front of the file to see with a simple parameter.
The command head -7 will write out the first seven lines, then exit.

If your interest is the last few lines of a file, use tail. You can choose how
many lines from the end of the file to see; the command tail -7 will write
out the last seven lines of the file. But tail has another interesting parameter,
-f. Though tail normally prints its lines and then, having reached the end of
file, it quits, the -f option tells tail to wait after it prints the last few lines and
then try again.7 If some other program is writing to this file, then tail will, on
its next read, find more data and print it out. It’s a great way to watch a log file,
for example, tail -f /tmp/server.log.

In this mode, tail won’t end when it reaches the end of file, so when you
want it to stop you’ll have to manually interrupt it with a ̂ C (Control-C— i.e.,
hold down the Control key and press the C key).

disclosure, there is also a paging program called pg, the precursor to more, but we’ll say no
more about that.

7. The less command has the same feature. If you press “F” while looking at a file, it goes into
an identical mode to the tail -f command. As is often the case in the wacky world of Linux,
there is more than one way to do it.

Chapter 1 An Embarrassment of Riches: The Linux Environment18

The grep Command1.3.8

No discussion of Linux commands would be complete without mentioning
grep. Grep, an acronym for “generalized regular expression processor,” is a tool
for searching through the contents of a file. It searches not just for fixed
sequences of characters, but can also handle regular expressions.

In its simplest form, grep myClass *.java will search for and display
all lines from the specified files that contain the string myClass. (Recall that
the *.java expansion is done by the shell, listing all the files that end with
.java.)

The first parameter to grep, myClass in the example above, is the string
that you want to search for. But the first nonoption parameter to grep is con-
sidered a regular expression meaning that it can contain special characters for
pattern matching to make for more powerful searches (see Section 2.2.3). Some
of the most common option parameters for grep are listed in Table 1.2.

Here’s a quick example:

grep println *.java | grep -v System.out

It will look for every occurrence of println but then exclude those that contain
System.out. Be aware that while it will exclude lines like

System.out.println(msg);

it will also exclude lines like this:

file.println(msg); // I'm not using System.out

It is, after all, just doing string searches.

Table 1.2 Options for grep

ExplanationOption

Ignore upper/lower case differences in its matching.-i

Only list the filename, not the actual line that matched.-l

Show the line number where the match was found.-n

Reverses the meaning of the search—shows every line that does not match the
pattern.

-v

191.3 Basic Linux Concepts and Commands

The find Command1.3.9

If someone compiled a list of the top 10 most useful Linux utilities, find would
most likely be near the top of the list. But it would also make the top 10 most
confusing. Its syntax is very unlike other Linux utilities. It consists of
predicates—logical expressions that cause actions and have true/false values that
determine if the rest of the expression is executed. Confused? If you haven’t
used find before you probably are. We’ll try to shed a little light by showing a
few examples.

find . -name '*frag*' -print

This command looks for a file whose name contains frag. It starts looking in
the current directory and descends into all subdirectories in its search.

find /over/there . /tmp/here -name '*frag*.java' -print

This command looks for a file that has frag in its name and ends with .java.
It searches for this file starting in three different directories—the current
directory (“.”), /over/there, and /tmp/here.

find . -name 'My[A-Z]*.java' -exec ls -l '{}' \;

Starting in the current directory, this command searches for a file whose name
begins with My followed by an uppercase alphabetic character followed by
anything else, ending with .java. When it finds such a file, it will execute a
command—in this case, the ls command with the -l option. The braces are
replaced with the name of the file that is found; the “\;” indicates to find the
end of the command.

The -name is called a predicate; it takes a regular expression as an argu-
ment. Any file that matches that regular expression pattern is considered true,
so control passes on to the next predicate—which in the first example is simply
-print that prints the filename (to standard out) and is always true (but since
no other predicate follows it in this example, it doesn’t matter). Since only the
names that match the regular expression cause the -name predicate to be true,
only those names will get printed.

There are other predicates besides -name. You can get an entire list by
typing man find at a command prompt, but Table 1.3 lists a few gems, to give
you a taste of what find can do.

Let’s look at an example to see how they fit together:

Chapter 1 An Embarrassment of Riches: The Linux Environment20

Table 1.3 Some find predicates

ExplanationOption

Is true if the file is a directory.-type d

Is true if the file is a plain file (e.g., not a directory).-type f

Is true if the file is less than five days old, that is, has been
modified within the last five days. A +5 would mean older than
five days and a 5 with no sign means exactly five days.

-mtime -5

Is true if the file was accessed within the last five days. The +
and - mean greater and less than the specified time, as in the
previous example.

-atime -5

Is true if the file is newer than the file myEx.class.-newer myEx.class

Is true if the file is greater than 24K. The suffix c would mean
bytes or characters (since b stands for 512-byte blocks in this
context). The + and - mean greater and less than the specified
size, as in the other examples.

-size +24k

$ find . -name '*.java' -mtime +90 -atime +30 -print
./MyExample.java
./old/sample/MyPrev.java
$

This command printed out the names of two files that end with .java found
beneath the current directory. These files hadn’t been modified in the last
90 days nor accessed within the last 30 days. The next thing you might want
to do is to run this command again adding something at the end to remove
these old files.

$ find . -name '*.java' -mtime +90 -atime +30 -print -exec rm '{}' \;
./MyExample.java
./old/sample/MyPrev.java
$

The Shell Revisited1.3.10

Most Linux shells—the command interpreters—can be considered program-
ming languages in their own right. That is, they have variables and control
structures—if statements, for loops, and so on. While the syntax can be subtly
different between shells, the basic constructs are all there.

211.3 Basic Linux Concepts and Commands

Entire books can be—and have been—written on shell programming.
(It’s one of our favorite subjects to teach.) Programs written in the shell lan-
guage are often called shell scripts. Such scripts can be powerful yet easy to write
(once you are familiar with the syntax) and can make you very productive in
dealing with all those little housekeeping tasks that accompany program
development. All you need to do (dangerous words, no?) is to put commands
in a text file and give the file execute permissions. But that’s a subject for
another day.

Some elements of shell scripting, however, are useful even if you never
create a single shell script. Of these, perhaps the most important to know
(especially for Java programmers) is how to deal with shell variables.

NOTE

We’ll be describing the syntax for bash, the default shell on most Linux
distributions. The syntax will differ for other shells, but the concepts are largely
the same.

Any string of alphanumeric or underscore characters can be used as the
name of a variable. By convention shell variables typically use uppercase
names—but that is only convention (although it will hold true for most if
not all of our examples, too). Since commands in Linux are almost always
lowercase, the use of uppercase for shell variables helps them to stand out.

Set the value of a shell variable with the familiar method—the equal sign:

$ FILE=/tmp/abc.out
$

This has assigned the variable FILE the value /tmp/abc.out. But to make
use of the value that is now in FILE, the shell uses syntax that might not be
familiar to you: The name must be preceded with a “$”.

Shell variables can be passed on to other environments if they are exported,
but they can never be passed back up. To set a shell variable for use by your
current shell and every subsequent subshell, export the variable:

$ export FILE
$

Chapter 1 An Embarrassment of Riches: The Linux Environment22

You can combine the assignment of a value with the exporting into one
step. Since repeating the export doesn’t hurt, you will often see shell scripts use
the export command every time they do an assignment, as if it were part of
the assignment syntax—but you know better.

$ export FILE="/tmp/way.out"
$

NOTE

The shell uses the dollar sign to distinguish between the variable name and just
text of the same letters. Consider the following example:

$ echo first > FILE
$ echo second > TEXT
$ FILE=TEXT
$ cat FILE
first
$

The cat command will dump the contents of the file named FILE to the
screen—and you should see first. But how would you tell the shell that you
want to see the contents of the file whose name you have put in the shell
variable FILE? For that you need the “$”:

$ cat $FILE
second
$

This is a contrived example, but the point is that shell syntax supports ar-
bitrary strings of characters in the command line—some of them are filenames,
others are just characters that you want to pass to a program. It needs a way
to distinguish those from shell variables. It doesn’t have that problem on the
assignment because the “=” provides the needed clue. To say it in computer
science terms, the “$” syntax provides the R-value of the variable. (Not the
insulation R-value, but what you expect when a variable is used on the Right-
hand-side of an assignment operator, as opposed to the L-value used on the
Left-hand-side of an assignment operator.)

There are several shell variables that are already exported because they are
used by the shell and other programs. You may need or want to set them to
customize your environment. Since they are already exported, you won’t need
to use the export command and can just assign a value, but it doesn’t hurt.

231.3 Basic Linux Concepts and Commands

The most important shell variable to know is PATH. It defines the directo-
ries in the filesystem where the shell will look for programs to execute. When
you type a command like ls or javac the shell will look in all of the directories
specified in the PATH variable, in the order specified, until it finds the
executable.

$ echo $PATH
/usr/local/bin:/usr/bin:/usr/X11R6/bin:/bin:.
$

The PATH shown in the example has five directories, separated by colons
(“:”). (Note the fifth one, the “.”; it says to look in the current directory.)
Where do you suppose it will find cat? You can look for it yourself by search-
ing in each directory specified in PATH. Or you can use the which command:

$ which cat
/bin/cat
$

Some commands (like exit) don’t show up, since they are built into the
shell. Others may be aliases—but that opens a whole other topic that we aren’t
covering here. Just remember that each directory in the PATH variable is exam-
ined for the executable you want to run. If you get a command not found error,
the command may be there, it just may not be on your PATH.

To look at it the other way around: If you want to install a command so
that you can execute it from the command line, you can either always type its
full pathname, or (a more user-friendly choice) you can set your PATH variable
to include the location of the new command’s executable.

So where and how do you set PATH? Whenever a shell is started up, it reads
some initialization files. These are shell scripts that are read and executed as if
they were typed by the user—that is, not in a subshell. Among other actions,
they often set values for variables like PATH. If you are using bash, look at
.bashrc in your home directory.

Shell scripts are just shell commands stored in a file so that you don’t need
to type the same commands and options over and over. There are two ways to
run a shell script. The easiest, often used when testing the script, is

$ sh myscript

Chapter 1 An Embarrassment of Riches: The Linux Environment24

where myscript is the name of the file in which you have put your commands.
(See Chapter 2 for more on how to do that.) Once you’ve got a script running
the way you’d like, you might want to make its invocation as seamless as any
other command. To do that, change its permissions to include the execution
permission and then, if the file is located in a place that your PATH variable
knows about, it will run as a command. Here’s an example:

$ chmod a+rx myscript
$ mv myscript ${HOME}/bin
$ myscript
... (script runs)
$

The file was put into the bin directory off of the home directory. That’s
a common place to put homebrew commands. Just be sure that $HOME/bin is
in your PATH, or edit .bashrc and add it.

If you want to parameterize your shell, you’ll want to use the variables $1,
$2, and so on which are given the first, second, and so on parameters on the
command line that you used to invoke your script. If you type myscript
Account.java then $1 will have the value Account.java for that invocation
of the script.

We don’t have the space to go into all that we’d like to about shell pro-
gramming, but let us leave you with a simple example that can show you some
of its power. Used in shell scripts, for loops can take a lot of drudgery out of
file maintenance. Here’s a simple but real example.

Imagine that your project has a naming convention that all Java files asso-
ciated with the user interface on your project will begin with the letters “UI”.
Now suppose your boss decides to change that convention to “GUI” but you’ve
already created 200 or more files using the old naming convention. Shell script
to the rescue:

for i in UI*.java
do
 new="G${i}"
 echo $i ' ==> ' $new
 mv $i $new
done

You could just type those commands from the command line—that’s the
nature of shell syntax. But putting them into a file lets you test out the script
without having to type it over and over, and keeps the correct syntax once

251.3 Basic Linux Concepts and Commands

you’ve got it debugged. Assuming we put those commands into a file called
myscript, here’s a sample run:

$ myscript
UI_Button.java ==> GUI_Button.java
UI_Plovar.java ==> GUI_Plovar.java
UI_Screen.java ==> GUI_Screen.java
UI_Tofal.java ==> GUI_Tofal.java
UI_Unsov.java ==> GUI_Unsov.java
...
$

Imagine having to rename 200 files. Now imagine having to do that with
a point-and-click interface. It could take you all morning. With our shell script,
it will be done in seconds.

We can’t hope to cover all that we’d like to about shell scripting. Perhaps
we have been able to whet your appetite. There are lots of books on the subject
of shell programming. We’ve listed a few at the end of this chapter.

The tar and zip Commands1.3.11

The tar and zip commands allow you to pack data into an archive or extract it
back. They provide lossless data compression (unlike some image compression
algorithms) so that you get back out exactly what you put in, but it can take
up less space when archived.8 Therefore tar and zip are often used for data
backup, archival, and network transmission.

There are three basic actions that you can take with tar, and you can
specify which action you want with a single letter9 in the arguments on the
command line. You can either

8. Well, technically, tar doesn’t compress the data in the file, but it does provide a certain
amount of “compression” by cutting off the tail ends of blocks of data; for example, a file of
37 bytes in its own file takes up 4K of disk space since disk blocks are allocated in “chunks”
(not the technical term). When you tar together a whole bunch of files, those extra tail-end
empty bytes are not used (except in the final block of the TAR file). So, for example, 10 files
of 400 bytes could be packed into a single 4K file, instead of the 40K bytes they would occupy
on the filesystem. So, while tar won’t compress the data inside the file (and thus is quite
assuredly “lossless”) it does result in a smaller file.

9. Linux option strings always start with a “-”, right? Yes, except for tar. It seems there is always
an exception to every rule. The newer versions of tar allow the leading minus sign, but can also
work without it, for historical compatibility reasons. Early versions of UNIX only had single

Chapter 1 An Embarrassment of Riches: The Linux Environment26

• c: Create an archive.

• x: Extract from an archive.

• t: Get a table of contents.

In addition, you’ll want to know these options:

• f: The next parameter is the filename of the archive.

• v: Provide more verbose output.

Using these options, Table 1.4 shows examples of each of the basic
functions.

Now let’s do the same thing using the zip command (Table 1.5). There
are actually two commands here—one to compress the files into an archive
(zip), and the other to reverse the process (unzip).

Table 1.4 Examples of the tar command

ExplanationCommand

Gives a table of contents, in long (or verbose) form.
Without the v, all you get is the filenames; with the v
you get additional information similar in format to the
ls -l command.

tar tvf packedup.tar

Extracts all the files from the TAR file, creating them
according to their specified pathname, assuming your
user ID and file permissions allow it. Remove the v
option if you don’t want to see each filename as the file
is extracted.

tar xvf packedup.tar

Creates a TAR archive named packedup.tar from
the mydir directory and its contents. Remove the v
option if you don’t want to see each filename as the file
is added to the archive.

tar cvf packedup.tar mydir

letter options. Newer POSIX versions of UNIX and the GNU tools, which means all flavors
of Linux, also support longer full-word options prefixed with a double minus, as in --extract
instead of x or -x.

271.3 Basic Linux Concepts and Commands

Table 1.5 Examples of the zip and unzip commands

ExplanationCommand

Gives a table of contents of the archive with some extra frill
around the edges, like a count of the files in the archive.

unzip -l packedup.zip

Extracts all the files from the ZIP file, creating them
according to their specified pathname, assuming your user
ID and file permissions allow it. Add the quiet option with
-q if you would like unzip not to list each file as it unzips it.

unzip packedup.zip

Creates a ZIP archive named packedup.zip from the
mydir directory and its contents. The -r tells zip to
recursively descend into all the subdirectories, their
subdirectories, and so on; otherwise, zip will just take the
files at the first layer and go no deeper.

zip -r packedup mydir

TIP

Since TAR and ZIP files can contain absolute as well as relative pathnames, it
is a good idea to look at their contents (e.g., tar tvf file) before unpacking
them, so that you know what is going to be written where.

There are many, many more options for tar and zip that we are not cover-
ing here, but these are the most common in our experience, and they will give
you a good start.

The tar and zip commands are also worth knowing about by a Java devel-
oper because of their relationship to JAR files. If you are working with Java you
will soon run across the notion of a Java ARchive file, or JAR file. They are
recognizable by name, ending in .jar. Certain Java tools are built to under-
stand the internal format of JAR files. For Enterprise Java (J2EE) there are
similar archives known as WAR files and EAR files. The command syntax for
dealing with the jar command that builds these archives is very similar to the
basic commands of tar. The internal format of a jar is the same as a ZIP file.
In fact, most places where you can use a JAR file you can use a ZIP file as well.
(You will see more about this when we discuss the standard Java tools in
Section 5.11.)

Chapter 1 An Embarrassment of Riches: The Linux Environment28

TIP

Here’s one more handy example we know you’ll use:

find . -name '*.java' -print | zip allmysource -@

This command starts in the current directory (“.”) finding every file that ends in
.java and gives their names to zip which will read them from standard in in-
stead of its argument list (told to do so with the -@ argument) and zip them all
into an archive named allmysource.zip. To put it simply, it will zip up all
your Java source files from the current directory on down.

The man Command1.3.12

Primitive but handy, the man command (short for manual) was the early
UNIX online manual. While we’ve come to expect (and ignore) online help,
the idea of online manuals was rather revolutionary in the early days of UNIX.
In contrast to walls of printed documentation, UNIX provided terse but
definitive descriptions of its various commands. When they are done well, these
descriptions are an invaluable handy reference. They are not the best way to
learn about a command, but they can be a great guide to using the command’s
options correctly.

The format is simply man followed by the name of the command about
which you want information. So man man will tell you about the man
command itself.

The most useful option to man is the -k option. It will do a keyword
search in the titles of all the manpages looking for the keyword that you give.
Try typing man -k java to see what commands are available. The (1) means
that it’s a user command—something that you can type from the shell prompt,
as opposed to (2) which is a system call or (3) which is a C library call. These
numbers refer to the original UNIX documentation volumes (volume one was
shell commands and so on), and it all fit into a single three ring binder.

TIP

One other way to find out something about a command, if you know the com-
mand name already, is to ask the command itself for help. Most commands
have either a -? or --help option. Try --help first. If you need to type -?
either put it in single quotes or type it with a backslash before the question mark,
as in -\?, since the ? is a pattern-matching character to the shell.

291.3 Basic Linux Concepts and Commands

There are other help systems available, such as info and some GUI-based
ones. But man provides some of the quickest and most terse help when you
need to check the syntax of a command or find out if there is an option that
does what you need.

REVIEW1.4

We’ve looked at commands that will show you where files are in your directory
structure, show files’ permissions and sizes, change the permissions, show you
what is in a file, look for files by searching for strings, and look for files based
on names or other properties.

Even so, we’ve given only the briefest coverage to only a few of the scores
of Linux commands worth knowing. Tops among these is the shell, bash in
our case. Whole books have been written on this subject, and you would do
well to have one at hand.

WHAT YOU STILL DON’T KNOW1.5

The shell is a powerful language in its own right. While you think of it mostly
as a command interpreter used for running other commands, it is, in fact, a
language, complete with variables, logic and looping constructs. We are not
suggesting that you write your application in shell scripts, but you will find it
useful for automating many repetitive tasks. There is so much that can be done
with shell scripts that we encourage you to read more about this and to talk
with other Linux users.

Linux is replete with so many different commands. Some are powerful
languages like awk and perl, others are simple handy utilities like head, tail,
sort, tr, and diff. There are hundreds of other commands that we don’t even
have time to mention.

RESOURCES1.6

• Cameron Newham and Bill Rosenblatt, Learning the Bash Shell, O’Reilly
Associates, ISBN 1565923472.

• Ellie Quigley, Linux Shells by Example, 4th ed., Prentice Hall PTR, ISBN
013147572X.

Chapter 1 An Embarrassment of Riches: The Linux Environment30

• Rafeeq Rehman and Christopher Paul, The Linux Development Platform,
Prentice Hall PTR.

• Mark G. Sobell, A Practical Guide to Linux, Addison-Wesley, ISBN
0201895498.

• Mark G. Sobell, A Practical Guide to Red Hat Linux, Addison-Wesley,
ISBN 0201703130.

311.6 Resources

Here the joys of creating and changing text files are introduced, the rudiments
of the venerable vi editor are presented, and the power of text is exalted.

WHAT YOU WILL LEARN2.1

Readers are encouraged, but not required, to plumb the depths of vi. Other
text editor choices are briefly covered.

Remember our recommendation: If you learn only one shell, learn bash.
If you learn only one editor, learn vi. Some basic shell scripting will go a long
way to eliminating mundane, repetitive tasks. Some basic vi editing will let you
do things much faster than you can with GUI editors.

33

Chapter 2

An Embarrassment of Riches:
Editors

EYE TO EYE WITH VI2.2

Java programs consist of Java classes. Java classes are text files with Java state-
ments and expressions. In order to write a Java program, then, you need to be
able to enter text into a file. Sounds simple enough.

With Linux and its GNU tools, you have an amazing array of choices for
how to do this. Some are GUI tools not unlike simple word processors. Others,
like vi and Emacs, predate GUI tools, but provide much the same capability
without the luxury (or annoyance) of a mouse or menus.1

The editor named vi (pronounced as you would spell it: “vee-eye”) is one
of the most enduring tools in Linux. Its popularity comes from a combination
of power and ubiquity—you can find it on virtually every release of UNIX and
Linux since 1985. But it is a powerful editor that can do a lot with only a few
keystrokes.

There are actually several variants of vi from which to choose. Each is
someone’s attempt to go one better on vi, but all retain the same basic syntax
and what you learn here will work equally well on any of the vi clones. You can
choose among

• elvis

• nvi

• vim

Start up vi by typing the command name at a shell prompt, followed by
the name of the file(s) that you want to edit:

$ vi Account.java

Keep in mind that vi was developed in the days of character-only video
screens. Keyboards didn’t always have arrow keys or other special characters,
which have since been (largely) standardized by the advent of the IBM PC. In
that situation, the authors of vi had only the alphabetic characters to use for all

1. We realize that vi is famous for being difficult to learn and nonintuitive. The UI design of
vi dates back to earliest cursor-addressable display terminals. User interface design has come a
long way since then. The vi UI does indeed show its age. But the program refuses to die. Why?
Because while simple GUI editors make the easy stuff easy, vi makes the hard stuff easy. You
can fall back on pico or kate or other GUI editors if you want, but bear with us. Mastering vi
really does pay off.

Chapter 2 An Embarrassment of Riches: Editors34

of their commands . . . and did they make good use of those keys! Virtually
every letter is used, both lower and upper case, to mean something unique in
vi. But don’t be put off by the large number of commands to learn; they fit
some patterns that will make it easy for you to become proficient in a short
time by learning a few commands and applying the patterns.

NOTE

If you really can’t bear to part with your mouse and menus, try gvim. We haven’t
used it, but we hear that it has support for mice to help with cut and paste and
the like. After you learn vi and get a little practice, though, you may find that
you’re never reaching for your mouse any more when you edit.

There are three modes to vi: the regular vi mode, some extended
commands in the ex mode, and the input mode.

The simplest mode is the input mode. In input mode, every character you
type becomes part of the text of the file. It’s how you enter the bulk of the text
for your Java programs. But vi doesn’t start up in input mode; you have to “get
into” input mode, and then get back out. Once out, you can use other vi
commands to save the text and exit vi. More about those in a bit.

NOTE

Get out of input mode by pressing the Escape key. You can press it more than
once, too, just to be sure that you are no longer in input mode. If you are no
longer in input mode and you press escape, it will beep at you—with an audible
or visual notification, depending on how your terminal window is set to respond.

In both vim and elvis (two popular vi clones) there is a status line at the
bottom of the window that will show if you are in input mode. In vim, look
in the lower left and elvis, the lower right. When in input mode, you will see
a status word displayed like insert or replace.

In the vi mode, the default mode that you start in, all the keystrokes are
interpreted as commands to the editor. They are not displayed as characters. So
when we describe a command, such as dt;, you can type those three characters
but will not see those characters on your screen. Instead you will see some ac-
tion taken by vi—in this case it will delete text from your cursor up to the first
semicolon on that line, if any (otherwise it will just beep).

352.2 Eye to Eye with vi

There are several ways to get into input mode, depending on where you
want to do the insert. When the file you’re editing is completely empty, all
these commands are equivalent, but for nonempty files, each command will
begin input mode in a different place in the file:

• i inserts before the cursor.

• I inserts at the beginning of the line.

• a appends after the cursor.

• A appends at the end of the line.

• o “opens” a line for input after the line on which the cursor sits.

• O “opens” a line for input before the line on which the cursor sits.

Remember that this is character-based editing, before the days of mice and
I-bars. So there is no meta-character for the cursor to show its position between
two characters in the file. Instead, the cursor sits on top of a character, and thus
inserts or appends will happen before or after that character.

Reminder: Get out of input mode by pressing the Escape key.
Next, let’s move the cursor around. The simplest way to do that is one

character at a time. Using the (lowercase) h, j, k, and l keys—notice that
they’re all in a row on QWERTY keyboards—you have the “arrow” keys for
left, down, up, and right. One of the common enhancements for vi clones is
to include support for the arrow keys on standard PC keyboards. Even so, the
convenience of having the motion keys on the “home row” for touch typists
can be a great speedup.

• h moves left one character.

• j moves down one line.

• k moves up one line.

• l moves right one character; same as a space.

Often, character- or line-at-a-time is too slow. Move to the beginning of
the line that you are on with 0 (zero), or to the end of the line with $. Move
to the top and bottom of the window with H (think “High”) and L (think
“Low”). So first type L then hold down j. To move back in a file, first type H
then hold down k. That gets the display moving down or up respectively.

• H (“high”) moves to the top line of the window.

• M (“middle”) moves to the middle line of the window.

Chapter 2 An Embarrassment of Riches: Editors36

• L (“low”) moves to the bottom line of the window.

• 0 moves to the beginning of the line.

• $ moves to the end of the line.

This may still be too slow for you, especially if you are working your way
through a large file. If you want to page up and down half a page at a time, try
^U and ^D (think “up” and “down”). To move a full page at each keystroke, try
^F and ^B (think “forward” and “back”).

This may still take a while, especially if you want to get to the absolute
beginning or end of the file. For those locations, type a three-character se-
quence, starting with a colon—which will jump your cursor to the status line
of the window—then type either zero or the dollar sign, then press the Enter
key. For example, :$.

So what’s with the colon? Just when you thought you were getting the
hang of the vi keystrokes, this odd pattern appears. It’s called ex mode, and has
to do with the history of vi being built atop the ex editor. Typing the colon
got you back giving commands to ex, without the fancier screen-based
GUI. (Even editors can have command lines.) There are many powerful
search/replace commands that you can do from the ex command line; more on
that later. For now, though, remember that you can type the colon, then a line
number, then the Enter key and vi will position the cursor (and thus what is
displayed on the screen) to that line number. The 0 and $ are just special cases
of that more generic way to position your place in the file.

Back to our positioning in the file. Recall that h, j, k, and l will move you
one unit (char or line) at a time. Now enhance that motion by typing a number
first, then the h, j, k, or l. So to move five lines up type 5k (just be sure you
use a lowercase letter). You can move way down in a file by typing something
like 2000j which will move down 2,000 lines. If the file doesn’t have that many
lines, you will find your cursor at the end of the file.

The point here is that almost any vi command can be preceded by a count,
to repeat it that many times.

A few more navigation tips. Another useful way to move through text is a
word at a time. You can move your cursor forward by a word with the letter w
(for “word”). You can move “back” with the letter b. You can move five words
at a time with 5w or 5b. See?

The definition of “word” to vi has to do with alphanumerics separated by
whitespace, but also by certain punctuation characters. So to vi, the following
Java code consists of how many words? Seven.

372.2 Eye to Eye with vi

myArraylist.doSomething(magical); // cool

From the beginning of the line, you’d need to type w seven times (or know
to type 7w—but how could you guess seven?) To help out, vi uses the upper-
case W to skip words defined not by punctuation but solely by white space.
Think of it as “bigger” words. And of course B will go “back” by these bigger
words. So on our example line, a single W will get you to the start of the
comment.

Be sure that you’re not just reading these descriptions. Run vi on any file
that you can find and practice navigating by lines or words or screens. Once
you get the hang of it, it can be so much faster than reaching for the mouse and
trying to maneuver the cursor into just the right spot between letters.

Sometimes you can see where you want to go based on the characters of
text in the document. See that “x”? That’s a relatively rare character on any line
of text. If you see a character, your cursor can “find” it if you type f and then
the character you are looking for. So fx would search forward on the line for
an “x”. And Fx would search backward from the cursor. To repeat the search,
just type a semicolon (“;”).

Searching for a string is another good way to move your way through a
file. To search forward, type a slash (/), then the characters for which you want
to search, and end the string with a second slash and then Enter:2

/myArrayList/

To search backwards (towards the first line of the file) use the question
mark rather than the slash to bracket your search string. In either case, to jump
to the next occurrence, type n, or 27n to jump to the 27th occurrence. Whether
you are searching forward (/) or backward (?), using uppercase N will reverse
the direction as it searches for the next occurrence. So, you can search forward
with /myVar/ and then press n for each next occurrence forward. If you go too
far, just type N to back up. Similarly, if you were going backwards looking for
an occurrence of a constructor, say something like: ?new HotClass?; then
each n will search toward the top of the file, and each N will search toward the
end of file.

2. The second slash is optional in most vi implementations, but used for consistency with the
same command in ex mode which has optional suffix characters.

Chapter 2 An Embarrassment of Riches: Editors38

In both cases, when you hit the top or bottom of the file, vi will wrap and
keep searching from the opposite end, though a warning message will appear
in the status bar.

OK, enough navigation. Let’s start modifying text.
Copy and paste operations can be done easily on whole lines. Just yank

and put the lines. You can yank a single line or several at a time (e.g., 7y) and
then a single put (p) will deposit a copy just after the current line (the line
where your cursor sits). If you want to put the text before, not after, the current
line, use uppercase P.

Go ahead. Try it on the file you’re practicing on. It’s the best way to get
a feel for what we’re describing here.

Cut and paste operations involve deleting the lines, not just copying them.
This gets us into our third and final kind of syntax in vi, the double letter
commands. Use dd to delete a line. Try it and you will find that the line your
cursor is on just got deleted, and the cursor now rests comfortably on the next
line. To paste that line back, use the same p or P that we used for to put the
lines that we had copied (a.k.a. “yanked”) above.

But why the dd? What’s with the double letters? Think of “delete” for d
and then add another letter to describe how much you want to delete—dw for
“delete word” or dW for “delete the bigger words” (see above). So why dd for a
line? We don’t know for a fact, but we suspect that it’s just for speed. You can
also follow a d with the h, j, k, or l of our cursor movement, and that will
delete either a character or a line in the appropriate direction.

A faster way (one keystroke, not two) to delete a single character is with
the x key. And of course 5x, or 27x, will delete multiple characters. But if
you’re deleting many characters you will probably get it done faster by deleting
“words” (dw or dW).

Another powerful way to delete text is to delete it from the cursor up to a
specific character. The sequence dt; will delete from the cursor up to (but not
including) the semicolon on the current line. If there is no semicolon, vi will
beep, and no change will be made. To delete from the cursor up to and includ-
ing the semicolon, use df;.

Everything you’ve just learned about delete is also true for change, the c
in vi. You can combine it with itself (cc) to change a whole line. You can
combine it with w to change a word (cw), or you can change from the cursor
up to the next semicolon (ct;), and so on.

392.2 Eye to Eye with vi

Change does the delete, then puts you in input mode. (Notice the re-
minder on the status line.) Remember, to get out of input mode and back into
vi mode, press the Escape key.

Sometimes you’ve done too much, and you’d like to undo what you’ve
just done. Typing u will undo the last change that you made. But here’s a dif-
ference between the classic vi and some of the new, improved versions. In classic
vi, if you type another u, then you are telling vi to undo what it just
did—which was an undo. So the undo of an undo remakes the change that you
had originally made. But in vim, “vi improved,” typing u again and again will
just keep undoing previous changes. If you want to undo the undo, in vim,
you need to type :redo and then Enter.

The vi editor has shortcuts for helping you to change the indentation of
your code. Typing two less-than signs (<<) will shift the line to the left; typing
two greater-than signs (>>) will shift the line to the right. Typing a number
first and then the less-than or greater-than signs will shift that many lines at
once. But how far will they shift? The default is usually set at eight, but you
can set it to any value you want. In ex mode you can set all sorts of values and
flags, customizing vi’s operation. The value we’re interested in here is
shiftwidth which can be abbreviated sw. So the command would be :set
sw=4 if you want each shift to move by four characters. For more about this,
and how to make it your default, see Section 2.2.4.

Any command that you do may be worth repeating. Say, you just shifted
14 lines and you’d like to shift them further. Or you just deleted five lines, and
would like to delete five more. Well, you could just retype the command, but
an easier way is just to type the period (.) and let vi repeat it for you.

Exiting2.2.1

There are three ways of exiting vi (ZZ, :q, :q!) that you should know. The
correct one to use depends on whether or not you want to save the changes to
the file and on whether or not you have saved your changes.

• ZZ saves and quits in one step (three keystrokes).

• :w writes what you’ve been editing but doesn’t quit.

• :w filename writes what you’ve been editing to a new file named
filename; it will complain (and not write out anything) if the file
already exists.

Chapter 2 An Embarrassment of Riches: Editors40

• :7,.w! filename writes lines from line 7 up to and including the current
line to the named file, clobbering any previous contents (think of the “!”
as meaning “and don’t argue with me!”).

• :q quits, provided you’ve saved your changes (e.g., with :w).

• :q! quits without saving any changes to the file.

• :n doesn’t exit vi, but moves on to the next file if you started up with
more than one file to edit (e.g., vi Fir.java Pine.java). When you’ve
reached the last file in the list, you need to quit—for example, with :q.

Search and Replace2.2.2

We’ve mentioned searching for a string with / or ?, but what about replacing?
Once you’ve located a string with /, you can use cw or C or R or other such
commands to effect the change. Search for the next occurrence with n, and then
you can repeat your change (the last c, s, r, and so on) by typing the period
“.” that will repeat that last substitution, insert, and so on.

But what if you want to make 225 substitutions? Typing n.n.n.n.n.n.
would get old after a while. Here, the ex mode, like any good command line,
comes to the rescue to help with repetitive tasks.

If we want to search and replace all occurrences of one string for another,
we can use the command

:1,$s/one string/another/

Almost all ex commands take an address range, that is, the lines of the file
over which they will operate. If just one line number is given, the command
will operate on that one line. Two numbers, separated by commas, represent
the start and end lines—inclusive—of the operation. The first line is line 1, so
a 0 as line number would mean “before the first line.” The line where the cursor
is currently located is just “.” (a period). The last line of the file can be repre-
sented by the dollar sign ($). You can even do some simple math on the
addresses—for example, .+2 meaning the second line in front of the cursor’s
current line.

TIP

There is a shortcut for the 1,$ address range. Use % to mean “all lines”—for
example, %s/one string/another/.

412.2 Eye to Eye with vi

Here are a few more substitution examples along with an explanation
for each.

.,$s/here/eternity/

From here to the end of the file, replace here with eternity.

27,$-5s/lost/found/

From line 27 to the 5th line prior to the end of the file, replace lost with
found.

s/here/now/

Replace here with now, on the current line only.

Each line that has a match will do the substitution on only the first occur-
rence of the string. If you want to change all occurrences on those lines, you
append a g (for “global” substitution) to the end of the command. Consider
this snippet of Java:

class tryout
{
 int tryout;

 tryout(int startval) { // make a new tryout
 tryout = startval;
 } // tryout constructor

 // a tryout-like resetting
 public void
 setTryout(int toval) {
 tryout = toval;
 }
 // willfindtryoutinhere

} // class tryout

1,$s/tryout/sample/

Works as expected except for line 5, where “tryout” appears as the
constructor name but also in the comment.

1,$s/tryout/sample/g

Works better (note the trailing g). But neither command can deal with
“Tryout” in the setTryout method name. That’s because of the uppercase
“T”, which doesn’t match “tryout”.

Chapter 2 An Embarrassment of Riches: Editors42

1,$s/Tryout/Sample/g

Will make the substitution in that method name.

TIP

Remember to precede these commands with a colon (“:”) to put you into ex
mode which puts your cursor on the status bar of the window.

The Joy of Regular Expressions2.2.3

The substitution command really becomes powerful when you start using reg-
ular expressions. Our examples so far have only had plain alphanumeric charac-
ters between the slashes of the substitution. But other characters take on special
meanings inside the search and replace strings. Table 2.1 shows just a few.

From this small collection we can do some useful things. We show just a
few in Table 2.2. All commands begin with :1,$ to say that the substitution
will be attempted from the first through the last line of the file.3 You could use
a smaller range for any of these substitutions, as we discussed above.

Table 2.1 Regular expression character meanings

MeaningCharacter

The beginning of the line.^

The end of the line.$

Any single character..

Zero or more repetitions of the previous expression.*

One or more repetitions of the previous expression.+

Any of the characters inside the brackets will match—e.g., [abc] matches any
of a, b, c. Ranges are allowed too—e.g., [a-z].

[]

When used on the right-hand side, stands for whatever was found with the
search string on the left-hand side (for an example, see Table 2.2).

&

3. Note that % is valid substitute for 1,$.

432.2 Eye to Eye with vi

Table 2.2 Some useful vi substitutions

ExplanationCommand

Removes all (any number of) trailing blanks—that is, looks for zero or
more blanks followed immediately by the end of line, and replaces
them with nothing (no characters between the last two slashes).

:1,$s/ *$//

Puts quotes around the text of each and every line.:1,$s/^.*$/""/

Removes the leading quote from any line that starts with one.:1,$s/^"//

Removes the trailing quote from any line that ends with one.:1,$s/"$//

There is so much more that could be said about regular expressions. They
are one of the most powerful features for making big changes with few
keystrokes. It’s an integral part of sed, Perl, and other tools. It’s in such demand
that it has been added to Java for better pattern matching. See Section 2.6 for
ways to learn more about regular expressions.

Starting Off Right: .exrc2.2.4

You can preset certain behaviors in vi by putting ex commands in a file called
.exrc in your home directory. Those commands will be read whenever you
invoke vi and before you begin typing commands.

Here’s a simple but useful .exrc example:

" set my favorite options:
set autoindent shiftwidth=4
set ignorecase

As you can see from the example, settings can be combined on one line.
Note also that these lines do not begin with a colon. A colon is needed if you
type these lines from within vi—because you need to get into ex mode; but
since these are assumed to be ex commands (hence the name .exrc) they are
going straight to the ex side of vi and no colon is needed. Comment lines
begin with a double quote; the rest of the line is ignored, and doesn’t need a
matching quote.

The ignorecase command tells vi to ignore any difference between
upper- and lowercase characters when searching for text with the / or ? com-
mands. The single character searches on the current line (f and F) are not

Chapter 2 An Embarrassment of Riches: Editors44

affected by this setting. The default for vi is noignorecase, which means case
is significant.

The autoindent setting (can be abbreviated ai) means that when you do
an o or O to open a line after or before (o versus O) the line on which your cursor
rests, vi will automatically add whitespace so that the text that you enter begins
at the same column where the current line begins.

For example, suppose you are editing an if statement like this:

if (userBalance < minDaily) {
 userAccount.chargeFees();
}

With your cursor on the middle line, if you type an o or O, the new (blank)
line will open with your cursor at the fifth character position, right in line with
the “u” of userAccount. If you find that your cursor is flush left when you try
this, then you need to set autoindent. You can do this from within vi by typing
:set ai or the longer :set autoindent. The leading “:” is important—it
gets you to ex mode. (Don’t forget to press Enter at the end of the command.)

The shiftwidth setting tells vi how many character positions to move
text left or right with each << (left) or >> (right) command, as well as when
typing ̂ D and ̂ T in input mode. When typing text in input mode, people often
use the Tab key to indent their text, for example inside an if or for statement.
You can do this in vi, and the actual tab character will be the character in your
text. But if you want tighter indenting, use the ^T (that’s Control-T, “T” for
Tab, we suppose) to increase your indent and ^D to decrease your indent while
in input mode. The vi editor will automatically compute how much whitespace
to use and will put an optimal combination of tabs and spaces as needed to line
things up. Alternately, you can have vi always expand tabs into spaces and not
mix tabs and spaces, but just use spaces, with set expandtab. (Remember to
add a “:” if you want to type this from the command line.)

EDITORS GALORE2.3

There are many editors available to a programmer on a Linux system. Some are
text-based editors, typically antedating GUI interfaces. Many have graphical
interfaces, with mouse-based cut and paste and the like. We will mention sev-
eral here and encourage you to find the one with which you are comfortable.

452.3 Editors Galore

The list of choices for editors is quite long. One of the beauties of the
Open Source approach is that personal choices like favorite editors aren’t
squashed by arbitrary decisions: If you want, you can write an editor; others
can adopt it.

Test drive a few; try them on for size. Remember that there can be a
learning curve to climb. Don’t necessarily settle for the easiest to learn—it may
not be able to handle all that you’ll need it to do, which may cost you more in
the long run.

Speaking of editors that aren’t easy to learn, we can’t discuss editors
without a mention of Emacs. To quote the GNU Emacs project home page:4

Emacs is the extensible, customizable, self-documenting real-time display
editor. If this seems to be a bit of a mouthful, an easier explanation is Emacs
is a text editor and more. At its core is an interpreter for Emacs Lisp (“elisp,”
for short), a dialect of the Lisp programming language with extensions to
support text editing. Some of the features of GNU Emacs include:

• Content sensitive major modes for a wide variety of file types, from
plain text to source code to HTML files.

• Complete online documentation, including a tutorial for new users.

• Highly extensible through the Emacs Lisp language.

• Support for many languages and their scripts, including all the Euro-
pean “Latin” scripts, Russian, Greek, Japanese, Chinese, Korean, Thai,
Vietnamese, Lao, Ethiopian, and some Indian scripts. (Sorry, Mayan
hieroglyphs are not supported.)

• A large number of extensions which add other functionality. The
GNU Emacs distribution includes many extensions; many others are
available separately—even a Web browser.

There is another variant of Emacs called XEmacs. It came from the same
code base but split over differences both technical and philosophical.5 Now if
you thought that vi had a lot of obscure key sequences, you ain’t seen nothin’
yet. With its Lisp interpreter Emacs is incredibly extensible and powerful, but

4. This is from http://www.gnu.org/software/emacs/emacs.html#Whatis.

5. If you want to read more about those differences, and how they came about, see
http://www.xemacs.org/About/XEmacsVsGNUemacs.html.

Chapter 2 An Embarrassment of Riches: Editors46

has a huge learning curve—which is why we aren’t going to cover Emacs or
XEmacs at all in this book.

Our favorite editor is still vi—in part, we’re sure, because we already know
it so well. But like any skilled craftsman, even though you may have a favorite
hammer or saw that you use on most of your work, you will still have several
others ready in your toolkit, and use specialized ones for certain tasks.

Editing Your Pipes (sed, the Stream EDitor)2.3.1

One important kind of editor available on Linux is the stream editor, or sed. It
allows you to perform editing on the data that comes in on standard in and
writes its result to standard out. Similar to the syntax from ex mode in vi (and
based on the simple ed editor), it can be very useful for making changes to large
numbers of files in one go.

You can learn much more about sed from its manpage or from the book
UNIX AWK and SED Programmer’s Interactive Workbook by Peter Patsis.

Simple Graphical Editors2.3.2

Linux comes with a wide range of open source software, not all of which is in-
stalled on every installation. You may need to use your Linux installation disks
to add these programs to your system. Whether it’s RedHat’s package manager
or SuSE’s YaST2 or Debian’s apt-get, most Linux admin interfaces make it
easy to add these extra packages. Of course you can also resort to the Web for
finding and downloading additional open source software.

Here’s a quick listing of some of the many editors that you might find to
your liking. The description of each is largely “in its own words,” based on the
text that the authors supply with their software.

• jedit is a cross-platform programmer’s text editor written in Java. The
Java-based portability seems appealing. This is a very powerful editor and
a popular choice.

• pico is a small easy to use editor.

• mbedit is a multiplatform editor.

• NEdit is a GUI style text editor for workstations with X Window and
Motif. NEdit provides all of the standard menu, dialog, editing, mouse
support, as well as macro extension language, syntax highlighting, and a
lot of other nice features (and extensions for programmers).

472.3 Editors Galore

• xcoral comes up fast; seems well done. Half of the YaST developers swear
by it, not only because of the built-in C/C++/Java browser. This editor
provides support for C, C++, Java, Perl, Ada, and Fortran programs, as
well as LATEX and HTML documents. With the help of the built-in SMall
ANSI C Interpreter (SMAC), xcoral can be configured and extended
in almost arbitrary ways. Examples can be found in the directory
/usr/lib/xcoral (or wherever xcoral is installed on your system).
Further information about xcoral and SMAC is available in the detailed
online help system (also available in HTML and PostScript format).

• axe features multiple windows, multiple buffers, configurable menus and
buttons, access to external filters, keyboard macros, comprehensive online
help, and more.

• eddi is an X editor based on the TiX shell, with syntax highlighting and
several other useful features.

• the: If you’re an IBMer from the heyday of mainframes, perhaps you’ve
used xedit from VM/CMS. If so, you might want to check out the, whose
name is the acronym of “The Hessling Editor.”

• JED is an extremely powerful but small Emacs-like editor for programmers
that is extensible in a C-like macro language and is able to perform color
syntax highlighting. Among the many features: Emacs, WordStar,
EDT emulation; C, Fortran, TEX, text editing modes; full undo; Emacs-
compatible info reader, and lots more. It claims to be 8-bit clean, so you
can even edit binary files.

• Glimmer is the editor formerly known as CodeCommander. It is a full
featured code editor with many advanced features, including full scripting
integration with either Python or Guile.

• joe (Joe’s own editor) is a freeware ASCII editor for UNIX. joe is similar
to most IBM PC text editors. The keyboard shortcuts are similar to
WordStar and Turbo C. When joe has several files opened at the same
time, each file is displayed in its own window. Additionally, joe supports
shell windows whereby the output of the executed commands is saved in
a buffer, automatic filename completion (via Tab), help windows, undo/
redo, search and replace using regular expressions.

• gEdit is a small but powerful text editor designed expressly for GNOME.
It supports a split-screen mode and plug-ins that make it even more pow-
erful. Developers can develop their own plug-ins if they desire.

Chapter 2 An Embarrassment of Riches: Editors48

• fte is an editor “with many features and simple usage for X11 and
console.”

• e3 is a very tiny editor (only .07MB) that offers many different modes
such as vi, Emacs, and WordStar. The default mode is WordStar.

• asedit is a simple ASCII text editor for X11/Motif. Mouse support, dialog
boxes, hypertext online help, undo/redo. Named for its author, Andrzej
Stochniol.

REVIEW2.4

We’ve given a good foundation for using vi—a set of commands that will help
you with much of your daily editing. While not as pretty as a GUI tool, vi can
be much more productive once you get familiar with the commands. Start with
some basic commands, then refer to this chapter or another vi resource and
learn a new keystroke each week. By next year, you’ll be a master at vi—and
incredibly productive at producing code.

We also described several other editors available under Linux. If you know
them already, or are wed to your mouse, then try one on for size. The choice
of an editor can be as much about personality and “fit” as it is a technical
choice.

WHAT YOU STILL DON’T KNOW2.5

There is still a lot more to learn about regular expressions. They may take a bit
of practice, but it is a skill that can be used in a variety of contexts, in a variety
of languages.

RESOURCES2.6

• Rafeeq Rehman and Christopher Paul, The Linux Development Platform,
Prentice Hall PTR, especially Chapter 2 on editors vim, Emacs, and jed.

• Peter Patsis, UNIX AWK and SED Programmer’s Interactive Workbook,
Prentice Hall PTR, ISBN 0130826758.

492.6 Resources

Here the reader is rapidly acquainted with the manner in which Java imple-
ments the OO (Object-Oriented) concepts. The language’s statements are un-
ceremoniously presented. Much deference is paid to other texts in print and
on the Web, since this is well traveled ground. We then present a simple sample
Java application that will be used throughout the rest of this introductory part
as an example that can be easily built in all of the Java environments available
for Linux.

WHAT YOU WILL LEARN3.1

• Java syntax and semantics for the familiar (to an experienced programmer)
programming constructs.

• How Java implements the OO: buzzwords of inheritance, encapsulation,
and polymorphism.

• How Java deals with the absence of C++-style multiple inheritance.

Chapter 3

An Experienced Programmer’s
Introduction to Java

51

• Why the absence of templates in Java is not as crippling as a C++
programmer might suppose.

• How final is better than virtual and how interfaces are often better
than multiple inheritance.

This is going to be a whirlwind tour. Our book assumes that you already
know programming in general, and have had some exposure to OO program-
ming. We are going to distill into a single chapter material that comprises sig-
nificant portions of other books. In particular, if there are concepts here that
you are not already familiar with, look at Chapters 1–9 of Bruce Eckel’s won-
derful book, Thinking in Java, 3rd ed., published by Prentice Hall PTR (ISBN
0-131-00287-2). It is, genuinely, one of the best books on the market for
learning the Java language and the design principles Java embodies.

If you are somewhat new to programming, but technically quite adept
(maybe a system administrator or database administrator with little formal
programming background), you may want to supplement your reading with a
book that, unlike Eckel’s, is targeted more toward the novice programmer. We
like Java Software Solutions: Foundations of Program Design, 3rd ed., by John
Lewis and William Loftus, Addison-Wesley, 2003 (ISBN 0-201-78129-8).
It will introduce the concepts behind the programming constructs, whereas
we will assume that you know these concepts so we can focus only on the
Java syntax.

FUNDAMENTAL LANGUAGE ELEMENTS3.2

Before the object-oriented structures, Java (like C) has a small number of
fundamental statements and (again, like C and C++) some fundamental
“nonobject” data types.1

1. The existence of these nonobject data types is another thing that brings up criticism of the
Java language. Since Java does not have C++’s operator overloading features, you cannot use
objects in standard algebraic expressions. I’m not sure if the inclusion of scalar classes was mo-
tivated by speed, or by the lack of operator overloading. Whatever the reason, like any other
design compromise, it has both advantages and disadvantages, as we shall see throughout
the book.

Chapter 3 An Experienced Programmer’s Introduction to Java52

Scalar Types3.2.1

Java has a number of built-in scalar (in this context, nonobject) types. We
discuss these below.

Integer Types3.2.1.1

Java defines four integer types—byte, short, int, and long. Unlike some
languages, Java defines the precision, that is, the bit size, of these types.

• byte: 8 bits

• short: 16 bits

• int: 32 bits

• long: 64 bits

For Java, the goal is “compile once, run anywhere.” Defining that int
means 32 bits—everywhere—helps to achieve this goal. By contrast, when C
language was first defined, its goal was different: to be available quickly on a
variety of architectures, not to produce object code that would be portable be-
tween architectures. Thus, for C, the choice was up to the compiler developer
to choose a size that was most “natural” (i.e., convenient) for that particular
architecture.2 This would make it easiest on the compiler writer. It
succeeded—C was an easy language to implement, and it spread widely.

Back to Java. Note that all these values are signed. Java has no
“unsigned” type.

Note also that byte is listed here. It can be treated as a numeric value, and
calculations performed on it. Note especially that it is a signed number (i.e.,
values range from –128 to 127 and not from 0 to 255). Be careful when pro-
moting a byte to an int (or other numeric value). Java will sign-extend on the
promotion. If the value in the byte variable was a character (e.g., an ASCII
value) then you really wanted it treated like an unsigned value. To assign such
a value to an int you’ll need to mask off the upper bits, as in Example 3.1.

You may never encounter such a situation, but if you are ever working
with bytes (e.g., byte arrays) and start to mess with the individual bytes, don’t
say we didn’t warn you.

2. In fact, C’s only rule is that a short int will not be longer than an int and a long will
not be shorter than an int. It is both ANSI and K&R compatible for all integer types in a C
compiler to be the same size!

533.2 Fundamental Language Elements

Example 3.1 Coercing a byte to int as if the byte were unsigned

byte c;
int ival;
...
ival = ((int) c) && 0xFF; // explicit cast needed

Floating Point Types3.2.1.2

Java provides two different precisions of floating point numbers. They are:

• float: 32 bits

• double: 64 bits

The float type is not very useful at that precision, so double is much
more commonly seen. For other situations where precision is important, but
you can spare some cycles, consider the BigDecimal and BigInteger
object classes.

Java floating point numbers are specified to follow the IEEE floating point
standard, IEEE 754.

Other Types3.2.1.3

Java also has a boolean type, along with constants true and false. In Java,
unlike C/C++, boolean values are a distinct type, and do not convert to
numeric types. For example, it is common in C to write:

if (strlen(instr)) {
 strcpy(buffer, instr);
}

In this case, the integer result of strlen() is used as a boolean, where 0 is
false and any other value is true. This doesn’t work in Java. The expression
must be of a boolean type.

Java also has a char type, which is not the same as a byte. The char is a
character, and in Java, characters are represented using Unicode (UTF-16).
They take two bytes each.

For more discussion on the differences between bytes and chars and
about Unicode, read the Java tutorial on the java.sun.com Web site or visit
www.unicode.org, the international standard’s Web site.

Chapter 3 An Experienced Programmer’s Introduction to Java54

Operators3.2.1.4

Before we move on to the topic of arrays (which are sort of a hybrid scalar/
object type in Java), let’s spend a moment on the operators that can be used in
expressions (Table 3.1). Most deal with numeric or boolean operands. For
completeness, we’ll include the operators that deal exclusively with arrays
(the “[]”) and classes (“.”, new, and instanceof), even though we haven’t
discussed them yet.

Operators listed on the same row in the table have the same precedence.
Operators with the same precedence, except for the unary operators, group
from left to right. Unary operators group from right to left.

Arrays3.2.1.5

Example 3.2 demonstrates the array syntax in Java.

Example 3.2 Example array syntax

int [] oned = new int[35]; // array = new type[size]
int alta [] = {1, 3, 5, 14, 11, 6, 24}; // alternative syntax plus
 // initialization
int j=0;

for(int i=0; i<35; i++) {
 oned[i] = valcomp(i, prop, alta[j]); // array[index]
 if (++j > alta.length) { // array.length
 j = 0;
 }
}

The array can be declared with the [] on either side of the variable name.
While our example uses the primitive type int, array syntax looks just the same
for any objects.

Note that in Java, one doesn’t declare the size of the array. It’s only in
creating the array with a new that the array gets created to a particular size.
(The {...} syntax is really just a special compiler construct for what is
essentially a new followed by an assignment of values.)

Multidimensional arrays follow the syntax of simple arrays, but with
additional adjacent square brackets, as shown in Example 3.3.

553.2 Fundamental Language Elements

Table 3.1 Arithmetic and logical Java operators in order of precedence

ExplanationOperators

array indexing, member reference[] .

unary operators: negate, increment, decrement, logical-not, bitwise-not- ++ -- ! ~

coercion, or casting to a different type; creating a new object(type) new

multiplication, division, remainder* / %

addition, subtraction+ -

shift-left, shift-right-sign-extend, shift-right-zero-fill<< >> >>>

less-than, greater-than, less-or-equal, greater-or-equal, comparing object
types

< > <= >=
instanceof

equal, not-equal== !=

bitwise-and (boolean for boolean operands with no short-circuit)*&

bitwise-xor (with boolean operands it is a boolean-xor)**^

bitwise-or (boolean for boolean operands with no short-circuit)*|

logical-and (with short-circuit)*&&

logical-or (with short-circuit)*||

Inline if expression, e.g., a ? b : c says, if a is true, then the value
is b, else it is c.

?:

Assignment; those with an operator, as in a op= b will perform the
operation a op b then assign the result back to a.

= += -= *= /=
%= <<= >>=
>>>= &= ^= |=

In Java there are two ways to do a boolean AND operation: using & or &&. Remember that
for “a AND b”, if either is false, then the result is false. That means that if “a” is
false, there is no need to evaluate “b” because it will not affect the result. Skipping the
evaluation of “b” in this case is called short-circuiting. Java will use short-circuit evaluation
when using the && operator, but not &. The same applies to the OR operators || and |
where Java can short-circuit on a true evaluation of the first operand for ||. This is an
important distinction when “a” and “b” are not just simple variable references but rather
method calls or other complex expressions, especially ones with side effects.

*

XOR is exclusive or, where the result of “a XOR b” is true if “a” or “b” is true, but not
both. For bitwise operands, “a” and “b” refer here to bits in the operand; for boolean
operands it is the one value. Examples: 5^6 is 3; true^false is true but true^true
is false.

**

Chapter 3 An Experienced Programmer’s Introduction to Java56

Example 3.3 Example two-dimensional array syntax

int [][] ragtag = new int[35][10];

for (int i=0; i<35; i++) {
 for (int j=0; j<10; j++) {
 ragtag[i][j] = i*j;
 } // next j
} // next i

Multidimensional arrays are built as arrays of arrays. Therefore, we can
actually allocate it in a piecemeal fashion and have ragged-edged arrays, where
each row has a different number of columns, as shown in Example 3.4.

Example 3.4 Ragged two-dimensional array syntax

int [][] ragtag = new int[17][];

for (int i=0; i<17; i++) {
 ragtag[i] = new int[10+i];
} // next i

for (int i=0; i<17; i++) {
 System.out.println("ragtag["+i+"] is "+ragtag[i].length+" long.");
} // next i

For a fuller discussion of arrays, see Chapter 9 of Eckel or Chapter 6 of
Lewis&Loftus.

Object Types3.2.2

The real power in Java, or any object-oriented language, comes not from the
scalar types, cool operators, or powerful control statements it provides (see
below), but from its objects.

Object-oriented programming is a relatively recent innovation in software
design and development. Objects are meant to embody the real world in a more
natural way; they give us a way to describe, in our programs, the real-world
objects with which we deal. If you are programming a business application,
think of real-world business objects such as orders, customers, employees,

573.2 Fundamental Language Elements

addresses, and so on. Java is an object-oriented programming language and thus
has some significant syntax related to OO concepts.

If you are new to object-oriented programming, be sure to read Chapter 1
of Eckel’s Thinking in Java.

In Java, we define a class to represent the objects about which we want to
program. A class consists of the data and the methods to operate on that data.
When we create a new instance of some class, that instance is an object of that
type of class. Example 3.5 shows a simple class.

Example 3.5 Simple class

class
PairInt
{
 // data
 int i;
 int j;

 // constructors
 PairInt() { i=0; j=0; }
 PairInt(int ival, int jval) { i=ival; j=jval; }

 // methods
 setI(int val) { i=val; }
 setJ(int val) { j=val; }
 int getI() { return i; }
 int getJ() { return j; }
}

Note that this class defines both data (i, j) and methods (setI(),
getJ(), and so on). We put all this into a file named PairInt.java to match
the name of the class definition.

If some other Java code wanted to create and use a PairInt object, it
would create it with the new keyword followed by a call to a constructor
(Example 3.6).

This example shows only a snippet of code, not the entire PairInt class.
That class, though, would likely reside in its own source file (named for its class
name). In Java you normally create lots of files, one for each class. When it’s

Chapter 3 An Experienced Programmer’s Introduction to Java58

Example 3.6 Using simple class

// declare a reference to one:
PairInt twovals;

// now create one:
twovals = new PairInt(5, 4);

// we can also declare and create in one step:
PairInt twothers = new PairInt(7, 11);

time to run the program, its various classes are loaded as needed. We’ll discuss
grouping classes together and how Java locates them in Section 3.3.1.

In Java, each source file contains one class and the file is named after that
class. It is possible to define inner classes located inside another class definition
and thus inside its file, but that introduces other complexities that we wish to
avoid discussing at this point. Most importantly, an inner class has access to
even the private members of the enclosing class. (Read more about inner classes
in any of the Java books that we recommend at the end of this chapter.)

For each of the class methods, class data declarations, and the class itself,
Java has syntax to limit the scope, or visibility, of those pieces. The examples
above didn’t include those keywords—that is, they took the default values.
Usually you’ll want to specify something. See Section 3.4.1.

Objects as References3.2.2.1

So far we have not explained something important about object type variables.
These variables can all be thought of as pointers or references to an object.
When you declare a variable of an object type, what you are declaring is a vari-
able that is capable of referring to an object of that type. When declared, it does
not point at anything. It has a value of null and any attempt to use it will result
in a null pointer exception (more on those later).

Before an object variable might be used, it must be made to refer to an
instance of an object. This is done by assignment. You can assign an existing
object, or you can use the new operator.

Any new class will have a constructor, that is, a method whose name is the
name of the class. There can be many different constructors for the same class,

593.2 Fundamental Language Elements

each with unique types of parameters. For example, the String class has many
different constructors, including one which constructs a new String from a
different String and another that constructs a new String from an array
of bytes.

String strbystr = new String(oldstr);
String strbyarr = new String(myByteArray);

Strings3.2.2.2

One of the most commonly used classes is the String class. It comes already
defined as part of Java and has some special syntax for initialization which
makes it look familiar. Whereas other objects need a new keyword and a con-
structor call, a String object can be created and initialized with the intuitive
double quotes, as in:

String xyz="this is the stringtext";

The compiler also makes a special allowance for Strings with respect to
the plus sign (+). It can be used to concatenate two Strings into a third, new
String.

String phrase = "That is"
String fullsent = phrase + " all.";

It is worth noting that Strings do not change—they are immutable.
When you assign a String the value of one String plus another, there’s a lot
of String object creation going on behind the scenes. If you need to do a lot
of concatenation of Strings, say inside loops, then you should look into the
use of the StringBuffer object. See Appendix A of Thinking in Java, 3rd ed.,
the section titled Overloading “+” and the StringBuffer, for a full discussion
of the tradeoffs here.

There are a variety of methods for String—ones that will let you make
substrings, search for substrings at the start or end or anywhere in the string,
or check for equality of two strings.

Table 3.2 shows some of the most useful methods associated with String
objects.

Chapter 3 An Experienced Programmer’s Introduction to Java60

Table 3.2 Useful String methods

DescriptionMethodReturn type

Returns the length, i.e. number of characters,
in the String.

length()int

Returns true if the object is a String
object and is equal to the String. (Aside:
the argument takes a generic Object type
rather than only a String object because it’s
meant to override the equals() method in
the class Object of which String is a
descendant.) This is the way to compare two
Strings to see if they are both holding the
same sequence of characters. Using stringA
== stringB will only tell you if stringA
and stringB are referencing the same object
(pointing to the same location in memory).
What you typically want is
stringA.equals(stringB).

equals(Object obj)boolean

Similar to equals(), but this one only
allows a String parameter, and it ignores
the upper/lower case distinction between
letters. For example:

String sample = "abcdefg";
String sample2 = "AbCdEfG";
sample.equalsIgnoreCase(sample2)

returns true.

equalsIgnoreCase(String str)boolean

Returns a string with all characters converted
to lowercase.

toLowerCase()String

Returns a string with all characters converted
to uppercase.

toUpperCase()String

Returns true if the String starts with the
given substring.

startsWith(String substr)boolean

Returns true if the String ends with the
given substring.

endsWith(String substr)boolean

Returns a string starting at position index
to the end of the String.

substring(int index)String

613.2 Fundamental Language Elements

Table 3.2 (Continued)

DescriptionMethodReturn type

Returns a string starting at position first
and up to, but not including, character
position last. If last is greater than the
length of the String, or last is less than
first, it throws an IndexOutOfBounds
exception.

substring(int first, int last)String

Other Classes: Reading Javadoc3.2.2.3

Java comes with a huge collection of existing classes for you to use. The simplest
ones are just wrappers for the primitive classes. There is an int primitive data
type, but Java provides an Integer class, so that you can have an integer as an
object. Similarly, there are classes for Long, Float, Boolean, and so on. Such
classes aren’t nearly as interesting as the myriad other classes that come with
Java. These others provide objects for doing I/O, networking, 2D and 3D
graphics, graphical user interfaces (GUIs), and distributed computing. Java
provides ready-to-use classes for strings, math functions, and for special kinds
of data structures like trees and sets and hash tables. There are classes to help
you with the manipulation of HTML, XML, and SQL, as well as classes for
sound, music, and video. All these objects can be yours to use and enjoy if you
just learn the magic of reading Javadoc—online documentation for Java classes.
The documentation for all these classes is viewed with a Web browser. (In a
following chapter we’ll describe how you can make Javadoc documents for the
classes that you write, too.)

The online version of the API documentation can be found at

http://java.sun.com/j2se/1.4.2/docs/api/

for Java 1.4.2. (Similarly, put 1.5.1 or whatever version you want at the
appropriate place in the URL.) When displayed, it shows a three-frame page,
as seen in Figure 3.1, except that we’ve overlaid the image with three labels:
A, B, and C.

The upper left frame of the Javadoc display, the area labeled with A in our
figure, lists all the packages that are part of Java 2 Standard Edition (J2SE).
While there are many other packages of classes available for Java, these classes
are the standard ones available without any other class libraries, with no

Chapter 3 An Experienced Programmer’s Introduction to Java62

B

A

C

d

Figure 3.1 The three frames of a Javadoc page

additional downloads necessary. Other classes are documented in the same
way—with Javadoc—but they are downloaded and displayed separately.

Frame B initially lists all the classes and interfaces available in all of the
packages. When you select a package in A, B will display only those interfaces
and classes that are part of the chosen package.

Frame C starts out with a list and description of all packages. Once you
have selected a package in A, C will show the overview of that package, showing
its classes and interfaces with descriptions.

But C is most often used to display the detailed description of a class.
Choose a class or interface in B and you will see C filled with its descrip-
tion—some opening information followed by a list of the visible members of
that class, followed by the possible constructors for that class and all the meth-
ods in that class (Figure 3.2). Each method is shown with its parameters and a
one-sentence description. Clicking on the method name will open a fuller
description (Figure 3.3).

633.2 Fundamental Language Elements

Figure 3.2 Javadoc display of class information

Figure 3.3 Javadoc display of a single method

Since you will likely be referencing the Javadoc pages regularly, you may
want to download a copy to your hard drive. From the same page on the
java.sun.com Web site where you can download the Java SDK you can also
download the API documentation.

If you agree to the licensing terms, you will download a large ZIP file. In-
stalling the documentation, then, is just a matter of unzipping the file—but it’s
best if you put it in a sensible location. If you have installed your Java SDK
into a location like /usr/local/java then cd into that directory and unzip
the file that you downloaded. Assuming that you saved the downloaded file
into /tmp, a good place to put temporary files, and assuming that you have in-
stalled your version of Java into /usr/local/java and that you have write

Chapter 3 An Experienced Programmer’s Introduction to Java64

permission in that directory (check the permissions with ls -ld .) then you
can run these commands:

$ cd /usr/local/java
$ unzip -q /tmp/j2sdk-1_4_2-doc.zip

There may be quite a pause (tens of seconds) while it unzips everything.
The unzip command will spew out a huge list of filenames as it unpacks them
unless you use the -q option (“quiet”) on the command line (which we did, to
avoid all that). The files are all unzipped into a directory named docs. So now
you can point your browser to

file:///usr/local/java/docs/api/index.html

Now you have your own local copy for quick reference, regardless of how
busy the network or Sun’s Web site gets. Be sure to bookmark this page; you’ll
want to reference it often. It’s your best source of information about all the
standard Java2 classes.

Statements3.2.3

This section is not intended to be a formal presentation of Java syntactic
elements.3 Our purpose here is merely to show you the Java way to express
common programming constructs. You will find that these are fundamentally
similar to the analogous statements in C and C++. For much more detail on
these subjects, see Chapter 3 of Thinking in Java by Bruce Eckel.

Like C, Java has a very small set of statements. Most constructs are actually
expressions. Most operations are either assignments or method calls. Those few
statements that are not expressions fall into two broad categories:

• Conditional execution statements

• Loop control statements

By the way, you may have already noticed one of the two kinds of
comments that Java supports. They are like the C/C++ comments—a pair of
slashes (//) marks a comment from there to the end of the line, and a block

3. For those so inclined, Sun has a BNF language grammar (http://java.sun.com/docs/
books/jls/second_edition/html/syntax.doc.html) on their Web site, and the Lewis and
Loftus book, Appendix L, has a good set of syntax diagrams.

653.2 Fundamental Language Elements

comment consists of everything from the opening /* to the closing */
sequence.

Conditional Execution3.2.3.1

An experienced programmer probably only needs to see examples of if and
other such statements to learn them. It’s only a matter of syntax. Java breaks
no new ground here; it adds no new semantics to conditional execution
constructs.

The if-else statement. The if can take a single statement without any
braces, but we always use the braces as a matter of good style (Example 3.7).

Example 3.7 A compound Java if-else statement

if (x < 0) {
 y = z + progo;
} else if (x > 5) {
 y = z + hmron;
 mylon.grebzob();
} else {
 y = z + engrom;
 mylon.kuggle();
}

TIP

An important thing to remember about the Java if statement (and all other
conditional tests, such as while, do-while, and for) is that, unlike C/C++,
its expression needs to evaluate to a boolean. In C/C++, numeric expressions
are valid, any nonzero value being considered true, but not so in Java.

The switch statement. For a multiway branch Java, like C/C++, has a
switch statement, though the Java version of switch is a bit more restrictive.
Example 3.8 shows the syntax.

In Java, the expression in the switch statement must evaluate to either
an int or a char. Even short and long are not allowed.

As in C/C++, be sure to put the break statement at the end of each case,
or else control will flow right into the next case. Sometimes this is the desired
behavior—but if you ever do that deliberately, be sure to add a comment.

Chapter 3 An Experienced Programmer’s Introduction to Java66

Example 3.8 A switch statement in Java

switch (rval*k+zval)
{
 case 0:
 mylon.reset();
 break;
 case 1:
 case 4:
 // matches either 1 or 4
 y = zval+engrom;
 mylon.kuggle(y);
 break;
 default:
 // all other values end up here
 System.out.println("Unexpected value.");
 break;
}

The default case is where control goes when no other case matches the
expression. It is optional—you don’t need to have one among your switch cases.
Its location is also arbitrary; it could come first, but by convention programmers
put it last in the sequence of cases, as a visual “catch all.”

TIP

For whichever case is last (typically default), the ending break is redundant
because control will continue outside the break—but we show it here in the
example, and use it ourselves in our code. Why? Well, code gets edited—for
bug fixes and for feature additions. It is especially important to use break in all
the cases in switch statements that have no default case, but even in
those that do, we keep the break to avoid forgetting it, should another case
ever be added or this last one relocated. We recommend that you do the same.

Looping and Related Statements3.2.3.2

The while statement. Like the while construct in other computer lan-
guages, the expression inside the parentheses is evaluated, and if true, the
statement following it is executed. Then the expression is evaluated again, and
if still true, the looped statement is again executed. This continues until the
expression evaluates to false (Example 3.9).

673.2 Fundamental Language Elements

Example 3.9 A Java while statement

while (greble != null)
{
 greble.glib();
 greble = treempl.morph();
}

Technically, the while statement consists of the expression and a single
statement, but that single statement can be replaced by a set of statements en-
closed in braces (you know, the characters { and }). We will always use braces,
even if there is only one statement in our while loop. Experience has shown
that it’s a safer practice that leads to code that is easier to maintain. Just treat
it as if the braces were required syntax, and you’ll never forget to add them
when you add a second statement to a loop.

The do-while loop. To put the terminating check at the bottom of the
loop, use do-while as shown in Example 3.10. Notice the need for the
terminating semicolon after the expression.

Example 3.10 A Java do-while statement

do {

 greble.morph();
 xrof = treempl.glib();

} while (xrof == null);

Die-hard Pascal programmers should note that Java has no repeat-until
statement. Sorry. Of course the logic of an until(condition) is equivalent
to do-while(!condition).

The for loop. The for loop in Java is very similar to C/C++. It consists of
three parts (Example 3.11):

• The initializing expression, done up front before the loop begins

• The conditional expression for terminating the loop

Chapter 3 An Experienced Programmer’s Introduction to Java68

• The expression that gets executed at the end of each loop iteration, just
prior to retesting the conditional

Example 3.11 A Java for loop

for (i = 0; i < 8; i++) {
 System.out.println(i);
}

Unlike C/C++, Java doesn’t have the comma operator for use within arbi-
trary expressions, but the comma is supported as special syntax in Java for
loops. It makes it possible to have multiple initializers in the opening of the
for loop and multiple expressions in the portion repeated at each iteration of
the loop. The result is much the same—you can initialize and increment
multiple variables or objects in your for loop.

More formally, the full syntax of the for loop can be described with fol-
lowing meta-language as shown in Example 3.12 (where the []* means “zero
or more repetitions of”).

Example 3.12 Java for loop syntax

for (before [, before]* ; exit_condition ; each_time [, each_time]*)
statement

The biggest difference between C and Java for loops, however, is that Java
allows you to declare one or more variables of a single type in the initializing
expression of the for loop (Example 3.13). Such a variable’s scope is the for
loop itself, so don’t declare a variable there if you want to reference it outside
the loop. It is a very handy construct, however, for enumerators, iterators, and
simple counters.

Example 3.13 A Java for loop with local index

for (int i = 0; i < 8; i++) {
 System.out.println(i);
}

693.2 Fundamental Language Elements

As in the if and while statements, the braces are optional when only a
single statement is involved, but good practice compels us always to use the
braces. Additional code can easily be added without messing up the logic—
should one forget, at that point, the need to add braces.

Speaking of the while loop: When do you use a for and when do you
use a while loop? The big advantage of the for loop is its readability. It con-
solidates the loop control logic into a single place—within the parentheses.
Anyone reading your code can see at once what variable(s) are being used to
control how many times the loop executes and what needs to be done on each
iteration (e.g., just increment i). If no initialization is needed before starting
the loop, or if the increment happens indirectly as part of what goes on in the
body of the loop, then you might as well use a while loop. But when the ini-
tialization and iteration parts can be clearly spelled out, use the for loop for
the sake of the next programmer who might be reading your code.

The for loop with iterators. As of Java 5.0, there is additional syntax for a
for loop. It is meant to provide a useful shorthand when looping over the
members of an iterator.4 So what’s an iterator? Well, it has to do with collec-
tions. Uh, oh, we’re surrounded by undefined terms. One step at a time, here.
Java has a whole bunch (we won’t say “collection,” it’s a loaded term) of utility
classes that come with it. We mentioned these classes in our discussion of
Javadoc. While not part of the language syntax, some of these classes are so
useful that you will see them throughout many, if not most, Java programs.

Collection is a generic term (in fact, it’s a Java interface) for several classes
that allow you to group similar objects together. It covers such classes as Lists,
LinkedLists, Hashtables, Sets, and the like. They are implementations of
all those things that you (should have) learned in a Data Structures course in
school. Typically you want to add (and sometimes remove) members from a
collection, and you may also want to look something up in the collection. (If
you’re new to collections, think “array,” as they are a simple and familiar type
of collection.) Sometimes, though, you don’t want just one item from the col-
lection, but you want to look at all of the objects in the collection, one at a
time. The generic way to do that, the way that hides the specifics of what kind
of collection you have (linked list, or array, or map) is called an iterator.5

4. This feature is related to the topic of templates and generics. See Section 3.5.

5. The earliest versions of Java used an object called an Enumeration. It does much the same
thing as an iterator, but with somewhat clumsier method names. Iterators also allow for a

Chapter 3 An Experienced Programmer’s Introduction to Java70

The purpose of an iterator, then, is to step through a collection one item
at a time. Example 3.14 shows a collection being built from the arguments on
the command line. Then two iterators are used to step through the collection

Example 3.14 Using iterators

import java.util.*;

public class
Iter8
{
 public static void
 main(String [] args)
 {
 // create a new (empty) ArrayList
 ArrayList al = new ArrayList();

 // fill the ArrayList with args
 for(int i = 0; i < args.length; i++) {
 al.add(args[i]);
 }

 // use the iterator in the while loop
 Iterator itr1 = al.iterator();

 while(itr1.hasNext()) {
 String onearg;
 onearg = (String) (itr1.next());
 System.out.println("arg=" + onearg);
 }

 // define and use the iterator in the for loop:
 for(Iterator itr2 = al.iterator(); itr2.hasNext();) {
 String onearg;
 onearg = (String) (itr2.next());
 System.out.println("arg=" + onearg);
 }

 } // main

} // Iter8

remove() method, something that Enumeration doesn’t support. The Enumeration class
is still around, but less frequently used. It is only available from certain older utility classes.

713.2 Fundamental Language Elements

and print the objects in the collection to the command window. The first iter-
ator uses the while loop, the second one uses a for loop, but they both do the
same thing.

As of Java 5.0, there is another way to work your way through a collection,
one that requires less type casting, but more importantly one that can enforce
the type of objects at compile time.

Notice in Example 3.14 that the result of the next() is coerced into type
String. That’s because everything coming from the iterator (via the next()
method) comes to us as a generic object. That way an iterator can handle any
type of object, but that also means that it is up to the application program to
know what type should be coming back from the iterator. Any typecasting error
won’t be found until runtime.

With the syntax added in 5.0, not only is there a shorthand in the for
loop for looping with an iterator. There is also syntax to tell the compiler explic-
itly what type of objects you are putting into your collection or array so that
the compiler can enforce that type.

Example 3.15 may help to make this clearer.

Example 3.15 Using a for loop iterator

import java.util.*;

public class
Foreign
{
 public static void
 main(String [] args)
 {
 List <String> loa = Arrays.asList(args);

 System.out.println("size=" + loa.size());

 for(String str : loa) {
 System.out.println("arg=" + str);
 }

 } // main
} // Foreign

Here we build a List from the arguments supplied on the command line.
Notice the type name inside of angle brackets (less-than and greater-than signs).

Chapter 3 An Experienced Programmer’s Introduction to Java72

This is the new syntax that tells the compiler that we are putting Strings into
the List. The compiler will enforce that and give a compile time error if we
try to add any other type to the List.

Now we come to the for loop. Read it as “for str in loa” or “for String
values of str iterating over loa.” We will get an iterator working out of sight
that will iterate over the values of loa, our List. The values (the result of the
next() method) will be put in the String variable str. So we can use str
inside the body of the loop, with it taking on successive values from the
collection.

Let’s describe the syntax, then, as

for (SomeType variable : SomeCollectionVariable) {
}

which will define variable to be of type SomeType and then iterate over the
SomeCollectionVariable. Each iteration will execute the body of the loop,
with the variable set to the next() value from the iterator. If the collection is
empty, the body of the loop will not be executed.

This variation of the for loop works for arrays as well as for these new
typed collections. The syntax for arrays is the same. Example 3.16 will echo the
arguments on the command line, but without loading up a List like we did
in our previous example.

Example 3.16 A for loop iterator for arrays

import java.util.*;

public class
Forn
{
 public static void
 main(String [] args)
 {
 for(String str : args) {
 System.out.println("arg="+str);
 }

 } // main
} // Forn

733.2 Fundamental Language Elements

The break and continue statements. There are two statements that will
change the course of execution of the while, do-while, and for loops from
within the loop. A continue will cause execution to skip the rest of the body
of the loop and go on to the next iteration. With a for loop, this means execut-
ing the iteration expression, and then executing the test-for-termination expres-
sion. With the while and do-while loops, this means just going to the test
expression.

You can quit out of the loop entirely with the break statement. Execution
continues on the next statement after the loop.

The return statement3.2.3.3

There is one more statement that we need to cover. The return statement is
optionally followed by an expression. Execution of the current method ends at
once upon executing return, and the expression is used as the return value of
the method. Obviously, the type of the expression must match the return type
of the method. If the method is void, there should be no return expression.

Error Handling, Java Style3.2.4

Errors in Java are handled through exceptions. In some circumstances, the Java
runtime will throw an exception, for example, when you reference a null
pointer. Methods you write may also throw exceptions. This is quite similar to
C++. But Java exceptions are classes. They descend from Object, and you can
write your own classes that extend an existing exception. By so doing, you can
carry up to the handler any information you would like. But we’re getting ahead
of ourselves here. Let’s first describe the basics of exceptions, how to catch them,
how to pass them along, and so forth.

In other programming languages a lot of code can be spent checking return
codes of function or subroutine calls. If A calls B and B calls C and C calls D,
then at each step the return value of the called function should be checked
to see if the call succeeded. If not, something should be done about the
error—though that “something” is usually just returning the error code to the
next level up. So function C checks D’s return value, and if in error, returns an
error code for B to check. B in turn looks for an error returned from C and re-
turns an error code to A. In a sense, the error checking in B and C is superflu-
ous. Its only purpose is to pass the error from its origin in D to the function
that has some logic to deal with the error—in our example that’s A.

Chapter 3 An Experienced Programmer’s Introduction to Java74

Java provides the try/catch/throw mechanism for more sophisticated
error handling. It avoids a lot of unnecessary checking and passing on of errors.
The only parts of a Java program that need to deal with an error are those that
know what to do with it.

The throw in Java is really just a nonlocal “goto”—it will branch the exe-
cution of your program to a location which can be quite far away from the
method where the exception was thrown. But it does so in a very structured
and well-defined manner.

In our simple example of A calling B calling C calling D, D implemented
as a Java method can throw an exception when it runs into an error. Control
will pass to the first enclosing block of code on the call stack that contains a
catch for that kind of exception. So A can have code that will catch an excep-
tion, and B and C need not have any error handling code at all. Example 3.17
demonstrates the syntax.

Example 3.17 A simple try/catch block

try {
 for (i = 0; i < max; i++) {
 someobj.methodB(param1, i);
 }
} catch (Exception e) {
 // do the error handling here:
 System.out.println("Error encountered. Try again.");
}
// continues execution here after successful completion
// but also after the catch if an error occurs

In the example, if any of the calls to methodB() in the for loop go
awry—that is, anywhere inside methodB() or whatever methods it may call an
exception is thrown (and assuming those called methods don’t have their own
try/catch blocks), then control is passed up to the catch clause in our exam-
ple. The for loop is exited unfinished, and execution continues first with the
catch clause and then with the statements after the catch.

How does an error get thrown in the first place? One simply creates an
Exception object and then throws the exception (Example 3.18).

753.2 Fundamental Language Elements

Example 3.18 Throwing an Exception, step by step

Exception ex = new Exception("Bad News");
throw ex;

Since there is little point in keeping the reference to the object for the local
method—execution is about to leave the local method—there is no need to
declare a local variable to hold the exception. Instead, we can create the excep-
tion and throw it all in one step (Example 3.19).

Example 3.19 Throwing an Exception, one step

throw new Exception("Bad News");

Exception is an object, and as such it can be extended. So we can create
our own unique kinds of exceptions to differentiate all sorts of error conditions.
Moreover, as objects, exceptions can contain any data that we might want to
pass back to the calling methods to provide better diagnosis and recovery.

The try/catch block can catch different kinds of exceptions much
like cases in a switch/case statement, though with different syntax
(Example 3.20).

Notice that each catch has to declare the type of each exception and
provide a local variable to hold a reference to that exception. Then method calls
can be made on that exception or references to any of its publicly available data
can be made.

Remember how we created an exception (new Exception("message"))?
That message can be retrieved from the exception with the toString()
method, as shown in that example. The method printStackTrace() is also
available to print out the sequence of method calls that led up to the creation
of the exception (Example 3.21).

The exception’s stack trace is read top to bottom showing the most
recently called module first. Our example shows that the exception occurred
(i.e., was constructed) on line 6 of the class named InnerMost, inside a method
named doOtherStuff(). The doOtherStuff() method was called from
inside the class MidModule—on line 7—in a method named doStuff().
In turn, doStuff() had been called by doSomething(), at line 11 inside

Chapter 3 An Experienced Programmer’s Introduction to Java76

Example 3.20 Catching different kinds of exceptions

try {
 for (i = 0; i < max; i++) {
 someobj.methodB(param1, i);
 } // next i

} catch (SpecialException sp) {
 System.out.println(sp.whatWentWrong());

} catch (AlternateException alt) {
 alt.attemptRepair(param1);

} catch (Exception e) {
 // do the error handling here:
 System.out.println(e.toString());
 e.printStackTrace();
}
// continues execution here after any catch

Example 3.21 Output from printStackTrace()

java.lang.Exception: Error in the fraberstam.
 at InnerMost.doOtherStuff(InnerMost.java:6)
 at MidModule.doStuff(MidModule.java:7)
 at AnotherClass.doSomething(AnotherClass.java:11)
 at ExceptExample.main(ExceptExample.java:14)

AnotherClass, which itself had been called from line 14 in the
ExceptExample class’ main() method.

We want to mention one more piece of syntax for the try/catch block.
Since execution may never get to all of the statements in a try block (the excep-
tion may make it jump out to a catch block), there is a need, sometimes,
for some statements to be executed regardless of whether all the try code
completed successfully. (One example might be the need to close an I/O con-
nection.) For this we can add a finally clause after the last catch block. The
code in the finally block will be executed (only once) after the try or after
the catch—even if the path of execution is about to leave because of throwing
an exception (Example 3.22).

773.2 Fundamental Language Elements

Example 3.22 Use of a finally clause

try {
 for (i = 0; i < max; i++) {
 someobj.methodB(param1, i);
 } // next i

} catch (SpecialException sp) {
 System.out.println(sp.whatWentWrong());

} catch (AlternateException alt) {
 alt.attemptRepair(param1);
 throw alt; // pass it on

} catch (Exception e) {
 // do the error handling here:
 System.out.println(e.toString());
 e.printStackTrace();

} finally {
 // Continue execution here after any catch
 // or after a try with no exceptions.
 // It will even execute after the AlternateException
 // before the throw takes execution away from here.
 gone = true;
 someobj = null;
}

print(), println(), printf()3.2.5

We’ve already used println() in several examples, and assumed that you can
figure out what it’s doing from the way we have used it. Without going whole-
hog into an explanation of Java I/O and its various classes, we’d like to say a
little more about the three various output methods on a PrintStream object.6

Two of the methods, print() and println(), are almost identical. They
differ only in that the latter one appends a newline (hence the ln) at the end
of its output, thereby also flushing the output. They expect a String as their
only argument, so when you want to output more than one thing, you add the
Strings together, as in:

6. The mention of the PrintStream object was meant to be a hint, to tell you that you can
find out more about this sort of thing on the Javadoc pages for the PrintStream object.

Chapter 3 An Experienced Programmer’s Introduction to Java78

System.out.println("The answer is "+val);

“But what if val is not a String?” we hear you asking. Don’t worry, the
Java compiler is smart enough to know, that when you are adding with a
String argument it must convert the other argument to a String, too. So for
any Object, it will implicitly call its toString() method. For any primitive
type (e.g., int or boolean), the compiler will convert it to a String, too.

The third of the three output methods, printf(), sounds very familiar
to C/C++ programmers, but be warned:

• It is only available in Java 5.07 and after.

• It is similar but not identical to the C/C++ version.

Perhaps the most significant enhancement to printf() is its additional
syntax for dealing with internationalization. It’s all well and good to translate
your Strings to a foreign language, but in doing so you may need to change
the word order and thus the order of the arguments to printf(). For example,
the French tend to put the adjective after rather than before the noun (as we do
in English). We say “the red balloon” and they say “le balloon rouge.” If your
program had Strings for adjective and noun, then a printf() like this:

String format = "the %s %s\n";
System.out.printf(format, adjective, noun);

wouldn’t work if you translate just the format String:

String format = "le %s %s\n";
System.out.printf(format, noun, adjective);

You’d like to be able to do the translation without changing the code in your
program.8 With the Java version of printf(), there is syntax for specifying
which argument corresponds to which format field in the format string. It uses

7. Remember, you’ll need the -source 5.0 option on the command line.

8. Java has good support for internationalization, another topic for which we don’t have the
time. The ability to translate the strings without otherwise modifying the program is a crucial
part to internationalization, and the printf() in Java 5.0 is certainly a help in this regard. In
a similar vein, the Eclipse IDE, covered in Chapter 10, includes a feature to take all string
constants and convert them to external properties at a stroke, making internationalization much
easier to do.

793.2 Fundamental Language Elements

a number followed by a dollar sign as part of the format field. This may be
easier to explain by example; our French translation, switching the order in
which the arguments are used, would be as follows:

String format = "le %2$s %1$s\n";
System.out.printf(format, noun, adjective);

The format field %2$s says to use the second argument from the argument
list—in this case, adjective—as the string that gets formatted here. Similarly,
the format field %1$s says to use the first argument. In effect, the arguments
get reversed without having to change the call to println(), only by translat-
ing the format String. Since such translations are often done in external files,
rather than by assignment statements like we did for our example, it means that
such external files can be translated without modifying the source to move ar-
guments around.

This kind of argument specification can also be used to repeat an argument
multiple times in a format string. This can be useful in formatting Date objects,
where you use the same argument for each of the different pieces that make up
a date—day, month, and so on. Each has its own format, but they can be
combined by repeating the same argument for each piece. One format field
formats the month, the next format field formats the day, and so on. Again an
example may make it easier to see:

import java.util.Date;
Date today = new Date();
System.out.printf("%1$tm / %1$td / %1$ty\n", today);

The previous statement uses the single argument, today, and formats it
in three different ways, first giving the month, then the day of the month, then
the year. The t format indicates a date/time format. There are several suffixes
for it that specify parts of a date, a few of which are used in the example.9

NOTE

Don’t forget the trailing \n at the end of the format string, if you want the output
to be a line by itself.

9. There are many more, familiar to C/C++ UNIX/Linux/POSIX programmers who have used
the strftime() library call.

Chapter 3 An Experienced Programmer’s Introduction to Java80

The details for all the different format fields can be found in the Javadoc
for the java.util.Formatter class, a class that is used by printf() to do
its formatting, but one that you can also use by itself (C programmers: think
“sprintf”).

In order to implement printf() for Java, the language also had to be ex-
tended to allow for method calls with a varying number of arguments. So as of
Java 5.0, a method’s argument list can be declared like this:

methodName(Type ... arglist)

This results in a method declaration which takes as its argument an array
named arglist of values of type Type. That is, it is much the same as if you
declared methodName(Type [] arglist) except that now the compiler will
let you call the method with a varying number of arguments and it will load up
the arguments into the array before calling the method. One other implication
of this is that if you have a declaration like this:

varOut(String ... slist)

then you can’t, in the same class, also have one like this:

varOut(String [] alist)

because the former is just a compiler alias for the latter.

TIP

We recommend that you avoid methods with variable argument list length. You
lose the compile-time checking on the number of arguments that you supply
(since it can vary). Often the type of the arguments in the list will be Object,
the most general type, to allow anything to be passed in. This, too, circumvents
type checking of arguments, and can lead to runtime class-cast exceptions and
other problems. Methods with variable argument list length are often a lazy
approach, but were necessary to make printf() work, and for that we
are grateful.

813.2 Fundamental Language Elements

USING (AND MAKING) JAVA APIS3.3

With every class you write, you define a name—the name of the class. But what
if someone else has already used that name? Java programming should encour-
age reuse of existing code, so how do you keep straight which names are
available?

This is a namespace issue—who can use which names. A classic way to
solve a namespace issue is to divide the namespace up into domains. On the
Internet, host names are sectioned off into domains, so that I can have a host
named Pluto or www and so can lots of others—because each host is qualified
by its domain (e.g., myco.com). Thus www.myco.com isn’t confused with
www.otherco.com or www.hisgroup.org. Each host is named www, but each
is unique because of the qualifying domain.

Java solves the problem in much the same way, but with the names in the
reverse order. Think of the “host” as the class name; the “domain” name, used
to sort out identical host names, is, in Java parlance, the package name. When
you see a name like com.myco.finapp.Account, that can be a Java package
com.myco.finapp qualifying a class named Account.

Beyond just keeping the namespace clean, Java packages serve another
important function. They let you group together similar classes and interfaces
to control access to them. Classes within the same package can access each
others’ members and methods even when they are not declared public, provid-
ed they are not declared to be private. This level of intimacy, sometimes
called package protection, means that you should group classes together that are
related, but avoid grouping too many classes together. It’s tempting just to
put all your classes for a project into the same package, for example,
com.myco.ourproject, but you will provide better safety and perhaps pro-
mote better reuse by grouping them into several smaller packages, for example,
com.myco.util, com.myco.financial, and com.myco.gui.

The package Statement3.3.1

So how do you make a Java class part of a package? It’s easy—you just put, as
the first (noncomment) line of the file, the package statement, naming the
package to which you want this class to belong. So if you want your Account
class to be part of the com.myco.financial package, your Java code would
look as shown in Example 3.23.

Chapter 3 An Experienced Programmer’s Introduction to Java82

Example 3.23 Use of a package statement

package com.myco.financial;

public class
Account
{
 // ...
}

Making a class part of a package is easy. What’s tricky is putting the class
file in the right location so that Java can find it.

Think of the current directory as the root of your package tree. Each part
of a package name represents a directory from that point on down. So if you
have a package named com.myco.financial then you’ll need a directory
named com and within that a directory named myco and within that a directory
named financial. Inside that financial directory you can put your
Account.class file.

When Java runs a class file, it will look in all the directories named in the
CLASSPATH environment variable. Check its current value:

$ echo $CLASSPATH

$

If it’s empty, as in this example, then the only place where it will look for
your classes will be the current directory. That’s a handy default, because it is
just what you want when your class file has no package statement in it. With
no package statement, your class becomes part of the unnamed package. That’s
fine for simple sample programs, but for serious application development you’ll
want to use packages.

Let’s assume that you’re in your home directory, /home/joeuser, and
beneath that you have a com directory and beneath that a myco directory with
two subdirectories financial and util. Then with your classes in those lower
level directories, you can run your Java program from the home directory.
If you want to run it from any arbitrary directory (e.g., /tmp or
/home/joeuser/alt) then you need to set CLASSPATH so it can find this
package tree. Try:

833.3 Using (and Making) Java APIs

$ export CLASSPATH="/home/joeuser"
$

Now Java knows where to look to find classes of the
com.myco.financial and com.myco.util packages.

The import Statement3.3.2

Once we have put our classes into packages, we have to use that package’s name
when we refer to those classes—unless we use the import statement.

Continuing our example, if we want to declare a reference to an Account
object, but Account is now part of com.myco.financial, then we could refer
to it with its full name, as in:

com.myco.financial.Account =
 new com.myco.financial.Account(user, number);

which admittedly is a lot more cumbersome than just:

Account = new Account(user, number);

To avoid the unnecessarily long names, Java has import statements. They
are put at the beginning of the class file, outside the class definition, just after
any package statement. In an import statement, you can name a class with
its full name, to avoid having to use the full name all the time. So our example
becomes:

import com.myco.financial.Account;
// ...
Account = new Account(user, number);

If you have several classes from that package that you want to reference,
you can name them all with a “*”, and you can have multiple different import
statements, as in:

import java.util.*;
import com.myco.financial.*;
// ...
Account = new Account(user, number);

Here are a few things to remember about import statements. First, they
don’t bring in any new code into the class. While their syntax and placement

Chapter 3 An Experienced Programmer’s Introduction to Java84

is reminiscent of the C/C++ include preprocessor directive, their function is
not the same. An import statement does not include any new code; it only aids
name resolution. Secondly, the “*” can only be used at the end of the package
name; it is not a true wildcard in the regular expression sense of the word.
Thirdly, every class has what is in effect an implicit import java.lang.* so
that you don’t need to put one there. References to String or System or other
core language classes can be made without the need for either the import
statement or the fully qualified name (except as described in the next
paragraph).

If you need to use two different classes that have the same name but come
from different packages, you will still need to refer to them by their full names;
import can’t help you here. As an example of this, consider the two classes
java.util.Date and java.sql.Date (though with any luck you won’t need
to refer to both of them within the same class).

ENCAPSULATION, INHERITANCE, AND POLYMORPHISM3.4

The classic troika of OOP buzzwords is “encapsulation, inheritance, and
polymorphism.” How does Java do each of these things?

Encapsulation3.4.1

Encapsulation is the grouping of data and algorithms together into units, and
it’s also about hiding implementation details that are not important to the users
of the unit. The basic unit of encapsulation is the class. All Java code exists in
classes. A class is declared with the class keyword (Example 3.24).

Example 3.24 A sample Java class declaration that doesn’t actually do anything useful

public class
Sample
{
 private int id;

 public void method()
 {
 System.out.println(id);
 }
}

853.4 Encapsulation, Inheritance, and Polymorphism

Inheritance3.4.2

Inheritance is how a class places itself in a hierarchy of existing classes. In Java,
each class inherits from exactly one existing class. A class names the class from
which it inherits with the extends keyword. We said a Java class inherits from
exactly one class, and yet our Example 3.24 doesn’t contain the extends
keyword. What gives?

If a class doesn’t explicitly extend an existing class, it implicitly extends
the “root” Java class, Object. The Object class has some interesting features,
and the fact that all Java classes directly or indirectly extend Object has
interesting consequences that we will explore later.

Persons coming to Java from another object-oriented language whose
name shall remain C++ might wonder about multiple inheritance. Java has the
concept of interfaces. An interface is like a class, except that it may not contain
data10 and may contain only method definitions, without any implementation
(Example 3.25). An interface may not be instantiated (created with the new
operator),11 so how do you make use of interfaces? Well, a class extends exactly
one existing base class, but it may implement any number of interfaces by using
the implements keyword (Example 3.26).

Example 3.25 An interface

public interface
Identifiable
{
 public int getID();
}

As you can see, a class that implements an interface must provide an imple-
mentation of all the methods defined in the interface. We said that an interface
cannot be instantiated, but you can declare a variable of type Identifiable

10. Actually, an interface may contain final static data, but since we haven’t introduced
these concepts yet, just pretend interfaces cannot contain data for now and we’ll put the lie to
it later.

11. Although you can do something that looks suspiciously like it with anonymous inner
classes—but since we haven’t introduced these concepts yet, just pretend that you cannot instan-
tiate an interface; you will see such use later.

Chapter 3 An Experienced Programmer’s Introduction to Java86

Example 3.26 A class that implements an interface

class
Sample
 implements Identifiable
{
 private int id;

 public void method()
 {
 System.out.println(id);
 }

 public int getID()
 {
 return id;
 }
}

and assign an instance of the Sample class to it. In fact, you could assign an
instance of any class that implements the Identifiable interface to it.

Interfaces may also have an extends keyword. In other words, an interface
may inherit from an existing interface. This may be useful if you know you will
want to use methods from both the extended and the base interface without
having to cast the object reference. Otherwise extending an interface is
unnecessary since a given class may implement as many interfaces as desired.

Inheritance and Encapsulation3.4.2.1

Encapsulation and inheritance are related to one another and are controlled by
access modifiers on classes, data members, and methods. Let’s spend a little time
talking about these modifiers and what they mean.

The access modifier keywords are public, private, and protected.
When a data member or method is private, it can only be accessed or called
from within this specific class. Neither classes that extend this class, nor classes
outside this class may access such a data member or call such a method. How-
ever, one instance of a class can access private members of another instance
of the same class. We don’t encourage such use.

When a data member or method is marked protected, however, the only
classes that can access such a data member or method are either 1) classes that
extend this class and their descendants, or 2) other classes in this package (even

873.4 Encapsulation, Inheritance, and Polymorphism

if they don’t extend this class). Classes in other packages (unless they extend
this class) can not get at such members.

A public data member or method may be accessed by any code in
any class.

What if you do not put an access specifier on? Then the item (data mem-
ber, method, or class) has package visibility. Such an item is accessible to any
other class within the package, but no further. Not even derived classes, unless
they are in the same package, are allowed to see it.12

In terms of how restrictive the access is, you can think of the terms in order
of decreasing strictness as:

• private

• (package)13

• protected

• public

TIP

Beginner Java programmers often declare everything as public, so that they
can ignore such issues. But then they get the OO religion, and having experi-
enced reliability issues (others messing with their variables) they go to the other
extreme and declare private as much as possible. The problem here is that
they often don’t know how others will want to reuse their code. Restricting every-
thing to private makes reuse more narrow. We prefer using private for
data members but protected for those internal helper methods that you might
otherwise make private; this hides your implementation from most other
classes while allowing someone to override your methods, effectively providing
a way for them to override your implementation. Allow those who would build
on your work the ability to do so without having to reimplement.

Here is a simple example of each type of declaration:

12. If you are a C++ programmer, the following description may mean something to you
(if not, skip this): All classes within a package are essentially “friends.”

13. Remember there is no keyword for package level protection, rather it is the absence of a
keyword that denotes this level of protection. We had to write something in that space on the
page so you’d know what we’re talking about.

Chapter 3 An Experienced Programmer’s Introduction to Java88

private String hidn;
String pkgstr;
protected String protstr;
public String wideOpen;

The static statement3.4.2.2

Another keyword qualifier on declarations that we need to describe is the
static keyword. When a variable is declared static then there is only one
instance of that variable shared among all instances of the class. Since the vari-
able exists apart from a particular instance of the class, one refers to it with the
class name followed by a dot followed by the variable name, as in System.out.

Similarly, methods can be declared static as well. This also means that
you don’t need an instance of the class to call them, just the class name, as in
System.getProperties().

Now with Java 5.0, you don’t even need the class name, provided that you
have a static import statement at the top of your class, for example:

import static java.lang.System.*;

The final statement3.4.2.3

Another way that static is often seen is in conjunction with the final key-
word. When a variable is declared final then a value can be assigned to it once,
but never changed. This can make for good constants.

Since public will make the variable visible to all other classes, static
will make it a class variable (available without an instance of that class), and
final will keep it from being altered (even though it is publicly available), then
combining all of those gives us a good declaration for a constant, for example:

public static void long lightSpeed = 186000; // mps

New to Java 5.0 is the explicit creation of enumerated types. Prior to 5.0,
programmers would often use static final constants even when the partic-
ular value was unimportant, as a way to provide compile-time checking of the
use of the constant values. Here is an example of a declaration of a set of
enumerated values:

enum WallMods { DOOR, WINDOW, VENT, GLASSBLOCK };

893.4 Encapsulation, Inheritance, and Polymorphism

TIP

A common technique used with public static final constants is to put
them in an interface definition. (This is the exception to the rule that interfaces
define method signatures but contain no data.) When a class wants to use one
or more of those constants, it is declared to implement that interface:

public MyClass
 extends BigClass
 implements Comparable, LotsaConstants
{
...
}

In defining MyClass we have declared that it implements LotsaConstants
(not a name that we recommend you using). That makes all the constants that
we have defined inside the LotsaConstants interface available to the
MyClass class. Since classes can implement many different interfaces, this
doesn’t interfere with the use of other “real” interfaces, such as Comparable.

WARNING

The keyword enum is new to Java 5.0, so older programs that may have used
enum as a variable name and will now cause an error when recompiled for
Java 5.0.

The enum will look very familiar to C/C++ programmers, but there are
some important differences. In C/C++ the values of the enum elements are, in
reality, integer values. Not so in Java. Here they are their own type, but can be
converted to a String via the toString() method, with a value that matches
the name, for easy reading and debugging.

Enumerated values can be used in == comparisons since they will be
defined only once (like other static final constants) and it would only be
references that are passed around. They would be referenced by the name of
the enumeration followed by dot followed by the particular value (e.g.,
WallMods.WINDOW) and used as an object. (We have used uppercase for the
names not out of any syntax requirement, but only to follow the typical naming
convention for constants.)

Chapter 3 An Experienced Programmer’s Introduction to Java90

Polymorphism3.4.3

Polymorphism (from the Greek poly meaning “many” and morph meaning
“shape”) refers to the language’s ability to deal with objects of many different
“shapes,” that is, classes, as if they were all the same. We have already seen that
Java does this via the extends and implements keywords. You can define an
interface and then define two classes that both implement this interface.

Remember our Sample class (Example 3.26). We’ll now define another
class, Employee, which also implements the Identifiable interface
(Example 3.27).

Example 3.27 The Employee class

class
Employee
 extends Person
 implements Identifiable
{
 private int empl_id;

 public int getID()
 {
 return empl_id;
 }
}

Notice that the same method, getID(), is implemented in the Employee
class, but that the field from which it gets the ID value is a different field. That’s
implementation-specific—the interface defines only the methods that can be
called but not their internal implementation. The Employee class not only
implements Identifiable, but it also extends the Person class, so we better
show you what our example Person class looks like (Example 3.28).

To make a really useful Person class would take a lot more code than we
need for our example. The important part for our example is only that it is
quite different from the Sample class we saw earlier.

Example 3.29 demonstrates the use of polymorphism. We only show some
small relevant snippets of code; there would be a lot more code for this to be-
come an entire, complete example. Don’t be distracted by the constructors; we
made up some new ones just for this example, that aren’t in the class definitions
above. Can you see where the polymorphism is at work?

913.4 Encapsulation, Inheritance, and Polymorphism

Example 3.28 The Person class

class
Person
{
 String name;
 Address addr;

 public
 Person(String name, Address addr)
 {
 this.name = name;
 this.addr = addr;

 } // constructor

 // ... lots more code is here

 public String getName()
 {
 return name;
 }
}

Example 3.29 An example use of polymorphism

//...
Sample labwork = new Sample(petridish);
Employee tech = new Employee(newguy, 27);
Identifiable stuff;

//...
if (mode) {
 stuff = labwork;
} else {
 stuff = tech;
}
id = stuff.getID();

The key point here is when the call is made to getID(). The compiler
can’t know at compile time which object will be referred to by stuff, so it
doesn’t know whose getID() method will be called. But don’t worry—it works

Chapter 3 An Experienced Programmer’s Introduction to Java92

this all out at runtime. That’s polymorphism—Java can deal with these different
objects while you, the programmer, can describe them in a generalized way.

One other related keyword should be mentioned here, abstract. When
one declares a class as an abstract class, then the class itself is an incomplete
definition. With an abstract class you define all the data of the class but need
only write method declarations, not necessarily all the code for the methods.
This makes abstract classes similar to interfaces, but in an abstract class, some
of the methods can be fully written out.

If you’d like to know more about polymorphism, “late binding,” and more
of this aspect of Java, read Chapter 7 of Eckel’s Thinking in Java. There is an
extensive example there with much more detail than we can cover here.

O,TEMPLATES! WHERE ART THOU?3.5

Programmers familiar with C++ may be wondering how in the world an OOP
language without templates can be useful.

NOTE

Actually, something very much like templates is available in Java 5.0.14 A new
feature, which Sun calls generics, looks an awful lot like C++ templates
(including similar syntax). It provides compile-time type checking and implicit
casting when retrieving objects from a generic container.

Speaking as programmers who worked with C++ before it had templates,
we can sympathize. Java’s previous lack of true templates does impose some
limits on generic programming, but not as much as one might think. Remem-
ber that unlike C++, all Java classes inherit from exactly one base class, and that
if no base class is specified, they extend the Object class. This means that every
single Java class either directly or indirectly extends Object, and thus all Java
classes are instances of Object. So if you need, for example, to implement a
container, you can guarantee that it can contain any Java class by implementing
a container for the Object type. Java also has runtime type identification fea-
tures that are more than a match for anything C++ has, plus it has type-safe

14. Java 5.0 will only be out by the time this book is completed.

933.5 O, Templates! Where Art Thou?

downcasting15 so that in the worst case scenario, your program has a nice, clean
type exception. You simply do not get the kind of “mystery bugs” that you can
get in C++ when you miscast an object.16

Thanks to interfaces and a true single object hierarchy, many of the uses
of C++ templates go away. We doubt very much that you will miss them. In
many cases, such as STL algorithms and other functional programming imple-
mentations, you can use interfaces to produce similar results.

Critics of the Java language have a point when they complain that all the
type casting of class references in order to expose desired interfaces tends to
produce code that violates object-oriented principles. The fact that a class or
interface implements all these other named interfaces is hard-coded all over the
place in an application’s code. Such critics say this is a bad thing, because it vi-
olates encapsulation and implementation hiding. These critics have a point. If
you find yourself frequently downcasting object references, consider using the
Java 5.0 generics, or try to find another way to code what you want to do.
There may be a better way. In defense of the original Java approach (before
generics), all casts are runtime type safe. An exception is thrown if a class refer-
ence is improperly cast. In C++, if you miscast a pointer, it assumes you meant
it. Java certainly can be awkward, but errors will get caught. Sometimes that is
more important.

VIRTUALLY FINAL3.6

One difficulty anyone writing about Java faces is whether or not to assume your
readers are familiar with C++. In this chapter, we have tried to help those with
C++ experience without requiring such knowledge. But it is in the inevitable
comparisons between those languages that many subtle Java features are best
discussed. We promised you that we would talk about the relative merits of
virtual (a C++ concept) and final (a Java concept). To do that, we have to
assume some knowledge of C++. So, let’s reverse the pattern and talk about the

15. Don’t worry if this is all gibberish to you right now. We will revisit these topics in detail
when we come upon them in the course of our sample project.

16. Actually, we’re being a bit optimistic here. While Java programs are not subject to many
mystery bugs, the Java Virtual Machines that run Java code are written in traditional languages,
and there have been VMs with bugs. Time and again we see that there is no “silver bullet.” But
in our experience, Java comes close. So very close.

Chapter 3 An Experienced Programmer’s Introduction to Java94

straight Java facts so we can let the non-C++ folks move on while we go a little
deeper with you C++’ers.

In Java, a method or a class may be declared final. A method that is de-
clared final may not be overridden in classes that extend the class containing
the final implementation. A class that is declared final may not be extended
at all.

Now, the comparisons to C++ require us to talk about a language feature
that does not exist at all in Java. In C++, unless a method is declared virtual,
when a class is used by reference to a base class (for example, when using
Employee as a Person), the base class version of the method is called. If the
method is declared virtual, the version of the method called is the version for
the type of Person referenced (in this case, Employee). In Java, all methods
are virtual. There is no such keyword in Java.

A USEFUL SIMPLE APPLICATION3.7

We will use the sample application shown in Example 3.30 in other sections
of this book to illustrate the use of Java tools. This example is so simple (a single
class) that it doesn’t demonstrate the object-oriented aspect of development,
but it does make use of some APIs that take advantage of it. We will not walk
you through this application right here, but present it as a listing of a complete
Java class. Not all of the APIs used in this example will be explained, so you
may want to refer to the Javadoc pages for explanations of object types or
method calls that don’t seem obvious.

REVIEW3.8

We’ve taken a very quick look at the syntax of Java statements, classes, and
interfaces. Much of the syntax is very reminiscent of C, though Java’s object-
oriented features differ in significant ways from C++. We looked at how to put
Java classes into packages, and at the implications of this for locating the
.class files.

We also showed what the HTML-based Javadoc documentation looks
like. These HTML pages will likely be a handy reference for you as you design
and write your Java code.

953.8 Review

Example 3.30 Single class example: FetchURL

import java.net.*;
import java.io.*;

public class FetchURL {
 private URL requestedURL;

 public FetchURL(String urlName)
 {
 try {
 requestedURL = new URL(urlName);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public String toString()
 {
 String rc = "";
 String line;
 BufferedReader rdr;

 try {
 rdr = new BufferedReader(
 new InputStreamReader(
 requestedURL.openConnection().getInputStream()
)
);

 while ((line = rdr.readLine()) != null)
 {
 rc = rc + line + "\n";
 }
 } catch (Exception e) {
 e.printStackTrace();
 rc = null;
 }

 return rc;
 }

Chapter 3 An Experienced Programmer’s Introduction to Java96

 public static void main(String[] args)
 {
 int i;
 FetchURL f;

 for (i = 0; i < args.length; i++)
 {
 System.out.println(args[i] + ":");
 System.out.println(new FetchURL(args[i]));
 }
 }
}

WHAT YOU STILL DON’T KNOW3.9

We have deliberately avoided file I/O. For Java, it is a multilayered and complex
topic—and with version 1.4 of Java, there is a whole new set of additional
classes (java.nio.*) to consider. We refer you instead to Chapter 11 of Eckel’s
Thinking in Java.

There are also a few Java keywords that we have not yet discussed, notably
synchronize.

Even if you know all the Java syntax, it may still take a while to get familiar
with the way that syntax is typically put to use. Experience and reading other
people’s Java code will be your best teachers—but don’t assume that a particular
approach is good just because someone else uses it; much new code has been
written in the last several years as people have learned Java. Be sure it’s a style
worth imitating, and if you find a better way to do it, use it.

RESOURCES3.10

• Bruce Eckel, Thinking in Java.

• Cay S. Horstmann and Gary Cornell, Core Java 2: Volume 1 Fundamentals,
especially Chapter 3.

• John Lewis and William Loftus, Java Software Solutions.
• The Sun Microsystems Java Tutorial.17

17. http://java.sun.com/docs/books/tutorial/index.html

973.10 Resources

EXERCISES3.11

1. Write a simple class with a main() method that prints out the arguments
supplied on the command line used to invoke it. First use a for loop to
do this, then a while loop, then a do-while. What differences do you
notice? Which do you find most amenable for this task?

2. Modify the previous class to quit echoing its arguments should it en-
counter an argument of length 5. (You can tell the length of a String
object with the length() method, e.g., mystr.length().) Did you use
break, or continue, or some other mechanism?

Chapter 3 An Experienced Programmer’s Introduction to Java98

Java claims—and rightly so—to be a “compile once, run anywhere” language.
But when a program starts, that “anywhere” is now a specific somewhere. When
running a Java application on Linux, or any environment for that matter, the
question arises, “Where am I?” (context, environment, familiar landmarks).
What can a Java program find out about its environment? In particular, on the
Linux platform, (how) can we get at:

• Command-line parameters?

• The current shell’s environment variables?

• The current working directory?

• The location of data files?

The answers to these questions will depend on what kind of Java applica-
tion you are creating, and just how portable you want your application to be.

99

Chapter 4

Where Am I?
Execution Context

WHAT YOU WILL LEARN4.1

We’ll show you how Java provides access to the command-line parameters and
environment variables. We’ll also discuss the Java RunTime and Property
classes. Java’s use of the standard input/output/error streams is also briefly
covered, along with an introduction to those concepts. We’ll end with a short
word on portability concerns.

A SIMPLE START4.2

The most basic external information that a program may use is the information
supplied on its invocation—simple parameters or arguments, such as filenames
or options, that can direct its running and make it a more flexible tool. Let’s
start with getting at that information from a Java program.

Command-Line Arguments4.2.1

When a program is run from the command line, more than just the program
name can be supplied. Here are some examples:

$ javac Hi.java
$ mv Acct.java core/Account.java
$ ls -l

In the first example, we invoked a program called javac and gave it the
parameter Hi.java, the name of the file containing the Java program that we
want javac to compile to Java byte code. (We’ve got a whole chapter on how
to set up and run the Java compiler, see Chapter 5.) The mv got two command-
line arguments, Acct.java and core/Account.java, which look a lot like
pathnames. The ls command has one argument, -l, which in Linux usually
indicates, by its leading minus sign, that it is an option for altering the behavior
of the command. (In this case it produces the “long” version of the directory
listing.)

Even point-and-click GUIs allow such parameters to be supplied, though
often not visible to the user. In KDE, one can create a new desktop icon that
is a link to an application. Such an icon has a property sheet that lists, on the
Execute tab, the command to be run, including any parameters.

In Java, the parameters supplied on the command line are available to the
main() method of a Java class. The signature for this method is:

Chapter 4 Where Am I? Execution Context100

public static void main(String args[])

From within main(), the various parameters are available as the elements
of the array of Strings. The class in Example 4.1 will display those parameters
when the program is run.

Example 4.1 Java program to dump command-line arguments

/*
 * simple command-line parameter displayer
 */

public class
CLine
{
 public static void
 main(String [] args)
 {
 for (int i = 0; i < args.length; i++)
 {
 System.out.println(args[i]);
 }

 } // main

} // class CLine

We compile and run the example, providing a few command-line
parameters:

$ javac CLine.java
$ java CLine hello world file.txt blue
hello
world
file.txt
blue
$

Not all classes will have main() methods, but any can. Even if several
classes in a package have main() methods, that is not a problem. Which one
will be the “main” main()? It’s the class we specified when we invoked our
program. In Example 4.1, the main() that is executed is the one in the CLine

1014.2 A Simple Start

class. Even if CLine used other classes (it does—String is a class) it doesn’t
matter if those other classes have main() methods or not.

Unit Testing Made Easy4.2.2

Why all the fuss about main() and command-line parameters? Such main()
methods are a handy way to provide unit tests for a class. The tests can be
controlled by the command-line parameters. By testing each class you can re-
duce the time to integrate the parts of an application. Furthermore, a set of unit
tests can be built up (e.g., as shell scripts) to provide automated regression tests
for the entire project. As a more rigorous and systematic approach to unit
testing, we discuss junit in Chapter 13.

THE System CLASS4.3

The Java System class provides some of the answers to questions about our
environment. What follows is not an exhaustive discussion of all the methods
in the System class, but only of those areas that touch on our specific focus—
input/output (I/O) and environment variables.

Be aware that all of the methods in the System class are static. There-
fore you never need to (and you can’t) call a constructor on System. You just
use the “class name, dot, method name” syntax to call the method (e.g.,
System.getProperties()). Similarly, the accessible fields in System are all
static, so for some of the I/O-related methods you use the “class name, dot,
field name, dot, method name” syntax (e.g., System.out.println()). As of
Java 5.0, you can shorten this, by using a static import, that is:

import static java.lang.System.*;

Then in your other references you can leave off System, for example,
getProperties() and out.println().

Java and Standard I/O4.3.1

Java adopted the UNIX concept of standard I/O (see Section 1.3.1.1). The
Linux file descriptors are available to a running Java program as I/O streams
via the System class. The System class contains three public static fields

Chapter 4 Where Am I? Execution Context102

named in, out, and err. You’ve probably already seen out in Java programs
with statements like this:

System.out.println("Hello, world.");

You can also write:

System.err.println("Error message here\n");

and

BufferedReader in = new BufferedReader(new
 InputStreamReader(System.in));
while ((line = in.readLine()) != null) {
...
}

Java parallels Linux nicely on I/O descriptors. If you redirect any of those
file descriptors from the shell command line when you execute a Java program,
then that redirected I/O is available to your Java application—with no
additional work on your part.

In the example above, if you have System.in all wrapped up into a
BufferedReader from which your program is reading lines, then you can run
that program as:

$ java MyCode

and it will read input as you type it on your keyboard. This may be how you
test your program, but when you put this program to its intended use, you may
want it to be able to read from a file. This you can do without any change to
the program—thanks to file descriptors, input streams, and redirecting input,
for example:

$ java MyCode < file2

which will let the same Java program read from the file named file2 rather
than from keyboard.

Your Java program can also set the values of System.in, System.out,
and System.err as it executes, to change their destinations.

One common example is changing the destination of System.out, the
typical recipient of debugging or logging messages. Say you’ve created a class

1034.3 The System Class

or even a whole package of classes that write log messages to System.out
(e.g., System.out.println("some message")). Now you realize that you’d
like the output to go somewhere else.

You could redirect standard out, as in:

$ java SomeClass > log

but that requires the user to remember to redirect the output every time the
program is invoked. That’s fine for testing, or if the output is intended to go
to a different place each time it is invoked. But, in this example, we always want
the output to go to the same location.

Without changing any of the System.out.println() statements, all the
messages can be sent to a new location by reassigning the System.out print
stream. The System class has a setter for out—that is, a method which will let
you set a new value for out. In your Java program, open the new destination
file and give this to the System class:

PrintStream ps = new PrintStream("pathname");
System.setOut(ps);

It will be used from that point forward in the execution of this program as its
out output stream.

CAUTION

Changing standard out (or in, or err) will make the change for all classes
from here on in this invocation of the Java runtime—they are static fields of
the one System class. Since this is so serious a move, the Java Security
Manager (see Section 5.8.4.2) provides a check for setIO to see if the Java
program is allowed to make such changes. If such a security manager is in
place and you are not allowed to make such changes, an exception
(SecurityException) will be thrown. Note also that the permission applies
to setting any of the fields; it doesn’t divide the permission into setting one
(e.g., out) but not another (e.g., in).

Environment Variables4.3.2

When Linux programs are run they have the open file descriptors described
above. They also carry with them a list of “name=value” pairs called their
environment. These environment variables allow for context to be shared among

Chapter 4 Where Am I? Execution Context104

several successively executed programs. Some examples of environment
variables are:

• USER is the name you used to log in.

• HOME is the directory where you start when you log in.

• PATH is the list of directories searched for executable files.

To see the environment variables defined in your current shell, type env
at the command prompt:

$ env
HOME=/home/user01
USER=user01
PATH=/bin:/usr/bin:/usr/local/bin:/home/user01/bin
...
$

The names of environment variables, sometimes referred to as shell vari-
ables, are traditionally uppercase, though that is only a convention. The variable
names are treated in a case sensitive fashion (e.g., Home != HOME).

You can set environment variables for use in the current shell with a simple
assignment statement:

$ VAR=value

That will set the value for the duration of this shell, but not for any of its sub-
processes. Since running another program is a subprocess, such an assignment
won’t be visible in your running program. Instead, you can export the variable
so that it is carried forward to all subprocesses:1

$ export VAR=value

Java and Environment Variables4.3.3

If these environment variables are available to all Linux processes, then how do
we get at them from a Java program? Well, we can’t do it quite as directly as
you might think. In previous (1.2 and older) versions of Java, the System class

1. If you are using csh (the C-shell, another Linux command-line interpreter), then the syntax
is slightly different. Instead of export name=value use setenv name value (note the
different keyword and no equal sign).

1054.3 The System Class

Example 4.2 Java program to dump environment variables

/*
 * simple environment examiner
 */
import java.util.*;

public class
AllEnv
{
 public static void
 main(String [] args)
 {
 Properties props = java.lang.System.getProperties();
 for (Enumeration enm = props.propertyNames(); enm.hasMoreElements();)
 {
 String key = (String) enm.nextElement();
 System.out.print(key);
 System.out.print(" = ");
 System.out.println(props.getProperty(key));
 }

 } // main

} // class AllEnv

had a getenv() method. Its argument was a String name of an environment
variable and it returned the environment variable’s value as a String. This has
been deprecated. In fact, an attempt to use getenv() in more recent versions
of Java will result in an exception. Sun decided that this was too platform-
specific; not all platforms have environment variables.

Now (Java 1.3 and beyond) the preferred approach is to use the
getProperties() and getProperty() methods of the System class. How
are these different from the getenv() approach? To a Linux developer,
getenv() was easy and straightforward—just not very portable. To accommo-
date other systems, Java defines a set of properties that are reasonable to expect
to be defined on any system, and provides a Java property name for each one.

To see the entire list, call the getProperties() method. It returns a
Properties class, which is an extension of the Hashtable class. From this
class you can get an Enumeration of the names, as Example 4.2 demonstrates.

Now compile and run this example:

Chapter 4 Where Am I? Execution Context106

$ javac AllEnv.java
$ java AllEnv

and you will get a long list of properties—in no particular order. They are kept
in a hashtable and thus not sorted. Of course it would be easier to use this list
if they were sorted. Linux to the rescue.

$ java AllEnv | sort

It’s often in simple little steps like this that one begins to see the power of
Linux. In Linux, not every desirable feature has to be crammed into every pos-
sible place where it might be used. Instead, features can be written once and
connected to one another as needed. Here what we need is to have the list of
properties sorted. We don’t need to worry that our class didn’t sort its output.
In Linux we just connect the standard output of the Java program with a sort
utility that Linux provides.

So what are all these properties? Many of them have to do with Java-
related information (java.version, and so on), but a few are more general.
Those that parallel the typical Linux environment variables are:

• file.separator is the file separator (“/” on Linux).

• path.separator is the path separator (“:” on Linux).

• line.separator is the line separator (“\n” on Linux).

• user.name is the user’s account name.

• user.home is the user’s home directory.

• user.dir is the user’s current working directory.

But that leaves out so many environment variables, especially the applica-
tion-specific ones (e.g., CVSROOT). How would a Java program get at these?

Because of this new, more portable way to describe the environment,
there is no easy way to get at other environment variables. There are a few
approaches, but they are all indirect.

First, you can add to the properties list by defining new properties on the
command line when invoking the program, for example:

$ java -Dkey=value AllEnv

You can list several properties on the line by repeating the -D parameter:

1074.3 The System Class

$ java -DHOME=/home/mydir -DALT=other -DETC="so forth" AllEnv

Instead of typing those values, you’d probably want to let the Linux shell
put in the values from its environment. So you’d use shell variables, for
example:

$ java -DHOME="${HOME}" -DALT="${ALT}" -DETC="${ETC}" AllEnv

assuming that HOME, ALT, and ETC have already been defined in the shell’s
environment.2

If there are only a few variables that you need to pass to Java, put them on
the command line as shown above. Put that command line into a shell script
and use the script to invoke the program so that the parameters are supplied
every time.

But if you want to access many or all of the environment variables then
you may want to do something a little more complex. Notice the syntax of the
output of the env command. It is in the same format (name=value) as are
properties. So if we use a shell script to invoke our program, we can have it
place all these values into a file by redirecting output, then open this file as a
Java properties file and thus make all the name/value pairs accessible.

The following commands in a shell script attempt to do just that:

env > /tmp/$$.env
java -DENVFILE=/tmp/$$.env MyClass
rm /tmp/$$.env

where MyClass is the Java program that you wish to run.

TIP

The shell variable $$ is the numeric process ID of the running process. This
provides a unique ID during each invocation of the program. Each run of the
script will have its own process and thus its own process ID. Thus a single user
could execute this script multiple times concurrently without fear of collision
with himself or others.

2. The quotations around the shell variables keep any embedded spaces as part of the variable’s
value. The curly braces are not strictly necessary in this use.

Chapter 4 Where Am I? Execution Context108

We remove the temporary file with the rm command in the last line of
the script to avoid cluttering our /tmp directory with lots of these files.

But now we have to add code to MyClass to open the file defined by
ENVFILE and read the properties it contains. This leads us naturally to the Java
Properties class, the subject of our next section, where we’ll talk more about
this example.

THE Properties CLASS4.4

The Javadoc page for the Properties class describes it as “a persistent set of
properties . . . saved to . . . or loaded from . . . a stream.” In other words, it is
a hashtable (a set of name/value pairs) that can be read from or written to a
stream—which typically means a file. (Other things can be streams, but for
now, think “file”.)

The great thing about name/value pairs is how readable and usable they
are. When they are written to a file, there’s no fancy formatting, no fixed width
fields, no unreadable encryptions and special characters; it’s just name=value.
You could say that the “=” and the newline are the special characters that pro-
vide all the formatting you need. It means that you can type up a properties file
with the simplest of editors, or even generate one quickly as we saw in the pre-
vious example (here we use a simple filename):

$ env > propertyfile

Properties are also easy to use. Since they’re based on hashtables, there is
no searching code to write. You call a method giving it the name, it returns
the value.

If we pass in the name of the file via the -D parameter, then we can get
that filename in Java with:

System.getProperty("ENVFILE");

where ENVFILE is a name that we made up and used on the command line:

$ java -DENVFILE=propertyfile MyClass

We could also have used:

$ java MyClass propertyfile

1094.4 The Properties Class

so that args[0]3 in the Java code to get the name of the file (see Section 4.2.1),
but since we want to learn about properties, we’ll use the property
methods here.

Now let’s open that property file (Example 4.3).

Example 4.3 Demonstrating the Properties class

import java.io.*;
import java.util.*;

public class
EnvFileIn
{
 public static void
 main(String [] args)
 throws IOException
 {
 String envfile = System.getProperty("ENVFILE", ".envfile");

 BufferedInputStream bis = new BufferedInputStream(
 new FileInputStream(envfile));
 Properties prop = new Properties();
 prop.load(bis);
 bis.close();

 prop.list(System.out); // dumps the whole list to System.out

 } // main

} // class EnvFileIn

Notice the way that we got the value for the environment file’s name. This
form of the getProperty() call provides not only the name we are looking
up (ENVFILE) but also lets us specify a default value in case the name is not
found in the properties list. Here our default value is .envfile.

Just as it was a simple matter of using the load() method to read up an
entire file of properties, so you can write out the entire list of properties to the

3. In C language, the arg[0] is the command being invoked; not so in Java. In Java, the first
element of the array is the first argument of the command line (propertyfile in our
example).

Chapter 4 Where Am I? Execution Context110

screen with the list() method. The argument to list() is either a
PrintStream or a PrintWriter. System.out is a PrintStream, so that
will work.

The format of the properties file is name=value. But it is also possible to
put comments in a properties file. Any line beginning with a “#” is ignored.
Try it.

It’s also easy to (re)write a file of properties with the store() method.
The parameters are an OutputStream and a String; the latter will serve as a
label for the parameters, written to an opening comment in the properties file.

If your program needs to examine the list of property names, you can get
an Enumerator of the entire list via the propertyNames() method. Modify
Example 4.3 to replace the list() call with a do-it-yourself version that uses
the Enumerator returned from propertyNames() to list all the names and
values. Hint: Use getProperty() on each name retrieved via the enumeration.

The Java Properties class extends the java.util.Hashtable class.
This means, in part, that all the other Hashtable methods are available to a
Properties class. Methods such as containsKey() or containsValue()
can be helpful, as can isEmpty(). One caution, though. You should use
setProperty() if you want to add values to Properties, rather than
the Hashtable’s put() method. They do largely the same thing, but
setProperty() enforces that its parameters are Strings. This is important if
you want to write out the properties to a file, as it’s meant for Strings only.

THE Runtime CLASS4.5

Let’s discuss one last way to get to the underlying (Linux) system information.
Be warned, though, that this is the least portable approach of all we have
mentioned.

exec()4.5.1

Familiar to C/C++ programmers, the exec() call in the Java Runtime class
does much the same thing. It gives you a way to start another program outside
of the current Java Virtual Machine. In doing so, you can connect to its stan-
dard in/out/err and either drive it by writing to its standard in, or read its
results from its standard out. (Yes, that’s correct—we write to its input and
read from its output. If that sounds wrong, think it through. Our Java code is

1114.5 The Runtime Class

on the opposite side of the I/O fence. The external program’s output becomes
our input.)

Example 4.4 shows a Java program that can invoke an arbitrary Linux
program. The output of the program is displayed.

Example 4.4 Java program to execute any Linux program

import java.io.*;

public class
Exec
{
 public static void
 main(String [] args)
 throws IOException
 {
 String ln;
 Process p = Runtime.getRuntime().exec(args);
 BufferedReader br = new BufferedReader(
 new InputStreamReader(
 p.getInputStream()));

 while((ln = br.readLine()) != null) {
 System.out.println(ln);
 }
 System.out.println("returns:" + p.exitValue());

 } // main

} // class Exec

The command-line arguments are taken to be the command to be execut-
ed and its arguments. For example:

$ java Exec ls -l

Be aware that in this example, only the standard output is captured and
displayed from the invoked process. Error messages written to standard err
will be lost, unless you modify the program to handle this. We leave that as an
exercise for the reader.

Check your Linux knowledge—see if you understand the distinction. If
you invoke the sample Exec program as:

Chapter 4 Where Am I? Execution Context112

$ java Exec ls -l *.java

the shell does the wildcard expansion before invoking the Java runtime. The
*.java becomes many files listed on the command line (provided that you
have .java files in this directory). If you try to pass the *.java through liter-
ally to exec(ls '*.java') it will likely return an error (which won’t be dis-
played using our example code) and you’ll see a nonzero return status (e.g., 1).
That’s because ls doesn’t expand the *. The shell does that. So ls is looking for
a single file named *.java, which we hope doesn’t exist in your directory.

Portability4.5.2

Be aware that the more environment-specific code you build, the less portable
your application becomes. It’s not uncommon to use a properties file as a way
to parameterize your program, to customize its behavior in a given installation.
But keep these to a minimum to stay portable. Avoid invoking other programs,
they are likely not available in all environments where Java can run. Java’s claim
to “compile once, run anywhere” is amazingly true—provided you keep away
from logic in your program that goes looking for trouble.

REVIEW4.6

Java command-line parameters are not that different from C/C++ command-
line parameters. Environment variables are a different story. Most of the shell’s
environment variables are not readily accessible, and we looked at how you
might deal with this situation.

We have discussed, among other things, some uses for these classes:
java.util.Properties, java.lang.System, and java.lang.Runtime,
but we have only barely scratched the surface. There are many more methods
available in these classes with which you can do lots more.

WHAT YOU STILL DON’T KNOW4.7

The biggest topic in this area that we’ve avoided for now is the Java Native In-
terface (JNI), a mechanism whereby you can get outside of the Java environ-
ment to make calls to existing (native) libraries—for example, Linux system
calls. In a coming chapter we’ll actually give you an example of such a call.

1134.7 What You Still Don’t Know

Then you’ll really be able to make your application nonportable and
system-dependent. (But sometimes portability isn’t your goal, right?)

RESOURCES4.8

Perhaps the best resource for the specifics that you’ll need to work with the
topics mentioned in this chapter is the Javadoc documentation on the classes
that we have mentioned. Learn to read Javadoc pages (see Section 3.2.2.3),
bookmark them in your browser, and keep them handy as you write your
Java code.

Chapter 4 Where Am I? Execution Context114

The Sun Microsystems Java Software Development Kit (Java SDK) is the most
basic toolkit for Java development. In some ways, it remains the most flexible.
Your understanding of Java development should include this very basic toolset,
even if you move beyond it to more “hand-holding” Integrated Development
Environments (IDEs). This chapter introduces all the major components of
the Java 2 Standard Edition (J2SE)1 development kit. The Enterprise Edition
is discussed later. There is a third Java SDK (the Micro Edition) for embedded
development which we will not cover in this book.

1. What does the “2” in “Java 2” mean? Hoo boy. Explaining product marketing names is not
always easy. There was Java 1.0. Then there were several releases of Java 1.1.x. Then Sun re-
leased Java 1.2.x, but they started calling it “Java 2”. Since then, they have released Java 1.3.x,
Java 1.4.x and they still call it “Java 2”. But it gets even more confusing. Sun is now releasing
what had been preliminarily numbered 1.5, but is now officially called the 5.0 release, though
they still call it Java 2. That’s what the 2 in “J2SE” refers to. So it is Java 2 platform, version
5.0. Any questions? See http://java.sun.com/j2se/naming_versioning_5_0.html.

115

Chapter 5

The Sun Microsystems Java
Software Development Kit

WHAT YOU WILL LEARN5.1

In this chapter you will learn about the purpose of the programs in the Sun Java
Software Development Kit. We will provide you with some details of their op-
tions and demonstrate their use in compiling our two sample applications. The
next step up in tool automation would be the build tool known as Ant (see
Chapter 9 for more information).

ALL YOU NEED, AND NOT ONE THING MORE5.2

These days, many programmers are what we affectionately call “tool junkies.”
They can only develop software with the support of complex integrated devel-
opment environments, their supporting classes, and screen painting tools. By
this, we do not mean to imply that we are Luddites. The right IDE can indeed
be an enormous boost to productivity, but a programmer should be able to
work with any tool. The Sun Java SDK is the lowest common denominator; if
you can be productive with it, then you can be productive with absolutely any
Java development environment. That makes your skills more portable. And
that means more jobs are open to you. And that is good for you and your
employers.

The Sun Microsystems Java SDK (formerly known as, and often still re-
ferred to as the Sun Microsystems Java Development Kit, or JDK) provides
you with all the tools you need to compile, document, run, package, debug,
and deploy Java applications and applets. It does this with a collection of
purely text-based command-line tools. This is no-frills software development.
But a lot of us crusty old types really like that.

You should become comfortable and familiar with these tools. Some IDEs
are just fancy window dressing that calls these tools underneath (some are
not—some have written their own Java compilers, for example). If you can use
these tools comfortably to build any kind of Java program, then you know you
have a mastery of the basics and are not “addicted” to a particular tool. You also
know the “hardest” way to get the job done. This will help you to make good
choices about tools that enhance productivity. Some tools, we find, actually
slow you down or get in your way in some cases. If you know the lowest level,
you can better recognize the merits and flaws of more advanced tools. Enough
justification. On to the SDK.

Chapter 5 The Sun Microsystems Java Software Development Kit116

NOTE

By the way, you will notice that we do not cover the installation of the Develop-
ment Kit in this chapter. That is because we are deferring the discussion of in-
stallation for the next chapter, where we also introduce the concept of multiple
concurrent Development Kits on a single box. See Chapter 6 for details.

THE JAVA COMPILER5.3

At the heart of the SDK is javac, the Java compiler. The general form of javac
follows:

javac [option...] [sourcefile...] [@optfile...]

The option list may be zero or more command-line options. We’ll detail
those later. The sourcefile list may be the name of zero or more Java source
files. Usually you specify just the “main” class of an application. As we will de-
scribe later, javac generally will compile all necessary .java files for any classes
that main() class references, directly or indirectly. If you prefix a filename with
the at sign (@), the contents of the file will be treated as if they had been typed
on the command line.

Compiler Behavior, Defaults, and Environment Variables5.3.1

In the simplest case—compiling a single class, such as our FetchURL.java
class—you get no diagnostics on success (Example 5.1).

Example 5.1 Compiling FetchURL.java

$ javac FetchURL.java
$

There will now be a new file, FetchURL.class, in the directory with the
Java source file. Let’s run that again with a command-line option we will detail
later (Example 5.2).

Boy, our single, simple, one-class application sure uses a lot of classes! It
does. Where did they come from? They come from the classes referenced by

1175.3 The Java Compiler

Example 5.2 Compiling FetchURL.java with the -verbose option

$ javac -verbose FetchURL.java

[parsing started FetchURL.java]

[parsing completed 479ms]

[loading /usr/java/j2sdk1.4.1_02/jre/lib/rt.jar(java/lang/Object.class)]

[loading /usr/java/j2sdk1.4.1_02/jre/lib/rt.jar(java/net/URL.class)]

[loading /usr/java/j2sdk1.4.1_02/jre/lib/rt.jar(java/lang/String.class)]

[checking FetchURL]

[loading /usr/java/j2sdk1.4.1_02/jre/lib/rt.jar(java/lang/Exception.class)]

[loading /usr/java/j2sdk1.4.1_02/jre/lib/rt.jar(java/lang/Throwable.class)]

[loading /usr/java/j2sdk1.4.1_02/jre/lib/rt.jar(java/io/BufferedReader.class)]

[loading /usr/java/j2sdk1.4.1_02/jre/lib/rt.jar(java/io/InputStreamReader.class)]

[loading /usr/java/j2sdk1.4.1_02/jre/lib/rt.jar(java/net/URLConnection.class)]

[loading /usr/java/j2sdk1.4.1_02/jre/lib/rt.jar(java/io/Reader.class)]

[loading /usr/java/j2sdk1.4.1_02/jre/lib/rt.jar(java/io/InputStream.class)]

[loading /usr/java/j2sdk1.4.1_02/jre/lib/rt.jar(java/lang/System.class)]

[loading /usr/java/j2sdk1.4.1_02/jre/lib/rt.jar(java/io/PrintStream.class)]

[loading /usr/java/j2sdk1.4.1_02/jre/lib/rt.jar(java/io/FilterOutputStream.class)]

[loading /usr/java/j2sdk1.4.1_02/jre/lib/rt.jar(java/io/OutputStream.class)]

[loading /usr/java/j2sdk1.4.1_02/jre/lib/rt.jar(java/lang/Error.class)]

[loading /usr/java/j2sdk1.4.1_02/jre/lib/rt.jar(java/net/MalformedURLException.class)]

[loading /usr/java/j2sdk1.4.1_02/jre/lib/rt.jar(java/io/IOException.class)]

[loading /usr/java/j2sdk1.4.1_02/jre/lib/rt.jar(java/lang/RuntimeException.class)]

[loading /usr/java/j2sdk1.4.1_02/jre/lib/rt.jar(java/lang/StringBuffer.class)]

[wrote FetchURL.class]

[total 3469ms]

$

the application, either directly through composition or inheritance, or indirectly
because the classes we used are themselves composed of or inherit from other
classes. How did the Java compiler know where to find these classes? For this,
it used what the Sun documentation calls a bootstrap classpath, which is set when
the SDK is installed. A classpath is a list of directories and/or JAR files that are
searched for classes. We seem to dimly recall that in early versions of Java, there
was only one classpath, and if you changed it, you had to remember to put the
Java runtime JAR file on it, or none of the standard APIs were available. This,
no doubt, is why Sun created the concept of a bootstrap classpath. If you use
any third party JAR files or you create your own, you must tell the compiler
about it by creating your own classpath.

There are two ways to provide a classpath to the Java compiler. One is
through a command-line switch, which we will cover in a moment. The other
is through an environment variable. The CLASSPATH environment variable lists

Chapter 5 The Sun Microsystems Java Software Development Kit118

Example 5.3 Setting the CLASSPATH environment variable

$ export CLASSPATH=/home/mschwarz/java/simpleApp:/var/java/lib/project.jar
$ echo $CLASSPATH
/home/mschwarz/java/simpleApp:/var/java/lib/project.jar
$

directories and/or JAR or ZIP files that contain classes. Each directory or JAR
file is separated from the others by a colon (“:”), as shown in Example 5.3.

The classpath for the compiler consists of the bootstrap classpath plus the
user-specified classpath. What does the classpath mean in terms of Java class
names? Think of the classpath as a list of “package roots.” In other
words, when you refer to a class like java.sql.DriverManager or
net.multitool.SAMoney, the Java compiler is going to go to each
entry in the combined bootstrap-and-user classpath and check there for
java/sql/DriverManager.class or net/multitool/SAMoney.class. If
it doesn’t find the .class file in a candidate directory, it will look for the
.java file. If it finds the .java file, it will compile it and then use the resulting
.class file. When it has a .class file for the class, it stops searching the
classpath. In this way, compiling the single “main” class of an application will
often compile the whole application (we will get to exceptions to that rule later).

javac Options5.3.2

The Java compiler has many command-line options that modify its behavior.
We will go over the most important ones here. This is not a complete reference!
See the Sun SDK Documentation for complete reference information.

-classpath

Sets the classpath. This overrides the CLASSPATH environment variable, if
one is specified.

-d

This switch is followed by a directory name. Compiled classes are placed
in that directory. Normally, compiled classes are placed in the same
directory as the source code.

1195.3 The Java Compiler

-deprecation

This causes every use or reference to a deprecated class or method to be
displayed on compilation.2

-g

Put full debugging information in the compiled class files. See also -g:
(the next entry in this list).

-g:keyword_list

This switch gives you fine-grained control over the amount of debug infor-
mation included in compiled class files. The argument after the colon may
be either none, in which case no debug information is included, or a
comma-separated list with any combination of source, to include source
file debugging information, lines, to include line number information,
or vars, to include information about local variable names. The default,
if no -g flag of any kind is specified, is to include source file and line
number information only.

-nowarn

Disables warning messages.

-verbose

Causes the compiler to output information about each class encountered
during compilation. This can be helpful when trying to resolve problems
with missing class definitions.

There are also a number of switches that relate to cross-compiling as well
as UNIX-specific options, but these are not commonly used. Refer to the Sun
Java SDK Tools documentation if you need details on these options.

2. In Java, it is rare for APIs to break support for existing code. Rather than remove old meth-
ods, it is more common to deprecate them. This is done by putting a @deprecated tag in a
Javadoc comment on the class or method. The Java compiler will issue a warning (if the
-deprecated switch is on) whenever a deprecated class or method is used. In general, depre-
cation is a warning that the class or method will be removed in a future version of the code
or library. It is interesting to note that the javac compiler records that a method or class is
deprecated in the binary. Thus the compiler produces different output based on the contents
of a comment. As we have written simple compilers and interpreters, this creeps us out. We
have always wondered why deprecated has not become a Java language keyword.

Chapter 5 The Sun Microsystems Java Software Development Kit120

THE JAVA RUNTIME ENGINE5.4

You can download and install just the software required to run Java applications
without the development tools. This is known as the Java 2 Runtime Edition.

The Basics5.4.1

You run a Java program by invoking the java command. Usually, the argument
to the command is a class name. That class is loaded, and its main() method
is run.

Remember, this is not a filename, but a class name! The rest of the com-
mand-line arguments that follow the class name are passed as an array of
Strings to the main() method of the named class. Example 5.4 demonstrates
running the FetchURL program.

Example 5.4 Running a Java program with java

$ java FetchURL http://www.yahoo.com/news
http://www.yahoo.com/news:
<html>
<head><title>Yahoo! Directory News and Media</title>
<script type="text/javascript"
 src="http://us.js1.yimg.com/us.yimg.com/lib/common/yg_csstare.js">
</script>
<style>
 li { font-size: 12px; margin-bottom: 2px; }
</style>
<base href=http://dir.yahoo.com/News_and_Media/></head>
<body>
...
... etc.

CAUTION

Remember that if you override the classpath, either with the -classpath or
-cp command-line options (detailed below) or with the CLASSPATH environ-
ment variable, you must include the “.” directory somewhere in the classpath
if you want Java to include current working directory in the search list. Since “.”
is the default classpath, many people are surprised when they set a classpath
and suddenly can no longer run a .class file in their current directory.

1215.4 The Java Runtime Engine

The class invoked must be findable on either the bootstrap or user-
specified classpath.

java Options5.4.2

Just as the Java compiler, the runtime program, java, takes a number of com-
mand-line options. Here are the most commonly used ones:

-classpath or -cp
Sets the runtime classpath. Overrides any value in the CLASSPATH
environment variable.

-Dproperty=value

Allows a system property to be set on the command line.

-jar

Specifies that the first nonoption command-line argument is not a Java
class name, but the name of a JAR file. The JAR file must have a
Main-Class: specification in its MANIFEST (see Section 5.11). The
main() method of the class named by the JAR’s MANIFEST Main-Class:
specification will be called as if that class had been named on the command
line, rather than the JAR file. This is commonly used in shell scripts and
batch files that accompany Java applications distributed in single
.jar files.

There are several other command-line options that are less commonly
used. We will cover some of them in later chapters when their use will make
more sense. Of course, full documentation on all options for this command is
in the Sun Java SDK Development Tools documentation.

COMPLETE, UP-TO-DATE PROGRAM DOCUMENTATION MADE EASY5.5

One of Java’s most useful features is javadoc, a command that (by default)
produces comprehensive HTML program documentation directly from the
program source. Since it works from the source, it can be automated, and you
may be certain that the documentation is up-to-date. It takes much of the
documentation burden off of programmers and permits new programmers to
join a project and rapidly come up to speed because there is comprehensive
documentation in a standard format. The javadoc tool produces HTML

Chapter 5 The Sun Microsystems Java Software Development Kit122

documentation by default, but this is because it uses a doclet that produces
HTML documentation. You can write your own doclet that produces whatever
format you wish. Most find the HTML documentation so satisfactory that
custom doclets are rare.

Javadoc can be a large topic, because it not only documents all classes,
methods, and class variables, but can also use detailed text from specially for-
matted comments in the source code. We will cover Javadoc comments only
briefly here, but you will see examples in our project code throughout this book.

Running javadoc5.5.1

The javadoc command has the following general form:

javadoc [options...] [package names...] [source filenames...]
 [@optfile...]

Options are covered in the next section. You can specify the classes to
document in two ways. First, you can list one or more Java packages on the
command line. Source code for the named packages is searched for on the
source classpath (see Section 5.5.2). Wildcards are not permitted in
package names.

Second, you may list as many Java source files as you like, and you may
use wildcards in the names.

As with the javac compiler above, the @optfile allows you to name a text
file whose lines are treated as arguments as if they had been typed on the com-
mand line.

Example 5.5 shows how to run javadoc on our small multiclass sample.
In this case, we were in the “base directory” of the package when we ran

the command. In other words, net was a subdirectory of the current working
directory when we ran Javadoc. Javadoc uses the same default classpaths and
environment variables as javac does, so by default “.” is on the path.

Generally, specifying packages is the most convenient way to document a
number of classes, since packages are how collections of classes are generally
managed in Java development.

Figure 5.1 shows the main screen of the documentation thus produced.

1235.5 Complete, Up-to-Date Program Documentation Made Easy

Example 5.5 Running javadoc with defaults against a package

$ javadoc net.multitool.Payback
Loading source files for package net.multitool.Payback...
Constructing Javadoc information...
Standard Doclet version 1.4.1

Generating constant-values.html...
Building tree for all the packages and classes...
Building index for all the packages and classes...
Generating overview-tree.html...
Generating index-all.html...
Generating deprecated-list.html...
Building index for all classes...
Generating allclasses-frame.html...
Generating allclasses-noframe.html...
Generating index.html...
Generating packages.html...
Generating net/multitool/Payback/package-frame.html...
Generating net/multitool/Payback/package-summary.html...
Generating net/multitool/Payback/package-tree.html...
Generating net/multitool/Payback/Account.html...
Generating net/multitool/Payback/Cost.html...
Generating net/multitool/Payback/DebtAccount.html...
Generating net/multitool/Payback/Payback.html...
Generating net/multitool/Payback/Purchase.html...
Generating net/multitool/Payback/SavingsAccount.html...
Generating package-list...
Generating help-doc.html...
Generating stylesheet.css...
$

Javadoc Command-Line Options5.5.2

As with other options documentation in this chapter, this is not intended to
be a complete reference document. We are documenting only the most impor-
tant command-line switches.

-public

Causes only public classes, members, and methods to be documented. You
might want this for end-user documentation of a library.

Chapter 5 The Sun Microsystems Java Software Development Kit124

Figure 5.1 Javadoc documentation viewed in Konqueror Web browser

-protected

Causes public and protected classes, members, and methods to be docu-
mented. This is the default documentation level. This is also the most likely
level at which you would want to document code meant for distribution.

-package

We suspect you can see where this is going. This switch causes package,
protected, and public classes, members, and methods to be documented.

-private

This switch causes all classes, members, and methods to be documented.
In our experience, this is the setting you will want to use for internal
projects. It documents everything.

-sourcepath and -classpath
These are the paths that will be searched for source classes or referenced
classes. These switches work like the corresponding switches for the javac
compiler.

1255.5 Complete, Up-to-Date Program Documentation Made Easy

-verbose and -quiet
These switches control how much output is produced as javadoc runs. If
you choose -verbose, detailed information is produced (more than the
default; in current versions, this option mostly shows time measurements
of the parsing of each source file). If you choose the -quiet option,
progress messages are suppressed completely.

-doclet starting_class

We’re not going to go into too much detail on this, but this switch allows
you to name a doclet (a class that uses the Doclet API) to use in place of
the default doclet. See the next paragraph for more information.

All of the switches documented so far are provided by the javadoc program
itself. Javadoc, like the rest of the Sun Microsystems Java SDK, is written in
Java. The authors of javadoc took advantage of this. The default behavior of
javadoc is to produce HTML documentation with a standard look and feel.
However, there exists an API, called the Doclet API, which allows you to write
a Java class of your own to process the information parsed out of the source by
javadoc. For details, see the Doclet Overview3 on Sun’s Web site.

Sun provides a default doclet that produces HTML documentation. That
doclet takes a number of command-line options as well. We’ll cover the most
important of those now. Remember, these are provided by the standard doclet.
If you use the -doclet switch, then these switches will not be available (unless,
of course, the alternate doclet just happens to provide them).

-d directory

By default, the HTML documentation is saved in the same directory as
the source. Use this switch to specify an alternate directory into which
documentation is to be placed.

-use

Causes javadoc to generate a “Use” page for each class and package. Such
a page is a cross-reference to all uses of the class or package.

-version

Causes any @version tag data to be included in the documentation. If
you are using CVS for source control (and why wouldn’t you?) we

3. http://java.sun.com/j2se/1.4.1/docs/tooldocs/javadoc/overview.html

Chapter 5 The Sun Microsystems Java Software Development Kit126

recommend adding Id after the version tag, which CVS will automati-
cally replace by its ID string containing the filename, CVS revision num-
ber, date/time and the author of last check-in. (For more about CVS, see
Chapter 8.)

-author

Causes any @author tag data to be included in the documentation.

-splitindex

Causes the alphabetical index to be broken into multiple pages, one per
letter. Can be useful when you have a very large number of classes and/or
packages documented in a single Javadoc document set.

-windowtitle title

Sets the title for the document set. The text that follows this switch will
go into the HTML <title> element on documentation pages.

-nodeprecated

This causes all deprecated methods and classes to go undocumented.
Normally they are documented, but marked as deprecated.

-nodeprecatedlist

Drops deprecated classes and methods from indexes, lists, and cross-
references, but leaves the actual documentation in place.

There are actually many more switches. Some of the most important that
we haven’t covered are the -link, -linkoffline, and related tags. If you end
up producing many API packages and document them separately, you can use
these switches to link your separate Javadoc documentation together seamlessly,
so that when you use classes from separately documented packages, the refer-
ences in the documentation for your code will be live links to that separate
documentation. For details on these and other switches, see the Sun
documentation on javadoc.4

4. http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/javadoc.html

1275.5 Complete, Up-to-Date Program Documentation Made Easy

Javadoc Comments5.5.3

There’s more to Javadoc than just documenting the types and names of classes,
methods, and arguments. A developer can annotate or supplement the docu-
mentation by placing specially formatted comments in his or her code.

A Javadoc comment begins with the C-style open comment plus at least
one more asterisk. It ends with a C-style close comment. In other words:

/* This is a C-style comment, but it
 is _not_ a Javadoc comment. */

/** This is a C-style comment, but it
 is also a Javadoc comment. */

This isn’t a part of the Java programming language. It is merely a lexical hack
to allow the javadoc program to recognize a comment it should pick up and
process. Javadoc is fairly intelligent about where to place the text extracted from
a Javadoc comment. For example, a Javadoc comment placed just before the
start of a class will appear in the class summary on the package page and at the
top of the class detail page. A Javadoc comment placed just before a method
will appear in the method’s box on the class detail page, and so on.

We encourage you to discover for yourself the relationship between
Javadoc comments and the output of the standard doclet. Use it. Experiment.
Or, you can go and read the official Sun Microsystems documentation on
Javadoc.5 That’s your choice.

Since comment text is extracted and placed into certain positions in an
HTML document, you may use HTML tags in your comments to affect how
they are rendered. Be aware that when you do so, you may get unexpected
results if you use any custom doclets.

There’s more to it than that, however. There are a number of macros that
you can place in Javadoc comments to mark data of particular significance. For
example, @author should appear just before the name of the author of a
particular piece of code.

These at-tags must appear after all descriptive text in a Javadoc comment.6

A tag must be at the beginning of a line within the comment (ignoring any

5. http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/javadoc.html

6. The exception is embedded tags, which we will discuss in a moment.

Chapter 5 The Sun Microsystems Java Software Development Kit128

Example 5.6 Sample Javadoc comment with at-tags

/**

 * addWait - adds in the given wait time to all the counters;

 * we could say much more about the method here, but let me say

 * that we sometimes include HTML tags directly in our comments.

 * Since Javadoc will run all our text together, we may need:

 * break tags

 * or paragraph tags

 * for spacing and separation.

 * <p>We also add <i>other</i> HTML tags for emphasis.

 * <p>You should still try to make the comment readable, though,

 * for the programmer who is editing the source, not

 * just for those looking at the formatted Javadoc.

 * @author John Q. Programmer

 * @version Id

 *

 * @param delay - elapsed time, in milliseconds

 * @throws TakesTooLongException

 * @returns total time, in milliseconds

 *

 * @see net.multitool.util.TakesTooLongException, net.multitool.ctrl.Time#count

 *

 */

public long

addWait(long delay)

{

 // ...

}

preceding whitespace or asterisks). The tag’s data is everything from the end of
the tag to the end of the line (Example 5.6.)

Here are the standard at-tags:

@author

Everything from the tag to the end of the line is taken as the name of the
code’s author.

@deprecated

Marks the method or class deprecated. This tag may be optionally followed
by explanatory text. If present, this text should describe when and why the
class or method was deprecated and what programmers should use instead.

1295.5 Complete, Up-to-Date Program Documentation Made Easy

@exception or @throws
Only valid in the comment for a method or constructor. This tag is
followed by the name of an exception class (a descendant of
java.lang.Exception) and optionally by additional explanatory text.
The intent is to list the exceptions that the method throws.

@param

Only valid in the comment for a method or constructor. This tag should
be followed by the name of a parameter to the method followed by descrip-
tive text. This is used to document method and constructor parameters.

@return

Only valid in the comment for a method.7 This tag is followed by
descriptive text meant to document the return value of the method.

@see

Populates a “See Also” section in the documentation that will provide
hyperlinks to related content. There is a general format for linking to any
URL, but the most common use is to refer to other elements in the same
Java program. See below for the general format of such links.

In addition to these standard at-tags, there are other at-tags that may be
embedded in any comment text—either the comment itself or in text that is
an argument to a standard at-tag.

Such tags are placed within curly braces, for example {@example}, within
a Javadoc comment. The one we use the most is the @link tag, which allows
you to make a reference to another package, class, method, or class member.
The general format is the same as that for the @see tag:

package_name.class_name#member_or_method_name

Any of these elements is optional.
The embedded at-tags include:

@docRoot

This tag may be used when embedding HTML anchor or image tags
(A or IMG tags) in a Javadoc comment to supply the root part of the

7. But not a constructor in this case, because constructors cannot return a value.

Chapter 5 The Sun Microsystems Java Software Development Kit130

documentation path. You should always use this instead of hard-coding
the full URL, or a change in directory structure or server configuration
might break all of your links.

@link

Allows you to embed a cross-reference to another section of the program’s
documentation directly in comment text. The format of a reference is the
same as that for the @see tag.

This list is not complete. As always, see the official documentation8

for details.

DISPENSING WITH APPLETS5.6

While this book does not cover writing applets, we should mention that, since
an applet does not (generally) have a main() method, you need something else
to launch it outside of a browser. Enter appletviewer. This program provides
an execution environment for applets.

Why No Applets?

The decision to not cover applets was based both on limited space and
on some deployment issues with applets. A surprisingly large number of
people are running with either very old browsers that support only
Java 1.1.x features, or that support Java runtime plug-ins but do not have
them installed or enabled. Also, applets have severe limitations (for sound
security reasons), and enabling various features requires a good under-
standing of the SecurityManager Java classes, which could fill a book
by themselves. We chose to minimize coverage of applets for these
reasons.

8. http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/javadoc.html

1315.6 Dispensing with Applets

GOING NATIVE5.7

Now we come to the deeper darker mysteries. Let us take a look at javah. No,
javah is not a Hebrew word. It is not some lost mystical text from the days be-
fore science supplanted magic. It is the Java C header and stub file generator.

If you are not already fairly experienced in writing, compiling, and build-
ing shared libraries in C on a Linux system, we would suggest that you skip this
section, at least until you have developed intermediate skills in these areas.
Otherwise, feel free to proceed.

We’re going to walk you very quickly through building a Java native
method here.9 Don’t worry if you don’t quite follow it all. We will cover this
topic at greater length elsewhere in the book. For now, we’re giving you the
highlights. Also be sure to check out Section 5.15. We’ll point you to many
additional resources on JNI (Java Native Interface) in that section.

Sounds pretty intimidating, huh? Well, depending upon your background
and experience, it can be a bit intimidating. As much as this will hurt some die-
hard Java purists, Java is not the right language for everything. Java’s size and
semiinterpreted nature in particular make Java ill-suited for the “close to the
metal” tasks, such as device drivers and raw socket networking.

Fortunately, Java’s designers were of this rocket-scientist breed (and so,
for that matter, are your bending authors), so they gave Java programmers a
back door: native methods. A native method is a class method whose name, ar-
guments, and return type are declared in Java, but whose underlying implemen-
tation is written in “native code” (usually C, but it could be any compiled
language that can match C’s stack frame conventions).

As an example, let’s implement a native method that will use the native
Linux C library calls to get the current program’s effective user ID and the
name associated with that user.

First, we will write the Java class (Example 5.7).
You may never have seen code like that at the start of a class definition.

The block declared

static { ... }

9. You might be tempted to call our comments in the introduction where we mentioned that
we did not like purely pedagogical examples and that we would provide real, useful code. Well,
we have to confess that there are some features of the Java language that we couldn’t cram into
our real-world examples. This JNI sample is one such. We admit our failure, and we apologize.

Chapter 5 The Sun Microsystems Java Software Development Kit132

Example 5.7 Java application with a native method (GetUser.java)

public class GetUser {
 static {
 System.loadLibrary("getuser");
 }

 public native String getUserName();

 public static void main(String[] args)
 {
 GetUser usr = new GetUser();

 System.out.println(usr.getUserName());
 }
}

is called a static initializer and we’ll discuss it in a moment.
Once you have the Java code, compile it with javac. You now have the

compiled class. The next step is to use the javah tool to build the header file
for your C code.

$ javah GetUser

Example 5.8 shows the header file thus produced.
Note that you run javah on the class file, not on the source file. The nor-

mal class name to classpath mappings apply. The file produced as a result is
called, in this case, GetUser.h. The next step is to write the C code that
implements the method (Example 5.9).

There’s a lot going on here. First, the constant, L_cuserid, is defined in
stdio.h; it represents the number of characters required to hold a user name.
We’re defining a char array to hold that number of characters plus one.10 We
are then calling the cuserid() function (see the manpage of cuserid(3)) to
get the user name of the effective user ID of the process.

That much is familiar C. But what is the argument list? Our method took
no arguments. And what’s with the functions being called through the pointer
argument?

10. What can we say? We’re paranoid about the trailing null. Sue us.

1335.7 Going Native

Example 5.8 Header file for GetUser native methods (GetUser.h)

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class GetUser */

#ifndef _Included_GetUser
#define _Included_GetUser
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class: GetUser
 * Method: getUserName
 * Signature: ()Ljava/lang/String;
 */
JNIEXPORT jstring JNICALL Java_GetUser_getUserName
 (JNIEnv *, jobject);

#ifdef __cplusplus
}
#endif
#endif

Example 5.9 Native method’s C implementation file (GetUser.c)

#include "GetUser.h"
#include <stdio.h>

JNIEXPORT jstring JNICALL
Java_GetUser_getUserName(JNIEnv *jenv, jobject obj)
{
 char buffer[L_cuserid + 1];

 cuserid(buffer);

 return (*jenv)->NewStringUTF(jenv, buffer);
}

All of the Java class member data and Java class methods may be reached
through the JNIEnv pointer argument. There are also methods provided by
JNI itself. One of those is NewStringUTF(). Remember that Java Strings are
Unicode, not 8-bit ASCII, so you must convert to and from Unicode (UTF-8

Chapter 5 The Sun Microsystems Java Software Development Kit134

is an 8-bit encoding for Unicode that coincides with ASCII in the low 7 bits,
so it is often used for such conversions). You can think of the JNIEnv as a C++
class pointer, or you can think of it as a structure of data and function pointers
(that’s really what a C++ class is, after all). The bottom line is, it provides the
means to access and manipulate the Java environment from your native code.

The second argument, jobject, is the “this” pointer. It points to the
GetUser class, and it is upcast to the JNI equivalent of the Java Object
type. If our method took parameters, they would follow these two constant
arguments.

JNI is a huge topic. You can read more about it in the Sun Microsystems
JNI Tutorial,11 or in Java 2 SDK JNI FAQ,12 or in the JNI 1.1 Specification,13

or in the associated JDK 1.2 Update14 or the JDK 1.4 Update.15

Even with all of this “We’re too busy to explain things to you” going on
here, we’ve got a lot more to cover before we are done. The next step in our
little demo is to compile the C program and create a shared library of the code.

$ cc -c GetUser.c
$ cc -shared -o libgetuser.so GetUser.o
$ export LD_LIBRARY_PATH=.

The first line compiles the native method to a .o (object) file. The second
command makes a shared library out of it. Now, refer back to the static initial-
izer in Example 5.7. A static initializer is run before everything else in a class,
even before main(). In this case, it uses the loadLibrary() method of the
System class to load the shared library we just created. Note that library naming
rules of the target OS are applied. The library is named getuser and on
a Linux system it is assumed that that library will be in a file named
libgetuser.so.

The last line sets an environment variable, LD_LIBRARY_PATH, to provide
a path where Java will search for libraries. This is behavior inherited from So-
laris. Linux uses ldconfig to maintain a list of shared libraries. Usually, a library
is placed in a directory named in the file ld.so.conf and a memory cache of

11. http://java.sun.com/docs/books/tutorial/native1.1/index.html

12. http://java.sun.com/products/jdk/faq/jni-j2sdk-faq.html

13. http://java.sun.com/products/jdk/1.2/docs/guide/jni/spec/jniTOC.doc.html

14. http://java.sun.com/j2se/1.4.1/docs/guide/jni/jni-12.html

15. http://java.sun.com/j2se/1.4.1/docs/guide/jni/jni-14.html

1355.7 Going Native

these libraries is built and maintained with the ldconfig program. The library
loader in the JVM, however, works as the shared library system in Solaris, where
the LD_LIBRARY_PATH is searched for shared libraries. If you try a JNI method
and get library errors, check your LD_LIBRARY_PATH first. Here, we used “.”,
meaning “current directory.” In practice, you wouldn’t do this. You would de-
ploy your shared library to a standard location and have LD_LIBRARY_PATH
preset to that directory or directories. We just wanted to show you how it
works here.

Let’s see our class in action now.

$ java GetUser
mschwarz
$ su
Password:
export LD_LIBRARY_PATH=.
java GetUser
root
exit
exit
$

To JNI or Not to JNI

We dislike religious debates. We have no desire to nail down what taints
the purity of Java and what does not. A warning we do want to give you
is, if you are an experienced UNIX C/C++ developer, you must resist the
temptation to use JNI and native methods all over the place. The Java
APIs are extensive, and there are probably classes that already do what
you want to do. You will be tempted to use native methods because “you
know how to do it in C.” Resist. Find the Java way. JNI is a great way to
introduce subtle and hard to find bugs into your Java programs. Leave
that to the API and JVM coders. ;-)

That said, we don’t want to discourage you from making use of JNI
when it is the right way, or the only way, for what you need to do. The
tool is there. Use it. Just remember what it does cost you in portability
and what it may cost you in maintenance and debugging. Design
decisions have costs and benefits. Try to find the balance.

Chapter 5 The Sun Microsystems Java Software Development Kit136

Here you see the class being run, and, sure enough, it displays our user-
name. We then run su to become root and (after setting that library path) run
it again—and, sure enough, it tells us we are “root.”

We’ll talk more about JNI later in the book, but now you know enough
to be dangerous.

INTRODUCING RMI5.8

Remote Method Invocation (RMI) is a system for distributing application code
over multiple hosts. It is a small part of multitier computing. Much of this book
will be devoted to the how’s and why’s of multitier client/server computing.
Here we are concerned only with the SDK tool rmic, the RMI compiler.

A Brief Introduction to RMI5.8.1

Remote Method Invocation is a basic client-server model for invoking Java
methods over a network.

History and Background5.8.1.1

One of the most common problems in computing is how best to make an ap-
plication available to the largest number of users at the least cost. To this end
we have seen the development of “timeshare” systems with dumb terminals all
over the place. We have seen the evolution of distributed GUI systems with X
Windows and its network display system, and with tools like VNC (Virtual
Network Console).16 We have seen the emergence of the PC, providing
autonomous computing at each worker’s desktop. And finally we have seen the
desktop turning slowly back into a terminal (albeit a prettier one) with the
emergence of client-server computing.

What seems to have emerged from this progression is two major kinds of
software systems. One is the PC and associated hardware and software. Devel-
opments here have dramatically increased the power and productivity of indi-
vidual work. The PC revolution was indeed a real change throughout the world
of business and technology. But even with this, there are a host of applications
and business functions that require a collection of data and resources to be
available to multiple workers at the same time. This is the second major kind

16. http://www.realvnc.com/

1375.8 Introducing RMI

of software systems. This second kind used to be the only kind, but now it may,
in a sense, be the minority of applications, but the most critical to an operation.
This second class of system has come to be called enterprise systems.

In enterprise computing, we have the same problem we opened with: How
do you make the information and resources available to everyone who needs
them at the lowest cost? And the answer is (as it always is) “that depends.”

These days, one of the most common solutions is to use a Web server to
publish an application. This works well for a great many applications and it is
much easier to do than many other methods. That explains its popularity. The
Web interface is quite limited, however, so for more user interface intensive
applications, client-server computing evolved. To us techies, all of this stuff is
client-server. In this context however, client-server refers to a 2-tier system
where the UI and logic exist in a GUI application on a PC and common
resources are in an SQL database all the clients share.

This is also commonly used, but becomes expensive in a couple of cases.
The first is when the database itself becomes a bottleneck because the number
of users grows and grows but only one database can exist. The second is simply
the cost of maintenance. Since the logic exists in the client, any change to the
logic requires updating the software on all clients. Even when a scheme for au-
tomating this exists, it is still time-consuming and costly to get all the changes
out to all users simultaneously. There are workarounds for both of these issues,
but here we are concerned with a different solution altogether.

So, how can we have a UI richer than with a Web application but avoid
the pitfalls of the traditional 2-tier client-server computing? The answer is to
separate the UI from the business logic and the business logic from the under-
lying data store. This results in 3 tiers—presentation, business logic, and data.

Much of this book will concern itself with 3-tier computing solutions.
Java has four major architectures for building 3-tier solutions. One of them
is RMI.17

RMI Basics5.8.1.2

RMI works by sharing an interface between the client and the server. The inter-
face groups together the methods that a client may call on a server. A class is

17. The others are Enterprise JavaBeans, servlets, and JavaServer Pages. The latter two are Web-
based, and therefore suffer from the UI deficiencies of Web forms, but Sun calls them part of
Enterprise Java, so we will too.

Chapter 5 The Sun Microsystems Java Software Development Kit138

written on the server side that implements the interface, and a special compiler
is used to generate stubs for the server side and the client side. On the client
side, a call to an RMI method looks like any other method call, but it is sent
across the network to the server, where the actual instructions are carried out.
Any return value is then passed back over the network to the client.

We will walk you through a very simple (and very pointless) example just
to show you the tools.

Writing the Interface5.8.1.3

Our interface is pathetically simple. It is a class that sums two integer arguments
and returns an integer result. Example 5.10 shows the interface file.

NOTE

The names of the classes in the following examples may seem a bit strange,
and they are. It is because we aim to build on this example later.

Example 5.10 The Session interface

package net.multitool.RMIDemo;

import java.rmi.*;

public interface Session extends Remote {
 public int add(int x, int y) throws RemoteException;
}

The two important things to note here are that the interface must extend
java.rmi.Remote and that any remote method must be defined as throwing
java.rmi.RemoteException. If anything goes wrong during an RMI call,
like someone tripping over a network cable, the call will not complete success-
fully and an exception of that type will be thrown. It is not possible to have a
RMI method that cannot throw this exception.

Beyond those features, you can see that defining remote methods is quite
familiar and easy.

1395.8 Introducing RMI

Writing the Server Class5.8.1.4

An interface is an “empty vessel.” Before any interface can be used, you must
have an actual class that implements the interface. In an RMI application, the
implementing class is the server (Example 5.11).

The class is named SessionImpl to emphasize its relationship with the
Session interface. There is no requirement to match up such names. Likewise,
the RMI name given, //penfold/Session, uses the interface name, but it
could use any name. It is a good idea to develop a naming convention for RMI
interfaces and their implementations. It is critical to develop naming conven-
tions for RMI registry names, particularly in production environments. With-
out a naming convention, it is difficult to avoid confusion and even chaos.
What happens when multiple business units develop RMI code destined for a
single production server, and they have all made an RMI interface named
Session, or Payment?18 Bad things happen.

There is no “one size fits all” naming convention that we can offer. Possi-
bilities include using package names in RMI registry names, using some element
of the business area as a component of the name (such as AccountingSession,
ShippingSession, ExecutiveSession). All that matters is that an unambigu-
ous standard be created and followed.

Let’s spend some time talking about what this code does.
First, notice that the class extends UnicastRemoteObject. This is not

necessary, but using that as a base class saves a lot of server setup. There are
times when you would want to do such setup manually, but for our purpose
here it saves a lot of effort. The class also implements our remote interface.

The first method is a constructor that calls the superclass constructor. At
first glance, this is pointless. Any Java class gets a default constructor that just
calls the superclass constructor, so why is this here? It is here because the super-
class constructor throws RemoteException. If we didn’t define a constructor
like the one here specifying that it throws RemoteException, the compiler
would complain that there is an unhandled exception. So we define a construc-
tor identical to a default constructor except that it specifies that it can throw
the exception.

18. One solution is to use a more advanced naming system, such as LDAP. See
Section 21.3.2.3.

Chapter 5 The Sun Microsystems Java Software Development Kit140

Example 5.11 The Session server implementation

package net.multitool.RMIDemo;

import net.multitool.RMIDemo.*;
import java.rmi.*;
import java.rmi.server.*;

/** SessionImpl is the server class for the Session RMI interface.
 */
public class
SessionImpl
 extends UnicastRemoteObject
 implements Session
{
 /** Constructor needed to ensure call to UnicastRemoteObject
 * constructor and to thus propagate the possible exception.
 */
 public SessionImpl() throws RemoteException {
 super();
 }

 /** A static main() for the server. */
 public static void main(String[] arglist)
 {
 if (System.getSecurityManager() == null) {
 System.setSecurityManager(new RMISecurityManager());
 }

 String rmiName = "//penfold/Session";
 try {
 Session adder = new SessionImpl();
 Naming.rebind(rmiName, adder);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 /** Implementation of the RMI method, add. */
 public int add(int x, int y) throws java.rmi.RemoteException
 {
 return x+y;
 }
}

1415.8 Introducing RMI

Next, we have the server main() method. It first sets a security manager.
The security manager controls what the VM is allowed to do. A number of
default security managers are provided, and here we use one that is designed
specifically to give safe and reasonable defaults for RMI applications. You can,
of course, write your own security manager. Security managers use “policy
specifications” to alter their capabilities. For now, we will explain enough to
run a simple example. See Section 5.8.4.2 for more information on policies for
our example.

Remember that main() is static, so there is no instance of SessionImpl
yet, and thus also no instance of Session. We declare a variable of type
Session, and set it to a new instance of SessionImpl. (There is no need
to typecast here because SessionImpl implements Session, therefore
SessionImpl is, among other things, a Session.) We now have an instance
of the server class.

Next, the server must make itself available to the world. It does this by
registering itself with the RMI registry (see Section 5.8.3). This is done through
a static method of the java.rmi.Naming class, rebind(). Put simply, this
maps a remote object to a string name in the registry. When clients contact the
registry looking for a name then, if a remote object is mapped to that name,
the communication can take place (yes, we are simplifying at the moment).
The call to rebind() does not return. The server is up and running.

Finally, we have the implementation of our remote method, add().
This looks like a lot of hassle to go through, and it is, but consider writing

an interface that offers, for example, methods like getDirContents(),
chDir(), downloadFile(), uploadFile(). You’ve just written something
like an FTP server. No matter how many methods you add to your interface,
the complexity of the setup code does not increase. Maybe now it looks a little
more useful?

Writing the Client Class5.8.1.5

At this point, Example 5.12 should be fairly obvious. Our class has just a single
static method, main(). It, like our server side main(), sets up a security man-
ager. It then contacts a registry on the machine named penfold looking for an
instance of a remote interface named Session (again, lookup() is a static
method of the java.rmi.Naming class). We store that reference in a variable
of type Session called sess. We can then call the add() on sess. We’ll show
the server and client running shortly.

Chapter 5 The Sun Microsystems Java Software Development Kit142

Example 5.12 The RMI client program

package net.multitool.RMIDemo;

import java.rmi.*;

public class Client {
 public static void main(String[] arglist) {
 if (System.getSecurityManager() == null) {
 System.setSecurityManager(new RMISecurityManager());
 }

 try {
 String name = "//penfold/Session";
 // Obtain reference to the remote object
 Session sess = (Session) Naming.lookup(name);

 System.out.println("Pointless RMI Client. 47 + 13 = " +
 sess.add(47,13) + ", right?");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

The rmic Tool5.8.2

In order for a remote object to make itself available and in order for a client to
be able to call such an object, each method needs a client and server-side stub
to proxy the method call. Arguments to the method call are converted to
streamable data (this process is called marshaling) by the client stub, and that
data is sent over the network to the server stub, which must convert that stream
into object instances on the server side (this is called unmarshaling). The server-
side stub then calls the actual method implementation. When the method re-
turns, any return values and changes to the state of the arguments must be
marshaled by the server stub and sent back to the client stub where they are
unmarshaled and stored in the correct locations on the client.

This was the traditionally painful part of writing multitier clients. What
rmic does is automate the generation of these stubs, so writing a remote method
is only slightly more difficult than writing any other method.

1435.8 Introducing RMI

To generate RMI stubs for our application, run rmic19 against the class
that implements the remote interface:

penfold$ rmic net.multitool.RMIDemo.SessionImpl

When you are writing “traditional” Java RMI, that is just about all you
need to know about rmic. The program actually has a large number of options
and switches, but most of these are to support alternate protocols and systems,
such as CORBA IDL and IIOP. If you know what these are, and make use of
these, you will find details on these options in Sun’s rmic tool documentation.20

The rmiregistry Tool5.8.3

The rmiregistry is a naming service that binds RMI server stubs to simple
names. Invoking it is incredibly simple. Just type rmiregistry. You may want
to run it on other than the default port (1099). For that, just specify the port
number on the command line:

$ rmiregistry 21099 &

That example shows us running a registry on port 21099 and running it
in the background. You might want to use a nonstandard port in order to run
a test version of the service while the production version remains available on
the standard port.

That is just about all there is to rmiregistry. You can find details in the
Sun Java SDK documentation.

Setting Up Servers and Clients5.8.4

So far, we have written an RMI interface, a server implementation, and a client
implementation. We have generated RMI stubs for our RMI object. We are

19. Be careful! If you have one or more Java SDKs installed and you have the GNU Compiler
for Java installed, watch out for your PATH. The Java compiler and the Java runtime from the
JDK don’t collide with gcj because the compiler has a different name and gcj compiles to native
binaries. But gcj does have an rmic compiler, and it is usually in /usr/bin, which is usually
ahead of your JDK in the executable path. If you run rmic and it explodes with errors, make
sure you aren’t running the rmic from gcj against .class files from a JDK. (And, yes, this bit
me and had me confused for a while!)

20. http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/rmic.html

Chapter 5 The Sun Microsystems Java Software Development Kit144

almost ready to fire our system up and give it a try. But first, we’ll give you
some information about our sample environment and talk very briefly about
security.21

What RMI Servers and Clients Need to Be Able to Do5.8.4.1

RMI servers and clients need to be able to listen for connections on network
ports, and they need to be able to initiate connections on network ports. Back
in the Java 1.1 days, there were no limits on what RMI methods could do. The
CLASSPATH was assumed to be trusted. With the RMI 1.2 protocol specifica-
tion, the ability to actually pass bytecodes between VMs over RMI was added.
That means that it is possible for clients to pass code to servers. Obviously, this
opens a lot of possible security risks. For this reason, RMI got a security man-
agement layer. It is the same security manager as the one that applets use. It
also provides a default security manager class that has virtually all such capabil-
ities safely turned off. We need to turn on some of these capabilities in order
to make our sample work.

The RMI system expects Java classes to be made available through one of
two paths.

1. The CLASSPATH, either the environment variable or on the command line.

2. Through a property that points at URL. This URL may be a file: URL,
or an http: URL.

We are going to do the simplest case for now. We will have our compiled
code installed on both our server system and our client system. The classes will
all be referenced relative to the default classpath (in other words, relative to “.”,
the current directory).

This is not the typical case. The most common case will be for the
classes to be available in a JAR file via a Web server, and for the
java.rmi.server.codebase property to be set to point to the JAR file via
an http: URL.

21. We’re going to gloss over this subject for now.

1455.8 Introducing RMI

Example 5.13 A Java security policy file suitable for the RMI example

grant {
 permission java.net.SocketPermission "*:1024-65535", "connect,accept";
 permission java.net.SocketPermission "*:80", "connect,accept";
};

Our Environment5.8.4.2

We have two machines. One, penfold, is our server machine. The other,
grovel, is our client machine. To keep things straight in our samples, the shell
prompts will have the host names in them.

If you are using a JDK that supports the 1.2 RMI specification (and we
hope you are—it’s in all current JDKs), you have to give your server and your
client permission to access the network ports needed to run. By default, the
Java runtime will look for a security policy file in the home directory of the
user running the VM. The default name of the file is .java.policy. Exam-
ple 5.13 shows what we suggest you put in this file, at least to run this example.

NOTE

You will have to put this in your home directory both on the server and on all
client machines.

Compiling and Running the Server5.8.4.3

Our packages here follow Sun’s suggested naming convention of your
domain name, reversed, followed by your package names. It so happens that
Mr. Schwarz’s domain is called multitool.net (named after his first
book, Multitool Linux), so we put all of these classes in a package called
net.multitool.RMIDemo.

For all of the examples in this section, as well as the following section on
building and running the client, assume that our current working directory is
the directory that contains the net directory of our source code.

The output you see in Example 5.14 includes the result of running our
client once. Note that the SessionImpl class doesn’t terminate. It keeps
running to service clients indefinitely.

Chapter 5 The Sun Microsystems Java Software Development Kit146

Example 5.14 Compiling and running our server on penfold.

penfold$ javac net/multitool/RMIDemo/SessionImpl.java
penfold$ rmic net.multitool.RMIDemo.SessionImpl
penfold$ rmiregistry &
 17286
penfold$ java net.multitool.RMIDemo.SessionImpl
Asked to add 47 and 13

Compiling and Running the Client5.8.4.4

Example 5.15 shows the actual steps we ran to build and run the client.

Example 5.15 Compiling and running our client on grovel

grovel$ javac net/multitool/RMIDemo/Client.java
grovel$ javac net/multitool/RMIDemo/SessionImpl.java
grovel$ /usr/java/jdk/bin/rmic net.multitool.RMIDemo.SessionImpl
grovel$ java net.multitool.RMIDemo.Client
Pointless RMI Client. 47+13=60, right?
grovel$

NOTE

We compile the server class, SessionImpl, on the client side and run rmic
against it just to produce the stubs the client requires. You could copy the stub
classes from the server machine, or you could put them in a JAR file, put that file
on a Web server, and have the java.rmi.server.codebase property point
to that JAR file. We’re taking the simple way here, but in a real implementation,
you would not do it this way. We’ll cover more realistic cases later.

RMI Summary5.8.5

RMI greatly simplifies the business of writing multitier client-server applica-
tions. It is suitable for many classes of distributed computing problems, but it
does lack several features that required in large, mission-critical applications.
For one thing, it lacks any sort of transaction support. If a method invocation
fails, the client may not know for certain whether the server finished some work,
like writing to a database, before the failure. Also, the rmiregistry program is

1475.8 Introducing RMI

a very simplistic naming/lookup system. Clients must know where to find the
registry with the resources they need.

RMI is very useful for problems of a certain scale, but it is not, in and of
itself, sufficient for high-volume, highly available, mission-critical enterprise
systems.22 But that is what J2EE and EJB are for. We’ll deal with those in
Part V later in the book.

THE JAVA DEBUGGER5.9

How can you stand using the SDK? It doesn’t even have a debugger!
Wrong. It has a debugger. It just has an extremely basic command-line

debugger. Example 5.16 shows the output of its help.
Again, we are not going to document everything here. That’s what the

online Sun Microsystems Java SDK documentation is for. Instead, we will use
the debugger to step through the execution of our simple application and show
you some of the debugger’s basic operations.

There are two ways to invoke jdb. One is to attach it to an already running
JVM that has been started with remote debugging enabled. See the Java SDK
documentation for details on that method. Here we’ll show you the simpler
case of invoking the program locally by running the application directly under
the debugger.

The basic invocation is:

$ jdb

You may optionally name the class whose main() is to be executed under
the debugger, but we usually use the run from inside the debugger itself to do
this. Remember that if you want to be able to view local variables in the debug-
ger, you must have compiled your class or classes with the -g option of javac.

In the rest of this section, we will examine an actual debug session. We
will run our single-class application, FetchURL, and use it to retrieve the
index.html file from the Web server on the laptop on which this chapter is
being written. To refresh your memory, remember that the source code for
FetchURL is at Example 3.30. Example 5.17 is what that file looks like.

22. If that sentence did not cause you to get “buzzword bingo,” then you aren’t trying.

Chapter 5 The Sun Microsystems Java Software Development Kit148

Example 5.16 The Java debugger help command output

$ jdb GetUser

Initializing jdb ...

> help

** command list **

run [class [args]] -- start execution of application's main class

threads [threadgroup] -- list threads

thread <thread id> -- set default thread

suspend [thread id(s)] -- suspend threads (default: all)

resume [thread id(s)] -- resume threads (default: all)

where [thread id] | all -- dump a thread's stack

wherei [thread id] | all -- dump a thread's stack, with pc info

up [n frames] -- move up a thread's stack

down [n frames] -- move down a thread's stack

kill <thread> <expr> -- kill a thread with the given exception object

interrupt <thread> -- interrupt a thread

print <expr> -- print value of expression

dump <expr> -- print all object information

eval <expr> -- evaluate expression (same as print)

set <lvalue> = <expr> -- assign new value to field/variable/array element

locals -- print all local variables in current stack frame

classes -- list currently known classes

class <class id> -- show details of named class

methods <class id> -- list a class's methods

fields <class id> -- list a class's fields

threadgroups -- list threadgroups

threadgroup <name> -- set current threadgroup

stop in <class id>.<method>[(argument_type,...)]

 -- set a breakpoint in a method

stop at <class id>:<line> -- set a breakpoint at a line

clear <class id>.<method>[(argument_type,...)]

 -- clear a breakpoint in a method

clear <class id>:<line> -- clear a breakpoint at a line

clear -- list breakpoints

catch [uncaught|caught|all] <exception-class id>

 -- break when specified exception occurs

ignore [uncaught|caught|all] <exception-class id>

 -- cancel 'catch' for the specified exception

watch [access|all] <class id>.<field name>

 -- watch access/modifications to a field

unwatch [access|all] <class id>.<field name>

 -- discontinue watching access/modifications to a field

trace methods [thread] -- trace method entry and exit

1495.9 The Java Debugger

untrace methods [thread] -- stop tracing method entry and exit

step -- execute current line

step up -- execute until the current method returns to its caller

stepi -- execute current instruction

next -- step one line (step OVER calls)

cont -- continue execution from breakpoint

list [line number|method] -- print source code

use (or sourcepath) [source file path]

 -- display or change the source path

exclude [class id ... | "none"]

 -- do not report step or method events for specified classes

classpath -- print classpath info from target VM

monitor <command> -- execute command each time the program stops

monitor -- list monitors

unmonitor <monitor#> -- delete a monitor

read <filename> -- read and execute a command file

lock <expr> -- print lock info for an object

threadlocks [thread id] -- print lock info for a thread

pop -- pop the stack through and including the current frame

reenter -- same as pop, but current frame is reentered

redefine <class id> <class filename>

 -- redefine the code for a class

disablegc <expr> -- prevent garbage collection of an object

enablegc <expr> -- permit garbage collection of an object

!! -- repeat last command

<n> <command> -- repeat command n times

help (or ?) -- list commands

version -- print version information

exit (or quit) -- exit debugger

<class id> or <exception-class id>: full class name with package

qualifiers or a pattern with a leading or trailing wildcard ('*')

NOTE: any wildcard pattern will be replaced by at most one full class

name matching the pattern.

<thread id>: thread number as reported in the 'threads' command

<expr>: a Java(tm) Programming Language expression.

Most common syntax is supported.

Startup commands can be placed in either "jdb.ini" or ".jdbrc"

in user.home or user.dir

>

Chapter 5 The Sun Microsystems Java Software Development Kit150

Example 5.17 index.html used in jdb session

<HTML>
 <HEAD>
 <TITLE>RedHat Linux Laptop</TITLE>
 </HEAD>
 <BODY>
 <H1>RedHat Linux Laptop</H1>
 <P>You have contacted Michael Schwarz's RedHat Linux Laptop.
 You would probably rather
 see his permanent Web
 page since this server goes up and down all the time, what
 with it being on a laptop.</P>
 </BODY>
</HTML>

Example 5.18 is an actual transcript of a real jdb session. It is annotated
with explanatory comments. Our goal here is to get you going. The best way
to learn jdb, or indeed any of these tools, is to use them.

Obviously, this little session has merely scratched the surface of the Java
debugger. You can debug multithreaded applications with commands that can
suspend and resume individual threads, list the running threads, switch your
“executable view” between threads, and so forth. You can trace method calls.
You can monitor variables. You can execute expressions (including assignment
expressions, allowing you to force variables to certain values). You can browse
classes. You can dump all local variables with a single command. The debugger
is quite capable, if a bit limited in user interface.23 Learn it. Play with it. Step
through your favorite Java program with it.

23. As you know, we do not automatically like IDEs and GUI development tools (see Sec-
tion 5.2). A debugger is an exception to that rule. When debugging, a well designed UI with
a code pane, a stack pane, a data viewer, a class browser, a thread selection pane, and so on is
enormously helpful. You need to be able to see all these elements nearly simultaneously; you
need to see the whole system as it runs. The command-line debugger makes everything you need
available, but with a traditional “glass-teletype” UI that is quite awkward. By all means, learn
the CLI debugger, but then find a good Java debugger with a windowed UI of some kind. It
is hard to say which compiler UI is the best, but I think we can safely say the command-line
debugger UI is the worst! You should know it as a last resort, but use it as a last resort!

1515.9 The Java Debugger

Example 5.18 An actual jdb session, with commentary

$ jdb
Initializing jdb ...
> stop in FetchURL.main (1)
Deferring breakpoint FetchURL.main.
It will be set after the class is loaded.
> run FetchURL http://localhost
run FetchURL http://localhost
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
>
VM Started: Set deferred breakpoint FetchURL.main

Breakpoint hit: "thread=main", FetchURL.main(), line=48 bci=0
48 for (i = 0; i < args.length; i++)

main[1] list
44 {
45 int i;
46 FetchURL f;
47
48 =>(2) for (i = 0; i < args.length; i++)
49 {
50 System.out.println(args[i] + ":");
51 System.out.println(new FetchURL(args[i]));
52 }
53 }
main[1] step
>
Step completed: "thread=main", FetchURL.main(), line=50 bci=5
50 System.out.println(args[i] + ":");

main[1] step
> http://localhost:

Step completed: "thread=main", FetchURL.main(), line=51 bci=32
51 System.out.println(new FetchURL(args[i]));

main[1] step
>
Step completed: "thread=main", FetchURL.<init>(), line=8 bci=0
8 {

main[1] list
4 public class FetchURL {
5 private URL requestedURL;

Chapter 5 The Sun Microsystems Java Software Development Kit152

6
7 public FetchURL(String urlName)
8 => {
9 try {
10 requestedURL = new URL(urlName);
11 } catch (Exception e) {
12 e.printStackTrace();
13 }
main[1] step
>
Step completed: "thread=main", FetchURL.<init>(), line=10 bci=4
10 requestedURL = new URL(urlName);

main[1] step (3)
>
Step completed: "thread=main", FetchURL.<init>(), line=11 bci=16
11 } catch (Exception e) {

main[1] step
>
Step completed: "thread=main", FetchURL.<init>(), line=14 bci=27
14 }

main[1] step
>
Step completed: "thread=main", FetchURL.main(), line=51 bci=45
51 System.out.println(new FetchURL(args[i]));

main[1] step
>
Step completed: "thread=main", FetchURL.toString(), line=19 bci=2
19 String rc = "";

main[1] list
15
16
17 public String toString()
18 {
19 => String rc = "";
20 String line;
21 BufferedReader rdr;
22
23 try {
24 rdr = new BufferedReader(
main[1] step
>
Step completed: "thread=main", FetchURL.toString(), line=24 bci=3
24 rdr = new BufferedReader(

1535.9 The Java Debugger

main[1] step
>
Step completed: "thread=main", FetchURL.toString(), line=30 bci=28
30 while ((line = rdr.readLine()) != null)

main[1] step
>
Step completed: "thread=main", FetchURL.toString(), line=32 bci=31
32 rc = rc + line + "\n";

main[1] list
28);
29
30 while ((line = rdr.readLine()) != null)
31 {
32 => rc = rc + line + "\n";
33 }
34 } catch (Exception e) {
35 e.printStackTrace();
36 rc = null;
37 }
main[1] step
>
Step completed: "thread=main", FetchURL.toString(), line=30 bci=55
30 while ((line = rdr.readLine()) != null)

main[1] step
>
Step completed: "thread=main", FetchURL.toString(), line=32 bci=31
32 rc = rc + line + "\n";

main[1] step
>
Step completed: "thread=main", FetchURL.toString(), line=30 bci=55
30 while ((line = rdr.readLine()) != null)

main[1] step
>
Step completed: "thread=main", FetchURL.toString(), line=32 bci=31
32 rc = rc + line + "\n";

main[1] dump this (4)
 this = {
 requestedURL: instance of java.net.URL(id=378)
}
main[1] dump rc (5)
 rc = "<HTML>
 <HEAD>

Chapter 5 The Sun Microsystems Java Software Development Kit154

"
main[1] list 36
32 rc = rc + line + "\n";
33 }
34 } catch (Exception e) {
35 e.printStackTrace();
36 => rc = null;
37 }
38
39 return rc;
40 }
41
main[1] stop at FetchURL:39 (6)
Set breakpoint FetchURL:39
main[1] cont
>
Breakpoint hit: "thread=main", FetchURL.toString(), line=39 bci=79
39 return rc;

main[1] dump rc
 rc = "<HTML>
 <HEAD>
 <TITLE>RedHat Linux Laptop</TITLE>
 </HEAD>
 <BODY>
 <H1>RedHat Linux Laptop</H1>
 <P>You have contacted Michael Schwarz's RedHat Linux Laptop.
 You would probably rather
 see his permanent Web
 page since this server goes up and down all the time, what
 with it being on a laptop.</P>
 </BODY>
 </HTML>
"
main[1] step
> <HTML>
 <HEAD>
 <TITLE>RedHat Linux Laptop</TITLE>
 </HEAD>
 <BODY>
 <H1>RedHat Linux Laptop</H1>
 <P>You have contacted Michael Schwarz's RedHat Linux Laptop.
 You would probably rather
 see his permanent Web
 page since this server goes up and down all the time, what
 with it being on a laptop.</P>
 </BODY>
 </HTML>

1555.9 The Java Debugger

Step completed: "thread=main", FetchURL.main(), line=48 bci=48
48 for (i = 0; i < args.length; i++)

main[1] step
>
Step completed: "thread=main", FetchURL.main(), line=53 bci=57
53 }

main[1] step
>
The application exited
$

1. Here we tell the debugger where to break execution to let us run debugger commands.
We do so at the start of the FetchURL class’ main() method. If we did not set a
breakpoint, the run would have run the program to termination, making it no different
from running it with the java command (except perhaps a bit slower).

2. The list command shows the source line that is about to be executed, along with some
more lines to either side. It is a handy way to get a little context. The standard “next
line” prompt isn’t enough for most of us to get context (unless, of course, we are
looking at a line-numbered printout of the source or an editor window at the same
time, which we often do).

3. The step steps execution one “line” (what a line is can be a bit fuzzy when there’s a
lot of vertical whitespace in the source, or when multiple method calls occur on one
line). Note the information in the status message. The name of the thread is given (our
sample is single-threaded, so it is always “main”), as is the line number in the source
file and the bci. Note that there is a very similar command, next, that advances to the
next line in the same stack frame. In other words, it won’t step into method calls, it
steps over them.

4, 5. Here we see two uses of the dump command. First, we apply it to this (which is an
implicit argument to any nonstatic method call) to dump the currently executing ob-
ject. The second instance dumps the rc local variable, which is an accumulating string
containing the requested Web page. At the moment, it contains only the first few lines.

6. Here we set a breakpoint on a specific source line number. We then use the cont
command to resume “full speed” code execution.

Chapter 5 The Sun Microsystems Java Software Development Kit156

RETURN TO THE SOURCE:THE JAVA DECOMPILER5.10

Java includes a decompiler of sorts called javap. It is sometimes referred to as
the “class file disassembler.” We titled this section “Return to the Source,” but
it is a bit misleading; javap simply provides a way to examine the members and
methods of a compiled Java class24 even when you do not have its source code.

The javap command takes the same access-modifier command-line argu-
ments as javadoc (-public, -protected, -package, -private) to determine
which attributes and methods are to be reported. An additional switch, -c,
causes the bytecodes of methods to be reported. For details, see Sun’s documen-
tation for javap.25

Example 5.19 shows what you get if you run javap -c on our FetchURL
example.

BUNDLING A JAVA PROGRAM: PUT IT IN A JAR5.11

Distributing a Java application can be a pain. All but the simplest of applica-
tions will have many public classes—and since there can only be one public
Java class per source file, each Java source file becomes a class file, and the ele-
ments of a package name become directory nodes in the path to the class, you
end up with a fairly complex collection of directories and files. Wouldn’t it be
nice to be able to roll the whole mess up into a single binary file for
distribution?

Well, you can. The tool to do the job is called jar, which stands for Java
ARchive.26 The files produced by this utility are called JAR files. The JAR for-
mat is the common DOS/Windows ZIP file format, with a few special files to
support some special features we will explain as they come up.

24. In Chapter 7 we will introduce gcj, the GNU Compiler for Java, which compiles Java to
native machine code. javap is useless with such a file. It deals only with JVM bytecodes as
documented in Sun’s JVM Specification.

25. http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/javap.html

26. An abbreviation made up of syllables from words instead of just initials is called a
portmanteau. The US Navy is particularly keen on them, using terms like COMSURPAC
(Commander, Surface Fleet, Pacific), COMSUBLANT (Commander, Submarine Fleet,
Atlantic), and so forth. There. Now you can’t claim you didn’t learn anything from this book.

1575.11 Bundling a Java Program: Put It in a JAR

Example 5.19 javap output for FetchURL.class

Compiled from FetchURL.java
public class FetchURL extends java.lang.Object {
 private java.net.URL requestedURL;
 public FetchURL(java.lang.String);
 public java.lang.String toString();
 public static void main(java.lang.String[]);
}

Method FetchURL(java.lang.String)
 0 aload_0
 1 invokespecial #1 <Method java.lang.Object()>
 4 aload_0
 5 new #2 <Class java.net.URL>
 8 dup
 9 aload_1
 10 invokespecial #3 <Method java.net.URL(java.lang.String)>
 13 putfield #4 <Field java.net.URL requestedURL>
 16 goto 27
 19 astore_2
 20 aload_2
 21 invokevirtual #6 <Method null>
 24 goto 27
 27 return
Exception table:
 from to target type
 4 16 19 <Class java.lang.Exception>

Method java.lang.String toString()
 0 ldc #7 <String "">
 2 astore_1
 3 new #8 <Class java.io.BufferedReader>
 6 dup
 7 new #9 <Class java.io.InputStreamReader>
 10 dup
 11 aload_0
 12 getfield #4 <Field java.net.URL requestedURL>
 15 invokevirtual #10 <Method java.net.URLConnection openConnection()>
 18 invokevirtual #11 <Method java.io.InputStream getInputStream()>
 21 invokespecial #12 <Method java.io.InputStreamReader(java.io.InputStream)>
 24 invokespecial #13 <Method java.io.BufferedReader(java.io.Reader)>
 27 astore_3
 28 goto 55
 31 new #14 <Class java.lang.StringBuffer>
 34 dup
 35 invokespecial #15 <Method java.lang.StringBuffer()>
 38 aload_1

Chapter 5 The Sun Microsystems Java Software Development Kit158

 39 invokevirtual #16 <Method java.lang.StringBuffer append(java.lang.String)>
 42 aload_2
 43 invokevirtual #16 <Method java.lang.StringBuffer append(java.lang.String)>
 46 ldc #17 <String "
">
 48 invokevirtual #16 <Method java.lang.StringBuffer append(java.lang.String)>
 51 invokevirtual #18 <Method java.lang.String toString()>
 54 astore_1
 55 aload_3
 56 invokevirtual #19 <Method java.lang.String readLine()>
 59 dup
 60 astore_2
 61 ifnonnull 31
 64 goto 79
 67 astore 4
 69 aload 4
 71 invokevirtual #20 <Method null>
 74 aconst_null
 75 astore_1
 76 goto 79
 79 aload_1
 80 areturn
Exception table:
 from to target type
 3 64 67 <Class java.lang.Exception>

Method void main(java.lang.String[])
 0 iconst_0
 1 istore_1
 2 goto 51
 5 getstatic #21 <Field java.io.PrintStream out>
 8 new #14 <Class java.lang.StringBuffer>
 11 dup
 12 invokespecial #15 <Method java.lang.StringBuffer()>
 15 aload_0
 16 iload_1
 17 aaload
 18 invokevirtual #16 <Method java.lang.StringBuffer append(java.lang.String)>
 21 ldc #22 <String ":">
 23 invokevirtual #16 <Method java.lang.StringBuffer append(java.lang.String)>
 26 invokevirtual #18 <Method java.lang.String toString()>
 29 invokevirtual #23 <Method void println(java.lang.String)>
 32 getstatic #21 <Field java.io.PrintStream out>
 35 new #24 <Class FetchURL>
 38 dup
 39 aload_0
 40 iload_1
 41 aaload
 42 invokespecial #25 <Method FetchURL(java.lang.String)>

1595.11 Bundling a Java Program: Put It in a JAR

 45 invokevirtual #26 <Method void println(java.lang.Object)>
 48 iinc 1 1
 51 iload_1
 52 aload_0
 53 arraylength
 54 if_icmplt 5
 57 return

A JAR file packages a subdirectory and its descendants into a single file. A Java
CLASSPATH specification may contain a JAR filename everywhere it might
contain a directory name. Let’s say you use the GPL’ed Java personal finance
program called jgnash and you’ve compiled it from source, so you have a direc-
tory off your home directory called jgnash/bin. Suppose you run the program
by directly invoking java to run the class jgnashMain and you have
$HOME/jgnash/bin on your CLASSPATH. You could clean up the mess on your
hard drive by using the jar command to squash all the files in jgnash/bin
together into a single JAR file, as shown in Example 5.20.

Example 5.20 Making a JAR file

$ cd ; mkdir jars
$ jar cvf jars/jgnash.jar jgnash/bin

You could then replace the $HOME/jgnash/bin entry in your CLASSPATH
with $HOME/jars/jgnash.jar. After that you would still run jgnash with
exactly the same java command you always did, but now you got rid of the
cluttered pile of files.

This is only the most basic purpose of jar, however. Its uses extend well
beyond merely concatenating and compressing collections of .class files.

Deploying Applications5.11.1

One of the best uses of jar is to package applications for distribution. You can
put a large Java application into a single file with jar, and by using a manifest
(which we are about to discuss) you can nominate the main class to run in that
JAR file. You can then provide a shell script (and a batch file, if you are also
deploying to Microsoft Windows) that will set the CLASSPATH to point to the

Chapter 5 The Sun Microsystems Java Software Development Kit160

JAR file and run java against it. With this simple setup, users need not even
know they are using a Java application—it runs like any other application.

The Manifest File5.11.1.1

The only way in which jar really differs from any other ZIP archive utility is
in the automatic creation and use of a manifest file, by default named
META-INF/MANIFEST in the archive. Even if you do not specify a manifest file
of your own, the jar utility creates one for you. Let’s take a moment to look at
what goes into the manifest.

A manifest is basically a list of key/value pairs. The key comes at the start
of a line and the value comes at the end of the line with a colon separating the
two. Example 5.21 shows a sample manifest.

Example 5.21 Manifest from the Payback sample application

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.5.3
Created-By: 1.4.1_02-b06 (Sun Microsystems Inc.)
Version: 1.0
Main-Class: net.multitool.Payback.Payback

All of these entries were produced automatically by ant or the jar utility
itself, except for Main-Class, which we specified (albeit with ant, as you will
see in Chapter 9). The manifest has certain values that are always filled in by
jar, but two that you might commonly specify are

• Main-Class, which allows users to run a Java application by merely typ-
ing java someJarFile.jar, without having to know the fully package
qualified name of the class that contains the application’s main().

• Class-Path, which allows you to specify what the classpath should be
when the application is run.

There are keys specific to applets, to signed applications, to beans, and so
forth. We will address these as it becomes necessary. Full details can, of course,
be found in the Sun’s documentation for jar.27

27. http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/jar.html

1615.11 Bundling a Java Program: Put It in a JAR

Putting a Compiled Application in a JAR File5.11.1.2

Let’s assume we are going to manually put a Java application in a JAR file. We
will want to specify the name of the class that contains the main() method of
the application. First off, you want the JAR’s directory hierarchy to begin at
the folder that contains the first node of each package’s name. Our sample ap-
plication here is in the package net.multitool.Payback, so we want our
present working directory to be the one which contains the net subdirectory.
Here’s a dump of the directory tree from that point after compilation of our
sample application:

$ find . -print
.
./net
./net/multitool
./net/multitool/Payback
./net/multitool/Payback/Account.class
./net/multitool/Payback/Purchase.class
./net/multitool/Payback/Cost.class
./net/multitool/Payback/DebtAccount.class
./net/multitool/Payback/Payback.class
./net/multitool/Payback/SavingsAccount.class
./net/multitool/util
./net/multitool/util/SAMoney.class
./net/multitool/util/SAMoneyTest$1.class
./net/multitool/util/SAMoneyTest$2.class
./net/multitool/util/SAMoneyTest.class
$

We now want to specify which class contains the application’s main()
method. It happens to be the Payback class, so we create a file called
manifest28 with the following contents:

$ cat manifest
Main-Class: net.multitool.Payback.Payback

Next, we use the jar utility to create the JAR file:

28. It can have any name. The key/value pairs from the file will be placed by the jar utility into
the standard manifest called META-INF/MANIFEST.MF no matter what name you give to
this file.

Chapter 5 The Sun Microsystems Java Software Development Kit162

$ jar cmf manifest payback.jar net
$ ls -la
total 20
drwxrwxr-x 3 mschwarz mschwarz 4096 Aug 4 18:19 .
drwxrwxr-x 7 mschwarz mschwarz 4096 Aug 4 17:57 ..
-rw-rw-r-- 1 mschwarz mschwarz 43 Aug 4 18:17 manifest
drwxrwxr-x 3 mschwarz mschwarz 4096 Jul 28 16:16 net
-rw-rw-r-- 1 mschwarz mschwarz 7506 Aug 4 18:21 payback.jar

The options to jar tell it what to do. In our case, -c instructs to create a
JAR file, -m adds the contents of the file named in the next parameter to the
META-INF/MANIFEST file, -f and the next parameter is the filename of the JAR
file being created. If we had not specified -f, the JAR file would have been
written to standard out and an I/O redirect would be needed, but the result
would have been the same:

$ jar cvm manifest net > payback.jar
$ ls -la
total 24
drwxrwxr-x 3 mschwarz mschwarz 4096 Aug 4 18:24 .
drwxrwxr-x 7 mschwarz mschwarz 4096 Aug 4 17:57 ..
-rw-rw-r-- 1 mschwarz mschwarz 43 Aug 4 18:17 manifest
drwxrwxr-x 3 mschwarz mschwarz 4096 Jul 28 16:16 net
-rw-rw-r-- 1 mschwarz mschwarz 7506 Aug 4 18:27 payback.jar

Everything that follows parameters required by option letters is considered
to be a file or directory that is to be added to the JAR file. The option syntax
for jar is similar to that for pkzip in the DOS/Windows world and the tar
utility in the UNIX world.

As elsewhere in this chapter, we are just getting you started. See Sun’s
documentation for details.

Basic jar Operation5.11.2

We have already covered the most common case, using jar to create a “rolled-
up” Java application. jar has many command options besides -c and we’ll
document a few of them.

-c

Create a JAR file.

-u

Update a JAR file—replace updated files, add missing files.

1635.11 Bundling a Java Program: Put It in a JAR

-x

Extract files from a JAR file.

-t

List files in a JAR.

-f

Specify the JAR filename.

-v

Be verbose—display descriptions of what the jar utility is doing as it
does it.

-m

Add the contents of the named file to the manifest.

THE REST OF THE TOOLKIT5.12

There are additional utilities in the toolkit. Below is a capsule summary of them
and their purposes.

extcheck
This utility checks an applet JAR file for any extensions it requires that are
in conflict with the current Java runtime environment. (But we don’t
cover applets in this book.)

jarsigner
This is a utility for digitally signing JAR file. Once a JAR is signed, anyone
looking at it can be sure of two things—first, the file was definitely pre-
pared by the owner of the private key that matches the public key used to
verify the signature;29 and second, the JAR file has not been modified in
any way since it was signed. In other words, depending upon the care with
which the signer treats his/her private key, this certifies the authenticity

29. A discussion of public/private keys as an authentication mechanism is beyond our scope
here. As a shameless plug, Mr. Schwarz would like to point you to Chapter 10 of his previous
book, Multitool Linux, which contains a beginner’s introduction to public key authentication
using GnuPG. Of course, a quick Google search will find you many online descriptions that
are free.

Chapter 5 The Sun Microsystems Java Software Development Kit164

and accuracy of the JAR file; you can trust it as much as you trust
the signer.

Generally speaking, an applet must be signed by a key that the user
trusts in order for the applet to increase its security access to the client
machine (open/read/write files, access the printer, and so on). But we don’t
cover applets in this book.

keytool
This tool is used to create and manage the keys we were talking about in
the previous entry. Again, this is used mainly for JAR signing, and JAR
signing is used mainly for applet authentication, but we don’t cover applets
in this book.

rmid
The RMI activation daemon. In the RMI example we showed you in this
chapter, you had to start a server manually and leave it running to process
requests. RMI activation is a system where RMI servers may be started on
demand.

serialver
Reports the RMI serialVersionUID of a class. This can be useful when
trying to track down problems with complex RMI systems, especially when
multiple versions of an RMI interface with the same name must be in use
at the same time.

native2ascii
As mentioned before, Java uses Unicode for all strings. Most of the time,
you and we are working with ASCII-encoded files. This program converts
files from one format to the other.

policytool
Remember how we had to set up a security policy file for our RMI
demonstration (Example 5.13)? Well, this is a Java GUI application for
creating and editing Java policy files.

There are a few more. One group of utilities is related to Kerberos tickets.
Another is related to Java IDL and RMI-IIOP, both of which are to allow Java
to interoperate with CORBA. If you are in a CORBA environment, you will
want to look at those. We’ve got enough on our plates without trying to jam
CORBA in here. You’re on your own, buddy. Finally, there are a couple of

1655.12 The Rest of the Toolkit

programs that support the Java plug-in, which is a way to make Java available
in browsers.30

REVIEW5.13

For all of its humble command-line interface, the Sun Java 2 SDK provides a
complete software development package, with everything you need to write
and run a wide gamut of Java applications.

WHAT YOU STILL DON’T KNOW5.14

Oh dear, where to start? There are all those programs in the kit we glossed over
right at the end there. We barely scratched the surface of JNI and RMI. We
positively orbited the topics of policy files and JAR manifests.

You now have exposure to the bulk of the Java SDK. It is only the first
step up the learning curve. We’ll take you up a few more as the book progresses,
but mastery comes only with time and experience. So use the tools. Write,
compile, and debug a lot of Java code.

RESOURCES5.15

One of the best sources of information on Java is Sun’s Web site for Java,
http://java.sun.com, where you can find a wide variety of information—
tutorials, white papers, API specifications, and more.

30. Those browsers that had Java built into them generally used Java 1.0 or 1.1. After Java 1.1
it became clear that it would be a major pain to have to reintegrate each new version of Java
into each browser product. It would make browser versions and Java releases dependent on one
another and would, in general, be a pain both for Sun and for Microsoft and Netscape (remem-
ber Netscape?). Thus, the plug-in architecture was born (okay, plug-ins were for things
like RealPlayer and Macromedia Flash too). Since Java 1.2, browser integration has been
via plug-ins.

Chapter 5 The Sun Microsystems Java Software Development Kit166

This chapter introduces the IBM Java Software Development Kit. It does so
mainly by pointing out how completely the kit mimics the Sun Java Software
Development Kit covered in Chapter 5. Some time is spent on the minor
differences and some installation issues.

WHAT YOU WILL LEARN6.1

• The small number of important differences between the IBM and Sun
Java Software Development Kits.

• How to put more than one version of Java on the same development
machine and how to switch between them painlessly.

167

Chapter 6

The IBM Developer Kit for Linux,
Java 2 Technology Edition

USE LINUX FEATURES TO MAKE MULTIPLE JAVA SDKS
PLAY NICELY TOGETHER

6.2

We did not spend much time discussing the installation of Java on your Linux
system in previous chapter. In fact, we did not discuss it at all. This is because
the installation instructions that come with the SDK are more than adequate
if you wish only to install a single Java SDK. But what if you want to install,
say, both the Sun Java SDK and the IBM Java SDK? Then things get a bit more
interesting.

We’re going to review the concept of filesystem links, and how they work
on Linux. While it may seem odd to discuss them here, we’ll be using links to
switch gracefully between different Java installations. Links are a powerful
feature in Linux filesystems, and switching SDKs is a good application thereof.
If you’re already familiar with links, skip ahead to Section 6.2.2.

Links6.2.1

A link is simply a name attached to a collection of data—that is, to a file. In
other words, every file has one set of data and at least one link (a name). But a
file may have more than one link. In other words, two different filenames may
point to the same data. When you do this, you appear to have two copies of
the file, but a change to one also changes the other. Deleting one, however,
does not delete the other. It merely deletes the link. The file itself is only
deleted when the last link is gone.

Hard Links6.2.1.1

Links come in two flavors: hard and symbolic. A hard link looks like a file in
and of itself. Let’s show you a hard link, before and after.

$ ls -la
total 12
drwxrwxr-x 2 mschwarz mschwarz 4096 Jul 8 10:11 .
drwx------ 50 mschwarz mschwarz 4096 Jul 8 10:11 ..
-rw-rw-r-- 1 mschwarz mschwarz 45 Jul 8 10:11 sample
$ cat sample
This is a sample
file to demonstrate
links.

$

Chapter 6 The IBM Developer Kit for Linux, Java 2 Technology Edition168

As you can see, we have a directory with a single file in it, sample. Now
let’s make a hard link to that file.

$ ln sample example
$ ls -la
total 16
drwxrwxr-x 2 mschwarz mschwarz 4096 Jul 8 10:13 .
drwx------ 50 mschwarz mschwarz 4096 Jul 8 10:11 ..
-rw-rw-r-- 2 mschwarz mschwarz 45 Jul 8 10:11 example
-rw-rw-r-- 2 mschwarz mschwarz 45 Jul 8 10:11 sample
$ cat example
This is a sample
file to demonstrate
links.

$

Notice a few things here. First, other than the size and timestamps being
the same, there is nothing obvious to show that these two files are, in fact, the
same file. Note also the number just ahead of the owning user and group
names. In the first directory listing, sample had 1 in that position; now both
sample and example have 2. This number is the link count. It tells you how
many names are linked to the data associated with this name.

We have a couple more things to point out before we move on to soft
links, which are going to be more important for our purposes.

$ chgrp wwwdev example
$ ls -la
total 16
drwxrwxr-x 2 mschwarz mschwarz 4096 Jul 8 10:13 .
drwx------ 50 mschwarz mschwarz 4096 Jul 8 10:11 ..
-rw-rw-r-- 2 mschwarz wwwdev 45 Jul 8 10:11 example
-rw-rw-r-- 2 mschwarz wwwdev 45 Jul 8 10:11 sample
$ chmod o-r example
$ ls -la
total 16
drwxrwxr-x 2 mschwarz mschwarz 4096 Jul 8 10:13 .
drwx------ 50 mschwarz mschwarz 4096 Jul 8 10:11 ..
-rw-rw---- 2 mschwarz wwwdev 45 Jul 8 10:11 example
-rw-rw---- 2 mschwarz wwwdev 45 Jul 8 10:11 sample
$ chgrp mschwarz sample
$ ls -la
total 16

1696.2 Use Linux Features to Make Multiple Java SDKs Play Nicely Together

drwxrwxr-x 2 mschwarz mschwarz 4096 Jul 8 10:13 .
drwx------ 50 mschwarz mschwarz 4096 Jul 8 10:11 ..
-rw-rw---- 2 mschwarz mschwarz 45 Jul 8 10:11 example
-rw-rw---- 2 mschwarz mschwarz 45 Jul 8 10:11 sample
$

As you can see, a file can have only one set of owners and permissions, no
matter how many links are made to it. Changing the owner or permissions of
one link changes all hard links at the same time. In other words, the security
of a file is like its data: A change to one link is a change to them all.

A link need not be in the same directory as the original name.

$ ln example /tmp/sample
$ ls -la
total 16
drwxrwxr-x 2 mschwarz mschwarz 4096 Jul 8 10:13 .
drwx------ 50 mschwarz mschwarz 4096 Jul 8 10:11 ..
-rw-rw---- 3 mschwarz mschwarz 45 Jul 8 10:11 example
-rw-rw---- 3 mschwarz mschwarz 45 Jul 8 10:11 sample
$ ls -la /tmp
total 132
drwxrwxr-x 2 mschwarz mschwarz 4096 Jul 8 10:23 .
drwx------ 50 mschwarz mschwarz 4096 Jul 8 10:11 ..
-rw-rw-r-- 1 mschwarz mschwarz 118081 Jun 3 18:51 jLin.tar.gz
-rw-rw---- 3 mschwarz mschwarz 45 Jul 8 10:11 sample
$

Here we made a third link in a different directory; /tmp/sample is a third
name for the same data file. Note that we made it from the example link, not
the original filename. In fact, as far as the Linux filesystem is concerned, there
is no “original” name. None of these names is more significant than any other.
When you remove a filename, the link is destroyed and the file’s link count is
decremented. If the link count goes to zero, the file is removed. That’s it.
Nothing else.

Hard links have a couple of drawbacks. One of them is a genuine technical
limitation and the other is more of a usability problem. The technical limitation
is that a hard link cannot be made across mounted filesystems. In the simplest

Chapter 6 The IBM Developer Kit for Linux, Java 2 Technology Edition170

case (we don’t want to muddy the waters with LVM1 or RAID2 at this
point—most Linux distributions do not do LVM or RAID “out-of-the-box”),
if you have more than one partition or disk drive, these are “mounted” at dif-
ferent points on the directory tree. For example, Mr. Schwarz’s laptop’s mount
table looks like this:

$ mount
/dev/hda2 on / type ext3 (rw)
none on /proc type proc (rw)
usbdevfs on /proc/bus/usb type usbdevfs (rw)
/dev/hda1 on /boot type ext3 (rw)
none on /dev/pts type devpts (rw,gid=5,mode=620)
none on /dev/shm type tmpfs (rw)
$

We have one large partition mounted at /, or root, and a small partition
mounted at /boot. In all of our hard link examples so far, we have been making
links on the root filesystem. Example 6.1 shows what happens when an attempt
is made to hardlink between two different mounted devices.

This is what we mean when we say a link cannot cross filesystems.3

The other problem is more “touchy-feely.” With a hard link, you can see
by the link count that other links exist, but you don’t know where they are.
Symbolic links get you around both of these issues.

Symbolic Links, or Symlinks6.2.1.2

In a sense, symbolic links are much simpler than hard links. A symbolic link is
a file that contains the name of another file or directory. Because it is marked
as a symbolic link, the system will replace it with the contents of the linked file.
Example 6.2 will make this more clear.

1. Logical Volume Manager. This is a tool that lets you arbitrarily aggregate disk drives and
partitions into a “logical volume” that may be mounted and unmounted as a unit. Such tools
are commonly used in serious production servers, but are rare on workstations or simple Linux
servers.

2. Redundant Array of Inexpensive Disks. Another heavy server feature that allows multiple
disk drives to be linked up as if they were a single disk drive and to act as backup to one another
silently and transparently.

3. In a similar vein, there are some networked filesystems that do not support hard links at all
because the server or host system doesn’t support the concept. Attempts to make links on or
to such systems will also fail.

1716.2 Use Linux Features to Make Multiple Java SDKs Play Nicely Together

Example 6.1 Attempt to hardlink between mounts

$ ln example /boot/sample
ln: creating hard link `/boot/sample' to `example': Invalid cross-device link
$

Example 6.2 Symlinking /etc/passwd

$ ls -la
total 8
drwxrwxr-x 2 mschwarz mschwarz 4096 Jul 8 15:30 .
drwx------ 50 mschwarz mschwarz 4096 Jul 8 15:29 ..
$ ln -sf /etc/passwd passwd
$ ls -la
total 8
drwxrwxr-x 2 mschwarz mschwarz 4096 Jul 8 15:31 .
drwx------ 50 mschwarz mschwarz 4096 Jul 8 15:29 ..
lrwxrwxrwx 1 mschwarz mschwarz 11 Jul 8 15:31 passwd -> /etc/passwd
$ cat passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
...
etc.

What we did here works just like a hard link, but note the attributes
on the file: The l indicates a symbolic link, and the permissions are
read/write/execute for user, group, and other (or for “world” for short). How-
ever, these permissions apply to the link, not to the file. Just as with hard links,
there is only one set of permissions on the file, and these are on the file that is
pointed to, not on the pointer.

One interesting difference between symlinks and hard links is that sym-
links do not increment the link count on a file. If we remove /etc/password
(a very bad idea, by the way), the symlink would be unaffected, but an attempt
to open or read the symlink would not work, because it points at nothing that
exists. This is called a dangling symlink.

Symlinks may refer to symlinks, and thus you need to be cautious to avoid
circular symlink chains. All the shells we have used on Linux report circular
symlinks as “too many levels of symbolic links,” which sounds like a process
exceeding its stack limits but handling it gracefully.

Chapter 6 The IBM Developer Kit for Linux, Java 2 Technology Edition172

Switching Java Versions by Symlink6.2.2

Here is the process we went through to install both Sun’s Java 2 SDK and
IBM’s Java 2 SDK on a system at the same time.

1. Download the Sun JDK as a compressed TAR file.

2. Install it to /usr/java. The Sun installer named its directory
j2sdk1.4.1_02, so the full path is /usr/java/j2sdk1.4.1_02.

3. Download the IBM JDK and untar it also in /usr/java. The base
directory in the TAR file was IBMJava2-141, so the path is
/usr/java/IBMJava2-141.

4. Create a symlink called jdk in /usr/java and make it point at the Sun
JDK by default (Example 6.3).

5. Add /usr/java/jdk/bin to the system’s default PATH environment
variable.4 Also add JAVA_HOME and JDK_HOME environment variables that
point to /usr/java/jdk.

Now when we run javac or any other Java command, we run the version
which is pointed to by the jdk symlink. If we wish to switch to the IBM JDK,
we can just replace the link as show in Example 6.4.

From then on, the machine will be using the IBM Java SDK.
And, of course, by explicitly setting the path and environment variables,

you can use whatever you prefer without changing the symlink for all other
users on the system. This is an excellent example of how the features of the
Linux system can make your life as a Java developer easier—with this general
method, you can keep as many Java SDKs from as many vendors as you wish
and switch between them at will.

Here, we showed you how to do this on a system-wide basis, but you
could, by creating the symlink in your home directory and changing the path
for your user account, switch between versions in your own account only,
leaving the system-wide default alone. Linux provides endless flexibility for
developers.

4. Exactly where you do this depends on your distribution. If you aren’t sure, you can always
do it in the .bash_profile file in your user account’s home directory.

1736.2 Use Linux Features to Make Multiple Java SDKs Play Nicely Together

Example 6.3 Symlinking jdk to the Sun Java SDK

ln -s j2sdk1.4.1_02 jdk
ls -la
total 16
drwxr-xr-x 4 root root 4096 Jul 8 15:51 .
drwxr-xr-x 17 root root 4096 Jun 17 10:18 ..
drwxr-xr-x 8 root root 4096 May 21 21:09 IBMJava2-141
drwxr-xr-x 8 root root 4096 Mar 5 14:44 j2sdk1.4.1_02
lrwxrwxrwx 1 root root 14 Jul 7 22:33 jdk -> j2sdk1.4.1_02
#

Example 6.4 Symlinking jdk to the IBM Java SDK

rm jdk
ln -s IBMJava2-141 jdk
ls -la
total 16
drwxr-xr-x 4 root root 4096 Jul 8 15:51 .
drwxr-xr-x 17 root root 4096 Jun 17 10:18 ..
drwxr-xr-x 8 root root 4096 May 21 21:09 IBMJava2-141
drwxr-xr-x 8 root root 4096 Mar 5 14:44 j2sdk1.4.1_02
lrwxrwxrwx 1 root root 14 Jul 7 22:33 jdk -> IBMJava2-141
#

HOW THE IBM JDK DIFFERS FROM THE SUN JDK6.3

After the last chapter, which was one of the longest in the book, this chapter
should come as something of a relief. It is one of the shortest in the book. Why?
Because the IBM Java Software Development Kit is practically identical in use
to the Sun package. It differs in only a few respects and that is all we will talk
about here.

One of the biggest differences is the version of Java available from each
vendor. Sun has the newest versions, as they have been defining what those are.
IBM is still releasing the 1.3 versions of Java as Sun begins to release 5.0. But
you may not want or need the “bleeding edge” of the technology.

Chapter 6 The IBM Developer Kit for Linux, Java 2 Technology Edition174

Performance6.3.1

IBM’s Java implementation appears to run most code faster than the Sun im-
plementation. Benchmarking something as complex as a Java Virtual Machine
is well beyond our scope here (and, in fact, coming up with a benchmark that
will actually predict how much faster your application will run on one environ-
ment versus another is practically impossible). Nonetheless, we have seen some
fairly dramatic performance improvements when running Java applications
under the IBM JVM—improvements on the order of 50%–100%.

It is interesting to note that it does not matter which Java SDK produced
the bytecode files. We see these improvements when the compiled classes are
run, no matter which compiler (IBM’s or Sun’s) was used to produce them.
This suggests that it is some combination of a faster virtual machine and/or a
better Just-In-Time compiler (JIT) that gives IBM’s runtime its apparent
performance advantage.

For the most part, we use the Sun development kit and runtime, simply
because Sun’s is the definition of Java. But if execution speed is proving to be
critical for your application, consider the IBM Java runtime. You may see some
speed advantages.

Differences in the Commands6.3.2

You will notice a few differences. For example, there is both a java and a javaw.
Both invoke the Java runtime. The former has the Java console interface, the
latter does not. For our purposes, this does not matter. The IBM Java SDK
comes with an Object Request Broker Daemon (orbd) for CORBA/IIOP while
the Sun SDK does not. Again, for our purposes this doesn’t matter.

For the bulk of the utilities, the differences are so slight that you can use
the Sun documentation for the IBM tools.

IBM Classes6.3.3

IBM’s Eclipse project (which we begin to cover in Chapter 10) provides a large
GUI API library called SWT. We won’t go into that here; it is covered in
Chapter 17. Of more immediate interest is IBM’s enhanced BigDecimal class
(com.ibm.math.BigDecimal) which addresses a lot of deficiencies in Sun’s
implementation of decimal arithmetic. We will be using the standard Java class
in our book (as it is the same for all development kits we cover), but you might
want to take a look at IBM’s FAQ document on their enhanced BigDecimal

1756.3 How the IBM JDK Differs from the Sun JDK

class.5 It also appears that IBM’s class may become the official Sun version in
Java 5.0 when it comes out. The primary feature of this class is its ability to
deal correctly with rounding and precision, which is of great benefit in financial
and scientific applications. Check out IBM’s documentation and see if this is
something you should use.

Note that Java bytecodes are Java bytecodes. You can download and use
the IBM class with the Sun Java Runtime. It is there if you need it.

WHAT ARE ALL THESE “_G”VERSIONS?6.4

One thing you will notice right away when you unpack the IBM Java SDK is
that it has virtually all of the same commands as does the Sun Java SDK, but
there is a whole bunch of them duplicated with a mysterious “_g” suffix. What’s
up with that?

These versions run a Java VM that was compiled with debug information,
so that you can report information about bugs and errors that is of use to IBM
SDK developers in locating and fixing problems. These versions should not be
used for production work, but only to recreate and report bugs.

REVIEW6.5

Well, we told you this one would be short. With a handful of minor exceptions,
the IBM Java SDK is a complete drop-in replacement for the Sun Java SDK.
You could go back to the previous chapter and repeat every example and exer-
cise with the IBM Java SDK, and you would get the same results. There is
definitely some comfort in knowing that even though you don’t have an Open
Source Java VM and SDK, at least you have two vendors the produce function-
ally identical development environments. You are not trapped into a single
vendor’s offering.

5. http://www2.hursley.ibm.com/decimalj/decfaq.html

Chapter 6 The IBM Developer Kit for Linux, Java 2 Technology Edition176

WHAT YOU STILL DON’T KNOW6.6

What you still don’t know after reading this chapter is similar to what you still
didn’t know after reading Chapter 5. IBM Java SDK has many things we have
not covered, including security policy files, JNI, and RMI.

RESOURCES6.7

The best source of information about IBM’s Java technology is IBM itself.
Search the alphaWorks section of their Web site; we used http://
www.alphaworks.ibm.com/nav/java?openc=java+-+Developer+Kits

and found entries for the Java 1.3 Development Kit for Linux, as well as other
Java-related downloads, including the Jikes Open Source compiler.

1776.7 Resources

The GNU Compiler for Java provides a native binary compiler for Java code.
In this chapter we’ll show you how to compile a simple binary application from
Java sources.

WHAT YOU WILL LEARN7.1

You will learn how to compile a binary executable from Java source code using
the gcj compiler.

A BRAND GNU WAY7.2

Quite some time ago Richard Stallman started an effort to create a free version
of UNIX called GNU1 (which stands for GNU’s Not UNIX—a recursive

1. http://www.gnu.org/

179

Chapter 7

The GNU Compiler for Java
(gcj)

acronym). More than that, he tried to convince the world that code should be
Free with a capital “F”. By this, he meant that it was unreasonable to provide
software without both providing the source code and the right to use and
modify that code as desired. To ensure this, he and his team created the GPL2

(the GNU Public License) and founded the Free Software Foundation3 to foster
development and promote the idea.

The story of the founding of GNU/FSF and the motivations behind it4

makes for a fascinating reading. Even if you are not interested in Free Software,
the story prompts you to think in new ways about software, property, and
freedom. As interesting as this story is, it is not our topic. The important thing
is how the quest to create a Free operating system lead to a native Java compiler
and the twists and turns on this way.

THE GNU COMPILER COLLECTION7.3

If you are going to write a UNIX-like operating system, and one that is “Free”
(certainly free of anyone else’s intellectual property which might be restricted
from the Free Software point of view), the first thing you need is a C compiler.
Thus, a great deal of early effort by the FSF went into developing what was
originally called the GNU C Compiler, or gcc.

Once they had a C compiler, some people began to write hundreds of
utilities from ls to grep, while others began work on HURD, a microkernel for
GNU. That work continues to this day. The bulk of the system commands you
use on Linux were in fact developed by the FSF as part of the GNU project.
This is why Stallman et al. want us all to refer to “GNU/Linux” rather than
“Linux”.5 An understandable, if unenforceable, position.

It wasn’t long before an effort began to integrate C++ into gcc. As time
progressed, support for more and more languages and for more and more

2. http://www.gnu.org/licenses/gpl.html

3. http://www.fsf.org/

4. http://www.gnu.org/gnu/thegnuproject.html

5. A viewpoint we understand and appreciate, but we do not bow to is that we must always say
“GNU/Linux.” We say it sometimes, but it gets tedious and annoying if used all the time. So
we compromise. We tell you about GNU, but we’ll usually say just “Linux” in the text.

Chapter 7 The GNU Compiler for Java (gcj)180

architectures6 was being added. At some point, it was decided to rename
(reacronym?) gcc to mean “GNU Compiler Collection.”

Not too surprisingly, as Java emerged and gained popularity, it became
one of the languages supported by the GCC using a front end called gcj.7 That
is what we’ll be talking about here.

COMPILING OUR SIMPLE APPLICATION WITH GCJ7.4

The basic form of gcj is

gcj [options...] [codefile...] [@listfile...] [libraryfile...]

We’ll go over the options in a moment. For now, let’s talk about the
various kinds of input files the compiler can process.

In the above command-line synopsis, codefile refers to a Java source
file, a compiled .class file (yes, gcj can convert already compiled Java byte-
codes into native binaries), or even a ZIP or JAR file. A filename prefixed with
the at-sign, @, indicates that the file contains a list of filenames to be compiled.
That’s the @listfile entry in the command synopsis. Finally, zero or more
library files to link with may be specified on the command line. When you
specify them directly (as opposed to using the -l command-line option) you
must provide the full name of the library.

Like all the other Java compilers we have talked about so far, gcj supports
the notion of a classpath. It will look in the classpath for unknown classes refer-
enced by the classes you name to the compiler. Since gcj can read and compile
from .class and .jar files, you might think you could just make sure that
the JAR files from Sun or IBM Java SDK are on the gcj classpath and you
would be able to compile any Java program using any Java APIs. Alas, you
would be wrong. Why? Because the Java APIs are full of native methods,
and which methods are implemented in Java and which are native is not
documented anywhere.

6. A lot of people do not realize this, but gcc is a cross-compiler. Precompiled binaries do
not always support this, but if you build your compiler from source, you can use gcc to
compile code for any supported platform. For example, you can compile a program for a
PowerPC-based Macintosh on your Intel-based PC.

7. http://gcc.gnu.org/java/index.html

1817.4 Compiling Our Simple Application with gcj

Even if this were not so, it is not permissible under the GPL to distribute
binaries without also offering to distribute source code. So, to distribute the
Sun or IBM API JAR files would be incompatible with the GPL, and to not
distribute them but to depend on them would mean shipping a product that
doesn’t work out of the box and requires users to obtain some non-Free soft-
ware in order to work. That is just not acceptable. So the developers of gcj have
opted to reimplement as much of the Java APIs as possible.

As you can probably guess if you have browsed the Java API Javadoc files,
this is a monumental undertaking. The Java APIs are a moving target, and they
started huge and grow larger with every new release. There is a parallel project
to gcj called GNU Classpath8 which is attempting to implement the entire Java
API. Its target for the 1.0 release is to be fully compatible with Java 1.1 and
“largely compatible” with Java 1.2. You might want to look at that project for
better API support than that provided by gcj’s libgcj.9 If you are curious
about the present status of libgcj’s implementation of the Java APIs, there is
a Web page (frequently updated) that compares the status of it against the
Java 1.4 packages.10

Compiling FetchURL with gcj7.4.1

We’ll discuss gcj’s command-line switches in detail in Section 7.5, but we will
have to use a couple of them here. First off, be aware that since gcj is actually
part of gcc, all of the non-language-specific switches of that system also work
in gcj; thus, -o specifies the name of the binary output file, and so on. There
are many references on gcc to which you should refer for details (the manpage
on gcc is a good place to start). Example 7.1 shows compiling and running
FetchURL with gcj.

8. http://www.gnu.org/software/classpath/

9. The gcj and GNU Classpath projects are in the middle of an effort to merge their libraries
into a common library. The GNU Classpath project aims to be a Free Software replacement
for the JRE API JAR file. As such, it is meant to be a library of Java bytecodes that may be used
as a drop-in replacement in any Java runtime environment. For our discussion, we will assume
you are using libgcj as shipped with gcj itself.

10. http://gcc.gnu.org/java/jdk14-libgcj.html

Chapter 7 The GNU Compiler for Java (gcj)182

TIP

The source code for FetchURL can be found in Example 3.30.

Example 7.1 Compiling and running FetchURL with gcj

$ gcj -o furl --main=FetchURL FetchURL.java
$./furl http://www.multitool.net/pubkey.html
http://www.multitool.net/pubkey.html:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>
<HEAD>
<TITLE>Michael Schwarz's Public GPG key</TITLE>
</HEAD>
<BODY>
<CENTER>
<H1>Michael Schwarz's Public GPG Key</H1>
</CENTER>
<PRE>
-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.0.7 (GNU/Linux)

mQGiBDuv6IQRBACn1TIWUXiEuZtfR+0Lqx6tYBAzIRpljL42O6r5nKHmndsWV71e
FUnhQpQIf+bNGGPMEt0g0vFpD6YWKP4uIEh2o+u1iyIIMs5QH3iqp8kFjbtVZa21
...
...
...
etc.

We already explained the -o switch which names the resulting binary. The
other switch we use here is --main which specifies the class containing the
main() that should be run when the binary is invoked. Remember that every
Java class may contain a main(). In a multiclass program, the binary needs to
know which main() to run when the binary is executed.

Remember that FetchURL is in the default package,11 so you simply
type the class name as the argument to --main. However, if the class is in a
nondefault package, the fully qualified name must be used.

11. Any class without a package declaration is in the default package.

1837.4 Compiling Our Simple Application with gcj

Compiling a Multiclass Program7.4.2

For contrast, Example 7.2 shows compiling a multiclass program that is
contained in a package (it is the Payback debt/savings/purchase calculator).12

Example 7.2 Compiling and running a multiclass program

$ cd payback/src
$ gcj -o payback -I. --main=net.multitool.Payback.Payback \
net/multitool/Payback/Payback.java
$./payback
Payback -- A savings/credit comparison tool
Copyright (C) 2003 by Carl Albing and Michael Schwarz
Released under the GNU/GPL. Free Software.
...
...
...
etc.

The -I switch names a directory that is to be prepended to the classpath.
In this case, we added “.” which is the source directory for the Payback
program.13 Notice the package elements expressed with dots for the --main
argument, and with slashes for the filename argument.

NOTE

The gcj compiler does pick up and use the CLASSPATH environment variable
if it is specified. Also, gcj has a number of switches besides -I for classpath
manipulation. We won’t cover those here; -I is the preferred method (according
to the gcj manpage at any rate).

12. Since this chapter was written, XML features were added to Payback that make it no longer
work with gcj.

13. The Payback code can be found at the book’s Web site: http://www.javalinux-
book.com/.

Chapter 7 The GNU Compiler for Java (gcj)184

OPTIONS AND SWITCHES7.5

As we have said, gcj is part of the gcc suite of compilers and therefore supports
all of the non-language-specific options and switches of that suite.

As with most reference material in this book, we will only cover the
highlights. See the gcj manpage or the project’s Web site for full details.14

-Idirname

Add dirname to the classpath ahead of its existing contents.

-Dname[=value]

Add name and optional value to the system properties list. This is only
valid with the --main switch.

--main

Specifies which class contains the application’s main(). This gives the
starting point for an application.

-fno-bounds-check

Disable array bounds checking. Like “real” Java, gcj checks all array oper-
ations to ensure that array bounds are not exceeded. Using this switch
disables that check. It speeds up array operations but can introduce subtle
and hard-to-find bugs. Use at your own risk.

-fno-store-check

Like -fno-bounds-check, this disables a safety feature on arrays. Normal-
ly, when you store an object into an array, a check is made to make sure
that the object is assignment-compatible with the array type (in other
words, that the object is an instanceof() of the array type). Using this
switch disables this test. It speeds up array operations but can introduce
subtle and hard-to-find bugs. Use at your own risk.

There are other switches for native methods, bytecode (as opposed to
native) compilation, and some switches related to resources. We leave it as an
exercise for the reader to learn and use these where needed.

14. http://gcc.gnu.org/java/

1857.5 Options and Switches

REASONS TO USE GCJ7.6

You might think that speed would be the primary reason to use gcj, but this is
not necessarily the case. Yes, gcj is usually used as a native code compiler
(it can compile to Java bytecode as well, and thus can be used as a replacement
for javac), but there is a lot more to Java performance than that. First off, both
Sun’s and IBM’s JVMs have JIT (“Just-In-Time”) compilers in them, which
convert some or all of a class’s bytecode to native code on the fly. In some cases,
these compilers may do a better job than the gcj compiler, so as a result, initial
runs under a JVM are slower than gcj but later loops or iterations are compara-
ble or faster. Also performance of both gcj and JVM code is highly affected by
memory, stack, and garbage-collection parameters which may be modified with
command-line options or properties files. So speed is not the determining fac-
tor. We have not done sufficient testing or measurement to tell you which en-
vironment produces “the fastest code” from a given source file. (We’re not even
sure exactly what such “sufficient testing” might consist of. All we can suggest
is that your try your code in all three environments and then make your
own choice.)

It is, perhaps, ironic that one of the main reasons why you might wish to
use gcj is portability. You see, you can only run Sun’s and IBM’s JVMs on
platforms for which they provide a compiled version. Linux runs on several
hardware platforms (such as StrongARM) for which Sun and/or IBM do not
provide JVMs. Also, if you are running Linux on some architectures, there may
be VMs for the “official” OS, but none for Linux on that architecture. This is
the case, for example, for SPARC and Alpha. The cross-compilation that gcj
inherits from the GNU Compiler Collection allows you to compile Java to
native code for Linux on those platforms.

Another reason to use gcj might be a desire for better integration with
code compiled from other languages. gcj has JNI support, but also provides its
own inter-language integration system called CNI, for Compiled Native Inter-
face. We don’t have space to cover CNI (and, frankly, we haven’t used it
enough to be good judges), but its proponents claim that it is both easier to use
and more efficient than JNI. You can read up, use it, and judge that for
yourself.

Still another reason might be one that we don’t like very much. Again, it
is ironic that the only Free Software Java compiler is the one best able to pro-
duce proprietary binary code. Code compiled with gcj is as difficult to reverse
engineer as compiled C or C++ code. It is subject to the same sort of binary

Chapter 7 The GNU Compiler for Java (gcj)186

obfuscation as other native compiled code. If you need to make your code
closed and proprietary, gcj may be the right tool for you. Naturally, we aren’t
very fond of this idea, but it is still a reason one might choose the tool.

Finally, we mentioned that speed wasn’t a certain factor for choosing gcj,
but there is an exception. So far,15 Java is particularly slow at starting and
shutting down virtual machines. If you have a Java program that is invoked on
demand or in a loop and the VM is started and stopped on each invocation,
then gcj will give you a huge speed improvement, even if the code executes at
the same speed or slightly slower than the JIT JVM code.

REASONS NOT TO USE GCJ7.7

We can think of three reasons not to use gcj. First, the compiled binary will
run only on the target platform, whereas a Java bytecode binary is portable to
any Java runtime without modification or recompilation. Second, gcj is not
definitive. Sun still “owns” Java and only Sun’s implementation can be pre-
sumed to be “correct.” Third, the gcj API classes are not complete. If you visit
the API status page we mentioned earlier, you can see what is provided and
what is not. If gcj lacks an API your application requires, then you can be sure
gcj is not the tool for you.

REVIEW7.8

The GNU Compiler for Java is part of the GNU Compiler Collection. It is
generally used to compile Java source code into native binaries. It provides
many of Sun’s API classes, but not all.

WHAT YOU STILL DON’T KNOW7.9

You do not know how to interface with C/C++ code using gcj. You do not
know how to use SWT from Eclipse to write GUI apps with gcj.

15. Sun claims that Java 5.0 will show considerable improvement in VM initialization speed.

1877.9 What You Still Don’t Know

RESOURCES7.10

There are a number of resources for gcj, including

• The gcj home page.16

• The gcj FAQ.17

• The gcj documentation page.18

• The JDK1.4 to libgcj comparison page.19 This resource is particularly
useful in deciding whether gcj is an appropriate tool for compiling your
program.

• Many features of gcj are, in fact, “inherited” from the parent project,
the GNU Compiler Collection. You can find your way to a lot of good
information from the GCC home page.20

16. http://gcc.gnu.org/java/

17. http://gcc.gnu.org/java/faq.html

18. http://gcc.gnu.org/java/docs.html

19. http://gcc.gnu.org/java/jdk14-libgcj.html

20. http://gcc.gnu.org/

Chapter 7 The GNU Compiler for Java (gcj)188

Source control is such a necessary part of good development practice that it
ranks right up there with a sound compiler as a critical part of any software
project. It may seem like only an administrative overhead to newcomers, but
its effect on a project of any size will be felt over time; it’s not the first version
of a project that needs source control so much as versions 2 and beyond. And
it can be a life saver.

One of the Linux tools that is most appreciated on projects around the
globe is the Concurrent Versioning System, CVS.1 It is one of the best, most
reliable pieces of software that these authors have ever used. It should be part
of your repertoire of software skills, even when you’re not running on Linux.
But enough praise; back to practicalities.

1. As we were writing this chapter, the core developers of CVS released version 1.0 of a new
version control system called Subversion. This new system supposedly contains many improve-
ments over CVS. We do not doubt this, and we recommend that you take a look at Subversion
before you select a version control tool. Meanwhile, we know CVS, and most Open Source
projects are currently managed with CVS. Choosing CVS won’t be a bad choice.

189

Chapter 8

Know What You Have:
CVS

WHAT YOU WILL LEARN8.1

• Why you need CVS—the problem with source code.

• How CVS solves this problem.

• Some basic CVS mechanisms:

• Importing source

• Checkout

• Commit

• Tagging

• Branch tagging

• Status

• Log

• Export

• A quick look at a CVS GUI.

SOURCE CONTROL: WHYS AND HOWS8.2

Consider the following scenario: A customer has called with a problem in the
software that your development team released over a month ago. Your develop-
ers try to reproduce the problem on their systems without success. What version
of software is your team running? Well, there has been a lot of development
in the last month, a lot has changed. Some new features have been
added—halfway. In other words, it’s close but not really the same software.
And it’s far from being ready to be given to the customer as a fix-release. Well,
what’s changed since the release was shipped six weeks ago? Can you find or
create a set of sources that matches exactly what the customer is running? Can
you then provide a modified version that contains only the fix necessary and
no other changes?

With such low prices for hard drives these days it is now economically
feasible to track your software releases simply by shelving an entire hard drive
with each release of your software. It could contain the source code and all the
tools in use for that version. But it does make search and comparisons a bit
difficult. Still, conceptually, this is almost what you’d like—to be able to access
an image of what your source looked like at any given point in time (for
example, when released).

Chapter 8 Know What You Have: CVS190

Enter cvs—the Concurrent Versioning System. It’s a versioning system,
allowing you to retrieve copies of the source based on either date parameters
(e.g., last Tuesday) or the labels that you create. It’s concurrent because it
supports multiple simultaneous users.

You may have used a versioning system before that let multiple program-
mers work with a set of files. Often such systems will “lock” a file while one
user is using it, keeping others from modifying it. CVS doesn’t work that
way—or doesn’t have to. Rather it allows users to each modify the same file
(truly concurrent), and then reconciles the changes when those changes are
made permanent.

To explain all this, it would be best to set down some terminology, as used
by CVS.

repository
The master copy of the source.

sandbox
A developer’s local copy of the source.

checkout
The process of acquiring a copy of the source (one or more pieces) from
the repository.

commit
The process of adding the changes from your sandbox into the repository.

update
The process of revising your sandbox with changes that have occurred in
the repository since you last updated or created your sandbox. When you
“update” your sandbox, other developers’ changes that have been commit-
ted to the repository are merged into your source sandbox.

tag
As a noun, is a special label that you create to mark a milestone in your
source repository; you can return to that milestone by checking out a copy
of the source with that tag.

tag
As a verb, refers to creating a tag in the source repository.

1918.2 Source Control: Whys and Hows

Once a repository has been set up for use by a project, each developer
would check out a copy of the source. Thereafter, the typical sequence for a
developer would be:

1. Edit.

2. Test.

3. Commit.

4. Go to step 1.

In some organizations, developers will commit and then test. Others will
want to only commit changes that have been tested. Which order you choose
is a policy decision by your project, not mandated by CVS.

TIP

We recommend that you test before committing because once you have com-
mitted your changes, they become available to all others developers. The more
people are working together on a project, the more important it is to keep the
source base workable, that is, clean compiling at least, so others can keep
working.

Sometimes the developer needs to do an update step before a commit.
Such a step is used to integrate other developers’ changes into this developer’s
source. Sometimes this goes smoothly; other times it needs some
additional work.

A simple scenario might help explain these steps, too.
Two developers, Ti and Kwan, are working on project Doh. They already

have a repository set up with all the source for project Doh. Each developer,
on his/her own system, checks out a copy of the source (cvs checkout doh).
Now let’s say that part of the source is a Java class file called Account.java
and it has had several changes made already, so Account.java is now at
version 1.7 in CVS.

Let’s say that Ti finds a bug in Account.java and makes a change to fix
that problem. Ti checks in (commits) the changes to Account.java (cvs
commit Account.java) so that the repository now contains Ti’s changes,
which CVS keeps as version 1.8 of Account.java.

All this time Kwan has been busy modifying Account.java (e.g., adding
a new method). Remember that Kwan is working from the 1.7 version. When

Chapter 8 Know What You Have: CVS192

Kwan goes to commit his modified version of Account.java to the repository,
he is notified that Account.java has been changed since his copy was checked
out, and the commit attempt fails. So Kwan does an update which merges the
1.8 version of Account.java in with his modified 1.7 version. If all goes well,
the resulting file will be a 1.8 version of Account.java which includes Kwan’s
new changes in the right place(s). Kwan just commits this to the repository,
and Account.java then stands at version 1.9.

Note that cautionary phrase “if all goes well.” The merge will work if Ti
and Kwan have each modified different parts of the same file. If all Kwan did
was add a new method, it would merge just fine. But what if they both make
changes in the same region of the source file? It is up to the programmer to
resolve such conflicts and commit the source once again.

In such a situation, CVS does what it can to help out. There is an example
of a merge conflict later in this chapter. But such conflicts require human
intervention.

Merging of conflicts is, undoubtedly, a very manual process, but you will
be surprised by how infrequently you need to do this. Most changes will be
merged clean with no manual intervention required. That’s probably because
most often, when two or more programmers are modifying the same file, they
are modifying different sections of it.

With merging, you have the ability to incorporate other developer’s
changes into your version of the source without the fear of losing your changes.
No one’s changes get lost, no one’s files get “stepped on.”

Setup8.2.1

Before you can use CVS to track your sources, you need to initialize a reposito-
ry. You can use this repository for several different projects, so you only need
to do this setup once.

There are two different ways to connect to a repository—directly on a
filesystem, or indirectly over a network. We will use the simpler filesystem
mechanism for this discussion. The network connections are described in the
references at the end of this chapter.

In order for CVS to know where the repository is located and how to
connect to it, it looks for an environment variable called CVSROOT. You can
assign a value to CVSROOT from the command line each time you create a CVS
project, or for more convenience, you can set it in the shell startup script
(e.g., .bashrc) so that its ready all the time. The CVSROOT value is really only

1938.2 Source Control: Whys and Hows

used, though, to set up the project. Once a project is established, the informa-
tion in CVSROOT is kept, along with other data, in a directory of files (called
CVS). From that point on, CVSROOT (the environment variable) no longer needs
to be set. The CVS commands will always use what is in the local sandbox to
determine where the repository is; the value of the environment variable will
be ignored.

It is possible to have different repositories for different projects. One
repository might be for your personal work—revisions of memos and docu-
ments that you create on your local machine and store in a repository also on
your local machine. Another repository might be a shared network-based
repository, used for a project at work. Still another might be a network-based
project for some Open Source work that you do in your spare time. Since the
CVS repository keeps track of whence it comes, you needn’t set a value for
CVSROOT every time you switch projects. Instead, CVS knows from within the
sandbox where to go for its updates, commits, and so on.

So let’s get started and create a CVS repository on our local Linux system,
in our own home directory. We will call the repository srcbank, as it will be
the “bank” where we will deposit our source files.

$ mkdir ${HOME}/srcbank
$ export CVSROOOT="${HOME}/srcbank"
$ cvs init

The mkdir creates the directory named srcbank as a subdirectory of our
home directory. The export command sets the shell variable CVSROOT to refer
to the location of the new directory. The cvs init command initializes the
repository with some needed directories and data files.

Before the cvs init command, the srcbank directory is empty. After-
ward it contains a directory called CVSROOT (literal name, not the shell variable’s
value) which contains a variety of administrative files—most of which you need
never worry about.

If your are using a remote repository, that is, one that you connect to over
a network (typical when you are sharing a repository amongst team members),
then you need one additional step—you need to log in to the CVS repository’s
server:

$ cvs login

Chapter 8 Know What You Have: CVS194

which will prompt you for a password. Having logged in once, you will not
need to log in again, even after reboots of your system, as CVS keeps the
password (by default; it can be changed) in a file called .cvspass in your home
directory. This makes using CVS with a remote repository (once you’ve logged
in as simple as if the repository were local). From here on, the commands will
all look the same. If your repository is remote, CVS will use the password from
your .cvspass file, without asking you for it.

Import8.2.2

Are you wanting to use CVS on an existing project? Have you already got your
project at least partly underway? Let’s look at how to enter all those files into
CVS with a single command.

Not every file that is in a working directory needs to be kept under source
control. Some, like .class files, are created from the .java source files. Others
may be just scratch files that you don’t want to keep versioned.

To automatically exclude certain files from ever being included in your
repository, CVS uses a file called .cvsignore that lists filename patterns. Any
filename matching a pattern will be ignored by all CVS commands.

Here is a .cvsignore file that we recommend for Java developers:

*.zip
*.class

This will exclude any file whose name ends in .class or .zip. Note that
the comparison is strictly based on a name, not the actual contents. CVS
doesn’t know what a “class” file is; it is only excluding a file based on its name.

Certain files are not really source files and can’t be managed as such, but
we would still like to keep versions and a history of changes for them. A good
example would be an image file. For example, you may have a corporate logo
in a file called logo.jpg and at some point you may get a new or revised ver-
sion of that file. You can use CVS to track such files, but you need to tell CVS
that this is a binary file, so that CVS doesn’t try to do some special substitutions
that it does on check-in and check-out. (More about those substitutions later.)

For now, let’s just consider how to tell CVS which files are binary. We can
do that on the command line when we create a new file, but for importing a
lot of files at once, and to avoid the need to remember doing that each time we
add a file, we can put patterns for binary filenames in a CVS file called
.cvswrappers.

1958.2 Source Control: Whys and Hows

Here is a .cvswrappers file that we recommend for Java developers:

#
A recommended .cvswrappers file
#
jar files - treat as binary:
*.jar -k 'b'
#
Image file formats - treat as binary:
*.gif -k 'b'
*.jpg -k 'b'
*.png -k 'b'
*.tif -k 'b'
#
Document file formats - treat as binary
both MSOffice and OpenOffice.org file formats:
*.doc -k 'b'
*.ppt -k 'b'
*.xls -k 'b'
*.sx? -k 'b'

The format of the file is very UNIX-like. A leading # means that the rest
of the line is a comment. The asterisk matches any number of any characters.
The question mark matches a single character.

Now we’re ready to import. The .cvsignore file should be placed in the
topmost directory of the set of files that you want to import. Then, from that
directory, issue the command:

$ cvs import Project YourCo import

where Project is whatever name you want to use for this project (or module)
in CVS, and YourCo is the name of your company or some other designator
to differentiate this source from other third-party packages that you may keep
in your repository.

Most importantly, execute the cvs import command from within the
directory, even though the name of the project is likely (but doesn’t have to be)
the same as the name of the directory in which you sit.

For example, consider a fragment of the filesystem shown in Figure 8.1.
You would want to cd into the directory coolj and then issue the import
command:

$ cd coolj
$ cvs import coolj GJSinc import

Chapter 8 Know What You Have: CVS196

mydir

prev coolj misc

FetchURL.java Sprit.java Tux.java

Figure 8.1 A sample directory structure prior to import

This will create a module named coolj in the repository, whose contents
are all the directories and subdirectories that you see there. But you had to be
in the coolj directory, which may seem counter-intuitive.

Now go to some other directory, one that is not part of the coolj part of
the tree, and check out a copy of the source. For example:

$ cd
$ mkdir devsrc
$ cd devsrc
$ cvs checkout coolj

NOTE

It is important to check out the source after you’ve done the import, and before
you make any changes, because the part of the filesystem that you imported
remains untouched. It has no CVS knowledge, so you can’t commit changes
from that directory, unless you somehow make it CVS-aware. Since these files
are your originals, until you’ve verified that the cvs import has gone as
planned, it’s best not to disturb those files. Create a new directory and check
out the module there.

What do you see after the checkout? There should be a single directory,
coolj, in the directory where you did the checkout (since it was empty when
you started). That directory contains a copy of all the files that you checked in,
along with a directory named CVS inside that directory and every subdirectory.
The CVS directories contain administrative files that help CVS keep track of
things for you, which means no CVS tracking information needs to be kept in

1978.2 Source Control: Whys and Hows

your source. You should never need to mess with the files in the CVS directory;
see the Cederqvist reference in Section 8.6 for more information about
these files.

Normal Use8.2.3

The typical use of CVS occurs after you’ve made some changes to your source
code. At some point, typically after the code compiles cleanly or after the
changes have been tested to some extent, you will want to commit your changes
to the CVS repository. When you commit one or more files, they become the
latest version, the version that others get when they checkout or update the
module. To say it another way, when you commit, you make those changes a
permanent part of the source repository, available to others.

You can commit a single file at a time, like this:

$ cvs commit Account.java

Or you can commit several files at a time, like this:

$ cvs commit Account.java User.java Xyz.java

Or you can commit all the changes from a certain point in the filesystem
hierarchy (e.g., the current directory) on down, like this:

$ cvs commit

(Specifying no files implies the current directory. You can also name a directory
explicitly.)

When you commit changes, CVS wants you to provide a bit of commen-
tary to explain what you’ve changed, to say something about this new version.
The comment can be supplied on the command line, with the -m option:

$ cvs commit -m "bug fix"

If you don’t provide the -m parameter and its argument, CVS will invoke
your favorite editor (as specified in the environment variable CVSEDITOR or
VISUAL or else EDITOR, in that order of precedence). The default, on Linux
systems, is to invoke vi (see Figure 8.2). In the editor, you can type one or more
lines of text; when you exit, the commit will continue to completion.

Chapter 8 Know What You Have: CVS198

Figure 8.2 CVS asking for commentary as part of a commit

NOTE

If you quit the editor without writing your changes (in vi, that would be :q!) then
CVS will ask if you want to abort the entire commit. If you choose to abort, no
changes will be made to the repository. You’ll be right back to where you were
just before typing the cvs commit command.

You will be able to see the comments associated with each version of the
file using the cvs log command (see Section 8.2.6).

As you will want to provide brief but meaningful descriptions in these
comments, it may be helpful to remind yourself what in fact has changed. You
can see the differences between the version that you checked out and the file as
it stands today by using the cvs diff command:

$ cvs diff Account.java

Here, as in commit, you can name one or more files, or even a directory. CVS
will display what lines you’ve added, modified, or removed in each file.

1998.2 Source Control: Whys and Hows

Example 8.1 Sample output from cvs diff

$ cvs diff Account.java
albing@cvs.multitool.net's password:
Index: Account.java
===
RCS file: /usr/lib/cvs/cvsroot/JavaAppDevLinux/majorApp/net/multitool/core/
Account.java,v
retrieving revision 1.10
diff -r1.10 Account.java
31d30
< this.parent = null;
66a66
> * returns an iterator
93c92
< children.put(acct, name);

> children.put(name, acct);
$

In Example 8.1, CVS has found three differences—one line being re-
moved, one line being added, and one line being changed. The < precedes lines
from the repository version, and the > precedes lines from the new, that is,
changed, version. The 31d30 shows the line numbers from both versions, sep-
arated by a single character to indicate what difference action is being described:
a for adding lines, d for deleting lines, and c for lines that change.

A typical work sequence might go something like this:

1. Edit some files.

2. cvs diff those files.

3. cvs commit those files.

4. Go to 1.

The cvs diff command is also quite useful for finding out what changed
between some previous version of a file and the current version:

$ cvs diff -r 1.15 Account.java

or between two different previous versions:

$ cvs diff -r 1.12 -r 1.15 Account.java

Chapter 8 Know What You Have: CVS200

or since a certain date:

$ cvs diff -D 06-Sep-03 Account.java

Update8.2.4

If there are other people working on this project with you, they will also be
making changes. To bring there changes into your sandbox, run the cvs
update command:

$ cvs update
cvs server: Updating .
P Account.java
M User.java
cvs server: Updating subdir

Here, P indicates CVS has patched in changes to that source file; and M
indicates you have modified the file. Note that Xyz.java is not mentioned.
That means there were no updates involved.

The subdirectory subdir was also updated, but no changes were made.
Had a change been made, you would see the modified files mentioned by name.

You can update a single file at a time by naming that file on the command
line, but typically you want to get the changes for all the files in a directory, or
even all the changes throughout the project, since a change in one file may be
dependent on changes in other files.

Sometimes when you try to commit your changes you will be told that the
commit did not succeed because one or more of your files was not up to date.
Not to worry; it’s easy to bring your files up to date. This leads directly into
our next topic. Read on!

Merges8.2.5

When you commit changes, a new version of each changed file is now part of
the repository. If someone else commits changes, that person’s changes are now
part of the repository as well. But those changes (unlike your own local changes)
are yet to appear in your own local copy of the files, that is your sandbox.

The following CVS command will bring your files up to date with all the
changes made since you checked out your copy (or last did an update):

$ cvs update

2018.2 Source Control: Whys and Hows

With that command all the files from the current working directory on
down will be updated with the most recent versions of the files from the
repository—and not just updated: changes that you have made in your local
files will be preserved and merged with the new version of the files.

Here’s what a successful merge looks like:

$ cvs update Account.java
cvs server: Updating Account.java
M Account.java
RCS file: /usr/local/srcbank/JavaAppDevLinux/Account.java,v
retrieving revision 1.17
retrieving revision 1.18
Merging differences between 1.17 and 1.18 into Account.java
M Account.java
$

Remember our scenario earlier in the chapter? Our two programmers, Ti
and Kwan, have each modified the same file. If all Kwan changed was adding
a new method, it would merge just fine. But what if they both made changes
in the same region of the source file? Well, the first one to check in his changes
will be fine. His commit will succeed. But the second person to try to commit
changes to the file will find that CVS will report an error:

$ cvs commit Account.java
cvs server: Up-to-date check failed for `Account.java'
cvs [server aborted]: correct above errors first!
cvs commit: saving log message in /tmp/cvsQ9rk01

Now, attempting to update will put both versions in your local file, marked
up by certain character strings to highlight and separate the sections. It is up
to the programmer to resolve those conflicts and commit the source once again.

Here’s an example of how a conflict might look in a source file:

<<<<< ver. 1.7
for (i=0; i<20; i++) {
 myData.callSomething(dollars, time);
}
======
while (i<20) {
 myData.callOtherwise(dollars*(i++), time/60);
}
>>>>>

Chapter 8 Know What You Have: CVS202

In such a case, the programmer must decide which changes to keep, or
how to combine them. After editing the file and removing the dividing lines
(i.e., <<<<<, =====, and >>>>>), recompiling and probably a bit of testing,
too, the programmer can now do a cvs commit to incorporate his changes in
the repository.

Log8.2.6

With each cvs commit you are prompted for a comment, to describe the
changes that you are committing. What happens to these comments? How can
you see them again? Use the cvs log command to show the history of a file’s
revisions and associated comments.

See Example 8.2 for an example of the cvs output command.
Looking down the output of cvs log, you can see

• The complete filename—in the repository—of the file whose log we’re
checking out.

• The local filename in your sandbox.

• Which revision is the “head,” that is, the front-most or default revision.

• Which branch, if any.

• What kind of locking mechanism CVS uses. There are some choices, but
most users of CVS leave this as is.

• The access limitations. CVS can limit who can modify files (see our
reference list if you need to use this).

• A list of all the tags (symbolic names) for this module and to which
revision each refers.

• What kind of keyword substitution happens. For binary files this would
be kb.

• The count of revisions for this file.

Then comes a description of each of the revisions, showing

• The revision number.

• Some stats on the change including the user ID of the user who committed
the change.

• How many lines were added and deleted compared to the previous revi-
sion.

2038.2 Source Control: Whys and Hows

Example 8.2 An example of running the cvs log command

$ cvs log Account.java
RCS file: /usr/local/srcbank/JavaAppDevLinux/Account.java,v
Working file: Account.java
head: 1.4
branch:
locks: strict
access list:
symbolic names:
keyword substitution: kv
total revisions: 4; selected revisions: 4
description:

revision 1.4
date: 2003/05/20 11:59:59; author: albing; state: Exp; lines: +80 -5
more comments added

revision 1.3
date: 2003/05/18 15:03:23; author: albing; state: Exp; lines: +3 -2
end case fixed

revision 1.2
date: 2003/05/17 11:05:40; author: albing; state: Exp; lines: +69 -2
actually runs - unit tested

revision 1.1
date: 2003/05/17 10:15:18; author: albing; state: Exp;
a rough structure
===

• The comment that was entered when the user committed the change.

(For a description of state, and why you will almost always see Exp;, see the
Cederqvist reference in Section 8.6.)

Do you want less output from cvs log? You can restrict the information
to cover only a certain user’s changes (-w), to a certain range of revisions (-r),
and/or between certain dates (-d).

For example,

cvs -walbing -r1.2:1.4 -d05-Sep03 -d28-Sep-03 Account.java

will list only changes committed by user albing, only in the revision range of
1.2 through 1.4, and only between the dates of 05 and 28 September of 2003.

Chapter 8 Know What You Have: CVS204

Note: do not put a space between the -w, -r, or -d and its parameter or CVS
will think that the parameter is the name of a source module, and you will see
a message like this:

$ cvs log -r 1.2:1.4 Account.java
cvs log: nothing known about 1.2:1.4
...

which will be followed by output about the Account.java module that CVS
does know about.

For more variations on the logging output, type:

$ cvs log --help

cvs status8.2.7

While the cvs log command will tell you about the history of all revisions of
a file, you sometimes need to know the status of the current file in your sand-
box: Which revision is it? From where did it come? And, most importantly, is
it part of the head or part of a branch?

Those questions can be answered with the cvs status command. Its
output will show the revision number of the file in your sandbox and any
“sticky” tags. But to understand what that means, we need to talk about tags
first.

cvs tag8.2.8

We began this chapter asking: “Can you find or create a set of sources that
matches exactly what your customer is running? Can you then provide a mod-
ified version that contains only the fix necessary and no other changes?” Part
of the answers to these questions will depend on your use of the cvs tag
command. With it, you can set down a label across all your source to mark a
particular milestone, so that later you can recall that version of the source.
For example,

$ cvs tag Rel_2_4

will put a tag (that is, a label) called Rel_2_4 on the head revision of all source
files from the directory where this command was executed on down through

2058.2 Source Control: Whys and Hows

all its subdirectories. If you run this command from the uppermost directory
in your project sandbox, it will label your entire project.

A tag can be applied to a single file or group of files by listing them
explicitly on the command line.

NOTE

Certain special characters are not allowed in CVS tags. Specifically, the charac-
ters $,.:;@ are not allowed. So you can’t use release_2.4 as a tag.
Too bad.

Tags cut across the various revisions of the source. While you can specify
that a tag goes on the same revision of all sources (e.g., cvs tag -r 1.3
one_dot_three_tag), the more typical use is to tag different revisions of each
module, the revisions that you’ve just been working with and testing.

Figure 8.3 shows a tag (QA) that cuts across the various revisions of the
different sources. With such a tag, someone can check out a copy of the sources
to get the QA release:

$ cvs co -r QA project

a.java
v. 1.1

a.java
v. 1.2

a.java
v. 1.3

b.java
v. 1.1

b.java
v. 1.2

QA tag

b.java
v. 1.3

b.java
v. 1.4

c.java
v. 1.1

c.java
v. 1.2

Figure 8.3 A tag across three files

Chapter 8 Know What You Have: CVS206

Since your project would likely have more than one time in its life that it
would be handed off to QA, some people will put date information in the tag,
for example, QA_2003_07_15. Others will use a simple tag, such as QA, but
such a tag may need to be reused.

If you’ve put down a tag and decide that you no longer want that tag
(for example, your product is preparing for a new QA cycle and you want to
reuse last cycle’s tag, or maybe you simply misspelled your tag), you can delete
it using the -d option.

WARNING

Once you delete a tag, it’s gone forever. It is not available even when you recall
earlier versions. If you reuse a deleted tag, it doesn’t remember any history from
its first use.

Imagine your project has just reached a milestone, like the hand-off to QA,
so you have tagged your source accordingly. Now the QA group finds a bug and
you fix it. What do you do with the tag? The tag will be on the unfixed version
of source. One thing that you can do, after you commit your changes, is simply
to move the label:

$ cvs commit Account.java
...
$ cvs tag -F QA Account.java

This will “force” the tag on Account.java to move to the current version.
Such a mechanism works fine for the short term, for quick changes that

are put in shortly after the tag has been set down. But what if it takes QA several
days to find the bug, and what if, during that time, you’ve been refactoring
Account.java, or adding features for a future release? In those cases, what you
really need is a branching tag.

Branching Tags8.2.9

When you use the -b option with a cvs tag command, then the tag you create
is a “branching” tag. That means that you now have two paths in your source
repository. You can check out source from, and commit changes to, either of
those paths. This allows you to keep moving ahead with new development on
the head or tip of the source while providing fixes against a previous version.

2078.2 Source Control: Whys and Hows

a.java
v. 1.3

a.java
v. 1.4

a.java
v. 1.5

a.java
v. 1.6

a.java
v. 1.4

a.java
v. 1.5

a.java
v. 1.4

a.java
v. 1.5

Head

QA

Figure 8.4 A simple branch and merge

Figure 8.4 shows a single source file with a single branch. The tag (QA)
may have been applied to multiple files, typically to your entire project. The
branched version of each file (for example, 1.3.1.1) is not created until the next
change is checked in for that file, so many of the files with the tag may still be
on their main source branch.

TIP

When do you want to create a branching tag? You can do it at any time that you
lay down a tag. We have found it best to do it right away when you “release”
your software, that is, whenever you hand it off to another group (e.g., QA or
customers). This provides a label (the tag) to identify what exactly was handed
off, but also puts the possibility for branching in place for fixes that may be
needed on that branch.

Let’s look briefly at the steps you would take to lay down a branching tag
named QA, and then apply a fix to that branch.

In the directory where you have your current source, which is what you
just released, set down the branching tag:

$ cvs tag -b QA

NOTE

You have just set down the branching label on the source but you have not
changed your current set of sources. If you make changes in the current direc-
tory (and subdirectories) and check those changes in, you will be making those
changes to the head, not the branch, of the source.

Chapter 8 Know What You Have: CVS208

Example 8.3 Checking out a tagged revision

$ cd
$ mkdir fixes
$ cd fixes
$ cvs co -r QA myproject
cvs checkout: Updating myproject
...
U myproject/Account.java
U myproject/Caltron.java
U myproject/Demo.java
U myproject/Employee.java
U myproject/Person.java
...
$ cd myproject
$ cvs status Account.java
===
File: Account.java Status: Up-to-date

 Working revision: 1.2 Sat Oct 26 03:32:17 2002
 Repository revision: 1.2 /usr/local/srctree/myproject/Account.java,v
 Sticky Tag: QA (branch: 1.2.2)
 Sticky Date: (none)
 Sticky Options: (none)

$

Now that you have the label set down, you need to check out a copy of
that version of the source. Since we are checking out a new copy, be sure that
your CVSROOT environment variable is set appropriately (see above). Then find
some new directory to put your source and check out a copy with the tag, as
shown in Example 8.3.

We did a cvs status after the checkout to show you the important dif-
ference between this version and the other versions. These files will all show a
Sticky Tag in their status. This is the label used to check out or update this
version of the source. When you check in changes to these source files, the
changes will be against that branch, and not the head.

From there on, everything is the same. Make your changes and just check
files in as usual. CVS will remember (via the files in the CVS directory) that
you’re on the branch, so when you check things in, they’ll go to the branch.

The important thing is to create the tag as a branch tag so that you can
commit changes against that branch. The downside, however, is that you now

2098.2 Source Control: Whys and Hows

have two different source versions; bug fixes have to be made in both sources,
new features have to be added twice, and so on.

The easiest way to deal with that is to keep your number of active branch
tags small; you likely don’t want to have to apply a fix to 14 different
branches. Also, keep the lifespan of the branches brief—which is, of course, a
relative term.

CVS does provide commands to merge a branch back into the source head.
But for this, we will refer you to other CVS material. Our job is to give you an
overview and a feel for the possibilities. For this sort of task you will want a
complete reference manual.

For more variations on cvs tag, type:

$ cvs tag --help

cvs export8.2.10

If you want to produce a copy of your source tree without the CVS subdirecto-
ries—just the pure source—you can use the cvs export command. Like the
inverse of import, it will check out a copy of the source, but will not create any
of the CVS subdirectories that allow CVS to manage the commits, checkouts,
logging, status, tags, and so on. In other words, the exported directories are not
a CVS sandbox—they’re just a copy of the files.

NOTE

Changes made to an exported collection of files cannot be committed back to
CVS. Of course you can get the changes back into CVS by creating a sandbox
with a cvs checkout command, copying all or some of the exported files into
that sandbox, and then committing the changes from there. But it’s better to
think of export as a one-way street.

A Quick Look behind the Scenes8.2.11

If you are one of those people who worry excessively about efficiency, let us re-
assure you that CVS is OK. You could think of a CVS repository as saving each
revision of a file (for example, versions 1.1, 1.2, and 1.3), but in fact CVS only
keeps a single full version of a file—the latest version—and then stores the
deltas, that is, changes required to revert back to the previous versions. So it
keeps a full version of 1.3, but then only the differences between 1.3 and 1.2

Chapter 8 Know What You Have: CVS210

and the differences between 1.2 and 1.1. This means that it is always very effi-
cient to get the latest version of any file. (Other systems have tried keeping the
original and the deltas for each revision going forward—but that gets very ex-
pensive to retrieve versions with hundreds of modifications. With CVS, the
latest version is always at hand.)

An exception to this are “binary” files, those on which CVS can’t do key-
word substitutions. The revisions of those files, such as JPEG image files, won’t
be stored by deltas, but by complete copies of each revision.

A GUI: JCVS8.3

If you are a die-hard GUI kind of developer, and aren’t yet convinced of the
power and convenience of the command line, then reread Section 1.3.10. If
you are still not convinced, that’s OK—you can still use CVS with the help of
a GUI written entirely in Java. This is an implementation of the CVS client,
that is, the portion of the CVS system that communicates with a remote server.
The server does the real work of managing the versions; the client collects the
data, manages the local files, and communicates with the server.

If you’re going to use jCVS, you will need to get a CVS server up and
running—or maybe your project administrator has already done that. If so,
read on.

Installing jCVS8.3.1

jCVS can be downloaded from www.jcvs.org where you can get it as a zipped
archive file. Unzip it into a directory and create a shell script to make it easy to
invoke. Since jCVS is an actual Java program, all the shell script needs to do is
to ensure that its JAR files are on the CLASSPATH and then invoke the jCVS
main class.

Here’s a straightforward shell script which will accomplish that:

JCVS="/usr/local/jCVS-5.2.2"
CLASSPATH="${CLASSPATH}:${JCVS}/jars/activation.jar"
CLASSPATH="${CLASSPATH}:${JCVS}/jars/jcvsii.jar"
CLASSPATH="${CLASSPATH}:${JCVS}/jars/jh.jar"
CLASSPATH="${CLASSPATH}:${JCVS}/jars/js.jar"
java -jar ${JCVS}/jars/jcvsii.jar

2118.3 A GUI: jCVS

You would need to change the definition of JCVS to match the directory
where you unpacked the ZIP file, but the rest will work with your location. Of
course the classpath could all be set on one longer line, but this way is more
readable.

Run jCVS (Figure 8.5) and navigate to the checkout page (Figure 8.6) to
fill in the parameters for your CVS server. Then you should be able to contact
it for checking out your sources (Figure 8.7).

Figure 8.5 jCVS splash screen

Figure 8.6 jCVS initial screen

Chapter 8 Know What You Have: CVS212

Figure 8.7 jCVS checkout screen

Conspicuous in its absence on the jCVS Web site is a good user manual.
Since we’re proponents of the command line, don’t look for it here, either.

Many, if not most, Java developers these days will be using, at least part
of the time, an Integrated Development Environment (IDE). One of the tools
that these IDEs integrate is a source code manager, and typically for Open
Source tools that means CVS. So while we’re not giving you much info on
jCVS, you will find a useful GUI for CVS inside most IDEs.

REVIEW8.4

This chapter has been all about CVS, one of the great jems of the Open Source
world. Projects all across the globe depend on CVS to track their source
changes, as programmers half a world away collaborate and share source.

We discussed how to import source files into CVS and how to get them
back out. We discussed the mechanism for checking in changes and how to
sort out collisions for the rare occasions when automatic merges don’t succeed.
We described how to tag a set of source files for later retrieval, and how to make

2138.4 Review

those tags into branches in your source tree. We also discussed how to show
the history of those changes and the status of a source file. Finally, we took a
quick look at a GUI for use with CVS, for those so inclined.

WHAT YOU STILL DON’T KNOW8.5

• The myriad of administrative commands which help you manage and
maintain a source library. Most of those commands you won’t need, but
it’s nice to know that they are available, just in case. Refer to the
Cederqvist document (Section 8.6) for all the gory details.

• How to set up remote users for sharing a CVS repository on a network,
especially the use of the CVS_RSH environment variable.

• How CVS integrates into development tools. We’ll see this in the coming
chapters; for example, CVS interaction is built into NetBeans, SunONE
Studio, and Eclipse.

• How good it feels to have CVS come to the rescue so you can recover a
version of something that you thought was lost. May you never have to
learn this the hard way.

RESOURCES8.6

• Version Management with CVS by Per Cederqvist et al. is the “official”
manual for CVS. It can be viewed as HTML or downloaded as HTML,
PDF, or PostScript from http://www.cvshome.org/docs/manual/.

• Chapter 6 of The LINUX Development Platform: Configuring, Using and
Maintaining a Complete Programming Environment by Rafeeq Rehman and
Christopher Paul (ISBN 0130826758, Prentice Hall PTR) gives a good
introduction to CVS. They give more information, too, on jCVS as well
as on how to integrate CVS into Emacs.

Chapter 8 Know What You Have: CVS214

Ant1 is a tool for building and deploying collections of files. It is particularly
suited to building and deploying Java applications (in no small part because it
is written in Java). Ant is well worth knowing and using for all but the simplest
Java applications.

WHAT YOU WILL LEARN9.1

• How to install and set up Ant.

• Enough about XML to read an Ant buildfile.

• The basic tags used in most buildfiles.

• The extent of our remaining ignorance after completing the chapter.

1. I must mention something about the title of this chapter: There was a Monty Python’s
Flying Circus episode that had this title, and my inner geek couldn’t resist.

215

Chapter 9

Ant:
An Introduction

THE NEED FOR A DIFFERENT BUILD TOOL9.2

James Duncan Davidson had a problem. Perhaps you’ve had this problem, too.
It has to do with the building of software—compiling, copying, and otherwise
modifying files to get all the pieces in all the right places for running a collection
of programs.

There are a number of ways to automate the building of software. You can
script the compilation using shell scripts or batch jobs. That works fine, but
there are two problems with that solution. First, scripts are generally not
portable across very different operating systems. That’s a serious problem for a
language like Java, which is intended to be portable across operating systems.
Second, it is difficult if not impossible, using scripting languages, to prevent
wasted compiles; the checking and comparing of date stamps on source and
object files makes scripts large and difficult to maintain.

Very well, we hear you say. There’s make. The make program has been
around for a long time. It is available on many operating systems. It handles
the conditional compilation of files very well. It has been around for centuries
(it seems). It is well known and widely used. All of this is true, but even this
venerable tool falls a bit short in the Java world. First of all, although makefiles
are generally far more portable than other scripts, there are still considerable
variations in details, and make does nothing to mask the differences in file,
path, and disk designations that exist across operating systems. Moreover, both
make and scripts suffer from a more basic problem. Although Java programs
can execute reasonably quickly, the overhead of starting a JVM and tearing it
down again is considerable. Since javac is written in Java, each time it is in-
voked to compile a source file (one file at a time is the make way) this setup
and teardown time cost is paid.

But, we once more hear you protest, you can just use javac on the entire
project! Doesn’t it build everything that needs to be built? In the simplest case,
yes, it does. But as soon as you share code between projects, or use RMI which
requires execution of the rmic compiler, or use EJBs, or link in native methods,
then javac’s dependency resolution just will not work.

Luckily, James Duncan Davidson had this problem. And luckily it really
bothered him. And even more luckily for us all, he decided to share his solution.

Chapter 9 Ant: An Introduction216

His solution was Ant, which we will from now on refer to as ant. Why
ant? Well, he suggests that it might be because ants are little things2 that build
big things. He has also suggested (in his preface to the O’Reilly book Ant: The
Definitive Guide, Jesse Tilly and Eric Burke) that it might stand for “Another
Neato Tool.” We’re inclined to put forth the former, but believe the latter.

James Duncan Davidson wrote ant and contributed it to the Apache
project, so it is Free Software. And it makes the problems cited above rather
piffling. Through the rest of this chapter we will describe how.

OBTAINING AND INSTALLING ANT9.3

You can obtain ant from the Apache Web site.3 Which version you download
will depend on your system and your needs. There are stable releases and daily
builds. Unless you have a compelling need for a feature not yet in a stable re-
lease, we would suggest you stick with the most recent stable release. As of this
writing, that is version 1.5.1.

If you are using RedHat, or another Linux distribution that uses the
RedHat Package Manager, rpm, then the simplest way to install would be to
download the RPMs linked from the Web site and install those:

$ rpm -i ant-1.5.1-3jpp.noarch.rpm

You have two other options besides the trusty old RPM method. First,
you may download a binary tarball, a word often used for a compressed file
created with the tar utility, or you may download and compile the ant
source code.

Let’s take these each in turn.

Installing a Binary Tarball9.3.1

Binary distributions of ant are available in .zip, .tar.gz, and .tar.bz2
formats. Utilities are available for all of these formats for Linux, although you

2. Not so little anymore. As of this writing, the head of the CVS tree for ant weighs in at just
shy of 48MB, and there are 5,239 files in there! These totals include a lot of project documen-
tation, but even considering only the src subdirectory, we are still looking at 18MB and
1,687 files. It is probably incorrect to call ant a “little thing” these days.

3. http://ant.apache.org/

2179.3 Obtaining and Installing Ant

will find that generally .zip files are intended for Windows machines and
.tar.gz and .tar.bz2 for UNIX systems. The .gz format is decompressed
with the gzip utility and .bz2 files with the bzip2 utility. The bzip2 compres-
sion algorithm produces better compression, while gzip is “more common.” If
you have a modern Linux distribution, you almost certainly have both installed
already.

Once you have the archive file downloaded, you should download one of
the files linked next to it. These are cryptographic hashes of the legitimate
archive file so you may be (more) assured that the software is the software you
think it is. The first, PGP, is an actual digital signature. If you are already famil-
iar with PGP or GnuPG and are comfortable with them, then by all means use
this. It is, as you know, a superior form of validation compared to MD5. But
explaining how to use digital signatures and GPG keys is beyond our scope
here. As for MD5, however, this is fairly easy.

An MD5 hash is a 128-bit value generated in such a way that it is impos-
sible for two different files of the same length to have the same hash value (ac-
tually, the term used in the literature is “computationally unfeasible,” but for
our purposes that is the same thing). If you run the program md5sum with the
tarball file as an argument and you get the same number as the one you down-
loaded, you may be certain that the file you have is an exact match with the
one that was used to produce the number you downloaded from the Web page.
Remember that this is all that is proved by this. If both the file server and the
Web page have been compromised, then the fact of a match doesn’t mean
much. A mismatch however proves that one of the two has been compromised
and you probably shouldn’t use the tarball.

You should get in the habit of verifying checksums and digital signatures
where they are supported.

If you are still worried about the dual compromise, well, that’s where a
PGP digital signature can help. It not only proves the integrity of the data; it
also proves the identity of the generator. Learn more about PGP (actually, the
Free Software version of it, called GnuPG, at the GnuPG Web site.4

Once you have downloaded both the md5 file and the tarball, validate and
extract the tarball (Example 9.1).

Note that we did this in a regular user’s home directory. If you just wish
to use ant yourself, then this is the way to go. If you wish to make ant available

4. http://www.gnupg.org/

Chapter 9 Ant: An Introduction218

Example 9.1 Validating and extracting the ant tarball

$ cat jakarta-ant-1.5.1-bin.tar.gz.md5
2be27d9e09011bf1cc3d1967ee34f7d1

$ md5sum jakarta-ant-1.5.1-bin.tar.gz
2be27d9e09011bf1cc3d1967ee34f7d1 jakarta-ant-1.5.1-bin.tar.gz
$ zcat jakarta-ant-1.5.1-bin.tar.gz | tar xf -
$ cd jakarta-ant-1.5.1
$ ls
bin docs etc KEYS lib
LICENSE LICENSE.dom LICENSE.sax LICENSE.xerces README
welcome.html WHATSNEW
$

to multiple (or all) users on the system, you will want to untar as root and
move the resulting directories to locations convenient to other users, such as
/usr/local.

Whether for one user or for many, there is a handful of remaining tasks
to make ant usable.

Environment Variables9.3.1.1

The JAVA_HOME environment variable should already be set as a result of setting
up your JDK. JAVA_HOME should point at the base of your JDK installation.

The ANT_HOME environment variable should be set to point at the untar-
ed installation of ant. In our sample here, it would be ~/jakarta-ant-1.5.1.

Make sure that the bin directory of the ant installation is added to
your PATH.

Installing a Source Tarball9.3.2

We do not encourage you to install ant from source, although we do encourage
you to download and study the ant source. It is an excellent sample Java
application.

If you must build from source, the start of the process is the same as above.
You download the tarball, verify it with GPG or md5sum, then unzip and
untar it.

2199.3 Obtaining and Installing Ant

It begins to differ at this point. The ant source package comes with a shell
script, build.sh, that actually builds a minimal version of ant and then runs
ant to complete the install.

Make sure that the JAVA_HOME and ANT_HOME are set as you want them,
then execute build.sh install. Unless you have installed the optional tasks,5

you will see several warnings about missing classes. You may safely ignore these.
As with the installation of other packages built from source, you will need

to have appropriate permissions for the target directories. This might mean
running the install as root, with all appropriate attention and dread.

A SAMPLE ANT BUILDFILE9.4

Let’s go over the basics of creating an Ant buildfile. We’ll start with an intro-
duction to XML, and then move on to the specific tags Ant supports and how
you might use them to automate a build.

XML for the Uninitiated9.4.1

The buildfiles of ant, usually named build.xml, are written in Extensible
Markup Language, or XML. Some of the reasons for this are:

• XML is hierarchical.

• XML is standardized.

• XML is widely used and familiar to many programmers.

• Java has many classes for reading, parsing, and using XML.

• XML-based representations of hierarchical data structures are easy to read
and parse for both humans and programs.

XML is a successor to SGML, Standard Generalized Markup Language,
which is a language for defining markup languages. A markup document may
be validated. A validated document is one that conforms to a structural specifi-
cation of the markup tags in the document. Such a specification may be made
using a Document Type Definition (DTD), which is a holdover from the way
SGML markup languages were specified, or using one of the newer specification

5. There is a horde of optional tasks. As the name suggests, they are optional. Include these if
you need them. This is the only mention they will receive.

Chapter 9 Ant: An Introduction220

standards, such as W3C’s XML Schema. In either case, the DTD or schema
specify what tags may be used in the markup, where they may exist with respect
to one another, what attributes tags may have, and how many times a given tag
may appear in a given place. A document can thus be validated—that is,
checked against the corresponding DTD or schema. It’s not necessary, however;
in many situations, documents can also be used without validation so long as
they are well-formed—that is, conform to the basic syntax of XML.

HTML, with which even nonprogrammers are familiar, is an instance of
a markup language defined in terms of SGML (and XHTML is its reformula-
tion in terms of XML). This book itself was written in Docbook, which is
another SGML markup language.

So, if SGML is such a wonder, why is XML all the rage? Well, SGML is
one of those standards that attempt to “subsume the world.” SGML has very
complex and flexible syntax, with many different ways to represent a simple
markup construct. Thus, to completely implement an SGML parser is difficult.
Recognizing that 90% of the complexity of SGML is needed in only about 1%
of cases, the designers of XML realized that they could make a markup specifi-
cation language only 10% as complicated that would cover 99% of cases (of
course, like 85% of statistics, we’re making these numbers up, but you get
the point).

Implementing an XML parser, while not exactly trivial, is much easier
than implementing an SGML parser.

SGML/DSSSL and XML/XSLT are efforts to make the transformation
and presentation of hierarchical data easier and more standardized. If what
you have read here is all that you know about XML (or SGML), you should
certainly consider getting yourself a book on these important standards.

For now, we can say that XML consists of tags which are set off from data
content by the familiar less-than and greater-than brackets we are used to seeing
in HTML:

<samplexmltag>

Just as in HTML, the tags may have start tag and end tag forms:

<samplexmltag>Sample XML tagged data</samplexmltag>

The entire construct, including the pair of matching tags and everything
inside them, is called an element. The start tags may also, like in HTML, carry
data inside them in the form of attributes:

2219.4 A Sample Ant Buildfile

<samplexmltag color="blue">Sample XML tagged data</samplexmltag>

If you have an empty element, one that that either does not or cannot have
data between its start tag and end tag, you may “combine” the start and end
tag by putting the slash at the end of the tag:

<samplexmltag color="blue"/>

Obviously, there is more to it than this, but it is enough to begin with.
XML’s uses range from publishing to networked interprocess communica-

tions. Our interest here is in using it to represent a model of a piece of software
and the various ways that software might be built and deployed. So from here
on, we will be discussing not XML in general, but the ant document type. Ac-
tually, ant’s markup language uses unvalidated XML. In other words, there
isn’t officially a schema for ant. Thus, the only formal definition for an ant
XML file is what ant accepts and understands. This is more common than it
should be. Any XML markup vocabulary really should have a schema, but often
XML use starts with “Oh, this is just a quick thing. No one will ever read or
write this markup. Just these two programs of mine.” These famous last words
will one day be right up there with “I only changed one line of code!” As
strongly as we feel about this, ant really can never have a DTD, at least not a
complete one. The custom task feature makes this impossible.

The Buildfile Tags9.4.2

The buildfile (usually named build.xml) begins with a header announcing
that this is an XML document and specifying what version of XML is being
used in it:

<?xml version="1.0"?>

The <? and ?> delimiters mark up an XML statement (as opposed to an
XML tag).6 In this case, we are declaring that this is an XML document and
that it is using XML version 1.0.

6. Note that these are the terms we are using to describe XML to a new user. They are not the
formal terms for these document elements. For the proper names, consult an XML reference.

Chapter 9 Ant: An Introduction222

The projectTag9.4.2.1

Every buildfile must begin with a project tag. A buildfile must contain exactly
one project tag.

The project tag contains three attributes:

name

The name of the project.

default

The default target (see next section).

basedir

The base directory of the project. Usually this is “.” meaning the directory
the buildfile is in.

The project name is just a name. It is not of particular importance to ant,
although many IDEs that integrate ant will make use of the name attribute of
the project.

The default attribute names a target tag that will be built by default
if a build target is not passed to ant (see Section 9.4.2.2).

The targetTag9.4.2.2

Every time you run ant, you are building a target. If you do not specify a target,
ant will run the target named in the default attribute of the project tag.

A project may contain any number of targets. The target tag has five
attributes:

depends

The name or names of other targets that must be built before this target
may be built.

description

A descriptive name for the target. Displayed when ant -projecthelp
is run.

if

Specifies a property name (see Section 4.4). The target is only built if the
named property is set.

2239.4 A Sample Ant Buildfile

name

The name of the target. This is the name entered as an argument to ant.
This is also the name that may be used in the default attribute of the
project tag.

unless

This is the reverse of the if attribute. The target is built unless the
property is set.

Properties9.4.2.3

There is more than one way to set what we might call variables in ant. The
only one we will concern ourselves with here is properties. Properties are like a
simple hash, or associative array. They associate value, which is stored as a
String, with a name, which is also a String. They behave very much like the
Properties class introduced earlier in this book.7 You can use buildfile prop-
erties to associate a single name with a single value that you use in multiple
places throughout the buildfile to make configuration changes easier and less
error-prone. Some tasks also expect certain properties to be set, as we shall
soon see.

You set a property with the property tag (Example 9.2).

Example 9.2 A useless build.xml example to demonstrate properties

<?xml version="1.0"?>

<project name="pointless" default="useless" basedir=".">

 <target name="useless">
 <property name="example.utility" value="nil"/>
 <echo>This example's usefulness:
 ${example.utility}. OK?</echo>
 </target>
</project>

Running ant with Example 9.2 gives this output:

7. In fact, an examination of the ant source code reveals that ant properties are stored in a
HashTable.

Chapter 9 Ant: An Introduction224

$ ant
Buildfile: build.xml

useless:
 [echo] This example's usefulness: nil. OK?

BUILD SUCCESSFUL
Total time: 1 second

Tasks9.4.2.4

A task is something that must be done to build the target. There is no single
“task” tag; instead, each kind of task has its own tag8 so there are many tags
referred to collectively as task tags.

There are dozens of standard task tags, but only a few of them are “every-
day.” We’ll introduce a few of them here, and then talk about the tags that
don’t fall into the project/target/task hierarchy.

Standard task attributes. All ant task tags have at least the three attributes:

id

A unique ID for the task (not required).

taskname

A name for the task, used in logging (not required).

description

A description of the task, used for comments.

The javac task. The javac task, not surprisingly, runs the Java compiler.
Note that since the Java compiler is written in Java and so is ant, there is no
VM launch overhead to running the compiler. This can make ant many times
faster than make simply for normal compiles.

The javac tag is one of the most complex in ant.
The javac task tag has a very large number of attributes, and may contain

quite a number of other tags within it. First off, it is sensitive to a property,
build.compiler, which may be used to specify that a particular Java compiler
version must be used. The use of this will come up later when we build part of

8. In fact, task tag names correspond to the names of the Java classes that implement them.
This will matter to you only if you wish to write your own ant tasks. We will not take you that
far in this book.

2259.4 A Sample Ant Buildfile

our application using the GNU Compiler for Java, but for now, and in general,
you will not set this property,9 compiling with the default compiler for the JDK
version you are using. This is ant’s default behavior.

srcdir

Location of the Java source files.

destdir

Location to store the class files.

includes

Comma- or space-separated list of files (optionally using wildcards) that
must be included; all .java files are included when this attribute is not
specified.

excludes

Comma- or space-separated list of files (optionally using wildcards) that
must be excluded; no files (except default excludes) are excluded when
omitted.

classpath

The classpath to use.

sourcepath

The sourcepath to use; defaults to the value of the srcdir attribute or to
nested src elements. To suppress the sourcepath switch, use
sourcepath="".

classpathref

The classpath to use, given as a reference to a path defined elsewhere.

extdirs

Location of installed extensions.

nowarn

Indicates whether the -nowarn switch should be passed to the compiler;
defaults to off (i.e., warnings are shown).

9. The one place you are likely to need to set this is when you are using a recent JDK to compile
applets that you wish to work in Netscape 4.0 and IE 4.0 and older browsers. But this book
doesn’t teach you Java applets. We swear.

Chapter 9 Ant: An Introduction226

debug

Indicates whether the source should be compiled with debug information;
defaults to off. If set to off, -g:none will be passed on the command
line to compilers that support it (for other compilers, no command-line
argument will be used). If set to true, the value of the debuglevel
attribute determines the command-line argument.

debuglevel

Keyword list to be appended to the -g command-line switch. This will be
ignored by all implementations except modern and classic (version 1.2 and
more recent). Legal values are none or a comma-separated list of the fol-
lowing keywords: lines, vars, and source. If debuglevel is not
specified (by default) nothing will be appended to -g. If debug is not
turned on, this attribute will be ignored.

optimize

Indicates whether compilation should include optimization; defaults
to off.

deprecation

Indicates whether source should be compiled with deprecation informa-
tion; defaults to off.

verbose

Asks the compiler for verbose output; defaults to no.

depend

Enables dependency tracking for compilers that support this (Jikes and
classic).

The jar task. The jar task makes a JAR file.

The javadoc task. One of the greatest benefits of developing in Java is the
nearly automatic generation of thorough and correct documentation. Javadoc
is the tool that does the job, and the javadoc task is the way to automate
document production in ant. This tag has a number of attributes that specify
where the source to be documented is located, how the documentation is to be
produced, and where the documentation is to be placed.

The copy and mkdir tasks. These tasks are used to copy files and make
directories.

2279.4 A Sample Ant Buildfile

The rmic task. Remote Method Invocation is a distributed computing
technology (Section 5.8). RMI requires the generation of server and stub classes
that provide the networking support for an RMI-enabled class. This is normally
done by the rmic compiler, and this is one of the common reasons the Java
programmers turn to build automation tools. The rmic tag allows ant to build
RMI classes.

Other Tags9.4.2.5

So far we have ignored a major component of ant. In order to introduce it, we
need to give you a (painfully) high-level view of how ant works “under
the hood.”

Task tags actually map directly to Java classes that implement the tasks.
Each task class is an instance of the Task class (in other words, it is a Java class
that either directly or indirectly extends the Task class). This is how you can
write your own tasks—download the ant source code and write your classes
that extend the Task class.

Tasks are not, however, the only tags that map to Java classes. There is
another category of tags that do so. They are called datatypes. These are classes
that directly or indirectly extend the ant DataType class.

Generally speaking, a task may require zero to many datatypes to specify
the data with which the task works. Some such tags include the manifest tag
used in our sample build.xml file discussed later in this chapter.

We’ll mention a couple of the most frequently used datatype tags here and
leave looking up the details as an exercise for you.

The PatternSet, Include, and Exclude datatypes. As you may have
noticed, the most common tags we have covered allow you to specify the files
to be processed using the tag’s attributes. Usually, you nominate a base directo-
ry and let the task tag process everything in that directory.

There are times, however, when you need finer grained control than that.
For example, you might wish to exclude all Java classes whose names end in
“Test” (Example 9.3).

Other datatypes. There are many other datatypes used for various purposes.
One of them, FilterSet, is able to modify files before they are copied or
moved. This can be useful, for example, to put build information into a source
file for an About dialog.

Chapter 9 Ant: An Introduction228

Example 9.3 Using the PatternSet datatype

<patternset id="nontest.source">
 <include name="**/*.java">
 <exclude name="**/*Test.java">
<patternset>

<target name="build">
 <javac destdir="build">
 <src path="src"/>
 <patternset refid="nontest.source"/>
 </javac>
</target>

In general, datatypes give you more sophisticated control than do the at-
tributes of a task. Take a look at the Ant User’s Manual10 for full details on ant.

A Real, Live Buildfile9.4.3

Let’s take it to the next level and examine a real working buildfile.

Project Organization9.4.3.1

All but the simplest of projects will require multiple classes. Some will require
libraries, multiple programs, binary deployment, Web deployment, enterprise
deployment, and so on. A project will be most successful if you plan out what
goes where in advance. We’re going to present a series of suggestions for how
to organize the files involved in developing, building, and deploying a Java
project with ant. By no means is this the only way it might be done, but it has
worked well for us.

The build.xml File for Payback9.4.3.2

Example 9.4 is the actual Ant buildfile for the Payback program in our source
code examples. These examples are available on the book’s Web site.11

10. http://ant.apache.org/manual/

11. http://www.javalinuxbook.com/

2299.4 A Sample Ant Buildfile

Example 9.4 The build.xml file for the Payback application

<?xml version="1.0"?>

<!--
 $Id: 070_antIntro.sgml,v 1.51 2004/04/13 05:10:45 mschwarz Exp $
 Buildfile for the Payback program. Payback will calculate
 the length of time and real amount of money it takes to make a
 purchase using various savings or credit accounts. -->

<project name="Payback" default="all" basedir=".">

<!-- The "init" target sets up properties used throughout
 the buildfile. -->
<target name="init" description="Sets build properties">
 <echo>Running INIT</echo>
 <property name="src" value="${basedir}/src"/>
 <property name="build" value="${basedir}/build"/>
 <property name="doc" value="${basedir}/doc"/>
</target>

<!-- The "all" target does nothing but tie together the "jar" and
 "doc" targets. -->
<target name="all" depends="jar,doc"
 description="Pseudo-target that builds JAR and Javadoc">
 <echo>Building ALL</echo>
</target>

<!-- The "build" target compiles the code in the project. -->
<target name="build" depends="init"
 description="Compiles the classes">
 <echo>Running BUILD</echo>
 <mkdir dir="${build}"/>
 <javac destdir="${build}" srcdir="${src}" debug="true"
 deprecation="true"/>
</target>

<!-- The "doc" target generates Javadoc documentation of the
 project. The "author", "version", and "use" attributes set to
 true cause those Javadoc tags to be used in the final document.
 The "private" attribute set to true causes private methods and
 attributes to be included in the documentation. We tend to use
 this for projects to provide complete reference documentation.
 You would probably not want to do this for an app or lib
 distributed as a JAR file only. -->

Chapter 9 Ant: An Introduction230

<target name="doc" depends="init"
 description="Generates Javadoc documentation">
 <echo>Running DOC</echo>
 <mkdir dir="${doc}/api"/>
 <javadoc packagenames="net.multitool.Payback.*"
 sourcepath="${src}" destdir="${doc}/api"
 author="true" version="true"
 use="true" private="true"/>
</target>

<!-- The "jar" target depends on the "build" target. It places
 all of the class files in the project into a JAR file, and
 builds a manifest using the "manifest" tag. -->
<target name="jar" depends="build"
 description="Builds an application JAR file">
 <echo>Running JAR</echo>
 <jar basedir="${build}" jarfile="${basedir}/Payback.jar">
 <manifest>
 <attribute name="Version" value="1.0"/>
 <attribute name="Main-Class"
 value="net.multitool.Payback.Payback"/>
 </manifest>
 </jar>
</target>

<!-- The "run" target depends on the "jar" target. It executes
 the class named as the "Main-Class" in the JAR's manifest. -->
<target name="run" depends="jar" description="Runs the program">
 <echo>Running RUN</echo>
 <java jar="${basedir}/Payback.jar" fork="true">
 <arg value="${basedir}/accounts.properties"/>
 </java>
</target>

<!-- The "clean" target erases all files and directories that other
 Ant targets might have generated. It returns a copy of the
 project tree to a "pristine" (some might say "clean") state. -->
<target name="clean" depends="init"
 description="Erase all generated files and dirs">
 <echo>Running CLEAN</echo>
 <delete dir="${build}" verbose="true"/>
 <delete dir="${doc}/api" verbose="true"/>
 <delete file="Payback.jar" verbose="true"/>
</target>

</project>

2319.4 A Sample Ant Buildfile

REVIEW9.5

We’ve taken a very quick tour through the most popular tool for building and
deploying Java applications. We’ve shown you how to install and set up ant.
We’ve given you enough description of XML so that you can read an ant
buildfile. We’ve touched briefly on the basic tags used in most buildfiles.

WHAT YOU STILL DON’T KNOW9.6

What we’ve covered here will probably explain most of the buildfiles you en-
counter in the wild. It will probably also give you what you need to know to
build most of the buildfiles you will have to build. But we have left out a
fair amount.

You can write your own tasks. That’s a biggie right there. There are many
built-in tasks that we didn’t cover. Look those up. They might be just what
you need if you find yourself saying, “Boy, ant is nice, but I wish it could
do X.” X might already be a built-in task. And if not, you can write it.

Ant has datatypes that can often be used in place of the simple strings al-
lowed in task attributes. Tasks and datatypes are instances of Java base classes
defined in the source code for ant. If you download the source, you can write
your own classes that extend these base classes and you can thus add your own
tags to ant.

RESOURCES9.7

• The Ant User’s Manual 12 at the Ant project homepage13 (which itself is
part of the Apache Project14) is the definitive resource for ant.

12. http://ant.apache.org/manual/

13. http://ant.apache.org/

14. http://apache.org/

Chapter 9 Ant: An Introduction232

• O’Reilly has also published Ant: The Definitive Guide by Jesse Tilly and
Eric M. Burke (ISBN 0596001843), which was the first book on ant that
we read.

• If you are into Extreme Programming you’ll want to check out Extreme
Programming with Ant: Building and Deploying Java Applications with JSP,
EJB, XSLT, XDoclet, and JUnit by Glenn Niemeyer and Jeremy Poteet,
published by SAMS (ISBN 0672325624).

2339.7 Resources

Some people prefer glitz. The shiny sparkle has always attracted the human eye.
Sometimes that sparkle is a real gem, a treasure; sometimes it’s only a gum
wrapper on the sidewalk. Integrated Development Environments (IDEs) add
glitz to Java development. At their most basic, they combine (integrate) an
editing environment with a compiler. This gives you

• Language-specific formatting of your Java text (different colors, comments
in italics, and so on)

• Quick feedback on errors (the ability to click on a compile error message
to begin editing at the offending Java statement)

• Automatic word completion, to help you finish typing the names of
methods in your Java code

• A point-and-click GUI for that all important “modern” look-and-feel

If those were all they gave you, IDEs would be, in our opinion, leaning
toward “gum wrapper.” But a good IDE can be more than that. It can be
extended to integrate many different tools, including:

235

Chapter 10

Integrated Development
Environments

• Version control (e.g., CVS, see also Chapter 8)

• One or more Web servers (e.g., Tomcat)

• A build control mechanism (e.g., ant, see also Chapter 9)

• Other editors besides the built-in editor

• A specialized editor for building GUIs

• Other languages besides Java

WHAT YOU WILL LEARN10.1

In this chapter we will examine two major Open Source IDEs, NetBeans and
Eclipse. We will show a straightforward installation of each. We will describe
the “operating paradigm” of each and show a few major features. It should be
enough to get you started using them.

There are several major commercial IDEs, including Idea by IntelliJ,
JBuilder from Borland, WebSphere Studio from IBM, SunONE Studio (Enter-
prise Edition) from Sun, and others. Because they are commercial, and not
Open Source, we will not be covering them; their vendors and other experts
can provide the documentation and training you need. Be advised, however,
that the licenses for such commercial products typically cost anywhere from
several hundred to a few thousand dollars per seat. That can make Open Source
IDEs look very attractive.

NETBEANS:THE OPEN SOURCE IDE10.2

NetBeans is an Open Source IDE, freely available, with full source code. It is
also the basis for the SunONE Studio (more on that product later).

A Brief History of NetBeans110.2.1

NetBeans (originally called Xelfi) began in 1996 as a student project in the
Czech Republic, with the goal being to write a Delphi-like Java IDE in Java.
A company called NetBeans was formed around this project. By May of 1999,
after two commercial releases of Developer, the company released a beta of what

1. From the netbeans.org Web site.

Chapter 10 Integrated Development Environments236

was to be Developer 3.0. In October 1999 NetBeans was acquired by Sun Mi-
crosystems. After some additional development, Sun released the Forte for Java
Community Edition IDE—the same IDE that had been in beta as NetBeans
Developer 3.0. There had always been interest in going Open Source at Net-
Beans. In June 2000, Sun open-sourced the NetBeans IDE; now it can be
found at the netbeans.org Web site.

Installing NetBeans10.2.2

NetBeans can be downloaded from the netbeans.org Web site. You will want
the NetBeans “IDE” and not the NetBeans “platform.” The IDE is the fully
featured Java development environment. The platform is the underlying core
of NetBeans on top of which one can develop other tools—for example, IDEs
for other languages. Installation of the IDE consists of only three steps:

1. Download.

2. Install.

3. Execute.

Downloading10.2.2.1

The first step is to get the software downloaded onto your system. From the
netbeans.org Web site, navigate your way to a download of the latest IDE.
The prepackaged “installers” might work—but if they fail, you have no infor-
mation as to why, and still less as to what you can do about it. We’ll act like
“real programmers” and download an archive file. (Here “archive” means a
collection of software compressed for easier transmission, not “archive” in the
sense of “old documents.”) Click on a link to begin the download
(you’ll need to read, review, and accept the license agreement to proceed).
The result should be a file on your system named something like
NetBeansIDE-release35.tar.bz2.

Installing10.2.2.2

The installation consists of three steps: untarring the file, adjusting a parameter
in a configuration file, then creating a symbolic link for easy startup.2

2. Thanks to John Zoetebier from New Zealand for his contribution on the NetBeans users
mailing list, on which this manual installation procedure is based.

23710.2 NetBeans: The Open Source IDE

Uncompress the archive:

bunzip2 NetBeansIDE-release35.tar.bz2

This will leave the file NetBeansIDE-release35.tar in place of the
.bz2 file.

You can examine the contents of the TAR file with:

tar -tvf NetBeansIDE-release35.tar | more

Here the options (-tvf) specify to show a table of contents (-t) in ver-
bose, that is, long, form (-v) from the specified file (-f) followed by the TAR
filename. The output from tar here is piped into more so that you can page
through it. Type q when you’ve seen enough, or leave off the | more to let it
run through without pausing.

Notice that the names of all the files in the TAR archive begin with
netbeans/ which tells us that if we untar the file, it will put all the files into a
directory called netbeans. Therefore, we don’t need to make such a folder
beforehand.

Change directory to the directory where you would like to install
NetBeans. If you are on a system that may be used by different users, you’ll
probably want to put it in a more public location like /usr/local or /opt. If
it is for your personal use, you can put it anywhere—just be sure that you have
write permissions on the directory where you want to install NetBeans.
(Reminder: use ls -ld . to see the permissions of the current directory.)

The tar command to untar everything in place is simple:

tar -xf NetBeansIDE-release35.tar

This will extract (-x) all the files that are in the TAR file (-f) named
NetBeansIDE-release35.tar. If you’d like to see each file get named as it
is extracted, then change the -xf to -xvf (v for verbose) and you will see a
whole long list of filenames displayed on your screen as the file is unpacked.

Next, we need to adjust the startup parameter in the configuration file.
The file is in the netbeans directory that you just untarred. In there is a direc-
tory named bin, and in there is a file called ide.cfg. Open this file with an
editor and change the line that begins -jdkhome so that the pathname refers
to the location of your Java Development Kit (JDK, see Chapter 5).

Here’s an example of the contents of ide.cfg:

Chapter 10 Integrated Development Environments238

-J-Xms24m -J-Xmx96m
-J-Xverify:none
-jdkhome /usr/local/java/j2sdk1.4.1_01

This specifies that the Java SDK is located in /usr/local/java/
j2sdk1.4.1_01, and in that directory there is a bin directory which contains
java, javac, javadoc, and so on.

Finally, to make the executable easy to run, we will construct a symbolic
link for easy access:

$ ln -s /usr/local/netbeans/bin/runide.sh /usr/local/bin/nb

This creates a symbolic link from the runide.sh file in the current
directory to the /usr/local/bin directory, as a file named nb.

Running10.2.2.3

Now that you have the symbolic link to the script which runs NetBeans, simply
invoke it with nb at a shell prompt. NetBeans will start loading (Figure 10.1).

If you get a message like “Command not found,” check to see if the shell
knows where to look. If you used the same name and location as in the previous
example, then make sure that /usr/local/bin is part of the search path for
the shell. (Reminder: echo $PATH will tell you what directories are searched.
If you need to, add /usr/local/bin to PATH, as in:

Figure 10.1 NetBeans begins

23910.2 NetBeans: The Open Source IDE

Figure 10.2 NetBeans’ main window

export PATH="${PATH}:/usr/local/bin"

which you can type from the command line for immediate use and then put
in the .bashrc file in your home directory to set things this way next time you
invoke a shell.)

Also be sure that the script runide.sh has execute permissions on it.
(Reminder: check this with ls -l runide.sh and change with chmod a+x
runide.sh.)

If all goes well then after the splash screen, you should see the window
shown in Figure 10.2.

For more information on installing NetBeans, check out
http://www.netbeans.org/kb/articles/install.html#unix.

Now let’s take a look at how you might use NetBeans.

Chapter 10 Integrated Development Environments240

Getting Around in NetBeans10.2.3

Let’s take a look, from top down, at NetBeans’ main window. First, of course,
is the menu bar. There are lots of choices to explore there. Much of what you’ll
do with NetBeans won’t require much use of the menus—there are so many
shortcuts elsewhere.

Next comes a row of icons, which are just shortcuts for menu times.
This row of icons can be customized, and you can even add your own (see
Section 10.2.5).

The three tabs below the icons, labeled Editing, GUI Editing, and
Debugging, modify the window to provide three distinct workspaces. Each
one customizes the window environment for a specific task, but it is still
working on the same files.

Next, on the left, comes the Explorer, which is in many ways similar to
the tools that you may use for traversing filesystems on a Windows or Linux
system.

One oddity of NetBeans is that it doesn’t just use the files as it finds them
in the directories on your hard drive(s). Rather, is requires you to designate a
piece of the filesystem as the part that you want to use. You can designate sev-
eral such pieces. Each piece is “mounted” as if it were a mountable filesystem.
(This is an operating system concept. If you’re not familiar with it, don’t worry.
For the purposes of NetBeans, just think of the IDE as too dumb to know
about any files until you tell it about them.)

There are three different types of files that you can mount—local, CVS,
or JAR. By specifying the type, NetBeans can treat each one in its special way.

• Local files need no special treatment; they are just the local files on your
hard drive.

• If a filesystem is mounted under a version control system (CVS or generic
VCS), then its files can have version control operations performed on them
(checkin, checkout, and so on), via commands in the IDE. (More on that
below.) Also, special directories used by the version control system (e.g.,
CVS) are hidden from the display, as you almost never want to manipulate
these files directly.

• When you mount a JAR file or ZIP archive as a filesystem, NetBeans
displays the contents of the archive as if they were just files in a
directory—which can make them easier to manipulate. More importantly,
the JAR is automatically added to the classpath for Java compiling.

24110.2 NetBeans: The Open Source IDE

Therefore, any third-party JARs that you may need for your project should
be mounted.

To mount a local directory as a filesystem, right-click on the little icon la-
beled Filesystems in the Explorer [Filesystems] window. Choose Mount, then
Local Directory, and you’ll get a filechooser to let you navigate your file
structure and choose a directory to mount.

IMPORTANT

To ensure that NetBeans knows how to compile your source, you need to mount
the directory that contains the base level of your source as a mountpoint, not
just have that directory somewhere in a tree of directories.

For example, let’s say that your source is kept in two packages,
com.coolco.projecta and com.coolco.util which implies that you
have a directory structure with those names. Let’s further assume that you keep
them in a directory called src which is itself contained in a directory called
brolly, as shown in Figure 10.3.

The likely thing to do is to mount the brolly directory, since it will contain
the source and all sorts of other project-related directories. That’s fine, as far
as it goes. But since the mountpoints in NetBeans are also the CLASSPATH
directories, you need to also mount brolly/src, so that directories like
com/coolco/util are found when your Java sources have statements such
as import com.coolco.util.*;.

It’s OK to have the same directory show up in different mountpoints. Net-
Beans won’t get confused, although you may. You’ll probably want to edit and
compile from the mountpoint of, in this example, brolly/src. The src folder
inside the brolly mountpoint would refer to the same files. Just keep the one
always open and the other closed, and you should be able to keep them straight.

Filesystem versus Project10.2.3.1

The Explorer window has tabs at the bottom which let you look at different
aspects of your work. In some instances you’ll want the Project view. For this,
you have to mount file’s from the already mounted filesystems in the Filesys-
tem view. Seems redundant, no? The Project view lets you set properties for
the project as a whole or for individual files in the project. These settings apply
to that file only for the project. Another project, looking at the same files, might
have different settings.

For now, don’t worry about the difference. Many people like to work in
the Filesystem view and never bother with projects. Others, especially those
working on multiple products or projects, like Projects as a way to switch

Chapter 10 Integrated Development Environments242

brolly

other scr build.xml

com

coolco

util projecta

other ProjA.java

Figure 10.3 A simple source structure

between tasks—you can only have one project active at a time, but when you
switch projects, it switches all the mounted filesystems and other settings that
you have configured.

Editing10.2.3.2

Like other IDEs, NetBeans provides its own editing window. It’s a GUI point-
and-click environment, with syntax highlighting and other helpful features for
a programmer.

At the top of the editing window is a toolbar (Figure 10.4). Each icon on
the toolbar has a tooltip, a help text that pops up when you rest your mouse
pointer over the icon, to explain the somewhat cryptic little icons. Most of the
tools are quite handy. With the pulldown menu, you can navigate to any
method or class variable within the class. The next four buttons deal with
searching: Select any text in your source file, click on the magnifying glass icon,
and the search will be performed for the next occurrence of that text. In addi-
tion, all occurrences are highlighted. This highlighting can be toggled on or off.

24310.2 NetBeans: The Open Source IDE

Figure 10.4 NetBeans’ Edit screen toolbar

Figure 10.5 NetBeans’ Find dialog

The toolbar search only works within a single source file. If you want to
search across multiple files, go back to the Explorer window and right-click on
the folder containing the files you wish to search. There is a Find . . . com-
mand in the pop-up menu. That brings up a dialog box (Figure 10.5) that has
multiple tabs for quite extensive filtering of your search. In its simplest use, just
type in the text you want to find, and press Enter.

A list of the files which contain the text will appear in a different window,
citing filename and linenumber for each file. There you can double-click on
any citation to bring up that file in the edit window, at that location.

If you heeded our admonition to learn vi, you’ll be glad to know that
NetBeans can handle the fact that the source files can be modified externally
from the IDE. Go ahead and edit any of your source files, even while the IDE

Chapter 10 Integrated Development Environments244

is running. When you next touch the file from within the IDE, NetBeans will
recognize the fact that the file has been modified and load the new version.

If you haven’t yet learned vi, you may find yourself quite comfortable us-
ing the NetBeans editor. If you dig deeper into NetBeans you can find how to
map certain keystrokes to make it even more editor-like. However, mousing
and cut-and-paste may suffice for beginners for quite some time.

Integration with CVS10.2.4

NetBeans comes with a built-in CVS client, which means that you don’t need
to install any additional features in NetBeans to get it to talk with a CVS server.
It has all it needs to check out and commit files from and to a CVS repository.
NetBeans can be configured to use external (i.e., outside of NetBeans) CVS
commands, but you likely won’t need to do that.

What you will need to do, however, is tell NetBeans that the files you are
using are under CVS control. You do this by mounting the filesystem not as
just a regular filesystem, but as a CVS filesystem. In the Explorer window, go
to the Filesystem tab if you are not already there. On the Filesystem icon,
right-click your mouse, and from the pulldown menu choose Mount, then
Version Control, then CVS (Figure 10.6). What follows will be a wizard-like
series of dialogs which you will fill in to describe the type and location of the
CVS repository with which you want to work. Those choices and values are
specific to your installation, so we’ll leave that for you to figure out with your
network administrator or whoever has set up your repository.

Once mounted, the CVS filesystem’s files will look much like any other
filesystem you have mounted—except that the files will show, via their icon,
when they have been modified and need to be committed, and will show the
version number in parentheses after the filename. The other difference is that
there is now a CVS command on the pulldown menu (Figure 10.7) that
appears when you right-click on one of the filenames (or on its tab in the
Edit view).

Move your mouse over the CVS command; an additional pulldown menu
appears (Figure 10.8). If you’ve used CVS at all, then you’ll recognize the list
of commands in the cascaded menu. There are the Commit, Update, Diff,
Log, Status, and Checkout commands that you are familiar with. The first
item, Refresh, is likely unfamiliar, though. Not being a CVS command (it’s
not part of the command-line syntax), it is a way for you to tell the IDE to

24510.2 NetBeans: The Open Source IDE

Figure 10.6 Mounting a CVS filesystem

Figure 10.7 Right click on a CVS file

reconsider what it thinks about the CVS-related information displayed in its
icons and the parenthetical text.

If you click on a folder instead of a single file, then the Refresh command
will be followed by Refresh Recursively which will do a refresh on each file
from there on down the tree.

Chapter 10 Integrated Development Environments246

Figure 10.8 Cascaded menu with CVS commands

Using the integrated CVS is much like using the command line. If you
want to see the changes that you’ve made (before committing), use the Diff
command. A window will appear showing the two different versions and
coloring the lines that have been added, deleted, or changed.

When you need to commit your changes, click the filename, then right-
mouse your way to Commit. A dialog window will appear for you to type in
the comment that you want to be associated with this change. (This comment
will appear in the Log command display).

To incorporate the changes others on your project may have made on the
file, use the Update command. A dialog box will display the CVS output
showing what was updated and if any merge conflicts occurred. (See Chapter 8
for more on this.)

The CVS commands in the menu, as we’ve described them so far, don’t
allow you to add any options to the commands. They just run with the defaults.
What if you want to use some of the options available on the CVS command
line? Then hold down the Ctrl key just before your make your CVS choices.
You should see an ellipsis (“...”) appear after each CVS command for which
you can now select options (Figure 10.9).

Of course one of the great things about knowing the command-line ver-
sion (see Chapter 8) is that you’re not limited to what the GUI tools will do
for you. If you can’t find the option you want, just go back to a window with
a shell prompt, cd into the appropriate directory in your source tree, and type
the CVS command by hand. As noted earlier, NetBeans is smart enough to

24710.2 NetBeans: The Open Source IDE

Figure 10.9 Cascaded menu after choosing CVS with Ctrl pressed

catch on to the changes made outside of NetBeans to its files, though you may
need to do a Refresh, as described above.

Integration with Ant10.2.5

If you’ve already discovered ant, either by using it on a Java project or by
reading this book in chapter order, then you’ll know that it’s a plus to have ant
integrated into NetBeans. As of NetBeans version 3.5, ant comes bundled with
NetBeans and you don’t need to install it separately.

NetBeans recognizes a build.xml buildfile and gives it a special icon. If
you click on the icon for the build.xml file in the Explorer, it will show each
of the properties and then each of the targets (Figure 10.10). Right-click on a
target to choose Execute to run ant with that target. As a shortcut you can ei-
ther select that target and press the F6 key, or you can just double-click on the
target name.

If you are making frequent use of an ant build script in your project, you
may want to add a shortcut—an icon that you can put on the icon panel—that

Chapter 10 Integrated Development Environments248

Figure 10.10 Cascaded menu after choosing CVS

will run a specified ant target. You can also add a keyboard shortcut, to invoke
the target with a keystroke or two. The specific steps for doing that are found
in the NetBeans online help. Just look for the section titled Creating a Shortcut
to a Target.

There is one other topic worth mentioning about integration with ant.
Normally in NetBeans, when you compile a Java class, the IDE does the com-
pilation. You can configure the IDE to use different types and versions of Java
compiler, but it is the IDE which controls the compile. You can invoke a
compile with the F9 key as a shortcut. But if you are building with ant, you
may want ant to do the compiles for you. Fortunately, you can configure
NetBeans to do this. Again, we’ll refer you to the NetBeans online help, to a
section called Indirect Ant Compilation.

24910.2 NetBeans: The Open Source IDE

Other Add-on Tools10.2.6

NetBeans is built to allow other tools to be plugged into it. There is a module
that you can add to NetBeans to support C/C++ development. But there are
various other plug-ins available. The best reference for all of those is the
NetBeans Web site.3 Many of the add-ons are commercial, but one notable
tool is available, at least in its simple form, as a free download.

Poseidon for UML Community Edition is a UML modeling tool that in-
tegrates with NetBeans. A product of Gentleware AG, it is distributed at their
Web site.4 The Community Edition is offered free of charge, but they have
more advanced (professional, enterprise) versions for sale. Their Web site says
that Poseidon for UML Community Edition has the following features:

• Fully implemented in Java, platform-independent

• All 9 diagrams of the UML supported

• Compliant to the UML 1.4 standard

• XMI supported as standard saving format

• Runs under Java 1.4

• Diagram export into GIF, PS, EPS, SVG, JPEG, and PNG

• Undo/redo (can be turned on in options)

• Copy/cut/paste within the tool

• Drag and drop within the tool

• Zooming and bird’s eye view of the diagrams

• Internationalization and localization for English, German, French, and
Spanish

• Code generation for Java

• Sophisticated support of OCL

• Reverse engineering from Java sources

• Auto-layout of reverse engineered diagrams

• Cognitive support, critique mechanism (by default turned off)

• Simple install and update with JavaWebStart

3. http://www.netbeans.org/about/third-party.html

4. http://www.gentleware.com/

Chapter 10 Integrated Development Environments250

We won’t be discussing its installation or use, but we encourage you to
explore this option if you need a UML tool.

SUNONE STUDIO COMMUNITY EDITION10.3

SunONE Studio (SOS) Community Edition was built on NetBeans and was
distributed for free. You would even see the NetBeans logo on startup. As of
SOS 5.0 (summer 2003), the Community Edition is no longer available—
NetBeans is what Sun recommends for the no-cost download. (The SOS Enter-
prise Edition is still actively developed and sold by Sun; it is licensed at a cost
similar to other commercial packages.)

ECLIPSE:THE SOURCE OF SWT10.4

Eclipse is yet another GUI IDE. The Standard Widget Toolkit (SWT) was in-
vented as part of this project. Since Eclipse uses SWT for its graphics, it has the
most familiar GUI look and feel, and it is the fastest performer on lower end
hardware.5 Eclipse is built as an IDE toolkit. Although it was developed in
Java/SWT, you can use it to develop AWT/Swing applications. It is build
around a plug-in architecture, so it can be an IDE for virtually any language.
To use it for Java, you must actually install the Java plug-ins.

Selecting and Installing Eclipse10.4.1

The main site for obtaining Eclipse is www.eclipse.org. Installing Eclipse,
particularly for a single user, is incredibly easy. But first, you have a few choices
to make as to what to download. As of this writing, the current production re-
lease of Eclipse is 2.1.2. If you follow the Downloads link from the main page
to the 2.1.2 build, you will see a fairly lengthy list of download choices.

The first major choice you must make is whether or not you plan to write
your own plug-ins and extensions to Eclipse. If you do, you will probably wish
to download the Eclipse Software Development Kit or the source code and
build Eclipse for yourself. We strongly recommend that you choose the Eclipse
SDK binary for GTK. The Motif UI is quite dated in comparison. The Eclipse

5. It’s the fastest performer on high-end hardware too, but the difference is much less percepti-
ble. Really fast and incredibly fast are hard for humans to discern.

25110.4 Eclipse: The Source of SWT

SDK contains the Eclipse Platform (which you need), the Java Development
Toolkit (which you need), and the Eclipse Platform Development Kit (which
you need only if you plan to develop plug-ins for Eclipse). But by downloading
the Eclipse SDK package, you get everything you need in one go. You could
also download the Eclipse source package and build the whole thing yourself;
save that for a spare week. For now, start with a prebuilt binary.

If you scroll down, you will see a collection of files that have “platform”
in their names. You will note that there are two choices of Linux binary: one
is Motif, the other GTK. If you are not familiar with these, Motif and GTK
are two common extensions to the X Window API that provide widgets and
other common functions and UI features. One of these, Motif, is rather old
and (to brashly add opinion) dated in appearance, but it is very stable and ma-
ture. The other, GTK, stands for GIMP Toolkit and was developed to support
the remarkable GNU Image Manipulation Program (GIMP). There are other
widget/UI libraries that run on top of X Window, notably the Qt library used
by KDE.

So, which to use? If you read the documentation on the Eclipse Web site,
you will see that the Motif version has been more heavily tested and is available
for other platforms than Linux. This is probably because Motif is standard on
most commercial UNIX versions, and thus is where emphasis was placed to get
the “most bang for the buck” in development and testing.

However, we much prefer the look of the GTK version and, to date, have
found no major problems with it, so that is what we use for our examples.
There should be no functional difference between the two—merely differences
in the look and feel of menus, toolbars, and dialogs. One reason to select Motif
might be if you are working in a mixed environment of Linux and other UNIX
platforms, where you may be forced to use the Motif version on some plat-
forms, and do not want the “cognitive dissonance” of switching between
the two.6

So, step one: Download eclipse-SDK-2.1.2-linux-gtk.zip.
The Eclipse platform is a “generic IDE.” You will see the term perspective

all over Eclipse. A perspective is kind of a collection of tools in the IDE. The
package you just downloaded contains a generic perspective called Resource. A

6. Please note that the differences are fewer and smaller than the differences involved in
switching between any common X Window desktop and Microsoft Windows. If you can
handle that (and many of us do every day), switching between Motif and GTK versions of
Eclipse will be no problem for you.

Chapter 10 Integrated Development Environments252

perspective is a set of views, which are panes within the IDE, each having a
specific purpose, such as editing the project contents, editing files, keeping a
task list, and so on, as well as menus and toolbars relevant to those views. The
Resource perspective has its uses, but it is not the main one you will be using
as a Java programmer. As a Java programmer, you will most likely want the Java
perspective.7

First, you must decide if you are going to install Eclipse in a common lo-
cation (such as /usr/local or /opt), or if you are just going to install it in
your home directory for your own use. The answer to this question, naturally,
depends on whether or not you have root access on the machine and whether
or not multiple people actually use the machine.

CAUTION

We are assuming you already have at least one Java SDK installed. If you do
not, refer to Chapter 6 for some tips on installing Java SDKs.

We’re going to install in the user’s home directory. Doing this could
hardly be simpler. So, step two: From your home directory, type:

$ unzip eclipse-SDK-2.1.2-linux-gtk.zip

That’s it. You’re done. Now just cd to the newly created eclipse directo-
ry and type ./eclipse. The first time you do this, you will see a “Completing
the install” banner (Figure 10.11).

Figure 10.11 Running Eclipse for the first time

7. Although you will also often be using the Debug perspective.

25310.4 Eclipse: The Source of SWT

Figure 10.12 Eclipse splash screen

During this initial run some workspace directories and data files are set
up. These store meta-information about projects and perspectives. After a
moment, you will get the standard splash screen (Figure 10.12).

Following this, you will see the initial Eclipse IDE, with a welcome screen
in the default Resource perspective (Figure 10.13).

Eclipse works with projects. A project is a collection of files that you man-
age as a group. Usually a project is a single program, although it need not be.
Eclipse remembers the state of all projects. If you close Eclipse in the middle
of a debug session on a project, the next time you open Eclipse, it will have that
same project open in the Debug perspective. If you then switch to another
project and switch back, you will come back to the Debug perspective. Eclipse
remembers. But we get ahead of ourselves here. You need to create a project.

Using Eclipse for a New Project10.4.2

Now that you have Eclipse up and running (Figure 10.13), you will
want to create a Java project. Eclipse has “wizards” (to use the Microsoft
Windows terminology) for creating projects. From the main menu, select
File>New>Project. You will get the screen shown in Figure 10.14.

Now, you are not an idiot. This is not “Java Applications Programming
on Linux for People with Well Below Average Intelligence.” We’re not going
to walk you slowly and painfully through a screenshot of every window Eclipse

Chapter 10 Integrated Development Environments254

Figure 10.13 The Eclipse Resource perspective

can display and pretend that this is “educational.” We like trees too much to
do that. So let’s pick up the pace a bit. The first screen in Figure 10.14 asks
you to select the type of project. The next screen asks for a project name and
it automatically chooses a directory to house the project. In Section 10.4.3 we
will talk about changing away from this default. For now, trust Eclipse to do
it right. Enter a project name and hit the Next button.

The next screen shows a tabbed display. The first tab allows you to add
folders for source code. If you have already worked out a directory structure for
your project, you may build it here. The next tab is the Projects tab. Here you
specify other projects on which this project depends. The next tab is the
Libraries tab. Basically, it lets you specify the project’s classpath. Eclipse puts
its preferred set of JARs on the classpath by default, including those that are
standard with whichever Java runtime Eclipse found on startup. The last tab is
called Order and Export; it allows you to specify the order in which source

25510.4 Eclipse: The Source of SWT

Figure 10.14 Step one: New project

folders should be built, as well as to specify which folders are accessible to other
projects that name this project on their Projects tabs (in other words, this is
the “other side” of the Projects tab).

That’s the final wizard box. Hit the Finish button. A dialog box pops up
to tell you that the project you just created is associated with the Java perspec-
tive. Since you are currently in the Resource perspective, it asks you if it
may switch you to the Java perspective. Hit the Yes button, and you will be
rewarded with the Java perspective display (Figure 10.15).

At this point, your exploration of the Eclipse tools would be more fruitful
than anything we could tell you. There is a marvelous book on Eclipse, The
Java Developer’s Guide to Eclipse by Sherry Shavor et al. from Addison-Wesley.
We encourage you to seek out that book.

Using Eclipse for an Existing Project10.4.3

In the previous section, we mentioned that the second wizard screen in setting
up a Java project allowed you to override the default path for a project. If you
have an existing Java program, point the project path to the directory that is
the base for that program’s packages. When you create the project (in other

Chapter 10 Integrated Development Environments256

Figure 10.15 The Java perspective

words, when you hit the Finish button in the wizard), Eclipse will scan that
directory and analyze what it finds there. It does an excellent job of importing
a project and “eclipsifying” it, even to the point of recognizing and analyzing
an ant’s build.xml file.

Working with Eclipse10.4.4

Eclipse is a huge topic. We can’t devote enough space to it for this chapter to
qualify as a user guide. The best we can do is to offer you a handful of tips.

• The Java perspective consists mainly of the Package Explorer on the left,
the edit window in the middle, the outline view in the right, and a bottom
window that changes based on context. Initially, it is a task list. When you
run a Java application, the console output is displayed there, overlaying
the task list.

25710.4 Eclipse: The Source of SWT

• You can do a lot of what you need to get started on a project by right-
clicking in the Package Explorer. For example, you can create a package
by right-clicking and selecting New>Package. When you type a new
package name into the resulting dialog box, all required folders are created
under the project.

• You can create new classes and interfaces in the same way. If you right-
click on a package in the Package Explorer and select New>Class or
New>Interface, an appropriate dialog box comes up, and a skeletal file is
created in the appropriate place.

You can compile, run, and debug programs by hitting buttons on the
toolbar, by selecting from the menu, by right-clicking almost anywhere, and
by keyboard shortcuts. To put it plainly: Eclipse is a modern, rich IDE that
works like other IDEs you have seen.

Eclipse’s real advantages lie in some of the dynamism it offers. As you
know, the authors of this book like text mode and command line, but we must
admit that Eclipse’s refactoring features are a great timesaver. For example,
when you use the refactoring tools to change a method, you can be certain that
every call to that method, everywhere in the project, is updated. Sure, we
staunch CLI guys will tell you that you can use pipes and sed to similar effect,
but even we must admit that you can miss some. We stand by what we have
said: Know all the tools, and you can then choose the right one. But if all you
have is a hammer, you’ll end up using it to repair a china cup.

REVIEW10.5

We’ve given you the choice of two great development environments. With
them you can do so much more than just edit and compile. Both are expand-
able to include other tools, like CVS and JUnit. Each has a slightly different
paradigm for how they manage files and projects. It seems the longer we work
with one (either one), the more we like it. They kind of grow on you and you
get used to some of the shortcuts that they offer. And yet, there are still those
times when it’s handy to be back at the simple command line.

Chapter 10 Integrated Development Environments258

WHAT YOU STILL DON’T KNOW10.6

NetBeans comes with a built-in version of Tomcat for serving up Web pages
and JSP and Java Servlets. It’s very handy for developing and testing on your
desktop. We’ll look at that more in Part IV of this book.

In the NetBeans help file, you’ll find this intriguing note:

Using Scripting Languages in NetBeans: NetBeans provides you with a
scripting feature that lets you use scripts to operate the IDE remotely or
from the Scripting Console or by using a scripting file. You can use the
scripting languages provided in the Scripting Console, or you can create a
scripting class through the New From Template wizard. The following
scripting languages are provided with NetBeans: DynamicJava, BeanShell,
and JPython. For information on the scripting languages provided, see
DynamicJava at http://www-sop.inria.fr/koala/djava/, BeanShell at
http://www.beanshell.org/, JPython at http://www.jpython.org/.

We barely got you into Eclipse. Eclipse supports CVS (check out the
Team submenu). Eclipse provides code refactoring features that allow you to
rename classes and methods with automatic update of all affected source.
Eclipse provides a feature to “externalize” strings (which takes all string con-
stants out of a module and makes them into properties references, allowing for
easy internationalization). It is a powerful Java development platform.

RESOURCES10.7

NetBeans. NetBeans has some very extensive online help. There are also
some very good Web-based documents, including the user guide which can be
found at http://usersguide.netbeans.org/. Of particular value is the
Getting Work Done guide at http://usersguide.netbeans.org/gwd/
which describes itself as “a more detailed introduction to the IDE than available
in the Getting Started tutorial.”

Support for NetBeans, as with many other Open Source projects, happens
online. There is no toll-free number to call. Instead you subscribe to an e-mail
list; all messages sent to the list are then forwarded to everyone on the list.
Anyone can respond, and you are encouraged to respond too, to share what
you know with others. The NetBeans developers are often the ones who answer

25910.7 Resources

the most difficult questions, but lots of times answers come from others who
have just made it a little further up the learning curve than you.

To subscribe to the nbusers list, send e-mail to nbusers-subscribe@
netbeans.org. You might want to create a special mail folder for the constant
stream of messages that you’ll get from nbusers. We’ve seen about 15–20 mes-
sages per day, on average, over the past year. You don’t need to read them all,
but as you scan the subject lines, see if there are ones that you might be able to
answer. If you want others to reply to your requests for help, it would only be
fair for you to do likewise. For a directory of the many e-mail lists related to
NetBeans, go to http://www.netbeans.org/community/lists/.

Eclipse. The Java Developer’s Guide to Eclipse by Sherry Shavor et al. (ISBN
0321159640, from Addison-Wesley Professional) is an excellent book on the
Eclipse platform, particularly from (as the title suggests) the Java developer’s
point of view. Eclipse is, however, more than just Java. It is designed to be an
“IDE Factory,” providing a framework for almost any task that involves an
edit/compile/deploy kind of lifecycle.

Chapter 10 Integrated Development Environments260

Part II

Developing
Business Logic

In this chapter, the authors wax poetic on practical software development
methodologies, and attempt to introduce a simple, or maybe simplistic, example
application for use in future chapters.

WHAT YOU WILL LEARN11.1

We want to share with you some thoughts on practical software development.
We are not covering anything specific to Linux or Java in this chapter; there
will be no commands to type or syntax to learn here. You may skip ahead to
the next chapter—but at your own peril. Those who know and use good soft-
ware process won’t need this chapter, but many programmers don’t fall in to
that category. In fact, some who think they are using good process may be using
too much or too little for their actual situation.

If you are relatively new to the corporate world, or have only worked for
one or two companies in your career to date, you may get a taste of how soft-
ware is done in other corporate cultures. If you are a seasoned programmer with
many such experiences, see if this doesn’t sound all too familiar.

263

Chapter 11

Balancing Acts:
An Imaginary Scenario

You will also see the requirements for a simple budget application that will
be used in succeeding chapters. It has little to do with real budgets, but lots to
do with a simple application that we can use to demonstrate various Java
technologies.

STATEMENT OF THE NEED11.2

Financial planning is something that everyone does. The basic tool of financial
planning is the budget. But unlike the home budget, the budget of a large cor-
poration is managed at multiple levels within the organization. Sure, at some
level, the board, the CEO, and the CFO decide that “we will spend X million
dollars for operations for this quarter,” but that is the start of the process, not
the end.

From there, the feeding frenzy of middle management begins. And keeping
track of things becomes an important aspect of financial control and corporate
governance.

Realistically, any large business will already have processes and tools in
place that meet this need. We are not expecting that what we develop here will
be anything that a business will actually adopt to manage this process. Rather,
our goal is to illustrate some methods of software development that actually
work to build real Java application. The outline of methods and code could be
used to address many classes of enterprise software.

HOW TO DEVELOP SOFTWARE11.3

There is a science of Software Engineering. The development of software can
be made an engineering discipline, with mathematical rules and metrics of
success. Every aspect of a complete system can be worked out in detail before-
hand so that you know, well before a line of code is written, what the outcome
will be.

That’s not what we’re talking about here.
We are talking about software development not as it happens at NASA,

medical device companies, and in factories where nuclear missiles are made. In
those contexts, the potential costs of error are extremely high, ranging from the
multibillion dollar loss (and public embarrassment) of crashing a spacecraft into
Mars, on through having heart pacemakers fire off incorrectly, right to ending
life as we know it on this planet. In such cases, no matter how much the correct

Chapter 11 Balancing Acts: An Imaginary Scenario264

software costs, you pay it because the consequences of not doing it perfectly are
far too high.

TIP

Our discussion is not meant to be scholarship on the topic of software develop-
ment methodology; instead, it is meant to show simple, basic processes that
can bring a reasonable amount of control to a software development project.
These steps are, to name a few, requirements gathering, specification, object
analysis, database design, development iteration (code, unit test, repeat),
and so on.

But most of us who write software do not deal with such consequences.
Most of us are keeping track of purchases and payments. We’re recording pro-
duction data. We’re tracking manifests and updating inventories. We are the
great unwashed mass of MIS software developers. Here we, too, want to do it
perfectly right. But every time we go to management and tell them how much
it will cost and how long it will take, the little “mass layoff” vein throbs in their
foreheads. We are always being told to do it faster and cheaper. And so we find
ourselves, again and again, tilting at the windmill of quality.

So where does that leave us? When we go to management with the text-
books of software engineering, they either laugh or scowl. Clearly, the money
people are not prepared to support the cost of doing it right. So what do you
do? The best that you can. The one thing we can tell you for certain is that the
formula for success is not “start writing code and trust to luck.”

It is fair to say that even the minimal software development method should
include the following steps:

• Requirements gathering

• Use case specification

• Class discovery and problem domain decomposition

• Technical requirements specification (architecturing)

• Testing

• Code and release management

• Production and operations support

• Bug and enhancement tracking

26511.3 How to Develop Software

This list, when done in that order, has been referred to as the classic
“waterfall” model—each step is done in its entirety (or largely so) before
proceeding on to the next step.

Or at least that’s the ideal which programmers have often pursued.
The problem is that the process involves people, and people, especially

those responsible for the requirements, a) are sometimes unimaginative and 2)
keep changing their minds. They start out with some requirements, based on
what they think they’re going to need. But they just aren’t imaginative enough
to think of how terrible their system will be for the average user. They also keep
changing their minds as to what they want.1

The “iterative” approach has been tried as a way to address this problem.
Rather than wait for all requirements to be spelled out perfectly, with the itera-
tive approach you jump right in with what you do know, build that, but expect
changes to come. The sooner you get a working product or prototype into the
hands of the users, the sooner you’ll get feedback on what works, what doesn’t,
and what is really wanted (“what works” is used here not in the testing sense,
but in the usability sense).

Note, however, that in the iterative approach, one still gathers require-
ments, develops designs for the code and the tests, develops them, tests (and
fixes) the code, and releases it. It’s just that one does that on a much smaller
and more rapid basis. You get something runnable sooner, and continue to
modify it.

Some people will complain that this makes for more expensive rework,
but we (and others) would disagree. You are refining the process. Your reworks
are less expensive than if you went to the work of building the entire system
only to have some key requirement(s) change—there can be a lot more
“wasteage” there.

Be aware, however, that the iterative approach is not just “whipping the
horses to run faster.” It is not just the waterfall model run at high speed. Rather,
it is using the early iterations of the product as a sort of a “living” requirements
specification, one that you can show to people and that they can try out, in real-
world scenarios, and on which they can give feedback. Don’t expect to be able
to compile complete requirements, but don’t give up on talking to your end

1. Did you notice that we tried to hint at that ever-enjoyable mid-project shifting of require-
ments as we went from a) to 2), changing our numbering scheme midway? Minimal humor,
admittedly, but if you’ve lived it, you understand.

Chapter 11 Balancing Acts: An Imaginary Scenario266

users and other stakeholders either. Requirements are still key to delivering a
solution.

So with either approach, you’ll start with requirements. Let’s look at the
art of requirements.

WHAT MAKES A GOOD REQUIREMENT11.4

A good requirement is one that states a need but not a solution. Sounds simple,
but it’s easier said than done—especially with solution-oriented technical types.

A typical first cut at a requirement might be something like “Our budget
application should store its data in the database.” While it sounds reasonable,
it is really a solution posing as a requirement.

The first step in refining such a requirement is to ask the simple question:
“Why?” The answer we’re looking for is not “Because we’ve paid so much for
our database software,” nor is it “Because we all know SQL.” Rather, it should
be something dealing with reliability, fault tolerance, the need for transactional
integrity, and so on.

Sometimes you may have to ask the “why” question more than once, to
refine the requirement(s). “Transactional integrity” is, in a way, a solution. You
could ask, “Why do we need that?” For some projects it may be appropriate to
ask this, because there may not be a real need for it after all.

But don’t overdo it. Push any requirement in a business setting far enough,
and you could get something like “To make money.” That’s not a helpful re-
quirement. You’ve gone too far. Part of the art of requirements is recognizing
when to stop asking why.

A more detailed description of a requirement is that it should be
SMART—Specific, Measurable, Attainable,Repeatable, and Testable. Consider
the following.

A common concern among users of almost any application is that it be
“fast” or “responsive.” While we can sympathize with the concern, it will need
some refinement before it can be considered a (good) requirement. Applying
the “Specific” and the “Measurable” aspects of SMART, we need to specify
what constitutes “fast enough.”

We can try “No button press in the GUI will delay more than .1 second
before providing some evidence of activity to the user, or more than .5 second
before completing its operation.”

26711.4 What Makes a Good Requirement

Sounds more formal, and more specific, but is it realistic (i.e., attainable)?
If the “button press” is one that updates a database across a network, what effect
will network traffic have? What about the size of the operation? If the button
press starts an operation that is dependent on the size of some data set, what’s
the largest it could be and how long will that take?

Depending on how obsessive you or some colleague will be in enforcing
these requirements, you would do well to add a few “weasel words” to give you
some flexibility in the requirements. Phrases like “on average” or “most” will
help. Notice, though, that such words are also the cause of much ambiguity,
working against the “Specific” and “Measurable” aspects of good requirements.
Use them sparingly, if at all.

We should also consider the “testable” aspect of our requirement for speed.
Will we be able to measure this? Can we do so repeatedly? Consider the effect
of network traffic on response times. Under what network load will the tests
be done and the real usage occur? If you want to test under “normal” network
loads, how can you control this (for the sake of repeatability)?

It really is an art to craft good requirements. Moreover, a good require-
ment for one organization may not work well for another. Some teams, groups,
or companies want to be very precise in their use of requirements, viewing them
almost like legal contracts for what will be delivered. Such requirements, how-
ever, would be greeted with derision in other, more informal, organizations.
It’s not that the one will produce good software and the other garbage (well,
they might). It’s more a matter of style. Excessively formal organizations will
drown in the details and spend way too much time (and money) arguing over
the minutiae of the requirements. Overly informal groups will get sloppy with
their requirements and not reap the benefits of building the right thing the first
time. As is so often the case in life, the answer lies in striking a balance between
two forces, one pushing for exactitude and the other pulling you to get going
and do something.

So let’s keep going.

WHOM TO ASK FOR REQUIREMENTS11.5

There are many people to ask about the requirements for a software project or
product. Ask yourself the following questions:

• Who is going to use the software that you develop?

Chapter 11 Balancing Acts: An Imaginary Scenario268

• Who is going to use the data that comes from the use of the software (i.e.,
who will read the reports generated from the data collected either directly
or indirectly from the running of the software)?

• Who is going to support the software and who will support the machines
on which it will run?

All these people can be considered “stakeholders” in the project.
So where do you start? That’s a political more than a technical question.

Start with your boss and with whoever is the major backer of the project. Then
ask your customers. For in-house IT projects, the “customers” are usually very
accessible; for software products, the customer’s point of view may need to be
represented by marketing and/or customer support people who have had direct
contact with the customer base.

REQUIREMENTS FOR THE BUDGET APPLICATION11.6

Let’s take a look at how such requirements might evolve. We’ll look at the
situation through the eyes of a fictional IT guy named Bob.2

Monday Morning, 10 A.M.11.6.1

Bob gets called in to the office of his manager, Ellen. The conversation goes
something like this:

Bob: Yes, Ellen, you wanted to see me?
Ellen: Come in, Bob. Yes. We’re just about to enter another budget

planning cycle. We’ve got to propose our next year’s budget to the VP by the
end of the quarter, and I got to thinking . . .

Bob: Uh-oh.
Ellen: . . . on my way to work today, I got to thinking that we ought to

be able to develop a software tool that would help us do a better job of this
process.

2. We’re avoiding giving Bob a title because titles vary so much within our industry. Call
someone an analyst and it may mean that they never code. Call someone a programmer and it
may mean that they only code and never deal with requirements or even designs. Some use
those terms interchangeably. We’ll just call him an IT guy.

26911.6 Requirements for the Budget Application

Bob: We’ve used a spreadsheet these past few years to do our budgets. You
want us to develop another spreadsheet application?

Ellen: No, I want a whole new application.
Bob: You want us to reinvent the spreadsheet?
Ellen: No, I want something simpler and more specific to the budgeting

process.
Bob: Tell me more. What are the key features that you see in this

application?
Ellen: Well, first of all it needs to be able to work concurrently with all

the users. With our spreadsheet, we’d have to take turns with the data entry or
we’d risk loosing each other’s changes.

Bob: It may just be that we’re not using our spreadsheet’s advanced
features. Shouldn’t we investigate that first?

Ellen: No, I’d rather have us invest our time in building the tool we know
that we need. At the end of the day your investigation may only show that we
still need the tool, and by then it might be too late to build it.

Bob: I hear you saying that the deadline is rapidly approaching.
Ellen: Yes—I want to be able to use it for the budget planning at the end

of this quarter. How long do you think it will take you to build it?
Bob: Build what?
Ellen: Haven’t you been listening? The budget tool!
Bob: I know that you mean the budget tool—but you haven’t really given

me enough requirements upon which to base an estimate. Tell me more about
how you envision this tool being used.

Ellen: Well, in the past we’ve taken last year’s numbers and just bumped
them up by a few percent. Then we look at each category and tweak them. I
want a different approach this year. I’m going to take our department’s budget,
give it a bump, then assign a chunk to each of my reports. I want you to take
those discretionary dollars and spell out how you would spend them.

Bob: Shouldn’t we be providing you with estimates of what we need for
the coming year, rather than you telling us what we have to spend?

Ellen: In theory, perhaps so. But in practice we can only grow the budget
by so much. I’d rather skip the charade and jump right to allocating the dollars
we will likely be able to spend. Then as the year progresses, I’d like to use this
tool to track our spending against this plan.

Bob: But isn’t that why we have that big SAP application?

Chapter 11 Balancing Acts: An Imaginary Scenario270

Ellen: Have you ever tried to use it?! Please! The CFO thought it looked
great—and on paper it did. But that user interface makes it almost impossible
to be productive. And it’s as slow as molasses.3

Bob: But back to this new application . . . I’m assuming you’ll want a GUI
on this?

Ellen: Of course. Give it a standard, simple GUI. Something like this.
(She begins to draw on her whiteboard.)

For any given department there will be a “pool” of money. Those dollars
are displayed and can be subdivided into smaller pools of money by creating
subaccounts.

But as the money is subdivided those new accounts and associated dollars
should become visible by others. And as dollars are spent during the year, we’ll
want to track those dollars, so those amounts should be visible, too, and
subtracted from the overall pool of available dollars.

Bob: Wait . . . back up. What needs to be entered to subdivide an
account?

Ellen: The user just picks an account, then chooses to subdivide it, enter-
ing the amount to put in each account . . . or even just a percent of the larger
pot of money.

Bob: So if he picks one account to subdivide, does it split into two, or
three or how many?

Ellen: Let the user choose, but maybe two as a default.
Bob: OK, but we may need to take a harder look at that interaction.
Ellen: So how long will that take? Can you have it ready by the end of this

month?
Bob: I’d like to try the “spiral” approach on this project. I can have

something for you by the end of this week— from which you can tell me if I’m
heading in the right direction. It will just be a beginning, but you’ll be able to
see something run. By the way, is this tool only for our group?

Ellen: For now it is, but I could see other departments wanting to use it
some day. Who knows how far it could go?

3. Remember, this is a fictional account. We are providing justification for why they can’t use
the corporate application. Anyone’s use of such a tool can be less than optimal, reflecting more
on themselves than on the value and usability of the tool.

27111.6 Requirements for the Budget Application

Back at His Desk11.6.2

Bob is now back at his desk pondering the conversation he had with Ellen.
“These are not like the requirements we learned about in my software engineer-
ing courses,” he muses. “I’ve got that sketch of the UI and a brief description
of its functionality. But there seem to be so many unanswered questions.”

So what is Bob supposed to do? He could go back and try to get more
“face time” with Ellen, and ask lots more questions. Sometimes that’s a smart
thing to do. Other times such repetition is seen as annoying and a sign of a
slow-witted analyst, never mind how obscure the initial discussions were or
how many times someone changed their mind about what they want. You will
have to judge each situation as you encounter it. At some point, though, you
have to deal with whatever information you’ve been given, and try to make the
best of it.

So where do you turn? The next best things to do are to begin to docu-
ment the requirements as you understand them, to prototype a solution, and
to start getting buy-in from other stakeholders. Each of these activities may
help bring out more requirements, but that’s not a bad side effect.

DOCUMENTING, PROTOTYPING, AND STAKEHOLDER BUY-IN11.7

Once a project is started, the design must be documented. A prototype may be
built to validate and refine the design. Finally, everyone with a stake in the
success of the design has to be brought up to speed and needs to agree on what
is to be built.

Documenting11.7.1

After such a conversation, it’s smart to try to get your thoughts down on paper
as soon as possible. Some of what gets said will fade with time, so work quickly
to capture what you can of the requirements that were spoken. Even if you have
to leave lots of blanks, keep moving and get as much of the major requirements
written down as you can, even if they don’t sound very formal or polished.
Then go back, revise and edit your statements, filling in the blanks where you
can. Sometimes you will need to ask others to get the answers to fill in the
blanks. Other times you can use your own judgment and initiative to provide
an answer. Out of this process with its subsequent rewrites will come the
requirements document.

Chapter 11 Balancing Acts: An Imaginary Scenario272

Some organizations are very formal in their understanding of requirements.
They will have company-standard formats which you must follow. But there
is no magic format that will make for good requirements. It really all comes
down to content.

Here’s an informal list of the requirements for the budget application,
based on the conversation between Bob and Ellen.

Features:

• Starts with a single lump sum of dollars.

How does this first sum get entered?•

• Each dollar amount is associated with an “account.”

• Any account may be divided into two or more subaccounts.

• The dollar amount associated with a subaccount is specified either in
absolute dollars or as a percentage.

What if they don’t add up?•

• Can the user mix $ and %?

• Can the user leave the last subaccount’s amount blank for “remaining
dollars”?

• Tracking of the dollars—not enough info, so not in first prototype.

• Multiple users will have access to the data.

• Concurrent use is allowed and supported.

• Short development time, limited resources.

• Has a graphical user interface; earliest versions may be command-line and
terminal interaction.

Not all requirements will be easily forthcoming; not all can be traced back
to an exact quote from the previous discussion. Other requirements will need
to be inferred from the discussion or from department “culture,” or come from
your own judgment:

• Platform: “any” PC in Ellen’s department—but her developers are all using
Linux platforms.

• Future platforms: “any” PC in the company means any Windows, Linux,
or Mac OS X.

• Reliability: once entered, data is never lost.

• Maintainability: the application must be easy to maintain.

27311.7 Documenting, Prototyping, and Stakeholder Buy-In

• Interoperability: there’s no requirement to interoperate with any other
software but here’s an idea for a future version: export/import into CSV
format for spreadsheets, and/or XML format for future expansion).

• Response time: “reasonable” interactive speed; subsecond response when
entering new accounts and values, so that the user can type quickly and
continuously; waiting, if it occurs, should only be at button presses, not
between data entries.

Stakeholder Buy-In11.7.2

Stakeholder buy-in can be another important part of a software project. As we
discussed in Section 11.5, stakeholders are any of those people who are touched
in some way, direct or indirect, by this software project.

For this simple budgeting program, there will be few stakeholders—it will
largely be Ellen and her direct reports. The system will not likely be a large
drain on computing resources, so system admins don’t need to be brought in
at this point. If and when the project expands to include other users across the
network and across the enterprise, then the system administrators should
definitely be included. There will be few reports from this first cut of the
project, and what few there are will only be read by Ellen and her direct reports,
so again, there are few others that need to be consulted as stakeholders.

The idea at this stage is to listen to other points of view—those of your
stakeholders—to get a different perspective before charging headlong down
one avenue of development.

It’s not that you will be able to satisfy all points of view—it can be a wor-
thy goal, but it is often unattainable. Rather, you need to hear from all those
involved since your software will affect all those people, and understanding
something about how it will fit into their roles and daily tasks will help you
make better tradeoffs and design better software. It will likely uncover previous-
ly unseen requirements. It also has the political benefit of those people knowing
that you cared enough to listen to them before sending them a finished solu-
tion. It increases the likelihood that your software will be seen as a help, not
hinderance.4

4. As engineering types it is difficult for us to understand and appreciate the importance of
this, but in many ways these personal, political, and psychological factors are much more im-
portant to the success of a project than are technical choices. It has taken us years to appreciate

Chapter 11 Balancing Acts: An Imaginary Scenario274

Prototyping11.7.3

Prototyping can be an effective way to carry on the discussion of both require-
ments and user interface design. Given only a hypothetical or abstract descrip-
tion of some software, it can be very difficult for people to imagine what the
implications of its use will be. A simple prototype can immediately bring the
discussion down to the concrete; people can point at things and say “I like this”
and “I don’t like that” and “How would I do so-and-so” and then see whether
or not it would work. Sometimes, ideas that sound great on paper turn out to
be pretty poor ideas when realized. Prototypes can help you discover that
quickly and easily.

One very useful but inexpensive prototyping mechanism can be
HTML—that is, creating Web pages. Simple static HTML can be fast and
cheap to build, but can begin to approximate what the user interaction will
look like—especially for, but not only for, Web-based solutions. It may not be
an exact replica of the final product, but for a first step it can really get the
discussion moving.

If the UI is too complex for a Web page mock-up, you can still use HTML
for prototyping by getting images (screenshots) of what you want your final
solution to look like and then making these images clickable on Web pages, to
simulate some simple user interaction with hyperlinked image sequences.

The idea is to get something “tangible” in front of people as soon as possi-
ble, to further the discussion in a way that written descriptions never can.
(“A picture is worth a thousand words.”)

Once you’ve built a prototype, shop it around. Hold informal meetings
where you demonstrate the basic functions to stakeholders. We recommend,
as much as possible, meeting with one group of stakeholders at a time. That
way you can keep your conversations focused. If you have two different stake-
holder groups represented and their expertise and interests are wildly different,
you’ll be boring ½ the participants all the time. Even if their expertise is similar,
you may have groups with competing or conflicting requirements. While you
need to understand such conflicting requirements and eventually come to some
detente, this meeting is not the best venue for settling those issues; it would
more likely simply scuttle your meeting and void any value from it.

that Dale Carnegie is as important to the software designer as Yourden or Booch. Your users
need to be your friends if you want to succeed.

27511.7 Documenting, Prototyping, and Stakeholder Buy-In

After each meeting, review your requirements and see what more you need
to add. Likely at such meetings, you’ll begin to get requests for new features.

You have, in fact, begun the iterative process. Even the most bare-bones
prototype that may only consist of a sequence of pictures is a first cut of your
product. The sooner you can get to a running version, the sooner you will be
able to respond to stakeholder suggestions by adding real features.

REVIEW11.8

A good requirement is one that states a need but not a solution. Your first step
is to uncover the needs, while listening to everyone’s solutions. These require-
ments will develop into feature descriptions. These should be documented and
then prototyped. The prototype, which is in effect the first release of your
product, can then be shown to various groups—stakeholders—as a way to
elicit their feedback. This feedback should begin to factor in to what you will
build, so now you need to move quickly on to building the real product; do
not get stuck enhancing the prototype.

WHAT YOU STILL DON’T KNOW11.9

Writing good requirements is as much art as it is science, and it involves politi-
cal science as well. This is not something easily taught in a book, but learned
through hard experience.

RESOURCES11.10

One of the original purposes of the World Wide Web was to allow researchers
to share their results. So, you should be able to search the Web for requirements
documents from various projects for examples of requirements specification.
As with any Web search, remember to consider your source. Just because
someone has posted a requirements specification or a template doesn’t make it
a good example.

Here are three examples that we found on a single simple Google search.
They may still be there by now.

Chapter 11 Balancing Acts: An Imaginary Scenario276

• http://www.progsoc.uts.edu.au/~timj/thesis/web/srs.html

• http://www2.ics.hawaii.edu/~johnson/413/lectures/5.2.html

• http://www.cc.gatech.edu/people/home/tomoyo/rocky-axel.1.doc

For those who are serious about their software development process, the
Capability Maturity Model for Software from the Software Engineering Insti-
tute at Carnegie Mellon University is the standard. Visit their Web site at
http://www.sei.cmu.edu/cmm/.

If you would like to know more about the spiral approach to software de-
sign, you might want to start with the seminal paper on the topic, “A Spiral
Model of Software Development and Enhancement,” in Computer 21, no. 5
(May 1988), pages 61–72.

To see how the director of the Software Engineering Institute views
the spiral approach, check out the short and readable introduction at
http://www.dacs.dtic.mil/awareness/newsletteres/technews2-1/

disciplined.html.
Another good look at the spiral, or iterative, approach can be found at

http://www.stickyminds.com/se/S3420.asp which has a hyperlink for
a PDF file of a paper by Philippe Kruchten of Rational Software. The paper
covers some pitfalls common to the first uses of the iterative approach; worth
the read.

A great survey of key papers on three major approaches—spiral and related
topics (including newer work by Boehm), aspect-oriented programming (AOP),
and the rational unified process—is at http://www.rspa.com/reflib/
PrescriptiveModels.html.

EXERCISES11.11

1. Write requirements for a simple word processor or spreadsheet. Start with
some obvious functionality. Add only enough “bells and whistles” for it
to be usable for beginners. Show this list to others, especially people famil-
iar with similar applications. What features do they find missing that are
important to them? How quickly does your list expand? What might you
do to limit the size and the rate of growth of the features list?

27711.11 Exercises

2. Discuss the requirements for your application with someone who has no
experience with a similar product. How difficult is it to get useful feed-
back? Now show them (the simple features of) a working spreadsheet or
word processor, as if it were your prototype. Does the conversation change?
In what ways? Is the feedback now more or less useful than before they
saw the prototype?

Chapter 11 Balancing Acts: An Imaginary Scenario278

In this chapter, we will present the barest outline of a software development
methodology. For some readers, this will be simplistic and unsuitable. In our
experience, however, there are many businesses out there with very small devel-
opment teams that have very little software engineering experience, even though
they have considerable technical and programming skill. Our goal here is to
present a bare minimum of analysis and design method, so that we can be sure
we have a common basis for discussing the issues of object-oriented analysis
and design.

WHAT YOU WILL LEARN12.1

In this chapter you will learn a very simple method for object discovery and a
simple method of documenting this process.

279

Chapter 12

Analysis and Design:
Seeking the Objects

FACING THE BLANK PAGE12.2

So, you have some requirements. Maybe you even have some UI prototypes.
How do you turn that into an object-oriented design for Java classes? How do
you confront the paralyzing blank white of your whiteboard, terminal session,
or easel?

The simplest way is to start with real-world objects. Stop thinking about
everything you have read about object-oriented programming. Instead, ask
yourself, “What are the real objects involved in this problem?”

In our case, the more you look at it, the simpler it gets. For the moment,
the only real objects we have are people—the users—and accounts, that is,
named pools of money. We know that users get accounts from “above,” and
that they may break those pools down into subaccounts, which they may own
or delegate to other users.

At the broadest level, then, we seem to have two “classes” or types of
real-world objects: Accounts and Users.

USING CRC CARDS12.3

So, we need two classes. But what goes into those classes? How do we go about
putting the substance into this simplistic framework?

In their now (semi)famous paper presented at the object-oriented program-
ming conference OOPSLA in 1989, Kent Beck and Ward Cunningham intro-
duced a simple, practical design tool for object-oriented design based on a
simple, practical 3x5 file card. The CRC cards for our classes are shown in
Figures 12.1 and 12.2.

But we are getting a bit ahead of ourselves. These CRC cards are an end
product of analysis. They are the starting point for coding. Let’s talk a little bit
about what is on these cards and how we came to that content.

FINDING THE OBJECTS12.4

The basic technique for doing OOA1 with CRC cards is to start with a stack
of blank cards. Assemble a design team (this may be one person, or this may

1. (object-oriented analysis)

Chapter 12 Analysis and Design: Seeking the Objects280

a pool of dollars

Account

members collaborations

* name - a String
* owner - a User
* amount - an SAMoney object
* children - an ArrayList (of Accounts)
* parent - an Account

* persistence (CRUD)
* User

a pool of dollars

Account

members collaborations

* name - a String
* owner - a User
* amount - an SAMoney object
* children - an ArrayList (of Accounts)
* parent - an Account

* persistence (CRUD)
* User

Figure 12.1 Account CRC card

someone who manages budget dollars

User

members collaborations

* name - a String
* home - an Account

* persistence (CRUD)
* Account

Figure 12.2 User CRC card

be dozens).2 The first step should always be the nomination of the real-world
objects. Don’t edit or critique at this point. If someone says “computer” as an
object, write “Computer” on the top of a card and put it on the table. If
someone says “Manager” write it on a card and put it on the table.

2. It is fun to gloss over such a complex topic with a single sentence! Obviously, the composi-
tion of a design team is a complicated matter. At the very least, a design team must include a
representative from the programming team and a future user of the system. On small, simple
projects, that may be all you need. On more complex or mission-critical systems, there will
have to be additional representatives, such as people from Operations, Support, Training,
Quality Assurance, and so on.

28112.4 Finding the Objects

To take our example, suppose we have the following list of CRC cards
after such an open brainstorming session:

• Database

• Capital Account

• Current Account

• CEO

• Computer

• CFO

• Director

• Keyboard

• Manager

Where do you go from here? Let’s articulate a general principle.

The first principle. If we could teach a programmer only one thing about
software design, it would be this idea: less is more. Or, to quote Antoine de
Saint-Exupéry: “Perfection is achieved not when nothing can be added, but
when nothing can be taken away.” Or, to put it yet another way, always use
the KISS3 principle. The best object design is the smallest possible number of
classes that model the real objects and meet all the requirements.

You are seeking simplifying abstractions.
First of all, all the objects that represent technologies or implementation

details should be removed. In our list, this would include “Database,” “Com-
puter,” and “Keyboard.” While it is likely that all three will be involved in the
final product, they are not objects in the problem space. There is no theoretical
reason why an OOA session cannot produce a manual, noncomputer solution.
It is a common tendency to leap from problem analysis directly to technical
solutions. “We can write that in Java,” “We can store those in Oracle,” “That
could be an XML file.” Statements like these are to be avoided at this stage.
Those are details about the implementation. You haven’t got a design to
implement yet!

As we said, you are seeking simplifying abstractions. The next step, after
culling cards that do not represent real objects in the problem space, is to
group together the cards that have any attributes in common. If we look at our

3. An acronym for: Keep It Simple, Stupid!

Chapter 12 Analysis and Design: Seeking the Objects282

remaining cards, we can quickly see that we have two cards that are accounts:
“Capital Account” and “Current Account.” These are both pools of money.
Put them on top of one another on the table. Likewise, it is fairly obvious that
“CEO,” “CFO,” “Director,” and “Manager” are all people. Put them together
on the table.

Remember that we are looking for simplifying abstractions. The grouped
cards should all be obviously variant types of a generic class of objects. In our
example, the one is a stack of Accounts, and the other is a stack of People, or,
as we will call them, Users. Create new cards for these generic classes. Make a
card with “Account” at the top and put it above the first stack. Make another
card with “User” at the top and put it above the second stack.

There are two ways that this might simplify your design. For now, all cards
below the abstract cards are “on probation.” We are going to move on to define
the attributes (data) and methods (behavior) of our abstract classes. If the ab-
stract class can handle all use cases without having to treat any of the more
specific classes differently, then the specific cards are discarded. If not, then all
functionality that is common across the more specific types will be put on the
abstract class card, and only those data and behaviors that are different will be
put on the more detailed cards.

In the first case, the simplification is a reduction of several potential classes
to a single class. This is always a good thing, when it is possible. In the second
case, you are identifying potential inheritance relationships.4

FINDING THE METHODS AND ATTRIBUTES12.5

The next step is to start identifying the data and behavior that characterize your
classes. Always put such items on the most abstract class first. The only time to
add an attribute or method to a more specific class is when it applies to that
class and only that class—in other words, only when it represents a difference
between the general case and the specific case.5

4. We’ll talk more about that later in the book. As it happens, all of our simplifications in this
chapter are examples of the first case.

5. In complex cases, you may find an attribute or method that applies to several, but not all,
of the specific cases. In such a case, a new abstract class below the main abstract class, but above
all the specific classes that share that attribute or method, may be called for.

28312.5 Finding the Methods and Attributes

ESSENTIAL AND NONESSENTIAL12.6

So far, we have walked you through a very simple example, and we have made
sound choices at every step. In more complex cases, even the best of us will
make mistakes. We will head down blind alleys. We will group things together
that might belong in separate abstract categories, but should, perhaps, share an
interface. These are not so much errors as judgment calls, and skill at recogniz-
ing them and making the correct decisions comes only with experience.

For now, the most important questions to ask include:

• Do I need this class?
We are often tempted to create too many inherited classes. When we

seek more generic, higher level abstractions, it is often possible to use only
the more abstract class. Of course, it is possible to carry that tendency too
far. If your methods contain a lot of “if’s” to handle various subtypes, that
might be a case where you should inherit and overload the method.

• Should I get functionality by inheritance or composition?
Inheritance should be reserved only for cases where a class is a more

specific variety of the base class. For example, you might have a Person
class, and then you might have Employee and Customer classes inherit
common attributes and methods from Person. This is frequently called an
“is-a” relationship, as in “A User is a Person.” If your proposed inheritance
relationship makes sense phrased that way, it might well be a good
candidate for inheritance.

Composition is when you use a class as an attribute. To extend our
example, you might have an Address class. You might be tempted to have
Person inherit from Address. But a Person is not an Address. Try it: “A
Person is an Address.” Nope. Instead, you should just have an instance of
the Address class as an attribute of Person. Such a relationship is often
called a “has-a” relationship, as in “A Person has an Address.” If the
relationship makes sense phrased that way, it is a good candidate for
composition. Another way to recognize that you’ve wrongly used inheri-
tance is if you end up having a radically different class inherit from the
same base class. For example, suppose you have a class, Building. Would
it make sense for Building and Person to inherit from Address? Are
Buildings and Persons more specific instances of the same general type of
thing? No, they are not. Building and Person should get Address
functionality by composition.

Chapter 12 Analysis and Design: Seeking the Objects284

• Does this attribute or method belong here?
If you find yourself specifying nearly identical methods in more than

one class, this should make you ask if the classes should have a common
base class from which they should inherit, or if there should be a new
unrelated class that they all share by composition.

If the functionality is the same for a set of classes, and the classes are
specific instances of a more general type, the method should be on the
general class. For example, a changeName() method should probably be
on Person, not on Employee or Customer, because the functionality is the
same for all three classes. By contrast, a changeEmployeeNumber()
method should be only on Employee. It should not be on Person, because
not all Persons are Employees. There may also be methods that are com-
mon to both Employee and Customer types, but are radically different in
implementation. For example, a changePassword() method might
change a password in a system-wide LDAP server for an Employee, but
might just change a record in a Web site database for a Customer. This is
easily done by writing separate methods in each class.

But should you add a changePassword() method on Person? If you
want to be able to call the method when treating either a Customer or an
Employee as a Person, then you should. But you don’t have to implement
the method on Person. You can declare Person.changePassword as ab-
stract, and then, if you call the method on a Person, it will call the correct
method based on what type of Person (Employee or Customer) the Person
is. Note that if a class contains any abstract methods, the class itself must
be declared abstract and it cannot then be instantiated. Also note that
this is often best accomplished not through abstract classes, but through
interfaces (see Eckel, pp. 321–322).

These are by no means the only considerations that come to bear on what
classes to create and how to arrange and implement them, but they do represent
a good start. They are a foundation on which you can build best practices out
of your own experience and environment.

Whole books have been written on the topics of object-oriented analysis
and object-oriented design. CRC cards are only one part of an array of tech-
niques that can be applied to OOA/OOD. The Unified Modeling Language
(UML) is popular in many MIS circles. UML consists of a variety of different
diagrams which are used to model parts of an object-oriented design. They are:

28512.6 Essential and Nonessential

Am I Mature? Or Are You My Mommy?

Let us point you at one more business buzzword link. Even though we
think this particular site and their work are being ill-applied by many
well-intentioned IT managers, there is still a great deal of value in the
Carnegie Mellon Capability Maturity Model (http://www.sei.
cmu.edu/cmm/). At the very least it provides an objective way to assess
the level of process sophistication you have in your organization.

The CMM defines five levels of maturity:

1. Initial

2. Repeatable

3. Defined

4. Managed

5. Optimizing

If we may grossly oversimplify (and why should we stop now?),
“Initial” means you do things differently every time. You just make your
best guess about what the right thing to do is, and you do it. “Repeatable”
means that you have hit upon a method that appears to work, and you
use it consistently. “Defined” means that somebody has written it down.
“Managed” means that the process is actively maintained and supervised
in an effort to adapt it to changing circumstances. “Optimizing” means
that measurements (“metrics”) are made that objectively assess the pro-
cess, and ensure that continuous improvement takes place and can be so
proven.*

What we have shown you in this chapter probably falls in the Repeat-
able category, a long way from the engineering and management nirvana
of Optimizing.

The problem that seems to come up with this system is that very bad processes may
be very mature and very good processes may be relatively immature. Obviously,
however, an Optimizing process must be steadily moving towards the good.

*

Chapter 12 Analysis and Design: Seeking the Objects286

Class Diagram•

• Sequence Diagram

• Collaboration Diagram

• Use Case Diagram

• Activity Diagram

• Component Diagram

• Deployment Diagram

Using the simple but effective technique of CRC cards can be a good place
to start, but you may soon want to move up the OOA/OOD ladder to use tools
like Umbrello6 to make UML diagrams, and perhaps to use the whole UML
toolset.7 Many organizations that we know of will pick and choose various
techniques and tools. No matter how far down the road of formal software en-
gineering you go, you must at least make some effort to have a repeatable
process that incorporates continuous improvement.

ANALYSIS PARALYSIS12.7

The catchy phrase “analysis paralysis” has become a cliché. (And how could it
not, being so catchy?) What it refers to, of course, is the tendency to become
bogged down in details; or the tendency to refuse to start implementation until
you are certain that your design is “right.”

This is where using a “spiral” development model can pay off. By doing
frequent small releases, you can expose subtle design flaws at an earlier stage in
development. Often, you can (to trot out another trendy term) “refactor” a
small part of your design or implementation. If you have clean object interfaces,
this can often be done with minimal disruption because a good object model
hides implementation details within classes.

In most cases it is best, once you have the use cases and requirements, to
proceed to a prototype object model and learn by doing.

6. http://uml.sourceforge.net/index.php

7. http://www.uml.org/

28712.7 Analysis Paralysis

REAL SOFTWARE ENGINEERING12.8

Let’s take a moment here and ask a fundamental question. Is this the best way
to make software? And there is another fundamental, but subtly and important-
ly different question: Is this the right way to make software?

There are techniques and methods of Software Engineering that do ap-
proach the ideal of “zero defects.” NASA uses such procedures for manned
spacecraft. Coders for medical devices do likewise. The outline method we have
suggested here doesn’t come close to such methods. So, is what we have de-
scribed the best way to make software? No, it is not. So why don’t we all use
those zero defect methods? That is easy to answer: cost. It is expensive. Virtually
no MIS shop on the planet would be willing to pay the price it takes to get that
stability and certainty. The price isn’t just dollar cost, either. The Space Shuttle,
for example, has computers that still use magnetic core memory, a technology
that was old in the 1970s. Why? Because the restrictions imposed by their
change control systems would essentially require the entire shuttle to be
redesigned and retested if they made such a change.8

But this isn’t an either-or. You do not have to apply either a full-fledged
software engineering methodology, or use nothing at all. Instead, you have to
apply some design, development, and maintenance processes that improve the
probability of success and reduce the cost of failure. When we recommend
version control, requirements gathering, use cases, and CRC cards, we are giv-
ing you a bare-bones set of methods that will help to write fairly successful
software at reasonable cost in reasonable amounts of time.

To some of you, this will be old news. If you are at level 2 or above on the
Capability Maturity Model (see the sidebar in Section 12.6), then you already
have some process. But you would be surprised how many business out there
do not even have source code control in place. To some of you, what we suggest
here will be primitive compared to processes you already have. The point is, no
one’s level of control and process is “right” (to us, that means “cost-justified”)
for all cases. But using no method at all is a risk too great for any business.

8. An exaggeration to be sure, though maybe not as much as you might think, but you get
our point.

Chapter 12 Analysis and Design: Seeking the Objects288

CORE CLASSES12.9

So, let’s meet our core Java classes. Here they are, in all their glory (Exam-
ples 12.1, 12.2).

REVIEW12.10

We have discussed a simple approach to object-oriented analysis and design
through the use of CRC cards. The ideal outcome is a design with the smallest
possible number of classes that model real-world objects while meeting all the
requirements.

WHAT YOU STILL DON’T KNOW12.11

We could list the names of a number of formal software engineering method-
ologies, but we won’t bother. If this chapter has served as your only introduc-
tion to object-oriented analysis and software engineering, let’s just say you have
a lot of reading to do. But beyond that, there is something you need that is
much more subtle and difficult to pin down: experience. The only way to get
good at analysis and design is to do it. It helps to do it in conjunction with ex-
perienced people, because they can save you time and pain in acquiring your
experience. This chapter is the simplest of foundations. The books give you
knowledge. Experience gives you wisdom.

RESOURCES12.12

Kent Beck and Ward Cunningham, “A Laboratory for Teaching Object-
Oriented Thinking”, in OOPSLA’89 Conference Proceedings, New Orleans,
Louisiana, October 1–6, 1989. The special issue of SIGPLAN Notices 24, no. 10
(October 1989) is also available online at http://c2.com/doc/oopsla89/
paper.html#cards.

More on the Capability Maturity Model can be found at
http://www.sei.cmu.edu/cmm/.

Information on the Unified Modeling Language can be found at
http://www.uml.org/.

28912.12 Resources

Example 12.1 The Account class

package net.multitool.core;

import net.multitool.util.*;

import java.util.*;

import java.sql.*;

public class

Account

{

 private String name; // A name to identify this account

 private User owner; // The user assigned to this account

 private SAMoney total; // Total amt originally allocated to

 // this account

 private SAMoney balance; // amt remaining unallocated to any

 // subaccounts

 private Account parent; // The account which contains this

 // account as a child

 private HashMap children; // The collection of subaccounts,

 // by name

 private static Connection dbConn = null; // JDBC connection

 private ArrayList payments; // TODO: unimplemented

 private SAMoney unspent; // TODO: unimplemented

 /**

 * Create an account, with a pool of dollars to budget.

 * Use this constructor to create the master account.

 * Use createSub to create children of this account.

 */

 public

 Account(String name, User owner, String total)

 throws NumberFormatException

 {

 this.name = name;

 this.owner = owner;

 this.total = new SAMoney(Double.valueOf(total).doubleValue());

 this.balance = new SAMoney(Double.valueOf(total).doubleValue());

 // N.B. must not be the same object

 this.parent = null;

 this.children = new HashMap();

 }

 // Static that connects to the DB and either returns the top account,

 // or creates it for us.

 public static Account getTopAccount() throws SQLException {

 Account topAccount = null;

 dbConn = DriverManager.getConnection("jdbc:postgresql:budgetPro?user=mschwarz");

Chapter 12 Analysis and Design: Seeking the Objects290

 if (dbConn != null) {

 // We have a database connection.

 } else {

 // We don't and we must create a top account.

 }

 return topAccount;

 }

 // Simple getter; returns the name.

 public String

 getName() { return name; }

 // Simple getter; returns the total pool of money that this account represents.

 public SAMoney

 getTotal() { return total; }

 // Simple getter; returns the balance.

 public SAMoney

 getBalance() { return balance; }

 // Simple getter; returns the parent account.

 public Account

 getParent() { return parent; }

 // Simple getter; returns the owner of this account, as a User object.

 public User

 getOwner() { return owner; }

 // Census - how many children.

 public int

 size() { return children.size(); }

 /**

 * Get to all the children, via an iterator.

 */

 public Iterator

 getAllSubs()

 {

 return children.values().iterator();

 }

 /**

 * Create a new subaccount (i.e., child)

 * given a name and an amount.

 * The child is connected to the parent, and

 * the parent's balance is reduced by the amount

 * allocated to the child.

 */

29112.12 Resources

 public Account

 createSub(String name, String amt)

 throws NumberFormatException

 {

 Account acct = new Account(name, owner, amt);

 // Reduce the parent's unallocated funds.

 balance = balance.subtract(acct.getTotal());

 // Connect the accounts to each other.

 acct.parent = this;

 children.put(name, acct);

 return acct;

 } // createSub

 /**

 * Looks up and returns the account with the given name.

 */

 public Account

 getSub(String name)

 {

 return (Account) children.get(name);

 } // getSub

} // class Accoun

The Umbrello UML modeller is an Open Source tool for creating the various
UML diagrams. You can find it at http://uml.sourceforge.net/

index.php. We also recommend their online documentation as a good brief
introduction to UML and to Umbrello. It can be found from the main Umbrel-
lo page, or directly at http://docs.kde.org/en/HEAD/kdesdk/umbrello/.

EXERCISES12.13

1. Imagine a public library. Carry out the CRC nomination process for a
system to track library members and the collection. What list of objects
do you come up with? What abstract classes do you find? Which did you
discard and why?

2. Extend the purpose of the library program to include generating mailings
to members with overdue materials. Did you add classes? Did you add
methods and/or members? To which classes did you add them?

Chapter 12 Analysis and Design: Seeking the Objects292

Example 12.2 The User class

package net.multitool.core;

import net.multitool.util.*;
import java.util.*;

public class
User
{
 private String name;
 private Account home; // TODO: implement

 public
 User(String username)
 {
 name = username;
 }

 public String
 toString()
 {
 return name;
 }

} // class User

3. A new requirement is added. The system must allow for books, audio
recordings, and movies to be checked out for different lengths of time.
Did you add classes? Did you add methods and/or members? To which
classes did you add them?

29312.13 Exercises

Testing may not be your favorite task as a programmer; it probably rates just
above documentation. Yet here is a tool that has made testing more bearable
and more productive for many Java developers—and not just because it has
pretty colors and flashing lights.

WHAT YOU WILL LEARN13.1

• What JUnit is and why it’s getting so much attention.

• How some people test before they start coding.

• How to install and invoke JUnit.

• The major JUnit concepts that you need to understand.

• What assertions are available in JUnit.

295

Chapter 13

JUnit:
Automating Unit Testing

JUNIT: WHY ALL THE FUSS?13.2

JUnit is a framework for unit tests. It consists of a handful of classes which you
can use to build bunches of test cases for testing your application. JUnit also
comes with three test “runners” for running your tests and reporting the test
results. So why all the fuss? Why has JUnit been so much in the technical
forefront the last year or two?

Start with a straightforward idea, well executed, that can help almost any
programmer working on any application. Make it something that can be inte-
grated incrementally into existing projects. Make it robust enough to be used
for projects starting “from scratch.” Give it a simple but pleasing GUI, and put
it to work on a few high-profile projects. Give it some good press coverage. And
you’ve got a winner: You’ve got JUnit. Besides, it really does help you get useful
work done; it makes writing tests a little less work and a little more enjoyable.
And working with well-tested code is its own reward—a satisfying experience.

DESIGN THEN TEST THEN CODE13.3

This is the slogan of the test-oriented crowd, and if it sounds a bit impossible,
it is. It’s hype—it got your attention, and there is a bit of truth to it, but don’t
take it too literally.

The approach espoused by the “Testing First” crowd is to start, like all
good software development efforts, with design. But once you have pieces de-
signed, move directly into testing. Now you don’t have any code that can be
tested yet, but you can start writing your tests. Then—although the tests will
fail, as there is no code to run yet—you can begin keeping score on your
progress by running these tests as code gets implemented.

NOTE

Some people like to tout the use of JUnit as an automated tool to track progress,
but that’s a little hard to do when you can’t compile your tests because the
classes they need don’t yet exist. However, if you document your design of a
class by (among other things) creating an empty version of the source, with
Javadoc comments for the class and whatever methods you have come up with
so far, well, then you’ve got something that will compile, and thus can be used
for tracking progress. It also makes great, tangible documentation. Our point
here, though, is that you are doing some coding before you begin testing. It’s
really more of a back-and-forth between coding and testing.

Chapter 13 JUnit: Automating Unit Testing296

Let’s apply that approach to our previous design discussion. We’ve de-
scribed an Account class in our design discussion. It needs a name, an owner,
and an amount of money when created. It should have a method to create
subaccounts, ones that are connected to this account and get allocated some or
all of the main account’s money.

Example 13.1 is the basic structure of our Account class.
That’s enough to begin writing a test. We have described the constructor,

with the three parameters that it will need. We’ve also described a method on
the Account object, one that will create subaccounts. That gives us enough
information to write a test that will create an account and then create subac-
counts of that account. We can test to see if the accounts are created properly
(i.e., are not null) and if the subaccounts use up all the money of the parent
account.

When you “test then code,” you begin to use the objects that you have
designed without getting bogged down in their implementation. You are, in
effect, describing their external interfaces without implementing them. You are
also beginning to use the classes as a user might, though a tester’s use is a bit
different than the way an application might use them. However, as a user of
these classes you are beginning to test the design, by testing the results of the
use cases—are these classes really usable?

You may discover that you need some additional functionality. In our ex-
ample, we can see from the description of our test that we will need a getter
method on the account to return the amount of money that remains unallocat-
ed to subaccounts. Then we can test to see if it gets used up properly.

There are many more test cases that we could develop for the Account
class, but let’s use just these for now, so that the size of our test case is
manageable.

Our next step is to get JUnit installed before we get too deep into
developing our test cases. That will give us something to run these tests.

INSTALLING AND RUNNING JUNIT13.4

It’s rather simple to install a standalone version of JUnit. We download a ZIP
file from the JUnit Web site, then unzip it into a directory. Adding the JUnit
JAR file to your CLASSPATH is all that’s needed to make JUnit available for you
to run it.

29713.4 Installing and Running JUnit

Example 13.1 The bare bones of our Account class

package net.multitool.core;

import net.multitool.util.*;
import java.util.*;

/**
 * The basic Account class for our budgeting example; this is the
 * first-cut "implementation" where we have just transferred our
 * design into Java code. We can use this much to generate Javadocs
 * and also to begin our JUnit testing (design, test, code).
 */

public class
Account
{
 private String name; // a name to identify this account
 private User owner; // the user assigned to this account
 private SAMoney total; // total amt allocated to this account
 private HashMap children; // the collection of subaccounts,
 // by name
 private Account parent; // it has this account as a child

 /**
 * Create an account, with a pool of dollars to budget.
 * Use this constructor to create the master account.
 * Use "createSub" to create children of this account.
 */
 public
 Account(String name, User owner, String total)
 {
 }

 /**
 * Create a new subaccount (i.e., child), given a name
 * and an amount. The child is connected to the parent.
 */
 public Account
 createSub(String name, String amt)
 {
 return null; // so it compiles

 } // createChild

} // class Account

Chapter 13 JUnit: Automating Unit Testing298

Downloading and Unzipping13.4.1

Point your browser at the site http://www.junit.org/ (Figure 13.1). From
the main page, choose the Download heading.

That takes you to a SourceForge site (Figure 13.2); click on one of the
sites near you, though any will do. The download is only a few hundred
kilobytes, so it shouldn’t take long.

You’ll be left with a file named junitX.Y.Z.zip, where the X, Y, Z char-
acters are the digits that tell you what release of JUnit this is. Our examples
show the 3.8.1 release.

NOTE

It’s a good idea to inspect the ZIP files that you download before you actually
unzip them. We like to know what files and especially what directories are going
to get modified or cluttered up by the unzipping. Some ZIP files come with all
their files inside of a single folder. Those are fine to unzip in place. Other ZIP
files have been built from lots of pieces and unzipping them can make a mess
of your current directory, or worse, of other directories that you may not even
know about. Instead, play it safe and look before you leap. You can see the list
of all the files in the JUnit ZIP file by typing this command:

$ unzip -l junit3.8.1.zip

The -l option will produce a listing of the contents of the ZIP file. That
way you can see what subdirectories it will create, that is, if it is going to unpack
into a single directory or make a mess. The JUnit ZIP file is very well behaved
in this respect.

Figure 13.1 The JUnit home page

29913.4 Installing and Running JUnit

Figure 13.2 The SourceForge download site

Create a directory and unpack the JUnit ZIP file in there:

$ mkdir ~/junit
$ mv junit3.8.1.zip !$
$ cd !$
$ unzip junit3.8.1.zip

This warning from the installation instructions is worth noting:

IMPORTANT

Don’t install the junit.jar into the extention directory of your JDK installation.
If you do so the test class on the filesystem will not be found.

Chapter 13 JUnit: Automating Unit Testing300

The JDK installation directory has a subdirectory named jre/lib/ext.
Don’t put the JUnit JAR file in there. If you have followed our instructions,
you’re OK, since we had you create a new directory.

To use JUnit, the junit.jar file needs to be in your classpath. For
example:

$ export CLASSPATH="${CLASSPATH}:${HOME}/junit/junit3.8.1/junit.jar"

That’s all the installing there is. It doesn’t feel like much, because you
haven’t done much. All it provides is a JAR file that you will use when you want
to run tests. That’s where it gets interesting.

Using JUnit13.4.2

To test out your installation, cd to the directory where you unpacked JUnit.
If it isn’t already part of it, add the current directory (“.”) to your CLASSPATH:

$ export CLASSPATH="${CLASSPATH}:."

Then try:

$ java junit.swingui.TestRunner junit.samples.AllTests

You should see a Java Swing GUI appear, with a green bar showing the
progress of the testing (Figure 13.3).

NOTE

You may see an error message like this in your terminal window:

(data/time) java.util.prefs.FileSystemPreferences checkLock...
WARNING: Could not lock System prefs.Unix error code 136742412
(data/time) java.util.prefs.FileSystemPreferences syncWorld
WARNING: Couldn't flush system prefs: java.util.prefs.Backi...

It will keep repeating as long as JUnit’s GUI is running. The easiest fix is
to make the jre directory world-writable while you run the GUI the first time. It
will create the files it needs (in a directory, .systemPrefs), and thereafter
stop pestering you. Remember to change permissions on the directory back to
their original value.

30113.4 Installing and Running JUnit

Figure 13.3 JUnit Swing GUI running tests

This is the GUI part of JUnit, part of what has made it so popular. By
writing JUnit tests, you get to use their GUI. If you were to develop your own
testing mechanism, you would also have to (re)invent a GUI.

There is an AWT GUI for the Swing-averse, but it is less featured. There
is also a plain command-line test case runner:

$ java junit.textui.TestRunner junit.samples.AllTests
...
...
.....................................
Time: 3.834

OK (119 tests)

$

Chapter 13 JUnit: Automating Unit Testing302

It prints a period for each test that it runs. (Yes, there are 119 periods
there. Go ahead; count them if you must.) The command-line version is useful
for incorporating JUnit tests into shell scripts (e.g., for testing nightly builds,
e-mailing the results) and is used by ant when it invokes JUnit.

WRITING TEST CASES13.5

Writing a test case for your own Java code consists, at its simplest, of writing a
new class for each class that you want to test. But this class that you create is
built in a special way so that the test harness of JUnit can execute it. That is,
the test case class that you create should meet certain naming conventions, so
that the JUnit test runners can find what they need in order to run your tests.

More specifically, your test cases will extend the JUnit class TestCase.
Now, TestCase is an abstract class, meaning there are parts that you have to
fill in (i.e., methods that you must write) to make it a working class. Moreover,
TestCase implements (in the Java sense of the word) the Test interface. Can
you begin to see how the TestCase class is a framework? It defines the rough
outline of how the test cases will look so that a common test runner can run
any test case, no matter who wrote it.

Let’s look at a simple example, to see what such a test case looks like.
Example 13.2 shows one for testing our Account class.

Example 13.2 Simple test case

package net.multitool.core;

import java.util.*; // needed by our class
import net.multitool.util.*; // needed by our class

import junit.framework.*; // needed by JUnit

/**
 * for JUnit testing of Account.java
 */
public class
AccountTest
 extends TestCase
{
 // our test instrumentation:
 Account base;

30313.5 Writing Test Cases

 // run before each test case:
 protected void
 setUp()
 {
 base = new Account("Base", new User("testuser"), "150");
 }

 // our one test case
 public void
 testCreateSub()
 {
 // Create a subaccount, assigning $50 of our pool of $150.
 Account sub1 = base.createSub("sub1", "50");
 // Make sure that it created something.
 assertNotNull("Couldn't create sub1", sub1);

 // Now a 2nd subaccount.
 Account sub2 = base.createSub("sub2", "75");
 assertNotNull("Couldn't create sub2", sub2);

 // Now a 3rd subaccount, to use up all the $.
 Account sub3 = base.createSub("sub3", "25");
 assertNotNull("Couldn't create sub3", sub3);

 // We should have the same total that we started with.
 assertEquals(150, base.getTotal().getDollars());

 // We should have used up all our $.
 assertEquals(0, base.getBalance().getDollars());

 // Be sure the (sub)account lookup works:
 Account ex2 = base.getSub("sub2");
 assertNotNull("Couldn't find sub2", ex2);
 assertSame(sub2, ex2);

 } // testCreateSub

} // class AccountTest

Notice how we’ve named our test case class. We take the name of the class
and append Test to the end. This is convenient for us—we can easily see which
classes have test cases; but more importantly, JUnit can use this and other
naming conventions to derive the test case names (more on that later). Notice
also that the method in the Account class that we want to test, called
createSub(), gets exercised by a method named testCreateSub()—we

Chapter 13 JUnit: Automating Unit Testing304

Table 13.1 JUnit Naming

In your test caseIn your original code

MyClassTestMyClassClass

testMyMethodmyMethodMethod

prepend the word “test” to the method name, and capitalize the now-no-longer-
first letter. Again, JUnit will use this naming convention, along with
introspection, to automatically derive the test names from the actual method
names (more on that later, too). The naming conventions we’ve seen so far are
summarized in Table 13.1.

Let’s take a quick look at the code. We import the framework for JUnit
test cases, so that the compiler can resolve the names that deal with JUnit stuff.
The TestCase class that we extend is part of that JUnit stuff. It’s an abstract
class that defines much of what we use for testing. We just fill in what we need.

The TestCase class defines a method called setUp(). The setUp()
method is called not just once, but before every test method is called. That way
you can initialize variables and get into a known state before each test. Since
it’s already defined in the TestCase class, we can override it (as in our example)
to do what we want, or we can not include it in our class and get the default
behavior from TestCase (which is to do nothing).

There is also a method named tearDown() which you can override if you
need to close things up at the end of a test case (e.g., close a database connec-
tion). As with setUp(), its default behavior, as defined in TestCase, is to do
nothing.

The test case itself—the method where we will exercise our class—is called
testCreateSub (since we want to test our createSub() method). Inside such
a method (and we could have more than one) we write code which uses the
objects in our application. Then at various junctures in the code we make asser-
tions about the state of things—for example, this variable should be non-null,
or this expression should have this particular value.

Those assertions are, to our way of thinking, the tests. We’re testing to see
if the subaccount was created, or if the main account did, indeed, use up all of
its dollars in allocation to the subaccounts. But they are not what is called tests
by JUnit. Rather, each individual method in a test class is considered a single
test. Such test methods are, typically, a collection of assertions surrounding the
use of a single (application) method. So in our example, the method

30513.5 Writing Test Cases

testCreateSub() is a single JUnit test which asserts various conditions about
various invocations of the createSub() method. Note that all of the assertions
encountered in the execution of the test class must pass for the test to pass.

So what happens if an assertion fails? The assert method will throw an ex-
ception, reporting the failure. In JUnit terminology, a failure is a test that didn’t
pass, whereas an error is a problem with the running of the test. A missing class
or a null pointer exception are errors, whereas an assertNotNull() call failing
is considered a test failure.

The handy thing about the exceptions that the assert methods throw is
that they are, technically speaking, not java.lang.Exception throwables but
rather belong to the java.lang.Error type of throwable. (Don’t confuse this
technical Java use of the word “error” with our more informal use in the previ-
ous discussion of failure versus error.) To quote from the Javadoc page for
java.lang.Error:

A method is not required to declare in its throws clause any subclasses of
Error that might be thrown during the execution of the method but not
caught, since these errors are abnormal conditions that should never occur.

So the use of Error by JUnit’s various assert methods is done simply as a
convenience for us test developers, so that we don’t have to put throws ...
clauses on all of our method declarations.

JUnit Assertions13.5.1

These are the various test assertions available with JUnit:

• assertEquals(), comparing

• boolean with boolean

• char with char

• short with short

• int with int

• long with long

• float with float

• double with double

• Object with Object

• String with String

Chapter 13 JUnit: Automating Unit Testing306

• assertTrue(boolean expression)

• assertFalse(boolean expression)

• assertNull (Object)

• assertNotNull (Object)

• assertSame (Object1, Object2)

• assertNotSame (Object1, Object2)

• fail()

Each of the assert methods comes in two “flavors,” one with a message
String and one without. For example, there is a method assertTrue() which
takes a boolean as its parameter; typically it would be used with an expression,
for example:1

assertTrue((sample actual));

If the condition is not true, an AssertionFailedError is thrown. That
means, among other things, that if/when your test fails, it will stop executing
at that point. The tearDown() method, though, will still be executed before
proceeding to the next test.

There is also a method of the same name, assertTrue(), but with a
slightly different signature—it adds a String as its first parameter. The string
is the message to be included in the error report. Using this variation on
assertTrue(), our example would become:

assertTrue("Sample too small", (sample actual));

In the same way, assertFalse() has two versions—
assertFalse(boolean) and assertFalse(String, boolean)—and so
on for all other assert methods.

1. Yes, the extra parentheses are not needed; they just make the point that this is a boolean ex-
pression being passed as the argument to assertTrue(). We could also have written it as:

boolean result = (sample actual);
assertTrue(result);

Again, the extra parentheses are used just to make it clearer.

30713.5 Writing Test Cases

The String message is very helpful when you get large numbers of com-
parisons and assertions inside your test cases. It can help you identify which
assert in which test failed.

TIP

When writing your assertions, keep in mind the difference between
assertEquals() and assertSame(). The latter will test if the two argu-
ments refer to the very same instance of an object, whereas the former only
checks to see that their values are equal. So any two references to objects that
are the same will also be equal, but not vice versa. For example:

String sample = "value";
String others = "more value".substring(5);
assertEquals(sample, others); // will pass
assertSame(sample, others); // will fail

Digging a little deeper into how all this works, it might be worth pointing
out that the JUnit TestCase class, while an abstract class itself, is also an exten-
sion of another class, the Assert class. The Assert class is the class that defines
all these public static methods for asserting the various conditions (see the list
above). That is why you don’t need any qualifiers on the various assert calls.
They are all part of your test case by virtue of it extending TestCase. It also
means that you could override any of them to get special behavior. This might
be useful for assertEquals(Object, Object), to allow you to compare
objects of your own kinds, but we don’t recommend this. You are better off
overriding the equals() method of your own object than messing with the
JUnit methods. And remember that if you override those behaviors, your tests
will only be as good as your implementation of the assert mechanisms.

Running a Test Case13.5.2

Recall how we ran the JUnit self-tests after installation. We can now use a
similar command to execute our own test case. With the CLASSPATH still set
as above, try compiling and running the test case:

$ javac net/multitool/core/AccountTest.java
$ java junit.textui.TestRunner net.multitool.core.AccountTest

Chapter 13 JUnit: Automating Unit Testing308

The TestRunner will use introspection and reflection to dig information
out of the AccountTest class. It will find all the public methods that begin
with test and have no parameters. It will execute setUp(), then one of the
test methods, then tearDown(); then setUp(), then another test method,
then tearDown(), and so on. Our example has only one test method,
testCreateSub(), so that will be the one test method it runs.

The result of running the test should look like this:

$ java junit.textui.TestRunner net.multitool.core.AccountTest
.
Time: 0.071

OK (1 test)

$

RUNNING TEST SUITES13.6

Quite likely, you’ll want to run several tests, exercising the various classes that
make up your application. Let’s see an example of how to build such a suite of
tests (Example 13.3).

While not defined as an interface, the convention is used by JUnit
TestRunner classes that they will look for a public static method called
suite() in any class that you ask a TestRunner to run. Your class, the one
that will define the suite of tests, should return something that implements the
Test interface. A TestSuite object is one such object, and we can fill it with
tests gleaned automatically by JUnit from the class names that we supply.

We’ve also added a main() that invokes the text-based user interface for
running these tests. That way you can invoke the tests from the command line
if you like.

Here are the two commands to compile and execute the CoreTest suite,
using the Swing GUI:

$ javac test/net/multitool/core/CoreTest.java
$ java junit.swingui.TestRunner net.multitool.core.CoreTest

When the GUI runs, click on the Hierarchy tab and you can see the vari-
ous tests that make up the suite. Opening the folders will show the tests inside
of suites (Figure 13.4).

30913.6 Running Test Suites

Example 13.3 A suite of test cases

package net.multitool.core;

import junit.framework.*;

public class
CoreTest
extends TestCase
{
 public
 CoreTest(String str)
 {
 super(str);
 } // constructor CoreTest

 /**
 * Constructs a collection of tests to be run by the TestRunner.
 */
 public static Test
 suite()
 {
 /*
 * Add the results of each separate Test into a big Suite.
 */
 TestSuite suite = new TestSuite("Core Classes");
 suite.addTestSuite(net.multitool.util.SAMoneyTest.class);
 suite.addTestSuite(AccountTest.class);
 suite.addTestSuite(UserTest.class);

 return suite;

 } // suite

 public static void
 main(String [] args)
 {
 junit.textui.TestRunner.run(suite());
 } // main

} // class CoreTest

Chapter 13 JUnit: Automating Unit Testing310

Figure 13.4 The CoreTest running a suite of tests

One last example is the SAMoneyTest.java file that was used in the
CoreTest example (Figure 13.4). Did you notice the names displayed in the
test hierarchy? They don’t match the method names used to run the tests in
SAMoneyTest.java because we constructed the suite “by hand” instead of
letting the JUnit introspection and reflection find the methods dynamically.

Such manual approach has some advantages. You can restrict the current
set of tests being executed to a subset of the entire set of tests. You can also, as
this example shows, give other names to the tests. The biggest drawback,
though, is the maintenance cost of having to add the test by hand to the
suite() method whenever you add another test method.

31113.6 Running Test Suites

REVIEW13.7

We have shown you how to download JUnit and get it running. We have dis-
cussed creating a test case and creating a suite of tests. We’ve looked at the
Swing GUI for JUnit but also at the command-line interface. We have shown
how our design translates to a minimal code implementation from which we
can begin testing. We’ve discussed the “design, test, then code” approach, and
how you can use it to track the progress of your implementation.

WHAT YOU STILL DON’T KNOW13.8

JUnit can be invoked from ant. It is an optional task (not part of the standard
ant release), but easy to install and get running. Both the junit.jar and ant’s
optional tasks JAR file need to be in your classpath. That’s all it takes. See
http://ant.apache.org/manual/OptionalTasks/junit.html for more
details.

JUnit integrates well with Eclipse and other IDEs. It is easy to install and
very easy to use when it’s part of your IDE. For whichever IDE you choose,
get the JUnit plug-in for it and use it.

One area we haven’t yet discussed is how to do unit testing for the GUI
portion of your application. The basic idea is the same. In order to manipulate
your GUI from the test, you may want to investigate the java.awt.Robot
class. It can be used to generate system input events such as mouse and
keyboard actions.

In fact, we’ve only begun to describe the various ways that JUnit can be
used for all kinds of testing. Our focus has been on unit tests during code devel-
opment, but JUnit can also be applied to integration and release testing. With
any large Java application, it is crucial to have a good set of regression tests that
can be rerun after features or fixes are added, or after classes have been
refactored. JUnit has proven to be very valuable in these situations.

Finally, remember that JUnit is only a tool. The GIGO law2 tells us not
to expect great tests just because we know how to run a tool. Test design, like
any good design skill, is art as well as science. Learning the art of testing will
pay dividends in better code built faster.

2. Garbage In, Garbage Out.

Chapter 13 JUnit: Automating Unit Testing312

RESOURCES13.9

Visit http://www.junit.org/ for all things JUnit-y, including some docu-
mentation (though it’s not the greatest) and scores of articles which provide
tons of useful information.

A very good article on JUnit appeared in the May/June 2003 issue of
Oracle magazine (online at http://otn.oracle.com/oraclemagazine),
titled “A JUnit Step-by-Step,” by Michel Casabianca.

For more about software testing in general, there is a classic (that is, from
early days of computing) book on the subject: Glenford J. Myers, The Art of
Software Testing, Wiley, New York, 1979.

You may also want to check out Just Enough Software Test Automation by
Daniel J. Mosley and Bruce A. Posey (ISBN 0-13-008468-9, 2002). Their
Web site3 includes a bibliography of nearly hundred articles and books on
client-server and other software testing topics.

EXERCISES13.10

How many other tests can you think up to add to the AccountTest class? Did
you include checks for bad behavior—for example, attempting to make too
many subaccounts? Add the new asserts and rerun the test.

3. http://www.csst-technologies.com/csstbibl.htm

31313.10 Exercises

In this chapter we will very briefly introduce three database products that run
on the Linux platform and will support our sample applications. We will also
select one of the three and explain how to set up our database tables.

WHAT YOU WILL LEARN14.1

In this chapter you will learn a little bit about database server products available
for Linux, including both commercial and Free or Open Source products. We
will briefly discuss some factors that might enter into choosing one over the
other. We will then describe how one might design tables to back our applica-
tion, and how to create and implement those tables in two Open Source
databases: MySQL and PostgreSQL.

315

Chapter 14

Storing the Data

FOLLOW THE OBJECTS14.2

One of the consequences of a good object design is a relatively simple database
design. For the most part, each class will end up as a database table where each
row represents an instance of that class. Beyond that, all that is needed are those
tables required to represent relationships between objects.

In this chapter we will show you examples of these relationships, and we
will do so in a manner that should easily port to any SQL relational database.

OF PERSISTENCE14.3

Programs cannot be assured of running forever. Virtually all computer main
memory (i.e., RAM) is volatile, meaning that if the power is removed, the data
is lost. Since computers are sometimes rebooted, and since the power sometimes
goes out, we obviously need some place besides memory to store our class in-
stances. We need persistent (nonvolatile) storage. This can be as simple as
streaming our classes out to flat file, or it can be as complex as a clustered multi-
user database. We will discuss the selection criteria and how you might choose
your persistent storage strategy.

THINKING OF THE FUTURE, OR PAINTING IN CORNERS14.4

It is important that you try, in your class design, to avoid making the persis-
tence system dependent on a particular storage method or product. If you do
this, you can switch storage products or solutions relatively easily.

ORACLE, POSTGRESQL, MYSQL14.5

One of the first major decisions you must make is what to use as a database
server. On Linux systems, you have both Free Software and commercial soft-
ware options. As we have said before, we will tend to focus on Free Software
in this text, but we cannot ignore the most popular database software package
out there, which is, of course, Oracle.

Let’s take a quick look at each of the “big 3” database choices on Linux
platforms.

Chapter 14 Storing the Data316

MySQL14.5.1

MySQL is a very fast but somewhat limited SQL database system. It is wildly
popular mainly because it is simple, fast, and Free. It is everything that you
would need to back a dynamic Web site. As of this writing, the stable produc-
tion version of MySQL is 4.0.16, but most Linux distributions are still shipping
something from the 3.23.x series.

At this point, MySQL lacks some key features:

• Stored procedures

• Sub-SELECTs

• Triggers

Version 4.0.x does support some long-awaited features (if you use the
InnoDB table type instead of the default MyISAM tables), such as row-level
locking, foreign keys, and transactions. But InnoDB tables are not directly
available in the 3.23.x versions still shipping with many distributions.

MySQL is an excellent choice for designs that do not require stored proce-
dures, triggers, or transactions. It is widely used as a back end for dynamic Web
sites—applications with many reading users and few writing users.

For more information on MySQL, see Core MySQL by Leon Atkinson
(ISBN 0-13-066190-2).

PostgreSQL14.5.2

PostgreSQL is a surprisingly complete and full-featured database offering.
Not only does it fully support stored procedures, triggers, views, foreign

keys, and transactions, but it also implements an innovative “record versioning”
system for multiuser integrity. Unlike many other databases, readers may con-
tinue to read consistent data during writing activity (nonblocking revisions), and
backups may be taken while the database is still available for queries. This is a
serious database.

This database has excellent public documentation. Take a look at the
PostgreSQL Documentation.1 Another useful book is PostgreSQL by Korry and
Susan Douglas (ISBN 0-7357-1257-3).

1. http://www.postgresql.org/docs/current/static/index.html

31714.5 Oracle, PostgreSQL, MySQL

Oracle14.5.3

What can we say? In the world of databases, this is the top dog. This is the
standard against which other database systems are measured. Oracle is the DB
that runs the “big applications” out there in the enterprise world. It is also a
costly piece of software when it is used for production applications. It is, how-
ever, available for free download to use for development. It is emphatically not
Free Software. You don’t have the source code. You don’t have the right to
modify it, and you don’t have the right to pass it on to third parties. That may
or may not be an issue for you.

If you need advanced features like high-availability clustering, it is certain
that Oracle will work for you. You may download it for evaluation and
development from Oracle’s OTN (Oracle Technology Network)2 Web site.

Selection Criteria14.5.4

For the simple application we are developing, all of these databases are suffi-
cient. But in the real world, there could be many factors that might come to
bear upon your selection of a database server product. These factors might
include:

• Price

• License terms

• Transaction capacity (speed)

• Integration (does it work with or depend on other software you use?)

• Human resources (do you have operators and developers familiar with the
product on your staff, or are they available for hire?)

• Presence (does your organization already use this product?)

• Features (do you have future plans that might require a particular
product?)

BEING SELF-CONTAINED14.6

One of the common difficulties with software that requires a database is how
to get the database structures up and running. Database storage is often not in

2. http://otn.oracle.com/software/products/oracle9i/htdocs/othersoft.html

Chapter 14 Storing the Data318

files, and even when it is in files on the filesystem, you cannot, when you install
a package like BudgetPro, simply put your database files in place, since there
are probably other applications that have their tables in those files, and replacing
them with yours would destroy that data.

Often, the table creation statements and any initial table rows required are
placed in a SQL file and that file is run against the database. Meanwhile, all of
the database code that performs application interactions is either in the applica-
tion code or in stored procedures called by the application code. But there is
no fundamental reason to make this distinction. The application can see to it
that its database and tables are created.

Of course, you can automate this setup with a shell script, but Java is
supposed to be cross-platform. Of course, you can write a batch file for Win-
dows and a shell script for UNIX, but if you just put this setup into your Java
code, you don’t have to maintain and test separate installation procedures. One
of the areas where Java applications tend to lag behind other applications is in
installation and setup. You can obviate this somewhat by including database
setup in your Java code, thus eliminating the need to write platform-specific
scripts.

Consider including your database and table creation statements directly
in your Java code, even if it is in a singleton setup class that only runs once.

The basic tables should parallel the objects. So, for our classes, the SQL
statements to build the tables might look as shown in Example 14.1.

For the moment, we are confining our table declarations to a form that
should work with both Open Source databases.

These are very basic definitions. We will be talking about issues like gener-
ating unique IDs for records as we develop the code to back these. Different
database products have different “best” solutions, which will make the support
for multiple databases more problematic.

BEYOND THE BASICS14.7

We are going to adopt a very simple strategy for database persistence. We are
going to read in the data structures at startup and maintain them as changes
are made during execution. That way, any abnormal termination will leave the
data in a recoverable state. The application will not require any “save”
operation.

31914.7 Beyond the Basics

Example 14.1 Candidate DB tables for BudgetPro

DROP DATABASE budgetPro;

CREATE DATABASE budgetPro;

USE DATABASE budgetPro;

CREATE TABLE Account (
 id INTEGER NOT NULL,
 name VARCHAR(64) NOT NULL,
 user_id INTEGER NOT NULL,
 amount DECIMAL,
 balance DECIMAL,
 parent_account_id INTEGER,
 PRIMARY KEY (id),
 FOREIGN KEY (user_id) REFERENCES User(id)
);

CREATE TABLE User (
 id INTEGER NOT NULL,
 name VARCHAR(64),
 PRIMARY KEY (id)
);

We will implement this in the simplest way possible, by directly embedded
SQL statements in the application code. But this is far from your only choice.

It is possible to design a “persistence framework,” such that all classes that
inherit from a persistence base class or implement a persistence interface and
follow certain naming conventions for member data can be automatically
backed by persistent storage. Java’s ability to introspect, that is, to look at the
names and structures of a class dynamically at runtime, allow one to write such
an automatic persistence framework. Several such libraries already exist, includ-
ing both commercial and Open Source options. This being an Open Source
book, we’ll call you attention to the Open Source choices:3

3. Have we tried all of these? Yeah. Sure. Why not? Of course we haven’t. Don’t read endorse-
ment into this or any of our “here are some choices” lists. These are also not presented in any
particular order. We tell you they exist. It is up to you to evaluate their suitability for your
purposes.

Chapter 14 Storing the Data320

Hibernate4

Hibernate is probably the most widely known Open Source persistence
framework. It is released under the LGPL license.

OJB5

Billed as “Object Relational Bridge,” this one is from Apache. It provides
both an ODMG (a persistence API much used in the C++ world) and a
JDO (Java Data Objects—Sun’s object persistence API specification) API.

Castor6

Castor does persistence to both XML and relational databases. They call
their RDBMS persistence framework “JDO,” but beware: It is not compat-
ible with or identical to Sun’s JDO. They say it is better.

pBeans7

pBeans does fully automated persistence of JavaBeans. You have to follow
the rules for writing beans (not EJBs, but the “classic” JavaBeans), but
once done, this will automatically persist your instances to any JDBC-
compatible database. No XML specification, no SQL scripting, no tem-
plates. For the easiest “just save my instance data” type of applications,
this can be a good choice.8 This product even automates the creation of
tables, as we advocated above.

Are there others? Heck, yes. Not all of them persist to relational databases.
Some persist only to XML. Some to other databases like B-trees or the Berkeley
DB system. We didn’t concern ourselves with those. We also left off a couple
of libraries that appear not to have been developed for more than a couple
of years.

4. http://www.hibernate.org/

5. http://db.apache.org/ojb/

6. http://castor.exolab.org/

7. http://pbeans.sourceforge.net/

8. But we are not endorsing here.

32114.7 Beyond the Basics

PERSISTENCE IS NOT THE WHOLE STORY14.8

In this chapter and throughout this book we take a practical view that a
database is there to store an application’s data. That’s far from the intent. A
relational database is designed to create collections of data and to perform logi-
cal queries within and between those collections. The relational model is much
more than application storage. It facilitates all kinds of data analysis. This is
often ignored in enterprises these days.

Don’t forget that designing database tables should take into account
concerns beyond mere application storage.

SETTING UP POSTGRESQL FOR BUDGETPRO14.9

Let’s turn our attention to installing and starting PostgreSQL to support the
BudgetPro application.

Installing PostgreSQL14.9.1

The simplest way to install PostgreSQL is to use precompiled binary packages.
RedHat and Fedora have RPM packages for installing the database and client
software (although neither distributes the client libraries for Java due to licens-
ing issues with Java itself). The PostgreSQL project produces RPM packages
of their own, including the Java JDBC class library. Those might be your easiest
course. Debian packages for PostgreSQL exist, but again, they do not provide
the JDBC library.

For our purposes, we are going to assume that you have downloaded and
installed the following RPM packages9 from the PostgreSQL Download page:10

• postgresql-server

• postgresql-devel

• postgresql-jdbc

• postgresql-docs (optional)

9. If you are a user of Debian or another Debian-based Linux distribution, you should be aware
that there is a Debian package called alien, which can install and manage RPM packages on
a Debian system.

10. http://www.postgresql.org/mirrors-ftp.html

Chapter 14 Storing the Data322

Creating a postgres User14.9.2

More than likely, installing a PostgreSQL package will create a new Linux user
called postgres on your system. This is not a login account; it will be used by
the database server process daemon11 (called “postmaster,” lest you think that
it might be an e-mail server or something). Furthermore, only the postgres
user is able to create additional database users or any databases.

Obviously, we won’t want it to be like this forever. It has the same prob-
lem as the root user on the OS itself: There’s one magic user with all the
power. You’ll need to create additional users and you’ll want to limit what they
can do. How to do it?

First off, you can’t log in as postgres, so you will have to become root
and then su to the postgres user:

[mschwarz@cassidy mschwarz]$ su -
Password:
[root@cassidy root]# su - postgres
-bash-2.05b$

Note that postgres didn’t have any profile or rc script to set up prompts
or anything.

All PostgreSQL databases have owning users, in much the same way that
all Linux files have owning users. But PostgreSQL users are not necessarily the
same as Linux users.12 The only PostgreSQL user that exists “out of the box”
is postgres. You must use the createuser command-line utility (or the
equivalent SQL) to create a user. Here’s an example:

11. Historically, daemon processes on UNIX systems used to be run as root. But a program
error in a daemon would allow a malicious user to execute code as the owner of the process. If
that owner is root, one programming mistake in a server process could give an attacker total
control of the system. Beware of any daemon process that runs as root. Nowadays, these run
as either a totally nonpriviledged user such as nobody, or, if they really need to write files or
some such thing, as a catch-all user like daemon. The database is an important process and it
needs its own security, so it runs as its own user, postgres.

12. For most PostgreSQL command-line utilities, if no PostgreSQL username is specified, the
current Linux username will be used. This is often a convenient choice, but you might have
compelling reasons not to do this.

32314.9 Setting Up PostgreSQL for BudgetPro

-bash-2.05b$ createuser mschwarz
Shall the new user be allowed to create databases? (y/n) y
Shall the new user be allowed to create more new users? (y/n) y
CREATE USER
-bash-2.05b$

Here, we created the PostgreSQL user mschwarz and gave him the ability
to create databases and new users.

Creating Our Database14.9.3

Now that our username, mschwarz, has been created and is authorized to create
databases, we use the createdb command to create our database:

[mschwarz@cassidy mschwarz]$ createdb budgetPro
CREATE DATABASE

Notice that we did this as the Linux user mschwarz, so the createdb
command used that username when it created the budgetPro database. What
would have happened if we had used a Linux user that did not have a matching
PostgreSQL user? Let’s see:

[albing@cassidy albing]$ createdb budgetPro
createdb: could not connect to database template1: \
FATAL: user "albing" does not exist

WARNING

Note that we have not implemented any security yet. The user mschwarz ex-
ists, but it does not have a password. Depending on how PostgreSQL security
is configured, it may be possible for any user to use the -U option with the
PostgreSQL command-line utilities to impersonate mschwarz. As packaged
for Fedora Core 2, PostgreSQL uses ident to check authentication, so when
albing attempts this, he gets this error:

[albing@cassidy albing]$ createdb -U mschwarz budgetPro
createdb: could not connect to database template1: \
FATAL: IDENT authentication failed for user "mschwarz"

Just remember that this behavior is dependent on the local configuration
of PostgreSQL. You cannot assume this security is in place just because you
are in a PostgreSQL environment. Always be aware of the security configuration
of your production environment!

Chapter 14 Storing the Data324

Straight JDBC14.9.4

Our application is quite simple. We’re going to directly integrate database
access by simply calling the JDBC interface at startup and making use of that
connection again and again for data changes.

Our solution is more than sufficient for the standalone command-line and
GUI versions of the application, but it will be left as an exercise for the reader
to implement a better solution for the EJB implementation.

What will be lacking? Well, the solution we will implement here will get
a single database connection and use it throughout the life of the application.
It will be assumed that a single thread is accessing the database. These are all
bad assumptions for a multiuser and multithreaded environment such as an
application server.

Static Account Members14.9.4.1

Most of the database code is in the Account class. It consists of a static method,
getTopAccount(), which will establish a static connection to the database,
create the Account table if need be, and load the top level account (defined as
the account record with a null parent) if present or create it if not present.

The username is passed in as an argument. The username must exist in
the User table. If it does not, an exception is thrown.

Joining the User14.9.4.2

Two static methods are added that take a JDBC Connection and a String as
arguments. They are getUserIdByName() and getUserByName(). The
String is the username to look for. The first method returns the id column
for that user. It returns zero (0) if the user doesn’t exist. The other returns a
User object, or null if the user doesn’t exist.

REVIEW14.10

We briefly examined choices of Open Source SQL database servers. We
described how to set up PostgreSQL.

32514.10 Review

WHAT YOU STILL DON’T KNOW14.11

This is another chapter that represents a mere gloss of its topic. Visit your local
book megamart and just count the number of books on Oracle, MySQL, and
PostgreSQL. Database servers and relational database design are very large
topics indeed. We have hardly scratched the surface. Our goal here has been
merely to give you enough to get started. If you plan to use one of these prod-
ucts, definitely take the time to download and read the official product docu-
mentation (for both MySQL and PostgreSQL it is actually quite good), and
then take your time looking for after-market books that seem to meet
your needs.

RESOURCES14.12

By no means have we read all the titles available on this topic, but we have read
and can recommend:

• Leon Atkinson, Core MySQL, ISBN 0-13-066190-2.

• Paul DuBois, MySQL, ISBN 0-7357-0921-1.

• Korry Douglas and Susan Douglas, PostgreSQL, ISBN 0-7357-1257-3.

EXERCISES14.13

Is this database fully normalized?13 If not, what would need to be done to
normalize it? What reasons might exist for not fully normalizing a database?

13. “Normalization” is a process of eliminating database redundancy and of theoretical
optimization of the data model. A decent introduction to the concepts may be found at
http://dev.mysql.com/tech-resources/articles/intro-to-normalization.html.

Chapter 14 Storing the Data326

Java provides a back-end-independent interface to databases called Java
DataBase Connectivity classes, or JDBC. We introduce the basics of the system
here, and illustrate portability that makes it possible for our application to
switch between two different database back ends.

WHAT YOU WILL LEARN15.1

We will cover the basics of interaction with a database in Java. This involves

• Establishing and tearing down connections to a database

• Querying data in the database and reading the results

• Performing other database operations that modify data, but do not return
data results

We assume that you are familiar with simple SQL constructs.

327

Chapter 15

Accessing the Data:
An Introduction to JDBC

INTRODUCING JDBC15.2

For many real-world applications, there are copious amounts of data associated
with them. Programmers first learn to store data into files, but serious applica-
tions require a database. Java programs can connect to and query a database
with the help of several Java classes which together make up the Java DataBase
Connectivity API, or JDBC.

With JDBC, your Java programs will be able to connect to databases any-
where on the network and to query data from the database with the simple
syntax that database programmers have been using for years—SQL.

JDBC provides an abstraction, a way to talk about the various aspects of
working with a database which is largely vendor-independent. Implementations
of JDBC can be, and are, built for many different databases and even other
data sources, such as flat files and spreadsheets.

The Linux environment offers several choices of databases, the two most
popular being MySQL and PostgreSQL. Both are Open Source projects avail-
able with most major Linux distributions, as well as online for downloading.
For many Java and Linux developers, however, the use of Java and Linux will
include their development environment and the servers to which they deploy
their applications, but the database to which they connect will still be the cor-
porate database. For most commercial applications this is an Oracle database,
the industry leader, and due to its major presence in the marketplace we will
use Oracle in our examples as well.

NOTE

JDBC interfaces are available for almost any commercial database with any
significant marketshare. See Section 15.9 for a URL that has a list of such
choices. Most of what you will learn in this chapter will apply regardless of the
database you connect to.

To make even the most basic use of JDBC, you must understand three
basic operations:

• First, establishing and tearing down connections to your database server

• Second, querying data

• Finally, reading up the results of that query

Chapter 15 Accessing the Data: An Introduction to JDBC328

These three operations correspond to JDBC objects for doing these very
things, namely the classes Connection, PreparedStatement, and ResultSet.

Let’s jump right in and look at some code. Example 15.1 will make a
connection to a MySQL database, prepare a query statement, execute the query,
then read up the results.

Let’s also look at a similar example, but this time for an Oracle database
(Example 15.2). Notice how much is the same between the two examples, and
which parts are different.

The only real difference between the two programs has to do with the
connections. Once the connection to the database is established, the rest of the
code is exactly the same—which is what you’d hope for in an abstraction. This
is a good news for developers: “Learn once, use anywhere.”

MAKING CONNECTIONS15.3

The most complicated part of JDBC is establishing the connection. There are
several ways to make a connection, depending on how much information about
the connection driver you want hard-coded into your application. We are going
to keep it simple and describe one straightforward way to connect.

The DriverManager class is where our application goes to get its
connection to the database, as shown in our example. Many different JDBC
drivers can register with the DriverManager, and it can make the
connection to the kind of driver that you want based on the URL that you
provide in the call to getConnection(). So where did our example register
anything with the DriverManager? Well, it happened indirectly, via the
Class.forName(...).newInstance(); call. That loaded the class and cre-
ated an instance of it. The JDBC specification says that when a Driver class
initializes it must register with the DriverManager. So it happened “under the
covers,” in loading the driver class.

Another difference between the two examples deals with how the username
and password are supplied to the database. Both are supplied in the URL,
though in different syntax. That syntax is at the discretion of those who imple-
mented the JDBC driver for that particular flavor of database. If we were to
construct the URL at runtime, so that the user could supply a username and
password dynamically, we’d want to remove the difference in how the URL is
constructed. To do that we could use a call to getConnection() with a signa-
ture that includes the username and password as separate String parameters:

32915.3 Making Connections

Example 15.1 Simple sample program using JDBC for MySQL

import java.sql.*;

public class
MyCon
{
 public static void
 main(String [] args)
 {
 try {
 // A simple connection example looks like this:

 Class.forName("com.mysql.jdbc.Driver").newInstance();

 String url = "jdbc:mysql://host.domain.com/test"+
 "?user=blah&password=blah";

 Connection conn = DriverManager.getConnection(url);

 // query
 String mySQL = "SELECT id, pw FROM Users WHERE name = ?";

 PreparedStatement stmt = conn.prepareStatement(mySQL);
 stmt.setString(1, args[0]);

 // execute the query
 ResultSet rs = stmt.executeQuery();

 // read the results
 while(rs.next()) {
 int id = rs.getInt("id");
 String pw = rs.getString("pw");

 System.out.println("id="+id);
 }
 } catch (Exception e) {
 System.out.println("Exception: "+e);
 e.printStackTrace();
 }

 } // main

} // class MyCon

Chapter 15 Accessing the Data: An Introduction to JDBC330

Example 15.2 Simple sample program using JDBC for Oracle

// import oracle.jdbc.driver.*;
import java.sql.*;

public class
MyCon
{
 public static void
 main(String [] args)
 {
 try {
 // A simple connection example looks like this:

 Class.forName("oracle.jdbc.driver.OracleDriver").newInstance();

 String url = "jdbc:oracle:thin:mydbusername/mydbpasswd"+
 "@host.domain.com:1521:dbname";

 Connection conn = DriverManager.getConnection(url);

 // query
 String mySQL = "SELECT id, pw FROM Users WHERE name = ?";

 PreparedStatement stmt = conn.prepareStatement(mySQL);
 stmt.setString(1, args[0]);

 // execute the query
 ResultSet rs = stmt.executeQuery();

 // read the results
 while(rs.next()) {
 int id = rs.getInt("id");
 String pw = rs.getString("pw");

 System.out.println("id="+id);
 }
 } catch (Exception e) {
 System.out.println("Exception: "+e);
 e.printStackTrace();
 }

 } // main

} // class MyCon

33115.3 Making Connections

Connection conn = DriverManager.getConnection(url, username, password);

Getting this to compile and run requires you to have the appropriate
JDBC JAR files available. For Oracle, see your Oracle DBA, or see pages
228–229 of Java Oracle Database Development by David Gallardo. For MySQL,
it’s an easy download you can install from the Internet.

Downloading JDBC for MySQL15.3.1

The JDBC implementation for MySQL is available for free from
http://www.mysql.com/downloads/api-jdbc.html.

The current version at the time of writing was mysql-connector-java-
3.0.9-stable.tar.gz which you can unpack as follows:

$ gunzip mysql-connector-java-3.0.9-stable.tar.gz
$ tar xvf mysql-connector-java-3.0.9-stable.tar

That leaves you with a directory named mysql-connector-java-
3.0.9-stable which contains a JAR file named mysql-connector-java-
3.0.9-stable-bin.jar along with some directories (which are the contents
of the JAR, unpacked) and a few miscellaneous files.

From the readme file:

Once you have unarchived the distribution archive, you can install the
driver in one of two ways:

• Either copy the com and org subdirectories and all of their contents
to anywhere you like, and put the directory holding the com and org
subdirectories in your classpath, or

• Put mysql-connector-java-3.0.9-stable-bin.jar in your class-
path, either by adding the full path to it to your CLASSPATH
environment variable, or putting it in $JAVA_HOME/jre/lib/ext.

Unlike JUnit, it is OK to put this JAR in the ext directory.

QUERYING DATA15.4

Back to our example. Do you remember the portion that built the query? Here
it is again:

Chapter 15 Accessing the Data: An Introduction to JDBC332

// query
String mySQL = "SELECT id, pw FROM Users WHERE name = ?";

PreparedStatement stmt = conn.prepareStatement(mySQL);
stmt.setString(1, args[0]);

If you’re at all familiar with SQL then you’ll recognize the SQL syntax
within the String mySQL. Whatever you want your query to be, just build it
as literal text. The query is “parameterized” by using the “?” character. Wher-
ever a “?” appears in the query string, you can substitute a value with the
setString() method on the PreparedStatement class.

There are a variety of setXXXX() methods where XXXX stands for different
data types. Besides setString(), the most common ones are setInt(),
setBigDecimal(), setDouble(), and setTimestamp() which set the
parameter from an int, BigDecimal, Double, and Timestamp classes, respec-
tively. The java.sql.Timestamp class is basically a java.util.Date aug-
mented for compatibility with SQL’s notion of TIMESTAMP. Read more
about it on the Javadoc page for java.sql.Timestamp, or read the
java.sql.PreparedStatement page for more on the other set methods
available.

The two arguments to each of these set methods are the index and the
value that you want to substitute. The index is simply the count of which
question mark gets substituted, starting with 1 for the first one. Caution: The
parameters start at one, even though most other things in Java, such as Arrays,
ArrayLists, and so on, are zero-based. So it’s not uncommon in code that
uses JDBC to see something like this:

setInt(i+1, args[i]);

NOTE

Building SQL queries out of String literals is made easier in Java by a conve-
nient mismatch between the two languages. In Java, Strings are delimited
by double quotes (") whereas in SQL literals are bounded by single quotes
('). Thus in Java, you can construct SQL queries that contain literal string
references without much trouble, as in:

String clause = "WHERE name != 'Admin'"

33315.4 Querying Data

If this all seems rather simplistic, well, it is. It may not be a very sophisti-
cated way of blending SQL with Java, but it is very effective. Notice that you
don’t get any syntax checking on the SQL query when you write your program,
though it will throw an exception at runtime if you try to execute ungrammat-
ical SQL. For this reason it is not uncommon to try out all your SQL before-
hand, cutting and pasting the queries out of the SQL program that you use for
directly talking with your database. Some developers even like to keep their
queries in files, to be read at runtime. This has the added flexibility (and risk)
of being able to change the query without recompiling the code. Since the re-
compile doesn’t provide any syntax checking on your query string anyway, it
seems a reasonable way to go, provided that you properly write-protect the files
containing the queries.

GETTING RESULTS15.5

Returning to our example, we see that we can execute the query on the
Statement object and then get out the results:

ResultSet rs = stmt.executeQuery();

// read the results
while(rs.next()) {
 int id = rs.getInt("id");
 String pw = rs.getString("pw");

 System.out.println("id="+id);
}

The results of a query are returned in a ResultSet object. The easiest way
to think of it is to consider it an iterator over the rows that result from the
query. In its simple form it is, like an iterator, a one-pass, once-through traversal
of the data. Since the result set is iterating over rows, we need to get at the indi-
vidual columns of results with a further method call on the ResultSet. You
can see that inside the while loop of the example.

The query was built to retrieve the columns id and pw from our table.
The getInt() and getString() methods use those column names to retrieve
the data from the ResultSet.

Chapter 15 Accessing the Data: An Introduction to JDBC334

TIP

The case (UPPER or lower) of the column name strings is ignored, so you could
write ID and pW and it would work fine. Some developers prefer, for example,
to use all-uppercase names of columns. We recommend using a consistent
case throughout to avoid confusing those who later have to read your code.

There is another form for each of those getXXXX() calls that takes as its
argument the column number rather than name. Since our query selected
"id, pw", the id is column one and pw is column two, so we could have
written:

int id = rs.getInt(1);
String pw = rs.getString(2);

In addition to the get methods, ResultSet also has some boolean
methods that will help your application figure out how far in the result set
the iterator has reached: isBeforeFirst(), isFirst(), isLast(), and
isAfterLast(). There is, however, no way to tell how big the result set is
directly from this simple result set.

More complex manipulation of the ResultSet object is possible if we
create the PreparedStatement with a different method call, one that lets us
provide additional parameters to specify this more complex behavior. We
could use:

conn.prepareStatement(mySQL,
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);

which lets us specify a type of scrollable behavior and whether
(CONCUR_UPDATEABLE) or not (CONCUR_READ_ONLY) the results set can be
updated.

Once we’ve built the prepared statement this way, we can move the itera-
tor forward or backward, to absolute (e.g., row 7) or relative (e.g., 3 rows back)
positions. For a good discussion of this topic, see page 257 and the following
pages in the Gallardo book.

If you’re still hung up on the fact that you can’t get the size, in rows, of
the result set from our first example, notice that you can now do that with this
more flexible, “scrollable” result set. To find its size before reading any data,

33515.5 Getting Results

position it afterLast(), then getRow() to get the size, then position it back
to beforeFirst() to be ready to read.

UPDATES, INSERTS, DELETES15.6

Not every action on a database returns a ResultSet. Operations that create
the tables in a database, or those that modify, insert, or delete rows of data don’t
return rows of values. For those sorts of SQL statements, we don’t call
executeQuery()—we call executeUpdate() instead. It returns an int giving
the number of rows affected by the execution. In the case of a CREATE TABLE
operation, it simply returns 0.

REVIEW15.7

Connecting a Java application to a database is a key step in real applications.
The mechanisms for doing that are varied and can be complicated. We’ve
picked a single approach for connecting, to keep it simple and to highlight the
similarities and differences between two different database implementations.

The rest of the conversation with a database depends as much on your
SQL skills as on Java skills. Java will take strings of SQL, which can be param-
eterized, and, via JDBC calls, send them to be executed by the database. The
results are like iterators; they can be retrieved, row after row, for further process-
ing. Updates, inserts, and deletes are also easily done, with a few simple calls to
process the SQL.

WHAT YOU STILL DON’T KNOW15.8

We’ve skipped over lots of topics to keep this simple. There are a variety of
ways to connect to a database that we haven’t covered; the most important one
may be the use of a DataSource instead of a DriverManager. As of Java 1.4.1,
the DataSource is the preferred means of making connections to your
database. While it makes the code more portable (e.g., if you’re planning on
moving around, changing databases and/or database servers), it is more compli-
cated to set up—there are more “moving parts” to get right. If you already have
a Java Naming and Directory Interface (JNDI) service running, thought, it’s
very straightforward (see page 254 and the following pages of Gallardo).

Chapter 15 Accessing the Data: An Introduction to JDBC336

We haven’t covered the basic Statement class suitable for fixed queries
with no parameters (instead we used PreparedStatement which will work
with or without parameters), nor have we discussed the CallableStatement
class for calling stored procedures in the database. With what you know now,
though, you should be able to glean enough information from the Javadoc
pages on these classes to do what you need, as they are similar to the
PreparedStatment class.

RowSets extend ResultSet to include mechanisms for listening for data
changes and for JavaBeans functionality. But again, Javadoc information or a
comprehensive book on the subject would be a good next step, now that you
have the basics in hand.

We haven’t covered the ResultSetMetaData class, which provides a way
for you to get the names of the columns that come back from the query. Again,
check the Javadoc for details on its use.

We also haven’t said anything about transactions, a key element in many
database applications. We’ll say more about that as we get into the enterprise-
scale applications.

What we have covered should enable you to connect to a database, make
real queries, and process the results. There are more advanced techniques to
learn for special cases, but what we’ve covered here, accompanied by the
Javadoc pages for java.sql.* classes, should be enough to create useful, real
applications.

And of course there is always that other good teacher, experience. So go
try some of what you now know.

RESOURCES15.9

If you are going to use an Oracle database, we highly recommend Java Oracle
Database Development by David Gallardo (ISBN 0130462187, Prentice Hall
PTR), part of their Oracle Series. It includes several introductory chapters on
database design, SQL, and even PL/SQL. It then has a much more thorough
coverage of JDBC topics, with examples specific to Oracle, than we can cover
in our limited space.

A JDBC implementation for MySQL is available at
http://www.mysql.com/downloads/api-jdbc.html.

JDBC tutorial information, as well as lots of other JDBC information, is
available from Sun at http://www.java.sun.com/products/jdbc/.

33715.9 Resources

If you are working with a database other than mySQL or Oracle, you
might want to check out http://servlet.java.sun.com/products/jdbc/
drivers for a list of approximately two hundred JDBC implementations for
various databases.

EXERCISES15.10

1. Write a program that connects to a database and, for each of the tables
specified on the command line, prints out the table name and the number
of rows in that table.

2. Using what has been covered in this chapter, write a simple non-GUI SQL
program, allowing the user to enter SQL statements, executing them, and
showing the results (like a simplified SQL/Plus program). Can you provide
some simple editing of the SQL? Or can you implement escaping to an
external editor, for example, vi?

3. Make it possible for the user of your SQL program to set and change the
connection URL—via an environment variable, command-line parameter,
or even from within the program. Your SQL program will then be able to
query a variety of databases from various vendors.

Chapter 15 Accessing the Data: An Introduction to JDBC338

Part III

Developing
Graphical User Interfaces

Sometimes you gotta have a GUI; even we will admit that command lines only
go so far. When it comes to simple interactions with casual users, a Graphical
User Interface is a great step forward . . . if it’s done well. The toolkit for
building such an interface with Java is called Swing. The original Java toolkit
is AWT (A Windowing Toolkit), and is still in use, but much less attractive.
We’ll take a quick look at some major pieces of Swing, and show a complete
example—a GUI for our budget application. After this example, you will have
the tools you need to construct some real GUIs on your own.

WHAT YOU WILL LEARN16.1

• The Swing GUI paradigm.

• A simple standalone Swing application.

• Some basic Swing objects—buttons and labels.

• A bit about layout managers.

• A more complex object—the JTable.

Chapter 16

Getting in the Swing of Things:
Designing a GUI for BudgetPro

341

A SIMPLE SWING PROGRAM16.2

Let’s take a look at a very simple (in its function, not in its composition)
Swing program—a simple “Hello, world” that will appear in a window
(Example 16.1).

Example 16.1 A simple Swing application

import java.awt.*;
import javax.swing.*;

public class
hw
{
 public static void
 main(String[] args)
 {
 //Create the top-level container
 JFrame frame = new JFrame();
 JLabel hi = new JLabel("Hello, world.");
 frame.getContentPane().add(hi, BorderLayout.CENTER);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack(); // kicks the UI into action
 frame.setVisible(true);

 } // main
} // class hw

Now compile this program and run it from the command line like this:

$ javac hw.java
$ java hw

You should then see a small window appear, looking as in Figure 16.1.

Figure 16.1 “Hello, world” in a Swing window

Chapter 16 Getting in the Swing of Things: Designing a GUI for BudgetPro342

While this may look like a lot of extra junk just to say “Hello, world,” re-
member that a GUI is not just providing output in fancy windows, but also
monitoring and responding to a wide variety of user inputs—a capability of
which we make little or no use in this example. But you can see some of this
extra capability—grab the lower left corner of the window frame and expand
and resize the window.

STOMPIN’ AT THE SAVOY, OR THE SWING PARADIGM16.3

When we say “Swing,” we generally mean the set of classes in the javax.swing
package and its subpackages (such as javax.swing.table). The packages are
libraries of code that give you predefined classes from which you can construct
a GUI for your application. The programs you write will be written in Java,
the syntax will look like Java, but there will be a lot of creation of classes, uses
of interfaces, implementations of abstract classes, and a variety of method calls
that all deal with these Swing classes.

So what’s going on with all this stuff? What can we expect to do, see,
write? In most applications that a programmer writes, it is the job of the pro-
grammer to design and write the code for the main execution path of the pro-
gram. “Yes, every program has a beginning, middle, and an end” (with apologies
to “Seymour and his frozen yoghurt stand,” from Sesame Street). But it’s not
quite the same with Swing. While it does have to have a beginning, middle,
and end (these are, after all, basic Von Neumann architecture machines), the
big difference is that you do not have to write most of the control logic; it
comes as part of the Swing set.

Look at it this way. With Swing, as with other GUI toolkits, you don’t
have to write code to deal with the mouse, keyboard shortcuts, or painting
characters onto a graphical screen. You don’t have to write all the code
associated with a button press, because, while it seems simple enough, a button
press is really a quite complex user interaction, involving repainting of the
button’s border, possibly its shading or changing its icon, coordinating that
with the mouse presses and releases, and deciding whether the releases happen
within or without the boundaries of the button—all this and more, just for a
simple button press. All this has been done for you, and packaged up into
Swing classes.

34316.3 Stompin’ at the Savoy, or The Swing Paradigm

So what is left for you to do? You have to:

• Construct the various items that will appear on the screen (in one or more
windows).

• Specify the location of these objects in the windows (layout).

• Provide snippets of code that are the actions associated with various events
(events happen, for example, when a button is pressed or a mouse is
clicked). These actions are the guts of the code that make your application
behave how you want.

Remember, some behaviors are enforced by the GUI as part of standard
“look and feel.” Some things, like layout, are up to you to do well so long as
you keep within the standard UI guidelines. And some is just specific to your
application.

With that in mind, let’s walk through the “Hello, world” example for a
brief description of what each line does.

We begin with some import statements, to resolve references to both
Swing and AWT classes. Swing is built on top of AWT, so some of the classes
that you use will actually be AWT classes. The biggest difference this makes to
you is in the import statements.

We then begin our class declaration, followed by the definition of the only
method in this class, main(). Swing applications will typically have other
methods, but for our simple example we only need this one.

Now comes some real Swing. The creation of a JFrame object is very im-
portant. In Swing we need to have containers to hold the objects that we want
to display. The JFrame is a top-level container, one specifically meant to hold
other objects, but also meant to be the first one of a containment hierarchy.
(There are only three such top-level containers in Swing: JFrame, JDialog,
and JApplet.)

Next we create a JLabel. It’s a Swing object meant to hold small amounts
of text. The text can be either constant or changing, but it’s not user-editable
(that would be a different kind of Swing object).

We add the label to the frame, so that when the window (the JFrame)
appears, it will show our text inside.

The setDefaultCloseAction() does what you think. When you press
the X in the upper right of the window frame (or wherever your window man-
ager puts it), then not only will the window go away, but the program will stop
running. (This is not the standard default value since JFrames can contain

Chapter 16 Getting in the Swing of Things: Designing a GUI for BudgetPro344

other JFrames, and for most frames you wouldn’t want closing the frame to
quit the program.)

When we “pack” the frame, that’s when the real magic happens. It kicks
off the GUI activity on a separate thread, but also packs the various pieces that
we’ve added to the frame, sizing them as best it can to fit into the frame, and
sizing the frame to hold all the pieces. We see little of that with our example,
which has only one label.

As an aside, pack() is inherited from awt.Window, which describes the
“magic” thus:

A component is displayable when it is connected to a native screen resource.
A component is made displayable either when it is added to a displayable
containment hierarchy or when its containment hierarchy is made dis-
playable. A containment hierarchy is made displayable when its ancestor
window is either packed or made visible.

So pack()-ing the frame connects it to a “native screen resource,” which
effectively gets the whole GUI thing going.

And now back to the business at hand.
Finally, the setVisible() call makes the window appear. Then the

main() is done. In case you’re wondering, go ahead and put a
System.out.println() message after the setVisible(). It will be printed
right away. The main() has ended; the GUI activity is happening on another
thread.

SLOW, SLOW, QUICK-QUICK, SLOW:THE BASIC SWING OBJECTS16.4

Let’s take a quick look at a variety of Swing objects that you can use to build a
GUI. Like any job of craftsmanship, it helps to be familiar with your tools.
What you can build will be aided (and limited) by the tools with which you
build, and by how familiar you are with them. Here are some pieces which can
be put together to make Swing GUIs:

button
A push button to trigger actions; can contain text and/or an icon.

radio button
A group of buttons where only one value can be chosen at a time.

34516.4 Slow, Slow, Quick-Quick, Slow: The Basic Swing Objects

check box
A choice of one or many of a small set of options.

combo box
A pull-down list of choices.

menu
A special case of a pull-down choice, a part of the border of a main
window.

label
A small amount of text, typically used to label other controls.

text field
A simple display and/or entry of one line of text; think “fill-in-the-blank”
kinds of forms, password entry, and the like.

text area
A multiline display and/or entry of text, all in a single font format.

text pane
Same as text area, plus multifont support, image display, and more; really
more like a word processor in a window.

list
Selection from a list.

table
A two-dimensional display—rows and columns of data.

tree
A display of hierarchically-structured data.

slider
A graphical control for selecting a value.

tool tip
A bit of text that appears over objects when the mouse hovers.

progress bar
A graphical display of progress.

Chapter 16 Getting in the Swing of Things: Designing a GUI for BudgetPro346

color chooser
A control for selecting colors from a palette.

file chooser
A window for interacting with the filesystem—selecting a directory or a
filename.

In addition to all these, there are various kinds of containers—objects
whose job is to hold and display the other objects:

panel
A simple container.

split pane
A container divided into 2 separate parts.

scroll pane
A complex control with scrollbars, used to hold objects larger than the
displayable area.

tabbed pane
A complex control with tab buttons to select different panels.

toolbar
A container for holding objects (usually buttons) which can attach to
different sides of a window, or separate from a window and stand alone.

LAYOUT MANAGERS16.5

Once you decided on all the graphical objects that you want to pack into your
GUI, there is still one major hurdle—where to place all the objects. This can
be one of the more challenging parts of GUI design because so many different
screen sizes are available to the end user. How do you make your GUI look
good to all (or most) of them?

Beginners often want to fix their components to absolute locations—for
example, by sketching the GUI out on a piece of graph paper and then using
those coordinates to fix the location. But with a windowing display, the user
can grab a corner of the window and resize it. So, consider that piece of graph
paper—what if it just got stretched to twice the size? Do you want all the con-
trols to just get bigger? Buttons need not grow larger, but it would be nice to

34716.5 Layout Managers

have additional space contributed to text areas. Consider a word processor:
When you resize its window you only want the text area to expand, not the
menus and icons.

Layout managers are meant to address the issues of component placement
and sizing. Some are very simple, others are much more complex. All have their
advantages and disadvantages. We’ll use a few in our example to give you a taste
of how they work.

BEYOND ARTHUR MURRAY: ACTIONS, LISTENERS, EVENTS16.6

With any serious GUI comes a lot of advanced Java, especially constructs like
anonymous inner classes. These are useful when we implement actions for our
buttons and listeners for user selections.

Keep in mind that there are three different time frames that we’re consid-
ering—compile time, construction time, and event time. Compile time is obvi-
ous, and the compiler will complain if it cannot access what it needs due to
scoping problems. Construction time is when the program constructs the GUI
objects for display in a window using the new and add() calls as well as layout
managers. Event time is when the user presses a button or edits text in a field,
or when other external events change data.

GETTING DOWN TO CASES: DESIGNING A GUI FOR BUDGETPRO16.7

Our goal is a GUI for the BudgetPro application. We’ve already built a com-
mand-line version, so we want to have the same general functions but with the
convenience and glamour of a GUI. The GUI will need to:

• Display the current account (name and dollars)

• Display the list of subaccounts that are part of this account

• Provide a way to create a new (sub)account

• Provide a way to move down into a subaccount

• Provide a way to move up to the parent account

From this brief list we devise a simple display with a heading that contains
the current account and its dollar status, a table which lists the subaccounts,

Chapter 16 Getting in the Swing of Things: Designing a GUI for BudgetPro348

and, at the bottom of the window, some buttons—one for creating new ac-
counts and one for viewing subaccounts. Of course, we’ll also need a button to
close or exit the application. In order to move back up from a subaccount, we’ll
add a button up in the header, an up-arrow, which will take us back to the
parent account.

Now we could show you a hand-drawn sketch of what this UI might look
like, from our rough description, but we’ll cut to the chase and show you the
finished product. This is the GUI for the BudgetPro application, in three stages.
First comes the GUI when we first start up, with no subaccounts (Figure 16.2).

When the New Subaccount button is pressed, a dialog will appear to
collect the information need to create the subaccount, namely the new account’s
name and the dollar amount to allocate to that account (Figure 16.3).

Figure 16.2 BudgetPro GUI: top account window

Figure 16.3 BudgetPro GUI: creating a (sub)account

34916.7 Getting Down to Cases: Designing a GUI for BudgetPro

Figure 16.4 BudgetPro GUI: viewing subaccounts

Finally, Figure 16.4 is a look at the main GUI window for BudgetPro once
several accounts have been constructed.

There is more to describe, but let’s walk through the code that builds this
GUI and explain the parts as we go. The complete listing is available online at
http://www.javalinuxbook.com. We’ll make reference to the line numbers
of the listing in Appendix B, but sometimes we’ll show excerpts of the code as
we go. You might find it handy to have a listing of the code (on paper or in
your browser) as you read the next several sections.

Overview16.7.1

We divide the work between two GUI classes: one for the main window and
the other for the dialog that will appear when we want to create a new subac-
count. All of the other GUI elements will be either existing Swing classes or
their extensions as anonymous inner classes in our code. (More on those later.)

So that means that we have four of our own classes that we’re working
with: two from the core of our application, Account and User, and two from
the GUI side of things, BudgetPro and AcctDialog. This will be reflected in
the package structure; we’ll put BudgetPro and AcctDialog into the
net.multitool.gui package. This will effect both the location of the source

Chapter 16 Getting in the Swing of Things: Designing a GUI for BudgetPro350

(to be put into net/multitool/gui) and the package statement on line 1 of
BudgetPro.java:

1 package net.multitool.gui;

Instance Variables16.7.1.1

Take a look at the picture of the BudgetPro GUI. Count the GUI objects that
we need: four buttons, three labels, and let’s not forget the (empty at first) table
of subaccounts. These are declared in lines 23–31. (Ignore lines 22 and 32
for now, we’ll cover them later. Line 34 declares our dialog—more on that
later, too.)

21 // gui components
22 private JFrame frame; // needed by dialogs to root themselves
23 private JLabel nam;
24 private JLabel tot;
25 private JLabel val;
26 private JButton upton = new JButton(
 new ImageIcon("net/multitool/gui/back.gif"));
27 private JButton creat = new JButton("new subaccount");
28 private JButton view = new JButton("view subaccount");
29 private JButton clos = new JButton("quit");
30
31 private JTable list;
32 private AbstractTableModel model;
33
34 private AcctDialog askem; // make once, use often

Main16.7.1.2

Skip all the way to the last method of the class, line 289 and following. It’s the
main() which gets run when we run this class. If we focus on the major piece
involved in getting our GUI together, it’s these lines:

JFrame frame = new JFrame("BudgetPro");
frame.getContentPane().add(status, ...);
frame.getContentPane().add(list, ...);
frame.getContentPane().add(buttons, ...);

We’re leaving out lots of intermediate text to emphasize the “real” work.
We create a JFrame, the outermost window object. We add into it all the other

35116.7 Getting Down to Cases: Designing a GUI for BudgetPro

GUI pieces—the status line, the table list of accounts, and the buttons. The
JFrame is a bit odd here, in that you have to add objects to its content pane;
other container objects you can just add to directly. (We could have done the
getContentPane() once, store the result in an intermediate variable, and do
the adds to it, but the efficiency gain is unimportant here because we only need
to do this once, to get the GUI started.)

When we’ve got it built, we pack the frame, and make it visible:

frame.pack();
frame.setVisible(true);

That’s the basic core of what you need to do with any GUI: construct its
pieces, add them to the frame, pack the frame, and make it visible. Now you’re
off and running. The rest is just details.

Creating Pieces16.7.2

The three pieces that we create—the status, the list, and the buttons—will each
package up their objects into an intermediate container, a JPanel, and return
that container to main(). This not only serves to chunk the problem into
fewer pieces (just three parts, not eight or more), but also helps with the
formatting. Each piece can format its objects relative to each other. Then
main() only has to lay out the three big pieces. So watch for each of the
create...() methods to return a JPanel—a good approach when you build
your GUIs, too.

The JPanels returned to main() are just Swing objects. They, like the
buttons or labels (that we will see here shortly), just get added into other con-
tainers. For main(), that container is the JFrame, the main window. Any
container will have a layout manager, the mechanism by which objects are
placed in that container. For JFrame, the default is the BorderLayout manag-
er. When you call the add() method on a container using a BorderLayout,
you can specify (as a second parameter to the add() method) where the
object being added will get placed. The constants defined for placing
objects are NORTH, SOUTH, EAST, WEST, or CENTER—hence the “Border” of
BorderLayout. There are also relative position values: PAGE_START,
PAGE_END, LINE_START, and LINE_END which are just like north, south, west,
and east, respectively, provided that the ComponentOrientation is set to
LEFT_TO_RIGHT. (If you really want to know, check the Javadoc page for
java.awt.BorderLayout.)

Chapter 16 Getting in the Swing of Things: Designing a GUI for BudgetPro352

With a BorderLayout, if you put something in the NORTH section, it will
appear across the top area of that container. If you resize the container (e.g.,
drag the window edges), it will take extra space and use it for horizontal, but
not vertical, stretching. That is, the objects won’t get bigger than they need to
vertically, though they will stretch wider. The same is true for SOUTH, but the
objects are at the bottom rather than top of the container. Putting something
in EAST or WEST will move them to the left or right of the container. For these
two areas, though, space when resizing a window is added to the objects verti-
cally, but not horizontally. Putting an object in EAST or WEST will let it get
taller, but not wider.

The CENTER area, the default location if you use the add() method with
no second parameter, will use extra space both vertically and horizontally.

Adding more than one object into a region (e.g., NORTH) will result in only
the last item added being displayed. For this reason, too, one often builds inter-
mediate containers to hold several objects. Then the single container object is
added to one of BorderLayout’s regions.

Simple JLabels16.7.2.1

Let’s look at the simplest of the three pieces that we create for our GUI—the
top line of information indicating the status of the account. In lines 88–107
we create this portion of the GUI.

 88 private Component
 89 createStatus()
 90 {
 91 JPanel retval = new JPanel(); // default: flow layout
 92
 93 upton.addActionListener(upAction);
 94
 95 nam = new JLabel("Account: Name");
 96 tot = new JLabel("Total: $");
 97 val = new JLabel("Remaining: $");
 98
 99 retval.add(upton);
100 retval.add(nam);
101 retval.add(tot);
102 retval.add(val);
103
104 setStatus();
105
106 return retval;
107 } // createStatus

35316.7 Getting Down to Cases: Designing a GUI for BudgetPro

It consists of three parts, one for the account name, one for the total value
of the account, and one for the remaining value. Each part will be represented
by its own label, using a JLabel object. (We could have done the entire line
in one label, but this gives us a few more objects to manipulate.) Since we want
to group the labels together, we create a JPanel, which is a Swing container,
to hold all these objects. We’ll also add the JButton object (the variable named
upton).

A JLabel is a simple Swing object. You can construct an empty one with
new JLabel(); but you can also construct a label with a String as its initial
value, which is more useful. You can later change a label’s value with a call to
its setText() method, as you see here from line 117:

117 tot.setText("Total: $"+current.getTotal());

FlowLayout16.7.2.2

The JLabels are added to their JPanel, but with no position argument, unlike
the JFrame and BorderLayout used in main(). JPanel has a different default
layout manager: It uses FlowLayout. With it, added objects are placed side by
side according to the window size. If the window is narrowed, they will simply
flow onto the next line. (You won’t see this behavior if you narrow the Budget-
Pro window, but that’s because the JPanel has been added to the JFrame’s
NORTH region, which means it’s no longer just a FlowLayout that determines
sizes.) FlowLayout is a layout that’s easy to use, but doesn’t give you much
control; it was just fine for our purposes here.

BoxLayout16.7.2.3

Another simple layout mechanism is the BoxLayout. It allows you to place the
objects like stacking boxes—though they can be stacked horizontally as well as
vertically. Look at line 224:

224 retval.setLayout(new BoxLayout(retval, BoxLayout.X_AXIS));

Here we are creating a BoxLayout object and associating it with our
JFrame to manage its objects. When we create a BoxLayout we can tell it that
we want to stack our objects horizontally (using either X_AXIS or LINE_AXIS)
or vertically (using either Y_AXIS or PAGE_AXIS). Note that the BoxLayout

Chapter 16 Getting in the Swing of Things: Designing a GUI for BudgetPro354

object needs to be told about (i.e., given a reference to) the container (here,
retval, a JPanel) whose objects it will manage, but that the container also
needs to be told (via setLayout()) about the BoxLayout object. A bit
confusing, perhaps.

Another handy part of BoxLayout is the uses of rigid areas, invisible ob-
jects that do nothing except putting some space between objects. These rigid
areas are defined in pixels; for our GUI we create them with no height and a
width of ten pixels. They are held together using “horizontal glue” (see line 226)

226 retval.add(Box.createHorizontalGlue());

so that if the window is stretched, the extra space doesn’t get added between
the buttons, but only to the “glue” component, which absorbs all extra space.
This keeps all the buttons to the right hand side of the window.

JButtons16.7.2.4

The method named createButtons() actually packs up the buttons into a
JPanel to return to the caller. It begins like this:

218 private Component
219 createButtons(JRootPane root)
220 {
221 JPanel retval = new JPanel(); // default: flow layout
222
223 //Lay out the buttons from left to right.
224 retval.setLayout(new BoxLayout(retval, BoxLayout.X_AXIS));
225 retval.setBorder
 (BorderFactory.createEmptyBorder(10, 10, 10, 10));
226 retval.add(Box.createHorizontalGlue());
227 retval.add(creat);
228 retval.add(Box.createRigidArea(new Dimension(10, 0)));
229 retval.add(view);
230 retval.add(Box.createRigidArea(new Dimension(10, 0)));
231 retval.add(clos);

The buttons themselves were created at the beginning of this class, in
lines 27–29, thus:

27 private JButton creat = new JButton("New Subaccount");
28 private JButton view = new JButton("View Subaccount");
29 private JButton clos = new JButton("Quit");

35516.7 Getting Down to Cases: Designing a GUI for BudgetPro

Note that the constructor takes a String argument—that’s the text that
will appear in the button. A button may also have an icon (image) in it (more
on that in just a bit). These buttons, as created, don’t do anything. When
clicked on by the user, they will behave as real buttons (depress, then release),
but no action will occur. Yet.

Actions for Buttons16.7.2.5

We need to attach an action to each button, which is little more than a special
class to hold the code that you want to be run when the button is pressed. We
can define the action as an anonymous inner class, so that the code is right
there, inline with the rest of our code. Then we just attach that code to the
button. Here is an example of that for our close button (the one labeled Quit):

234 ActionListener closAction = new ActionListener()
235 {
236 public void
237 actionPerformed(ActionEvent e)
238 {
239 System.exit(0);
240 }
241 } ;

ActionListener is an interface—a very simple interface that defines just
one method, actionPerformed(). You can take any class, have it extend
ActionListener, and then define an actionPerformed() method for it.
That class can then serve as the action for a button. Here we just create an in-
line class that does nothing but the actionPerformed() method, and a pretty
simple one at that. It simply exits.

We could define the action elsewhere, and then just use the reference to
the action. If we had put the declaration of closAction at a higher lexical
scope (out at the beginning of the class definition, for example) then other UI
elements could also use this action. Of course, if you’re going to share your
action between GUI elements, be sure that you write the code to be reentrant.

Lines 244–267 (still within the createButtons()method) define the
action for the button labeled New Subaccount. Line 268 connects it to the
button. Don’t pay attention to the specifics of this action just yet. We’ll discuss
it in detail below, once we know more about the other objects. Here is how
that action is built:

Chapter 16 Getting in the Swing of Things: Designing a GUI for BudgetPro356

244 ActionListener creatAction = new ActionListener()
245 {
246 public void
247 actionPerformed(ActionEvent e)
248 {
249 Account child;
250 // get the info via a Dialog (of sorts)
251 if (askem == null) {
252 askem = new AcctDialog(frame, "New Subaccount");
253 } else {
254 askem.clear();
255 askem.setVisible(true);
256 }
257 String subName = askem.getName();
258 String subAmnt = askem.getAmnt();
259
260 // if empty, assume the operation was cancelled, else:
261 if ((subName != null) && (subName.length() > 0)) {
262 child = current.createSub(subName, subAmnt);
263 setStatus();
264 model.fireTableDataChanged(); // notify the table
265 }
266 }
267 };
268 creat.addActionListener(creatAction);

We defined the action for the View Subaccount button (as we said you
could) elsewhere in the program. Its action is defined in lines 54–75. Then on
line 271 we connect the action to the button. (We’ll get back to this button’s
action, too, once we’ve discussed the JTable.) But after we’ve attached the ac-
tion, we also disable the button (line 273).

270 // function is to get selection from table and cd there
271 view.addActionListener(cdAction);
272 // but it starts off disabled, since there is no data yet
273 view.setEnabled(false);

In Swing, a button is either enabled or disabled. Enabled buttons are the
active ones on which you can click. Disabled buttons are grayed out and not
responsive to clicks. We can make a button either active or inactive with a
method on the button called setEnabled() whose argument is a
boolean—true to enable the button, false to disable it. For example:

35716.7 Getting Down to Cases: Designing a GUI for BudgetPro

203 if (lsm.isSelectionEmpty()) {
204 view.setEnabled(false);
205 } else {
206 view.setEnabled(true);
207 }

However, we start with the View Subaccount button disabled until the
user has created and selected some subaccounts worth viewing.

The createStatus() Revisited16.7.2.6

There is one other button on the BudgetPro application, one that is not located
in this bottom panel of buttons. It’s the one on the status line. It, too, starts up
disabled or grayed out—but it has an image in it. Any JButton can contain
either text or an image, or both, but we’ve chosen to do just one or the other
in our application. We declare it like any other button:

private JButton upton;

but for its initialization we use a variation of the JButton constructor, one that
takes an ImageIcon object as its parameter:

upton = new JButton(new ImageIcon("net/multitool/gui/back.gif"));

Why do we do that all in one line? When you read it, you can certainly
think of it as two steps:

ImageIcon backup = new ImageIcon("net/multitool/gui/back.gif");
upton = new JButton(backup);

but we have no other need for the image, so we don’t need to keep a reference
for it in a variable. Some programmers prefer to write it out in two simple steps,
as it is easier to read and perhaps to maintain. We’ve chosen to put it all in the
JButton’s constructor to show that we’re making no other use of the image.
Which style do you prefer?

And what about a button that needs to contain both text and an image?
There is a constructor that takes both a String and an ImageIcon. Then
you can set certain attributes of the JButton to position the text
relative to the image. Look in the Javadoc of JButton for the methods
setVerticalTextPosition() and setHorizontalTextPosition().

Chapter 16 Getting in the Swing of Things: Designing a GUI for BudgetPro358

JTable:The Workhorse of Data Display16.7.2.7

Look again at our GUI application. In its center you see the table object:

This is a JTable. A simple way to create a JTable is by passing in two
arrays to the constructor—first, a two-dimensional array of data objects, and
second, a one-dimensional array of column names. Notice that we said data
objects; you need to use Integer objects, not simple int types, and Doubles
instead of doubles. This allows the constructor to take any Object type and
display it in the table via the object’s toString() method.

While this form of a table is simple to use, it usually isn’t enough for all
the various things you’ll want to do with a table. Let’s look at the “industrial
strength” table initialization. For that, we need to talk about a table model.

Table Model16.7.2.8

If you’ve ever taken an object-oriented design class, they’ve probably talked
about the Model/View/Controller design pattern. (If you haven’t taken such a
class, at least read a good book or two on the subject; it will improve your Java
programming skills.) A simpler version of this pattern is the View/Model pat-
tern. What it describes is separating the core of the data from the frill of its
presentation—what you want to display versus how you want to display it. The
Model is the underlying data; the View is one particular way to show that data.

This View versus Model distinction is used to great effect with JTable
and TableModel objects in Swing. What you need to do is create a
TableModel, then give that TableModel to the JTable via the JTable’s
constructor. The TableModel will give you all sorts of control over your
data—how, where, and when to get or update it. The JTable will display it
and let you rearrange or resize the columns.

Rather than implement a complete TableModel from scratch, Swing gives
us a helping hand with its AbstractTableModel class. AbstractTableModel
is a partially implemented class which handles most of the grundy details—it

35916.7 Getting Down to Cases: Designing a GUI for BudgetPro

has most of the Table interface implemented. You only need to implement
three methods:

public int getRowCount();
public int getColumnCount();
public Object getValueAt(int row, int column);

Together, these three methods give a pretty good definition of a table: how
many rows it has, how many columns it has, and how to access the value at any
(row, column) location. Notice, too, that the getValueAt() returns an
Object, so you can’t return an int or float or double. You can only return
an Integer, Double, and so on. Another option is to return a String value
of the number that you want to display.

Let’s take a look at how the AbstractTableModel was implemented in
the BudgetPro application. We begin at line 135, inside the createList()
method. The createList() method is going to build the central portion
of our GUI, the table display. In order to do that, it creates an
AbstractTableModel to give to the JTable it creates on line 193. The
AbstractTableModel is defined inline as an anonymous inner class that
implicitly extends AbstractTableModel. This section of code is listed in
Example 16.2; follow along as we discuss it further.

(An aside: We could also have defined this inner class elsewhere in the class
file, as a class which explicitly extends AbstractTableModel. However, as
with the icon we used in the JButton example, we have no further need of the
object other than this single use, so we didn’t bother to create it as a standalone
entity. Both ways work, and are more a matter of preference or of how familiar
you are with the inline syntax.

In our implementation of the AbstractTableModel, we are going to in-
clude column headings, so we begin with a definition of Strings for our col-
umn headings (line 137). Then the getColumnCount() method, one of the
three methods that we need to implement in this class, is simply a matter of
returning the size of this array (line 159). Lines 139–142 override the
getColumnName() method, which isn’t one of the three that we must imple-
ment. But if we don’t, the default behavior from AbstractTableModel will
return nulls, so we’d get no column headings. Instead, we use the column
number as an index to our array of column names.

The getRowCount() method is almost as simple (lines 144–155).
The number of rows that this table should display for any account is the

Chapter 16 Getting in the Swing of Things: Designing a GUI for BudgetPro360

Example 16.2 Defining our AbstractTableModel

130 private Component
131 createList()
132 {
133 JScrollPane retval;
134
135 model = new AbstractTableModel()
136 {
137 private String [] columnNames = {"Account", "Owner", "Value"};
138
139 public String
140 getColumnName(int col) {
141 return columnNames[col];
142 } // getColumnName
143
144 public int
145 getRowCount()
146 {
147 int retval;
148
149 if (current != null) {
150 retval = current.size();
151 } else {
152 retval = 1; // testing only
153 }
154
155 return retval;
156
157 } // getRowCount
158
159 public int getColumnCount() { return columnNames.length; }
160
161 public Object
162 getValueAt(int row, int col) {
163 Object retval = null;
164 Account aa = null;
165 // return "---"; // rowData[row][col];
166 int count = 0;
167 for (Iterator itr=current.getAllSubs(); itr.hasNext();)
168 {
169 count++;
170 aa = (Account) itr.next();
171 if (count > row) { break; }
172 } // next

36116.7 Getting Down to Cases: Designing a GUI for BudgetPro

173 switch (col) {
174 case 0:
175 retval = aa.getName();
176 break;
177 case 1:
178 retval = aa.getOwner();
179 break;
180 case 2:
181 retval = aa.getTotal();
182 break;
183 } // endswitch
184 return retval;
185 } // getValueAt
186
187 public boolean
188 isCellEditable(int row, int col)
189 {
190 return false;
191 } // isCellEditable
192 };
193 list = new JTable(model);
194 list.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
195
196 list.getSelectionModel().addListSelectionListener(
197 new ListSelectionListener()
198 {
199 public void
200 valueChanged(ListSelectionEvent e)
201 {
202 ListSelectionModel lsm = (ListSelectionModel)e.getSource();
203 if (lsm.isSelectionEmpty()) {
204 view.setEnabled(false);
205 } else {
206 view.setEnabled(true);
207 }
208 } // valueChanged
209 }
210);
211
212 retval = new JScrollPane(list);
213
214 return retval;
215
216 } // createList

Chapter 16 Getting in the Swing of Things: Designing a GUI for BudgetPro362

number of subaccounts defined for the account. Since we’re defining our
AbstractTableModel as an inner class, we have access to the data in the outer
(BudgetPro) class. We use the instance variable current, which refers to
whichever account we’re currently working with. A quick check of the Account
class shows that an Account object can return the number of subaccounts
(or “children”) via its size() method. So for our getRowCount() method we
return current.size()—provided that current is not null. If it is null,
we return 1 rather than 0, so that the table itself shows up and the headings
appear. (But it also means that getValueAt() has to deal with requests for
data from the first row when data may not exist.)

The core of what makes our data appear is the getValueAt() method,
lines 161–185. Since each row represents a subaccount of the current account,
we’ll just iterate through current’s list of subaccounts until we reach the
row-th subaccount; for example, to get the third row we iterate over this list of
subaccounts until we get to the third one returned by the iterator’s next()
method. This is a bit “brute force,” to keep marching over the list of accounts,
but for our small data size it’s not bad. (Another approach would be to change
the Account class to provide a method to return the n-th subaccount. Then it
can use its internal knowledge of the way it stores subaccounts to provide a
more efficient access. Alternately, our extended AbstractTableModel could
iterate over the list once and store the subaccounts in an array, for quicker access
later; the trick here is that the array needs to be refreshed every time the account
changes—so we took the simple approach.)

Once we have a row selected, we use the switch/case construct to choose
the correct data for the requested column. (See the listing in Example 16.2,
lines 173–183.)

The return value for getValueAt() is an Object. Here’s one situation
where that is very useful. Refer to the definition of the Account object and
you’ll see that getName() returns a String, but getOwner() returns a User
and getTotal() returns an SAMoney object. Since retval is the most generic
type, Object, it can handle all three results.

But how does JTable deal with these odd types? How can it display an
SAMoney object when it doesn’t know what one is? There is both a simple and
a complicated answer to that question; we’ll try to give you both.

Renderers16.7.2.9

The simple answer is that JTable, to display the data returned by
getValueAt(), will call the toString() method on the object. As long as we

36316.7 Getting Down to Cases: Designing a GUI for BudgetPro

return an object which has a toString(), we’re fine. Both User and SAMoney
do have such a method, so they fit fine here.

The more complex answer has to do with why JTable calls the
toString() method at all. The JTable uses, behind the scenes, a complex
table cell display mechanism, called a table cell renderer. A renderer is an object
that displays data in a certain way. Each table cell renderer returns a GUI
component, and if you don’t want to use the default renderer, you can define
your own table cell renderer for your table. This allows you to display almost
anything you can imagine inside a table’s cell. The renderer acts as a template
for those cells and will be called upon with the result of the getValueAt(),
along with a few more parameters, so that it can build and display the
resulting cell.

Let’s revisit our simple explanation above, in light of the concept of a
renderer. The default cell renderer for a JTable uses just a JLabel. When
called upon, the default cell renderer is given the object returned by
getValueAt() and the renderer fills its JLabel by calling its setText()
method, passing in the result of toString() on the given object. That’s how
toString() got called on all our results. You can explicitly set a different
renderer using the setDefaultRenderer() method on JTable.

In the Javadoc for Swing table objects we find this interface:

public Component
getTableCellRendererComponent(JTable table,
 Object value,
 boolean isSelected,
 boolean hasFocus,
 int row,
 int column)

This tells us that if we want to write a class which can act as a renderer, it
needs to implement this method. The method will be called with the value
returned by getValueAt(), but the row and column (and table) will be
repeated here in case your renderer cares. For example, having the row and
column would allow you to create a table with the third column of the table
in green—your method could check the column number, and if it is 2
(columns are numbered 0, 1, 2, . . .) set the background color to green for the
Component that you would return.

Chapter 16 Getting in the Swing of Things: Designing a GUI for BudgetPro364

JLabel retval = new JLabel();
// ...
if (row == 2) {
 retval.setBackground(Color.GREEN);
} else {
 retval.setBackground(Color.WHITE);
}
return retval;

The full implementation of a renderer can also take into account whether
or not the cell is selected and/or has focus. This has to do with enabling mouse
clicks to select either that particular cell or the row or column containing that
cell. You will likely want to render the cell differently (with a darker color,
perhaps) to show that it has been selected. Whatever the renderer, you set up
and then return a GUI component whose attributes (font, color, size, and
so on) are used to display that cell.

We hope you get the idea—there is a lot more to renderers than we will
cover here. The Java Tutorial covers them more, and the Javadoc pages have
some introduction, too.

Similar to renderers are editors. When a user clicks in a table cell, the table
may allow him or her to edit its contents. A cell editor is needed to do that,
and then your program needs to do something with the value that was entered.
For our BudgetPro example we avoid this complexity by disallowing the user
to enter anything into the table—our table is for display only. We do this on
lines 187–191 by overriding the method isCellEditable() to always return
false:

187 public boolean
188 isCellEditable(int row, int col)
189 {
190 return false;
191 } // is CellEditable

Notice that the method is passed the row and column means that you
could make some cells editable and some not.

Selection Listeners16.7.2.10

Let’s look at the last part of the table that we implement for BudgetPro:

194 list.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

36516.7 Getting Down to Cases: Designing a GUI for BudgetPro

This call tells our table (list) that we want to allow the user to select only
a single row or column at a time. Valid options are:

ListSelectionModel.SINGLE_SELECTION
ListSelectionModel.SINGLE_INTERVAL_SELECTION
ListSelectionModel.MULTIPLE_INTERVAL_SELECTION

The latter two allow the user to select more than one row at a time; multi-
ple intervals mean that the selected rows can be discontinuous. (Think
“Shift+click” versus “Control+click” as the user action that selects these.)

So what will our program do, once the user has made a selection? The se-
lected row is a subaccount of the current account and we will allow the user to
display that account and its subaccount, if any. Think of it as “changing
directory” into that account, to look at or change its status.

For a table to take an action when a selection is made you need another
listener called a selection listener. We wrote:

196 list.getSelectionModel().addListSelectionListener(
197 new ListSelectionListener()
198 {
199 public void
200 valueChanged(ListSelectionEvent e)
201 {
202 ListSelectionModel lsm =
 (ListSelectionModel)e.getSource();
203 if (lsm.isSelectionEmpty()) {
204 view.setEnabled(false);
205 } else {
206 view.setEnabled(true);
207 }
208 } // valueChanged
209 }
210);

Similar to how a table has a table model behind it, it also has a selection
model behind it. We don’t need to reimplement an entire selection model; we
just retrieve the default one from our table (list.getSelectionModel())
and add a listener to it so that it will notify us when something has changed.

The javax.swing.event.ListSelectionListener is an interface with
only one method, so it’s easy to extend and override it in place, as we do, begin-
ning at line 197. When called, it will be handed an event (e) and we take the
source of that event and coerce it to a ListSelectionModel. That’s safe to

Chapter 16 Getting in the Swing of Things: Designing a GUI for BudgetPro366

do here because it can’t be any other type of event—or we wouldn’t have been
called. All we’re doing with it is checking to see if the user just selected or dese-
lected something. The only action we take is to enable or disable the view
button.

Deep inside the cdaction object is a line that does the real action that
we’re after with our selection. It says:

61 int row = list.getSelectedRow();

This shows that a JTable (list) has a method, getSelectedRow(), which
will return the row number of the row that the user has selected (that is,
clicked on). This is all part of the action listener (defined on lines 54–75 of
BudgetPro) for the View Subaccount button.

54 private ActionListener cdAction = new ActionListener()
55 {
56 public void
57 actionPerformed(ActionEvent e)
58 {
59 // this is the action for VIEW subdirectory;
60 // a "cd" into the subaccount.
61 int row = list.getSelectedRow();
62 // System.out.println("Row="+row); // DEBUG; TODO: REMOVE
63 if (row > -1) { // only if a row was selected
64 String subname = (String) model.getValueAt(row, 0);
 // name column
65 Account next = current.getSub(subname);
66 if (next != null) {
67 current = next;
68 // System.out.println("cd to:"+current.getName());
69 setStatus();
70 // notify the table, too
71 model.fireTableDataChanged();
72 } // TODO: else infodialog or Beep.
73 }
74 }
75 } ;

With the row number in hand, the actionPerformed() method can
then use the row number to look up the account name. Since the account name
is in the first column (numbered 0) of our table, we call getValueAt(row, 0)
to get that name. Then we give the name to the current account to look up the
subaccount (line 65).

36716.7 Getting Down to Cases: Designing a GUI for BudgetPro

As long as this returned Account is not null (line 66), we can make it the
current account (line 67). At that point the display needs to be updated, so we:
1) call our own setStatus() method, to update the upper portion of our
GUI, and 2) tell the table that its data has changed (line 71).

Ready, aim, fire!16.7.2.11

A word about the fire...() methods. They are not part of the TableModel
interface definition. Rather, they are part of the AbstractTableModel class.
When a Java class is declared abstract it means that some methods need to be
implemented by those classes that use (extend) this class. An abstract class can
still have lots of intact, completely implemented methods, and that is the case
with AbstractTableModel.

The TableModel interface defines methods for adding and removing lis-
teners. Any implementation of the TableModel interface needs to support
these, and to notify any listeners when a change occurs. Such listeners will re-
ceive a call to their tableChanged() method when such a change occurs. But
it doesn’t tell us how such notification is triggered. Moreover, the change event,
when received by the listener, needs to define the extent of the change—just a
single cell? a whole row? a column? all columns? and so on.

The AbstractTableModel provides some methods for us to call when a
change in the data has occurred, methods that will then notify all the registered
listeners (Table 16.1). Moreover, it has different methods depending on the
extent of the change, so that the TableModelEvent, sent to all
TableModelListeners, can be constructed with the appropriate definition of
what has changed.

We used (line 71) the fireTableDataChanged() since the content of
the table will change with a change of accounts, but the structure remains the
same. It is also a handy all-purpose method for you to use if you’d rather not
add the complexity of determining which rows have changed to your code.

Finally, remember that anyone who uses (extends) AbstractTableModel,
including the DefaultTableModel class, gets these methods for their use.

There are several other interactions that are supported by JTables, ones
that don’t require you to do anything to provide them to your application’s
end user. When running the BudgetPro GUI, did you try to drag the column
headings? You can also rearrange and resize columns. This is the default behav-
ior for JTables. You can turn it off, however, if you want your columns to
be fixed:

Chapter 16 Getting in the Swing of Things: Designing a GUI for BudgetPro368

Table 16.1 AbstractTableModel methods for data change notification

When to useMethod

Use when only a single cell has
changed.

fireTableCellUpdated(int row, int col)

Use when the given range of rows
(inclusive) have changed.

fireTableRowsUpdated(int first, int last)

Use when the given range of rows
(inclusive) have been deleted.

fireTableRowsDeleted(int first, int last)

Use when the given range of rows
(inclusive) have been inserted.

fireTableRowsInserted(int first, int last)

Use when any/all of the row data
have changed, including the
number of rows; columns have
not changed.

fireTableDataChanged()

Use when the columns have
changed—that is, when the
names, number, or types of
columns have changed.

fireTableStructureChanged()

An all purpose method, where
you have to define the change in
the TableModelEvent object.

fireTableChanged(TableModelEvent e)

table.getTableHeader().setResizingAllowed(false);
table.getTableHeader().setReorderingAllowed(false);

The call is not made on the table directly, but rather on its header. We get
the JTableHeader object with the call to getTableHeader(). There is much
more that could be said about JTableHeader objects, but we will leave that
“as an exercise for the reader”; we’ve got to draw the line somewhere.

Scrolling16.7.2.12

One last thing to mention about the createList() method is how we deal
with tables that are larger than the viewing area. This is typically done with a
scroll pane, a GUI element familiar to anyone who has used a word processing
program. Such scrolling is accomplished in Swing by putting the potentially
big object, such as our table, into a JScrollPane container.

36916.7 Getting Down to Cases: Designing a GUI for BudgetPro

Don’t think of it as adding scrollbars to the table. Rather, we’re putting
the table into a container that has scrollbars, and this container is smart enough
to retrieve and display the table’s header separately from the table (thus, the
table’s data scrolls but the header stays put).

Here, in one step, we create the JScrollPane object and initialize it with
the JTable that we want to be scrolled over.

212 retval = new JScrollPane(list);

Think of the JScrollPane as a window with scrollbars through which
we can view the JTable. It has the convenient side effect of taking care of the
table’s heading for us. Without the scroll pane (e.g., if we just put the JTable
in a JPanel) we’d get only the data and no heading, unless we also did a lot of
extra work using other objects and method calls.

It is possible to set the JScrollPane to show horizontal as well as vertical
scrollbars. Those scrollbars can be made to be always or never visible, or visible
only as needed. Setting a scrollbar to “never visible” effectively turns off any
scrolling in that direction. Use the setHorizontalScrollBarPolicy() and
setVerticalScrollBarPolicy() methods to set the value to one of:

JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER
JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS

Scroll panes can scroll over any GUI element—that is, any Component
object, not just tables. For more information on scroll panes, be sure to refer
to the Javadoc pages.

Dialogs16.7.2.13

We have covered most of the code in the main GUI functionality—the way it
initially creates its parts and lays them out for display. We have examined the
JTable in some considerable detail and looked at a few actions associated with
buttons. Now we need to get to the user interaction that allows us to create a
new account.

Lines 244–268 of BudgetPro are the action that gets attached to the
button for creating a new subaccount.

Chapter 16 Getting in the Swing of Things: Designing a GUI for BudgetPro370

244 ActionListener creatAction = new ActionListener()
245 {
246 public void
247 actionPerformed(ActionEvent e)
248 {
249 Account child;
250 // get the info via a Dialog (of sorts)
251 if (askem == null) {
252 askem = new AcctDialog(frame, "New Subaccount");
253 } else {
254 askem.clear();
255 askem.setVisible(true);
256 }
257 String subName = askem.getName();
258 String subAmnt = askem.getAmnt();
259
260 // if empty, assume the operation was cancelled, else:
261 if ((subName != null) && (subName.length() > 0)) {
262 child = current.createSub(subName, subAmnt);
263 setStatus();
264 model.fireTableDataChanged(); // notify the table
265 }
266 }
267 };
268 creat.addActionListener(creatAction);

Looking at the constructor for an Account, we see that we need three
things: a User object (who will own the subaccount), a name for the new sub-
account, and the dollars to be allocated to this subaccount. To keep our exam-
ple simpler, we will always use the current user as the User for creating the new
Account. That means we only need some way to get the name and dollar
amount.

In the GUI world, this sort of information is typically provided in a dialog
box, a window that has blanks to be filled in (Figure 16.5). Then, when the
dialog is closed, we can ask that dialog for the values that the user provided.

Swing has some ready-to-use dialogs for warnings or for simple single value
inputs. Since we want to get two pieces of data, we need to create our own
dialog and display it.

What may seem strange about the createAction() is that we only create
the dialog once (line 252), when the reference to it (askem) is null (line 251).
Thereafter, we simply clear out the previous values (line 254) and make the
dialog visible again (line 255). That is all that it takes to use the dialog more

37116.7 Getting Down to Cases: Designing a GUI for BudgetPro

Figure 16.5 Dialog for creating a new subaccount

than once. We could throw away the dialog (or let it get garbage-collected) by
declaring it internal to the actionPerformed() method. Then on each button
press the dialog would need to be recreated. Well, it’s slower to do it that way,
and for a button click we want quick response—so we keep it around from one
use to the next. When the user closes the dialog, all that really does is makes it
invisible; to reuse it, we make it visible again.

Notice, too, that in either case—creating the dialog or making it visi-
ble—control does not return to our method until the user has dismissed the
dialog. That’s because it’s a modal dialog, one that allows no other interaction
with the application until the user has responded to this dialog.

The dialog is dismissed (finished, ended, put away) simply by making it
no longer visible. For example:

73 dialog.setVisible(false); // go away

New to our application, in AcctDialog, is the JTextField. On lines 22
and 23 we declare two of them, one for the account name and the other for the
amount.

22 nameField = new JTextField(25);
23 amntField = new JTextField(9);

The size that we pass in to the constructor is the number of characters; it
sets a maximum for that field, but also gives a clue to some layout managers as
to how big the field needs to be.

Speaking of layout managers, we use a few here, including a BoxLayout,
to format the buttons relative to each other; a BorderLayout, to hold the
overall dialog; and a newer layout manager, the SpringLayout, which is new
as of Java 1.4. The Swing Tutorial provides a handy utility class for dealing

Chapter 16 Getting in the Swing of Things: Designing a GUI for BudgetPro372

with SpringLayouts, and we make use of it to format the labels and text fields
relative to each other.

Similar to a JTextField is a JPasswordField. It behaves just like a
JTextField but instead of showing the characters that the user types it shows,
by default, an asterisk for each character typed, thereby hiding the password
from passers-by. The character that is displayed can be changed to other than
the asterisk—see the Javadoc page.

We do something new with our JLabel in AcctDialog, too. We mess
with its font:

44 Font font = label.getFont();
45 label.setFont(label.getFont().deriveFont(font.PLAIN, 14.0f));

This gets the font from the label, however it might have been set, then
creates a new value for the font, keeping whatever font family it might have
been, but making it 14 pt plain (not italic, not bold).

We also put HTML text in the JLabel:

40 JLabel label = new JLabel("<html><p align=left><i>"
41 + "Enter the info to create a subaccount.
"
42 + "</i>");

All but the oldest versions of Swing will display the HTML text as it would
be formatted by a browser. Here, we make the text italic by means of the (now
deprecated) <i> tag, thereby undoing the effort to make it plain in lines 44
and 45.

One of the arguments to the dialog’s constructor is the JFrame inside
which the dialog will appear. Lines 102 and 103 round out this picture, setting
the size of the dialog and anchoring its position relative to the parent frame.
The last step for the constructor is to make the dialog visible, thereby passing
control to it.

REVIEW16.8

When programming in Swing, we create the GUI objects and then let Swing
do the work of managing all the interactions. We created:

37316.8 Review

• Containers to hold GUI objects, such as JFrame for our outermost win-
dow, JPanel for an assortment of objects, and JScrollPane for viewing
larger objects through a scrollable window.

• Labels (JLabel class) to hold either a short bit of text, or an image, or
both; it can even take snippets of HTML, for fancier formatting and
coloring of text.

• Buttons (JButton class) to which we attached actions—the code frag-
ments that get called when the buttons get pushed; a button could have
text and/or an image displayed in it.

• Actions—whether for buttons or selections (or other triggers yet to be
discussed), an action is the code that runs when the event (e.g., button
press) occurs.

• Text fields (JTextField class) to take small amounts of user input; our
application didn’t need the other types of text fields (JTextArea and
JTextPane) useful for much more extensive user input.

• A JTable instance and its associated TableModel, SelectionModel, and
TableCellRenderer which provide tremendous flexibility and control
over table behavior and contents.

• A JDialog instance with custom content, to allow for multiple user in-
puts; the dialog comes and goes with its visibility; since it’s a modal dialog,
when it is visible, it “hogs” all the user interactions; it is possible to make
nonmodal dialogs, but our application didn’t need to.

• LayoutManagers for our JFrame and JPanels, used to place objects
within a container with various algorithms for placement and expansion.

WHAT YOU STILL DON’T KNOW16.9

One could spend a career learning the vagaries of layout managers, especially
the way they interact (e.g., a BoxLayout inside the various regions of a
BorderLayout). There is still an art to getting all the interactions right; it’s
often quickest to prototype the layout before you get too committed to a par-
ticular layout. Also, putting objects into containers can help you subdivide the
layout problem into more manageable pieces. You can even go so far as to write
your own LayoutManager, a topic we do not cover in this book.

The information that we display in the JTable in our example is hierar-
chical. Swing provides a JTree object for displaying such information. Like a

Chapter 16 Getting in the Swing of Things: Designing a GUI for BudgetPro374

filesystem tree familiar to many PC users, the JTree allows you to view multi-
ple levels at once and to open and close nodes, exposing or hiding their subtrees.
It would make more sense to use the JTree in our example, but then we
wouldn’t have been able to describe all the ins and outs of the JTable, a class
that is so useful in so many applications.

There are many more Swing classes that we haven’t discussed, though
many will behave similarly to those you have seen here. There are topics that
we have avoided—for example, we haven’t talked about sorting JTables by
clicking on the column headings, or about TableColumnModels which add
another layer to JTables. Some of what you would need to know in order to
use these Swing classes you can glean from the Javadoc pages. The information
there should make more sense now, based on your experience with the various
Swing mechanisms that you’ve seen in these pages. For some other Swing topics
you will have to search farther, and there are plenty of books on the topic—the
classic one, the The JFC Swing Tutorial from Sun, being over 900 pages long.
Is it any wonder that we didn’t cover it all in this chapter?

RESOURCES16.10

• The JFC Swing Tutorial: A Guide to Constructing GUIs by Kathy Walrath
and Mary Campione, Addison-Wesley, also available online at
http://java.sun.com/docs/books/tutorial/uiswing/index.html.

• Our favorite bookmark within the Swing tutorial, the visual index of the
various Swing components, is at http://java.sun.com/docs/books/
tutorial/uiswing/components/components.html.

• If you want a better understanding of layout managers, we recommend
this tutorial by Jan Newmarch at Monash University in Australia:
http://pandonia.canberra.edu.au/java/xadvisor/geometry/

geometry.html. Don’t let the mention of AWT scare you away. Almost
all of the layout managers (except BoxLayout and SpringLayout) are
actually from AWT, and they all apply to Swing.

EXERCISES16.11

1. Use different layout managers to create of the status area of the BudgetPro
main window, laying out the status information differently. Make the

37516.11 Exercises

button and account name information left-justified, and stack the Total
and Remaining labels vertically on top of each other. Do you always need
to create new intermediate containers? Can you do it just with
GridBagLayout?

2. Modify the BudgetPro program so that it displays a pop-up dialog when
you try to create a subaccount with more money than is available to that
account.

3. Modify the dialog used for creating subaccounts, so that it also prompts
for the owner’s name. This can get more complicated if you want to allow
only valid user names. Instead, let any name be entered and create a User
object for it.

4. Modify the BudgetPro program and associated classes to allow for editing
of the values in the accounts, so that the user can change dollar allocations.
Start with the ability to edit the value in the table (custom editor).

5. Replace the JTable (and the View Subaccount button) with a JTree
object.

Chapter 16 Getting in the Swing of Things: Designing a GUI for BudgetPro376

In which we discover that Swing is not the only GUI game in town. In so doing
we learn the rudiments of the Standard Widget Toolkit and we describe some
of the key limitations of this alternative toolkit.

WHAT YOU WILL LEARN17.1

This chapter will introduce the basic classes of SWT, the Standard Widget
Toolkit, which is an alternative GUI library developed mainly for the Eclipse
Java IDE.1 Development of Eclipse has been led primarily by IBM.2

1. http://www.eclipse.org/

2. http://www.ibm.com/

377

Chapter 17

Other Ways:
Alternatives to Swing

THE IBM SWT TOOLKIT17.2

The Standard Widget Toolkit is a complete GUI library for Java, completely
independent of Swing and AWT. It is implemented as a library of native
methods, so it cannot be ported to any Java runtime unless that platform has
the native part of the SWT library implemented for it.

Another GUI Toolkit. Why?17.2.1

The first question one should ask, perhaps, is why create an alternative GUI?
Good question. The answer, according to the SWT FAQ,3 primarily has to do
with execution speed and look-and-feel similarity to native GUI applications
on each platform.

If we may editorialize, we find neither reason particularly compelling, al-
though the execution speed argument made some sense when the Eclipse
project started. Swing is unlikely to win any performance awards, even though
each version brings some improvements in speed.4 Still, these reasons do not
seem particularly compelling for such a large duplication of effort and function-
ality.

Whatever the reason, SWT exists. SWT works by providing a thin abstrac-
tion layer over native GUI features. It is a small GUI library. It is implemented
using the Java Native Interface, so it requires that a native binary library be
implemented for your platform. Fortunately, such implementations exist for
all platforms Eclipse runs on. So if you can run Eclipse, you can write and run
SWT applications.

3. http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/
faq.html

4. The question of speed in Java is a rather tired argument. If maximum speed is a primary
concern, Java is probably not your first choice of a development language. In our experience,
speed is something everybody says they need, but more often than not other considerations
such as development time and error rate are much more important. Java is fast enough for vir-
tually all MIS applications, and that is the market Java is squarely aimed at. Our computers
keep getting faster, disk drives and memory keep getting cheaper. The “resource” and “perfor-
mance” arguments only apply to applications where experienced designers would already have
chosen C or assembly language. Besides, with the JIT compilers in both Sun’s and IBM’s JDKs,
a well-written Java application is often as fast or faster than some other compiled languages, at
least on the second run of the code.

Chapter 17 Other Ways: Alternatives to Swing378

Duplicated Effort. Why Cover It?17.2.2

The next logical question is, “If you think SWT is unnecessary with Swing al-
ready there, why cover it in your book?” Also a sensible question. The answer
is that there is very little published literature on this library (a notable exception
being Chapter 10 of The Java Developer’s Guide to Eclipse by Shaver et al., from
Addison-Wesley). Also, SWT provides the only fully functional GUI library
that will work with the GNU Compiler for Java. As such, it is a major required
component if you wish to write native compiled GUI applications on Linux
systems.

Of course, there is another reason. Anyone heavily into Linux is well aware
of the political and philosophical debate about Free Software and Open Source.
If the core values of Free Software are critical for you, you should be aware that
the IBM Common Public License5 under which Eclipse (and thus SWT) are
published is a Free Software license. You get the source code, you may use it
in your own products, and it imposes obligations similar to the GNU GPL,6

but goes even further by requiring you to grant royalty-free licenses for any
patents you hold in derivative works.

So you might choose SWT (or not) for political or philosophical reasons.
Both authors still suggest Swing first because it is the official Java GUI library.
When an employer wants to know if you can write a Java GUI application, he
or she almost certainly means a Swing application. Philosophy is great, but it
may not put the food on your table. You need to know that Swing is not Free
Software (and neither is either of the major Java SDKs), and SWT is Free
Software, but it is up to you to decide what best serves your interests.7

5. http://www.eclipse.org/legal/cpl-v10.html

6. http://www.gnu.org/licenses/gpl.html

7. A lot of people couldn’t care less about the Free versus non-Free issue, but I must say that
many of my most interesting workplace discussions have arisen from this issue. It is the first
issue in my career that has had programmers talking about the balance between their personal
interests, their employers’ interests, and the public interest. Wherever you stand philosophically,
I think it is good that programmers are thinking about the consequences of their work at all
of these levels. I wish there were more pressure at all levels of business to consider and balance
all of these interests.

37917.2 The IBM SWT Toolkit

Portability: Better and Worse17.2.3

How about portability? Well, it depends on what “portability” means to you.
If portability means “looks and runs the same on all platforms,” then Swing
offers better portability. If portability means “runs on all platforms for which
there is a Java runtime,” then Swing offers better portability. If portability
means “looks like a native application on all supported platforms,” then SWT
is your choice. Make your selection accordingly.

TIP

The bottom line: If you only learn one Java GUI, make it Swing.

The Rest of the Chapter17.2.4

The rest of this chapter will be devoted to describing the basic classes of SWT
by converting one of the application classes from the previous chapter from
Swing to SWT. We will not attempt to explain the operating principles of
GUIs. For an introduction to GUI programming, see the previous chapter on
Swing. It introduces the concepts and programming principles for GUI
programming in Java. SWT is functionally similar, although quite spartan,
providing only basic windows, controls, and events.

Eclipse also contains a family of higher level user interface classes, known
collectively as JFace, that provide UI features such as dialogs, wizards, font
handlers, and images. We will not cover JFace in this book.

SWT: Close to the Metal17.2.5

SWT breaks some of the Java contract. For example, you cannot rely on garbage
collection to clean up SWT objects. Any SWT object you create with new must
be explicitly destroyed with a call to the dispose() method. Why? Since SWT
is implemented with native methods, the low-level implementation allocates
native OS data structures and objects that must be explicitly freed. Since the
Java garbage collector cannot be relied upon to collect objects at a certain time
(or ever, for that matter), these allocations can result in memory leaks and
address space conflicts. As we shall see, however, SWT is well designed to
minimize the amount of this that you need to worry about.

SWT is also close to the metal in the sense that it does not abstract the
underlying message-based event system that drives both X Window and

Chapter 17 Other Ways: Alternatives to Swing380

Microsoft Windows. If you have ever written an X Window or Microsoft
Windows application in straight C (without a GUI framework library or class
library), you have written a main() function that contains an event loop. SWT
actually puts simple method calls around this core message queue event loop.
We’ll cover the details of this in the next section where we introduce the
Display and Shell classes.

“Hello, world” SWT Style17.2.6

SWT consists mainly of classes that represent controls—such as buttons, text
areas, scrollbars, and so on—and layout managers which are much like layout
managers in Swing. But there are two other classes: Display, which models
the interface between your Java application and the underlying windowing
system, and Shell, which effectively represents a single window.

The application in Example 17.1 is a parallel to the simple Swing program
in the last chapter (Example 16.1).

This simple program, like its parallel in the Swing chapter, is deceptive.
Sure, this is a lot of code to say “Hello, world” but it is because what we are
setting up here is an event-driven program that must respond to any valid
user input.

Setting Up to Run an SWT Application17.2.6.1

One advantage of Swing that we haven’t pointed out up to now is that it is part
of every Java runtime (well, not gcj; more on that later), so you have all the
classes on your classpath without any special setup. Not so with SWT. The
exact procedure for setting up to run an SWT application depends on what
development environment you are using.

There is an excellent set of directions for running an SWT application
under Eclipse in the SWT FAQ.8 No matter what your environment is, there
is a basic series of steps:

1. Download the Eclipse SDK.

2. Install it.

8. http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/
faq.html?rev=1.83content-type=text/html#standalone. Note that this link is to
the current revision in CVS as of this writing. You should take a look at the parent page to see
if there is a newer revision.

38117.2 The IBM SWT Toolkit

Example 17.1 A simple SWT application

import org.eclipse.swt.*;
import org.eclipse.swt.layout.*;
import org.eclipse.swt.widgets.*;

/**
 * @author mschwarz
 *
 * Sample SWT "Hello, world" application
 */
public class SWTHelloWorld {

 public static void main(String[] args) {
 Display disp = new Display();
 Shell window = new Shell(disp);
 window.setLayout(new RowLayout());
 Label label = new Label(window, SWT.NONE);
 label.setText("Hello, world.");
 window.setSize(320,160);
 window.open();

 while (!window.isDisposed()) {
 if (!disp.readAndDispatch()) {
 disp.sleep();
 }
 }

 disp.dispose();
 }
}

3. Extract the SWT JAR files.

4. Extract the SWT JNI files.

5. Configure your development environment.

Let’s go over these in a bit more detail.
SWT was developed as a GUI library for the Eclipse project. It is distribut-

ed as part of Eclipse. There is no official standalone SWT package. The right
way to obtain SWT is to download and (at least temporarily) install the Eclipse
SDK. See Section 10.4 for details.

Chapter 17 Other Ways: Alternatives to Swing382

Figure 17.1 Running the SWT version of “Hello, world”

If you have followed our sage advice and downloaded the GTK
version of the Eclipse SDK, then you need to copy out the SWT JAR files.
There are two files in the GTK version, and just one in the Motif version. The
GTK version’s files are swt.jar and swt-pi.jar. They are both in the
eclipse/plugins/org.eclipse.swt.gtk_2.1.2/ws/gtk directory. You
will need to have both of these JAR files on the classpath of any SWT
application you are compiling or running.

Remember that SWT is a JNI library. You must also have the native Linux
shared libraries. These need to be made available to the Java native loader. The
files you need are located in the eclipse/plugins/org.eclipse.swt.
gtk_2.1.2/os/linux/x86 directory. The .so files there must be available to
any running SWT application. There are a couple of ways to do this. First, as
described in Section 5.7, you can set the LD_LIBRARY_PATH environment
variable. You also can use the -D parameter for the runtime VM to set the
java.library.path property.

If you want to, you can copy these files out of the eclipse directory to
some other location and then erase the eclipse directory with the lovable old
standby, rm -rf eclipse.

Oh, by the way, once you have compiled the sample code above and set
your classpath and Java library path correctly, running the application produces
the window shown in Figure 17.1.

Anatomy of an SWT Application17.2.6.2

Before we launch into this discussion, we should point out that the Javadoc
documentation for all SWT packages is available as part of the Eclipse Platform

38317.2 The IBM SWT Toolkit

documentation.9 You might want to use that resource along with this
lightweight tutorial to fill in the gaps and shortcuts.

It should not be too surprising that there are similarities between SWT,
AWT, and Swing. They all take different approaches to solving the same
problem, namely how to control the complexity of a graphical event-driven
application. Because the problem is the same, there can’t help but be similarities
between different solutions. By now you may have deduced that the Shell
class is an analog to the JFrame class, and that SWT uses a system of layout
managers not too different from Swing. If so, you are on the right track and
well on your way to using SWT.

If we had to summarize the difference in approaches between SWT and
Swing, it would be that SWT tries to provide a small number of complex
classes, and Swing tries to provide a large number of simpler classes. Obviously,
this is a generalization, but everybody generalizes. Sorry.

The Display is a class that provides the link to the underlying GUI sys-
tem. Think of it as an abstraction of the interface to the windowing system. In
almost all cases, an SWT application will have exactly one instance of Display.

The Shell class represents a window. This class descends from a series of
abstract parent classes, so if you look at the Javadoc for Shell and think it is
simple, be sure to drill down into those parent classes! We’ll discuss Shell quite
a bit more as we go along.

PORTING BUDGETPRO TO SWT17.3

The conversion of an existing application is a complex process. Always consider
rewriting from scratch. Still, it is worthwhile to show an application converted
from Swing to SWT, because it will emphasize the relationship between
the two.

We begin with the reobjecting. Starting with the BudgetPro class, we
need to add an instance of the Display class. Then the JFrame becomes a
Shell. Likewise, the JLabels become Labels. Then . . . Wait a minute. You
don’t need a blow-by-blow account. Maybe it would be simpler to show you
what SWT classes roughly correspond to the equivalent Swing classes
(Table 17.1).

9. http://download.eclipse.org/downloads/documentation/2.0/html/plugins/
org.eclipse.platform.doc.isv/reference/api/

Chapter 17 Other Ways: Alternatives to Swing384

Table 17.1 Major SWT widgets and their Swing equivalents

DescriptionAnalogous Swing
component

SWT widget

Display widget that sends notification when
pressed and/or released.

JButtonButton

Composite widget that provides a surface for
drawing arbitrary graphics. May be used to
create custom widgets.

java.awt.Canvas,
but see also
java.awt.Graphics2D

Canvas

A cursor used as the insertion point for text.javax.swing.text.CaretCaret

Widget that permits the user to choose a
string from a list of strings, or to enter a new
value into a text field.

JComboBoxCombo

Widget that is capable of containing other
widgets.

JPanelComposite

Composite widget that groups other widgets
and surrounds them with an etched border
and/or label.

JPanelGroup

Nonselectable widget that displays an image
or a string.

JLabelLabel

Selectable widget to choose a string or strings
from a list of strings.

JListList

User interface widget that contains menu
items.

JMenuMenu

Selectable widget that represents an item in a
menu.

JMenuItemA,
JCheckboxMenuitem,
JRadioButtonMenuitem

MenuItem

Nonelectable widget that displays progress to
the user.

JProgressBarProgressBar

Widget that represents a range of numeric
values.

JSpinnerScale

Widget that represents a range of positive
numeric values. Used in a Composite that
has V_SCROLL and/or H_SCROLL styles. The
mapping to Swing is not very tight here, since
JScrollPane is like a combination of
Composite and ScrollBar.

JScrollPaneScrollBar

38517.3 Porting BudgetPro to SWT

Table 17.1 (Continued)

DescriptionAnalogous Swing
component

SWT widget

Window that is managed by the OS window
manager. A Shell may be a child of a
Display or another shell.

JPanelShell

Widget that represents a range of numeric
values. Differs from a Scale by having a
“thumb” to change the value along the range.

JSliderSlider

Composite widget that groups pages that can
be selected by the user using labeled tabs.

JTabPaneTabFolder

Selectable user interface object corresponding
to a tab for a page in a tab folder.

Any JComponentTabItem

A selectable widget that displays a list of table
items that can be selected by the user. Rows
are items, columns are attributes of items.

JTableTable

Selectable widget that represents a column in
a table.

JTableColumn

or instance of
TableColumnModel

TableColumn

Selectable widget that represents an item in a
table.

TableCellRenderer or
TableCellEditor

TableItem

Editable widget that allows the user to type
text into it.

JTextField,
JPasswordField,
JFormattedTextField,
JTextArea,
JEditorPane, JTextPane

Text

Composite widget that supports the layout of
selectable toolbar items.

ToolBar

Selectable widget that represents an item in a
toolbar.

JButtonToolItem

A selectable widget that displays a hierarchical
list of user-selectable tree items.

JTreeTree

Selectable user interface object that represents
a hierarchy of items in a tree.

MutableTreeNodeTreeItem

Chapter 17 Other Ways: Alternatives to Swing386

We are going to walk you through converting only one of the GUI source
files for the BudgetPro application. We will leave converting the rest as an exer-
cise for you. We’ll talk about some of the entertaining differences between the
models. As you shall see, there is no clear “winner” here between SWT and
Swing. Almost all technical choices—SWT versus Swing, Java versus C++,
Emacs versus vi, or for that matter UNIX versus Windows—are tradeoffs. This
is no exception. There are things we like about SWT. For simple GUI applica-
tions, we think it is easier to set up and use. We think it is easier to learn in its
entirety than Swing. Swing, on the other hand, is more complete, offering
classes that will do more than SWT. So the best solution depends (as always)
on your requirements.

Step 1: Convert the Class Members17.3.1

We are going to tackle converting BudgetPro.java from Swing to SWT. In
real life, this is an exercise you are unlikely to have to carry out. You will more
likely write your GUI applications from scratch. But going through the conver-
sion provides a useful roadmap for talking about the architecture of SWT; it
teaches you SWT in terms of a class library with which you are already familiar.

First off, we change the packages imported at the start of the file. Remove
all of the awt and swing packages. If you are using an IDE, this should flag
every single line of code that touches the GUI as an error. This can be a big
help when you are doing a mass conversion like this. When you have killed all
the compile errors, you know you are well on your way to completing the
conversion.

Replace the import statements with the imports you are likely to need for
your SWT application. These are:

import org.eclipse.swt.*;
// The static SWT class, which contains a number of constants.

import org.eclipse.swt.widgets.*;
// The widgets library. Almost all your display elements are here.

import org.eclipse.swt.events.*; // Event handlers

import org.eclipse.swt.layout.*; // Layout managers

We will go into these families of classes in more detail as we convert the
members and methods of BudgetPro.java.

38717.3 Porting BudgetPro to SWT

The next step is to convert the GUI members of the class from the Swing
classes to their SWT counterparts. Of course, SWT requires the Display class,
which has no analog in SWT, so we add a Display type member named disp
just ahead of the frame member.

Next, we change the type of frame from JFrame to Shell. We could re-
name the member,10 but why add to our typing burden? The name is still clear
and meaningful, even if it doesn’t match the SWT name.11 There’s more to it
than just changing the type, however. The constructor call for the JFrame
doesn’t match any constructor for Shell. In fact, the Shell constructor re-
quires a Display object argument, and all subsequent constructors for widgets
and controls require a Composite as an argument.

This is a key difference between Swing and SWT. Swing allows you to
build GUI components in arbitrary order at arbitrary times and then join them
up to the GUI with an add() method call. SWT instead requires that you link
your components up to the GUI element they belong to when they are construct-
ed. There are good reasons for this difference. Remember that SWT allocates
native objects and memory that Java’s garbage collector cannot recover. Because
of this, SWT makes the promise that if you call the dispose() method on any
SWT object, it will dispose of it and everything it contains. That allows you to
clean up all resources from an SWT program by calling dispose() on the top
level Display object. If SWT allowed you to build GUI structures indepen-
dently and then graft them onto the hierarchy, it could not keep this promise.
For this reason (amongst others) SWT objects are always built in a fairly rigid
top-down manner.12

The most direct consequence of this is that we have to get rid of the con-
structors on these declarations. We’ll start construction in the main(). So, away
with the constructors for the GUI elements. We now need to change the
JButtons to Buttons and the JLabels to Labels. Again, if you are using a
dynamic IDE, you should see your error count skyrocket with these changes

10. If you are using Eclipse, this is easily done throughout your code with the Refactoring
feature.

11. All right, I’m being lazy. Write your own book if you don’t like it.

12. In some ways, this greatly simplifies SWT programs, but at the cost of some reusability.
With Swing, you could construct a panel or other GUI element and reuse it in many places.
You can achieve the same thing in SWT by encapsulating such a construct in its own class and
passing in a parent to the constructor, but this is a bit more bulky and complex than the
Swing way.

Chapter 17 Other Ways: Alternatives to Swing388

Key SWT Abstractions

Composite is one of the key abstractions in SWT. Any control that may
contain other controls is a Composite.

Here’s a quick rundown of the key abstract classes and interfaces in
SWT, along with the basics of the functionality they embody:

• A Widget is the abstract superclass of all user interface objects in
SWT. At this level the methods exist that create, dispose, and dis-
patch events to listeners. Every single class we use in this chapter,
with the exception of event handlers and layout managers, is a
Widget.

• A Control is the abstract superclass of all windowed user interface
classes. This is almost all of the UI classes, either by direct descent
or through classes such as Sash or Scrollable. All constructors
for Control classes require a Composite parent class as a construc-
tor argument.

• A Composite is a Control which is capable of containing other
Controls. One direct descendant of Control which is very similar
to the Swing JPanel is Group.

The relationships and the power of these abstractions will become
clear as you work with real-life examples.

(well, maybe not really skyrocket, since the import changes have already
produced a lot of errors right off the bat).

Finally, we remove the AbstractTableModel member. SWT has a
simpler (and more limited) table functionality that we will discuss later.

Step 2: Converting the main() Method17.3.2

The main (pun unintended) changes that need to be made here include allocat-
ing the SWT Display, changing from instantiating a JFrame to a Shell,
doing away with the Swing “look and feel” stuff (an SWT application always
looks like a platform-native application, that’s SWT’s main selling point), and
reworking the construction of the GUI. We’ll explain that a little bit later.

For now, we take care of the simple changes. Remember that main() is a
static method, so we do not have any nonstatic class members available right

38917.3 Porting BudgetPro to SWT

now. The original BudgetPro constructor took a JFrame argument, now it
will have to get a Display and a Shell. So we have to allocate a local Display
and a local Shell. We also need to add the Display argument to the
BudgetPro constructor.

After this is done, we modify the call to the constructor to pass the local
Display and Shell to our class instance.

Next, we have to set a layout manager. The original application used the
Swing BorderLayout layout manager. SWT doesn’t have such a critter.
Fortunately, the original used only the north, center, and south positions
of the BorderLayout. SWT has a simple layout manager called a
FillLayout that puts its contained controls in a single row or column, equally
sized. Putting the three controls in a column will end up looking much like
using the north, center, and south of a BorderLayout. So we change the call
to the frame.setLayout() to pass in a new FillLayout and add the
SWT.VERTICAL attribute.

The SWT Class

The SWT class is pretty bare-bones. Its primary use is a library of named
constants used for attributes to Widget (and other) constructors. You’ll
see such SWT.xxxx constants all over your typical SWT application.
There are a handful of methods that the SWT class provides, all of
them static, including error(), which throws an SWTException,
getPlatform(), which returns a string with the name of the platform
on which SWT is running, and getVersion(), which returns an int
version number.

It also has a subclass, called OLE, which is a Windows-only class that
provides ActiveX support for SWT. Obviously, such use is nonportable
and non-Linux, so we won’t talk any more about it.

The next block of code in main() sets the Swing look and feel. SWT has
nothing like this. All SWT applications look like native applications (we seem
to be saying that a lot), so all of this code may be removed.

The next block of code calls methods on the application object (app) that,
in the original, construct the three “chunks” of UI and add them to the frame
using the BorderLayout attributes. Since, as we explained earlier, all SWT
controls must be explicitly joined to a parent control when they are constructed,

Chapter 17 Other Ways: Alternatives to Swing390

the separate create-then-add semantics used in the original will not apply. In
the next section, we will walk through converting one of these three create
methods. For now, it is enough to know that they will be changed to be meth-
ods that return void (no return value) and the calls to add() may be deleted.

That completes the conversion of main().

Step 3: Converting the GUI build() and init()
Methods

17.3.3

Lest you believe that this means the application is ready to run, just try
compiling what you have. Got a few errors yet, don’t we?

Let’s walk through converting the createStatus() method and its relat-
ed methods. We’ll then briefly discuss converting the createList() and
createButtons() concentrating on the details of the unique UI widgets used
in each.

Converting the GUI build() Method17.3.3.1

In BudgetPro, the top part of the UI is the status pane. It consists, basically, of
three labels. In the original application, this pane is constructed by the
createStatus() method. In the original, it returns a Swing Component,
which is then placed by calling add() on a container managed by the caller.

In SWT, Widgets must be joined to their containers at construction, so we
must restructure this code a little bit. We create a Group to hold our classes
together as a unit. We attach the group directly to the parent Shell by using
the member variable frame. We set the layout manager to be RowLayout.

We then populate the Group. First, we add the Up button, which is only
enabled when in a subaccount. While SWT does support image buttons, we
take the shortcut of using the SWT.ARROW style, bitwise-or’ed with the SWT.UP
style. Next, we populate the group with our Labels.

Note a change we will talk about some more below: The listener for
the Button object called upton is changed. The method is renamed from
addActionListener() to addSelectionListener(). Event handling in
SWT is similar to Swing/AWT, but not identical, as we will see when we go
over the rewrite of the actual event handler code a little later on.

These are the only changes we make to this method.

39117.3 Porting BudgetPro to SWT

CAUTION

If a Composite has no layout manager, each Widget in the Composite
must have its size and position explicitly set, or else their sizes will default to
zero, and they will all be invisible! Tremendous details on SWT layout manager
classes can be found in the article “Understanding Layouts in SWT” by Carolyn
MacLeod and Shantha Ramachandran on the Eclipse Web site.13

Converting the GUI init() Method17.3.3.2

The setStatus() method is called whenever the data in the core model
changes. Its job is to update the UI to reflect those changes. More specifically,
it updates the status pane at the top of the UI. There are corresponding
methods for the list pane and the button pane.

Oddly, there are no changes in this particular method. The purpose of this
method is unchanged. It updates the Labels with the new numbers and checks
to see if the current Account is the top level Account. If it is, the Up button
is disabled, otherwise it is enabled.

It turns out that all of the methods called on the UI classes in this method
have the same names and purposes in Swing and SWT. Don’t assume this will
be true in the other cases.

Reworking Event Handlers17.3.3.3

Finally, in the litany of conversion, we have to modify the event handlers. In
this case, the only event of interest is when the Up button is pressed. Pressing
a Button produces a Selection event.

In SWT, there are several types of events. Generally, you specify a class
that will handle the event by calling one of the add...Listener() methods
on the Widget that you wish to process the event for. Examples of these
method calls include:

• addSelectionListener()

• addControlListener()

• addFocusListener()

• addHelpListener()

13. http://www.eclipse.org/articles/Understanding%20Layouts/Understanding%20
Layouts.htm

Chapter 17 Other Ways: Alternatives to Swing392

• addKeyListener()

• addMouseListener()

• addMouseMoveListener()

• addMouseTrackListener()

• addPaintListener()

• addTraverseListener()

There are others. SWT naming conventions define an interface for
which each add...Listener() method is named. For example, there is a
SelectionListener interface. Many such interfaces have multiple methods,
each to handle a distinct kind of event; for example, the MouseListener inter-
face defines separate methods to handle a button down event, a button release
event, and a double-click event. As in Swing, it is common to implement event
listeners as anonymous inner classes that implement the listener interface.
However, since it is common to be interested only in some (or even only one)
listener event, it is annoying to have to implement the full interface, since you
have to provide method implementations for every event. For this reason, SWT
also provides classes called adapters that implement “do-nothing” methods for
every listener event. These also follow a naming convention. For example, the
adapter for the MouseListener interface is a class named MouseAdapter; the
SelectionListener interface has an adapter named SelectionAdapter,
and so on.

For us, this means that we are going to create a reference to an anonymous
inner class that implements the SelectionListener interface by extending
the SelectionAdapter class. This is probably the weirdest common code
construct in Java. Let’s take a direct look at that method (Example 17.2).

If you can correctly answer the following question, then you can be reason-
ably assured that you do, in fact, understand what is going on here. Would the
program compile and run correctly if the type of the upAction variable were
changed to SelectionAdapter? The answer is in the footnote.14

14. Yes, it would. The reason is that the addSelectionListener() method takes an argu-
ment of type SelectionListener. Both SelectionListener and SelectionAdapter
are of that base type. Aren’t Objects wonderful?

39317.3 Porting BudgetPro to SWT

Example 17.2 The upton Button event listener class reference declaration

private SelectionListener upAction = new SelectionAdapter()
{
 public void widgetSelected(SelectionEvent e)
 {
 // this is the action for UP arrow icon;
 Account next;
 next = current.getParent();
 if (next != null) {
 current = next;
 setStatus();
 }
 }
} ;

Completing the Conversion of the BudgetPro Class17.3.4

To keep this book to a reasonable size, we are always trying to avoid covering
the same ground more than once. We won’t walk you through the details of
converting the createList() and createButtons() methods as we did with
the createStatus() method, but we will talk about the details of converting
to SWT of some of the classes used in those methods.

The Table, TableColumn, and TableItem Classes17.3.4.1

Without a doubt, the biggest change the BudgetPro class requires in order to
convert from Swing to SWT lies in the table pane of the UI. The Table class
is the root of tables in SWT. The TableColumn class defines the names and
headers of the columns. TableColumn constructors must have a Table as their
first argument, followed, as usual, by a numeric style specification. The
TableItem class defines a row in the Table. As with TableColumn, the
TableItem constructor must have a Table as its first argument, followed by
a numeric style.

If you think about it, this is an extension of the same design philosophy
that requires that all constructors name their parent Composite. While Swing’s
abstract table model permits a nice separation between the data and the presen-
tation, implementing a similar system in SWT would violate its strict container
semantics.

You will need to follow the basic rewrite process outlined above and you
will have to squish the Swing abstract table model into the simpler SWT table

Chapter 17 Other Ways: Alternatives to Swing394

model. This will be your biggest challenge. Go to it. It is a great way to learn.
Of course, you can also just download the complete SWT application from the
book Web site.15

Completing the Conversion of the Application17.3.5

Completing the conversion of the BudgetPro class does not complete the
conversion of the entire application. The AcctDialog class must also be con-
verted. Use the same techniques we described here to convert that class as well.
(Or, again, just download the complete SWT application.)

Closing Thoughts17.3.6

Our overall impression is that SWT is more easily comprehended in its entirety
than Swing. It may be easier to learn SWT first, since Swing’s core model is
more complex but more powerful. But SWT and Swing weren’t developed in
that order and Swing is still much more widely used.16

For many GUI applications, our feeling is that it may be faster to write in
the SWT idiom. The problem lies in that SWT’s model has limitations that
Swing’s does not. Notably, SWT GUI elements are in a single rigid tree struc-
ture. It is not possible to have a factory class that constructs a GUI element
such as a dialog box which is passed up to the caller to be grafted into place on
a GUI. Instead, the parent element must be passed in, so all GUI elements be-
long to the single tree from the moment they are created. Also, by introducing
objects that cannot be garbage-collected, SWT brings into your application the
possibility of a class of bugs that Java otherwise eliminates.

Moreover, while converting a Swing application helped give this chapter
shape, we would, in general, prefer that an application be designed with its GUI
toolkit in mind. You would likely make slightly different design decisions
depending on which style of the GUI you choose.

15. http://www.javalinuxbook.com/

16. A gut feel—not based on any real statistics.

39517.3 Porting BudgetPro to SWT

SWT AND GCJ17.4

Up to now, we have told you again and again that SWT will work with gcj.
But no Linux distribution with which we are familiar provides SWT with gcj
out of the box. So how do you get SWT to play nice with gcj? Unfortunately,
you have a bit of work to do. Fortunately, the work is not particularly difficult.

Before we proceed, we must acknowledge those who have been there be-
fore. We, too, had heard about SWT’s usability with gcj but we had never
bothered to try it because there was no documentation on how to do it. We
first made the attempt thanks to a great IBM developerWorks article by Kirk
Vogen entitled “Create Native, Cross-Platform GUI Applications.” Follow the
URL17 to the information that enabled us to write this chapter.18

SWT source code is included in the Eclipse SDK download. See Sec-
tion 10.4 for details on where and how to download and install Eclipse. Once
you have Eclipse, you need to get your mits on the SWT source code. What
we will do is compile the SWT source into a shared object file that we can link
to any gcj application.

We’re assuming that you’ve got gcj installed. We’re assuming that you’ve
unzipped the Eclipse SDK. We’re assuming you’re still reading the book. We
have to make that assumption. The first thing you need to do is to unzip the
SWT source code. It is found in ECLIPSE_INSTALL/plugins/org.eclipse.
platform.linux.gtk.source_2.1.2/src/org.eclipse.swt.gtk_2.1.2/

ws/gtk. If you are using (as we recommend) the GTK version of Eclipse,19

there are two files in there: swtsrc.zip and swt-pisrc.zip.
Once you have these unzipped, you have to compile the code with gcj.

There are two different patterns these files follow. Files that do not contain
native methods are compiled with a command line that looks like this:

17. http://www-106.ibm.com/developerworks/library/j-nativegui/

18. Please note that Kirk’s article provides links to additional documentation and to an ant
buildfile that automates the steps we are going to teach you manually here. We certainly didn’t
want to steal anything from Mr. Vogen (or from IBM—scary!), so we will instead direct you
to the (copyrighted) IBM Web resources. The article is worth checking out. It can save you
some time over our version of the process. It is up to you.

19. Be aware: As helpful as Kirk Vogen’s article and files are, they are written to an old version
of gcj and they assume you are using the Motif version of Eclipse. His scripts work only with
the Motif version.

Chapter 17 Other Ways: Alternatives to Swing396

$ gcj -c SomeClass.java -o SomeClass.o

Files that do contain native methods are compiled with a command line
that looks like this:

$ gcj -fjni -c SomeClass.java -o SomeClass.o

That said, it does no harm to compile a source file that has no native
methods with the -fjni flag. This gives us a quick and dirty way to make our
library file.

$ find . -name "*.java" -exec gcj -fjni -c {} \; -print

Remember, you are in UNIX-land. Leverage your tools! In this case, the
advantage of using find is that, should the SWT source change (classes added
or removed), our “compile process” will handle it. Obviously, you can take this
in more sophisticated directions with make or ant. But this will get the job
done for us for now.

That will compile all of the SWT source.20 Next, we want to assemble all
of the object files produced into a shared object.

$ gcj -shared -o swt.so $(find . -name "*.o" -print)

Once again, we leverage our tools. This time, we use bash execution
quotes around our find command to get all of the .o filenames added to our
gcj command that builds the shared library. For our final trick, we will compile
our HelloWorld class from the start of this chapter with gcj and our new SWT
shared library:

20. When we did this with Eclipse 2.1 GTK and gcj version 3.2.2, we had one compile error
where the return type of the org.eclipse.swt.custom.TableCursor.traverse()
method was void, whereas the Control.traverse() method (from which
TableCursor inherits) was boolean. So we hacked it. We changed the return type of
TableCursor.traverse() to boolean and had it return true. We didn’t test to see if this
was right! Use at your own peril!

39717.4 SWT and GCJ

$ gcj -classpath=~/eclipse/plugins/org.eclipse.swt/swt.jar:\
~/eclipse/plugins/org.eclipse.swt/swt-pi.jar -c HelloWorld.java
$ gcj -main=HelloWorld -o HelloWorld Hello.o swt.so
$ export LD_LIBRARY_PATH=.:~/eclipse:\
~/eclipse/plugins/org.eclipse.swt/ws/gtk
$./HelloWorld

Et voilà! You have the HelloWorld application! Again. But now it is an
executable binary. Enjoy.

REVIEW17.5

Compared to Swing, SWT is a somewhat simpler GUI library. Unlike Swing,
it is Free Software and Open Source. It provides a full GUI library for use with
gcj. It is part of the Eclipse project. It uses native methods that require calls to
dispose of allocated objects. It has a rigid hierarchy that requires that lower
level GUI components be linked to their parents when they are constructed.
This means there are some limitations on how applications may be constructed.
SWT is much less commonly used than Swing. Swing is the lingua franca of
Java GUIs. SWT is definitely worth knowing, but if you want your skills to be
marketable, it is probably best to start with Swing.

WHAT YOU STILL DON’T KNOW17.6

We just scratched the surface of SWT Widgets. There are a bunch we haven’t
covered.

RESOURCES17.7

• SWT was written to support the Eclipse IDE. Eclipse is at
http://www.eclipse.org/.

• An introduction to SWT can be found at the same site:
http://www.eclipse.org/articles/Article-SWT-Design-1/

SWT-Design-1.html.

• Part 2 of the same article is at http://www.eclipse.org/articles/
swt-design-2/swt-design-2.html.

Chapter 17 Other Ways: Alternatives to Swing398

• The full list of Eclipse technical articles (including those on SWT) may
be found at http://www.eclipse.org/articles/index.html.

• A good introductory article can be found on the Developer.com
Web site: http://www.developer.com/java/other/article.php/
3330861.

• As always, consider using Google.com to find additional information.

• In dead-tree form, Chapter 10 of the book The Java Developer’s Guide to
Eclipse by Sherry Shavor et al. (Addison-Wesley, ISBN 0-321-15964-0),
also provides an introduction to SWT.

EXERCISES17.8

1. Complete the conversion of the BudgetPro class.

2. Complete the conversion of the entire BudgetPro GUI application.

3. While you have Eclipse installed, follow the instructions to unpack the
SWT examples. In particular, run the ControlExample. This is an appli-
cation that demos all the major Widgets, while giving you the ability to
apply most (if not all) of the style values to them dynamically. It is like a
Widget browser that can get you familiar with the look and feel of SWT
Widgets quickly. Run it. Play with it. Become friends with it. Also, remem-
ber you have the source code for this application. Want to know how to
code a given Widget? Look!

39917.8 Exercises

Part IV

Developing
Web Interfaces

Java was first seen by many programmers as a way to enhance Web pages by
adding some actual code to them, to be run in the browser. But the real power
of Java was unleashed at the other end of the client-server connection, when
Java was pressed into service on the Web server—to help serve up pages,
sometimes of its own making, to Web clients all across an enterprise.

WHAT YOU WILL LEARN18.1

• What servlets are.

• How to write a simple servlet.

• More complex servlet matters (servlet state).

• An example—our BudgetPro application as a servlet.

403

Chapter 18

Servlets:
Java Pressed into Service

SERVLETS: PROGRAM-CENTRIC SERVER-SIDE DOCUMENTS18.2

Servlets are Java programs that are run by a Web server. At its simplest, a servlet
is a Java class that is invoked by a Web server (referred to in some contexts as
the servlet’s container). A servlet is run not from the command line as a regular
Java program, but by visiting its URL. Point a Web browser at a servlet’s ad-
dress and the Web server (the one which serves up that address) will run the
servlet and send its output back to the browser (see Figure 18.1). So you can
see that typical output for a servlet is HTML—what better thing to send to
a browser?

Now, more and more servlets are using XML as their output and then
converting it to HTML via XSLT stylesheets, but we’re trying to keep things
simple here.

In their most generic form, servlets are classes which implement the
Servlet interface. That means that they provide three methods:

• init(ServletConfig config)

• service(ServletRequest request, ServletResponse response)

• destroy()

The init() method gets called when the Web server starts up the class.
(Think of the init() method as a constructor; Java doesn’t allow constructors
to be defined for interfaces, so init() plays that role.)

The destroy() method gets called whenever the Web server takes the
servlet out of service. This might happen when a system administrator wants
to shut down the system, or shut down just that particular Web service.

Naturally, the service() method is the method that gets called whenever
requests for this servlet arrive at the Web server. The server knows that the re-
quested service is provided by this servlet, so it packages up certain data and
sends it along as a request to the servlet. Thus, servlets can provide data in this
generic request/response kind of protocol. Simple, but vague, right now.

Servlets get a bit more interesting when we look at the HttpServlet class.
This class extends Servlet and adds two more methods that must be
implemented:

• doGet(HttpServletRequest request, HttpServletResponse

response)

Chapter 18 Servlets: Java Pressed into Service404

HTTP request

Linux system

Web server

Servlet class

PC

Web browser

HTMLHTTP request

Linux system

Web server

Servlet class

PC

Web browser

HTML

Figure 18.1 Servlet diagram

• doPost(HttpServletRequest request, HttpServletResponse

response)

We hope that you’ve noticed the similarity between doGet(), doPost(),
and the previously mentioned service() method. More on that in a minute.

PERSPECTIVE18.3

To better understand the interaction with servlets, let’s consider the requests
that come to a Web server. Web servers serve up Web pages. At first (in the
early days of the Web) that just meant simple flat HTML files, along with a
few image types. A Web browser would send a request to a Web server in the
form of a URL, such as http://www.dom.com/file.html, which would be
sent to the Web server named www at the dom.com domain. It would look up
the file named file.html in its directory and send it back to the browser.

That approach worked fine, and still does today. But this only covers static
Web pages, ones whose content doesn’t change. Users want to get at lots more
information today, not all of which has been embodied in static Web pages.

40518.3 Perspective

Rather than require fancier browsers with more dynamic querying or other ca-
pabilities, Web servers became smarter and were able to talk to other programs
that would generate HTML on the fly and send it back as the response to an
incoming request. In the Java environment, this mechanism includes the
Servlet and related classes.

As for requests coming from a browser, they come in two flavors—GET

and POST. The GET request is a request via a URL. Simple URLs that appear
as hyperlinks on a Web page are sent as GET requests. Any additional parameters
appear at the end of the URL as name=value pairs separated by “&”. The
parameters are separated from the URL with a “?” character:

http://www.google.com/search?hl=en&ie=ISO-8859-1&q=java

The example URL includes three parameters:

• hl=en

• ie=ISO-8859-1

• q=java

The POST is virtually the same, except that the name=value pairs don’t
appear on the URL but are sent in a less visible way. The net result is the same,
and the same methods can be used in the servlet to retrieve the parameters. The
POST requests typically come from HTML form elements, as when you fill in
the fields of a form and press a submit button (though forms can specify that
the browser use GET as the submission mechanism for a particular form). The
biggest advantage to posting the form is that the parameters don’t appear in
the URL, which is both more aesthetically pleasing and avoids problems from
accidentally revisited pages or user-altered parameters.

One further twist: URLs are not necessarily literal paths to files anymore.
The Web server can interpret parts of the URL as an alias for some other pro-
gram. So http://www.google.com/search may not actually refer to a direc-
tory named search on the Google site, but more likely tells the Web server to
use its search program. We’ll discuss this more in Chapter 19.

So servlets are given requests which have come from browsers (and other
Web clients), and then they respond with output. In our examples, we’ll be
sending HTML back. There are lots of other choices, too. Since browsers un-
derstand other formats, a servlet might also send back plain text or even image
data. Another choice gaining popularity is having the servlet generate XML and
then using a conversion via stylesheets to produce HTML. This allows for the

Chapter 18 Servlets: Java Pressed into Service406

formatting to be changed (e.g., to apply a new corporate look to the pages)
without changing the content or the programs that generate the content.

Since a Web server (e.g., Apache Tomcat) is typically configured to run
constantly, that is, to always be around, then a servlet is also always around.
(The Web server keeps a reference to the class, so the class is not garbage collect-
ed—hence its persistence.) Well, “always” here means “as long as the Web
server and the operating system are up and running.”

An aside: Not all servlets are for Web browsing. Sometimes servlets can
be used as daemons that hang around in the background doing other tasks
(e.g., background processing of some database records). The browser interface,
if any, may only be for the purpose of providing an administrative interface to
the daemon. The administrator would then have a Web page to which to go,
in order to see how many records have been processed. This page may also have
buttons to reset, restart, or shut down the process. While we typically think of
servlets being for the production of dynamic Web pages, here the Web pages
would only be an aside to the real purpose, that of processing database records.

HOW TO WRITE A SERVLET18.4

So how do you write a servlet? You may already have figured it out, from what
we’ve described so far. You need to:

• Write a Java class that extends HttpServlet

• In that class, write the following methods:

• init()

• destroy()

• doGet() and/or doPost()

That’s the basic idea. There are lots of details about what arguments are
supplied, what other resources are available, what methods can be used to get
at parameters, and so on. We’ll discuss some of those in our example servlet.

Let’s start with a simplistic servlet, one that will dynamically generate the
“Hello, world” string as a Web page (Example 18.1).

40718.4 How to Write a Servlet

Example 18.1 A “Hello, world” servlet

/*
 * HiServlet.java
 */

package net.multitool.servlet;

import javax.servlet.*;
import javax.servlet.http.*;

/**
 * Simple Servlet that generates a page of HTML
 */
public class
HiServlet
 extends HttpServlet
{
 /**
 * Think of this as the constructor for the servlet.
 * We need do nothing for our example,
 * but we should call our parent object.
 */
 public void
 init(ServletConfig config)
 throws ServletException
 {
 super.init(config);
 } // init

 /**
 * Called when the Web server is shutting down
 * or wants to shut down this particular servlet.
 * We need do nothing.
 */
 public void
 destroy()
 {
 } // destroy

 /**
 * Handles the HTTP GET method.
 * @param request servlet request
 * @param response servlet response
 */

Chapter 18 Servlets: Java Pressed into Service408

 protected void
 doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, java.io.IOException
 {
 doBoth(request, response);
 } // doGet

 /**
 * Handles the HTTP POST method.
 * @param request servlet request
 * @param response servlet response
 */
 protected void
 doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, java.io.IOException
 {
 doBoth(request, response);
 } // doPost

 /**
 * Requests for both HTTP GET and POST methods come here,
 * because we're not doing anything different
 * between the two request types. This way we need only one
 * version of the code that does the real work.
 * @param request servlet request
 * @param response servlet response
 */
 protected void
 doBoth(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, java.io.IOException
 {
 java.io.PrintWriter out = response.getWriter();
 response.setContentType("text/html");
 /* output our page of html */
 out.println("<html>");
 out.println("<head>");
 out.println("<title>A Java Servlet</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("Hello, world.");
 out.println("</body>");
 out.println("</html>");

 out.close();
 } // doBoth

40918.4 How to Write a Servlet

 /**
 * Returns a short description of the servlet.
 */
 public String
 getServletInfo()
 {
 return "Very Simple Servlet";
 } // getServletInfo()

} // class HiServlet

Whew! That is a lot of code for only a simple “Hello, world,” but remem-
ber that this is not just a run-on-your-desktop application. This is a network-
based servlet that can respond to concurrent requests from across the network
and talk to Web browsers. There’s a lot of plumbing that needs to be connected
to a Web server for the servlet to run, and that’s what most of this code is—just
the connections. The other verbose part is all of the HTML that we spit out
around our message. You can make it even more elaborate, with background
colors and other HTML decorations if you want to try it yourself.

Once you’ve written a servlet, though, you can’t just run it from the
command line like any Java class.1 Much of the work of a servlet is done behind
the scenes by the Web server (e.g., Tomcat). The tougher question is, “How
do you run a servlet?” That involves issues of configuring the Web server, set-
ting up directory locations, and so forth. It’s the subject of the next chapter.

Once you’ve deployed this servlet (by reading the next chapter and/or with
help from your IDE), you can run the servlet and talk to it via your browser.
We’ve pointed a browser window at one such deployment to get a highly unin-
teresting Web page (Figure 18.2) whose HTML source (in your browser menu,
select View>Page Source) is shown in Figure 18.3.

1. Well, actually, you could if it had a main() method defined. Our example doesn’t, but a
servlet class is still a Java class, and you might define a public static void main()
method that would allow you to run it from the command line as a way to drive the rest of the
class for simple testing. Of course, such a simple test harness wouldn’t be driving a Web
browser, and so on but technically it is possible. We didn’t want to lie to you.

Chapter 18 Servlets: Java Pressed into Service410

Figure 18.2 A very simple page from our servlet

Figure 18.3 The servlet-generated source of our simple page

INPUT, OUTPUT18.5

OK, so we’ve dynamically created a Web page—but the contents of that
page don’t change. The real use for servlets comes from having them produce
dynamic content, not just from dynamically producing content.

One way for the content to be dynamic is to extract it from a database.
Using what we described in Chapter 15, you can add code to pull values from
tables in a database. Consider a query that will return multiple rows of results.
Each row could be displayed as a row in an HTML table for display on a Web
page.

Using a loop, we can generate lots of HTML with little code. This is
handy for generating HTML tables. We would likely generate the <table> tag
outside a for loop, but the <tr> and <td> tags would be output from within

41118.5 Input, Output

the loop, one for each iteration of the loop. (If you’re not picturing that, be
patient. There are examples of this coming up. If you’re not conversant in
HTML, then you better check out some of the HTML references at the end
of this chapter. We’re going to assume that you speak HTML fluently. Come
on—we can’t cover everything in one book.)

The other side of dynamic content comes from variable input. Google’s
search engine, for example, generates different pages for different search strings.
It is the variation in user input that results in varying output pages. On a Web
page, user input typically comes from an HTML form. The form values can
be passed either as parameters on the URL or as POST values. URL parameters
are also easy to generate by hand, or to code in place in <a> tags. For example,

is an HTML tag for a hyperlink which will invoke the doSuch servlet and pass
in the parameters cmd and value. (It’s a servlet not because the pathname is
/servlet, but we use that for illustrative purposes. In fact, the servlet invoked
may not even be called doSuch; it all part of servlet mapping that recognizes
certain URLs as aliases for particular servlets. See Chapter 19 for a fuller
explanation.)

The point is, we can invoke the same servlet repeatedly (even simultane-
ously) but with different values for our parameters, so we can program it for
different behaviors and different output.

These parameters are available to the servlet via the request argument of
the doGet() and doPost() methods. You can get an enumerator over all of
the arguments (using getParameterNames()), or if you know it’s name (and
you likely would, since you’re writing the program) you can ask for a particular
argument.

The previous example used an argument called cmd, whose value we could
retrieve thus:

String act = request.getParameter("cmd");

The parameters all come as Strings. If your arguments are numeric, you’ll
have to parse them (and error-check them—HTML forms are, understandably,
weak on validating their input; tons of JavaScript have been written to deal
with this, but this is beyond the scope of this book.)

Some parameters may have embedded spaces and other special characters
that would disrupt a URL. To deal with that, browsers encode the characters

Chapter 18 Servlets: Java Pressed into Service412

in form fields before sending them to a Web server. You can see that in some
URLs—space gets replaced with a “+” character, and special characters (such
as the plus sign) get replaced with a character sequence for hexadecimal values
(for example, “+” becomes %2B). The getParameter() method will automat-
ically decode those. But we need to remember this if we want to generate any
literal URLs in the HTML that we produce. (See the URLEncoder class in the
Javadoc documentation for servlets.)

One more annoyance that must be dealt with: What if the URL contains
the same argument twice—for example, www.google.com/search?

cmd=search&cmd=bogus?
If you make the call to getParameter() you will get the first value

(search). If you want to handle such a situation differently, you can call
getParameterValues() which will return an array of Strings for all the
different values. In our example,

String [] allofem = getParameterValues("cmd");

will return an array such that:

allofem[0] = "search"
allofem[1] = "bogus"

If there was only one value, then you get an array of one element. If the
parameter wasn’t used in the URL, getParameterValues() returns null.

MATTERS OF STATE: COOKIES, HIDDEN VARIABLES,
AND THE DREADED “BACK” BUTTON

18.6

The toughest part about working with HTML is, perhaps, its statelessness.
HTML and browsers were not designed to keep a connection going. It’s not a
phone call type of connection, where the line is kept open between the browser
and the Web server. Rather, it’s a one-shot, send-me-what-you’ve-got mecha-
nism more like postal mail (but without the stamp). Here’s the rub: Just be-
cause you mail a letter, you can’t assume that you’ll get an answer back. There
is no on-going connection between browser and server, except for the duration
of the data transfer. Once you’ve got your complete page displayed, the

41318.6 Matters of State: Cookies, Hidden Variables, and the Dreaded “Back” Button

connection is gone.2 About the best one can hope for is that you’ll use what,
in our postal analogy, would be like a supplied reply envelope. This allows the
servlet engine of the Web server to track requests from the same user and pro-
vide a session capability across requests. It will use your browsers cookie mecha-
nism to store this session’s ID used to track your session. If you don’t have
sessions on, it will need to use URL rewriting, whereby the URLs generated
will have an added parameter, the session ID.

Unlike the early days in the life of the Web, nowadays virtually everyone
has cookies enabled in their browsers—anyone who shops at amazon.com, at
least. This makes session tracking so much easier for the servlet developer. The
Web server handles all that automatically, and you only need to make a few
calls to the session-related methods of the HttpRequest.

To get a session for a user, ask for one from the HttpRequest:

HttpSession session = request.getSession(true);

The boolean parameter says whether (true) or not to create a session if
one does not yet exist for this user. Once you have a session, you can store
objects associated with that session:

session.setAttribute("cart", shopCart);

where shopCart is any serializable Object and "cart" could be any String
that you want to use to later identify and retrieve this object, for example:

Basket myCart = (Basket) session.getAttribute("cart");

Notice that we need to explicitly cast the object type returned by
getAttribute(), because it returns a generic Object.

Cookies18.6.1

For any information that you want to save for longer than the duration of a
session, you may want to investigate cookies—little bits of data (4K max; typi-
cally only a few bytes) sent to the browser for it to store and send back at a later
time. You make a cookie thus:

2. You can go to another page, just be staring at the page for a long long time, or you might
have shut down your browser completely—and the server-side servlet will never know.

Chapter 18 Servlets: Java Pressed into Service414

Cookie snack = new Cookie("name", "value");
snack.setMaxAge(36000); // lifetime in seconds (10 hours)

Setting the maximum age of the cookie to a positive value is needed to let
the browser know that it needs to store the cookie on disk. After that many
seconds the cookie will be discarded by the browser as no longer relevant. No-
tice, too, that you must send the data inside the cookie as a string, and when
you retrieve it, you’ll have to parse that string.

Then you can send the cookie as part of a response, along with your
other output:

response.addCookie(snack);

Getting data back via cookies involves requesting data from the
HttpServletRequest object. All the cookies associated with your URL are
sent with the HTTP header to this address. You make the call:

Cookies [] allSuch = request.getCookies();

and then you have to look through the list looking for the cookie you want:

if (allSuch != null) {
 for(i=0; i allSuch.length; i++) {
 Cookie c1 = allSuch[i];
 if ("DesiredCookieName".equals(c1.getName())) {
 String result = c1.getValue();
 // ... now do something with it
 } // endif
 } // next cookie
} // endif

While cookies have gotten a lot of press, especially in the early days of Web
technology, we’ve found much less use for them than for session objects. Session
objects stay on the server, cannot be modified or deleted by the user, and are
easier to look up and use. The drawback, or course, is their limited lifespan.
But if you really want to leave data around for the next time some user visits
your servlet, you may be better off putting the data in your own database and
identifying that user by means of a cookie or by some login mechanism.

Let’s take a look at a complete servlet example.

41518.6 Matters of State: Cookies, Hidden Variables, and the Dreaded “Back” Button

DESIGNING A BUDGETPRO SERVLET18.7

When designing a servlet, there are many different patterns to follow. We can’t
hope to cover all the approaches that can be used for effective servlet program-
ming. What we hope to do is show you our previous BudgetPro GUI applica-
tion rewritten as a servlet, so that you can see the mechanics of a working servlet
application. From this, you can become accustomed to the mechanics of a
servlet so that you’ll feel comfortable with other approaches, too. All servlets
need to use these basic mechanisms.

Our BudgetPro GUI application was started from the command line, with
a name for the budget and a total dollar amount. We’ll use a static HTML page
with a form for supplying that information. That will invoke our servlet. The
servlet will use HTML pages analogous to the windows we used in our
GUI—there will be a main screen that shows the current account listing its
subaccounts, and there will also be a screen for creating new subaccounts.

One nice feature of HTML-based Web applications is that you can use
hyperlinks as a way to both select something and take an action on it. We’ll use
that feature in lieu of a View Subaccount button. Instead of selecting a subac-
count and then pressing View Subaccount, the user will only have to click on
the name of the subaccount. As a hyperlink, it will make the request to the
servlet to view that subaccount.

We will still use a button to send us to the screen for creating the subac-
counts. We could have used a hyperlink, but this makes the browser page look
a bit more like the GUI version.

Prototype18.7.1

When designing servlets, it’s handy to use static HTML pages as a prototype
for the work to be done. You can mock up the various screens using HTML,
simulate interactions by using hyperlinks to move between the screens, and get
a feel for what the screens and interactions will look like.

Such a prototype also serves as a “runnable” specification. It can sometimes
be easier to show the action than to describe it with words. And if you take care
when you are building these static HTML pages, most of the HTML can be
reused directly in the final product. (This will be even more true when we get
to JSP.)

Chapter 18 Servlets: Java Pressed into Service416

Design18.7.2

Let’s review what we need our servlet application to do for us. Given an account
name and the initial dollar amount, we need to:

• Create a top-level account with that amount of dollars

• Display the current account and its total and remaining dollars, along with
a list of its subaccounts, if any

• Create subaccounts, specifying a name and dollar amount

• Make a selected subaccount be the current one, displayed as above

After each or any of these actions, the servlet has to spit out the HTML
page for the user to view. If the user wants to create a subaccount, then the
servlet produces a form page for entering the name and dollar amount for the
subaccount. When the user presses a Create button on that page, the browser
tells the servlet (via the form data) that the servlet should create the subaccount
and redisplay the current account with this new subaccount added to its list.

TIP

It may help to think of the servlet as a two-step process, with a current and fu-
ture perspective. The first step is the action that the servlet must perform based
on the supplied parameters (e.g., create a new account). The second step is
the creation of the page allowing the user to take the next (future) action. That
page reflects the state of things after the parameter-driven action has occurred.
In our example, that means showing the list of subaccounts including the one
that we just created.

Let’s spell out in more detail what our interactions with the servlet will be,
and describe what output we expect for each of those inputs. We will create a
keyword to tell the servlet what function we want it to perform; we’ll call the
parameter func. We will sometimes need two other parameters: name and
dollars.

Table 18.1 shows our design as a compact reference.
The code for our servlet is at http://www.javalinuxbook.com/. Let’s

look at some of the key parts of the servlet in more detail. We’ll look at:
1) reading the parameters, 2) the core business logic of the servlet, as described
in Table 18.1, and 3) how we create and output the HTML.

41718.7 Designing a BudgetPro Servlet

Table 18.1 BudgetPro servlet actions

Next screenActionOther paramsfunc parameter

mainCreate a top-level account, save in
the session.

name, dollarsbegin

subacctnonenonemkacct

mainGet account from session.nonecancel

mainGet account from session; create
subaccount.

name, dollarscreate

mainGet account from session, look up
subaccount by name, save as current
in session.

namecd

mainGet account from session, get
parent from account, save as current
in session.

noneback

The parsing of the parameters is very straightforward. The request param-
eter, part of the signature of the doGet() and doPost() methods, can be used
to retrieve the parameters we need:

String act = request.getParameter("func");
String name = request.getParameter("name");
String dollars = request.getParameter("dollars");

Notice that we always ask for all three parameters, even though we will
often use only one (act). Once we have the requested function in act, it’s just
a matter of if-then-else-ing our way through the possible values and taking
the appropriate actions. We store, or retrieve, the current account in the
session manager, thereby providing continuity between browser requests
(Example 18.2).

The output is the page to send back to the browser. We create
that page as an object, either an AccountView or a SubPage. The
HttpServletResponse provides us with an output channel on which to write.

java.io.PrintWriter out = response.getWriter();
if (nextPage != null) {
 response.setContentType("text/html");
 out.println(nextPage.toString());
}

Chapter 18 Servlets: Java Pressed into Service418

Example 18.2 Implementing the BudgetPro servlet actions

if ("begin".equals(act)) {
 Account top = new Account(name, theUser, dollars);
 session.setAttribute("top", top);
 session.setAttribute("current", top);
 nextPage = new AccountView(top);
} else if ("mkacct".equals(act)) {
 // show the subaccount creation page
 nextPage = new SubPage(null);
} else if ("cancel".equals(act)) {
 Account current = (Account) session.getAttribute("current");
 nextPage = new AccountView(current);
} else if ("create".equals(act)) {
 Account current = (Account) session.getAttribute("current");
 try {
 current.createSub(name, dollars);
 nextPage = new AccountView(current);
 } catch (NumberFormatException nfe) {
 // show the subaccount creation page (with error message)
 nextPage = new SubPage("Bad number format");
 }
} else if ("cd".equals(act)) {
 Account current = (Account) session.getAttribute("current");
 Account nextAcct = current.getSub(name);
 session.setAttribute("current", nextAcct);
 nextPage = new AccountView(nextAcct);
} else if ("back".equals(act)) {
 Account current = (Account) session.getAttribute("current");
 Account nextAcct = current.getParent();
 session.setAttribute("current", nextAcct);
 nextPage = new AccountView(nextAcct);
} else {
 log("Unknown func=["+act+"]");
 response.sendError(HttpServletResponse.SC_NOT_IMPLEMENTED);
}

The way that we construct the output, it will all get sent back to the user
in one fell swoop. That’s fine for relatively short pages with rapid response time.
If response time is a major concern and you are sending large quantities of data,
you may want to change things a bit. Instead of building up the output in a
StringBuffer and then getting it all back with a toString() call, you could
take each of our append() calls and make them individual out.println()

41918.7 Designing a BudgetPro Servlet

calls, to send each snippet of HTML separately. The output can be flushed
explicitly, too, using

response.flushBuffer();

You might do such a call just before beginning a database operation, or
place such calls at strategic points through your output.

REVIEW18.8

We have seen that servlets are Java programs that are run by a Web server. They
typically, but not necessarily, produce output intended for a browser. By imple-
menting the HttpServlet interface, your Java class will have all the methods
needed for it to be run by a Web server. We looked at a simple example and
saw its output to a Web browser, then we looked at another example using our
BudgetPro application.

WHAT YOU STILL DON’T KNOW18.9

There is more that we haven’t discussed, so if you’re going to do some serious
work with servlets, be sure to do some additional reading, especially on these
topics:

• The servlet lifecycle and the need for thread safety.

• How to keep the servlet output from being cached.

• Dealing with failures.

• Initialization parameters.

• Other kinds of output.

• Sharing between servlets.

• How to configure and deploy servlets (this is coming up in the next
chapter).

Chapter 18 Servlets: Java Pressed into Service420

RESOURCES18.10

The definitive place for all the details is the Java Web site at Sun,3 particularly
the pages dealing with javax.servlet.http classes.

Some of the best material on servlets comes from:

• Core Servlets and JavaServer Pages by Marty Hall and Larry Brown, ISBN
0-13-009229-0, a Prentice Hall PTR book.

• Its sequel, More Servlets and JavaServer Pages by Marty Hall, ISBN
0-13-067614-1, also by Prentice Hall PTR.

• Java Servlet Programming, Second Edition by Jason Hunter and William
Crawford, ISBN 0596000405, from O’Reilly.

EXERCISES18.11

1. Modify the BudgetPro servlet so that it responds differently for the
doGet() and doPost() methods. Have doPost() continue to work as
is, but have doGet() report the number of different users and the number
of accounts that they have created. (You may need to “instrument” the
code—that is, add additional statements—to start counting such things.)

2. Change BudgetPro to do its output on the fly instead of building the entire
page before output. Can you notice any difference in the display time?

3. Design error handling for BudgetPro to prevent the user from allocating
more than is available in the (sub)account. Will you use Java exceptions?
If so, which object will throw them and which will catch them? How will
you inform the user of the error? Implement your design.

3. http://java.sun.com/j2ee/1.4/docs/api/

42118.11 Exercises

In our last chapter, the BudgetPro servlet example spent a lot of code generating
the HTML output for the servlet to send back to the browser. If you want to
change the HTML for any page (for example, add a background color), you
would have to modify the Java code (obviously)—but you’re not really wanting
to modify the logic of the servlet, you only want to tweak its output. The
HTML that a servlet generates can be scattered among output statements, string
concatenations, classes, and method calls. Servlets, we might say, bury the
HTML deep inside the code. We’re now going to take a look at JavaServer
Pages (JSP) which do the opposite—they expose the HTML and hide the code
down inside.

This technique has been given the fancy description, document-centric
server-side programs. They are “document-centric” because the HTML code is
so visible—JSP content looks like (and is) HTML with some additions. They
are “server-side” because all the work is done on the server and all the additions
and special features of JSP are boiled down to a simple stream of HTML by
the time it gets to the browser.

423

Chapter 19

JSP:
Servlets Turned Inside Out

WHAT YOU WILL LEARN19.1

• Theory of operation: how JSP can be thought of as servlets “inside out.”

• Three simple JSP directives: scriptlet, declaration, expression.

• Servlet variables made available: request, response, out, session.

• Server-side includes.

• A tiny bit about tags.

• jsp:useBean.

• A look at our BudgetPro using JSP.

• The correct spelling of JavaServer Pages.

SERVLETS TURNED INSIDE OUT: JSP19.2

Take a look at the AccountView.java class in the BudgetPro servlet example.
It consists almost entirely of

sb.append("</td>");

method calls which build up a string of HTML. Instead, this could have been
calls to do the output right then and there:

out.println("</td>");

Either way, if we want to modify the HTML, we have to modify the Java
code. While that’s not difficult, it can be error-prone. It would be nice to not
have the Java syntax in the way when we want to modify the HTML. (That’s
especially true when you want to put quotation marks in your HTML:

out.println("<input name=\"name\" size=\"20\">");

It’s not that it can’t be done; the \" just gets hard to read and hard to get right
the first time.)

One way to externalize all the HTML is to put it into a file. Then our Java
application could read the file at runtime and send its contents to the browser.
Not bad, but what about the dynamic parts? Remember how we generated the
table from the for loop in AccountView.java:

Chapter 19 JSP: Servlets Turned Inside Out424

for (Iterator actit = acct.getAllSubs(); actit.hasNext();) {
 Account suba = (Account) actit.next();
 sb.append("<tr>");
 sb.append("<td><a href=\"BudgetPro?name="+suba.getName());
 sb.append("&func=cd\">");
 sb.append(suba.getName());
 sb.append("</td>");
 sb.append("<td>albing</td>");
 sb.append("<td>");
 sb.append(suba.getTotal().toString());
 sb.append("</td>");
 sb.append("</tr>\n");
} // next acct

That would be hard to do with file-based HTML.
Another approach, the one used by JavaServer Pages, would be to use the

HTML file as input to a converter program—one which would take each line
of HTML, for example

<input name="name" size="20">

and produce a line of Java code:

out.println("<input name=\"name\" size=\"20\">");

Notice how the converter would be the one to handle the escape sequence
for the quotation marks; we get to write straight HTML—it has to deal with
the backslashes.

This is the basic idea behind JavaServer Pages. JSP files are nothing more
than HTML (with some additions that we’ll discuss shortly) which are com-
piled into Java programs—servlets, to be exact—that are then run to produce
the Web page. The conversion happens no later than the first time the Web
server tries to serve up that JSP. If it hasn’t yet been converted, it will convert
it into Java code and start the servlet. Thereafter, other requests to that page go
directly to the servlet. If you modify the JSP file, then the Web server recognizes
that the file has been modified and reconverts it.

But why go to all this trouble? It’s not for the static HTML that we need
JSP, but rather for the dynamic bits. Remember that for loop, above, used to
make the HTML table of subaccounts? Let’s look at part of a JSP that does the
same thing:

42519.2 Servlets Turned Inside Out: JSP

<table border=1 width=50%>
<tr>
<th>Account</th>
<th>Owner</th>
<th>Value</th>
</tr>
<% // for each subaccount:
 for (Iterator actit = acct.getAllSubs(); actit.hasNext();) {
 Account suba = (Account) actit.next();
%>
 <tr>
 <td><a href="BPControl?name=<%= suba.getName() %>&func=cd">
 <%= suba.getName() %>
 </td>
 <td>albing</td>
 <td>
 <%= suba.getTotal().toString() %>
 </td>
 </tr>
<%
 } // next acct
%>
</table>

Notice how it starts off as simply the HTML building the table
opening. Then we encounter some Java source code, enclosed in delimiters
(<% ... %>), then back to plain HTML. There’s even a line which intermixes
HTML and Java:

<td><a href="BPControl?name=<%= suba.getName() %>&func=cd">

To understand what’s going on here, let’s take a look at four pieces of
syntax that are the keys to JSP.

HOW TO WRITE A JSP APPLICATION19.3

Writing a JSP application consists, syntax-wise, of writing your desired output
page in HTML and, where you need the dynamic bits, putting Java code and/or
other special syntax inside special delimiters that begin with <%.

There are four special delimiters that we should describe if you’re going
to work with JSP. The bulk of your JSP will likely be HTML. But interspersed
among the HTML will be Java source or JSP directives, inside of these four
kinds of delimiters:

Chapter 19 JSP: Servlets Turned Inside Out426

• <% code %>

• <%= expression %>

• <%! code %>

• <%@ directive %>

Let’s look at them one at a time.

Scriptlet19.3.1

The code that appears between the <% and %> delimiters is called a scriptlet. By
the way, we really hate the term “scriptlet.” It seems to imply (falsely) a com-
pleteness that isn’t there. It is too parallel to the term “applet,” which is a
complete Java program that runs inside a browser. A scriptlet isn’t necessarily
a complete anything. It’s a snippet of code that gets dropped inside the code
of the servlet generated from the JSP source.

Recall that servlets may have a doPost() and a doGet() methods, which
we collapsed in our example by having them both call the doBoth() method.
Same sort of thing is happening here with the JSP, and the doBoth() ends up
doing all the output of the HTML. Any snippets of Java code from within the
<% and %> delimiters get dropped right in place between those output calls,
becoming just a part of a method.

It can be useful to keep this in mind when writing JSP. It helps you answer
the questions of scope—who has access to what, where are variables getting
declared and how long will they be around? (Can you answer that last question?
Since any variable declared inside the <% and %> will be in the JSP equivalent
of our doBoth() method, then that variable will only be around for the dura-
tion of that one call to the doBoth(), which is the result of one GET (or POST)
from the browser.)

The source code snippets can be just pieces of Java, so long as it makes a
complete construct when all is converted. For example, we can write:

<% if (acct != null) { // acct.getParent() %>

<% } else { %>

<% } %>

42719.3 How to Write a JSP Application

Notice how the if-else construct is broken up into three separate
scriptlets—that is, snippets of code. Between them, in the body of the if and
the else, is plain HTML. Here is what that will get translated into after the
JSP conversion:

if (acct != null) { // acct.getParent()
 out.println("");
 out.println("");
 out.println("");
} else {
 out.println("");
}

Do you also see why we describe it as being “turned inside out”? What
was delimited becomes undelimited; what was straight HTML becomes
delimited strings in output statements.

As long as we’re on the topic of conversion, let’s consider comments.
There are two ways to write comments in JSP, either in HTML or in Java. In
HTML we would write:

<!-- HTML comment format -->

but since we can put Java inside of delimiters, we can use Java comments, too:

<% // Java comment format %>

or even:

<% /*
 * Larger comments, too.
 */
%>

If you’ve been following what we’ve been saying about translation of JSP
into Java code, you may have figured out the difference. The Java comments,
when compiled, will be removed, as all comments are, from the final executable.

The HTML-based comments, however, will be part of the final HTML
output. This means that you’ll see the HTML comments in the HTML that
reaches the browser. (Use the View Source command in your browser to see
them. As HTML comments, they aren’t displayed on the page, but they are
sent to the browser.) This is especially something to be aware of when writing
a loop. Remember our loop for generating the table?

Chapter 19 JSP: Servlets Turned Inside Out428

<% // for each subaccount:
 for (Iterator actit = acct.getAllSubs(); actit.hasNext();) {
 Account suba = (Account) actit.next();
 %>
 <!-- Next Row -->
 <tr>
 <td><a href="BPControl?name=<%= suba.getName() %>&func=cd">
...
<% } // next acct %>

We’ve put a comment just prior to the <tr> tag. What will happen is that
the comment will be part of the generated HTML, and since this is a loop, the
comment, just like the <tr> and other tags, will be repeated for each iteration
of the loop. Now we’re not saying this is undesirable—in fact it makes the re-
sultant HTML more readable. But be aware that these comments will be visible
to the end user. Be careful in what you say in them. The additional transmission
time required for these few extra bytes is probably imperceptible, unless your
comments are large and repeated many times.

Declaration19.3.2

The other place that code can be placed is outside the doGet() and doPost().
It is still inside the class definition for the servlet class that gets generated from
the JSP, but it is not inside any method. Such code is delimited like this:

<%! code %>

The exclamation mark makes all the difference. Since it’s outside any
method, such code typically includes things like variable declarations and
complete method declarations. For example:

<%! public static MyType varbl;

public long
countEm()
{
 long retval = 0L;
 retval *= varbl.toLong();
 return retval;
}
%>

42919.3 How to Write a JSP Application

If you tried to do something like this inside of a scriptlet, you would get
errors when the server tries to compile your JSP. Such syntax belongs at the
outer lexical level. The use of the <%! ... %> syntax puts it there.

Expression19.3.3

This delimiter is a shorthand for getting output from a very small bit of Java
into the output stream. It’s not a complete Java statement, only an expression
that evaluates into a String. Here’s an example:

<h4>As of <%= new java.util.Date() %></h4>

which will create a Java Date object (initialized, by default, with the current
date/time) and then call the toString() method on that object. This yields a
date/time stamp as part of an <h4> heading.

Any methods and variables defined inside the previously described
delimiters are OK to use with this expression shorthand.

There are also a few predefined servlet variables.
We’ve described how the JSP is converted into a servlet—the HTML

statements become println() calls. This all happens inside of an
HttpServlet-like class, just like our BudgetProServlet extends
HttpServlet in the previous chapter. In such a class, the method called when
a request arrives from a browser looks very much like our doBoth() method:

doBoth(HttpServletRequest request, HttpServletResponse response)

TIP

If you want to see the source for the servlet that gets generated when a JSP is
converted, and if you’re using NetBeans, right-click on the filename (in the
Explorer view) and, from this menu, choose Compile. Then do it again and
you’ll notice that the second choice on the menu is View Servlet (Figure 19.1).

If you are using Apache Tomcat as your Web server, just look in the work
subdirectory in the directory where Tomcat is installed. In the appropriate subdi-
rectory you will find both the .java and .class files for your converted JSP
with the .jsp suffix converted to $jsp.java and $jsp.class respectively.
For example, BPAcct.jsp becomes BPAcct$jsp.java and is compiled
into BPAcct$jsp.class.

Chapter 19 JSP: Servlets Turned Inside Out430

Figure 19.1 Viewing the converted JSP in NetBeans

The point here is that a request object and a response object are defined
by the way the servlet is generated. They are called, oddly enough, request
and response. In addition to these, a session is defined and initialized, just
like we did in our servlet example. (What were we thinking?)

There are a few other variables that the converted servlet has created that
we can use. We’ll summarize them in Table 19.1. To read more about how to
use them, look up the Javadoc page for their class definition.

Remember that these can be used not only by the <%= %> expressions, but
also by the <% %> snippets of code.

Directive19.3.4

The last of the special delimiters that we will discuss is the one that doesn’t di-
rectly involve Java code. The <%@ ... %> delimiter encompasses a wide variety
of directives to the JSP converter. We don’t have the space or the patience to
cover them all, so we’ll cover the few that you are most likely to need early on

43119.3 How to Write a JSP Application

Table 19.1 JSP predefined variables

Variable nameType

pageContextPageContext

sessionHttpSession

applicationServletContext

configServletConfig

outJspWriter

in your use of JSP. We have some good JSP references at the end of this chapter
for those who want all the gory details of this feature.

<%@page import="package.name.*" %>

is the way to provide Java import statements for your JSP. We bet you can
guess what that happens in the generated servlet.

Here’s another useful page directive:

<%@page contentType="text/html" %>

You’ll see this as the opening line of our JSP, to identify the output MIME
type for our servlet.

JSP also has an include directive:

<%@include file="relative path" %>

This directive is, for some applications, worth the price of admission alone.
That is, it is such a useful feature that even if they use nothing else, they could
use JSP just for this feature. It will include the named file when converting the
JSP—that is, at compile time.

It can be used for common header and footer files for a family of Web
pages. (If you’re a C programmer, think #include.) By defining one header
file and then using this directive in each JSP, you could give all your JSP the
same look—say, a corporate logo and title at the top of page and a standard
copyright statement and hyperlink to your webmaster’s e-mail address at
the bottom.

Be aware that this inclusion happens at compile time and is a source-level
inclusion. That is, you are inserting additional source into the JSP, so if your

Chapter 19 JSP: Servlets Turned Inside Out432

included file contains snippets of Java code, they will be part of the resulting
program. For example, you could define a variable in the included file and
reference in the including file.

Also, since this inclusion happens at compile time, if you later change the
included file, the change will not become visible until the JSP files that do the
including are recompiled. (On Linux, this is simply a matter of touching all
the JSP, as in:

$ touch *.jsp

assuming all your JSP files are in that directory. Touching them updates their
time of last modification, so the Web server thinks they’ve been modified so
the next access will cause them to be reconverted and their generated servlets
reloaded. You get the idea.

There is another way to do an include in JSP—one that happens not at
compile time, but at runtime. The syntax is different than the directives we’ve
seen so far, but more on that in minute. First, an example of this kind
of include:

<jsp:include page="URL" flush="true" />

In this format, the page specified by the URL (relative to this Web appli-
cation’s root) is visited and its output is included in place amongst the output
of this JSP, the one doing the include.

A few quick notes:

• Be sure to include the ending “/” in the directive; it’s part of the XML
syntax which is a shorthand for ending the element in the same tag as you
begin—that is, <p /> instead of <p> </p>.

• When all is working, flush being true or false doesn’t matter; when
the included page has an error, then flush="true" causes the output to
the browser to end at the point of the include; with flush="false", the
rest of the page will come out despite the error in the include.

• The page that is being included is turned into its own servlet. That is, it
is its own JSP. You don’t have to just include static HTML, you can
include a JSP.

• Since this is a runtime include, all you are including is the output of that
other page. You can’t, with this mechanism, include Java snippets or
declarations, but only HTML output.

43319.3 How to Write a JSP Application

Table 19.2 New XML syntax for JSP constructs

New HTML formatStandard format

<jsp:scriptlet> code </jsp:scriptlet><% code %>

<jsp:declaration> code </jsp:declaration><%! code %>

<jsp:expression> expr </jsp:expression><%= expr %>

New Syntax19.3.5

But what about that new syntax? It’s an XML-conformant syntax, and it’s the
syntax for all the newer features added to JSP. In fact, even the old JSP
syntax, the statements that we’ve discussed, have an alternative new syntax
(Table 19.2). Prior to JSP 2.0, that syntax was reserved for JSP that produce
XML rather than HTML. (That’s a whole other can of worms that we won’t
open now.) Now, as of JSP 2.0, both forms can be used, if your Web server is
JSP 2.0 compliant.

You can see that the old syntax is more compact and less distracting than
the large tags. We suspect that means the old syntax is likely to continue to be
used for a long time yet.1

This new syntax is also used for the last two parts of JSP that we will cover,
useBean and tag libraries.

JavaBeans in JSP19.3.6

For those who really want to avoid doing any Java coding inside of a JSP, there
is additional syntax that will provide for a lot of capability but without having
to explicitly write any Java statements. Instead, you write a lot of arcane JSP
directives, as we’ll show you in just a bit. Is this any better? In some ways yes,
but in other ways, no, it’s just different syntax.

What we’ll be able to do with this additional syntax is:

1. Instantiate a Java class and specify how long it should be kept around

2. Get values from this class

3. Set values in this class

1. The newer XML-style syntax would be useful if your JSP are generated by an XSLT
stylesheet or are validated against a DTD, both topics being beyond the scope of our discussion.

Chapter 19 JSP: Servlets Turned Inside Out434

The syntax looks like this:

<jsp:useBean id="myvar" class="net.multitool.servlet.AccountBean" />

which will create a variable called myvar as an instance of the AccountBean
class found in the net.multitool.servlet package. Think of this as:

<%! import net.multitool.servlet.AccountBean; %>

<% AccountBean myval = new AccountBean(); %>

So can AccountBean be any class? Well, sort of. It can be any class that
you want, as long as it is a bean. It doesn’t have to end in “Bean”, but it does
have to be a class which has:

• A null constructor (you may have noticed there is no syntax to support
arguments to the constructor on the useBean statement).

• No public instance variables.

• Getters and setters for instance variables.

• Getters and setters named according to a standard: getTotal() or
isTotal() and setTotal() for a variable called total (isTotal()
would be used if we had a boolean getter, that is, if the getter returned a
boolean; otherwise it would expect getTotal() as the getter’s name).

Otherwise, its a normal class. These restrictions mean that you can call the
class a “JavaBean” or just “bean,” and there is additional JSP syntax to manipu-
late the class. Specifically:

<jsp:getProperty name="myvar" property="total" />

will do, in effect, the following:

<%= myvar.getTotal() %>

or

<% out.print(myvar.getTotal()); %>

Similarly, we can set a value in the JSP with this syntax:

<jsp:setProperty name="myvar" property="total" value="1234" />

43519.3 How to Write a JSP Application

which will do, in effect, the following:

<% myvar.setTotal("1234"); %>

So this would hardly seem worth it, but there are other syntax constructs
that make this much more powerful. Remember that we’re working with Web-
based stuff, with a JSP that will be invoked via a URL. That URL may have
parameters on it, and we can map those parameters onto a bean’s proper-
ties—that is, connect the parameters to setters for a given bean. We replace the
value attribute with a parameter attribute, for example:

<jsp:setProperty name="myvar" property="total" parameter="newtot" />

which works the same as:

<% myvar.setTotal (request.getParameter("newtot")); %>

We can take that one step further and map all the parameters that arrive
in the URL to setters in one step:

<jsp:setProperty name="myvar" parameter="*" />

So if you design your JSP and your HTML well, you can get a lot done
automatically for you. One other thing going on behind the scenes that we’ve
glossed over is the type of the argument to the setter. The parameters all
come in as Strings. However, if your setter’s type is a Java primitive, it will
automatically convert to that type for you, instead of just passing you Strings.

One final twist on using beans is the duration of the bean and its values.
If you don’t specify otherwise (and we have yet to show you syntax to do other-
wise) your bean will be around for the duration of the request, at which time
it will be available to be garbage-collected. Any values in the bean will not be
there on the next visit to that URL (i.e., the next call to that servlet).

Here is the syntax to make that bean last longer:

<jsp:useBean id="myvar" class="net.multitool.servlet.AccountBean"
 scope="session" />

which will make it stay for the duration of the session. You may remember (or
you can flip back and look up) how we created and used session variables in
the servlet. The same mechanism is at work here, but behind the scenes. You

Chapter 19 JSP: Servlets Turned Inside Out436

only use the specific syntax in the useBean tag, and it does the rest (getting
and storing) for you.

Tag Libraries19.3.7

Well, we’re almost done with JSP, but the one topic that we have yet to cover
is huge. It’s the trap door, or the way back out, through which JSP can get to
lots of other code without the JSP author having to write it. Tag libraries are
specially packaged libraries of Java code that can be invoked from within the
JSP. Just like the useBean, they can do a lot of work behind the scenes and
just return the results.

There are lots of available libraries, which is one reason for this topic to
be so huge. We could spend chapters just describing all the various database
access routines, HTML generating routines, and so on available to you. Perhaps
the leading tag library is the JSP Standard Tag Library (JSTL).

Here are two of the most common directives used with tag libraries. First
is the directive that declares a library to be used:

<%@ taglib prefix="my" uri="http://java.sun.com/jstl/core" %>

You then use the prefix as part of the tag name on subsequent tags that
refer to this library. For example, if we had an out directive in our library, we
could use my as the prefix, separated by a colon: <my:out ...>.

The second directive we will show is a for loop. The for loop mechanism
provided by this library is in some ways simpler than using Java scriptlets. It
comes in many forms, including one for explicit numeric values:

<my:forEach var="i" begin="0" end="10" step="2">

This example will loop six times with i taking on the values 0, then 2,
then 4, and so on. Another variation of the forEach loop can also make it easy
to set up the looping values:

<my:forEach var="stripe" items="red,white,blue">

In this example it will parse the items string into three values: red,
white, and blue, assigning each, in turn, to the variable stripe. In fact the
items attribute can also store an array, or collection, or iterator from the Java
code that you may have declared (or that is implicit from the underlying

43719.3 How to Write a JSP Application

servlet). The forEach will iterate over those values without you having to code
the explicit next() calls or index your way through an array.

The bottom of the loop is delimited by the closing tag:

</my:forEach>

For more information on these and other tags, check out

• http://java.sun.com/products/jsp/jstl

• http://jakarta.apache.org/products/jsp/jstl

• The references at the end of this chapter

Beyond the standard library of tags, there are other third-party collections
of tags; you can also create your own libraries, called custom tag libraries. While
a useful and powerful thing to do if you have a large JSP-based application,
such details would expand this book well beyond its scope. If you’re interested
in this topic, please follow up with some of the excellent references at the end
of this chapter.

USING JSP WITH BUDGETPRO19.4

We could have taken the BudgetPro example from the previous chapter and
simply translated it all into JSP files. The reason we didn’t is that it’s not how
you are likely to find JSP used “in the wild.” Since JSP files become servlets, it
is not uncommon to find JSP and servlets mixed together—not arbitrarily, but
in a sensible way. Remember the Model/View/Controller (MVC) pattern from
your readings on object-oriented programming and design patterns?2 Well, JSP
makes for a reasonable View, and a plain servlet can act as the Controller. The
Model is typically the database behind all this. That’s what we’ve done with
the BudgetPro example.

We’ve taken the two main chunks of output code—that for the main ac-
count display and the form used for creating subaccounts—and turned those

2. If not, then a) you should do some more reading, and b) the MVC pattern is a “classic” way
to divide the work of a GUI into three distinct parts: Model—the data behind what you are
doing or displaying; View—a particular way to display that data; and Controller—an object
that acts as the “traffic cop” to various inputs and events, sending messages to either the View,
or Model, or both.

Chapter 19 JSP: Servlets Turned Inside Out438

into JSP files. The main servlet class (BudgetProServlet.java) is thus “gut-
ted” of its output, and the new version (BudgetProController.java) acts
as the controller. Requests come to it via HTTP requests, but for output, it
redirects the browser making that request over to the appropriate JSP.

This introduces a new bit of servlet syntax—redirecting a request to
another URL. The action is taken by means of a method call on the HTTP
response object:

response.sendRedirect("BPAcct");

Whereas in the previous, servlet version of BudgetPro, we would create an
object that was the next page of output:

nextPage = new AccountView(current);

In this version, we instead redirect the response to a JSP that produces the
output for that page.

So how does the JSP know for which account it should display informa-
tion? That is shared between the JSP and the controller servlet via the session
information. As with the previous, servlet-base BudgetPro, the session is used
to store the current account. It can be retrieved from the session information,
as seen in line 11 of BPAcct.jsp:

11: <% Account acct = (Account) session.getAttribute("current");

That variable (acct) is then used throughout the JSP to get the appropri-
ate data for display, as in:

21: Account: <%= acct.getName() %>

We could also have used a session JavaBean. Such a mechanism requires
more setup on both sides, the controller and the JSP, but has the advantage of
removing more literal Java code from the JSP. (“We leave this as an exercise for
the reader!”)

REVIEW19.5

We’ve looked at server-side Java processing with JavaServer Pages which can
be thought of as servlets turned inside out. From that simple concept we looked

43919.5 Review

at our servlet example and converted it to use JSP. We also looked briefly at
the syntax for JSP tags and the JSTL, but encouraged you to do more reading
on this topic.

WHAT YOU STILL DON’T KNOW19.6

We didn’t yet discuss the spelling of JavaServer Pages. If you’ve read through
this chapter, you may have noticed that there is no space between Java and
Server but there is a space between Server and Pages. If you’ve read this chapter,
you may also have some idea of why it’s spelled this way: It’s the JavaServer
that’s doing the work—serving up the Pages. OK, it’s not a huge deal, but it is
worth knowing how to spell something kerectly, rite?

There are volumes that we could have written about tag libraries. Large
scale projects, and any project with a database connection behind it, will find
tag libraries invaluable at providing standard mechanisms for database access.
Check out the resources, below, for more information on tag libraries.

RESOURCES19.7

Some of the best material on JavaServer Pages comes from two of the books we
mentioned in the previous chapter. You now understand how interrelated the
two topics of servlets and JSP are, and these two books cover both topics
very well:

• Core Servlets and JavaServer Pages by Marty Hall and Larry Brown, ISBN
0-13-009229-0, a Prentice Hall PTR book.

• Its sequel, More Servlets and JavaServer Pages by Marty Hall, ISBN
0-13-067614-1, also by Prentice Hall PTR.

As we said, the topic of tag libraries is huge, and just writing about JSTL
could fill it’s own volume. It has. We recommend:

• Core JSTL: Mastering the JSP Standard Tag Library by David Geary, ISBN
0-13-100153-1, Sun Microsystems Press.

Chapter 19 JSP: Servlets Turned Inside Out440

To get it straight from the horse’s mouth, there is the official Sun
specifications for JSP, available at

• http://java.sun.com/products/jsp/ download.html#specs

EXERCISES19.8

1. Convert the controller and the JSP to share their data via JavaBeans.

2. Add a control button to each page (BPAcct.jsp) to return not just one
level upwards, but back to the top level account. (Hint: The controller can
store a reference to the top level account in a session variable named top.)

44119.8 Exercises

Servlets and JSP need to be served up by something; that something is a Web
application server. What started as simple Web servers serving up little more
than HTML pages developed into Java application servers—the backbone of
the enterprise IT environment.

WHAT YOU WILL LEARN20.1

In this chapter, we will describe the installation of both the JBoss and Geroni-
mo Java application servers on a Linux platform. These servers not only run
servlets and JSP, but they are also, as we shall see in later chapters, J2EE EJB
containers, so the installation part of this chapter is important for using the
technologies and examples covered in the remaining chapters. We will review
the System V init system and explain how to add JBoss to the regular system
of services on your Linux box. We will show you how to use groups and permis-
sions to enable a number of nonroot users to do the basic application server
administration.

443

Chapter 20

Open Source
Web Application Servers

DOWNLOADING JBOSS20.2

JBoss1 is a complete application server. It provides a full, production-ready, J2EE
environment. Be aware that as of this writing JBoss 4.0 has just passed the Sun
J2EE certification tests, but even prior to the certification JBoss has been one
of the most widely used J2EE application servers.

A great deal of JBoss information can be found on the JBoss Web site.2

Visit the site’s download page3 to download the product.

NOTE

Version 4.0 of JBoss has only just become available, so you will see us using
the prior production stable version, 3.2.3. By the time you read this, however,
version 4.0 will be the better choice. What we describe should apply equally
well to both.

First off, you must choose what form of the product to download. The
choice is really between a binary and source distribution. Within that choice,
you can choose between a number of compression methods. We will download
and install a binary. Just click on jboss-3.2.3.tgz and save the file. Before
we install, we need to consider some issues of management.

BE AN ENABLER, OR “LET’S BE CODEPENDENT!”20.3

People often give inadequate consideration to the issues of management of
software systems. This is especially true of Java systems, which are, by their na-
ture, cross-platform. We have the luxury of dealing only with Linux systems
here, so we can make some practical suggestions most books ignore.

1. JBoss is actually a combination of two distinct projects: JBoss, the EJB container and JMS
server, and Tomcat, the servlet and JSP server. You can install and use Tomcat alone. We won’t
bother to do that in this book. We’ll install JBoss and use JBoss for everything. We are also
lazy typists who do not like to keep typing JBoss/Tomcat, so we’ll refer to it merely as JBoss
from now on. If you are deploying only servlets and JSP, then, by all means, download and
install Tomcat only. It is part of the Apache Jakarta project.

2. http://www.jboss.org/index.html

3. http://www.jboss.org/downloads/

Chapter 20 Open Source Web Application Servers444

Up to this point, we have largely been considering a situation where the
Java developer is working on an individual workstation where he or she has
root access. Now that we are talking about application servers, we are dealing
with systems where, as the software progresses from development through
rounds of testing to production, we will want to limit the people who are able
to change certain elements of the system. Often, the “quick and dirty” strategy
is to share out the root password to a number of users. This is a serious security
risk, even when all parties are trusted. Why? Because root isn’t a person. When
someone logs in as root, we do not know who that person is. We only know
that it is someone who knows the root password. In some businesses, this is
an unacceptable ambiguity in audit.

A common alternative is to restrict root login to the console only, and to
require the use of the su (“set user”) command to promote an already logged-
in user to root status. This provides a link back to the individual, so actions
can be traced to single person. That improves auditability.

This strategy is better, but since root is an all-or-nothing proposition, it
is a fairly blunt instrument. Once someone can su to root, that someone can
do anything. That’s a lot of power to give to someone who just needs to be able
to install WAR files.

Yet another strategy is to set up the sudo system.4 Using sudo, you can
specify what people can execute which commands as root, and where they may
do it from. In other words, you might let user alice start and stop the Web
server and mount and unmount filesystems when she is logged in to a local
machine, but only to start the Web server when she is logged in on a machine
outside your network. Check out the manpage for sudo to learn more. Even
this isn’t the best solution for the present issue.

The best solution is not to require root power at all if you can avoid it.
Remember that permissions on files in Linux are assigned to users, groups, and
others. Most people do not think about the middle tier, groups. But groups are
the best way to give control over parts of the filesystem to a collection of users
without requiring them to share an account and password.

Nonroot-Installed Software20.3.1

The problem with all of the power-sharing strategies we outlined earlier is that
once the user escalates to root, there is no way to limit what he or she can do

4. Some folks pronounce this “ess-you doo,” and some “pseudo.” Whatever floats your boat.

44520.3 Be an Enabler, or “Let’s Be Codependent!”

(well, sudo lets you limit it, but a mistake can be fatal—consider what happens
if you let them run a program that lets them escape to a shell). So, for example,
if you want to let the Web services group install and maintain JBoss, but you
don’t want them to mess with any standard software on the system, then create
a separate place for nonsystem software.

Two common places for such software on Linux systems are /opt and
/usr/local. We tend to use /usr/local mainly because this is the default
path on an awful lot of software that uses autoconf to handle cross-platform
compilation (it is used by the majority of Free Software programs, but excep-
tions include what are arguably the four most widely used Free Software pack-
ages: the Linux kernel, the Apache Web server, the Perl language, and
XFree86). So we are going to install JBoss under /usr/local and we are going
to give a number of users the power to install and manage software in
/usr/local.

You will need to be root to carry out this procedure. Here are the
steps—but don’t worry, we’ll pad them out with a lot of ponderous
explanation:

1. Create the group.
Groups are defined in the file /etc/group. Each line in that file

defines a group. Each line is of the form:

GroupName:x:GroupID:GroupMembers

GroupName is the name of the group. It is the group name that shows
up in long form ls output. The second field is for the group’s password.
If we may confess, we don’t know if this feature works anymore. You used
to be able to specify a group password, but this defeats the whole purpose
of not sharing passwords. Sharing passwords is a security risk. Don’t do
it. The third field is the group ID number. Remember that files have
owning users and owning groups. These are both stored as numbers. User
numbers are known as uids and group numbers as gids. These numbers
should be unique. If you reuse a number for more than one group, the
effect could be indeterminate, since it would depend on how a given pro-
gram was written. Don’t reuse numbers. The final column is a comma-
delimited list of user names. Those named users are said to belong to the
group. We’ll talk some more about what that means as we go on.

Chapter 20 Open Source Web Application Servers446

Imagine that user names bob, ted, carol, and alice are part of
carl and michael’s Web development team and each has an account on
the box on which we intend to install JBoss.

So, we create a group entry in the /etc/group file:

local:x:100:carl,michael,bob,carol,ted,alice

If Bob later leaves to join the custodial staff, simply remove his name
from the group and he loses his access.

TIP

The user’s default group is specified in the /etc/passwd file. Here’s a sample:

mschwarz:x:500:500:Michael Schwarz:/home/mschwarz:/bin/bash

The fields of this are:

username:passwd:uid:gid:userinfo:homedir:loginprog

where:

• username is the login name of the user.

• passwd is the user’s encrypted password. Or rather it used to be. Now,
this is usually x and the encrypted password is stored in the
/etc/shadow file. This is because /etc/passwd must be world-
readable. The shadow file is not. This prevents someone reading the
encrypted passwords to do an offline dictionary attack.

• uid is the numeric user ID associated with this username.

• gid is the numeric group ID of this user’s default group. Look for this
number in /etc/group to find the name of the default group.

• userinfo is additional information about this user. Sometimes called the
gecos field for obscure historical reasons,5 this field usually stores the
user’s real name and possibly other information like office location and
phone number.

• homedir is the user’s home directory.

• loginprog is the name of the program that will be executed when the
user logs in. This is usually a shell, but it may be any program.

5. See http://www.hyperdictionary.com/dictionary/GCOS if you are dying to
know why.

44720.3 Be an Enabler, or “Let’s Be Codependent!”

NOTE

There are two strategies that Linux distributions follow for assigning a default
group to a new user. One is to put all users into a group called staff or some
such. This is widely considered a security risk since it often leads to making files
accidentally readable or writable by all users on the system. The more common
method is to create a group for each user when the user is created.

TIP

If you get in the habit of creating groups, you might want to assign the numbers
systematically: 500–599 groups for programs, 600–699 groups for program in-
stallation, 700–799 groups for company departments to allow them to control
their own Web content, and so on.

2. Change group ownership of /usr/local.
Odds are, /usr/local already exists on your system. It may even

have several programs installed in it. You must give the group ownership
over everything in /usr/local and below. The chgrp command changes
the group owner of files, and the -R argument says to do so recursively:

cd /usr/local
chgrp -R local .

At this point, everything in /usr/local and below is group-owned
by the local group.

3. Set group permissions on /usr/local.
Basically, you want the group to be able to read and write everything

in /usr/local. To do this, you need to change the permissions on all the
files with the chmod. As with chgrp, this command takes a -R argument
that recursively walks the directory tree. We need to give everyone in the
group read and write permission on all the files:

chmod -R g+rw .

Chapter 20 Open Source Web Application Servers448

NOTE

We are assuming you are carrying out these steps in sequence and thus your
current working directory is still /usr/local.

4. Set directory permissions on /usr/local.
You want slightly different permissions on directories. First, you want

the group to have execute permission on directories. This allows each
member of the group to make each directory his or her current working
directory. See Eric Raymond’s Unix and Internet Fundamentals6 for a good
basic introduction to file permissions on UNIX.

Also, on Linux systems, when a user creates a file, that file is, by de-
fault, group-owned by the user’s primary group,7 which is not what we
want here. We want files created by a user in this directory to be group-
owned by the local group. To do this, we have to set the setgid bit on all
the directories in /usr/local and below. When a user creates a file in a
directory that has the setgid bit set, that file will be group-owned by the
group-owner of the directory if the user is a member of that group. If the
user is not, it will be group-owned by the user’s default group as usual. So
we need to set execute and setgid permissions on all the directories in
/usr/local and below:

find /usr/local -type d -exec chmod g+xs {} \; -print
/usr/local
/usr/local/share
/usr/local/share/bochs
/usr/local/share/bochs/keymaps
/usr/local/share/bochs/keymaps/CVS
/usr/local/share/doc
...
...
etc.

6. http://en.tldp.org/HOWTO/Unix-and-Internet-Fundamentals-HOWTO/
disk-layout.html#permissions

7. Which is the group ID specified for the user in the /etc/passwd file.

44920.3 Be an Enabler, or “Let’s Be Codependent!”

With this setup, members of the local group can manage files and pro-
grams in /usr/local and below as they wish. They have full power over the
files and they need nothing but their own login credentials to do it. The root
password can remain private.

Finer Grained Control20.3.2

This pattern can be repeated. We can give ownership of different branches un-
der /usr/local to other groups to allow control to be doled out in small sets.

INSTALLING JBOSS20.4

Using a platform-neutral system like Java has both advantages and disadvan-
tages. A disadvantage is that, generally, Java products don’t use the traditional
installation mechanisms of your native platform. You don’t install an RPM or
a DEB. But this is somewhat offset by the fact that all a Java application needs
is for its classes to be arranged in a particular pattern on the filesystem. In other
words, all you need to do to install JBoss is to unpack the tarball.

You did the hard part already. Since you have created the group and made
yourself a member of that group,8 any member of the group can install the
product:

$ cd /usr/local
$ tar xzvf jboss-3.2.3.tgz
jboss-3.2.3/lib/
jboss-3.2.3/client/
jboss-3.2.3/docs/
jboss-3.2.3/docs/dtd/
jboss-3.2.3/docs/dtd/html-svg/
...
...
etc.

8. Group membership is established at login. It may be necessary to log out and log back in to
take advantage of a newly created group. There are other obscure ways, such as running a sub-
shell with the login argument or running su -, but the simplest is to log out and log back in.

Chapter 20 Open Source Web Application Servers450

TIP

At this point we suggest using one more Linux filesystem trick. The tarball un-
packs into a directory whose name includes the product version—in this case,
jboss-3.2.3. In many cases, you will want to be able to have more than one
version of JBoss installed on a box simultaneously, either because you need to
port projects from one version to another, or perhaps because you need to de-
velop applications that will run on different versions on different target servers.
To make your life easier, create a symbolic link to a generically named directory,
such as jboss, and have that symlink point to jboss-3.2.3. Then you can
write your startup and shutdown scripts to use the jboss pathname. You can
then switch to another version by changing where the symlink points:

$ cd /usr/local
$ ln -s jboss-3.2.3 jboss

This process is discussed in detail in Section 6.2 in the context of switching
between Java SDK versions.

THINGS THAT MAKE IT GO20.5

In order to explain how to integrate an Open Source application server into
your system, we have to do a little Linux Sysadmin training. We need to show
you how server processes are generally managed on Linux systems.

System V Init System20.5.1

Virtually all Linux distributions use some variant of the System V init system
to create and customize programs and services that run at the startup of the
box. Now, we don’t want to write a Linux system administration manual, but
we do need to tell you enough to decide how to make JBoss available when
needed on your server.

The core of the System V init system is the /etc/inittab file. Everything
else devolves from this configuration file. In the days before network services,
the primary startup tasks were to get getty programs running and then run a
single startup shell script. The /etc/inittab file handles these tasks beautiful-
ly. Since then, the world of UNIX and Linux has become a complex mixture
of client-server programs and protocols, so a complex set of conventions has
been developed to turn the primitive /etc/inittab into a much richer set of

45120.5 Things That Make It Go

controls. Let’s take a very brief look at /etc/inittab and how it works; then
we’ll move on to the extended scripts that manage server processes. That is
where we will integrate JBoss.

A key concept in the System V init system is the runlevel. The idea is that
a system can have a number of “standard” configurations, numbered from 0 to
6, where 0 is shutdown, 1 is single-user, 2 to 5 are up to the system administra-
tor, and 6 is reboot. The init9 command can be used (by the root user) to
change the system from its current runlevel to another:

init 1

What happens when you issue such a command is determined by the
/etc/inittab file. Let’s take a look at the out-of-the-box /etc/inittab file
from a Fedora Core 110 system (Example 20.1).

This is a pretty complex file, and we don’t want to bog down in it too
much, since most of what interests us occurs outside this file.

The basic format of a line in /etc/inittab is:

id:runlevels:action:process

The id is a unique 1–4 character identifier. The runlevels is a list of the
runlevel numbers to which the record applies. The action specifies what action
is to be taken. The process is the program to run. The respawn action, for
example, tells init that when the process exits, it should be run again. The once
action says it should be run once on transition to the runlevel. We won’t go
into too much more here. See the man inittab page for details.

The part that concerns us are the l0 through l6 entries. Note that these
cause the /etc/rc.d/rc script to be run once, with the runlevel passed as an
argument. This is the key to System V init system.

9. telinit is a common alias from other UNIX implementations. Linux symlinks this to init.

10. During the writing of this book, RedHat decided to put their completely Free Software
OS out to a public-controlled project and to stop calling it “RedHat.” The name RedHat is
reserved for Fedora-based Linux systems that must be purchased with support contracts. It is
still the same system with a different name maintained by basically the same people. The key
difference is that you cannot purchase support for Fedora (at least from RedHat, we expect
some enterprising folks to offer Fedora support for a fee at some point).

Chapter 20 Open Source Web Application Servers452

Example 20.1 Fedora Core 1 default /etc/inittab file

#
inittab This file describes how the INIT process should set up
the system in a certain runlevel.
#
Author: Miquel van Smoorenburg, miquels@drinkel.nl.mugnet.org>
Modified for RHS Linux by Marc Ewing and Donnie Barnes
#

Default runlevel. The runlevels used by RHS are:
0 - halt (Do NOT set initdefault to this)
1 - Single user mode
2 - Multiuser, without NFS
(The same as 3, if you do not have networking)
3 - Full multiuser mode
4 - unused
5 - X11
6 - reboot (Do NOT set initdefault to this)

id:5:initdefault:

System initialization.
si::sysinit:/etc/rc.d/rc.sysinit

l0:0:wait:/etc/rc.d/rc 0
l1:1:wait:/etc/rc.d/rc 1
l2:2:wait:/etc/rc.d/rc 2
l3:3:wait:/etc/rc.d/rc 3
l4:4:wait:/etc/rc.d/rc 4
l5:5:wait:/etc/rc.d/rc 5
l6:6:wait:/etc/rc.d/rc 6

Trap CTRL-ALT-DELETE
ca::ctrlaltdel:/sbin/shutdown -t3 -r now

When our UPS tells us power has failed, assume we have a few minutes
of power left. Schedule a shutdown for 2 minutes from now.
This does, of course, assume you have powered installed and your
UPS connected and working correctly.
pf::powerfail:/sbin/shutdown -f -h +2 "Power Failure; System Shutting Down"

If power was restored before the shutdown kicked in, cancel it.
pr:12345:powerokwait:/sbin/shutdown -c "Power Restored; Shutdown Cancelled"

45320.5 Things That Make It Go

Run gettys in standard runlevels
1:2345:respawn:/sbin/mingetty tty1
2:2345:respawn:/sbin/mingetty tty2
3:2345:respawn:/sbin/mingetty tty3
4:2345:respawn:/sbin/mingetty tty4
5:2345:respawn:/sbin/mingetty tty5
6:2345:respawn:/sbin/mingetty tty6

Run xdm in runlevel 5
x:5:respawn:/etc/X11/prefdm -nodaemon

NOTE

Some Linux distributions run different scripts for each runlevel instead of passing
the runlevel as an argument to a single script. The details are not important.
The net effect is that a script is run for each runlevel.

Sure, you could put the code to run JBoss directly in that script if you
want. But these scripts have been designed to handle arbitrary sets of services
without you having to modify those scripts directly. How? By doing what Linux
(and its UNIX antecedents) does so well: making complex systems out of
simple parts.

Each service you might wish to start and stop gets a shell script that con-
trols it. This shell script must take a command argument. The minimum set
of commands that must be supported are start and stop. Other options such
as restart and status are often supported, but start and stop are the
important ones.

The script for atd, the one-shot job scheduler, is a fine example. Let’s take
a look at it (Example 20.2).

Example 20.2 The atd init shell script

#!/bin/bash
#
/etc/rc.d/init.d/atd
#
Starts the at daemon
#
chkconfig: 345 95 5

Chapter 20 Open Source Web Application Servers454

description: Runs commands scheduled by the at command at the \
time specified when at was run, and runs batch commands when \
the load average is low enough.
processname: atd

Source function library.
. /etc/init.d/functions

test -x /usr/sbin/atd || exit 0

RETVAL=0

#
See how we were called.
#

prog="atd"

start() {
 # Check if atd is already running
 if [! -f /var/lock/subsys/atd]; then
 echo -n $"Starting $prog: "
 daemon /usr/sbin/atd
 RETVAL=$?
 [$RETVAL -eq 0] touch /var/lock/subsys/atd
 echo
 fi
 return $RETVAL
}

stop() {
 echo -n $"Stopping $prog: "
 killproc /usr/sbin/atd
 RETVAL=$?
 [$RETVAL -eq 0] && rm -f /var/lock/subsys/atd
 echo
 return $RETVAL
}

restart() {
 stop
 start
}

reload() {
 restart
}

45520.5 Things That Make It Go

status_at() {
 status /usr/sbin/atd
}

case "$1" in
start)
 start
 ;;
stop)
 stop
 ;;
reload|restart)
 restart
 ;;
condrestart)
 if [-f /var/lock/subsys/atd]; then
 restart
 fi
 ;;
status)
 status_at
 ;;
*)
 echo $"Usage: $0 {start|stop|restart|condrestart|status}"
 exit 1
esac

exit $?
exit $RETVAL

This script is from a RedHat Linux system. Those comments at the top
are a magic incantation for the chkconfig program that ships with that distri-
bution11 (and with Fedora Core). We’ll talk more about chkconfig in the next
section.

As you can see, the basic premise is that when a daemon is started, the
process ID is saved into a file. If the “stop” option is passed, the PID is looked
up and the process is killed. That’s the basic idea. But wait! There’s more!

Each runlevel has a directory of scripts. Let’s look at the contents of such
a directory (Example 20.3).

11. The RedHat chkconfig program is conceptually similar to the one in the IRIX operating
system.

Chapter 20 Open Source Web Application Servers456

Example 20.3 A directory of scripts

[mschwarz@host238 mschwarz]$ cd /etc/rc5.d
[mschwarz@host238 rc5.d]$ ls
K01yum K73ypbind S18rpcgssd S58ntpd
K05saslauthd K74nscd S19rpcidmapd S80sendmail
K11jboss K89netplugd S19rpcsvcgssd S80spamassassin
K12mysqld S00microcode_ctl S20random S85gpm
K15httpd S04readahead_early S24pcmcia S90crond
K15postgresql S05kudzu S25netfs S90vmware
K20nfs S06cpuspeed S26apmd S90xfs
K24irda S08iptables S28autofs S95anacron
K35smb S09isdn S40smartd S95atd
K35vncserver S10network S44acpid S96readahead
K35winbind S12syslog S55cups S97messagebus
K36lisa S13irqbalance S55sshd S97rhnsd
K50snmpd S13portmap S56rawdevices S99local
K50snmptrapd S14nfslock S56xinetd

Notice the file S95atd? Let’s look at the long form ls output for that file:

[mschwarz@host238 rc5.d]$ ls -la S95atd
lrwxrwxrwx 1 root root 13 Feb 2 02:08 S95atd -> ../init.d/atd

The file is a symbolic link to the file in the init.d directory! If you take
a look at the actual script run by the /etc/inittab file on a runlevel change,
you will notice that what it does is to pick up all the files in the rcX.d directory
(where X is the runlevel being changed to12) that begin with the letter K, run
through them in numerical order, and execute the linked scripts with stop as
the argument. It then picks up all the files that begin with S, runs through them
in numerical order, and executes the linked scripts with start as the argument.

This sounds like a mess, but it is actually a very nice way to automate the
starting and stopping of services by runlevel. Adding or removing a new service
is simply a matter of creating the /etc/init.d script, and then adding the

12. That phrase actually caused my high school grammar teacher to materialize in my office
and scold me. I invite anyone who can come up with an elegant and grammatical way to phrase
that to contact me at mschwarz@multitool.net. I’m perfectly serious.

45720.5 Things That Make It Go

appropriate symlinks to the rcX.d directories.13 So, first we have to take an
init script and modify it to run JBoss.

RedHat/Fedora chkconfig20.5.2

RedHat and its stepchild, Fedora, use a program called chkconfig to automate
the setup and integration of init scripts.

The chkconfig program has four basic functions. Two involve adding and
removing services from management. That’s our main interest here, but we’ll
get to that in a moment. The other two involve querying and setting the run-
levels in which services run. That is the more common use, so we’ll look at
those first.

[root@host238 root]# chkconfig --list ntpd
ntpd 0:off 1:off 2:off 3:on 4:off 5:on 6:off

TIP

chkconfig --list without specifying a service name will list all the services
managed by chkconfig, including those that are provided by xinetd, which we
will not cover here.

As you can see, ntpd runs at runlevels 3 and 5, and does not run at any
others. The --list argument lets you query the runlevels.

[root@host238 root]# chkconfig --levels 2345 ntpd on
[root@host238 root]# chkconfig --list ntpd
ntpd 0:off 1:off 2:on 3:on 4:on 5:on 6:off

The --levels argument lets you specify a list of runlevels that will apply
to the named service. The last argument may be on or off to specify which
setting to apply to those runlevels. The current value (on or off) for a specified

13. Just a quick reminder that not all Linux distributions name their directories or scripts in
precisely the same way, but they all use something similar. By examining the /etc/inittab
file and the contents of the /etc directory, you should be able to figure out the details of any
given distribution. Over time, more and more distributions have come to exactly match the
naming scheme described here. RedHat, Fedora, and Debian, for example, all follow this
naming scheme.

Chapter 20 Open Source Web Application Servers458

runlevel is overwritten by whatever you specify. There is more to this; see the
manpage for chkconfig for details.

Now, before we put JBoss under management, we need to make a script
for it. Or rather, we need to modify the one provided by JBoss. In the bin
subdirectory of JBoss, you will find a script called jboss_init_redhat.sh.
You will notice that it has the “chkconfig mojo” in it—that is, the
“chkconfig:” comment line. We mentioned this in passing when we looked
at the atd init script, but we didn’t tell you what those three numbers after the
colon actually mean. The first is the list of runlevels in which you want the
program to run. The second is the start priority, which is the number that will
follow the S in the rcX.d runlevel symlink directory. The third number is the
stop priority, which is the number that will follow the K in the rcX.d runlevel
symlink directory.

These start and stop priority numbers can be very important indeed. Some
services (like NFS) depend upon others (like portmap). Your JBoss server might
depend on a service like mysqld or postgresql. Don’t toy with these orders
lightly. You can seriously mess up your services if you don’t know what you are
doing. Still, you will probably have to tweak things to get them completely
right. Just be cautious and think about every change.

Example 20.4 is the script as it comes with JBoss 3.2.3.
There are three things we have to change here. The first are the runlevels

in the “chkconfig:” line (we’ll show you the changed lines with a couple of
lines of context):

#
chkconfig: 345 80 20
description: JBoss EJB Container

Next, we may need to change the paths to JBoss and to the Java runtime.
In our case, if you installed into /usr/local and created the symbolic link as
we suggested, you don’t need to change the JBOSS_HOME, but you have to
change the JAVAPTH variable:14

14. We are assuming you have set up your Java SDK as described in Chapter 6. If your java*
commands are located somewhere else, change this path to point at them.

45920.5 Things That Make It Go

Example 20.4 Out-of-the-box JBoss init script for RedHat

#!/bin/sh
#
JBoss Control Script
#
chkconfig: 3 80 20
description: JBoss EJB Container

To use this script,
run it as root - it will switch to the specified user.
It loses all console output - use the log.
#
Here is a little (and extremely primitive)
startup/shutdown script for RedHat systems. It assumes
that JBoss lives in /usr/local/jboss, it's run by user
'jboss' and JDK binaries are in /usr/local/jdk/bin. All
this can be changed in the script itself.
Bojan
#
Either amend this script for your requirements
or just ensure that the following variables are set correctly
before calling the script.

[#420297] JBoss startup/shutdown for RedHat

define where jboss is - this is the directory
containing directories log, bin, conf, etc.
JBOSS_HOME=${JBOSS_HOME:-"/usr/local/jboss"}

make sure Java is on your path
JAVAPTH=${JAVAPTH:-"/usr/local/jdk/bin"}

define the classpath for the shutdown class
JBOSSCP=${JBOSSCP:-"$JBOSS_HOME/bin/shutdown.jar:$JBOSS_HOME/client/jnet.jar"}

define the script to use to start jboss
JBOSSSH=${JBOSSSH:-"$JBOSS_HOME/bin/run.sh -c all"}

if [-n "$JBOSS_CONSOLE" -a ! -d "$JBOSS_CONSOLE"]; then
 # ensure the file exists
 touch $JBOSS_CONSOLE
fi

Chapter 20 Open Source Web Application Servers460

if [-n "$JBOSS_CONSOLE" -a ! -f "$JBOSS_CONSOLE"]; then
 echo "WARNING: location for saving console log invalid: $JBOSS_CONSOLE"
 echo "WARNING: ignoring it and using /dev/null"
 JBOSS_CONSOLE="/dev/null"
fi

define what will be done with the console log
JBOSS_CONSOLE=${JBOSS_CONSOLE:-"/dev/null"}

define the user under which JBoss will run,
or use RUNASIS to run as the current user
JBOSSUS=${JBOSSUS:-"jboss"}

CMD_START="cd $JBOSS_HOME/bin; $JBOSSSH"
CMD_STOP="java -classpath $JBOSSCP org.jboss.Shutdown --shutdown"

if ["$JBOSSUS" = "RUNASIS"]; then
 SUBIT=""
else
 SUBIT="su - $JBOSSUS -c "
fi

if [-z "`echo $PATH | grep $JAVAPTH`"]; then
 export PATH=$PATH:$JAVAPTH
fi

if [! -d "$JBOSS_HOME"]; then
 echo JBOSS_HOME does not exist as a valid directory : $JBOSS_HOME
 exit 1
fi

echo CMD_START = $CMD_START

case "$1" in
start)
 cd $JBOSS_HOME/bin
 if [-z "$SUBIT"]; then
 eval $CMD_START ${JBOSS_CONSOLE} 2>1
 else
 $SUBIT "$CMD_START ${JBOSS_CONSOLE} 2>1 "
 fi
 ;;
stop)
 if [-z "$SUBIT"]; then
 $CMD_STOP
 else
 $SUBIT "$CMD_STOP"
 fi
 ;;

46120.5 Things That Make It Go

restart)
 $0 stop
 $0 start
 ;;
*)
 echo "usage: $0 (start|stop|restart|help)"
esac

define where JBoss is - this is the directory
containing directories log, bin, conf, etc.
JBOSS_HOME=${JBOSS_HOME:-"/usr/local/jboss"}

make sure Java is on your path
JAVAPTH=${JAVAPTH:-"/usr/java/jdk/bin"}

Finally, we don’t need to run the “all” configuration, we only need the
default configuration at the moment, so we change the argument to the run.sh
invocation:

define the script to use to start JBoss
JBOSSSH=${JBOSSSH:-"$JBOSS_HOME/bin/run.sh -c default"}

JBoss Configurations

When you unpacked JBoss, it contained three predefined server configu-
rations located in jboss/server. The three configurations are named
all (which runs every single service JBoss supports, including RMI/IIOP
and clustering features), default (which runs only the set needed to run
servlets, JSP, and EJBs), and minimal (which runs just JNDI, the logger,
and a URL deployment service; no Web container, no JMS, no EJBs).

In effect, the selected configuration is the server. You can, of
course, customize any configuration, and you may create additional
configurations.

Now, this script allows you to run JBoss as any user. It defaults to user
jboss if none is specified. You have to decide what to do here. Without speci-
fying a user, it will run as root. That is a major security risk. On an out-of-the-
box RedHat or Fedora system, there is no user called jboss. We will have to
create one. There are a lot of security concerns to creating a special “nonlogin”
user. The most important involve changing the user entries in /etc/passwd

Chapter 20 Open Source Web Application Servers462

Example 20.5 Using chkconfig to include JBoss start script

[root@cvs root]# cd /usr/local/jboss/bin
[root@cvs bin]# cp jboss_init_redhat.sh /etc/init.d/jboss
[root@cvs bin]# chkconfig --add jboss
[root@cvs bin]# chkconfig --list jboss
jboss 0:off 1:off 2:off 3:on 4:on 5:on 6:off
[root@cvs bin]# /etc/init.d/jboss start
CMD_START = cd /usr/local/jboss/bin; /usr/local/jboss/bin/run.sh -c default

and /etc/shadow after you create the user. Unfortunately, the JBoss program
needs to run a shell script, so you cannot set the shell to /sbin/nologin as is
usual. Set the password for the user in /etc/shadow to x, which is completely
invalid and will forbid login to the account by password.

Finally, you will need to add the user jboss to any groups you created for
JBoss management (such as local in our case). Truth be told, it would be a
good idea to use the jboss user to install JBoss. It will avoid having to deal
with some file ownership and permission issues. If you do not do this, the
simplest way to get this init script working (you will get permission errors) is
to run

chmod -R g+w /usr/local/jboss

That will make the script work with the jboss user, provided jboss be-
longs to the group owner of the JBoss installation.

The final step is to copy your modified script to its final destination and
run chkconfig to install it in all the runlevels (Example 20.5).

You now have JBoss running. You can start and stop it with the script,
and it will come up and shut down automatically depending on the runlevel
you switch to. Beauty, eh?

Other Distributions20.5.3

You don’t need chkconfig to set up equivalent scripts. In fact, the same script
provided by JBoss for RedHat will work with most distributions that use Sys-
tem V init system. You will have to copy the init script and then create the
appropriate symlinks manually, or locate the automated setup tools for your
particular distribution (Debian, for example, has many such tools which you
select with their package management system).

46320.5 Things That Make It Go

IDE Integration20.5.4

Another piece of software you might want to look at is JBoss-IDE,15 an Eclipse
plug-in for JBoss. The software is not downloadable from the footnoted Web
site, it is available only from the Eclipse Install/Update manager, so run your
copy of Eclipse and install it. We will not cover JBoss-IDE here, but if you use
Eclipse as your development platform, JBoss-IDE is very useful for managing
and deploying EJB’s, servlets, and JSP.

DISPOSITION OF FORCES20.6

Not to go all Sun-Tzu on you or anything, but if you want to win the war, you
must control the initiative. In other words, move only when you are ready.
Deploying software into JBoss could not be easier if you get everything ready
before you begin.

You see, the key is to create a correctly configured WAR file, as a
build.xml file from our project does (Example 20.6).

If you look at the deploy task, you will see that it simply copies the WAR
file to a particular directory under the Web server16 and, it turns out, that is all
you need to do to deploy to JBoss. JBoss will notice the new WAR file, stop
any existing version, and start the new one. It all depends on getting the WAR
file right.

APACHE GERONIMO20.7

An up-and-coming alternative to JBoss is Apache Geronimo. Part of the Apache
Software Foundation’s set of projects, Geronimo is an Open Source, Apache-
licensed17 implementation of the J2EE specification. Furthermore, Geronimo
aims to be an Open Source J2EE implementation that is J2EE-certified by

15. http://www.jboss.org/developers/projects/jboss/jbosside

16. Note that that’s normal for development. For integration and production, either someone
authorized will run the same build on the target, or (more likely) the WAR file will be “formal-
ly” built, tagged, and copied to the test or production server. We’ll talk more about that when
we get to application maintenance issues.

17. Most notably, it doesn’t require anyone to open the source of their changes or customiza-
tions if they improve on an Apache software project, unlike the GPL which does.

Chapter 20 Open Source Web Application Servers464

Example 20.6 Ant build.xml for the BudgetPro servlet and JSP examples

<!-- ================ File and Directory Names ================= -->
<!-- ...
 app.name The name of our application, used for file/dir names.
 build.home The name of the directory into which the
 "compile" target will generate its output.
 server.home The name of the directory where the Web server
 is installed.
 deploy.home The name of the directory into which the WAR file
 will be copied.
-->

 <property name="server.home" value="/usr/local/jboss" />
 <property name="deploy.home"
 value="${server.home}/server/default/deploy"/>

<!-- ... -->

<!-- ================ Deploy Target ============================ -->
<!--
 The "deploy" target copies the WAR file into a location required
 (i.e., defined) by the servlet container. For some servlet
 containers, you must restart them before they will recognize our
 new/modified Web application. Others may reload automatically.
-->

 <target name="deploy" depends="compile"
 description="Deploy application to servlet container">

 <!-- Copy the contents of the build directory -->
 <mkdir dir="${deploy.home}"/>
 <copy todir="${deploy.home}" file="${app.name}.war"/>

 </target>

<!-- ... -->

<!-- ================ Product WAR file ========================= -->

 <target name="war" depends="compile"
 description="Create WAR file to be deployed">
 <war destfile="${app.name}.war" webxml="web/WEB-INF/web.xml">
 <fileset dir="${build.home}"/>
 </war>
 </target>

46520.7 Apache Geronimo

Sun.18 We will take a quick walk through the installation of the Apache
Geronimo Java application server. Geronimo not only runs servlets and JSP,
but it is also, as we shall see in later chapters, a J2EE EJB container, so the
installation part of this chapter is important for using the examples and
technologies covered in the remaining chapters.

Geronimo is a complete application server. It provides a full, production-
ready, J2EE environment. It is the stated goal of the Geronimo project to pass
the Sun J2EE certification tests. Such certification will, in all probability,
quickly make Geronimo one of the most widely used J2EE application servers.

A great deal of Geronimo information can be found on the Geronimo
Web site.19

NOTE

As of this writing, the project was just nearing the certification process. Only the
milestone releases were available for downloading. By the time you read this,
however, a fully certified version will likely be production-ready. There may be
slight differences in the download and installation procedures. Be sure to follow
the instructions from the Web site and any readme files for the most up-to-date
information.

First off, you must choose what form of the product to download. The
choice is really between a binary and source distribution. Within that choice,
you can choose between two compression methods, zip or tar/gzip. While the
first is typical for Windows distributions and the second for Linux, you can
choose either, as Linux has utilities for decompressing both. More importantly,
the binaries are Java JAR files so they are not tied to a particular operating sys-
tem. We will download and install a binary. Just click on the tar.gz filename
and save the file.

If you haven’t read the previous sections because you were going to skip
JBoss and just use Geronimo, please go back and read Section 20.3. It deals
with administration and privileges for setting up your installation, and you’ll
want to know that for this chapter’s installation discussion, too.

18. As of this writing, there was still a legal hurdle to overcome, since Sun requires derivative
works to be branded and compatible, whereas the Apache license places no such requirements
on its derivative works. This may be resolved by the time you are reading this.

19. http://geronimo.apache.org/

Chapter 20 Open Source Web Application Servers466

INSTALLING GERONIMO20.8

Using a platform-neutral system like Java has both advantages and disadvan-
tages. A disadvantage is that, generally, Java products don’t use the traditional
installation mechanisms of your native platform. For Linux users that means
that with Java you don’t install using an RPM or a DEB. But this is somewhat
offset by the fact that all a Java application needs is for its classes (in JARs) to
be arranged in a particular pattern on the filesystem. In other words, all you
need to do to install Geronimo is to unpack the tarball.

You did the hard part already. Since you have created the group and made
yourself a member of that group (see Section 20.3), any member of the group
can install the product:

$ cd /usr/local
$ tar xzvf geronimo.tar.gz
...
$

TIP

At this point we suggest using one more Linux filesystem trick. The tarball
unpacks into a directory whose name includes the product version—in this
case, geronimo-1.0-M1. In many cases, you will want to be able to have
more than one version of Geronimo installed on a box simultaneously, either
because you need to port projects from one version to another, or perhaps
because you need to develop applications that will run on different versions on
different target servers. To make your life easier, create a symbolic link to a
generically named directory, such as geronimo and have that symlink point
to geronimo-1.0-M1. Then you can write your startup and shutdown scripts
to use the geronimo pathname. You can then switch to another version by
changing where the symlink points:

$ cd /usr/local
$ ln -s geronimo-1.0-M1/ geronimo

This process is discussed in detail in Section 6.2 in the context of switching
between Java SDK versions.

46720.8 Installing Geronimo

RUNNING THE GERONIMO SERVER20.9

Getting the Geronimo server up and running is simply a matter of running a
Java application contained in the server.jar file in the bin directory.

$ cd /usr/local/geronimo
$ java -jar bin/server.jar org/apache/geronimo/Server

That last parameter looks like a pathname, but it isn’t. It is a configuration
ID which just uses the pathname-like syntax as a namespace, to be unique to
Geronimo (by virtue of the /org/apache/geronimo prefix). That name tells
the server which of the several possible configurations you want to use. For
more information on the other configurations, refer to the Geronimo Wiki.20

Having once invoked a particular configuration, you need not repeat that
configuration choice on subsequent invocations. That means that the next time
you run Geronimo, you can just use:

$ java -jar bin/server.jar

If you want to put this in a startup script you’ll want to use the full
specification, so as to be absolutely sure what you are getting.

To stop the server invoked from a command line, simply type Control-C.
If the server was invoked from a startup script, you will need to find its process
ID (e.g., with the ps command) and use the Linux kill command to send it
a signal.

REVIEW20.10

In this chapter we have looked at the installation of both the JBoss and
Geronimo Java application servers on a Linux platform. For both of these Open
Source servers installation was little more than getting the JAR files in a usable
location. We reviewed the System V init system and explained how to add JBoss
to the regular system of services on your Linux box. We showed you how to
use groups and permissions to enable a number of nonroot users to do the basic
application server administration.

20. http://wiki.apache.org/geronimo/

Chapter 20 Open Source Web Application Servers468

WHAT YOU STILL DON’T KNOW20.11

There is configuration information about your Web applications that must be
provided to the Web servers in XML files. A small bit of this will be discussed
in Chapter 23, but much of this you will need to find elsewhere. Since this in-
formation is in XML and specific to each application server, there is little of it
that is specific to the deployment on a Linux system.

RESOURCES20.12

Documentation on JBoss is available from JBoss.org. They have an interest-
ing business model in that they open-source their code but charge for the doc-
umentation. Expect to see more third-party books on JBoss, or you may see a
move toward Geronimo instead.

Geronimo is, as of this writing, a bit sparse on documentation, too. There
is a Wiki site with the beginnings of documentation. Try and hunt down what
you need starting from http://wiki.apache.org/geronimo/ and at the
http://geronimo.apache.org/ home page.

46920.12 Resources

Part V

Developing
Enterprise Scale Software

This chapter will serve as an almost criminally brief introduction to Enterprise
JavaBeans, their varieties, and their uses.

WHAT YOU WILL LEARN21.1

You will learn the basics of Enterprise JavaBeans and the Java Naming and
Directory Interface, which is how applications and EJB’s meet up with one
another.

EXPANDING TO EJBS21.2

All right, we’ll admit it. It is a bit of a stretch to expand our sample application
to the J2EE Enterprise JavaBean component model. The truth is, given the
small data requirements and simplicity of our application, the Web front end
that we put on our application in the previous chapters is probably sufficient
to scale our application to even very large organizations.

473

Chapter 21

Introduction to
Enterprise JavaBeans

That confessed, we still think our example is the best way to address our
topic. Why? Because EJBs are a large topic, worthy of several books (and we
encourage you to read some of them, such as Enterprise JavaBeans Component
Architecture by Gail Anderson and Paul Anderson (ISBN 0-13-035571-2). We
simply cannot teach you all about EJBs in our book. Our goal here is to intro-
duce the concepts, provide a working example, and explain how to deploy and
maintain an EJB system on Linux using JBoss. Believe us, we’ll have enough
to cover to achieve that modest goal.

EJB Concepts21.2.1

In a way, the use of the term Enterprise JavaBean, with its echo of the older
term JavaBean, is unfortunate. Apart from the similar intention of creating
reusable components, the two technologies have little in common.

The Life Cycle of an Enterprise JavaBean21.2.1.1

Most of the books on EJBs that we have seen start with the simplest type of
bean and work their way up in complexity. We’re going to dare to be different,
because the most complex case isn’t that hard, and once you understand it, the
functions of all the other types of EJBs become obvious. They simply don’t
implement what they do not need.

For the moment, assume that an EJB is a simple class that provides a set
of methods to clients. The methods represent business functions that clients
want the server to carry out.

Implementing an Enterprise JavaBean requires implementing three Java
source files:

• An object that represents the bean implementation

• An interface called the home interface that represents the interface between
the bean and the EJB container

• An interface called the remote interface which represents the methods that
a client may call on the bean

We’ll get into the details of these interfaces (and the sometimes obtuse
reasons behind) a little later on. For now, we will concentrate on the
implementation.

The implementation class contains methods that are there only to allow
the container to control the bean and to inform the bean of impending changes

Chapter 21 Introduction to Enterprise JavaBeans474

to its status. Those methods are defined in the bean class that the implementa-
tion class extends. The classes one extends to implement a bean are:

• SessionBean

• EntityBean

• MessageBean

Please forgive us right now for admitting that we will not cover message
beans in this book beyond a brief description in the next section. For details
on message beans, take a look at Chapter 8 of Enterprise JavaBeans Component
Architecture by Gail Anderson and Paul Anderson (ISBN 0-13-035571-2).

Not all of the control methods need to be implemented in all cases, but
the full set is not that large or difficult to understand. They correspond to im-
portant “life events” in lifetime of the bean. The primary events are: creation,
destruction, passivation, activation, persist to DB, restore from DB, and context
switching.

Creation. A bean is created when its constructor is called. As we shall learn,
the calling of the constructor has absolutely no connection with a client request.
For session beans, the container maintains a pool of instances to handle client
requests. For entity beans, a bean (most commonly) represents a database table,
and the setEntityContext() method is used to move that bean from row
(instance) to row as needed.

In practice, this usually means that a number of instances of the bean are
created when the application server is started. Additional instances are created
as the demand for this bean (number of clients, number of calls per unit time)
increases.

Destruction. As you know, Java objects do not have explicit destructors,
but when a bean instance is destroyed, an explicit method in the Bean class is
called to permit shutdown operations to take place.

This is quite distinct from activation and passivation. Activation and pas-
sivation are operations carried out when the application server needs to shove
aside some Bean instances that may still be needed by clients in order to make
room for an active request that requires more than the available system
resources.

Passivation and activation. As we said above, passivation involves the
container asking the beans that are still potentially needed to step aside to allow

47521.2 Expanding to EJBs

more urgent tasks (probably beans that are being actively called) to use resources
tied up by otherwise idle beans. Think of this as like memory swap in an
operating system. The bean will save any data and context information into
some sort of persistent storage, which may be a database, flat files, XML files,
whatever, when it is passivated.

Context switching. Since both session and entity beans may be called
upon to service requests from multiple clients, it is necessary to provide a
method whereby the container can notify the bean which “context” (which
may be loosely said to be a client) is active at the moment. In stateless session
beans this is not necessarily implemented, but in stateful session beans and in
entity beans this activity must be supported.

How is this distinct from passivation and activation? Passivation is the
temporary “swapping out” of a bean to make room for something else. Context
switching is the move of a Bean instance from client to client. Or, to put it
another way, passivation makes room for some other bean to become active
and serve a client.1 Context switching switches a given bean from client
to client.2

The EJB Container21.2.1.2

A J2EE application server has two containers: a Web container and an EJB
container. You can also think of these as “servers” in the more classic sense.
J2EE calls them containers because it emphasizes the idea that you place Java
objects (applets, servlets, and Enterprise JavaBeans) into the container that can
run them (a browser, a Web container, an EJB container). The J2EE specifica-
tion specifies the exact relationship between these application objects and their
container. For EJB’s, the container provides lifecycle control, network manage-
ment, load management, perhaps clustering services, CMP (container-managed
persistence) services, and so on. We’ll talk a lot more about container services

1. This is a simplification. A container can passivate a bean to make resources available for any
purpose, not just for another EJB. Beans might be passivated because some process on the
server outside the application server needs resources. It is entirely dependent on how the
application server is written. What is said here is conceptually true, if not actually true ;-)

2. Again, saying “client-to-client” is a simplification. A single client may have multiple threads
interacting with multiple beans, and a context switch might be performed to serve different
requests from a single client. Again: conceptually true, if not actually true.

Chapter 21 Introduction to Enterprise JavaBeans476

as we go along. For now, be aware that the container will start, stop, instantiate,
destroy, and provide network services to the EJBs it contains.

Bean Types21.2.2

Enterprise JavaBeans come in more than one variety. Let’s take a look at those.

Session Beans21.2.2.1

A session bean is a reusable component that represents a collection of server
methods. The intention is that each such method represents some business
process, such as addCustomer(), createShoppingCart(), and so on.

Session beans are thus organized around business processes. Actually, a
session bean is not much more than a facade that collects a business process
API into a single class. But remember what EJBs give you—networked server-
based functionality, load balancing, clustering features, reliability, failover, and
the ability to handle increased demand by merely adding more Bean instances
and server hardware. The power comes not from how EJBs extend the language,
but from how they automate and hide infrastructure.

Session beans come in two major varieties: stateless and stateful. Let’s take
a look at what they offer and the differences between the two.

Stateless Session Beans

What they are. A stateless session bean is one where each method call is
completely independent of any other method call, whether by one or many
clients.

An EJB application designed this way has certain advantages. Since a single
Bean instance can be switched from client to client on demand (because no
state information is kept between method invocations), a small number of Bean
instances can handle a large number of clients. Compare this with stateful
session beans described below.

Why you would use them. In a sense, this is the optimum bean. If you can
design your application to use nothing but stateless session beans (perhaps
backed by entity beans), then you have a maximally flexible, extensible, and
adaptable enterprise application—one that can be easily scaled from a single
application server to a very large cluster. Why? Because the lack of state infor-
mation means that any single Bean instance can serve any given client at any

47721.2 Expanding to EJBs

time that it is free without requiring any distribution of client information
between Bean instances.

From the client’s perspective, the client can connect to any instance of the
Bean on any server at any time to get the same work done.

Stateful Session Beans

What they are. A stateful session bean is one that remembers its client be-
tween method invocations. It maintains some information between calls from
a client. Because of this, a given Bean instance can only handle one client at a
time, and if an instance is to be switched between clients, the information
about the previous client must be saved so that the client’s session may be
restored later.

An application that is designed around stateful session beans will generally
require more resources than one designed around stateless session beans
(described above) because each active client requires a dedicated instance of
the Bean.

Why you would use them. We think we’ve beaten the issue of the advan-
tages of stateless beans into the ground. But what are the advantages of a
stateful bean?

Many types of client interaction require the bean to “remember” some-
thing about the client. The classic (and, by now, almost cliché) example is a
Web-based shopping cart application. The remote interface for a stateful
ShoppingCart EJB might look something like this:

createCart

Creates a new shopping cart for the customer.

addItem

Adds an item to the shopping cart.

delItem

Removes an item from the shopping cart.

purchaseCart

Processes the cart; charges the credit card; generates pick list, shipping list,
and invoice; discards cart.

abandonCart

Discards the cart.

Chapter 21 Introduction to Enterprise JavaBeans478

Here, items like the identity of the customer and the list of items in the
cart must be preserved between method invocations. Obviously, it is possible
to present such an interface through a stateless bean by creating some sort of a
session identifier token and passing that in to every method, thus allowing the
stateless session bean to save this data to a database and then load it back, but
the primary advantage of a stateful session bean is that this work is done for
you through the setting of the bean’s context.

So, the primary advantage of stateful session beans is that the server side
can keep track of client data for you. The primary disadvantage is that the
container will try its best to keep an instance of the Bean around for every
client, so it must sometimes swap an idle instance out to make room for an ac-
tive instance, which is an expensive operation. But—and this is important to
keep in mind—it is much less expensive than reading and writing this data on
every call to a stateless bean! You have to understand what is happening under
the hood if you want to produce an optimal design. If you need state between
method calls, a stateful bean is likely to be the most effective way to go.

Entity Beans21.2.2.2

What they are. An entity bean is often described as an object that represents
a row in a database table. This is the most typical case, but it isn’t always so.
We have worked on a J2EE application where the entity bean represented an
XML document in the filesystem.

The general idea is that enterprise applications tend to work on lists of
similar things: customers, employees, locations, accounts, servers, inventory
items, and so on. An entity bean is an object that represents a single item in
such a list. In other words, it is an interface to a data item. And, yes, in practice
there is one entity bean class for a table and one instance of the class for
each row.

Obviously, a J2EE container doesn’t maintain an in-memory instance for
every row of every table. In fact, you can think of both entity beans and session
beans as ways to automate keeping the optimal balance between in-memory
instances for speed and data storage for memory utilization.

Entity beans can be written to manage the persistent storage itself, using
code added to the bean implementation by the bean author (this is known as
bean-managed persistence, or BMP), or they may be written to allow the
container to automatically manage the data in the underlying database for you
(this is known as container-managed persistence, or CMP). Which you use may

47921.2 Expanding to EJBs

depend many factors, including the databases your container supports, the
complexity of your database, the quantity of non-Java clients, or the amount
of legacy code.

Entity beans can be a hard sell in many development environments. We
can see three strong reasons to resist the use of entity beans.

1. Heterogenous environments. In many enterprises, rich and diverse sets
of development environments exist—Windows.NET and ASP clients,
mainframe clients, C and C++ applications, third-party applications, and
Java. The solution many database environments adopt is to use stored
procedures that are shared across all of these platforms to concentrate
database access into a common set of code. Stored procedures do not tend
to be written with the kind of strict row-to-object mapping that entity
beans model so well; instead, they are often designed to support specific
business processes. That fits so well with the session bean model that you
may be tempted to implement a session bean facade in front of such stored
procedures and leave it at that.

2. Legacy code. A variation on the above argument exists when there is al-
ready a considerable body of code, perhaps even Java code written directly
using JDBC, that accesses the database and performs the common opera-
tions. Here again, the simplest solution is to put a session bean facade on
the already existing code.

3. Mobile cheese. One of the trendy business books published recently is ti-
tled Who Moved My Cheese? and it is about the negative ways in which
people react to change. You might very well meet resistance simply because
the technology is new and unfamiliar, and represents a change in thinking
about data persistence from what the development staff is used to doing.

So, where is it suitable? Entity beans are particularly well suited to environ-
ments that are homogenous by being based either mostly on Java or on
CORBA/IIOP. Further, they are well suited to environments where the bulk
of the work is the editing and manipulation of small numbers of entities per
session, as opposed to large reports or statistical queries where a session might
want to use many or all rows in a table.

Please note that using entity beans in such appropriate cases in no way
precludes other types of use! You just won’t likely use entity beans for them.
In other words, you don’t have to use it just because it is there.

Chapter 21 Introduction to Enterprise JavaBeans480

One further word. This is by no means an established doctrine, but it
seems to be common practice to keep entity beans hidden behind session beans.
In other words, it seems to be commonplace to not allow clients (Web applica-
tions, Java applications) to communicate directly with entity beans, but rather
to have session beans perform all entity bean operations. This is probably be-
cause the idea of session beans is to decouple business process from implemen-
tation details, and entity beans, no matter how much they hide the underlying
database, are still rather tightly coupled to the implementation of the data
storage.

Why you would use them. Essentially, they allow you to write your data
access layer exactly once, and then reuse it any number times without worrying
about capacity and management. Also, by trying to keep the most often used
data in fast memory, they can, when running on a powerful container or cluster
of containers, keep many client operations running much faster than a strict
write-read update back end.

Message Beans21.2.2.3

What they are. We’re going to gloss over message beans in our book, but
you should know what they are. A message bean represents an interface to a
message queue. An entity bean represents a transaction where completion of
the call tells you the operation has fully completed. A message queue, on the
other hand, is an interface where you are given the firm promise that system
will get to this when it can. The client doesn’t know where or when the message
will be handled. It doesn’t know if it was successful or not. But it does know
that it is the problem of the queue reader.

There are many such operations in large enterprises. And there are many
products that implement such functionality. Microsoft offers Message Queue
Server (MSMQ). IBM has MQSeries. Message queues are common with oper-
ations that take time, or need to be batched, or require human intervention.

Why you would use them. Let’s go back to our shopping cart idea. Man-
agement might want a daily sales report. You could send each and every item
purchased to a message bean. Then a process to read that queue might be
kicked off once a day and the report produced without hitting the database that
supports all the current Web users. That’s a good example of how a message
queue (and thus a message bean) might be used. Again, we’re not going to work
with message beans here.

48121.2 Expanding to EJBs

Under the Hood21.2.3

We’re not going to take apart the source code for JBoss here, but we do want
to spend some time talking about what is going on in an EJB container. It isn’t
magic. The whole system is built on some familiar technologies that you can
learn all about if you want to. First of all, the default protocol for EJB session
and entity beans is RMI. That’s right. A major part of an EJB container is the
code to set up RMI connections between beans and clients. RMI is an applica-
tion protocol that defines how to encode the state of a Java class, transfer it over
a network (using TCP/IP sockets), and restore the coded data to a local imple-
mentation of the class (the encoding/decoding process is called marshaling/
unmarshaling). That’s part one. Knowing where to find the appropriate bean
is the next part.

WHAT’S IN A NAME? AN INTRODUCTION TO JNDI21.3

JNDI abstracts a type of service known generically as a directory service. We
need to introduce that concept and then describe a few common examples of
such systems. Then we can explain how JNDI abstracts these various services.

Naming and Directory System Concepts21.3.1

Directory services are one of the dark mysteries of modern computing. Why?
Because if the people who developed these systems ever let on how simple they
actually are, everyone would understand and be able to use them well. Then
where would we be?

In practice, a naming system is what we programmers call an associative
array, or, when we are feeling less verbose, a simple hash of name/value pairs.
That’s it. The core concept isn’t any more complicated than that. The most
familiar naming service out there (one that we are sure you use every day)
is the Internet Domain Name Service, or DNS. This is a system that maps
domain names (like www.somedumbnetwork.net) to IP addresses (like
205.117.29.1). In the world of directory services, such a name/value pair is
called a binding.

Of course, the devil is in the details. DNS is implemented by a complex
network of name servers that pass requests up and down a distributed hierarchy
of name servers. That part can get quite complex, but the core idea is that you
have a name (the domain name) and a value (an IP address) that you join

Chapter 21 Introduction to Enterprise JavaBeans482

together. DNS can actually bind other information, such multiple alias names
for a single canonical name/IP pair, a mail handler name for a domain, and
other general purpose data which the DNS administrator can choose to share.

So, naming services are a way to join names and values together.
Before we move on, let’s make sure we understand how general and uni-

versal this concept is. A filesystem can be thought of as a naming service. A
UNIX filename (like, say, /etc/inittab) can be thought of as a way of linking
that name with the data it contains. So the key is the name (/etc/inittab)
and the value could be either the data it contains, or perhaps a file handle that,
when read, returns the data contained in the file.3

There are some other common features of naming systems that we
should point out. They are frequently hierarchical. A domain name such as
www.multitool.net actually indicates the host www in the multitool domain
within the net domain. The name www.multitool.com is not related in any
way with the name www.multitool.net. They are contained in different top-
level domains. They do not intersect. Likewise, the name /etc/inittab would
be completely unrelated to, say, /tmp/inittab—because inittab is a file in
the etc directory, and inittab is a file in the tmp directory. So, most naming
systems are hierarchical. They differ in how the levels of the hierarchy are indi-
cated, and in how absolute names are constructed from components of the
hierarchy, but they share this common concept.

So, that’s naming. Next come directory concepts.
A naming service is good, but what happens if you don’t have the key and

you need to go looking? That’s what directories are for. Consider the ls com-
mand. Why do you need it? Have you ever run it? Of course you have. Why?
Because you often don’t know the exact name of something or where exactly
it is in a naming system. You need to be able to look for what you want. That
is the “directory” part of naming and directory services. You want something
that lets you query and browse the naming system to find what you want.

The ls command will give you the complete contents of a directory, or it
will allow you to query a directory by specifying wildcard names. These are ex-
amples of browse and query features. We’ll talk more about these concepts in
relation to naming and directory systems in general and to JNDI in particular.

3. The first case would be a name/value pair, the second case would be a name/reference pair.
The distinction is often not important, but it does exist.

48321.3 What’s in a Name? An Introduction to JNDI

Key to directory services is the concept of a context. A context is a set of
bindings with a common name, expressed in a common way. In our filesystem
example, /etc is a context. A context may contain other contexts that follow
the same naming convention. For example, /etc/sysconfig is a context that
is a subcontext of /etc. Likewise, multitool.net is a subcontext of the
net context.

A context is distinguished by having a naming convention for itself and
its subcontexts, and it must have means of creating bindings, removing
bindings, and querying or listing bindings.

Since JNDI is designed to operate across multiple naming and directory
systems, it is necessary to talk about naming systems and namespaces. A naming
system is a connected set of contexts that use the same naming convention.
Thus, Internet domain names are a naming system, UNIX filenames are a
naming system, and so on. A namespace is a set of names in a naming system.
These terms will have significance later when we’ll talk about JNDI.

A naming system binds a name to a value. Directory services bind a direc-
tory object to one or more attributes. A naming service could be thought of as
a simple case of a directory where “name” and “value” are the attributes of the
directory object. A directory can store many more attributes (bindings) for a
given name than can a naming service. Directory services also (in general)
support the notion of searches and queries.

A directory object represents an object in the computing environment. This
might be a server, a printer, a user, a router, whatever. Each object would have
a set of attributes that describe the object. A directory is a connected set of
directory objects.

In the directories we know about (see Sections 21.3.2.4 and 21.3.2.5 for
the limits of our knowledge), directory objects are arranged in a hierarchy, so
that they serve as naming contexts as well as directory objects.

Common Directory Services21.3.2

Now that you have seen the concepts, we can cover a few common implemen-
tations of naming and directory services.

Domain Name Service (DNS)21.3.2.1

This is probably the most familiar naming and directory system. It is used all
the time to resolve Internet host names to IP addresses, and it is commonly
used to obtain the names of mail servers for domains. It also has less often used

Chapter 21 Introduction to Enterprise JavaBeans484

features to look up arbitrary data for domains. These features are not used often
because standard DNS has no authentication and authorization controls.
Information in DNS is, inherently, public information.

Filesystems21.3.2.2

The UNIX filesystems, NTFS, FAT, and other filesystems provide name-to-
data mappings that are compatible with JNDI. When they are combined with
networked filesystems, such as SMB, CIFS, NFS, and even rsync and FTP,
files can be made available over the network through JNDI.

LDAP21.3.2.3

LDAP is the “Lightweight Directory Access Protocol.” There is an old joke that
a platypus is a swan put together by a committee. If that is so, then it often
seems that LDAP is the platypus of name and directory services.

To be fair, LDAP has the heavy burden that goes with any standards that
are produced by a large committee-driven process. It has to try to be all things
to all people. LDAP is a query and transport protocol specification of the
ISO X.500 naming and directory service standard.4 Like other ISO and ANSI
standards, the specification is robust to the point of uselessness. LDAP is de-
signed to allow every possible name system in the Universe to be subsumed into
a single, uniquely addressable Directory Information Tree. Every entry in
LDAP has a distinguished name, which is an unambiguous specification of the
name from the root of the tree. So far, this is like the other naming systems.
There is a root, there are nodes at each layer, and then, at the bottom, there is
data. What makes X.500 and LDAP different is that each node consists of not
just a name, but of a type/name pair. An example of an LDAP name might be:

url=http://www.multitool.net/,cn=M. Schwarz,o=MAS Consulting,st=MN,c=us

4. If you are dying to know, X.500 is a naming and directory services standard from the Inter-
national Standards Organization (ISO), an international technical standards body. X.500 has
a transport and query protocol specification of its own, but it uses the ISO OSI (Open Systems
Interconnection) network protocol standard. OSI is rarely used because TCP/IP took off first
and has been hacked and hacked again to keep it alive and well. At one time, it looked like IP
address space limitations would push the world to OSI protocols, but hacks like CIDR, private
subnets, and now the (less hackish) IPv6 make it look like TCP/IP will be here for quite a
while. In a sense, then, LDAP is X.500 over TCP/IP. Or, to put it another way, LDAP is a
TCP/IP implementation of ISO X.500.

48521.3 What’s in a Name? An Introduction to JNDI

At each node there is a type (c, cn, url, and so on) and a name (or value)
for that type. The definitions of these types and the lists of types permitted at
a particular level depend on a schema which is controlled by whoever controls
the server that serves the given level of the hierarchy. In other words, as with
DNS, if you want to be part of the public, global namespace, you have to play
by the rules of the ancestor nodes. You can do what you want with your point
of control and below, but you must obey the naming schema of all of your
ancestors.5

This explains why so few organizations actually use LDAP globally
(i.e., integrating directly with all other public LDAP servers in the world). In-
stead, they tend to use LDAP by setting up schema and servers that are com-
pletely internal and private so that they do not have to use the many required
parent nodes it would take to hook up to the global LDAP namespace.6

LDAP can (and does) fill books of its own. The type/name pairs are bulky
to type and hard to remember, but they allow you to easily map in entire other
naming systems, by simply assigning a type to a naming system and allowing
that system’s names to be values at that level. Remember that these names are
hierarchical, so everything under cn (normally used for “common name”) ap-
plies to (in this case) Michael Schwarz. If I defined the schema for my space,
I could put anything I wanted under that name.

A common use of LDAP is for centralizing authentication and authoriza-
tion data for users. Users authenticate to LDAP and all systems in an organiza-
tion can validate a single credential to authenticate the user—the holy grail of
single sign-in. Alas, doing this right is nontrivial because LDAP doesn’t specify
any mandatory authentication and encryption scheme. (Thus it is often the
hacker’s holy grail of single sniff-in and 0wn3d systems.)

5. We want to be clear: You only have to do this if you wish to give those ancestors and outside
users access to your directories. You are free to create entirely private directory structures that
need not conform to anyone else’s schema. It all depends on the purpose and audience of your
directory.

6. Another reason is that LDAP itself has no cryptographically secure authentication or trans-
port mechanisms. That means that hooking up all your directory data to the global Internet
gives hackers a one-stop opportunity to steal your data. Not good. Of course, as with other
protocols, there are several add-on security mechanisms for LDAP.

Chapter 21 Introduction to Enterprise JavaBeans486

Novell Directory Service (NDS)21.3.2.4

Novell, the folks behind Netware, came up with NDS, which provides full di-
rectory services like LDAP/X.500, but (according to the computer press—let
us confess right now that we have never directly used NDS or Microsoft’s Ac-
tive Directory) with a simpler API and easier administration. We don’t know
enough about it to comment on it. But we do know that JNDI can access it.

Microsoft’s Active Directory21.3.2.5

We have to do the same hand-waving here. Active Directory provides similar
functionality to NDS and LDAP. We don’t know enough about it to comment
on it. But, again, JNDI can talk to it.

Putting a Face to a Name: JNDI21.3.3

The Java Naming and Directory Interface package is designed to provide a
common way to access all of these disparate naming and directory services.

The JNDI architecture consists of the JNDI API, which provides a consis-
tent API, and a Service Provider Interface (SPI), which requires an instance
to connect to each naming service (such as DNS, LDAP, the RMI registry,
and so on).

Basic naming system functionality is obtained through the javax.naming
package. Directory services are provided by the javax.naming.directory
package.

Since JNDI can span multiple naming and directory systems, there are no
absolute root contexts, so the InitialContext class exists to provide a base
from which all other names and directories may be looked up.

A Sample JNDI Program21.3.3.1

The next couple of sections describe a very simple JNDI application that uses
the DNS Service Provider Interface to do directory operations on a DNS
domain. The source code for the class is shown in Example 21.1.

48721.3 What’s in a Name? An Introduction to JNDI

Example 21.1 A sample JNDI application

 import java.util.*;

 import javax.naming.*;

 import javax.naming.directory.*;

 5

 public class GetDomain {

 private Hashtable env = new Hashtable();

 private DirContext dctx;

 private String domainQuery;

10

 public GetDomain(String dom2Query) throws NamingException {

 domainQuery = dom2Query;

 env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.dns.DnsContextFactory");

 dctx = new InitialDirContext(env);

15 }

 public NamingEnumeration getDomainMembers() throws NamingException {

 return dctx.list(domainQuery);

 }

20

 public static void main(String[] args) {

 GetDomain gd = null;

 NamingEnumeration ne = null;

25 try {

 gd = new GetDomain(args[0]);

 ne = gd.getDomainMembers();

 while (ne.hasMore()) {

30 Object o = ne.next();

 System.out.println("Object ["+o+"]");

 }

 } catch (Exception e) {

35 e.printStackTrace();

 }

 }

 }

40

Chapter 21 Introduction to Enterprise JavaBeans488

Example 21.2 is what we get when we run this program against one of the
author’s DNS domains.7

Example 21.2 Running GetDomain against the multitool.net domain

[mschwarz@cassidy simpleApp]$ java GetDomain multitool.net
Object [baroni: java.lang.Object]
Object [erik: java.lang.Object]
Object [www: java.lang.Object]
Object [class: java.lang.Object]
Object [jboss: java.lang.Object]
Object [penguin: java.lang.Object]
Object [mail: java.lang.Object]
Object [cvs: java.lang.Object]
Object [stiletto: java.lang.Object]
Object [penfold: java.lang.Object]
Object [ns2: java.lang.Object]
Object [ns1: java.lang.Object]
Object [irc: java.lang.Object]
[mschwarz@cassidy simpleApp]$

The GetDomain main() method. This is another “single class” program
example. In this case, the main() method creates an instance of the class,
passing the first command-line argument to the constructor. We’ll cover the
constructor in the next section. By now, you will recognize that this is one of
the purely pedagogical examples. Note the complete lack of input validation
and error checking on the number and content of the command-line argu-
ments.

Establishing an initial context. For both naming and directory services, it
is necessary to establish an initial context. A context is a collected set of names.
A directory system is a connected set of contexts. Our example is for DNS.
We must set an initial context for DNS. The class constructor (lines 11–15)
does that.

7. Note that directory operations in the JNDI DNS Service Provider Interface are done with
DNS zone transfers. Many domains, especially large domains, disable zone transfers either for
security reasons, or because they generate a lot of network traffic and are a popular tool for
Denial of Service (DoS) attacks on name servers. To put it simply: This program won’t work
on a lot of domains, especially from outside.

48921.3 What’s in a Name? An Introduction to JNDI

So what is going on here? This constructor is a bit unusual, isn’t it? The
InitialDirContext is a “context factory.” It takes an “environment,” which
is a Hashtable, that provides the information needed to make the context.
And what is that information? At a minimum, the constant value associated
with Context.INITIAL_CONTEXT_FACTORY must be associated with the class
name of the real context factory for the directory system—in this case,
com.sun.jndi.dns.DnsContextFactory. If you are from a C/C++
background, think of this as a function pointer.8

We now have an initial directory context, which we can use to search.

Going from the initial context to a DNS entry. Let’s now consider a use
case for this little program. The program begins at main(), line 21. We create
an instance of our class and an instance of NamingEnumeration (which we
will discuss in a moment). We do some very lazy error handling by enclosing
the entire process in a simple try/catch block9 and treating all exceptions the
same. The first thing we do is construct an instance of our class, passing in the
first command-line argument10 as the domain name to use for setting the initial
context.

Next, we get an enumeration of all the names in that context. This is done
through a method in our class that simply wraps the actual JNDI call that ob-
tains this enumeration. The real event is on line 18. The list() method of
the directory context returns a NamingEnumeration, which is an extension of
the classic Enumeration Java class. With it, you can iterate over the contents
of the context—which we do in lines 29–33. We rely on our old Object
method, toString(), to make these names readable for us. Of course, each

8. Of course, it is not. What really happens here is that the code in InitialDirContext
uses the Class class to load the specified class by name. All JNDI context factory classes imple-
ment the Context interface, so InitialDirContext uses the ability of Class to load the
class by its name as an instance of Context.

9. JNDI has a particularly rich collection of exceptions. When a naming or directory operation
fails, it is usually possible to determine exactly how and why it failed from the type of
Exception thrown. All JNDI Exceptions extend NamingException, so they also make it
quite easy to handle them in a lazy manner. In a real production application, you should at
least make some effort to differentiate between failures where the network is not working and
failures where the network is working fine, but the named resource does not exist. Believe us,
if you have to support your application in production you will care about the difference.

10. Again, very bad production coding. Note that no attempt is made to check the number of
arguments passed or their contents.

Chapter 21 Introduction to Enterprise JavaBeans490

entry in the enumeration is actually a binding that binds the name to either a
name object or to a context object.

If, when you encounter a context, you save the current context, set the
current context to the new context, and make the method recursive, you would
walk from the present context on down. In theory, you could set your initial
context to “.” (which is the root of DNS) and this program would dump the
whole domain name system to you.11

Learning More about JNDI21.3.3.2

As with so much in this book, we have had time and space to cover only the
basics. There is so much more to JNDI. For now we want to point you at Sun’s
excellent JNDI Tutorial.12 JNDI is covered in more depth in many books,
including JNDI API Tutorial and Reference: Building Directory-Enabled Java
Applications by Rosanna Lee and Scott Seligman, ISBN 0201705028.

Using JNDI with JBoss21.3.4

For our purposes, it is important to know that JBoss uses JNDI to provide
much of the EJB container infrastructure. The primary use is to look up the
EJBs, as we shall see in the code examples in the following chapters.

REVIEW21.4

We covered the basic concepts behind the various types of EJBs. We talked
about the events in the life of a bean. From here we will go on to describe actual
implementations and discuss how a bean is written and deployed to a J2EE
container.

11. If you are a relatively unschooled net hooligan, let us assure you that this is only “in theory.”
Before you go off and attempt a DoS attack on the entire Internet with a simple Java class like
this, we have to tell you that JNDI DNS enumerations depend on a DNS protocol feature
called zone transfers. Most high-level DNS servers will not do zone transfers at all, and many
will only accept zone transfer requests from internal addresses. Sorry.

12. http://java.sun.com/products/jndi/tutorial

49121.4 Review

WHAT YOU STILL DON’T KNOW21.5

Where to begin? Your humble authors themselves are still learning the intrica-
cies of J2EE. We have more or less ignored message beans. We have not de-
scribed the local and local home interfaces, concentrating instead on the remote
access of beans. This is because remote access is what client applications will
most often use. But entity beans, for example, can only call one another
through the local interface, and, in practice, a session bean will likely provide
remote access but call any other beans through a local interface.

A quick examination of your local bookstore’s computer books section
will reveal that J2EE is a vast topic, just by the number of books on the topic
and their thickness. Our goal here is to give you enough to make a quick start
in using EJBs on a Linux-hosted application server. From there—well, those
thick books are probably your next stop.

RESOURCES21.6

• http://java.sun.com/products/jndi/tutorial/trailmap.html

is Sun’s JNDI tutorial.

• Sun has a J2EE tutorial (http://java.sun.com/j2ee/1.4/docs/
tutorial/doc/index.html) that is a great place to start.

Chapter 21 Introduction to Enterprise JavaBeans492

In this chapter we write a very simple EJB and compile it.

WHAT YOU WILL LEARN22.1

• What a simple EJB example looks like.

• What are the several pieces that you need to make an EJB.

• How to compile the pieces of an EJB.

You’ll find the full text of our example on the book’s Web site at
http://www.javalinuxbook.com/. We will only use code excerpts in this
chapter.

EJBS:YOU DON’T KNOW BEANS?22.2

Enough theory about EJBs and naming services and the like. It’s time to put
together an actual EJB so you can see one run. First we need to write our EJB

493

Chapter 22

Building an EJB

classes, then compile them. Then, in the next chapter, we’ll package them,
along with other supporting information, into an EAR file. But let’s begin by
writing some Java classes.

It’s not that we just write a single EJB class, say a session bean, and we’re
done. Keep in mind that we’re going to be using these beans in a distributed
environment, so we need a way to have an application running on one system
find, create, look up, or otherwise access the bean running on another machine
somewhere in our enterprise network. The job of EJBs is to simplify (up to a
point) the efforts of the application programmer doing all this, and make it
seem as if the bean is quite local or at least independent of location.

Here’s how it works. Any application that wants to use the functions pro-
vided by an EJB must first locate the bean. It uses a naming service
(Chapter 21) for this. What it gets from the lookup is something called a home
interface. The home interface object is in effect a factory for producing remote
interfaces, which are the proxies for the actual service(s) that our application
wants to use. A remote interface has the method signatures that give the func-
tionality that the application is after, but it doesn’t do the actual work of the
bean. Rather, it is a proxy for the bean. The remote interface’s job is to do all
the work behind the scenes to marshal the arguments and send them off to the
bean, and to unmarshal the results returned from the bean.

So it’s a three step process:

1. Do the lookup.

2. Use the home interface to produce a remote interface.

3. Use the remote interface to call the methods on the bean.

What’s all this talk about interfaces? They provide a way to define the
methods you want to use, but without having to write all the code to do it. For
example, with the remote interface you may define a method to do something
with several arguments, say Blah(a, b, c). Now the remote object doesn’t
really do the Blah work; its job is to marshal the arguments (serialized a, b,
and c) and send them off to the EJB to do whatever Blah is, and then unmar-
shal the results. So you as an application programmer will write the guts of
Blah in the EJB object, but for the remote object, its proxy, you only need to
declare the method signature. Then the job of the EJB container (e.g., JBoss
or Geronimo) is to provide the smarts of the proxy—that is, to generate a Java
class that implements your interface, along with the code that knows how to
contact your EJB and marshal and unmarshal the arguments and results. That’s

Chapter 22 Building an EJB494

right, the EJB container (server) makes code that uses your interfaces, along
with its own code, to do the infrastructure work of EJBs.

Talking about all these pieces of an EJB can be confusing, too. Sometimes
it is helpful to think of an EJB as a single class; sometimes it’s better to think
of it as a family of classes that act together pretending to be a single bean that
is distributed across several hosts. This can make it a bit confusing when talking
about an EJB—do we mean the family of interacting classes or do we mean the
single class that provides the application functionality that we want?

The names of EJB classes and EJB interfaces (which we will extend and
implement) don’t help much either—they can be confusing, too. For example,
we will extend EJBObject, but not to write an EJB session bean; no, we extend
SessionBean for that, but EJBObject is the name for the remote interface.
Go figure.

A bit of perspective may help here. The names Remote, Local, and Home
are used as modifiers on these classes. Local means “on the same host as the
bean.” But Home and Remote don’t offer much of a clue. The home interface
is what we get from a lookup; it produces remote objects (objects which imple-
ment the remote interface). A remote object is what our application uses as if
it were a Java object doing what we need, even though its application-specific
activity will happen on a bean somewhere else on the network.

Let’s look at a very very simple example, to see the pieces in action.

SessionBean22.2.1

Let’s write a stateless session bean that will compute the time value of money.
Why that? Well, two reasons. First, we already have an SAMoney class with a
save() method for computing some values; and second, we need some simple,
stateless, but somewhat computationally intensive task to make for a halfway
reasonable example.

The real guts of an EJB, the core of the application functionality—in our
example, the computation of the time value of money—is the session (or entity)
bean. For our session bean we begin by implementing the SessionBean
interface, which means that we need to define these methods:

public void setSessionContext(SessionContext context) { }
public void ejbCreate() { }
public void ejbRemove() { }
public void ejbActivate() { }
public void ejbPassivate() { }

49522.2 EJBs: You Don’t Know Beans?

which, for our example, we can implement as empty methods. A stateless ses-
sion bean never needs an activation or passivation method to do anything—it
is pointless to passivate a stateless session bean. Why? Since it’s stateless, any
instance of it is as good as any other, so the instances are interchangeable and
there’s no need to passivate one to get to another—just use the one available.
It follows that if a bean is never passivated, it will never have to be activated.

But why no body to the ejbCreate() method? Well, our bean isn’t doing
anything extra. This would only be used if our example were more complicated
and we needed to do application-specific initializations. For example, if the
bean had to connect to a database (and did not use entity beans), it might es-
tablish the JDBC connection in ejbCreate and close it in ejbRemove().
Similarly, we can have an empty ejbRemove() method.

Next we add our own methods, the ones that provide the application
functionality. For our MoneyBean application, we’ll add save() and debt()
methods which will use an SAMoney class by calling its save() and debt()
methods. Example 22.1 is the listing of the SessionBean.

Example 22.1 Listing of our implementation of a SessionBean

package com.jadol.budgetpro;
import net.multitool.util.*;

import javax.ejb.*;

/**
 * Actual implementation of the EJB
 */
public class
MoneyEJBean
 implements SessionBean
{
 protected SessionContext sessionContext;
 // typical; just not used now

 public Cost
 save(double amt, double rate, double paymnt)
 throws java.rmi.RemoteException
 {
 return SAMoney.save(amt, rate, paymnt);
 } // save

Chapter 22 Building an EJB496

 public Cost
 debt(double amt, double rate, double paymnt)
 throws java.rmi.RemoteException
 {
 return SAMoney.debt(amt, rate, paymnt);
 } // debt

 public void
 setSessionContext(SessionContext context)
 {
 sessionContext = context;

 } // setSessionContext

 public void
 ejbCreate() { }

 public void
 ejbRemove() { }

 public void
 ejbActivate() { }

 public void
 ejbPassivate() { }

} // interface MoneyEJBean

EJBObject22.2.2

At the other end of the chain of EJB objects used to accomplish all this distribut-
ed computing is the object that our application is actually going to touch.
When our application creates an EJB, it, acting as a client, won’t actually get
its hands on the distant session (or entity) bean because that session bean is
running somewhere out in the network. There will be, however, a proxy object,
acting on behalf of the distant EJB. It is described as the remote interface, be-
cause it is remote from the EJB (though very close to the application). It is an
interface because J2EE supplies a class that does the hidden work of marshaling
the data, contacting the EJB, sending the data and receiving the results; the
application developer only adds a few additional application-specific methods,
via this interface (Example 22.2).

49722.2 EJBs: You Don’t Know Beans?

Example 22.2 Sample remote interface

package com.jadol.budgetpro;
import javax.ejb.*;
import java.rmi.*;
import net.multitool.util.*;

/**
 * Remote Interface for the Money EJB
 */
public interface
Money
 extends EJBObject
{
 // the methods from the remote object which we will call
 public Cost
 save(double amt, double rate, double paymnt)
 throws java.rmi.RemoteException;

 public Cost
 debt(double amt, double rate, double paymnt)
 throws java.rmi.RemoteException;

} // interface Money

The crucial thing to note with this interface is that we have defined two
methods that match the two methods in our SessionBean—the save() and
debt() methods. These are the methods that will actually be called by our ap-
plication, and the J2EE mechanisms will do their work behind the scenes to
connect to the methods of our SessionBean implementation and send back
the results.

EJBHome22.2.3

Between the SessionBean and its remote interface lies the home interface, also
called the remote home interface, since it pairs with the remote interface. An
object that implements the home interface is the kind of object that is returned
after the lookup() and then narrow() method calls. It is used to create a ref-
erence to the EJB. The home interface for a stateless session bean needs only
implement a single method, the create() method with no arguments. The
body of the method needs do nothing. All the real work is done by the
underlying object supplied by J2EE.

Chapter 22 Building an EJB498

Example 22.3 is a listing of our home interface. It looks like an empty
shell, but it is all that we need. The rest is handled by J2EE.

Example 22.3 Sample (remote) home interface

package com.jadol.budgetpro;
import javax.ejb.*;
import java.rmi.*;

/**
 * Remote Home Interface
 */
public interface
MoneyHome
 extends EJBHome
{
 public Money
 create()
 throws CreateException, RemoteException
 ;

} // interface MoneyHome

Summarizing the Pieces22.2.4

With these three pieces—the session bean, the remote interface, and the home
interface—we can see the structure of the key pieces of an EJB. Let’s review
what we have:

Talked about asExtends/implementsApplication object

remote interfaceEJBObjectMoney

home interfaceEJBHomeMoneyHome

the implementationSessionBeanMoneyBean

EJBLocalHome and EJBLocalObject22.2.5

When the session or entity bean is going to be referenced by application code
that resides on the same host as the bean, there are variations on the home and
remote interfaces that allow for more efficient execution. When you know that
the beans are local to this host, you should use a local interface (Example 22.4)

49922.2 EJBs: You Don’t Know Beans?

Example 22.4 Sample local interface

package com.jadol.budgetpro;
import javax.ejb.*;
import java.rmi.*;

/**
 * Local Interface for the Money EJB
 */
public interface
MoneyLocal
 extends EJBLocalObject
{
 // the methods which we will call

} // interface MoneyLocal

Example 22.5 Sample local home interface

package com.jadol.budgetpro;
import javax.ejb.*;
import java.rmi.*;

/**
 * Local Home Interface
 */
public interface
MoneyLocalHome
 extends EJBLocalHome
{
 public MoneyLocal
 create()
 throws CreateException;

} // interface MoneyLocalHome

and a local home interface (Example 22.5). The local interface is in place of the
remote interface and extends EJBLocalObject. The local home interface is in
place of the remote home interface and extends EJBLocalHome.

Why bother? Well, there’s no need to marshal and unmarshal all that data
if the calls are staying on the same host. This saves execution time. Perhaps
more importantly, since the arguments don’t have to be marshaled and

Chapter 22 Building an EJB500

unmarshaled, they don’t have to be serializable. For some applications, this is
the only way that they can use beans.

Finally, keep in mind that the choice of local versus remote interfaces is
not necessarily an either-or choice. For our session bean we have defined both
kinds of interfaces. Then the deployment can determine which one will be used.

Compiling Your Beans22.2.6

In order to compile these bean-related Java classes, you need to have a J2EE
JAR in your classpath. If you’ve installed JBoss into /usr/local/jboss, you
could add the JAR to your classpath this way:

export CLASSPATH="/usr/local/jboss/client"\
"/jboss-j2ee.jar:.:${CLASSPATH}"

If you have the Sun J2EE reference implementation installed on your
system (in /usr/local), then you could use:

export CLASSPATH="/usr/local/SUNWappserver"\
"/lib/j2ee.jar:.:${CLASSPATH}"

If you have Geronimo installed on your system (with an environment
variable GHOME to hold its location), then you would use:1

export CLASSPATH="${GHOME}/repository/geronimo-spec/jars"\
"/geronimo-spec-j2ee-1.0-M1.jar:.:${CLASSPATH}"

In any case, the point is to have in your classpath the JAR file which
contains the javax/ejb/ classes, such as EJBObject.class. If you haven’t
installed one of these containers on your machine, then download a copy of
the JAR from the machine where that container is installed. Put your copy
somewhere in your classpath, as in the examples above.

1. Our JAR is named geronimo-spec-j2ee-1.0-M1.jar but yours will likely have a dif-
ferent name by the time the J2EE-certified version of Geronimo is available. It may likely just
have the trailing -M1 dropped from the name; check in the geronimo-spec/jars directory.
Another option is to use any of the J2EE JARs, for example, from the Sun reference implemen-
tation. That’s the advantage of standards. Any of them should work for this compilation step.
The resulting compiled code should be deployable to any server. “Compile once, run
anywhere,” right?

50122.2 EJBs: You Don’t Know Beans?

If you are using Ant (and why wouldn’t you be?) you will need to put the
path to the J2EE JAR in the classpath which Ant uses. Since Ant can define its
own classpath, you may want to define your compile task as something like this:

<target name="compile" >
<javac srcdir="${src}"
 destdir="${build}"
 classpath="/usr/local/SUNWappserver/lib/j2ee.jar:${stdpath}" />
</target>

Now it’s a simple matter to compile. The basic Java compile command:

$ javac com/jadol/budgetpro/*.java

will compile all the various classes and interfaces that make up the EJB. There
may be other classes in your source tree that need to be compiled as well. With
all that going on, you can see why so many people use Ant. With the compile
target defined as in our example above, you would need only the command:

$ ant compile

REVIEW22.3

There are many pieces involved in the construction of an EJB. Besides writing
the session bean implementation, there are the remote and home interfaces to
be written. The local and local home interfaces are optional, but useful, espe-
cially in cases where arguments cannot be serialized or where you know that
the beans and the client will reside on the same host. Compiling an EJB is not
different from any other Java compile, but it requires a special JAR in your
classpath, one that contains the definitions of the J2EE objects and interfaces.

WHAT YOU STILL DON’T KNOW22.4

We still haven’t shown you how to deploy the EJB, now that you have one
compiled. In the next chapter we’ll show you how to assemble the pieces of the
EJB into an Enterprise Archive and then deploy and run it.

More importantly, though, we haven’t covered how to write the code for
stateful session beans or entity beans. Stateful session beans are one-to-a-client-
session, rather than taking all comers, so there is a little more to code, and a

Chapter 22 Building an EJB502

few small changes required in the ejb-jar.xml config file. (What is the
ejb-jar.xml config file? It is part of the configuration information used to
deploy your EJB, the topic of the next chapter.) But there are some serious
complications with entity beans that involve retrieving the bean’s data from
a “backing store”—for example, a database—and writing it back. There are
many good references on these topics, and we mention our favorites in the
next section.

RESOURCES22.5

These are some of our favorite resources for learning about and dealing with
EJBs. All of these give much more extensive examples that we have space for,
and we encourage you to look at one or more of them.

• J2EE and Beyond by Art Taylor (Prentice Hall PTR, ISBN
0-13-141745-2) gives a very good overview of all of the pieces of J2EE.
At over 1,000 pages, it’s no small book, but it covers a lot more than
just EJBs.

• Enterprise JavaBeans Component Architecture: Designing and Coding Enter-
prise Applications by Gail Anderson and Paul Anderson, Sun Microsystems
Press, ISBN 0-13-035571-2. At only 435 pages it is the most concise of
the three, with the tightest focus and an emphasis on the code.

• Applied Enterprise JavaBeans Technology by Kevin Boone, Sun Microsystems
Press, ISBN 0-13-044915-6. At just over 700 pages, it is midway between
the other two titles. Like the Taylor book, it covers some related technolo-
gies, but gives more depth to EJBs than Taylor, as that is its focus. It pro-
vides more examples than the Andersons, but its examples are not any
deeper, just broader.

50322.5 Resources

In this chapter we take apart an EAR, put it together, and then send it out into
the world.

WHAT YOU WILL LEARN23.1

• What is in an EAR.

• How to build an EAR by hand.

• How to integrate some of the tools we’ve covered before (CVS and Ant)
to automate this and avoid having to build an EAR by hand.

• How to deploy an EAR to JBoss.

• How to deploy an EAR to Geronimo.

Some people may wonder why anyone would want to describe to you how
to build an EAR by hand. The task of constructing such things is increasingly
automated, often performed by IDEs, Ant, or J2EE containers or related tools.
So why the grubby details of doing it yourself? Two reasons, really. First, if you

505

Chapter 23

Deploying EJBs

hide behind the tool, you never fully understand what is happening. It looks
too much like magic, and you’re helpless if the magic fails. Secondly, seeing
how it works inside out gives you a better understanding of what is going on
and even empowers you to do a custom version for your project. If this discus-
sion sounds familiar, it may be because you read something similar about IDEs
in Chapter 10.

LEND ME YOUR EAR: ENTERPRISE PACKAGING AND DEPLOYMENT23.2

There are lots of pieces that are needed to make Enterprise JavaBeans (EJBs)
work—not only the classes and interfaces that we have defined, but supporting
classes and other Web application pieces (e.g., JSP files) as well. They all have
to be in the right place. The distributed nature of EJBs means that we need a
way to distribute them across (potentially) several machines. And its not just a
matter of putting a single Enterprise JavaBean on a single host. A single bean
is typically part of a larger collection of classes and other files (properties, im-
ages, JSP, HTML) that work together to make an application. The mechanism
to manage all this is the Enterprise Archive, or EAR file.

Let’s take a look inside an EAR and examine its pieces. Knowing what
it’s made of will make an EAR look less intimidating, but will also help us
understand what we’ll need for our application.

TIP

An EAR file (whose name ends with .ear) is nothing more than a JAR file with
particular expected contents. So you can easily look inside an EAR with the jar
command. Use the -tvf options for table of contents, verbose, and file
(meaning that the next argument is the filename).

The budgetpro.ear file will be our example. We haven’t yet discussed
building this file, but let’s peek ahead, to see how it will be put together
(Example 23.1).

Notice that, at the top level, there are two files and a directory, and inside
the directory there are two other files (Table 23.1).

From the standpoint of building an EAR yourself, you need to create all
the files listed in Table 23.1 and then put them all together into a JAR file. So
we need to understand those pieces.

Chapter 23 Deploying EJBs506

Example 23.1 Contents of a sample EAR file

$ jar -tvf budgetpro.ear
 0 Wed May 19 05:58:02 CDT 2004 META-INF/
 110 Wed May 19 05:58:00 CDT 2004 META-INF/MANIFEST.MF
 295 Wed May 19 05:58:00 CDT 2004 META-INF/application.xml
11498 Wed May 19 05:58:02 CDT 2004 budgetpro.jar
12626 Wed May 19 05:58:02 CDT 2004 budgetpro.war
$

Table 23.1 Files inside an EAR archive

ContentTypeName

The EJB-JAR file—the JAR file that contains our EJB.JARbudgetpro.jar

The Web application with servlet and JSP files.WARbudgetpro.war

A standard JAR manifest; at a minimum, it gives the
version number of the JAR file format—for example,
Manifest-Version: 1.0.

textMANIFEST.MF

The deployment descriptor, an XML description of
what’s what.

XMLapplication.xml

A directory with other files.directoryMETA-INF

The plain files that appear in the META-INF directory are simple. The
MANIFEST.MF file is like any JAR manifest and can contain simply the JAR
version number:

Manifest-Version: 1.0

The application.xml file is shown in Example 23.2
Two JAR files are mentioned in this XML description file. This tells the

container that we have two modules, an EJB and a Web application. The Web
module also defines a context root, which is the portion of the URL pathname
that is intended to direct requests to this Web application. For example, if your
host is www.bighost.com, then the context root of /budgetpro means that
the URL you will use to access the Web application in this EAR is
www.bighost.com/budgetpro/ followed by whatever other filename you
might need to append, such as a JSP file—or, if left blank, the default
index.html file.

50723.2 Lend Me Your EAR: Enterprise Packaging and Deployment

Example 23.2 Sample application.xml file

<?xml version="1.0" encoding="ISO-8859-1"?>

<application>
 <display-name>BudgetPro</display-name>
 <module>
 <web>
 <web-uri>budgetpro.war</web-uri>
 <context-root>/budgetpro</context-root>
 </web>
 </module>

 <module>
 <ejb>budgetpro.jar</ejb>
 </module>

</application>

That takes care of the two plain files. Let’s also look inside the other two
archives, the JAR file and the WAR file, and see what they hold.

What’s in an EJB-JAR File23.2.1

Let’s look first at the content of the JAR file. After that we’ll look at the specifics
of the XML descriptor files.

$ jar xf budgetpro.ear # unjar the EAR
$ ls # see what we got
META-INF
budgetpro.ear
budgetpro.jar
budgetpro.war
$ jar tf *.jar # list the JAR contents
META-INF/
META-INF/MANIFEST.MF
com/
com/jadol/
com/jadol/budgetpro/
net/
net/multitool/
net/multitool/util/
com/jadol/budgetpro/MoneyLocal.class
com/jadol/budgetpro/SessionTestServlet.class

Chapter 23 Deploying EJBs508

com/jadol/budgetpro/MoneyEJBean.class
com/jadol/budgetpro/MoneyHome.class
com/jadol/budgetpro/Money.class
com/jadol/budgetpro/MoneyLocalHome.class
com/jadol/budgetpro/TestMoneyEJBean.class
net/multitool/util/Save.class
net/multitool/util/Cost.class
net/multitool/util/Debt.class
net/multitool/util/SAMoney.class
META-INF/ejb-jar.xml
META-INF/jboss.xml
$

The EJB-JAR file contains the specifics for our EJB file (Table 23.2).
To keep Table 23.2 simpler and shorter, we didn’t list each of the directo-

ries in the tree of directories down to each class file. When we show, for exam-
ple, com/jadol/budgetpro/*, realize that each directory that is part of that
structure (com, com/jadol, and so on) is part of the JAR file. The class files
are located in that tree.

So what are the two XML files?
These XML files provide the EJB container with information on how the

bean parts are wired together. Let’s look at the contents of each.

Table 23.2 Contents of the EJB-JAR file

ContentTypeName

A standard JAR manifest; besides defining the
JAR version it can be empty.

textMANIFEST.MF

A description of the EJB, most importantly the
mapping between the name of the EJB and the
actual Java class file.

XMLejb-jar.xml

This file is specific to JBoss (well, duh!). It
describes a mapping between the JNDI name
used in the locate() and the name of the EJB.
The equivalent file for Geronimo (which uses
OpenEJB) is openejb-jar.xml.

XMLjboss.xml

Various classes.class filesnet/multitool/util/*

Various classes.class filescom/jadol/budgetpro/*

A directory with other files.directoryMETA-INF

50923.2 Lend Me Your EAR: Enterprise Packaging and Deployment

The ejb-jar.xml file (Example 23.3) is part of the J2EE standard. It
specifies the names of the home and remote (and local, if any) interfaces, the
implementation class (i.e., the real bean) and the name for the bean.

Example 23.3 Sample ejb-jar.xml file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC
 "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
 "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

 <description>BudgetPro</description>
 <display-name>BudgetPro</display-name>

 <enterprise-beans>

 <!-- Session Beans -->
 <session id="test_Money">
 <display-name>Test Money Bean</display-name>
 <ejb-name>test/Money</ejb-name>
 <home>com.jadol.budgetpro.MoneyHome</home>
 <remote>com.jadol.budgetpro.Money</remote>
 <ejb-class>com.jadol.budgetpro.MoneyEJBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>

 </enterprise-beans>

 <assembly-descriptor>

 </assembly-descriptor>

</ejb-jar>

The name of the bean defined in the ejb-jar.xml file is not, however,
the name we will use in our JNDI lookup. Rather, there is one more level of
mapping used by JBoss. Look at the contents of the jboss.xml file
(Example 23.4).

Chapter 23 Deploying EJBs510

Example 23.4 Sample jboss.xml file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jboss PUBLIC "-//JBoss//DTD JBOSS//EN"
 "http://www.jboss.org/j2ee/dtd/jboss.dtd">

<jboss>

 <enterprise-beans>

 <session>
 <ejb-name>test/Money</ejb-name>
 <jndi-name>ejb/Money</jndi-name>
 </session>

 </enterprise-beans>

 <resource-managers>
 </resource-managers>

</jboss>

The two tags define the mapping: You use the jndi-name in the
lookup() method and it will (try to) find the EJB named with the ejb-name
tag. The ejb-name tag is also used in the ejb-jar.xml file. This provides the
association between the two, and the mapping from the JNDI name to EJB is
thereby defined.

To summarize, if we want to build an EJB-JAR file, we will need to gather
all the class files in their appropriate classpath directory structures. Then we
will need to write two XML files and place them in the META-INF directory
along with the MANIFEST.MF file. The two XML files will define the EJB pieces
and provide a name mapping for locating this bean. Then put all these pieces
together into a JAR file, and you have an EJB-JAR file.

Using Our Bean23.2.2

We have put a lot of pieces in place to get a bean that we can call from across
the enterprise. But what does that call look like? How might we make use of
the bean?

The first step is to make contact with the JNDI service and locate the
home interface for the bean. It looks like the section of code in Example 23.5.

51123.2 Lend Me Your EAR: Enterprise Packaging and Deployment

Example 23.5 Locating the home interface

//Look up home interface

InitialContext initctxt = new InitialContext();

Object obj = initctxt.lookup("ejb/Money");

MoneyHome homer = (MoneyHome) PortableRemoteObject.narrow(obj, MoneyHome.class);

We’re putting this code in the init() method of a servlet; it could also
be in a test program, or in a JSP. It needs to happen only once for our servlet
(which is why we put it in the init() method) and then the connection can
be used many times, once for each contact with the bean.

We get to the actual bean this way:

Money mrbean;
mrbean = homer.create();

We then use the bean, making the calls on its remote interface (a Money
object, that extends EJBObject) as if it were just a simple method call on an
ordinary class:

car = mrbean.save(20000.00, 0.04, 250.00);

The math is done in the actual SessionBean, out there in the network,
and the results are sent back to this application. Our application goes on to
display this number as part of an HTML page.

Then when we’re done with the bean, we need to clean up:

mrbean.remove();

Packaging the Servlet23.2.3

We will now package up the servlet, along with a simple startup page to invoke
it. We’ll look at the WAR file and see how it’s built.

What Is in the WAR File23.2.3.1

The other JAR-like file in the EAR is the WAR file. Let’s see what is in one of
those (Table 23.3).

Notice that the WAR file puts its XML descriptor not in the META-INF
directory but in a WEB-INF directory along with the classes.

Chapter 23 Deploying EJBs512

Table 23.3 Contents of the WAR file

ContentTypeName

A standard JAR manifest; it can be empty or list the
contents.

textMANIFEST.MF

XML description of the Web application—servlet
definitions, and so on.

XMLweb.xml

Empty in our example—no JBoss-specific directives
are used.

XMLjboss-web.xml

Directory structure for the Java class files.directoryclasses

The various class files.classclasses/.../*.class

These are the JSP files that run as part of the Web
application; note that they are in the top level of this
directory structure, not in any subdirectory.

JSP*.jsp

Any static HTML pages, too.HTML*.html

A directory with other files.directoryMETA-INF

A directory with other files.directoryWEB-INF

Weaving the Web23.2.3.2

The web.xml file is the descriptor for the Web application part of all this.
Using the servlet tag, it defines a servlet associating a name with this servlet
(a name which can be used elsewhere in this XML file) and stating which
Java class file is that servlet.

Then the servlet-mapping tag is used to map a URL pattern to a servlet.
The URL pattern is the portion of the URL that signals to the server that the
request is not for a simple HTML page, but rather for our servlet.

Example 23.6 is a sample web.xml; notice in particular how the mapping
from URLs to the Java class is accomplished.

Connecting the Pieces23.2.3.3

So now that you have seen all the pieces, know that you can edit the XML files
with your favorite editor, and can build the JAR/WAR/EAR files with the jar
command, it’s not that hard to put it all together. It is, however, tedious, and
is well worth automating, at least with Ant.

The key to making it work, whether by hand or by automation, is a
workable directory structure. The easiest way to construct JAR files is to have

51323.2 Lend Me Your EAR: Enterprise Packaging and Deployment

Example 23.6 Sample web.xml file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <servlet>
 <servlet-name>SessionServlet</servlet-name>
 <display-name>Simple Session Servlet</display-name>
 <servlet-class>com.jadol.budgetpro.SessionTestServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>
 <servlet-name>SessionServlet</servlet-name>
 <url-pattern>/servlet/test</url-pattern>
 </servlet-mapping>

 <session-config>
 <session-timeout>0</session-timeout>
 </session-config>

</web-app>

a directory structure that mirrors the structure of the JARs that you are build-
ing. But that arrangement is often not helpful for source management purposes.
It is therefore not uncommon to have a source tree that reflects the project
structure and a separate build directory that mirrors the JAR file directory lay-
out. As classes are compiled, the class files are copied into the build directory
along with copies of the XML, JSP, and other files. As a last step in the build
process, the build directories are “jarred up” into WAR/JAR/EAR files.

DEPLOYING THE EAR23.3

Deploying means getting your file(s) into the right place and dealing with the
Web server to get your application up and running. For EJBs this includes the

Chapter 23 Deploying EJBs514

automatic construction of various components by the server. It’s not as daunt-
ing as it sounds—at least not any more.

JBoss23.3.1

One of the great things about JBoss is its dynamic or “hot” deployment. The
only work involved in deploying your application, if you have the EAR file built
properly, is to copy the EAR file to the deployment directory. JBoss does all
the rest.

Here is a listing of a very simple shell script that does what is needed, fol-
lowed by an invocation of that shell script to install our BudgetPro example
EAR file.

$ cat ejbinstall
cp $* /usr/local/jboss-3.2.3/server/default/deploy
$ ejbinstall budgetpro.ear
$

Of course, this assumes that execute permission has been given to the
script and it is located in the search path. Furthermore, it assumes that JBoss
(version 3.2.3) was installed in /usr/local.

Geronimo23.3.2

Geronimo will be undergoing lots of change between the time that we write
this and the time that you read this. Be sure to check the Geronimo Web site1

for the latest information.
Geronimo deployment is done as a separate executable step and is not

folded into the server. This separation of functions keeps the server smaller and
quicker on startup. The deployer has the smarts for reading in all the XML
configuration information for your bean, building all the needed classes, and
serializing it to package it up.

To deploy our EAR, we execute the following command from the
Geronimo home directory:

$ java -jar bin/deployer.jar --install --module budgetpro.ear

1. http://geronimo.apache.org/

51523.3 Deploying the EAR

Although not available in the early releases, Geronimo may add a “hot
deploy” feature where the EAR file can just be put into a deploy directory and
the rest will happen automatically. Even so, what will be happening behind the
scenes is this same deploy step.

MAINTAINING A DISTRIBUTED APPLICATION23.4

The deployment is easy if you have the EAR file built properly. But as you just
saw, that can be a big “if”—the EAR consists of several layers of files that must
be in the right place and have the right contents. There are tools to help with
all this, though. Ant is widely used to automate many of these tasks.

Ant and CVS23.4.1

In previous chapters we’ve talked about CVS for managing sources and Ant
for automating our builds. The first step to making all this work together is
something that we should have covered sooner—using CVS with Ant.2

Example 23.7 is a simple Ant buildfile (build.xml) that will let you get
the source from your CVS repository by supplying a particular CVS tag. You
name the tag (which you would have previously applied to your sources) and
this Ant target will check out that version. The files are put in the srctree
directory off of the basedir of the Ant project.

You will have to modify this script to make it fit your environment. The
cvsRoot and csvRsh values correspond to the CVSROOT and CVS_RSH environ-
ment variables that you would otherwise have set for working with CVS. The
package attribute should be set to the project directory that you would specify
when you check out sources. The directory specified by the dest attribute will
be created if it doesn’t exist.

The next task to accomplish with Ant is the construction of the EAR,
WAR, and JAR files. Since all three files are essentially just JAR files, we can
use the Ant jar task. The EAR contains a WAR and a JAR, and those in turn
contain Java class files (and a few miscellaneous files). Using the depends
attribute, we can build them in steps.

2. So, aren’t you glad that you’ve kept reading and gotten this far? Ah, the rewards of
persistence!

Chapter 23 Deploying EJBs516

Example 23.7 An Ant target for checking out source from CVS

<?xml version="1.0"?>
<!-- ++ -->
<!-- retrieve our sources by tag name -->
<!-- invoke with: ant -DTAG=puttaghere -->
<!-- ++ -->

<project name="sources" default="src" basedir=".">

 <!-- src target -->
 <target name="src">
 <cvs cvsRoot=":ext:user@hostaddress:/usr/lib/cvs/cvsroot"
 cvsRsh="/usr/bin/ssh"
 package="projectdir/subproj"
 dest="srctree"
 tag="${TAG}">
 </cvs>
 </target>

</project>

Our example (see the book’s Web site3 for the full listing) only copies
prebuilt XML files (the deployment descriptors) into place to be included in
the JAR, WAR, and EAR files. For small examples like ours, building the de-
ployment descriptors by hand is not a difficult task. But larger, more complex
projects will benefit from further automation. Most J2EE servers come with
tools to help build such things. These tools tend to be specific to the particulars
of their products. Since the J2EE specification allows for certain vendor varia-
tions and configuration differences, they can be helpful in configuring things
for your specific vendor’s version. But being dependent on them for your de-
ployment is a subtle way to become locked into their product. Another good
choice—one that avoids this vendor lock-in—is the Open Source tool XDoclet.

XDoclet23.4.2

XDoclet is an important tool to help with the automation of EJB-related tasks.
Working in conjunction with Ant, it uses the Javadoc mechanism of Java to

3. http://www.javalinuxbook.com/

51723.4 Maintaining a Distributed Application

automate the building of many of the EJB files and deployment descriptors.
Recall that Java comments can include special Javadoc tags, such as @author
and @param. Javadoc uses these tags to generate HTML files that are the docu-
mentation of your Java classes and methods based on the text associated with
these tags. XDoclet takes this a step further and defines tags like @ejb.bean
and a few dozen more. Then, using the Javadoc mechanism, it can generate all
the various pieces required for an EJB. Used this way, you can write a single
source file for your EJB, and have XDoclet generate the various home, remote,
and local interfaces as well as the deployment descriptors.

So why aren’t we all using XDoclet? It has been around for a few years and
is gaining a following in the development community. We may be moving in
that direction, but it will take some time. It adds yet another layer to what is
needed to build an EJB application, albeit a layer that brings some simplifica-
tion. Later releases of EJB specifications from Sun may subsume its EJB func-
tionality. However, it is still very important to understand the pieces that go
together to make an EJB application. One of the favorite quotes from XDoclet
in Action by Craig Walls and Norman Richards says it well: “Don’t generate
what you don’t understand.”

ABSTRACTING LEGACY APPLICATIONS23.5

One of the best uses of J2EE technology, particularly the EJB technology, is to
provide a single common interface to heterogenous systems. If an application
provides any sort of file, data, pipe, or network access to its data, you can wrap
an EJB interface around it and make it available to an entire distributed net-
work. This can be a powerful way to leverage investments in legacy systems
with modern multitier architectures.

While it is commonplace for EJB applications to interface directly to a re-
lational database back end, there is no requirement that such a system be the
back end. IBM, for example, provides Java interfaces to their mainframe legacy
data systems, such as CICS.

REVIEW23.6

We’ve looked at the contents of an EAR file—not that you’ll need to be digging
inside them or even building them by hand, but you’ll want to know what’s
inside so as to understand what it takes to put one together. We took a look at

Chapter 23 Deploying EJBs518

Ant and CVS and how they can be used together to make building and
deployment easier. We even mentioned XDoclet, another tool worth knowing
something about.

WHAT YOU STILL DON’T KNOW23.7

JBoss has an IDE plug-in for Eclipse which uses XDoclet to provide an integrat-
ed development environment for writing EJBs. If you are working with Eclipse
and are going to be doing a lot of EJB development, you should definitely
explore this option.

The EJB 3.0 specification, due out within a year, promises to change all
this, at least somewhat. With support for metadata in Java 1.5 there will be a
standardized mechanism available for use in EJB class construction and
deployment. Look for some significant improvements in usability.

RESOURCES23.8

• Visit http://geronimo.apache.org for the latest information on
Geronimo.

• Visit http://www.jboss.org for the latest information on JBoss.

For more information about all the tags that can be put into the various
XML configuration files, look at the DTD files which define them, for example:

• http://java.sun.com/dtd/ejb-jar_2_0.dtd

• http://www.jboss.org/j2ee/dtd/jboss.dtd

• http://www.jboss.org/j2ee/dtd/jboss-web.dtd

XDoclet in Action by Craig Walls and Norman Richards (Manning Publi-
cations, ISBN 1932394052) covers the Open Source XDoclet tool for automat-
ing the generation of Java code and related files (e.g., deployment descriptors).

51923.8 Resources

We try to wrap this whole thing up, talk about the future, and beg for
your help.

THE FUTURE’S SO BRIGHT, I SQUINT AND LOOK CONFUSED24.1

Our crystal ball is a bit foggy, though. Linux is a moving target, and so is Java.
In a twist of fate that few could have predicted, the Mono project has a .NET
development platform for Linux (and, in fact, for most UNIX-like operating
systems). Sun has been talking about open-sourcing Java.1 New languages and
tools emerge all the time. Heck, Geronimo popped up during the research and
writing of this very book, while JBoss was the first to pass the Compatibility
Test Suite for J2EE. Two minor and one major Java release happened during
the writing of this book. A major Linux kernel release occurred. Naught endures
but mutability. (The only constant is change.)

1. And may we drop all pretense of objectivity and say “Go, Sun! Go! Open it up!”

Chapter 24

Parting Shots

521

The three things we can say with confidence are that with Java, Linux, and
Open Source, the platform and the tools only get better, the price doesn’t go
up, and everyone has the chance to play on an level field.

We wouldn’t dream of predicting the future, but we’re sure that both
Linux and Java will have a significant place in it.

OUR BOOK IS YOURS24.2

This is an Open Content book (as we explained in Preface). You will be able
to take it and do with it what you please. We plan to keep improving the book
online, and we’d like to invite you all to join in. The authors (who like to refer
to themselves in the third person) have the book set up on public servers at
http://www.javalinuxbook.com/ and we welcome comments, suggestions,
even patch files.

Don’t be afraid to participate. Credit of some sort will be given to every
accepted contribution.

CAME THE REVOLUTION24.3

A lot of people write about Free Software and Open Source in terms ranging
from economic history to political revolutionary rhetoric. One of your present
humble authors has even written the phrase “economic inevitability” in a weak
moment. And while there is ample room to speculate on the future by looking
at the past, and while there actually are legitimate issues of liberty, rights, and
politics in the mix, it is always shaky when an argument veers close to tautology
(“Free Software is right because it is right”).

Some people will actually choose Free Software for political reasons, just
as some Americans chose rebellion for political reasons. But the majority of
Americans in 1776 were not revolutionaries, and the majority of people using
Linux are not either. We have other concerns. In both cases, keeping bread on
the table is a greater concern for most than the revolutionary issue.

Read Richard Stallman’s writings if you are interested in the revolution.
Read Lawrence Lessig2 if you are interested in the politics and legal issues.

2. A Stanford Law School professor and founder of the Center for Internet and Society, Lessig
is the author of three remarkable books: Code and Other Laws of Cyberspace, The Future of Ideas:

Chapter 24 Parting Shots522

Most of us, however, will be asking how these technologies can put bread on
our table.

The key is lifelong learning. And that is where Open has a distinct advan-
tage. You want to know how it works? Look. There is a lot of good code (and
some very bad code) out there, free for the taking, analyzing, and for certain
uses. One of the arguments made for closed code is a quality argument. But as
programmers who have worked on closed systems, we can tell you that we have
seen plenty of bad code out that is closed and proprietary. You just have to look
at news about viruses and worms to know that. The point is that Open Source
and Free Software are a safer investment. In closed systems there is always
pressure to “churn” the APIs so that new OS versions and new development
tools can be sold. There is some of that in Free Software too, but you can watch
it as it happens, and if a program is your bread and butter, you can participate.

In any revolution, there are the brave and foolhardy rushing to the barri-
cades, banners in hand. But the sensible are keeping their heads down and try-
ing to figure out how to get through it all. We hope our modest contribution
helps the latter.

WHAT YOU STILL DON’T KNOW24.4

This is a book about writing Java applications on Linux systems. We hope we’ve
given you enough to get started, and pointed you to some tools and techniques
that, while they’ve been around a while, may not all be well known or
documented.

We’ve said it before, but each of our chapters tried to cover in a small
space what really takes volumes. Our aim has been to give you a flavor, and a
start, and a direction.

RESOURCES24.5

This book that you are reading is part of the Bruce Perens’ Open Source Series,
“a definitive series of Linux and Open Source books” according to the publisher

The Fate of the Commons in a Connected World, and Free Culture: How Big Media Uses Technology
and the Law to Lock Down Culture and Control Creativity.

52324.5 Resources

Prentice Hall PTR; and who are we to disagree? Seriously though, we encourage
you to check out any or all of the titles in the series.

We have already mentioned the more philosophical works by Stallman
and by Lessig. As a final reference we offer one that covers not the political
philosophy of Open Source but the practical philosophy of what makes Linux
so successful. It’s called Linux and the UNIX Philosophy by Mike Gancarz,
published by Digital Press (ISBN 1555582737). It gives practical examples of
the way Linux does things, which makes it so useful, so usable, and so enduring.
If you’re going to be developing on Linux, we encourage you to read it. It is
easier to swim with the tide, and understanding the design approaches behind
Linux will give you that advantage.

Chapter 24 Parting Shots524

All our favorite computer books have an ASCII chart. We wanted one, too.

Int Oct Hex ASCII Int Oct Hex ASCII
--- ---- --- ----- --- ---- --- -----
 0 000 00 ^@ 19 023 13 ^S
 1 001 01 ^A 20 024 14 ^T
 2 002 02 ^B 21 025 15 ^U
 3 003 03 ^C 22 026 16 ^V
 4 004 04 ^D 23 027 17 ^W
 5 005 05 ^E 24 030 18 ^X
 6 006 06 ^F 25 031 19 ^Y
 7 007 07 ^G 26 032 1a ^Z
 8 010 08 ^H 27 033 1b ^[
 9 011 09 ^I 28 034 1c ^\
 10 012 0a ^J 29 035 1d ^]
 11 013 0b ^K 30 036 1e ^^
 12 014 0c ^L 31 037 1f ^_
 13 015 0d ^M 32 040 20
 14 016 0e ^N 33 041 21 !
 15 017 0f ^O 34 042 22 "
 16 020 10 ^P 35 043 23 #
 17 021 11 ^Q 36 044 24 $
 18 022 12 ^R 37 045 25 %

Appendix A

ASCII Chart

525

Int Oct Hex ASCII Int Oct Hex ASCII
--- ---- --- ----- --- ---- --- -----
 38 046 26 & 83 123 53 S
 39 047 27 ' 84 124 54 T
 40 050 28 (85 125 55 U
 41 051 29) 86 126 56 V
 42 052 2a * 87 127 57 W
 43 053 2b + 88 130 58 X
 44 054 2c , 89 131 59 Y
 45 055 2d - 90 132 5a Z
 46 056 2e . 91 133 5b [
 47 057 2f / 92 134 5c \
 48 060 30 0 93 135 5d]
 49 061 31 1 94 136 5e ^
 50 062 32 2 95 137 5f _
 51 063 33 3 96 140 60 `
 52 064 34 4 97 141 61 a
 53 065 35 5 98 142 62 b
 54 066 36 6 99 143 63 c
 55 067 37 7 100 144 64 d
 56 070 38 8 101 145 65 e
 57 071 39 9 102 146 66 f
 58 072 3a : 103 147 67 g
 59 073 3b ; 104 150 68 h
 60 074 3c < 105 151 69 i
 61 075 3d = 106 152 6a j
 62 076 3e > 107 153 6b k
 63 077 3f ? 108 154 6c l
 64 100 40 @ 109 155 6d m
 65 101 41 A 110 156 6e n
 66 102 42 B 111 157 6f o
 67 103 43 C 112 160 70 p
 68 104 44 D 113 161 71 q
 69 105 45 E 114 162 72 r
 70 106 46 F 115 163 73 s
 71 107 47 G 116 164 74 t
 72 110 48 H 117 165 75 u
 73 111 49 I 118 166 76 v
 74 112 4a J 119 167 77 w
 75 113 4b K 120 170 78 x
 76 114 4c L 121 171 79 y
 77 115 4d M 122 172 7a z
 78 116 4e N 123 173 7b {
 79 117 4f O 124 174 7c |
 80 120 50 P 125 175 7d }
 81 121 51 Q 126 176 7e ~
 82 122 52 R 127 177 7f ^?

Appendix A ASCII Chart526

This is the listing of the GUI for BudgetPro. For a discussion, see Chapter 16.

 1 package net.multitool.gui;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import javax.swing.*;
 6 import javax.swing.event.*;
 7 import javax.swing.table.*;
 8 import java.util.*;
 9 import net.multitool.core.*;
 10
 11 /**
 12 * This class is the main application class for the BudgetPro gui
 13 */
 14
 15 public class
 16 BudgetPro
 17 {
 18 Account top;
 19 Account current;
 20

527

Appendix B

A Java Swing GUI
for BudgetPro

 21 // gui components
 22 private JFrame frame; // needed by dialogs to root themselves
 23 private JLabel nam;
 24 private JLabel tot;
 25 private JLabel val;
 26 private JButton upton = new JButton(
 new ImageIcon("net/multitool/gui/back.gif"));
 27 private JButton creat = new JButton("New Subaccount");
 28 private JButton view = new JButton("View Subaccount");
 29 private JButton clos = new JButton("Quit");
 30
 31 private JTable list;
 32 private AbstractTableModel model;
 33
 34 private AcctDialog askem; // make once, use often
 35
 36 // Set Up an Action for a Button
 37 private ActionListener upAction = new ActionListener()
 38 {
 39 public void
 40 actionPerformed(ActionEvent e)
 41 {
 42 // this is the action for UP arrow icon;
 43 Account next;
 44 next = current.getParent();
 45 if (next != null) {
 46 current = next;
 47 setStatus();
 48 // TODO: notify the table, too
 49 model.fireTableDataChanged();
 50 } // TODO: else infodialog or Beep.
 51 }
 52 } ;
 53
 54 private ActionListener cdAction = new ActionListener()
 55 {
 56 public void
 57 actionPerformed(ActionEvent e)
 58 {
 59 // this is the action for VIEW subdirectory;
 60 // a "cd" into the subaccount.
 61 int row = list.getSelectedRow();
 62 // System.out.println("Row="+row); // DEBUG; TODO: REMOVE
 63 if (row > -1) { // only if a row was selected
 64 String subname = (String) model.getValueAt(row, 0); // name column
 65 Account next = current.getSub(subname);
 66 if (next != null) {
 67 current = next;
 68 // System.out.println("cd to:"+current.getName());

Appendix B A Java Swing GUI for BudgetPro528

 69 setStatus();
 70 // notify the table, too
 71 model.fireTableDataChanged();
 72 } // TODO: else infodialog or Beep.
 73 }
 74 }
 75 } ;
 76
 77 // TEST ONLY:
 78 int testid = 0;
 79
 80 BudgetPro(JFrame frame, String username, String value)
 81 {
 82 this.frame = frame;
 83 top = new Account("TopLevel", new User(username), value);
 84 current = top;
 85
 86 } // constructor
 87
 88 private Component
 89 createStatus()
 90 {
 91 JPanel retval = new JPanel(); // default: flow layout
 92
 93 upton.addActionListener(upAction);
 94
 95 nam = new JLabel("Account: Name");
 96 tot = new JLabel("Total: $");
 97 val = new JLabel("Remaining: $");
 98
 99 retval.add(upton);
100 retval.add(nam);
101 retval.add(tot);
102 retval.add(val);
103
104 setStatus();
105
106 return retval;
107 } // createStatus
108
109 /**
110 * Set the values of the status fields,
111 * as when the account has changed.
112 */
113 private void
114 setStatus()
115 {
116 nam.setText("Account: "+current.getName());
117 tot.setText("Total: $"+current.getTotal());

529Appendix B A Java Swing GUI for BudgetPro

118 // tot.setText("SubAccounts: "+current.size());
119 val.setText("Remaining: $"+current.getBalance());
120
121 // disable the button if there is no "up" to go
122 if (current.getParent() == null) {
123 upton.setEnabled(false);
124 } else {
125 upton.setEnabled(true);
126 }
127
128 } // setStatus
129
130 private Component
131 createList()
132 {
133 JScrollPane retval;
134
135 model = new AbstractTableModel()
136 {
137 private String [] columnNames = {"Account", "Owner", "Value"};
138
139 public String
140 getColumnName(int col) {
141 return columnNames[col];
142 } // getColumnName
143
144 public int
145 getRowCount()
146 {
147 int retval;
148
149 if (current != null) {
150 retval = current.size();
151 } else {
152 retval = 1; // testing only
153 }
154
155 return retval;
156
157 } // getRowCount
158
159 public int getColumnCount() { return columnNames.length; }
160
161 public Object
162 getValueAt(int row, int col) {
163 Object retval = null;
164 Account aa = null;
165 // return "---"; // rowData[row][col];
166 int count = 0;

Appendix B A Java Swing GUI for BudgetPro530

167 for (Iterator itr=current.getAllSubs(); itr.hasNext();)
168 {
169 count++;
170 aa = (Account) itr.next();
171 if (count > row) { break; }
172 } // next
173 switch (col) {
174 case 0:
175 retval = aa.getName();
176 break;
177 case 1:
178 retval = aa.getOwner();
179 break;
180 case 2:
181 retval = aa.getTotal();
182 break;
183 } // endswitch
184 return retval;
185 } // getValueAt
186
187 public boolean
188 isCellEditable(int row, int col)
189 {
190 return false;
191 } // isCellEditable
192 };
193 list = new JTable(model);
194 list.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
195
196 list.getSelectionModel().addListSelectionListener(
197 new ListSelectionListener()
198 {
199 public void
200 valueChanged(ListSelectionEvent e)
201 {
202 ListSelectionModel lsm = (ListSelectionModel)e.getSource();
203 if (lsm.isSelectionEmpty()) {
204 view.setEnabled(false);
205 } else {
206 view.setEnabled(true);
207 }
208 } // valueChanged
209 }
210);
211
212 retval = new JScrollPane(list);
213
214 return retval;
215

531Appendix B A Java Swing GUI for BudgetPro

216 } // createList
217
218 private Component
219 createButtons(JRootPane root)
220 {
221 JPanel retval = new JPanel(); // default: flow layout
222
223 //Lay out the buttons from left to right.
224 retval.setLayout(new BoxLayout(retval, BoxLayout.X_AXIS));
225 retval.setBorder(BorderFactory.createEmptyBorder(10, 10, 10, 10));
226 retval.add(Box.createHorizontalGlue());
227 retval.add(creat);
228 retval.add(Box.createRigidArea(new Dimension(10, 0)));
229 retval.add(view);
230 retval.add(Box.createRigidArea(new Dimension(10, 0)));
231 retval.add(clos);
232
233 // -- Define some actions
234 ActionListener closAction = new ActionListener()
235 {
236 public void
237 actionPerformed(ActionEvent e)
238 {
239 System.exit(0);
240 }
241 } ;
242 clos.addActionListener(closAction);
243
244 ActionListener creatAction = new ActionListener()
245 {
246 public void
247 actionPerformed(ActionEvent e)
248 {
249 Account child;
250 // get the info via a Dialog (of sorts)
251 if (askem == null) {
252 askem = new AcctDialog(frame, "New Subaccount");
253 } else {
254 askem.clear();
255 askem.setVisible(true);
256 }
257 String subName = askem.getName();
258 String subAmnt = askem.getAmnt();
259
260 // if empty, assume the operation was cancelled, else:
261 if ((subName != null) && (subName.length() > 0)) {
262 child = current.createSub(subName, subAmnt);
263 setStatus();
264 model.fireTableDataChanged(); // notify the table

Appendix B A Java Swing GUI for BudgetPro532

265 }
266 }
267 };
268 creat.addActionListener(creatAction);
269
270 // function is to get selection from table and cd there
271 view.addActionListener(cdAction);
272 // but it starts off disabled, since there is no data yet
273 view.setEnabled(false);
274
275 // --
276 frame.getRootPane().setDefaultButton(creat);
277 clos.grabFocus();
278
279 return retval;
280
281 } // createButtons
282
283 public static void
284 main(String[] args)
285 {
286 BudgetPro app = null;
287
288 //Create the top-level container
289 JFrame frame = new JFrame("BudgetPro");
290
291 // ----------- set up the account/app based on the command line args
292 try {
293 String username = System.getProperty("user.name", "default");
294 if (args.length > 0) {
295 app = new BudgetPro(frame, username, args[0]);
296 } else {
297 System.err.println("usage: BudgetPro dollar_amt");
298 System.exit(1);
299 }
300 } catch (Exception e) {
301 System.err.println("Error on startup.");
302 e.printStackTrace();
303 System.exit(2);
304 }
305
306 // ----------- now set up the UI and get things going
307 try {
308 UIManager.setLookAndFeel(
309 UIManager.getCrossPlatformLookAndFeelClassName());
310 } catch (Exception e) {
311 System.err.println("Can't set the desired look and feel.");
312 e.printStackTrace();
313 System.exit(3);

533Appendix B A Java Swing GUI for BudgetPro

314 }
315
316 // build the pieces and add them to the top-level container
317
318 Component status = app.createStatus();
319 frame.getContentPane().add(status, BorderLayout.NORTH);
320
321 Component list = app.createList();
322 frame.getContentPane().add(list, BorderLayout.CENTER);
323
324 Component buttons = app.createButtons(frame.getRootPane());
325 frame.getContentPane().add(buttons, BorderLayout.SOUTH);
326
327 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
328 frame.pack();
329 frame.setVisible(true);
330 } // main
331
332 } // class BudgetPro

Here is the code for the dialog for creating new accounts,
AcctDialog.java:

 1 package net.multitool.gui;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import javax.swing.*;
 6 import javax.swing.table.*;
 7 import java.util.*;
 8 import net.multitool.core.*;
 9
 10 class
 11 AcctDialog
 12 extends JDialog
 13 {
 14 JDialog dialog; // for reference from the buttons' actions
 15 JTextField nameField;
 16 JTextField amntField;
 17
 18 AcctDialog(JFrame frame, String title)
 19 {
 20 super(frame, title, true);
 21 dialog = this;
 22 nameField = new JTextField(25);
 23 amntField = new JTextField(9);

Appendix B A Java Swing GUI for BudgetPro534

 24
 25 // right justify the numeric field
 26 amntField.setHorizontalAlignment(JTextField.RIGHT);
 27
 28 // TODO: so that <Enter> will do a create
 29 // this.getInputMap().put(KeyStroke.getKeyStroke("Enter"), "create");
 30 /*
 31 Action myAction = new AbstractAction("doSomething") {
 32 public void actionPerformed() {
 33 doSomething();
 34 }
 35 };
 36 myComponent.getActionMap().put(myAction.get(Action.NAME), myAction);
 37 */
 38
 39 //--Label on top----
 40 JLabel label = new JLabel("<html><p align=left><i>"
 41 + "Enter the info to create a subaccount.
"
 42 + "</i>");
 43 label.setHorizontalAlignment(JLabel.LEFT);
 44 Font font = label.getFont();
 45 label.setFont(label.getFont().deriveFont(font.PLAIN, 14.0f));
 46
 47 //--Text Fields-----
 48 String[] labels = {"(Sub)Account Name: ", "Dollar Amount: "};
 49 JTextField [] fields = {nameField, amntField};
 50 int numPairs = fields.length;
 51
 52 //Create and populate the panel.
 53 JPanel textes = new JPanel(new SpringLayout());
 54 for (int i = 0; i < numPairs; i++) {
 55 JLabel l = new JLabel(labels[i], JLabel.TRAILING);
 56 textes.add(l);
 57 l.setLabelFor(fields[i]); // not nec. since we have no kb shortcuts
 58 textes.add(fields[i]);
 59 }
 60
 61 //Lay out the panel.
 62 SpringUtilities.makeCompactGrid(textes,
 63 numPairs, 2, //rows, cols
 64 6, 6, //initX, initY
 65 6, 6); //xPad, yPad
 66
 67
 68 //--Buttons on bottom
 69 JButton createButton = new JButton("Create");
 70 createButton.addActionListener(new ActionListener() {
 71 public void actionPerformed(ActionEvent e) {
 72 nameField.grabFocus(); // before leaving, ready for next time.

535Appendix B A Java Swing GUI for BudgetPro

 73 dialog.setVisible(false); // go away
 74 }
 75 });
 76
 77 JButton cancelButton = new JButton("Cancel");
 78 cancelButton.addActionListener(new ActionListener() {
 79 public void actionPerformed(ActionEvent e) {
 80 clear(); // toss out any entry
 81 dialog.setVisible(false);
 82 }
 83 });
 84 getRootPane().setDefaultButton(createButton);
 85
 86 JPanel closePanel = new JPanel();
 87 closePanel.setLayout(new BoxLayout(closePanel, BoxLayout.LINE_AXIS));
 88 closePanel.add(Box.createHorizontalGlue());
 89 closePanel.add(createButton);
 90 closePanel.add(Box.createRigidArea(new Dimension(5, 0)));
 91 closePanel.add(cancelButton);
 92 closePanel.setBorder(BorderFactory.createEmptyBorder(10,0,5,5));
 93
 94 JPanel contentPane = new JPanel(new BorderLayout());
 95 contentPane.add(label, BorderLayout.PAGE_START);
 96 contentPane.add(textes, BorderLayout.CENTER);
 97 contentPane.add(closePanel, BorderLayout.PAGE_END);
 98 contentPane.setOpaque(true);
 99 setContentPane(contentPane);
100
101 //Show it.
102 setSize(new Dimension(300, 160));
103 setLocationRelativeTo(frame);
104 setVisible(true);
105
106 } // constructor
107
108 public String
109 getName()
110 {
111 String retval = null;
112 if (nameField != null) {
113 retval = nameField.getText();
114 }
115 return retval;
116 } // getName
117
118 public String
119 getAmnt()
120 {
121 String retval = null;

Appendix B A Java Swing GUI for BudgetPro536

122 if (amntField != null) {
123 retval = amntField.getText();
124 }
125 return retval;
126 } // getAmnt
127
128 public void
129 clear()
130 {
131 nameField.setText(null);
132 amntField.setText(null);
133 } // clear
134
135 } // class AcctDialog

537Appendix B A Java Swing GUI for BudgetPro

Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

PREAMBLE

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change free software—to make sure the
software is free for all its users. This General Public License applies to most of
the Free Software Foundation’s software and to any other program whose au-
thors commit to using it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License instead.) You can apply
it to your programs, too.

539

Appendix C

GNU
General Public License

When we speak of free software, we are referring to freedom, not price.
Our General Public Licenses are designed to make sure that you have the free-
dom to distribute copies of free software (and charge for this service if you
wish), that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs; and that you know
you can do these things.

To protect your rights, we need to make restrictions that forbid anyone
to deny you these rights or to ask you to surrender the rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or
for a fee, you must give the recipients all the rights that you have. You must
make sure that they, too, receive or can get the source code. And you must show
them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy, distribute
and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients to
know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will individually
obtain patent licenses, in effect making the program proprietary. To prevent
this, we have made it clear that any patent must be licensed for everyone’s free
use or not licensed at all.

The precise terms and conditions for copying, distribution, and
modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION, AND
MODIFICATION

0. This License applies to any program or other work which contains a no-
tice placed by the copyright holder saying it may be distributed under the
terms of this General Public License. The “Program,” below, refers to any
such program or work, and a “work based on the Program” means either

Appendix C GNU General Public License540

the Program or any derivative work under copyright law: that is to say, a
work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification.”)
Each licensee is addressed as “you.”

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of running the
Program is not restricted, and the output from the Program is covered
only if its contents constitute a work based on the Program (independent
of having been made by running the Program). Whether that is true
depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients
of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of
it, thus forming a work based on the Program, and copy and distribute
such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any part
thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such interac-
tive use in the most ordinary way, to print or display an announce-
ment including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and
that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an

541C.2 Terms and Conditions for Copying, Distribution, and Modification

announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If iden-
tifiable sections of that work are not derived from the Program, and can
be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to
each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works based
on the Program.

In addition, mere aggregation of another work not based on the
Program with the Program (or with a work based on the Program) on a
volume of a storage or distribution medium does not bring the other work
under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1
and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b) Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of
physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c) Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed
only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in
accord with Subsection b above.)

Appendix C GNU General Public License542

The source code for a work means the preferred form of the work
for making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any asso-
ciated interface definition files, plus the scripts used to control compila-
tion and installation of the executable. However, as a special exception,
the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the
executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access
to copy from a designated place, then offering equivalent access to copy
the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source
along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automatical-
ly terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing
the Program (or any work based on the Program), you indicate your ac-
ceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Pro-
gram), the recipient automatically receives a license from the original li-
censor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recip-
ients’ exercise of the rights granted herein. You are not responsible for
enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringe-
ment or for any other reason (not limited to patent issues), conditions are
imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from

543C.2 Terms and Conditions for Copying, Distribution, and Modification

the conditions of this License. If you cannot distribute so as to satisfy si-
multaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program
at all. For example, if a patent license would not permit royalty-free redis-
tribution of the Program by all those who receive copies directly or indi-
rectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to ap-
ply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any such
claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed
to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus exclud-
ed. In such case, this License incorporates the limitation as if written in
the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Pro-
gram specifies a version number of this License which applies to it and
“any later version,” you have the option of following the terms and con-
ditions either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number

Appendix C GNU General Public License544

of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EX-
TENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU AS-
SUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
TRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPE-
CIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (IN-
CLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH

545C.3 NO WARRANTY

HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

HOW TO APPLY THESE TERMS TO YOUR NEW PROGRAMS

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of
warranty; and each file should have at least the “copyright” line and a pointer
to where the full notice is found.

one line to give the program's name and an idea of what it does.
Copyright (C) year name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when

it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type `show w'. This is free software, and you are welcome
to redistribute it under certain conditions; type `show c'
for details.

Appendix C GNU General Public License546

The hypothetical commands ‘show w’ and ‘show c’ should show the ap-
propriate parts of the General Public License. Of course, the commands you
use may be called something other than ‘show w’ and ‘show c’; they could
even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if necessary.
Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program `Gnomovision'
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General Public
License instead of this License.

547C.5 How to Apply These Terms to Your New Programs

Symbols
- (minus)

in command-line options, 26
operator, 56
in permissions, 11
in regular expressions, 43
in shell pattern matching, 14

-- (double minus)
in command-line options, 26
operator, 56

-= operator, 56
_ (underscore) in filenames, 10
: (colon)

in classpath, 24, 107, 119
in shell pattern matching, 14
in vi, 37, 43–45

! (exclamation mark)
operator, 56
in shell pattern matching, 14

!= operator, 56
? (question mark)

as command-line option, 29
in shell pattern matching, 14, 196
in SQL, 333
in URLs, 406, 412

?: operator, 56
/ (forward slash)

as file separator, 107
in HTML/XML, 221–222, 433
operator, 56

// comments, 66
/* ... */ comments, 66, 128
/** ... */ comments, 128

/= operator, 56
. (dot)

as current working directory, 12, 20, 24, 29,
121, 238

in filenames, 10
in regular expressions, 43

.. (dot-dot) parent directory, 12

... (ellipsis) in method declarations, 82
^ (hat)

for the Control key, 18
operator, 56
in regular expressions, 43
in shell pattern matching, 14

^= operator, 56
~ operator, 56
' (single quote)

for literals in SQL, 333
in shell pattern matching, 15

" (double quote)
for Strings in Java, 60, 333
in shell pattern matching, 15, 108

[] (square brackets)
array operator, 55–56
in regular expressions, 43
in shell pattern matching, 14

{} (braces)
array operator, 55
for compound statements, 66–70
in Javadoc comments, 130
in shell pattern matching, 108

@ (at), 181
in command-line options, 117, 123
in Javadoc comments, 128

Index

549

$ (dollar)
in format fields, 81
in regular expressions, 43
in shell pattern matching, 15, 22

$$ environment variable, 108
* (asterisk)

in import statements, 85–86
operator, 56
in password fields, 373
in regular expressions, 43
in shell pattern matching, 13, 16, 113, 196

*= operator, 56
\ (backslash) in shell pattern matching, 15
& (ampersand)

operator, 56
in regular expressions, 43
in URLs, 406, 412

&& operator, 56
&= operator, 56
(hash)

in comments, 196
in properties files, 111

% (per cent)
operator, 56
in regular expressions, 43

%= operator, 56
+ (plus)

operator, 56, 60
in permissions, 11
in regular expressions, 43
in URLs, 413

++ operator, 56
+= operator, 56
< (less-than)

operator, 56
as redirection command, 6

< ... >

in command-line syntax, 73
in HTML/XML, 221

<? ... ?>, 222
<% ... %>, 426–431, 434
<%! ... %>, 429–430, 434
<%@ ... %>, 431–433
<%= ... %>, 430–431, 434
<< operator, 56
<<= operator, 56
<= operator, 56

> (greater-than)
operator, 56
as redirection command, 6

>= operator, 56
>> operator, 56
>>= operator, 56
>>> operator, 56
>>>= operator, 56
= operator, 56
== operator, 56, 61, 91
| operator, 56, 391
|= operator, 56
|| operator, 56

Numbers
0wn3d systems, 486
2-tier systems, 138
3-tier systems, 138

A
a element (HTML), 412
A Windowing Toolkit, see AWT
abstract access modifier, 94
AbstractTableModel class, 359–363, 368,

389
access modifiers, 88–94
ActionListener class, 356
actionPerformed(), 356, 367, 371
ActiveX, 390
add(), 142, 352–353, 391
addActionListener(), 391
addControlListener(), 392
addCookie(), 415
addFocusListener(), 392
addHelpListener(), 392
addKeyListener(), 393
addMouseListener(), 393
addMouseMoveListener(), 393
addMouseTrackListener(), 393
addPaintListener(), 393
address space conflicts, 380
addSelectionListener(), 391–393
addTraverseListener(), 393
afterLast(), 336
Albaugh, Tyrrell, xxv
Albing, Andrew, xxv
algebraic expressions, 52
alien package, 322

Index550

Alpha architecture, 186
Ant, 161, 215–233, 397, 505

building JAR/WAR/EAR files, 513, 516
command-line options, 223
comparing with make, 225
datatypes, 228
documentation, 232–233
installing, 217–220
properties, 224
targets, 223
tasks, 225–228, 464, 516
using with CVS, 516–517
using with EJBs, 502
using with gcj, 226
using with JUnit, 303, 312
using with NetBeans, 248–249
using with XDoclet, 517–518

ANT_HOME environment variable, 219–220
AOP (aspect-oriented programming), 277
Apache, 217, 321, 444, 446, 464
append(), 419
applets, 131, 145, 165, 226
appletviewer, 131
application servers, 325, 444, 476
applications

building, 216
deploying, 160–163
developing, see software engineering
distributing, 157
Free, see Free Software
nonsystem, 446
Open, see Open Source
readability of source code, 70
releases, 190, 208, 210, 312
reliability, 264
running, 100, 111–113
testing, 103–104

archives, 26
Array class, 333
ArrayList class, 333
arrays, 55–57

associative, 482
checking, 185
multidimensional, 55
operators for, 56
ragged-edged, 57
size, 55
zero-based, 333

ASCII encoding, 48, 165, 525–526
asedit, 49
ASP clients, 480
aspect-oriented programming, see AOP
Assert class, 308
assertEquals(), 306, 308
assertFalse(), 307
assertNotNull(), 306–307
assertNotSame(), 307
assertNull(), 307
assertSame(), 307–308
assertTrue(), 307
assignments, 56, 59, 66
atd, 454, 459
authentication, 164–165, 324, 485–486
@author tag (Javadoc), 127–129, 518
autoconf, 446
AWT (A Windowing Toolkit), xxiii, 251, 341,

344–345, 384
axe, 48

B
backups, 190, 317
Barry, Dave, 17
.bash_profile file, 173
bash shell, 5, 7, 22, 397
.bashrc file, 24–25, 193, 240
bean-managed persistence, see BMP
beans, see EJBs, JavaBeans
BeanShell, 259
BEAWeblogic, xxviii
Beck, Kent, 280
beforeFirst(), 336
Berkeley DB, 321
BigDecimal class, 54, 175, 333
BigInteger class, 54
binding, 482, 484
BMP (bean-managed persistence), 479
BNF language grammar, 65
book’s Web site, xxiv, 229, 350, 395, 417,

493, 517, 522
Boolean class, 62
boolean type, 54, 56

converting to String, 80
BorderLayout class, 352–353, 372, 374,

390
Borland, 236
BoxLayout class, 354–355, 372, 374

551Index

break statement, 67, 74–75
browsers, 404

connecting with a server, 413
plug-ins, 166
sessions, 414–415

Bruce Perens’ Open Source Series, xxii, xxiv,
523

BSD/UNIX, 5
B-trees, 321
BudgetPro

as a servlet, 416–420, 423, 430
buildfile for, 464
database for, 320, 324
EAR file for, 506–512, 515
in JSP, 424–426, 438
in Swing, 348–373, 527–537
in SWT, 387–395

buildfiles (build.xml), 220–231, 248, 257,
516

Button class, 385, 388, 391–392
buttons (in GUI), 345, 352, 355–356, 374

actions, 356–358, 374
enabled/disabled, 357, 392

byte type, 53–54
bzip2, 218

C
C language, 53, 249
C++ language, 249

exceptions, 77
operator overloading, 52
templates, 94
virtual methods, 96

CallableStatement class, 337
Canvas class, 385
Capability Maturity Model, see CMM
Caret class, 385
Carnegie, Dale, 274
case statement, 67
Cash-Peterson, Patrick, xxiv
Castor, 321
cat, 17
catch statement, 76–79
char type, 54
characters

coding, 54
counting, in a file, 9
escaping, 9, 15

characters (continued)
lowercase/uppercase, 61
ranges, 14–15

check boxes (in GUI), 346
chgrp, 11, 448
chkconfig, 456, 458–463
chmod, 11, 240, 448, 463
chown, 11
CICS (Customer Information Control

System), 518
CIDR (Classless Inter-Domain Routing), 485
CIFS filesystem, 485
class statement, 86
classes, 34, 58, 86

abstract, 305, 368
base, 285
compiling, 117, 119
constructors for, 59, 140
core language, 86
deprecated, 120, 127, 129
documentation, 518
extended, 87–91, 96
files, 58–59, 84–85, 117, 119

disassembling, see javap
grouping, 83
inherited, 87–91, 94, 284
inner, 59, 87, 348, 356, 360, 393
instances, 58
names, 83–86, 119
referencing, 85–86
RMI serial versions, 165
scope, 59
testing, 102
without package declaration, 183

classpath, 117–119, 181
bootstrap, 117
runtime, 119, 121–122

CLASSPATH environment variable, 84–85,
118, 145, 158, 184, 211, 242, 297, 301,
308, 332, 501

overriding, 119, 121–122
setting, 119

clients
compiling, 147
developing, 142–143
setting up, 144–147
working with servers, 138

Index552

CMM (Capability Maturity Model), 277,
286, 288–289

CMP (container-managed persistence), 476,
479

CNI (Compiled Native Interface), 186
CodeCommander, 48
collections, 70–74
color choosers (in GUI), 347
combo boxes (in GUI), 346, 385
Combo class, 385
command line, 4, 151, 258, 341

options, 26, 100–102
standard I/O, 6

commands
built-in, 24
documentation, 29
installing, 24
online help, 29
searching, 24, 29

comments
in HTML, 428
in Java, 66, 428, 518
in Javadoc, 127–131

commit(), 77
Compatibility Test Suite for J2EE, 521
compilation, 179–188, 248

of a multiclass application, 184
cross-platform, 180, 186, 446
with debug information, 120, 227
speed, 348
see also gcj, javac

Compiled Native Interface, see CNI
Composite class, 385, 388–389, 392, 394
Concurrent Versioning System, see CVS
conditionals, 66–67
Connection class, 325, 329
constants, 90–91
constructors, 59, 140
cont, 156
container-managed persistence, see CMP
containers

EJB, 444, 474, 476, 491, 495
J2EE, 479, 505
Swing, 344
Web, 476

containsKey(), 111
containsValue(), 111

context, 479, 484
initial, 489–491
switching, 476

Context class, 490
continue statement, 74–75
Control class, 389
cookies, 414–415
copy tag (Ant), 227
CORBA (Common Object Request Broker

Architecture), 144, 165, 175, 480
CRC cards, 280–288
createAction(), 371
createButtons(), 355, 391, 394
createdb, 324
createList(), 360, 369, 391, 394
createStatus(), 353, 358, 391, 394
createuser, 323
csh shell, 5, 105
Cunningham, Ward, 280
Customer Information Control System, see

CICS
CVS (Concurrent Versioning System), 126,

189–214, 241
checkouts, 191, 197–198, 210, 244, 246
command-line options, 198, 204, 207, 210
commits, 191–194, 198–203, 244, 246
differences between versions, 199–201, 246
documentation, 214
editor invocations, 198
exports, 210
imports, 196–197
logs, 199, 203–205, 246
merging, 201–203
repositories, 191

initializing, 193–195
remote, 195, 214

sandboxes, 191, 194, 210
status, 205, 246
tags, 191, 205–210

branching, 207–210
deleting, 207
moving, 207
sticky, 205, 209

updates, 191–194, 198, 201–202, 246
using with Ant, 516–517
using with Eclipse, 259
using with NetBeans, 244–248

CVS directories, 194, 197, 209–210

553Index

CVS_RSH environment variable, 214, 516
CVSEDITOR environment variable, 198
.cvsignore file, 195–196
.cvspass file, 195
CVSROOT directories, 194
CVSROOT environment variable, 193–194,

209, 516
.cvswrappers file, 195–196

D
daemons, 323, 407
data types

nonobject, 52
numeric, 53–54
object, 57–64
wrappers for, 62

databases, 138, 315–326
connecting to, 328–332, 336, 496
creating, 324
interaction with, 327, 480
normalizing, 326
querying, 328, 332–334, 411
relational, 322, 518
selection criteria, 318
setup, 318
updating, 336

DataSource class, 336
DataType class, 228
Date class, 81
Davidson, James Duncan, 216–217
Debian, 47, 322, 457, 463
debugging, 91, 103, 136, 148–151

adding information to class files, 120, 176
declarations, in JSP, 434
default statement, 67
DefaultTableModel class, 368
@deprecated tag (Javadoc), 120, 129
destroy(), 404, 407
dialogs (in GUI), 370–373

dismissed, 372
modal, 372

dir, 14
directories, 483–484

current working, 12, 20, 24, 29, 107, 121,
238

home, 107

directories (continued)
listing files in, 9, 15
parent, 12
permissions of, see permissions

directory services, 482–487, 491, 494
Display class, 381, 384, 386–390
dispose(), 380, 388
DNS (Domain Name Service), 482–484,

487–491
Docbook, 221
doclets, 123, 126
@docRoot tag (Javadoc), 130
Document Style Semantics and Specification

Language, see DSSSL
Document Type Definitions, see DTDs
documentation, 122–131

comments, 127–131
links, 127, 130–131

doGet(), 404, 407, 412, 418, 427, 429
Domain Name Service, see DNS
domains, 83
doPost(), 405, 407, 412, 418, 427, 429
DoS (Denial of Service) attacks, 489, 491
Double class, 333, 359
double type, 53–54
do-while statement, 68–69, 75
DriverManager class, 329, 336
DSSSL (Document Style Semantics and

Specification Language), 221
DTDs (Document Type Definitions), 220,

222
dump, 156
DynamicJava, 259

E
e3, 49
EAR files, 28, 506–514

building with Ant, 513, 516
deploying, 514–516

echo, 239
Eclipse, 175, 251–258, 378–379, 382, 396,

464
documentation, 260, 383
downloading, 252
GTK vs. Motif versions, 252, 383, 396
installing, 251–254

Index554

Eclipse (continued)
perspectives, 253

Debug, 253–254
Java, 256–258
Resource, 253–256

projects, 254
refactoring, 258–259, 388
using with CVS, 259
using with JUnit, 312
using with XDoclet, 519
views, 253
working with, 257–258

ed, 47
eddi, 48
EDITOR environment variable, 198
ejbCreate(), 496
EJBHome class, 498–499
EJB-JAR files, 508–511
ejb-jar.xml, 509–511, 519
EJBLocalHome class, 499–501
EJBLocalObject class, 499–501
EJBObject class, 495, 497–498, 512
ejbRemove(), 496
EJBs (Enterprise JavaBeans), 138, 148, 216,

473–492, 518
activating/passivating, 475–476, 496
compiling, 501–502
creating, 475
deploying, 505–519
destructing, 475
documentation, 503
entity, 475–476, 479, 492, 499, 503
implementing, 474, 493–503
message, 475, 481
session, 475–481, 492, 495, 499

stateful, 476, 478–479, 502
stateless, 476–477, 495–498

using with Ant, 502
elvis, 34–35
Emacs, 34, 48–49, 214
encapsulation, 86–87
endsWith(), 61
Enterprise Java, see J2EE
Enterprise JavaBeans, see EJBs
enterprise systems, 138
EntityBean class, 475
enum statement, 91

enumerated values, 90–91
Enumeration class, 71, 490
env, 108
ENVFILE environment variable, 109–110
.envfile file, 110
environment variables, 22–25, 104–109, 219

exporting, 22, 105
names, 105
passing to Java, 107
setting, 23, 105
substituting, 15

environments, 104–110
equals(), 61
equalsIgnoreCase(), 61
Error class, 306
error handling, 75–79
error messages, 6–8, 112
/etc/inittab, 451–453, 457
events

loops, 381
time, 348

ex, 37
Exception class, 76–77, 306, 490
@exception tag (Javadoc), 130
exceptions, 75–76, 79, 130

catching, 78
creating, 77
extending, 75, 77
null pointer, 59
stack trace, 77
throwing, 76–77

Exclude datatype (Ant), 228
exec(), 111–113
executeUpdate(), 336
exit, 24
export, 23, 105, 194
expressions

in Java, 66
in JSP, 434

.exrc file, 44–45
ext directory, 301, 332
extcheck, 164
extends statement, 87–88, 92
Extensible HyperText Markup Language, see

XHTML
Extensible Markup Language, see XML

555Index

F
fail(), 307
false constant, 54
FAT filesystem, 485
Fedora, 322, 324, 452–453, 456, 458–463
FetchURL, 97, 158

compiling, 117–118, 182–183
running, 121, 148–156

file, 16–17
file choosers (in GUI), 347
File Transfer Protocol, see FTP
filenames, 9–10, 168, 483–484

case sensitiveness, 10
changing, 12, 25
extensions, 10
spaces in, 10

files
access time, 21
counting characters, words, lines in, 9
deltas, 210
descriptors, 102–104
modification time, 9, 16, 21
moving, 11–13
ownership of, see owners
permissions of, see permissions
searching, 19–21
size, 9, 16
temporary, 109
types, 17
viewing, 18

filesystems, 483, 485
mounted, 170–171, 245
networked, 171

FillLayout class, 390
FilterSet datatype (Ant), 228
final access modifier, 87, 90–91, 96
finally statement, 78–79
find, 19–21, 29, 397
fireTableCellUpdated(), 369
fireTableChanged(), 369
fireTableDataChanged(), 368–369
fireTableRowsDeleted(), 369
fireTableRowsInserted(), 369
fireTableRowsUpdated(), 369
fireTableStructureChanged(), 369
Float class, 62

float type, 53–54
FlowLayout class, 354
folders, see directories
for statement, 69–70

for arrays, 74
changing execution, 75
for collections, 74
compared with the while loop, 70, 73
with multiple expressions, 69
in shell scripts, 21, 25

form element (HTML), 406
format fields, 80–82
Formatting class, 82
Free Software, xxiii–xxiv, xxviii, 180, 379,

446, 522–523
FSF (Free Software Foundation), xxiii, 180
fte, 49
FTP (File Transfer Protocol), 142, 485

G
garbage collection, 380, 388, 436
Garbage In, Garbage Out, 312
gcc (GNU Compiler Collection), 181, 188
gcc (GNU C Compiler), 180
gcj (GNU Compiler for Java), xxiii, xxv, 157,

181–188, 379
command-line options, 182–185
documentation, 188
installing, 144
performance, 186–187
using with Ant, 226
using with SWT, 396–398

GECOS, 447
gEdit, 48
General Public License, see GNU GPL
generics feature, 94–95
Gentleware, 249
Geronimo, 464–466, 495, 501, 521

deploying, 515
documentation, 468–469, 519
installing, 467
mapping, 509
running, 468

GET request, 406
getAttribute(), 414
getColumnCount(), 360
getColumnName(), 360

Index556

getConnection(), 329
getContentPane(), 352
getCookies(), 415
GetDomain class, 489
getenv(), 105–106
getInt(), 334–335
getName(), 363
getOwner(), 363
getParameterNames(), 412
getParameterValues(), 413
getPlatform(), 390
getProperties(), 106
getProperty element (JSP), 435
getProperty(), 106, 110–111
getRow(), 336
getRowCount(), 360
getSelectedRow(), 367
getSelectionModel(), 366
getSession(), 414
getString(), 334–335
getTableCellRendererComponent(),

364
getTableHeader(), 369
getTotal(), 363, 435
getty, 451
GetUser class, 132–137
getValueAt(), 360, 363–364, 367
getVersion(), 390
GHOME environment variable, 501
gid (group ID), 446–447
GIGO (Garbage In, Garbage Out), 312
GIMP (GNU Image Manipulation Program),

252
Glimmer, 48
GNOME, 48
GNU, xxiv, 5, 26, 179–180
GNU C Compiler, see gcc
GNU Classpath, 182
GNU Compiler Collection, see gcc
GNU Compiler for Java, see gcj
GNU GPL (General Public License), xxiv,

180, 182, 379, 539–547
GNU/Linux, see Linux
GnuPG (GNU Privacy Guard), 164, 218–219
Graphics2D class, 385
grep, 18–19, 180
Group class, 385, 389, 391

GTK (GIMP Toolkit), 252, 383
GUI, 151, 341

and program parameters, 100
construction time, 348
designing, 347–374
graphical objects, 345–347
native compiled, 378–379
rigid areas, 355

gvim, 35
gzip, 218, 466

H
hard links, 168–171
Hashtable class, 106, 111
Hashtables class, 70
Hayes, Andrew, xxv
head, 18
header files, 133
“Hello, world”

in Swing, 342–344
in SWT, 381–384
Web page, 407–410

Hibernate, 321
HOME environment variable, 25, 105, 160
hosts, 83
HTML (HyperText Markup Language), 221,

405
comments, 428
dynamically generated, 406–407
forms, 406, 412
generated from XML, 406
hyperlinks, 416
using for prototyping, 275

HttpRequest class, 414
HttpServlet class, 404, 407, 430
HttpServletRequest class, 415
HttpServletResponse class, 418
HURD microkernel, 180
Huseth, Steve, xxv
hyperlinks, 416
HyperText Markup Language, see HTML

I
I/O, 79

closing, 78
redirecting, 6, 163
standard, 6–8, 102–104

557Index

IBM, 236, 377, 518
Common Public License, 379
developerWorks, xxv, 396
Java SDK, xxiii, xxiv, 167–177, 378

debugging, 176
differences from SUN Java SDK,

174–176
installing, 173
performance, 175

MQSeries, 481
PC, 34, 48
Web site, 176–177

ide.cfg, 238
Idea IDE, 236
ident, 324
Identifiable class, 88
IDEs (Integrated Development

Environments), 213, 235–260, 505
IDL (Interface Definition Language), 144, 165
if-else statement, 66–67

inline, 56
in shell scripts, 21

IIOP (Internet Inter-ORB Protocol), 144,
165, 175, 480

ImageIcon class, 358
implements statement, 87, 92
import statement, 85–86, 90, 432
include C/C++ directive, 85
Include datatype (Ant), 228
IndexOutOfBounds exception, 62
info, 30
init, 452
init(), 404, 407, 512
InitialContext class, 487
InitialDirContext class, 490
initialization files, 24
InnoDB tables, 317
int type, 53, 333

converting to String, 80
Integer class, 62, 359
Integrated Development Environments,

see IDEs
IntelliJ, 236
interfaces, 87–88, 139

generating with XDoclet, 518
home, 474, 494–495, 498–499, 511–512
implementating, 87–88, 91–92
inherited, 88

interfaces (continued)
local, 492, 495, 499–501
local home, 500
remote, 144, 474, 478, 492, 494–495,

497–498, 512
remote home, 498

internationalization, 80–81
IP addresses, 482–484
IPv6, 485
IRIX operating system, 456
isAfterLast(), 335
isBeforeFirst(), 335
isCellEditable(), 365
isEmpty(), 111
isFirst(), 335
isLast(), 335
ISO (International Organization for

Standardization), 485
isTotal(), 435
iterators, 70–74

J
J2EE (Java 2 Enterprise Edition), 28, 115,

148, 444, 464–466, 498–499, 501, 510,
517–518

documentation, 492, 503
J2SE (Java 2 Standard Edition), 62, 115
Jakarta project, 438, 444
JApplet class, 344
jar, 28, 157–164, 506, 513

command-line options, 163–164
JAR files, 17, 28, 122, 157–164

building with Ant, 513, 516
digitally signed, 164–165
in NetBeans, 241

jar tag (Ant), 227
jarsigner, 164
java, 121–122, 156, 158, 175

command-line options, 122
Java, 94–95, 522

and Open Source, xxiii–xxiv, 521
comments, 66, 428, 518
documentation, xxviii, 166
performance, 378
portability, 53
version 5.0, 73, 80, 90, 94
versions 1.2 and older, 105
versions 1.3 and newer, 106

Index558

Java Compiler, see javac
Java Data Objects, see JDO
Java DataBase Connectivity, see JDBC
Java Debugger, see jdb
Java Decompiler, see javap
JAVA_HOME environment variable, 173,

219–220, 332
Java Naming and Directory Interface, see

JNDI
Java Native Interface, see JNI
Java Runtime, see java
Java SDKs (Software Development Kits)

IBM, see IBM Java SDK
installing, 144
Sun, see Sun Java SDK
switching between, 168, 173

Java Security Manager, 104
Java VMs (Virtual Machines), 95, 111, 175,

186–187, 383
java.library.path, 383
.java.policy file, 146, 165
JavaBeans, 321, 337, 474

duration, 436
enterprise, see EJBs
session, 439
using with JSP, 434–437

javac, 24, 117–120, 173, 186, 216
command-line options, 100, 119–120, 148
debugging, 120, 148
diagnostics on success, 117
performance, 186–187

javac tag (Ant), 225
Javadoc, 62–64, 114, 122–131, 227

“Use” pages, 126
at-tags, 128, 518
command-line options, 123–127
comments, 127–131
documentation, 128
downloading, 64
running, 123

javadoc tag (Ant), 227
javah, 132–137
javap (Java Decompiler), 157–160
JAVAPTH environment variable, 459, 462
JavaScript, 412
JavaServer Pages, see JSP

javaw, 175
JBoss, 495, 501, 521

configurations, 462
deploying, 515
documentation, 469, 519
downloading, 444
installing, 446, 450–451, 463
JBoss-IDE, 464
mapping, 509–511
using with JNDI, 491
using with XDoclet, 519

JBOSS_HOME environment variable, 459, 462
jboss.xml, 509–511
JBOSSSH environment variable, 462
JBuilder IDE, 236
JButton class, 354–358, 374, 385–386, 388
JCheckboxMenuitem class, 385
JComboBox class, 385
JComponent class, 386
jCVS, 211–213

documentation, 214
JCVS environment variable, 212
jdb (Java Debugger), 148–151
JDBC (Java DataBase Connectivity),

321–322, 325, 327–338, 480, 496
documentation, 337
downloading, 332

JDialog class, 344, 374
JDK, see Sun Java Development Kit
JDK_HOME environment variable, 173
JDO (Java Data Objects), 321
JED, 48
jedit, 47
JEditorPane class, 386
JFace class, 380
JFormattedTextField class, 386
JFrame class, 344–345, 351–354, 373–374,

384, 388–389
jgnash, 158
Jikes compiler, 177, 227
JITs (Just-In-Time compilers), 175, 186, 378
JLabel class, 344, 353–354, 364, 373–374,

384–385, 388
JList class, 385
JMenu class, 385
JMenuItemA class, 385

559Index

JNDI (Java Naming and Directory Interface),
336, 482–491, 509

contacting with, 511
documentation, 491–492
using with JBoss, 491

JNI (Java Native Interface), 113, 132–137,
186, 378

joe, 48
JPanel class, 352–355, 370, 374, 385–386
JPasswordField class, 373, 386
JProgressBar class, 385
JPython, 259
JRadioButtonMenuitem class, 385
JScrollPane class, 369, 374, 385
JSlider class, 386
JSP (JavaServer Pages), 138, 416, 423–441,

444
declarations, 429–430, 434
directives, 431–433
documentation, 440
expressions, 430–431, 434
generated from XML, 434
predefined variables, 432
scriptlets, 427–429, 434
updating, 433
using with JavaBeans, 434–437
using with servlets, 425, 430
validating, 434
XML syntax for, 434

JSpinner class, 385
JSTL (JSP Standard Tag Library), 437–438,

440
JTable class, 359–364, 367–368, 370, 374,

386
JTableColumn class, 386
JTableHeader class, 369
JTabPane class, 386
JTextArea class, 374, 386
JTextField class, 372–374, 386
JTextPane class, 374, 386
JTree class, 374, 386
JUnit, 295–313

assertions, 305–308
command-line version, 303
documentation, 313
downloading, 299–301
errors, 306

JUnit (continued)
failures, 306
GUI version, 302
installing, 297–303
test cases, 303–309
test suites, 309–311
using with Ant, 303, 312
using with Eclipse, 312

K
KDE, 100, 252
Kerberos, 165
kernel, 4, 446
keytool, 165
kill, 468
Kirsanova, Alina, xxv
KISS principle (Keep It Simple, Stupid!), 282
konsole, 6
Kumar, Deepak, xxv

L
Label class, 384–385, 388, 391–392
labels (in GUI), 346, 353–354, 374, 385
layout managers, 347–348, 372, 374, 392
LayoutManager class, 374
LD_LIBRARY_PATH environment variable,

135, 383
LDAP (Lightweight Directory Access

Protocol), 140, 485–487
distinguished names, 485

ldconfig, 135
length(), 61
less, 17
Lessig, Lawrence, 522, 524
libgcj, 182, 188
libraries

in command-line options, 181
names, 135
shared, 135, 383

@link tag (Javadoc), 130–131
LinkedLists class, 70
Linux, xxiii, 107, 180, 522

philosophy, 524
as programmer-friendly platform, xxi
releases, 34
tools, 5

list, 156

Index560

List class, 385
list(), 110
lists (in GUI), 346, 385
Lists class, 70
ListSelectionListener class, 366
ListSelectionModel class, 365–367
load(), 110
loadLibrary(), 135
log files, 18, 104
Logajan, George, xxv
Long class, 62
long type, 53
lookup(), 142
loops, 67–75
ls, 6, 9, 15, 24, 100, 180, 240, 446, 483
LVM (Logical Volume Manager), 171

M
Macromedia Flash, 166
main(), 100–102, 121–122, 161

specifying on command line, 183, 185
mainframe clients, 480
make, 216, 397

comparing with Ant, 225
makefiles, 216
man, 29–30
manifest files (MANIFEST.MF), 122, 161–162,

507, 511
marshaling/unmarshaling, 143, 482, 495, 500
mbedit, 47
md5sum, 218–219
memory leaks, 380
Menu class, 385
MenuItem class, 385
menus (in GUI), 346, 385
MessageBean class, 475
META-INF directory, 507, 511
methods

calls, 66
defining, 58
deprecated, 120, 127, 129
native, 132–137, 216
overriding, 96
remote, 143
return values, 75
scope, 59
with variable argument list length, 82
void, 75

Microsoft
Active Directory, 487
Internet Explorer, 166
Message Queue Server, 481
MS-DOS, 10, 14, 163
Windows, 161, 163, 217, 253, 255, 319,

381
Miller, Andy, xxv
mkdir, 194
mkdir tag (Ant), 227
Model/View/Controller design pattern, 359,

438
modularization, 9
MoneyBean, 496
Mono project, 521
Monty Python, 215
Moore, Dan, xxv
more, 17, 238
Motif, 47, 49, 252, 383
MouseAdapter class, 393
MouseListener class, 393
Multics project, 6
multitier systems, 137, 143, 147, 518
MutableTreeNode class, 386
mv, 11–13, 100
MyISAM tables, 317
MySQL, 317, 328

connecting to, 329
documentation, 317, 326
JDBC for, 332, 337

mysqld, 459

N
\n , 81, 107
namespaces, 83, 484
naming services, see directory services
NamingEnumeration class, 490
native2ascii, 165
NDS (Novell Directory Service), 487
NEdit, 47
.NET development environment, 480, 521
NetBeans, 236–251

CVS in, 244–248
documentation, 259–260
downloading, 237
editing, 243–244
GUI, 240–244
installing, 237–239

561Index

NetBeans (continued)
running, 239–240
using with Ant, 248–249
using with C/C++, 249
using with servlets, 430

new statement, 56–59, 87
newline characters, in output, 79
NewStringUTF(), 134
next, 156
next(), 73
NFS (Network File System), 459, 485
nobody user, 323
nonblocking revisions, 317
Novell Directory Service, see NDS
NTFS filesystem, 485
numbers, 53–54
nvi, 34

O
Object class, 61, 87, 94, 359
objects, 57

comparing, 56
converting to String, 80
creating, 56
grouping, 70
referencing, 59–60

ODMG (Object Data Management Group),
321

OJB (Object Relational Bridge), 321
OLE class, 390
OOA (object-oriented analysis), 279–280,

285, 287
OOD (object-oriented design), 279–287, 359
OOP (object-oriented programming), xxviii,

57
Open Publication License, The, xxiv
Open Source, xxiii–xxiv, xxviii, 5, 46, 189,

213, 379, 522–524
openejb-jar.xml, 509
operators, 55–56

overloading, 52
precedence, 55
unary, 55–56

Oracle, 316, 318, 328, 332
connecting to, 329
documentation, 337

orbd, 175

OSI (Open Systems Interconnection), 485
OTN (Oracle Technology Network), 318
owners of files, 9–10, 16

changing, 11, 170, 448
group, 10, 445–450, 463
other, 10
user, 10

P
pack(), 345, 352
package statement, 83–85, 125, 183
packages

default, 183
directories, 84
documentation, 123
names, 83–84, 146
protecting, 83
size, 83

panels (in GUI), 347
@param tag (Javadoc), 130, 518
Pascal, 69
passwords, 285, 324, 373
root, 445–450
sharing, 445–446
storing, 195, 447
supplying in URL, 329

PATH environment variable, 24–25, 105, 144,
173, 219, 239

pattern matching, 13–15
PatternSet datatype (Ant), 228
Payback, 123, 161–163

buildfile for, 229–231
compiling, 184

pBeans, 321
Perens, Bruce, xxv
Perl, 44, 446
permissions, 10–11, 445, 463

changing, 11, 448
for directories, 9, 449
for files, 9, 16
for hard links, 170

persistent storage, 316, 320–322
pg, 17
PGP signatures, 218
pico, 47
pipes, 8–9, 238, 258
pkzip, 163

Index562

pointers, 134
null, 59, 75

policytool, 165
polymorphism, 91–94
portability, 53, 106, 113, 186–187, 216, 319,

380
portmanteau abbreviations, 157
portmap, 459
Poseidon for UML, 249
POST request, 406, 412
postgres user, 323
postgresql, 459
PostgreSQL, 317, 328

documentation, 317, 326
installing, 322

predicates, 20–21
Prentice Hall PTR, xxiv, 523
PreparedStatement class, 329, 333, 335,

337
print(), 79
printf(), 79–82
println(), 79, 419
printStackTrace(), 77
PrintStream class, 79
private access modifier, 83, 88–89, 125
processes

IDs, 108
running, 121

programs, see applications
progress bars (in GUI), 346, 385
ProgressBar class, 385
project element (Ant), 223–224
Properties class, 106, 109–111, 224
properties files, 109–111, 113

comments in, 111
names, 110

property element (Ant), 224
propertyNames(), 111
protected access modifier, 88–89, 125
prototyping, 274–276, 416
proxies, 143, 494
ps, 468
public access modifier, 83, 88–90, 124
put(), 111

Q
Qt library, 252

R
radio buttons (in GUI), 345
RAID (Redundant Array of Inexpensive

Disks), 171
Raymond, Eric, xxiii, 449
RealPlayer, 166
rebind(), 142
RedHat, 217, 322, 452, 456, 458–463

Package Manager, see rpm
regular expressions, 19, 43–44
RemoteException exception, 139–140
remove(), 71
repeat-until statement, 69
ResultSet class, 329, 334–337
return statement, 75
@return tag (Javadoc), 130
rigid areas (in GUI), 355
rm, 109
RMI (Remote Method Invocation), 137–148,

216, 482
building with Ant, 228
registry, 140, 142, 487
stubs, 138, 143–144

rmic, 137, 143–144, 147, 216, 228
rmic tag (Ant), 228
rmid, 165
rmiregistry, 144, 148
Robot class, 312
rollback(), 77
root (superuser), 11, 323, 445–450, 452, 462
RowLayout class, 391
RowSets class, 337
rpm, 217
rsync, 485
run, 148
runlevels, 452–459
Runtime class, 111–113

S
Saint-Exupéry, Antoine de, 282
SAMoney class, 496
Sash class, 389
Scale class, 385
scriptlets, 427–429, 434
scroll panes (in GUI), 347, 369–370
Scrollable class, 389

563Index

ScrollBar class, 385
search engines, 412
security, 165, 323–324, 486

and default groups for users, 448
and root access, 445, 462
auditability, 445
checksums, 218
digital signatures, 164, 218
passwords, 324, 446–450
policy files, 146, 165

security managers, 142, 145
SecurityException exception, 104
SecurityManager class, 131
sed, 44, 47, 258
@see tag (Javadoc), 130
Selection class, 392
selection listeners, 365–368, 393
SelectionAdapter class, 393
SelectionListener class, 393
SelectionModel class, 374
serialver, 165
servers, 404–407, 410, 443–469

compiling, 146–147
connecting with a browser, 413
developing, 139–142
setting up, 144–147

Service Provider Interface, see SPI
service(), 404
Servlet class, 404, 406
servlets, 138, 403–421, 512

designing, 416–420
documentation, 440
MIME for, 432
packaging, 512–514
session variables, 414, 431, 437, 439, 441
using as daemons, 407
using with JSP, 425, 430

Sesame Street, 343
Session class, 139–142
SessionBean class, 475, 495–498, 512
setAttribute(), 414
setBigDecimal(), 333
setDefaultCloseAction(), 344
setDefaultRenderer(), 364
setDouble(), 333
setEnabled(), 357
setEntityContext(), 475

setenv, 105
setgid bits, 449
setHorizontalScrollBarPolicy(), 370
setHorizontalTextPosition(), 358
setInt(), 333
setLayout(), 355, 390
setProperty element (JSP), 435
setProperty(), 111
setReorderingAllowed(), 368
setResizingAllowed(), 368
Sets class, 70
setStatus(), 368, 392
setString(), 333
setters, 104
setText(), 354, 364
setTimestamp(), 333
setTotal(), 435
setUp(), 305, 309
setVerticalScrollBarPolicy(), 370
setVerticalTextPosition(), 358
setVisible(), 345, 352
SGML (Standard Generalized Markup

Language), 220–221
Shell class, 381, 384, 386–391
shell languages, 21
shell scripts, 22, 319

JUnit tests, 303
loops, 25
parameters, 25
running, 24, 108
for startup, 193

shell variables, see environment variables
shells, 4, 21–26
shopping cart, 477–478, 481
short type, 53
short-circuiting, 56
Slider class, 386
sliders (in GUI), 346
SMAC (SMall ANSI C Interpreter), 48
SMB filesystem, 485
software, see applications
software engineering, 57, 263–279

documenting, 272–274
iterative approach, 266, 277
requirements, 266–276, 288

Software Engineering Institute, 277
sorting, 107

Index564

source control, 126, 189–190, 213
files for, 195

SourceForge, 299
SPARC, 186
SPI (Service Provider Interface), 487–491
split panes (in GUI), 347
SpringLayout class, 372
sprintf(), 82
SQL, 328, 333–336
Stallman, Richard, xxiii, 179–180, 522, 524
standard error, 6–8
Standard Generalized Markup Language, see

SGML
standard input, 6–8, 47, 103
standard output, 6–8, 47, 103

piping, 8, 107
reassigning, 104
redirecting, 6, 104, 108

Standard Widget Toolkit, see SWT
startsWith(), 61
Statement class, 337
statements, in Java, 64–75
static access modifier, 87, 90–91, 102
static initializers, 133, 135
status lines (in GUI), 352, 358
step, 156
STL algorithms, 95
Stochniol, Andrzej, 49
store(), 111
stored procedures, 480
streams, 109
strftime(), 81
String class, 60–62, 86
StringBuffer class, 60
strings

comparing, 61
concatenating, 60, 79
length, 61
searching, 18–19
substrings, 61

strlen(), 54
StrongARM, 186
su, 445, 450
substring(), 61
Subversion, 189
sudo, 445–446

Sun Microsystems, 94, 106, 166, 187, 236,
321, 521

Java SDK, xxiii, xxiv, 115–166, 378
differences from IBM Java SDK,

174–176
Enterprise Edition, see J2EE
installing, 173
Micro Edition, 115
Standard Edition, see J2SE

SOS (SunONE Studio), 236, 251
Web site, 64–65, 98, 161, 166, 337, 375,

421, 441, 491–492
superuser, see root
Swing, xxiii, 251, 309, 341–376

compared to SWT, 379, 384–388, 395
containers, 344
documentation, 375
graphical objects, 345–347
performance, 378
portability, 380
using with HTML, 373

switch statement, 67
SWT (Standard Widget Toolkit), xxv, 175,

251, 377–399
ActiveX support, 390
adapters, 393
and garbage collection, 380
compared to Swing, 379, 384–388, 395
documentation, 381, 383, 398
installing, 381
performance, 378
portability, 380
using with gcj, 396–398

SWT class, 390
SWTException class, 390
symlinks (symbolic links), 171–172, 239, 451,

467
circular chains, 172
dangling, 172

System class, 86, 102–109
System V init system, 451–458, 463

T
tabbed panes (in GUI), 347
TabFolder class, 386
TabItem class, 386

565Index

Table class, 386, 394–395
table element (HTML), 386, 411
TableCellEditor class, 386
TableCellRenderer class, 374, 386
tableChanged(), 368
TableColumn class, 386, 394–395
TableColumnModel class, 386
TableItem class, 386, 394–395
TableModel class, 359, 368, 374
TableModelEvent class, 368–369
TableModelListener class, 368
tables (in GUI), 346

background color, 364
editors, 365
renderers, 363–365
scrolling, 369–370
in Swing, 352, 359–363, 374
in SWT, 394–395

tag libraries, 437–438
tail, 18
tar, 26–29, 163, 217, 466

command-line options, 26, 238
examining contents of files, 238

target element (Ant), 223–224
Task class, 228
Taub, Mark, xxiv
TCP/IP, 482, 485
td element (HTML), 411
tearDown(), 305, 307, 309
TestCase class, 303–305, 308
TestRunner class, 309
TestSuite class, 309
text areas (in GUI), 346
Text class, 386
text fields (in GUI), 346, 372, 374, 386
text panes (in GUI), 346
the, 48
Thinking in Java, 52, 58, 60, 65, 94, 98
throw statement, 76–77
throws keyword, 306
@throws tag (Javadoc), 130
time value of money, 495–497
Timestamp class, 333
toLowerCase(), 61
Tomcat, 259, 407, 410, 430, 444
tool tips (in GUI), 346

ToolBar class, 386
toolbars (in GUI), 347, 386
ToolItem class, 386
toString(), 77, 80, 91, 359, 363–364, 419,

430, 490
touch, 433
toUpperCase(), 61
tr element (HTML), 411
translations, see internationalization
traverse(), 397
Tree class, 386
TreeItem class, 386
trees (in GUI), 346, 386
true constant, 54
try statement, 76–79

U
uid (user ID), 446–447
Umbrello, 287, 290
UML (Unified Modeling Language), 249,

285, 287, 289
UnicastRemoteObject class, 140
Unicode, 54, 134, 165
UNIX

archive formats, 163, 217
commercial versions, 252
daemon processes, 323
filesystems, 483–485
online manuals, 29
operating system commands, 4
philosophy, 524
as programmer-friendly platform, xxi, 397
releases, 34
shell scripts, 319
standard I/O, 6, 102
tools, 5
user interface, 4

unzip, 27, 299
inspecting files before unzipping, 299

URLEncoder class, 413
URLs, 404–406

parameters in, 412–413, 436
passwords in, 329

useBean element (JSP), 435
USER environment variable, 105
UTF-8 encoding, 134

Index566

V
validation, 220
variables

declaring inside for loops, 69
local, 77
of object type, 59

@version tag (Javadoc), 126
vi, 5, 34–45, 49

case sensitiveness, 44
copying/pasting, 39
deleting, 39
exiting, 40–41
indentation, 40, 45
modes, 35

ex, 37–38, 40–44
input, 35–36, 40, 45
vi, 35

positioning, 36–38
repeating commands, 40
searching, 38–39, 41–44
substitutions, 41–44
undoing/redoing, 40
using with CVS, 198
using with NetBeans, 244
words in, 37

vim, 34–35, 40
virtual access modifier (C++), 96
Virtual Network Console, see VNC
VISUAL environment variable, 198
VNC (Virtual Network Console), 137
Vogen, Kirk, xxv, 396
Von Neumann architecture, 343

W
WAR files, 28, 464, 512

building with Ant, 513, 516
wc, 9
Web browsers, see browsers
Web pages, 405

changing, 423
common parts, 432
dynamically generated, 406–407, 411
static, 405, 416

Web servers, see servers
web.xml, 512–513, 519
WEB-INF directory, 512

WebSphere Studio, xxviii, 236
well-formedness, 221
which, 24
while statement, 67–68

changing execution, 75
compared with the for loop, 70, 73

whitespace
in filenames, 10
trailing, 44

Widget class, 389, 391–392
windows (in GUI), resizing, 343, 353–355
WordStar, 48–49

X
X Window, 47, 252, 380
X.500 standard, 485
X11, 49
xcoral, 48
XDoclet, 517–518

documentation, 519
generating interfaces, 518
using with Ant, 517–518
using with JBoss, 519

xedit, 48
Xelfi, see NetBeans
XFree86, 446
XHTML (Extensible HyperText Markup

Language), 221
xinetd, 458
XML (Extensible Markup Language),

220–222
using for JSP, 434

XML Schema, 220
XSLT (XSL Transformations), 221
xterm, 6

Y
YaST, 47–48

Z
zip, 26–29, 466
ZIP files, 17, 157

inspecting before unzipping, 299
in NetBeans, 241

Zoetebier, John, 237
zone transfers, 491

567Index

