Java™ Application Development

on Linux®







Java™ Application Development

on Linux®

Carl Albing
Michael Schwarz

& Prentice Hall Professional Technical Reference

PRENTICE
HALL Boston

PTR




Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419

corpsales@pearsontechgroup.com
For sales outside the U. S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.phptr.com

Library of Congress Cataloging-in-Publication Data:

CIP data on file.

© 2005 Pearson Education, Inc.

ISBN 0-13-143697-X

Text printed in the United States on recycled paper at Pheonix Color in Hagerstown Maryland.

First printing, November 2004



To my mother, for her love of words.
—Michael

To my wife, Cynthia.
—Carl







Contents

=) = o7 NPT

T YA oo 11 T3 { ] o PSR
PART | Getting Started .........ccummm
Chapter 1 An Embarrassment of Riches: The Linux Environment ............
1.1 What YOU WIll LEAIN ...t

1.2  The Command Line: What's the Big Deal? .........cccocooiiiiiniiiinniieene

1.3  Basic Linux Concepts and Commands ........cccccceeeeeeeiiiiciiinineieeeeeeeenn,

1.3.1  Redirecting 1/O ....eeeiiee e

1.3.2 The Is Command .......cccooiieieiiiiiiie e

1.8.3  Filenames ...

1.83.4  PEermiSSIiONS ..ot

1.3.5  File COPYING ..ueeeiiuieieiiie et

1.3.6  SeeING STArS ...oeviiiiiiiie e

1.3.7  File CONtENIS ...vvveeiiiiiiee et

1.3.8 The grep Command ........ccccceeiiiiiiiieeiiiiee e

vii



viii Contents
1.3.9 The find Command ..........ccccceeiiiiiiiie e 20

1.3.10 The Shell ReViSited ........coccieieiiiiiiiie e 21

1.3.11 The tar and zip Commands ..........cccocooeeeiiiiiieecee e, 26

1.3.12 The man Command .........ccccceeiiiiiiie e 29

T4 REVIEW e e e e e e 30
1.5  What You Still DON't KNOW .......ceiiiiiiiiiiiei it 30
1.6 RESOUICES ..o e e e e e 30
Chapter2 An Embarrassment of Riches: Editors .........ccccccvvciceccrmnnnnninnnn. 33
2.1 What YOU WIll LEAIN .....eeeiiiieeeeeeeeeee e 33
22 EyetoEye With VI ..o 34
221 EXIHING i 40

2.2.2 Search and Replace ..........ccoocciviiiiiiiieie e 41

2.2.3 The Joy of Regular EXpressions .........ccccceeeeieeeeeiniiieeeeeenieen 43

2.2.4 Starting Off Right: . XX C viiiiiii e, 44

2.3 EdItOrs Galore ......cocooiciiiiie e 45
2.3.1 Editing Your Pipes (sed, the Stream EDitor) ...........cccceeeneeeee. 47

2.3.2 Simple Graphical EQItOrs .........cccoiiiiiiniiiiee e 47

2.4 REVIBW ..ot 49
2.5 What You Still DONt KNOW ......cccciiiiiiieeiiiiiie e 49
2.8 BRESOUICES .ooiiiiiiii ittt a e e e 49
Chapter 3  An Experienced Programmer’s Introduction to Java ................ 51
3.1 What YOU WIll LEAIN ..o 51
3.2  Fundamental Language Elements ...........cccccooiiiiiiiiniie e, 52
B.2.1  SCalAr TYPES weeeeieiiiiiiie ettt 53

3.2.2  ODJECE TYPES oottt 57

3.2.3  Statements ....ooeiiii 65

3.2.4 Error Handling, Java Style ........ccccooiiiiiiiiiiee e 74

325 print(), println(), printf () . 78

3.3  Using (and Making) Java APIS .........cccoiiiiiiiiiiee e 82
3.3.1 The package Statement ......cccceeeeeeiiiiiiiiiiiiiieen 82

3.3.2 The import Statement ........cccocveiiiiiii i, 84

3.4  Encapsulation, Inheritance, and Polymorphism ..........ccccccciiiiiiinnns 85
3.4.1  ENcapsulation ... 85

3.4.2 INNEITANCE ..o 86



Contents ix
3.4.3  PolymorphiSm .......c.oeiiiiiii 91

3.5 O, Templates! Where Art ThOU? ........uuiiiiiieieeee e 93
3.6 Virtually Final ... 94
3.7 A Useful Simple Application ..........cccoiiiiiiiieee e 95
B.8  REBVIBW it e e e e e e e e e e e e eeaeaeas 95
3.9  What You Still DON’t KNOW ......coiiiiiiiiieiiiiiiie e 97
B.10  RESOUICES oiiiiiiiiiiiee ettt e et e e e e e e e e e e e e e e e e e e e e aaannnes 97
.11 EXEICISES eiiiiiiii ittt e e 98
Chapter4 Where Am I? Execution Context .......ccccoiiremnnimninsmmnnssninsansnnians 99
4.1 What YOU WIll LEAIN ....oeeiiiiiiiiiiieeee et 100
4.2 A SIMPIE StAr ..o 100
421 Command-Line Arguments ........ccccceviiuiiereiniiiiee e e 100

4.2.2 Unit Testing Made EASy .......ccooociieiiiiiiiiiieeee e 102

4.3 The Sy STem Class ....cooiieeee i e e 102
4.3.1 Java and Standard /O ........ccceeeiieieeeee e 102

4.3.2 Environment Variables ... 104

4.3.3 Java and Environment Variables ...........ccccooiiiiiiiiinnnnn, 105

4.4 The Properties Class .....cccooiiiiiiiiiiieee e eeeeeeeeeeee e 109
45 The RUNEIME ClIASS .uiriiiiiiiiiieeeiciiie et erteee e 111
451 EXEC () i ————— 111

4.5.2  Portability ....c.coeeiiiie 113

4.8 BREVIBW i 113
4.7  What You Still DONt KNOW ......cccciiiiiiieiiiiiee e 113
4.8  BRESOUICES .coiiiiiiiiiite ettt ettt e e e e e e e e e e e e e e e e e sannnes 114
Chapter 5 The Sun Microsystems Java Software Development Kit ........... 115
51 What YOU WIll LEAIN ...ceiiiiiiiieiieeeeee et 116
5.2  All You Need, and Not One Thing MOre .........cccocveeevcieeee e, 116
5.3 The Java COMPIIET .....eeeeeiieiee e 117
5.3.1 Compiler Behavior, Defaults, and Environment Variables ..... 117

5.3.2  Javac OptioNs .....cc.eeiiiiiiiiiii e 119

5.4  The Java Runtime ENgiNe ......ccccooiiiiiiiiiii e 121
5,41 The BaSICS ..uuvvieiiiiiiiiiiii ittt 121

5.4.2  java OPLONS ...ooociiiiiiiie et 122

5.5 Complete, Up-to-Date Program Documentation Made Easy .............. 122



Contents

5.6
5.7
5.8

5.9
5.10
5.11

5.12
5.13
5.14
5.15

Chapter 6

6.1
6.2

6.3

6.4
6.5
6.6
6.7

5.5.1 RUNNing Javadoc ............ccccceiiiiiiiiiiiiee e 123
5.5.2 Javadoc Command-Line Options ..........ccccccvmireeeeeeeeeeeeeccnns 124
5.5.3 JavadoC COMMENLS ......cccueeieiiiiiiiie et 128
Dispensing with APpPIets ... 131
GOING NALIVE ... e 132
Introducing RMI ..o 137
5.8.1 A Brief Introduction to RMI ... 137
5.8.2 The rmic TOOI ......ccooiiiiiiiiiiie e 143
5.8.3 The rmiregistry TOOl .........ccoviiiiiiiii e 144
5.8.4 Setting Up Servers and Clients .......cccccceeviiiiiieiiiiiene e, 144
5.8.5 RMI SUMMANY ....ooiiiiiiiiiie et 147
The Java Debugger ... 148
Return to the Source: The Java Decompiler ...........ccccceeviienicnnnnenn. 157
Bundling a Java Program: Put It in @ JAR ..., 157
5.11.1 Deploying AppliCations ..........ccoccuieiiiiiiiieiiiieee e 160
5.11.2 Basic jar Operation .........ccccoeveiiiiiiiiiieee e 163
The Rest of the TOOIKit ... 164
REVIBW ... e 166
What You Still DON’t KNOW ......cccoiuiiiiiiiiiiiie e 166
RESOUICES ... 166

The IBM Developer Kit for Linux, Java 2 Technology Edition ... 167

What YOU WIll LEAIN ...ttt 167
Use Linux Features to Make Multiple Java SDKs Play Nicely

TOGEINET . 168
B.2.1  LINKS oot a e 168
6.2.2 Switching Java Versions by Symlink ..........ccccoocoiiiiinininnne. 173
How the IBM JDK Differs from the Sun JDK ........cccccceeiiiiiiiiiiiiene, 174
6.3.1  Performance ..o 175
6.3.2 Differences in the Commands ............coeeeeciiiiiiiiie e 175
6.3.3  IBM ClaSSES ...eveeiieieeeeieeeeeeeeeee e 175
What Are All These “_g” VErSioNS? .....ccceeeieeiiiiiieeeiiieee e 176
REVIEBW ..ot e e 176
What You Still DON’t KNOW ....cccvvveiiiiiiiieieeeeeee e 177
RESOUICES ...t e e e e e e e e e e e e e ee e r e aaaas 177



Contents Xi
Chapter 7 The GNU Compiler for Java (gCj) ....ceursmrrrmrammrssnmmsssanssssanssssansensans 179
7.1 What YOU WIll LEAMN ....eviiiiieie e 179
7.2 A Brand GNU Way .......oooiiiiiiiiie et 179
7.3  The GNU Compiler ColleCtion .........ccceeeeeieeeeeeiieiccieeeeeee e 180
7.4  Compiling Our Simple Application with gCj ......c.ccccveiiiiiiiiiiieie, 181
7.4.1  Compiling FetchURL With gCj ....coevviiiieiiiiiiiiieiieeeeieen 182

7.4.2 Compiling a Multiclass Program ..........ccceeeieiieniiineseeeee 184

7.5 Options and SWItCNES ........ccceeiiiiiiiiieieeeee e 185
7.6 Reasons 10 USE gCj ....uueiiiiiiiiiiiiiiie e 186
7.7 Reasons NOt t0 USE gC] ...cccvveeviiiiiiiieiiiiee e 187
7.8 REBVIBW oottt e e 187
7.9  What You Still DON't KNOW ......oeiiiiiiiiiiieiieie e 187
710 RESOUICES ..ottt e et et e e e e e e e e e et e e e e e e e e e e e e e e aannnes 188
Chapter 8 Know What You Have: CVS .........ccirrmrrrrecsssssssecsenee s 189
8.1 What YOU WIll LEAIN ...eeiiiiiiiieeee et 190
8.2  Source Control: Whys and HOWS .........ccccieiiiiiiiiiie e 190
8.2.1  SEIUP it 193

8.2.2  IMPOM e e 195

8.2.3  NOMAI USE ..ot 198

8.2.4  UPAALe ..oiiiiiece e 201

8.2.5  IMEITES i 201

B.2.8  LOQ it 203

8.2.7 CVS SLatUS e 205

B.2.8 CVS LaAg it e 205

8.2.9 Branching Tags ......cccuriiriiiiiiiiee et 207
8.2.10 CVS EXPOT L ittt eanan 210

8.2.11 A Quick Look behind the Scenes ..........cccooooieiiiiiiiiiiiceene. 210

8.3 A GUILJOVS L.t 211
8.3.1  Installing JCVS ..o 211

8.4 REVIBW i s 213
8.5  What You Still DONt KNOW .....coceviiiiiieiiiiier et e 214
8.6 RESOUICES ...t 214



Xii Contents
Chapter 9  Ant: An Introduction ... s 215
9.1 What YOU WIll LEAM ....eviiiiiiie et 215
9.2 The Need for a Different Build TOOI ......ccccooiiiiiiiiiiiie e 216
9.3  Obtaining and INStalling ANt .......ccviiiiiiie e 217
9.3.1 Installing a Binary Tarball ...........cccooiiiiiiiiiiiiieeeen 217

9.3.2 Installing a Source Tarball .........cccooeiiiiiiiiiiee e 219

9.4 A Sample Ant BUIldFile ...........ccoiiiiiiiiiie e 220
9.4.1 XML for the Uninitiated ..........cccevriiiiiiii e 220

9.4.2 The Buildfile Tags .....ccocueiriiiiiiiiee e 222

9.4.3 A Real, Live BUildfile .........cooeiniiiiiiieeeee e 229

0.5 RBVIBW it e e e e e e e 232
9.6 What You Still DON't KNOW .......ooviiiiiiiiieiiiee e 232
0.7 RESOUICES ..ottt ettt e e e e e e e e e et e e e e e e e e e e e e aannnes 232
Chapter 10 Integrated Development Environments .........cccccevrniiemmrnnnsscennnas 235
10.1 What YOU WIll LEAN ... 236
10.2 NetBeans: The Open Source IDE .........ccccvviieeeieeee e 236
10.2.1 A Brief History of NetBeans ..........ccccooviiiiiiniiiie e, 236
10.2.2 Installing NetBeans ... 237
10.2.3 Getting Around in NetBeans ..........cccccceeiieiiicieniee e, 241
10.2.4 Integration with CVS ..., 245
10.2.5 Integration with Ant ..., 248
10.2.6 Other Add-0N TOOIS ......ccccueiiiiiieiieie e 250

10.3 SunONE Studio Community Edition ............ccceiiiiiiiiie e 251
10.4 Eclipse: The Source of SWT ..o 251
10.4.1 Selecting and Installing EClipSe ........cccceeiiiiieiiiiineieee e, 251
10.4.2 Using Eclipse for a New Project ..........ccocceevvieiiiniiiene e, 254
10.4.3 Using Eclipse for an Existing Project ............ccccccerniieieinnnnen. 256
10.4.4 Working With EClIPSE ...cooviiiiiiiiiiieieeeeee e 257

105 REVIBW e e e e e e e 258
10.6  What You Still DOt KNOW .....cooiiiiiiiiiiiiiee e 259
10.7  RESOUICES ..ottt e e e ee e e e e e e e an 259



Contents Xiii
PART Il Developing Business LOQIC ...........couummmmmnnnsnnsnnnnns 261
Chapter 11 Balancing Acts: An Imaginary Scenario ........cccoucemmrssenissnssnsans 263

11.1 What YOU WIll LEArN ...t 263
11.2 Statement of the Need .........ooccuviii i 264
11.3 How to Develop SOftWare ........cccceeeeiiiiciiieeecee e 264
11.4 What Makes a Good Requirement ..........ccocoeiiiiniiien e 267
11.5 Whom to Ask for ReqQUIrements ...........cccccuviieeeeeeeee e 268
11.6 Requirements for the Budget Application ...........cccccceiiiiieiiiiiiinnenns 269
11.6.1 Monday Morning, 10 AIM. oo 269
11.6.2 Back at His DESK ......eeeeiiiiiiiiiiiiieeeeeee e 272

11.7 Documenting, Prototyping, and Stakeholder Buy-In .............cccceeeees 272
11.7.1 DOCUMENTING ..eeeiiiiiiiiie e 272
11.7.2 Stakeholder Buy-In .........occoiiiiiiiie e 274
11.7.3 Prototyping ..ooceeeeeeeiiee e 275

11,8 REVIBW ..ottt 276
11.9 What You Still DOn't KNOW ........eeviiiiiiiiie it eseee e 276
11.10 RESOUICES ..o 276
T1.11 EXEICISES e e e 277
Chapter 12 Analysis and Design: Seeking the Objects .......cc.cccceecmrrriiiecennns 279
12,1 What YOU WIll LEAN ... 279
12.2 Facing the Blank Page ... 280
12.3  USING CRC Cards ......ccocoueiiiiiieiiee et seee e 280
12.4 Finding the ObJECES ..oooocviiiii e 280
12.5 Finding the Methods and Attributes ............cccciiiiiiii s 283
12.6 Essential and Nonessential ... 284
12.7  ANalysis ParalySis .......occuiiiiiiiiiiiieieee e 287
12.8 Real Software ENgiN€ering ........coooviiiiiiiiiiiiiiee e 288
12.9  COre ClaSSES ....ccvviiieeiiiiiiee e ettt e e e ettt e e e e et te e e e s ssntae e e e e ssaeeeessnnreneaeeanns 289
12,10 REVIBW ..ottt e e 289
12.11 What You Still DON't KNOW ........coeviiiiiiiiieciiiiiee et eseee e e 289
12.12 RESOUICES ..ot a e 289
T2.13 EXEICISES et e e 292



Xiv Contents
Chapter 13 JUnit: Automating Unit Testing ......ccccecmmircmmnnisninsmnnscen e 295
13.1 What YOU WIll LEAIN ... 295
13.2  JUnit: Why All the FUSS? ... 296
13.3 Design Then Test Then COde ....c.coivieiiiiiiiiiie e 296
13.4 Installing and Running JUNIt ..o 297
13.4.1 Downloading and UNzipping .......cccceeeeeereeereeniiiiinineeeeeeee e 299
13.4.2 UsSiNG JUNIE . 301

13.5 Wrting TeSt CaASES ..cooiiuiiiiiii it 303
13.5.1 JUNIt ASSEIIONS ...eeeeiiiiiiiiee e 306
13.5.2 Running a Test Case ......ccceeeeiiiiiiiie e 308

13.6  RUNNING TESt SUILES ...eeeeiiiiieiiie et 309
13.7  REVIBW ..ottt 312
13.8 What You Still DON't KNOW ........eoviiiiiiiiie ittt eseee e e e 312
13,9 RESOUICES ..oiiiiiiiiiiee et e e e e nans 313
18310 EXEICISES e a e e 313
Chapter 14 Storing the Data .........ccccciiiiicmiiiiinrr s 315
14,1 What YOU Will LEAN ... 315
14.2 Follow the ODJECES ...t 316
14.3  Of PErSISIENCE .....uveiiiiiiiiiiee et e e 316
14.4 Thinking of the Future, or Painting in Corners .........cccoccoveeeiiiiiienenns 316
14.5 Oracle, PostgreSQL, MySQL .......cocciiiiiiiiiiiiiee e 316
14.5.1 MYSQIL .o s 317
14.5.2 POStQreSQL ...oooviiiiiieee e 317
14.5.3 OraCle .oooeeiieiie e s 318
14.5.4 Selection Criteria ........cceeviicieie e 318

14.6 Being Self-Contained .........ccooiiiiiiiiiiiiiee e 318
14.7 Beyond the BaSiCS .......ccuveiiiiiiiiiii et 319
14.8 Persistence Is Not the Whole Story ... 322
14.9 Setting Up PostgreSQL for BudgetPro .........cccooeiiiiiiiiie e 322
14.9.1 Installing PostgreSQL .......cccocovveiiiiiiiiee e 322
14.9.2 Creating a postgres USer .....coocveivcieee e 323
14.9.3 Creating Our Database ........ccccoceieiiiiiiee e 324
14.9.4 Straight JDBO ......ooiiiiiiiie e 325

14.10 REVIBW ...ooiiiiiiiiii i 325



Contents XV
14.11 What You Still DON't KNOW ........coviiiiiiiiiieiiiiiieee et eseee e e e 326
14.12 RESOUICES ..oeeiiiiiiiiiee ettt e e e s e e e e e s senreee e e e e 326
1413 EXEICISES e e e e e 326

Chapter 15 Accessing the Data: An Introduction to JDBC ..........cccccviueennnne 327

15.1 What YOU WIll LEAN ... 327

15.2  INtroducing JDBO ......coiiiiiiiiiiee e 328

15.3 MaKing CONNECLIONS ......eeiiiiiiieiiie ettt 329

15.3.1 Downloading JDBC for MySQL .........cccceiiiiiiiiiniie e, 332

15.4 Querying Data .....ooooeiiiiii e 332

15.5 Getting RESUIS ......eoviiiiiiee e 334

15.6 Updates, Inserts, Deletes ... 336

15.7  REVIBW ..ottt s 336

15.8 What You Still DON't KNOW ........eeviiiiiiiiiieiciiieeee e eseeee e e e 336

15.9  RESOUICES ..oiiiiiiiiiiiee et e s e e e e e aans 337

1510 EXEICISES et e e e 338

PART Il Developing Graphical User Interfaces ................ 339
Chapter 16 Getting in the Swing of Things: Designing a GUI for

(=10 Lo T 11 4 2 o T 341

16.1  What YOU WIll LEAIN .....coveiiiiieee e 341

16.2 A Simple SWing Program ...t 342

16.3 Stompin’ at the Savoy, or The Swing Paradigm ..........cccccceiiiiiieennns 343

16.4 Slow, Slow, Quick-Quick, Slow: The Basic Swing Objects ................. 345

16.5 Layout Managers ........ccceeiiiiiieieeee e 347

16.6 Beyond Arthur Murray: Actions, Listeners, Events ..........cccccocoieeeis 348

16.7 Getting Down to Cases: Designing a GUI for BudgetPro ................... 348

16.7.1 OVEIVIEW oottt e e e e 350

16.7.2 Creating PIECeS .....occvveiii i 352

T16.8  REVIEW oo e e 373

16.9 What You Still DOt KNOW .....cooiiiiiiiiieiiee e 374

16.10 RESOUICES ..ot e e e e e e e e 375

T B = C ] (o] 1= 375



xvi Contents
Chapter 17 Other Ways: Alternatives t0 SWiNg .......ccccccmrviimiismminssninsnnnncans 377
17.1 What YOU WIll LEAIN ..o 377
17.2 The IBM SWT TOOIKIt .....coiiiiiiiiiiieeie e 378
17.2.1 Another GUI Toolkit. Why? .......cccoiiiiiiiieeee e 378
17.2.2 Duplicated Effort. Why Cover It? ........cccooiiiiiiiiiieeeeeee, 379
17.2.3 Portability: Better and WOrSe ........ccceeeeeiiiiiiiiiiiiieeeeeeeeee 380
17.2.4 The Rest of the Chapter .........cccooioiiiiiiii e, 380
17.2.5 SWT: Close to the Metal ..........ccocoviiiieiiniiiiee e, 380
17.2.6 “Hello, world” SWT Style .....coeveiiiiiiee e 381
17.3  Porting BudgetPro to SWT ... 384
17.3.1 Step 1: Convert the Class Members ..........cccccvevcerencceennenn. 387
17.3.2 Step 2: Converting the main () Method ......cccccecvvvevieeenenn. 389
17.3.3 Step 3: Converting the GUl build () and init ()

METhOAS ..o 391
17.3.4 Completing the Conversion of the BudgetPro Class ........ 394
17.3.5 Completing the Conversion of the Application ....................... 395
17.3.6 Closing ThOUghtS .......coooiiiiiiiieiiiiie e 395
174 SWT @NA GO «rrutiiiiiiieiiiee ettt e et e e snee e e snee e e saeeens 396
175 REVIBW ..ottt s 398
17.6 What You Still DON't KNOW ........coviiiiiiiiiee it eseee e 398
17.7  RESOUICES ..oeiiiiiiiiiiee ettt e e s e e e e e e e e 398
178 EXEICISES e 399
PART IV Developing Web Interfaces .............ooovnnnnnsssssnnnnns 401
Chapter 18 Servlets: Java Pressed into Service ........ccoviimiiscmnrncnninsnsnncans 403
18.1  What YOU WIll LEAIN ..o 403
18.2 Servlets: Program-Centric Server-Side Documents ...........cccceeeceeene 404
18.3  PEISPECHIVE ... e e e e e 405
18.4 How to Write @ SErVIEt .....cceeiiieiie e 407
18.5  INpUt, QUIPUL ..eeeeiieee e e e 411

18.6 Matters of State: Cookies, Hidden Variables, and the Dreaded
“BacCK” BULION ...t a e 413
18.6.1 COOKIES ..uvveiiiiieiitie ettt 414
18.7 Designing a BudgetPro Serviet ..o 416



Contents xvii

18.7.1 PrototyPe .oooooeieeeeeeee e 416

T8.7.2 DESIGN eeeiiiiiiie et 417

T8.8  REVIEBW oot e e e e e e e e e e e e e e e e e eeaeaaas 420
18.9 What You Still DON’t KNOW .....cevviieeiiiiiiiiieeieeeee e e 420
T18.10 RESOUICES ..uuuuuiiieieie e ettt e e e e e e e e e e e e e e e e e e e e e eeeeaeenes 421
B I T b =Y (o T USRS 421
Chapter 19 JSP: Serviets Turned Inside Out ..........ccoieeiriicniiccnincn e 423
19.1 What YoUu WIll Learn .......ccooe i e e e e e e e e e e e ee e eeeees 424
19.2 Servlets Turned Inside Out: JSP ........ceeiiiiiiiieeeeeeeeeee e 424
19.3 How to Write a JSP Application ..........cccccoiiiieeiie e 426
19.3.1 SCHPLIET .. s 427

19.3.2 Declaration .......c.euueviieiiiiiiiiieie e 429

19.3.3 EXPIreSSION ..ttt 430

19.3.4 Dir€CHIVE oot ——————- 431

19.3.5 NEW SYNTAX 1uiiiiiiiieiiie e 434
19.3.6 JavaBeans iNn JSP ... 434

19.3.7 Tag Libraries ... 437

19.4 Using JSP with BUdQEtPIO ........coiiiiiiiiieiciiieee e 438
TO.5  REVIBW oottt e e e e e e e e e e e e e e e e e eeeeaeaaes 439
19.6 What You Still DON’t KNOW .....cceviieeiiiiiiiiieeieeeee et 440
1O.7  RESOUICES .eueuutiiieiei e e ettt e e s e e e e e e e e e aaaaaeeeeeeeeeaeeees 440
TO.8  EXEICISES .evveueiiiieie ittt s e e e e e e e e e e e e e e e e e e e aeaaa 441
Chapter 20 Open Source Web Application Servers .........cccoiveminimnissnnnncans 443
20.1 What YOU WIll LEAIN ..o e e e e e e e e eeeeeees 443
20.2 Downloading JBOSS ......cccoiiiiiiiieiiiiee e 444
20.3 Be an Enabiler, or “Let's Be Codependent!” ..........ccccvvveeeeeeeeeiieiiicnnnns 444
20.3.1 Nonroot-Installed Software .........cccccceeeeeeiiiiiiiiiiiiiieeeeeeeee. 445
20.3.2 Finer Grained Control ...........cccccciiiiiiieie e 450

20.4  InStalling JBOSS ....coiiiiiiiiiiieeiee e 450
20.5 Things That Make It GO ......ccceeveeiiiiiiie e 451
20.5.1 System V Init System ........cocoiiiiiii e 451
20.5.2 RedHat/Fedora chkeconfig ..........ccccooiiiiiiiiiiiieieee e, 458
20.5.3 Other Distributions ............coooiiiiiiiiiieeeeeeeeeeeeeeeee e, 463

20.5.4 IDE INtegration ... 464



xviii Contents
20.6 Disposition Of FOICES ......ccoiiiiiiiiiiiiiiie e 464

b2 O B A o= To] o T= T € 11 (o1 o115 o o TR 464

20.8 Installing GEroNiMO ........cooiuiiiiie et 467

20.9 Running the GEeronimo SEIVEr .......cccceeiiiiiiee e 468
20.10 REVIBW ...ttt e e e e e e e e e e e e e e e e e ennnes 468
20.11 What You Still DON't KNOW .....c.eeiiiiiieiiieeiiiee e 469
20.12 RESOUICES eiiiiiieiiiiieieiee et e e e e e e ettt ee e e e e e e e e e e s s anseeeeeeeaeaaeeeesaaannnes 469
PART V Developing Enterprise Scale Software ............... 471
Chapter 21 Introduction to Enterprise JavaBeans ..........cccccoivemmriinninsannnncans 473
211 What YOU WIll LEAIN ....oeeiiiiieeee e 473

21.2 Expanding t0 EUBS .......ooiiiiiiiie e 473
21.2.1 EJB CONCEPLS ...vvviiiiiiiieie ettt a e 474

21.2.2 BeaN TYPES ..o 477

21.2.3 Underthe HOOd ..........ccooiimiiiiiiie e 482

21.3 What's in a Name? An Introduction to JNDI ........c.coocoiiiiiiiiininin, 482
21.3.1 Naming and Directory System Concepts ........cccceeviverrernnnnnen. 482

21.3.2 Common DireCtory SErviCeS ........coioueirrieeriiieee e e 484

21.3.3 Putting a Face to a Name: JNDI ........ccccoiiiiiiiiiiiie, 487

21.3.4 Using JNDI With JBOSS ........cooiiiiiieiiiiiiee e 491

214 REVIBW ..oiiiiieiiiie ettt 491
21.5 What You Still DOnt KNOW ......ccccoiiiiiieiiiiiiie e 492
21.6 RESOUICES ... 492
Chapter 22 Building an EJB ..........cocoiiiieiiiiinissnsnssss s sess s s sssssssans 493
221 What YOU WIll LEAIN ....oeeeiiiieee e 493

22.2 EJBs: You Don’'t KNnow Beans? ..........eeeiiiiiiiaeiiiiieieeeeeee e 493
2221 SESSIONBEAN iiiciie e e ciie e e stee e stee e e ae e snee e 495

22.2.2 ETBODTECE ittt ettt 497

22.2.3 EJTBHOINE ...utiiiiiieeiteeesiee e sneee et e st e e snne e snee e 498

22.2.4 Summarizing the PIi€CES .......cceeiiiiiiiieiie e 499

22.2.,5 EJBLocalHome and EJBLocalObject ...cccoveeeennnen. 499

22.2.6 Compiling YOUr BEANS .......cceeeiiiiiiiiie e 501

22.3  REVIBW ..oiiiiieiiiee ettt 502



Contents Xix

22.4 What You Still DON't KNOW ......coooiiiiiiiieeeeeeeeeeee e eeeens 502

22.5 BRESOUICES ..uuiiieiiiiiii ettt et e e et tee e e e e e e et e e e e e e easte e e e e e estnnaeaaees 503
Chapter 23 Deploying EJBS ......ccccucimmiimiinmnmnisssssssssess s s sssssssasssssnsans 505
23.1 What YOU WIll LEAIN ..ottt 505

23.2 Lend Me Your EAR: Enterprise Packaging and Deployment ............. 506
23.2.1 What'sin an EJB-JAR File ....ccccoeeeeiiiiiiiiiiiiiiieeeeee 508

23.2.2 UsiNG OUr BEAN ......ceiiiiiiiiiee et 511

23.2.3 Packaging the Serviet ... 512

23.3 Deploying the EAR ... 514
283.3.1 JBOSS e 515

P T P2 € =Y (o] 111/ [ TN 515

23.4 Maintaining a Distributed Application .............oooiiiiiiiiiiiiiieiees 516
23.4.1 Ant and CVS ...t 516

283.4.2 XDOCIBL ..cooeeeeeeeeeeeeeeeee ettt ————— 517

23.5 Abstracting Legacy Applications ...........occceeieriiiieni e, 518

283.8 REVIEW ..coeeeeiiiiiiiicieee i te e et e e ettt ee et e et a e e e e e e e e e aaaaaaeeeeereraee 518

23.7 What You Still DON't KNOW ......coooiiiiiiiiieeeeeeeeeee e 519

283.8 BRESOUICES ..uuiiieiiiiici ettt e et e e e ettt e e e e e e anae e e e e e eetaa e eaees 519
Chapter 24 Parting Shots ..o s 521
24.1 The Future’s So Bright, | Squint and Look Confused ............ccccc........ 521

242 OUI BOOK IS YOUIS ...uueieieieeieieee e e e e e e e e e e eeeeeeeees 522

24.3 Came the ReVOIULION ........ccoooiiiiiiiiieeeeeeeeeee e eeeeeens 522

24.4 What You Still DON't KNOW ......coooiiiiiiiiieeeeeeeeeee e 523

24.5 BRESOUICES ouuiiiieiiiiiii ettt ettt e e e e et e e e e e e ee e e e e e e easaaeeeeseetanaaeaees 523
Appendix A ASCIl Chart .........ccccciiiirierrirssemerrrssssmse s esssssme e s essssmse s sessssmsssessssnnes 525
Appendix B A Java Swing GUI for BudgetPro ..........cccccecmiiniiemnninssscsnninssannns 527
Appendix C GNU General Public LiCENSE .......cccceceriimmnissninssnssesssssasssssanssans 539






Preface

JAVA AND LINUX

Why another book on Java? Why a book on Java and Linux? Isn’t Java a plat-
form-independent system? Aren’t there enough books on Java? Can’t I learn
everything I need to know from the Web?

No doubrt, there are a host of Java books on the market. We didn’t wake
up one morning and say, “You know what the world really needs? Another book
about Java!” No. What we realized was that there are a couple of “holes” in the
Java book market.

First, Linux as a development platform and deployment platform for Java
applications has been largely ignored. This is despite the fact that the *nix
platform (meaning all UNIX and UNIX-like systems, Linux included) has long
been recognized as one of the most programmer-friendly platforms in existence.
Those few resources for Java on Linux that exist emphasize tools to the exclu-
sion of the Java language and APIs.

Second, books on the Java language and APIs have focused on pedagogical
examples that serve to illustrate the details of the language and its libraries, but
very few of these examples are in themselves practically useful, and they tend

xxi



xxii

Preface

to deal only with the issues of writing programs, and not at all with deploying
and maintaining them. Anyone who has worked on a major software project,
especially a software project that is developed and deployed in a business for a
business, knows that designing and coding are only about half of the work in-
volved. Yes, writing Java code is only slightly affected by the development and
the deployment platform, but the process of releasing and maintaining such
applications is significantly different between platforms.

To address these missing pieces, we decided to cover development and
deployment of a Java application that has command-line, GUI, servlet, and
enterprise components on a Linux platform. We're writing the guide book we
wish we had had when we started writing and deploying Java applications on
Linux. We're going to show you a simplistic enterprise application, “from cradle
to grave,” but along the way cover issues of design process, production environ-
ment, setup, administration, and maintenance that few books bother to cover.!

If you are considering buying this book and you are wondering if there is
any information in here that you can’t get for free on the Web, then, no. There
is not. In fact, there is little information in any Java or Linux book that is not
available for free on the Internet. In fact, in each of our chapters we will tell
you where on the Web to find virtually all of the information we present, and
then some. And yet books continue to sell, and we have the chutzpah to ask
you to buy the book. The reason is that Web information is scattered, unorga-
nized, and of highly variable quality. We will be trying to bring all the relevant
information together in this book, in a clearly organized manner (and, we
would like to believe, at an acceptably high level of quality). We think that
has value.

Also, this book is part of the Bruce Perens’ Open Source Series. This book
is part of the Web literature. And you may freely read it and use it on the Web.
We hope this book will be one of those you use on the Web and buy on paper.
We don’t know about you, but we like to use Web books for reference, but for
reading, we like books. We own at least three books that are available for free
on the Web: Thinking in C++, Thinking in Java, and O’Reilly’s Docbook: The
Definitive Guide. We hope that open publishing will be the new model.

1. This is not to say this book is without purely pedagogical examples. Especially in Part I we
make use of your typical “throwaway” examples and single classes. To try to illustrate the basics
with a complete application would obscure and confuse the points being illustrated.



Preface xxiii

FREE SOFTWARE AND JAVA

GNU/Linux? is Free Software. It is Open Source. I don’t even want to start
the debate on what each term means and which one is “right.” One of the two
authors of this book is a Free Software advocate, and the other is of a purely
laissez-faire attitude towards the question (we won’t tell you which, although
we invite you to guess). But even with a deliberate decision to cease-fire, the
question remains: Is Java Open Source or Free Software?

The answer is mixed. Neither Sun’s nor IBM’s Java implementations are
Open Source or Free Software. You may download and use them for free, but
you do not have the source code to them, nor do you have the right to make
modifications to them.3 This book will cover the GNU Compiler for Java,
which compiles Java source code to native machine code. The GNU Compiler
for Java (ggj) is both Open Source and Free Software. It is, however, supporting
differing levels of the Java APIs (some packages are current, some are back at
1.1.x levels) and does not fully support the AWT or Swing GUIs.

However, none of this means that you cannot write your own Java pro-
grams and release them under a Free Software or Open Source license. So you
can certainly develop Free Software in Java. Staunch Free Software partisans
(such as Richard Stallman and the Free Software Foundation) would question
the wisdom of doing so. Their argument would be that a Free Software product
that depends on non-Free tools isn’t really Free Software, since to compile, use,
or modify it, you need to make use of a proprietary tool.

There is more than one effort to produce a Free Software Java runtime
implementation. None of them is “ready for prime time.” It would, in our
opinion, be a very good thing for Sun to release their SDK and Java Virtual
Machine as Free Software. But so far, they have steadily resisted calls to do so.

2. This is the only time we will refer to it as “GNU/Linux.” See Section 7.3 for the story of
why GNU/Linux is the preferred name of some. We understand Stallman and the FSF’s posi-
tion, but “Linux” is much easier on the eyes and ears than “GNU/Linux.” And that, not prin-
ciple, is how names and words go into the language. For better or for worse, “Linux” is the
name of the operating system.

3. As we write this, a very public discussion is taking place between Sun, IBM, and Eric Ray-
mond, founder of the Open Source Initiative, about opening Java under some sort of open
source license. At this time, no one knows how this will turn out, but it is possible that Java
will be Free Software in the future.



xxiv

Preface

The fact, however, that two distinct vendors (Sun and IBM) produce ef-
fectively interchangeable development and runtime environments reduces some
of the risk that you face when you select a platform available only from a single
vendor who does not provide source code.

So, to put the case firmly: Java is free for use, but it is certainly not Free
Software as defined in 7he GNU Manifesto* or the GNU General Public Li-
cense.> This is a political and philosophical issue of interest only to those
aforementioned Free Software partisans. For the rest of us, this has no bearing
on Java’s technical or business merits. As for us, obviously we like the language
or we wouldn’t be writing about it.

You CAN HELP!

This book is part of the Bruce Perens’ Open Source Series. Shortly after this
book is published in dead-tree form, it will be on the Web,¢ free for use, redis-
tribution, and modification in compliance with the terms of the Open Publica-
tion License,” with no options taken. You can immediately create your own
version as permitted in that license.

Naturally enough, we plan to maintain our “official” version of the online
book, so we encourage you to send suggestions, corrections, extensions, com-
ments, and ideas to us. Please send any such to javalinux@multitool.net
and we will try to keep our little tome up-to-date so it continues to serve the
needs of the Java and Linux development communities.

ACKNOWLEDGMENTS

First off, we naturally wish to thank Mark L. Taub, our acquisitions editor at
Prentice Hall PTR, for believing in the book and in open publishing as the way
to put it out there. We also want to thank Bruce Perens for lending his name
and powers of persuasion to open-content publishing through the Prentice Hall
PTR Bruce Peren’s Open Source Series. Thanks, too, to Patrick Cash-Peterson

4.http://www.gnu.org/gnu/manifesto.html
5. http://www.gnu.org/copyleft/gpl.html
6.http://www.javalinuxbook.com/

7. http://www.opencontent.org/openpub/



Preface

XXV

and Tyrrell Albaugh, who worked as our in-house production contacts, for all
the behind-the-scenes work they did, including overseeing the cover.

In more direct terms of content, we owe major thanks to Kirk Vogen of
IBM Consulting in Minneapolis for his article on using SWT with g¢j, and
for his kind help in allowing us to use the ideas he first presented in his IBM
developerWorks articles. In more direct terms of content, we owe major thanks
to: Kirk Vogen of IBM Consulting in Minneapolis for his article on using SWT
with gcj, and for his kind help in allowing us to use ideas he first presented in
his IBM developerWorks articles; and to Deepak Kumar® for graciously allow-
ing us to base our build.xml file for EJBs off of a version that he wrote.

Thanks, too, to Andrew Albing for his help in drawing some of our dia-
grams, and to George Logajan and to Andy Miller for sharing their insights on
the more intricate details of Swing.

We also wish to express our great indebtedness to our technical reviewers,
especially Andrew Hayes, Steve Huseth, and Dan Moore. A very large thank-
you is also due to Alina Kirsanova whose eye for detail, endless patience, and
tenacity, and overall talent with proofing, layout, and more added so much
refinement and improvement to the book. We are greatful for all their contri-
butions. Any errors or omissions in this text are our fault and certainly not
theirs. The book is much stronger for all their efforts.

There are likely many more people we ought to thank, especially those at
Prentice Hall PTR, whose names and contributions we may never know, but
we do know that this was an effort of many more people than just the authors,
and we are grateful to them all.

8. http://www.roseindia.net/






Introduction

This book has the unfortunate burden of serving a diverse set of audiences. We
realize that this book might appeal to both experienced Java programmers who
are new to Linux, and to experienced Linux programmers who are new to Java,
with all possible shadings in between.

In addition to balancing these two poles, we are also trying to strike a bal-
ance between the size of the book and the range of our topic. Fortunately, there
is today quite a range of both book and Web publishing on both Java and
Linux, so we are able to do our best within the limits of a book a normal person
may lift, and we can make recourse to a number of outside references you might
wish to use to supplement our efforts.

WHO SHouLD Buy THIS BOoOK

If you are an experienced Java programmer, but quite new to Linux, and you
have been looking for information on the tools available to develop and deploy
Java applications on Linux systems, this book will provide a lot of useful
information.

xxvii



xxviii

Introduction

If you are an experienced Linux user or developer, and you are interested
in using the Java language on that platform, this book will guide you through
some advanced Java development topics and will present, we hope, some novel
uses for familiar Linux and GNU tools.

If you are a rank beginner to either Linux or Java, we still think this book
has value, but we would recommend that you use it in conjunction with more
introductory books. For a basic introduction to Java and object-oriented pro-
gramming, we recommend Bruce Eckel’s excellent book, Thinking in Java
(ISBN 0-13-100287-2). For an introduction to Linux and its tools, we can
recommend 7he Linux Book by David Elboth (ISBN 0-13-032765-4)! as an
all-around title. We also list several other books in sections titled Resources
throughout this book. Many books we recommend are not actually Linux-
specific. Since Linux duplicates (in most respects) a UNIX platform, we do
occasionally recommend books that are general to all *nix systems.

If you are a developer, contractor, or MIS development manager with
more projects than budget, our book will introduce you to many solid tools
that are free of license fees for the development and deployment of production
Java applications. We are all being asked to do more with less all the time. In
many (but certainly not all) cases, Free and Open Source software is an excellent
way to do that.

WHO SHoOuULD NOT Buy THIS BOOK

Those looking for complete documentation on Java APIs and Linux-based Java
application servers will be disappointed. Complete reference material on Free
Software and Open Source Software may be found in book form, but it is most
certainly out-of-date. And while this is an open-content book, we know full
well that we will only be updating it as our “day jobs” permit. In other words,
those seeking complete and current reference material should go to the Web.
Those who have a multimillion-dollar budget for applications development
will probably be well served by commercial application server products. While
we very much believe that Linux and Java on Linux are fully capable of support-
ing production environments, we recognize that products such as BEAWeblogic

and IBM’s WebSphere have large support organizations behind them, and

1. Note that we do tend to recommend titles from Pearson Education (our publishers), but
that we by no means confine ourselves to that publisher.



Introduction XXix

(at least for now) a larger base of developers and contracting organizations with
staff (variably) experienced in writing and supporting applications in these en-
vironments. Please note that you can run these products on Linux systems, and
that they are part of the Linux-Java world. Our book does not cover them,
however, both because they are well-covered elsewhere, and because we have
chosen to emphasize the Free and Open Source tools merely to keep the book
small enough to lift, while still covering those tools most in need of well-written
supporting documentation.

How 1o USE THIS BOOK

There are many approaches to a book. Some people like to start with the last
chapter to see how it all turns out in the end; others like to start at the front
and master each topic before moving on; some read through quickly, then
reread for detail; still others prefer to skip around, “cherry picking” topics as
whim and fancy strike. We hope this book will work for you, whatever
your style.

Each chapter is not really free-standing, nor is it intricately tied to the
previous chapters. If we were writing in depth on a single topic we might be
able to build chapter by chapter. Instead, we've tackled an immense amount
of information in hopes of condensing it down to give a good overview, to give
you a glimpse of the possibilities, and to whet your appetite for more. Some
chapters will be strongly related to previous chapters; others you may be able
to read without having read any of the preceding chapters—it will depend on
the topic.

Many Paths

What we’re describing below are a few possible paths that you might take
through the book, depending on what you bring to the task—your experience
and skills, your patience and persistence. We have tried to pack a lot of useful
and practical information into these few chapters, distilling down the most
important topics for each subject area. We hope that, even for the most experi-
enced of our readers, we still offer, if not some new facts, at least some fresh
explanations that might give you new insight into familiar topics.



XXX

Introduction

The Linux Newbie Path

If you are new to Linux, then you’ll want to start with the first two chapters.
If you are already experienced in Java, feel free to skip Chapter 3, but you may
want at least to skim Chapters 4 and 5. You will definitely want to check out
Chapter 7 as we are almost sure that it is something you didn’t know about.

Chapter 8 is another topic you may not have encountered outside of
Linux, although CVS is not limited to Linux environments. Beyond that, it
will depend on what else you already know. See what other categories, below,
might fit your situation.

The Java Newbie Path

If you are new to Java, then be sure to read Chapters 3 and 4, but if you are
not already an experienced programmer you should probably bring along
another, more introductory text.

Chapters 5 and 10 will give you some good background for choosing your
Java development tools. So many Java projects these days are tied to Ant that
you should also cover Chapter 9 if you don’t already know the tool.

With your experience in other languages you may have done a lot of unit
testing; read about the approach most popular with Java developers in

Chapter 13.

The Client-Side Path

Depending on what type of Java development that you hope to do, you may
want to concentrate on certain parts of the latter half of the book. Those most
interested in the front end or client side should focus on the middle chapters.
Of most interest to you will be Chapters 16 and 17. Your client-side emphasis
should also include Chapters 18 and 19.

The Server-Side Path

For those with an emphasis on the middle and third tier, or those with a general
server emphasis, all of Part IV will be helpful. This is in addition to a solid
grounding in the previous chapters in Parts I and II.

The Enterprise Path

The final Part V will discuss enterprise scale software. Such software also typi-
cally includes JSP and Servlet software, as covered in Chapters 18, 19, and 20.



Introduction XXXi

For those working at this level, the projects are usually large enough to be
staffed with a variety of roles. Even if your role doesn’t include the deployment
of the software, we encourage you to read these chapters (20 and 24) so as to
get some understanding of what is needed and how it fits together.

Now, let’s get to work, and discover some of the amazing capabilities
available to you when you combine two of the most powerful software trends
in the history of computing—Java and Linux.






Part |

Getting Started






Chapter 1

An Embarrassment of Riches:
The Linux Environment

The reader is introduced to the vast possibilities of the Linux command line,
and excuses are made for its eclecticism.

1.1 WHAT YOoU WILL LEARN

Some basic shell commands are described in this chapter, especially those relat-
ed to some common programming tasks. Used as a toolkit, they can be a handy
collection of tools for everyday use.

Linux provides an incredible array of such tools, useful for any develop-
ment effort, Java or otherwise. They will be important not only for the develop-
ment of your Java code, but for all the hundreds of related housekeeping tasks
associated with programming and with managing your development environ-
ment. A few tools are described briefly in this chapter, to hint at what can be
done and to whet your appetite for more.

We will also describe a command which will help you learn about other
commands. Even so, it may be quite worth your while to have another book
about UNIX/Linux handy. If there is something you, as a programmer, need

3



Chapter 1 An Embarrassment of Riches: The Linux Environment

to do on a Linux system, chances are there is already a command (or a sequence
of commands) which will do it.

Finally, we will discuss the extent of our remaining ignorance upon
finishing the chapter.

Let us take a moment to explain that last comment. As readers of comput-
er books ourselves, we are often frustrated when we discover how lightly a topic
has been covered, but particularly so when other parts of the same book are
found to fully explore their topics. When only some parts of a book are thor-
ough, you often don’t know that you don’t know it all. We will introduce some
basic shell concepts and commands here, and we may expand on some of these
in later chapters, but each of our chapters covers topics that could each fill its
own book. Therefore we need to leave out lots of material. We will also let you
know when we have left things out because they are off-topic, or because we
don’t have room. We'll also try to tell you where to look for the rest of the
knowledge. We try to sum this up in a final section of each chapter entitled
What You Still Don’t Know. But we do have a lot of information to impart,
so let’s get going.

1.2 THE COMMAND LINE: WHAT’S THE BIG DEAL?

One of the revolutionary things that UNIX (and thus Linux) did was to sepa-
rate operating system commands from the operating system itself. The com-
mands to display files, show the contents of directories, set permissions, and so
on were, in the “olden days,” an integral part of an operating system. UNIX
removed all that from the operating system proper, leaving only a small “kernel”
of necessary functionality in the operating system. The rest became executables
that lived outside of the operating system and could be changed, enhanced, or
even replaced individually by (advanced) users without modifying the operating
system. The most significant of these standalone pieces was the command
processor itself, called the shell.

The shell is the program that takes command-line input, decides what
program(s) you are asking to have run, and then runs those programs. Before
there were Graphical User Interfaces, the shell was #he user interface to UNIX.
As more developers began working with UNIX, different shells were developed
to provide different features for usability. Now there are several shells to
choose from, though the most popular is bash. Some BSD/UNIX die hards



1.3 Basic Linux Concepts and Commands 5

1.3

still swear by csh, a.k.a. the C=shell, though most of its best features have been
incorporated into bash.

TIP

There are actually quite a few shells to choose from, and several editors for
entering text. Our recommendation: If you learn only one shell, learn bash. If
you learn only one editor, learn vi. Some basic shell scripting will go a long way
to eliminating mundane, repetitive tasks. Some basic vi editing will let you do
things so much faster than what GUI editors support. (More on editing in
Chapter 2.)

Since commands could be developed and deployed apart from the operat-
ing system, UNIX and Linux have, over the years, had a wide variety of tools
and commands developed for them. In fact, much of what is called Linux is
really the set of GNU tools which began development as Open Source long
before Linux even existed. These tools, while not technically part of the operat-
ing system, are written to work atop any UNIX-like operating system and pro-
grammers have come to expect them on any Linux system that they use. Some
commands and utilities have changed over the years, some are much the same
as they first were in the early days of UNIX.

Developers, encouraged by the openness of Open Source (and perhaps
having too much free time on their hands) have continued to create new utili-
ties to help them get their job done better/faster/cheaper. That Linux supports
such a model has helped it to grow and spread. Thus Linux presents the first
time user with a mind-boggling array of commands to try to learn. We will
describe a few essential tools and help you learn about more.

BAsIC LINUX CONCEPTS AND COMMANDS

There are some basic Linux commands and concepts that you should know in
order to be able to move around comfortably in a Linux filesystem. Check your
knowledge of these commands, and if need be, brush up on them. At the end
of the chapter, we list some good resources for learning more about these and
other commands. Remember, these are commands that you type, not icons for
clicking, though the windowing systems will let you set up icons to represent
those commands, once you know what syntax to use.



Chapter 1 An Embarrassment of Riches: The Linux Environment

So let’s get started. Once you’ve logged in to your Linux system, regardless
of which windowing system you are using—KDE, Gnome, Window Maker,
and so on, start up an xterm window by running xterm (or even konsole) and
you’ll be ready to type these commands.!

1.3.1 Redirecting I/O

The second great accomplishment of UNIX,? carried on into its Linux descen-
dants, was the concept of redirecting input and output (I/O). It was based on

the concept of a standardized way in which I/O would be done, called
standard I/O.

1.3.1.1 Standard I/O

A familiar concept to Linux developers is the notion of standard I/O. Virtually
every Linux process begins its life with three open file descriptors—standard
in, standard out, and standard error. Standard in is the source of input for the
process; standard out is the destination of the process’ output; and standard
error is the destination for error messages. For “old fashioned” command-line
applications, these correspond to keyboard input for standard in and the output
window or screen for both standard out and error.

A feature of Linux that makes it so adaptable is its ability to redirect its
I/O. Programs can be written generically to read from standard in and write to
standard out, but then when the user runs the program, he or she can change
(or redirect) the source (in) or destination (out) of the I/O. This allows a
program to be used in different ways without changing its code.

Redirecting I/O is accomplished on the Linux shell command line by the
“<” and “>” characters. Consider the Is program which lists the contents of a
directory. Here is a sample run of Is:

S 1s
afile more.data zz.top

$

1. If you're not using a windowing system, these commands are typed at the shell prompt that
you get after you log in. But if you’re not using a windowing system, either you’re not a begin-
ner (and don’t need this introduction) or you can’t get your windowing system to work, in
which case you may need more help that we can give you here.

2. Yes, we are aware that much of UNIX actually comes from the Multics project, but we
credit UNIX with popularizing it.



1.3 Basic Linux Concepts and Commands 7

We can redirect its output to another location, a file, with the “>”
character:

$ 1s > my.files
$

The output from the Is command no longer appears on the screen (the
default location of standard out); it has been redirected to the file my . files.

What makes this so powerful a construct (albeit for a very simple example)
is the fact that not only was no change to the program required, but the pro-
grammer who wrote the Is program also did nothing special for I/O. He simply
built the program to write to standard out. The shell did the work of redirecting
the output. This means that any program invoked by the shell can have its
output similarly redirected.

Standard error is another location for output, but it was meant as the des-
tination for error messages. For example, if you try to list the contents of a
nonexistent directory, you get an error message:

$ 1ls bogus
1ls: bogus: No such file or directory
$

If you redirect standard out, nothing changes:

S 1ls bogus > save.out
1ls: bogus: No such file or directory

$

That’s because the programmer wrote the program to send the message to
standard error, not standard out. In the shell (bash) we can redirect standard
error by preceding the redirect symbol with the number 2, as follows:3

$ 1ls bogus 2> save.out

$

3. The use of the number 2 comes from an implementation detail: All the I/O descriptors for
a UNIX process were kept in an array. The first three elements of the array, numbered 0, 1,
and 2, were defined to be the standard in, out, and err, in that order. Thus in the shell you can
also redirect standard out by using “1>” as well as the shorter “>”.



Chapter 1 An Embarrassment of Riches: The Linux Environment

Note there is no output visible from Is. The error message, 1s: bogus:
No such file or directory, has been written to the file save.out.

In a similar way standard input (stdin) can be redirected from its default
source, the keyboard.

As an example, we'll run the sort program. Unless you tell it otherwise,
sort will read from stdin—that is, the keyboard. We type a short list of
phrases and then type a ~D (a Control-D) which won’t really echo to the screen
as we have shown but will tell Linux that it has reached the end of the input.
The lines of text are then printed back out, now sorted by the first character of
each line. (This is just the tip of the iceberg of what sort can do.)

$ sort

once upon a time
a small creature
came to live in
the forest.

~“D

a small creature
came to live in
once upon a time
the forest.

Now let’s assume that we already have our text inside a file called
story.txt. We can use that file as input to the sort program by redirecting
the input with the “<” character. The sort doesn’t know the difference. Our
output is the same:

$ sort < story.txt
a small creature
came to live in
once upon a time
the forest.

1.3.1.2 Pipes

The output from one command can also be sent directly to the input of another
command. Such a connection is called a pipe. Linux command-line users also
use “pipe” as a verb, describing a sequence of commands as piping the output
of one command into another. Some examples:

$ 1s | we > wc.fields
$ java MyCommand < data.file | grep -i total > out.put



1.3 Basic Linux Concepts and Commands 9

The first example runs Is, then pipes its output to the input of the wc
program. The output of the we command is redirected to the file we . fields.
The second example runs java, giving it a class file named MyCommand. Any
input that this command would normally read from keyboard input will be
read this time from the file data.file. The output from this will be piped
into grep, and the output from grep will be put into out .put.

Don’t worry about what these commands really do. The point of the ex-
ample is to show how they connect. This has wonderful implications for devel-
opers. You can write your program to read from the keyboard and write to a
window, but then, without any change to the program, it can be instructed to
read from files and write to files, or be interconnected with other programs.

This leads to a modularization of functions into small, reusable units. Each
command can do a simple task, but it can be interconnected with other com-
mands to do more, with each pipeline tailored by the user to do just what is
needed. Take wc for example. Its job is to count words, lines, and characters
in a file. Other commands don’t have to provide an option to do this; any time
you want to count the lines in your output, just pipe it into wc.

1.3.2 Thels Command

The Is command is so basic, showing the names of files in a directory. Be sure
that you know how to use these options:

* 1s lists the files in a directory.
* 1s -1 is the long form, showing permissions, ownership, and size.

* 1s -1d doesn’t look inside the directory, so you can see the directory’s
permissions.

* 1s -1rt shows the most recently modified files last, so you can see what
you've just changed.

1.3.3 Filenames

Filenames in Linux can be quite long and composed of virtually any character.
Practically speaking, however, you're much better off if you limit the length to
something reasonable, and keep to the alphanumeric characters, period, and
the underscore (“_"). That’s because almost all the other punctuation characters
have a special meaning to the shell, so if you want to type them, you need to
escape their special meaning, or suffer the results of unintended actions.



10

Chapter 1 An Embarrassment of Riches: The Linux Environment

Filenames are case sensitive—upper- and lowercase names are different.
The files ReadMe . txt and readme. txt could both be in the same directory;
they are distinct files.

Avoid using spaces in filenames, as the shell uses whitespace to delineate
between arguments on a command line. You caz put a blank in a name, but
then you always have to put the name in quotes to refer to it in the shell.

To give a filename more visual clues, use a period or an underscore.
You can combine several in one filename, too. The filenames
read_me_before_you_begin or test.data.for_my_program may be

annoyingly long to type, but they are legal filenames.

NOTE

The period, or “dot,” in Linux filenames has no special meaning. If you come
from the MS-DOS world, you may think of the period as separating the filename
from the extension, as in myprogrm.bas where the filename is limited to eight
characters and the extension to three characters. Not so in Linux. There is no
“extension,” it’s all just part of the filename.

You will still see names like delim.c or Account.java, butthe .c or
. Java are simply the last two characters or the last five characters, respective-
ly, of the filenames. That said, certain programs will insist on those endings for
their files. The Java compiler will insist that its source files end in . java and
will produce files that end in . class—»but there is no special part of the file-
name to hold this. This will prove to be very handy, both when you name your
files and when you use patterns to search for files (see below).

1.3.4 Permissions

Permissions in Linux are divided into three categories: the owner of a file
(usually the user who created it), the group (a collection of users), and ozhers,
meaning everyone who is not the owner and not in the group. Any file belongs
to a single owner and, simultaneously, to a single group. It has separate
read/write/execute permissions for its owner, its group, and all others. If you
are the owner of a file, but also a member of the group that owns the file, then
the owner permissions are what counts. If you’re not the owner, but a member
of the group, then the group permissions will control your access to the file. All
others get the “other” permissions.

If you think of the three permissions, read/write/execute, as three bits of
a binary number, then a permission can be expressed as an octal digit—where
the most significant bit represents read permission, the middle bit is write



1.3 Basic Linux Concepts and Commands 11

permission, and the least significant bit is execute permission. If you think of
the three categories, user/group/others, as three digits, then you can express the
permissions of a file as three octal digits, for example “750”. The earliest ver-
sions of this command required you to set file permissions this way, by specify-
ing the octal number. Now, although there is a fancier syntax (for example,
g+a), you can still use the octal numbers in the chmod command. See the
example below.

The fancier, or more user-friendly, syntax uses letters to represent the var-
ious categories and permissions. The three categories of user, group, and other
are represented by their first letters: u, g, and o. The permissions are similarly
represented by r, w, and x. (OK, we know “x” is not the first letter, but it is a
reasonable choice.) For both categories and permissions, the letter a stands for
“all.” Then, to add permissions, use the plus sign (+); to remove permissions,
use the minus sign (-). So g+a means “add all permissions to the group catego-
ry,” and a+r means “add read permissions to all categories.”

Be sure that you know these commands for manipulating permissions:

e chmod changes the mode of a file, where mode refers to the
read/write/execute permissions.

* chown changes the owner of a file.4

* chgrp changes the group owner of a file.

Table 1.1 shows some common uses of these commands.

Table 1.1 Changing permissions

Command Explanation

chmod a+r file Gives everyone read permission.
chmod go-w file Takes away write permission from group, others.
chmod u+x file  Sets up a shell script so you can execute it like a command.

chmod 600 file  Sets permission to read and write for the owner but no permissions
for anyone else.

4. On Linux the use of this command is restricted to the superuser, or “root.”



12

Chapter 1 An Embarrassment of Riches: The Linux Environment

1.3.5 File Copying

Do you know these commands?

* mv

.CP

e In

The mv command (short for “move”) lets you move a file from one place
in the hierarchy of files to another—that is, from one directory to another.
When you move the file, you can give it a new name. If you move it without
putting it in a different directory, well, that’s just renaming the file.

* mv Classy.java Nouveau.java
®* mv Classy.java /tmp/outamy.way
®* mv Classx.java Classz.java

®* mv /usr/oldproject/*.java

The first example moves Classy.java to a new name, Nouveau. java,
while leaving the file in the same directory.

The second example moves the file named classy. java from the current
directory over to the /tmp directory and renames it outamy . way—unless the
file outamy.way is an already existing directory. In that case, the file
Classy.java will end up (still named classy.java) inside the directory
outamy.way.

The next example just moves the two Java source files up one level, to the
parent directory. The “. .” is a feature of every Linux directory. Whenever you
create a directory, it gets created with two links already built in: “. .” points to
its parent (the directory that contains it), and “.” points to the directory itself.

A common question at this point is, “Why does a directory need a refer-
ence to itself?” Whatever other reasons there may be, it certainly is a handy
shorthand to refer to the current directory. If you need to move a whole lot of
files from one directory to another, you can use the “.” as your destination.
That’s the fourth example.

The ¢p command is much like the mv command, but the original file is
left right where it is. In other words, it copies files instead of moving them. So:

cp Classy.java Nouveau.java



1.3 Basic Linux Concepts and Commands 13

will make a copy of clas sy.java named Nouveau. java, and:
cp Classy.java /tmp

will make a copy of classy.java in the /tmp directory, and:
cp *.java /tmp

will put the copies of all the Java sources in the current directory to the /tmp
directory.
If you run this command,

1n Classy.java /tmp

you might think that In copies files, too. You will see classy.java in your
present working directory and you will see what appears to be a copy of the file
in the /tmp directory. But if you edit your local copy of classy.java and
then look at the “copy” that you made in the /tmp directory, you will see the
changes that you made to your local file now also appear in the file in the /tmp
directory.

That’s because In doesn’t make a copy. It makes a /ink. A link is just an-
other name for the same contents. We will discuss linking in detail later in the
book (see Section 6.2.1).

1.3.6 Seeing Stars

We need to describe shell pattern matching for those new to it. It’s one of the

more powerful things that the shell (the command processor) does for the

user—and it makes all the other commands seem that much more powerful.
When you type a command like we did previously:

mv /usr/oldproject/*.java .

the asterisk character (called a “star” for short) is a shorthand to match any
characters, which in combination with the .java will then match any file in
the /usr/oldproject directory whose name ends with . java.

There are two significant things to remember about this feature. First, the
star and the other shell pattern matching characters (described below) do 7oz
mean the same as the regular expressions in vi or other programs or languages.
Shell pattern matching is similar in concept, but quite different in specifics.



14

Chapter 1 An Embarrassment of Riches: The Linux Environment

Second, the pattern matching is done by the shell, the command inter-
preter, before the arguments are handed off to the specific command. Any text
with these special characters is replaced, by the shell, with one or more filenames
that match the pattern. This means that all the other Linux commands (mv,
cp; Is, and so on) never see the special characters—they don’t do the pattern
matching, the shell does. The shell just hands them a list of filenames.

The significance here is that this functionality is available to any and every
command, including shell scripts and Java programs that you write, with no
extra effort on your part. It also means that the syntax for specifying multiple
files doesn’t change between commands—since the commands don’t implement
that syntax; it’s all taken care of in the shell before they ever see it. Any com-
mand that can handle multiple filenames on a command line can benefit from
this shell feature.

If you’re familiar with MS-DOS commands, consider the way pattern
matching works (or doesn’t work) there. The limited pattern matching you
have available for a dir command in MS-DOS doesn’t work with other com-
mands—unless the programmer who wrote that command also implemented
the same pattern matching feature.

What are the other special characters for pattern matching with filenames?
Two other constructs worth knowing are the question mark and the square
brackets. The “?” will match any single character.

The [...] construct is a bit more complicated. In its simplest form, it
matches any of the characters inside; for example, [abc] matches any of a or
b or c. So Version[123].java would match a file called version2.java
but not those called Versionl2.java or VersionC.java. The pattern
Version*.java would match all of those. The pattern version?. java would
match all except Versionl2.java, since it has two characters where the 2
matches only one.

The brackets can also match a range of characters, as in [a-z] or [0-9].
If the first character inside the brackets is a “~” ora “1”, then (think “not”) the
meaning is reversed, and it will match anything but those characters. So
Version[~0-9].java will match Vversionc.java but not versionl.java.
How would you match a “-”, without it being taken to mean a range? Put it
first inside the brackets. How would you match a “~” or “1” without it being
understood as the “not”? Don’ put it first.

Some sequences are so common that a shorthand syntax is included. Some
other sequences are not sequential characters and are not easily expressed as a
range, so a shorthand is included for those, too. The syntax for these special



1.3 Basic Linux Concepts and Commands 15

sequences is [ :name:] where name is one of: alnum, alpha, ascii, blank,
cntrl, digit, graph, lower, print, punct, space, upper, xdigit. The
phrase [:alpha:] matches any alphabetic character. The phrase [:punct:]
matches any punctuation character. We think you got the idea.

1.3.6.1 Escape at Last

Of course there are always times when you want the special character to be just
that character, without its special meaning to the shell. In that case you need
to escape the special meaning, either by preceding it with a backslash or by en-
closing the expression in single quotes. The commands rm Account\$1.class
orrm 'Account$l.class' would remove the file even though it has a dollar
sign in its name (which would normally be interpreted by the shell as a vari-
able). Any character sequence in single quotes is left alone by the shell; no spe-
cial substitutions are done. Double quotes still do some substitutions inside
them, such as shell variable substitution, so if you want literal values, use the
single quotes.

TIP

As a general rule, if you are typing a filename which contains something other
than alphanumeric characters, underscores, or periods, you probably want to
enclose it in single quotes, to avoid any special shell meaning.

1.3.7 File Contents

Let’s look at a directory of files. How do you know what’s there? We can start
with an Is to list the names:

$ 1s

ReadMe. txt Shift.java dispColrs moresrc
Shift.class anIcon.gif Jjam.jar moresrc.zip
$

That lists them alphabetically, top to bottom, then left to right, arranged
so as to make the most use of the space while keeping the list in columns.
(There are options for other orderings, single column, and so on.)

An 1s without options only tells us the names, and we can make some
guesses based on those names (for example, which file is Java source, and which



16

Chapter 1 An Embarrassment of Riches: The Linux Environment

is a compiled class file). The long listing 1s -1 will tell us more: permissions,
links, owner, group, size (in bytes), and the date of last modification.

$ 1s -1

total 2414

-Yw-r--r-- 1 albing users 132 Jan 22 07:53 ReadMe.txt
-Yw-r--r-- 1 albing users 637 Jan 22 07:52 Shift.class
-YwW-r--r-- 1 albing users 336 Jan 22 07:55 shift.java
-rw-r--r-- 1 albing users 1374 Jan 22 07:58 anIcon.gif
-Yw-r--r-- 1 albing users 8564 Jan 22 07:59 dispColrs
-Yw-r--r-- 1 albing users 1943 Jan 22 08:02 jam.jar
drwxr-xr-x 2 albing users 48 Jan 22 07:52 moresrc
-Yw-r--r-- 1 albing users 2435522 Jan 22 07:56 moresrc.zip
$

While Is is only looking at the “outside” of files,> there is a command that
looks at the “inside,” the data itself, and based on that, tries to tell you what
kind of file it found. The command is called file, and it takes as arguments a
list of files, so you can give it the name of a single file or you can give it a whole

long list of files.

NOTE

Remember what was said about pattern matching in the shell: we can let the
shell construct that list of files for us. We can give f£ile the list of all the files
in our current directory by using the “*” on the command line so that the shell
does the work of expanding it to the names of all the files in our directory (since
any filename will match the star pattern).

$ file *

ReadMe.txt: ASCII text

Shift.class: compiled Java class data, version 45.3
Shift.java: ASCII Java program text

anIcon.gif: GIF image data, version 89%a, 26 x 26,

dispColrs: PNG image data, 565 x 465, 8-bit/color RGB, non-interlaced
jam.jar: Zip archive data, at least v2.0 to extract
moresrc: directory

moresrc.zip: Zip archive data, at least v1.0 to extract

$

5. Technically, 1s (without arguments) need only read the directory, whereas 1s -1 looks at
the contents of the inode in order to get all the other information (permissions, size, and so
on), but it doesn’t look at the data blocks of the file.



1.3 Basic Linux Concepts and Commands 17

The file looks at the first several hundred bytes of the file and does a statis-
tical analysis of the types of characters that it finds there, along with other spe-
cial information it uses about the formats of certain files.

Three things to note with this output from file. First, notice that
dispColrs was (correctly) identified as a PNG file, even without the .png
suffix that it would normally have. That was done deliberately to show you that
the type of file is based not just on the name but on the actual contents of
the file.

Second, notice that the . jar file is identified as a ZIP archive. They really
do use a identical internal format.

Thirdly, file is not foolproof. It’s possible to have perfectly valid, compil-
able Java files that file thinks are C++ source, or even just English text. Still,
it’s a great first guess when you need to figure out what’s in a directory.

Now let’s look at a file. This simplest way to display its contents is to
use cat.

$ cat Shift.java
import java.io.*;
import java.net.*;
/**

* The Shift object
*/

public class

Shift

{

private int val;
public Shift() { }
// ... and so on

} // class Shift

When a file is longer than a few lines you may want to use more or less
to look at the file.¢ These programs provide a screen’s worth of data, then pause

6. Like any open marketplace, the marketplace of ideas and open source software has its “me-
too” products. Someone thought they could do even better than more, so they wrote a new,
improved and largely upward compatible command. They named it less, on the minimalist
philosophy (with apologies to Dave Barry: “I am not making this up”) that “less is more.”
Nowadays, the more is rather passe. The less command has more features and has largely
replaced it. In fact, on many Linux distributions, more is a link to less. In the name of full



18

Chapter 1 An Embarrassment of Riches: The Linux Environment

for your input. You can press the space bar to get the next screen’s worth of
output. You can type a slash, then a string, and it will search forward for that

«, »

string. If you have gone farther forward in the file than you wanted, press “b
to go backwards.

To find out more about the many, many commands available, press ?
(the question mark) while it’s running.

Typical uses for these commands are:

* To view one or more files, for example more *.java, where you can type
:n to skip to the next file.

* To page through long output from a previous pipe of commands, for ex-
ample, $ grep Account *.java | more, which will search (see more
on grep below) for the string Account in all of the files whose names end
in .java and print out each line that is found—and that output will be
paginated by more.

If you need only to check the top few lines of a file, use head. You can
choose how many lines from the front of the file to see with a simple parameter.
The command head -7 will write out the first seven lines, then exit.

If your interest is the last few lines of a file, use tail. You can choose how
many lines from the end of the file to see; the command tail -7 will write
out the last seven lines of the file. But tail has another interesting parameter,
-f. Though tail normally prints its lines and then, having reached the end of
file, it quits, the - £ option tells tail to wait after it prints the last few lines and
then try again.” If some other program is writing to this file, then tail will, on
its next read, find more data and print it out. It’s a great way to watch a log file,
for example, tail -f /tmp/server.log.

In this mode, tail won’t end when it reaches the end of file, so when you
want it to stop you’ll have to manually interrupt it with a ~c (Control-C—i.e.,

hold down the Control key and press the C key).

disclosure, there is also a paging program called pg, the precursor to more, but we’ll say no
more about that.

7. The less command has the same feature. If you press “F” while looking at a file, it goes into
an identical mode to the tail -f command. As is often the case in the wacky world of Linux,
there is more than one way to do it.



1.3 Basic Linux Concepts and Commands 19

1.3.8 The grep Command

No discussion of Linux commands would be complete without mentioning
grep. Grep, an acronym for “generalized regular expression processor,” is a tool
for searching through the contents of a file. It searches not just for fixed
sequences of characters, but can also handle regular expressions.

In its simplest form, grep myClass *.java will search for and display
all lines from the specified files that contain the string myclass. (Recall that
the *.java expansion is done by the shell, listing all the files that end with
.java.)

The first parameter to grep, myClass in the example above, is the string
that you want to search for. But the first nonoption parameter to grep is con-
sidered a regular expression meaning that it can contain special characters for
pattern matching to make for more powerful searches (see Section 2.2.3). Some
of the most common option parameters for grep are listed in Table 1.2.

Here’s a quick example:

grep println *.java | grep -v System.out

It will look for every occurrence of print1n but then exclude those that contain
System.out. Be aware that while it will exclude lines like

System.out.println (msg) ;
it will also exclude lines like this:
file.println (msg) ; // I'm not using System.out

It is, after all, just doing string searches.

Table 1.2 Options for grep

Option Explanation

-i Ignore upper/lower case differences in its matching.

-1 Only list the filename, not the actual line that matched.

-n Show the line number where the match was found.

-v Reverses the meaning of the search—shows every line that does not match the

pattern.




20

Chapter 1 An Embarrassment of Riches: The Linux Environment

1.3.9 The find Command

If someone compiled a list of the top 10 most useful Linux utilities, find would
most likely be near the top of the list. But it would also make the top 10 most
confusing. Its syntax is very unlike other Linux utilities. It consists of
predicates—logical expressions that cause actions and have true/false values that
determine if the rest of the expression is executed. Confused? If you haven’t
used find before you probably are. We'll try to shed a little light by showing a

few examples.
find . -name '*frag*' -print

This command looks for a file whose name contains frag. It starts looking in
the current directory and descends into all subdirectories in its search.

find /over/there . /tmp/here -name '*frag*.java' -print

This command looks for a file that has frag in its name and ends with . java.
It searches for this file starting in three different directories—the current
directory (“.”), /over/there, and /tmp/here.

find . -name 'My[A-Z]*.java' -exec 1ls -1 '"{}' \;

Starting in the current directory, this command searches for a file whose name
begins with My followed by an uppercase alphabetic character followed by
anything else, ending with . java. When it finds such a file, it will execute a
command—in this case, the Is command with the -1 option. The braces are
replaced with the name of the file that is found; the “\;” indicates to find the
end of the command.

The -name is called a predicate; it takes a regular expression as an argu-
ment. Any file that matches that regular expression pattern is considered true,
so control passes on to the next predicate—which in the first example is simply
-print that prints the filename (to standard out) and is always true (but since
no other predicate follows it in this example, it doesn’t matter). Since only the
names that match the regular expression cause the -name predicate to be true,
only those names will get printed.

There are other predicates besides -name. You can get an entire list by
typingman findatacommand prompt, but Table 1.3 lists a few gems, to give
you a taste of what find can do.

Let’s look at an example to see how they fit together:



1.3 Basic Linux Concepts and Commands 21

Table 1.3 Some find predicates

Option Explanation

-type d Is true if the file is a directory.

-type f Is true if the file is a plain file (e.g., not a directory).
-mtime -5 Is true if the file is less than five days old, that is, has been

modified within the last five days. A +5 would mean older than
five days and a 5 with no sign means exactly five days.

-atime -5 Is true if the file was accessed within the last five days. The +
and - mean greater and less than the specified time, as in the
previous example.

-newer myEx.class Is true if the file is newer than the file myEx . class.

-size +24k Is true if the file is greater than 24K. The suffix ¢ would mean
bytes or characters (since b stands for 512-byte blocks in this
context). The + and - mean greater and less than the specified
size, as in the other examples.

$ find . -name '*.java' -mtime +90 -atime +30 -print
. /MyExample.java

./0ld/sample/MyPrev.java

$

This command printed out the names of two files that end with . java found
beneath the current directory. These files hadn’t been modified in the last
90 days nor accessed within the last 30 days. The next thing you might want
to do is to run this command again adding something at the end to remove

these old files.

$ find . -name '*.java' -mtime +90 -atime +30 -print -exec rm '{}' \;
. /MyExample.java

./0ld/sample/MyPrev.java

$

1.3.10 The Shell Revisited

Most Linux shells—the command interpreters—can be considered program-
ming languages in their own right. That is, they have variables and control
structures—i £ statements, for loops, and so on. While the syntax can be subtly
different between shells, the basic constructs are all there.



22

Chapter 1 An Embarrassment of Riches: The Linux Environment

Entire books can be—and have been—written on shell programming.
(Is one of our favorite subjects to teach.) Programs written in the shell lan-
guage are often called shell scripts. Such scripts can be powerful yet easy to write
(once you are familiar with the syntax) and can make you very productive in
dealing with all those little housekeeping tasks that accompany program
development. All you need to do (dangerous words, no?) is to put commands
in a text file and give the file execute permissions. But that’s a subject for
another day.

Some elements of shell scripting, however, are useful even if you never
create a single shell script. Of these, perhaps the most important to know
(especially for Java programmers) is how to deal with shell variables.

NOTE

We’ll be describing the syntax for bash, the default shell on most Linux
distributions. The syntax will differ for other shells, but the concepts are largely
the same.

Any string of alphanumeric or underscore characters can be used as the
name of a variable. By convention shell variables typically use uppercase
names—but that is only convention (although it will hold true for most if
not all of our examples, t00). Since commands in Linux are almost always
lowercase, the use of uppercase for shell variables helps them to stand out.

Set the value of a shell variable with the familiar method—the equal sign:

$ FILE=/tmp/abc.out
$

This has assigned the variable FILE the value /tmp/abc . out. But to make
use of the value that is now in FILE, the shell uses syntax that might not be
familiar to you: The name must be preceded with a “s”.

Shell variables can be passed on to other environments if they are exporzed,
but they can never be passed back up. To set a shell variable for use by your
current shell and every subsequent subshell, export the variable:

$ export FILE
$



1.3 Basic Linux Concepts and Commands 23

You can combine the assignment of a value with the exporting into one
step. Since repeating the export doesn’t hurt, you will often see shell scripts use
the export command every time they do an assignment, as if it were part of
the assignment syntax—but you know better.

$ export FILE="/tmp/way.out"
$

NOTE

The shell uses the dollar sign to distinguish between the variable name and just
text of the same letters. Consider the following example:

$ echo first > FILE

S echo second > TEXT
S FILE=TEXT

S cat FILE

first

$

The cat command will dump the contents of the file named FILE to the
screen—and you should see first. But how would you tell the shell that you
want to see the contents of the file whose name you have put in the shell
variable FILE? For that you need the “s”:

S cat SFILE
second

$

This is a contrived example, but the point is that shell syntax supports ar-
bitrary strings of characters in the command line—some of them are filenames,
others are just characters that you want to pass to a program. It needs a way
to distinguish those from shell variables. It doesn’t have that problem on the
assignment because the “=" provides the needed clue. To say it in computer
science terms, the “$” syntax provides the R-value of the variable. (Not the
insulation R-value, but what you expect when a variable is used on the Right-
hand-side of an assignment operator, as opposed to the L-value used on the
Left-hand-side of an assignment operator.)

There are several shell variables that are already exported because they are
used by the shell and other programs. You may need or want to set them to
customize your environment. Since they are already exported, you won’t need
to use the export command and can just assign a value, but it doesn’t hurt.



24

Chapter 1 An Embarrassment of Riches: The Linux Environment

The most important shell variable to know is PATH. It defines the directo-
ries in the filesystem where the shell will look for programs to execute. When
you type a command like Is or javac the shell will look in all of the directories
specified in the PATH variable, in the order specified, until it finds the
executable.

$ echo S$PATH
/usr/local/bin:/usr/bin:/usr/X11R6/bin: /bin:.
$

The pATH shown in the example has five directories, separated by colons
(“:7). (Note the fifth one, the “.”; it says to look in the current directory.)
Where do you suppose it will find cat? You can look for it yourself by search-
ing in each directory specified in PATH. Or you can use the which command:

$ which cat
/bin/cat
$

Some commands (like exit) don’t show up, since they are built into the
shell. Others may be aliases—but that opens a whole other topic that we aren’t
covering here. Just remember that each directory in the PATH variable is exam-
ined for the executable you want to run. If you get a command not found error,
the command may be there, it just may not be on your PATH.

To look at it the other way around: If you want to install a command so
that you can execute it from the command line, you can either always type its
full pathname, or (a more user-friendly choice) you can set your pPATH variable
to include the location of the new command’s executable.

So where and how do you set PATH? Whenever a shell is started up, it reads
some initialization files. These are shell scripts that are read and executed as if
they were typed by the user—that is, not in a subshell. Among other actions,
they often set values for variables like PaTH. If you are using bash, look at
.bashrc in your home directory.

Shell scripts are just shell commands stored in a file so that you don’t need
to type the same commands and options over and over. There are two ways to
run a shell script. The easiest, often used when testing the script, is

$ sh myscript



1.3 Basic Linux Concepts and Commands 25

where myscript is the name of the file in which you have put your commands.
(See Chapter 2 for more on how to do that.) Once you’ve got a script running
the way you’d like, you might want to make its invocation as seamless as any
other command. To do that, change its permissions to include the execution
permission and then, if the file is located in a place that your PATH variable
knows about, it will run as a command. Here’s an example:

$ chmod a+rx myscript
S mv myscript ${HOME}/bin
$ myscript

(script runs)

$

The file was put into the bin directory off of the home directory. That’s
a common place to put homebrew commands. Just be sure that $HOME/bin is
in your PATH, or edit .bashrc and add it.

If you want to parameterize your shell, you’ll want to use the variables $1,
$2, and so on which are given the first, second, and so on parameters on the
command line that you used to invoke your script. If you type myscript
Account . java then $1 will have the value Account . java for that invocation
of the script.

We don’t have the space to go into all that we’d like to about shell pro-
gramming, but let us leave you with a simple example that can show you some
of its power. Used in shell scripts, for loops can take a lot of drudgery out of
file maintenance. Here’s a simple but real example.

Imagine that your project has a naming convention that all Java files asso-
ciated with the user interface on your project will begin with the letters “UI”.
Now suppose your boss decides to change that convention to “GUI” but you’ve
already created 200 or more files using the old naming convention. Shell script
to the rescue:

for i in UI*.java

do
new="Gs${i}"
echo $i ' ==> ' S$new
mv $i Snew

done

You could just type those commands from the command line—that’s the
nature of shell syntax. But putting them into a file lets you test out the script
without having to type it over and over, and keeps the correct syntax once



26

Chapter 1 An Embarrassment of Riches: The Linux Environment

you've got it debugged. Assuming we put those commands into a file called
myscript, here’s a sample run:

$ myscript

UI_Button.java ==> GUI_Button.java
UI_Plovar.java ==> GUI_Plovar.java
UI_Screen.java ==> GUI_Screen.java
UI_Tofal.java ==> GUI_Tofal.java
UI_Unsov.java ==> GUI_Unsov.java

$

Imagine having to rename 200 files. Now imagine having to do that with
a point-and-click interface. It could take you all morning. With our shell script,
it will be done in seconds.

We can’t hope to cover all that we’d like to about shell scripting. Perhaps
we have been able to whet your appetite. There are lots of books on the subject
of shell programming. We've listed a few at the end of this chapter.

1.3.11 The tar and zip Commands

The tar and zip commands allow you to pack data into an archive or extract it
back. They provide lossless data compression (unlike some image compression
algorithms) so that you get back out exactly what you put in, but it can take
up less space when archived.® Therefore tar and zip are often used for data
backup, archival, and network transmission.

There are three basic actions that you can take with tar, and you can
specify which action you want with a single letter? in the arguments on the
command line. You can either

8. Well, technically, tar doesn’t compress the data in the file, but it does provide a certain
amount of “compression” by cutting off the tail ends of blocks of data; for example, a file of
37 bytes in its own file takes up 4K of disk space since disk blocks are allocated in “chunks”
(not the technical term). When you tar together a whole bunch of files, those extra tail-end
empty bytes are not used (except in the final block of the TAR file). So, for example, 10 files
of 400 bytes could be packed into a single 4K file, instead of the 40K bytes they would occupy
on the filesystem. So, while tar won’t compress the data inside the file (and thus is quite
assuredly “lossless”) it does result in a smaller file.

9. Linux option strings always start with a “-”, right? Yes, except for tar. It seems there is always
an exception to every rule. The newer versions of tar allow the leading minus sign, but can also
work without it, for historical compatibility reasons. Early versions of UNIX only had single



1.3 Basic Linux Concepts and Commands

27

e ¢: Create an archive.

e x: Extract from an archive.

¢ t: Get a table of contents.

In addition, you’ll want to know these options:

* £: The next parameter is the filename of the archive.

* v: Provide more verbose output.

Using these options, Table 1.4 shows examples of each of the basic

functions.

Now let’s do the same thing using the zip command (Table 1.5). There
are actually two commands here—one to compress the files into an archive
(zip), and the other to reverse the process (unzip).

Table 1.4 Examples of the tar command

Command

Explanation

tar tvf packedup.tar

tar xvf packedup.tar

tar cvf packedup.tar mydir

Gives a table of contents, in long (or verbose) form.
Without the v, all you get is the filenames; with the v
you get additional information similar in format to the
1s -1 command.

Extracts all the files from the TAR file, creating them
according to their specified pathname, assuming your
user ID and file permissions allow it. Remove the v
option if you don’t want to see each filename as the file
is extracted.

Creates a TAR archive named packedup. tar from
the mydir directory and its contents. Remove the v
option if you don’t want to see each filename as the file
is added to the archive.

letter options. Newer POSIX versions of UNIX and the GNU tools, which means all flavors
of Linux, also support longer full-word options prefixed with a double minus, as in --extract

instead of x or -x.



Chapter 1 An Embarrassment of Riches: The Linux Environment

Table 1.5 Examples of the zip and unzip commands

Command Explanation

unzip -1 packedup.zip Gives a table of contents of the archive with some extra frill
around the edges, like a count of the files in the archive.

unzip packedup.zip Extracts all the files from the ZIP file, creating them
according to their specified pathname, assuming your user
ID and file permissions allow it. Add the quiet option with
-q if you would like unzip not to list each file as it unzips it.

zip -r packedup mydir Creates a ZIP archive named packedup.zip from the
mydir directory and its contents. The -r tells zip to
recursively descend into all the subdirectories, their
subdirectories, and so on; otherwise, zip will just take the
files at the first layer and go no deeper.

TIP

Since TAR and ZIP files can contain absolute as well as relative pathnames, it
is a good idea to look at their contents (e.g., tar tvf file)before unpacking
them, so that you know what is going to be written where.

There are many, many more options for tar and zip that we are not cover-
ing here, but these are the most common in our experience, and they will give
you a good start.

The tar and zip commands are also worth knowing about by a Java devel-
oper because of their relationship to JAR files. If you are working with Java you
will soon run across the notion of a Java ARchive file, or JAR file. They are
recognizable by name, ending in .jar. Certain Java tools are built to under-
stand the internal format of JAR files. For Enterprise Java (J2EE) there are
similar archives known as WAR files and EAR files. The command syntax for
dealing with the jar command that builds these archives is very similar to the
basic commands of tar. The internal format of a jar is the same as a ZIP file.
In fact, most places where you can use a JAR file you can use a ZIP file as well.
(You will see more about this when we discuss the standard Java tools in
Section 5.11.)



1.3 Basic Linux Concepts and Commands 29

TIP
Here’s one more handy example we know you’ll use:

find . -name '*.java' -print | zip allmysource -@

“w »

This command starts in the current directory (“.”) finding every file that ends in
. Java and gives their names to zip which will read them from standard in in-
stead of its argument list (told to do so with the -@ argument) and zip them all
into an archive named allmysource.zip. To put it simply, it will zip up all
your Java source files from the current directory on down.

1.3.12 The man Command

Primitive but handy, the man command (short for manual) was the early
UNIX online manual. While we’ve come to expect (and ignore) online help,
the idea of online manuals was rather revolutionary in the early days of UNIX.
In contrast to walls of printed documentation, UNIX provided terse but
definitive descriptions of its various commands. When they are done well, these
descriptions are an invaluable handy reference. They are not the best way to
learn about a command, but they can be a great guide to using the command’s
options correctly.

The format is simply man followed by the name of the command about
which you want information. So man man will tell you about the man
command itself.

The most useful option to man is the -k option. It will do a keyword
search in the titles of all the manpages looking for the keyword that you give.
Try typingman -k java to see what commands are available. The (1) means
that it’s a user command—something that you can type from the shell prompt,
as opposed to (2) which is a system call or (3) which is a C library call. These
numbers refer to the original UNIX documentation volumes (volume one was
shell commands and so on), and it all fit into a single three ring binder.

TIP

One other way to find out something about a command, if you know the com-
mand name already, is to ask the command itself for help. Most commands
have either a -2 or --help option. Try --help first. If you need to type -2
either put it in single quotes or type it with a backslash before the question mark,
as in -\ 2, since the ? is a pattern-matching character to the shell.



30

Chapter 1 An Embarrassment of Riches: The Linux Environment

1.4

1.5

1.6

There are other help systems available, such as info and some GUI-based
ones. But man provides some of the quickest and most terse help when you
need to check the syntax of a command or find out if there is an option that
does what you need.

REVIEW

We've looked at commands that will show you where files are in your directory
structure, show files” permissions and sizes, change the permissions, show you
what is in a file, look for files by searching for strings, and look for files based
on names or other properties.

Even so, we’ve given only the briefest coverage to only a few of the scores
of Linux commands worth knowing. Tops among these is the shell, bash in
our case. Whole books have been written on this subject, and you would do
well to have one at hand.

WHAT You STiLL DON’T KNOW

The shell is a powerful language in its own right. While you think of it mostly
as a command interpreter used for running other commands, it is, in fact, a
language, complete with variables, logic and looping constructs. We are not
suggesting that you write your application in shell scripts, but you will find it
useful for automating many repetitive tasks. There is so much that can be done
with shell scripts that we encourage you to read more about this and to talk
with other Linux users.

Linux is replete with so many different commands. Some are powerful
languages like awk and perl, others are simple handy utilities like head, tail,
sort, tr, and diff. There are hundreds of other commands that we don’t even
have time to mention.

RESOURCES

* Cameron Newham and Bill Rosenblatt, Learning the Bash Shell, O’Reilly
Associates, ISBN 1565923472,

* Ellie Quigley, Linux Shells by Example, 4th ed., Prentice Hall PTR, ISBN
013147572X.



1.6 Resources 31

* Rafeeq Rehman and Christopher Paul, 7he Linux Development Platform,
Prentice Hall PTR.

* Mark G. Sobell, A Practical Guide to Linux, Addison-Wesley, ISBN
0201895498.

* Mark G. Sobell, A Practical Guide to Red Har Linux, Addison-Wesley,
ISBN 0201703130.






2.1

Chapter 2

An Embarrassment of Riches:
Editors

Here the joys of creating and changing text files are introduced, the rudiments
of the venerable vi editor are presented, and the power of text is exalted.

WHAT YOU WILL LEARN

Readers are encouraged, but not required, to plumb the depths of vi. Other
text editor choices are briefly covered.

Remember our recommendation: If you learn only one shell, learn bash.
If you learn only one editor, learn vi. Some basic shell scripting will go a long
way to eliminating mundane, repetitive tasks. Some basic vi editing will let you
do things much faster than you can with GUI editors.

33



34

Chapter 2 An Embarrassment of Riches: Editors

2.2 EYE TO EYE WITH VI

Java programs consist of Java classes. Java classes are text files with Java state-
ments and expressions. In order to write a Java program, then, you need to be
able to enter text into a file. Sounds simple enough.

With Linux and its GNU tools, you have an amazing array of choices for
how to do this. Some are GUI tools not unlike simple word processors. Others,
like vi and Emacs, predate GUI tools, but provide much the same capability
without the luxury (or annoyance) of a mouse or menus.!

The editor named vi (pronounced as you would spell it: “vee-eye”) is one
of the most enduring tools in Linux. Its popularity comes from a combination
of power and ubiquity—you can find it on virtually every release of UNIX and
Linux since 1985. But it is a powerful editor that can do a lot with only a few
keystrokes.

There are actually several variants of vi from which to choose. Each is
someone’s attempt to go one better on vi, but all retain the same basic syntax
and what you learn here will work equally well on any of the vi clones. You can
choose among

* elvis
* nvi
* vim
Start up vi by typing the command name at a shell prompt, followed by
the name of the file(s) that you want to edit:

$ vi Account.java

Keep in mind that vi was developed in the days of character-only video
screens. Keyboards didn’t always have arrow keys or other special characters,
which have since been (largely) standardized by the advent of the IBM PC. In

that situation, the authors of vi had only the alphabetic characters to use for all

1. We realize that vi is famous for being difficult to learn and nonintuitive. The UT design of
vi dates back to earliest cursor-addressable display terminals. User interface design has come a
long way since then. The vi UI does indeed show its age. But the program refuses to die. Why?
Because while simple GUI editors make the easy stuff easy, vi makes the hard stuff easy. You
can fall back on pico or kate or other GUI editors if you want, but bear with us. Mastering vi
really does pay off.



2.2 Eyeto Eye with vi 35

of their commands . . . and did they make good use of those keys! Virtually
every letter is used, both lower and upper case, to mean something unique in
vi. But don’t be put off by the large number of commands to learn; they fit
some patterns that will make it easy for you to become proficient in a short
time by learning a few commands and applying the patterns.

NOTE

If you really can’t bear to part with your mouse and menus, try gvim. We haven’t
used it, but we hear that it has support for mice to help with cut and paste and
the like. After you learn vi and get a little practice, though, you may find that
you’re never reaching for your mouse any more when you edit.

There are three modes to vi: the regular vi mode, some extended
commands in the ex mode, and the input mode.

The simplest mode is the input mode. In input mode, every character you
type becomes part of the text of the file. It's how you enter the bulk of the text
for your Java programs. But vi doesn’t start up in input mode; you have to “get
into” input mode, and then get back out. Once out, you can use other vi
commands to save the text and exit vi. More about those in a bit.

NOTE

Get out of input mode by pressing the Escape key. You can press it more than
once, too, just to be sure that you are no longer in input mode. If you are no
longer in input mode and you press escape, it will beep at you—with an audible
or visual notification, depending on how your terminal window is set to respond.

In both vim and elvis (two popular vi clones) there is a status line at the
bottom of the window that will show if you are in input mode. In vim, look
in the lower left and elvis, the lower right. When in input mode, you will see
a status word displayed like nsert or replace.

In the vi mode, the default mode that you start in, all the keystrokes are
interpreted as commands to the editor. They are 7ot displayed as characters. So
when we describe a command, such as dt ;, you can type those three characters
but will not see those characters on your screen. Instead you will see some ac-
tion taken by vi—in this case it will delete text from your cursor up to the first
semicolon on that line, if any (otherwise it will just beep).



36 Chapter 2 An Embarrassment of Riches: Editors

There are several ways to get into input mode, depending on where you
want to do the insert. When the file you're editing is completely empty, all
these commands are equivalent, but for nonempty files, each command will
begin input mode in a different place in the file:

* i inserts before the cursor.

* I inserts at the beginning of the line.

* a appends after the cursor.

* aappends at the end of the line.

* o “opens” a line for input after the line on which the cursor sits.

* 0 “opens” a line for input before the line on which the cursor sits.

Remember that this is character-based editing, before the days of mice and
[-bars. So there is no meta-character for the cursor to show its position berween
two characters in the file. Instead, the cursor sits on top of a character, and thus
inserts or appends will happen before or after that character.

Reminder: Get out of input mode by pressing the Escape key.

Next, let’s move the cursor around. The simplest way to do that is one
character at a time. Using the (lowercase) h, j, k, and 1 keys—notice that
they’re all in a row on QWERTY keyboards—you have the “arrow” keys for
left, down, up, and right. One of the common enhancements for vi clones is
to include support for the arrow keys on standard PC keyboards. Even so, the
convenience of having the motion keys on the “home row” for touch typists
can be a great speedup.

* h moves left one character.
* 5 moves down one line.
* k moves up one line.

* 1 moves right one character; same as a space.

Often, character- or line-at-a-time is too slow. Move to the beginning of
the line that you are on with 0 (zero), or to the end of the line with $. Move
to the top and bottom of the window with u (think “High”) and L (think
“Low”). So first type L then hold down j. To move back in a file, first type H
then hold down k. That gets the display moving down or up respectively.

* # (“high”) moves to the top line of the window.

* M (“middle”) moves to the middle line of the window.



2.2 Eyeto Eye with vi 37

* L (“low”) moves to the bottom line of the window.
* 0 moves to the beginning of the line.

e $ moves to the end of the line.

This may still be too slow for you, especially if you are working your way
through a large file. If you want to page up and down half a page at a time, try
~u and ~D (think “up” and “down”). To move a full page at each keystroke, try
~F and ~B (think “forward” and “back”).

This may still take a while, especially if you want to get to the absolute
beginning or end of the file. For those locations, type a three-character se-
quence, starting with a colon—which will jump your cursor to the status line
of the window—then type either zero or the dollar sign, then press the Enter
key. For example, : 3.

So what’s with the colon? Just when you thought you were getting the
hang of the vi keystrokes, this odd pattern appears. It’s called ex mode, and has
to do with the history of vi being built atop the ex editor. Typing the colon
got you back giving commands to ex, without the fancier screen-based
GUL (Even editors can have command lines.) There are many powerful
search/replace commands that you can do from the ex command line; more on
that later. For now, though, remember that you can type the colon, then a line
number, then the Enter key and vi will position the cursor (and thus what is
displayed on the screen) to that line number. The 0 and $ are just special cases
of that more generic way to position your place in the file.

Back to our positioning in the file. Recall that h, j, k, and 1 will move you
one unit (char or line) at a time. Now enhance that motion by typing a number
first, then the h, 5, k, or 1. So to move five lines up type 5k (just be sure you
use a lowercase letter). You can move way down in a file by typing something
like 20005 which will move down 2,000 lines. If the file doesn’t have that many
lines, you will find your cursor at the end of the file.

The point here is that almost any vi command can be preceded by a count,
to repeat it that many times.

A few more navigation tips. Another useful way to move through text is a
word at a time. You can move your cursor forward by a word with the letter w
(for “word”). You can move “back” with the letter b. You can move five words
at a time with 5w or 5b. See?

The definition of “word” to vi has to do with alphanumerics separated by
whitespace, but also by certain punctuation characters. So to vi, the following
Java code consists of how many words? Seven.



38

Chapter 2 An Embarrassment of Riches: Editors

myArraylist.doSomething (magical); // cool

From the beginning of the line, you’d need to type w seven times (or know
to type 7w—but how could you guess seven?) To help out, vi uses the upper-
case W to skip words defined not by punctuation but solely by white space.
Think of it as “bigger” words. And of course B will go “back” by these bigger
words. So on our example line, a single w will get you to the start of the
comment.

Be sure that you're not just reading these descriptions. Run vi on any file
that you can find and practice navigating by lines or words or screens. Once
you get the hang of it, it can be so much faster than reaching for the mouse and
trying to maneuver the cursor into just the right spot between letters.

Sometimes you can see where you want to go based on the characters of
text in the document. See that “x”? That’s a relatively rare character on any line
of text. If you see a character, your cursor can “find” it if you type £ and then
the character you are looking for. So £x would search forward on the line for
an “x”. And Fx would search backward from the cursor. To repeat the search,
just type a semicolon (“;”).

Searching for a string is another good way to move your way through a
file. To search forward, type a slash (/), then the characters for which you want

to search, and end the string with a second slash and then Enter:2
/myArrayList/

To search backwards (towards the first line of the file) use the question
mark rather than the slash to bracket your search string. In either case, to jump
to the next occurrence, type n, or 27n to jump to the 27th occurrence. Whether
you are searching forward (/) or backward (?), using uppercase N will reverse
the direction as it searches for the next occurrence. So, you can search forward
with /myvar/ and then press n for each next occurrence forward. If you go too
far, just type N to back up. Similarly, if you were going backwards looking for
an occurrence of a constructor, say something like: 2new HotClass?; then
each n will search toward the top of the file, and each N will search toward the

end of file.

2. The second slash is optional in most vi implementations, but used for consistency with the
same command in ex mode which has optional suffix characters.



2.2 Eyeto Eye with vi 39

In both cases, when you hit the top or bottom of the file, vi will wrap and
keep searching from the opposite end, though a warning message will appear
in the status bar.

OK, enough navigation. Let’s start modifying text.

Copy and paste operations can be done easily on whole lines. Just yank
and pur the lines. You can yank a single line or several at a time (e.g., 7y) and
then a single put (p) will deposit a copy just after the current line (the line
where your cursor sits). If you want to put the text before, not after, the current
line, use uppercase P.

Go ahead. Try it on the file you’re practicing on. It’s the best way to get
a feel for what we’re describing here.

Cut and paste operations involve deleting the lines, not just copying them.
This gets us into our third and final kind of syntax in vi, the double letter
commands. Use dd to delete a line. Try it and you will find that the line your
cursor is on just got deleted, and the cursor now rests comfortably on the next
line. To paste that line back, use the same p or P that we used for to put the
lines that we had copied (a.k.a. “yanked”) above.

But why the aa? What’s with the double letters? Think of “delete” for a
and then add another letter to describe how much you want to delete—dw for
“delete word” or aw for “delete the bigger words” (see above). So why dd for a
line? We don’t know for a fact, but we suspect that it’s just for speed. You can
also follow a a@ with the h, 3, k, or 1 of our cursor movement, and that will
delete either a character or a line in the appropriate direction.

A faster way (one keystroke, not two) to delete a single character is with
the x key. And of course 5x, or 27x, will delete multiple characters. But if
you're deleting many characters you will probably get it done faster by deleting
“words” (aw or dw).

Another powerful way to delete text is to delete it from the cursor up 7 a
specific character. The sequence dt ; will delete from the cursor up to (but not
including) the semicolon on the current line. If there is no semicolon, vi will
beep, and no change will be made. To delete from the cursor up to and includ-
ing the semicolon, use df;.

Everything you’ve just learned about delete is also true for change, the ¢
in vi. You can combine it with itself (cc) to change a whole line. You can
combine it with w to change a word (cw), or you can change from the cursor
up to the next semicolon (ct;), and so on.



40

Chapter 2 An Embarrassment of Riches: Editors

Change does the delete, then puts you in input mode. (Notice the re-
minder on the status line.) Remember, to get out of input mode and back into
vi mode, press the Escape key.

Sometimes you’ve done too much, and you’d like to undo what you’ve
just done. Typing u will undo the last change that you made. But here’s a dif-
ference between the classic vi and some of the new, improved versions. In classic
vi, if you type another u, then you are telling vi to undo what it just
did—which was an undo. So the undo of an undo remakes the change that you
had originally made. But in vim, “vi improved,” typing u again and again will
just keep undoing previous changes. If you want to undo the undo, in vim,
you need to type :redo and then Enter.

The vi editor has shortcuts for helping you to change the indentation of
your code. Typing two less-than signs (<<) will shift the line to the left; typing
two greater-than signs (>>) will shift the line to the right. Typing a number
first and then the less-than or greater-than signs will shift that many lines at
once. But how far will they shift? The default is usually set at eight, but you
can set it to any value you want. In ex mode you can set all sorts of values and
flags, customizing vi’s operation. The value we’re interested in here is
shiftwidth which can be abbreviated sw. So the command would be :set
sw=4 if you want each shift to move by four characters. For more about this,
and how to make it your default, see Section 2.2.4.

Any command that you do may be worth repeating. Say, you just shifted
14 lines and you’d like to shift them further. Or you just deleted five lines, and
would like to delete five more. Well, you could just retype the command, but
an easier way is just to type the period (.) and let vi repeat it for you.

2.2.1 Exiting

There are three ways of exiting vi (22, :q, :q!) that you should know. The
correct one to use depends on whether or not you want to save the changes to
the file and on whether or not you have saved your changes.

* 27 saves and quits in one step (three keystrokes).
* :w writes what you've been editing but doesn’t quit.

* :w filename writes what you've been editing to a new file named
filename; it will complain (and not write out anything) if the file
already exists.



2.2 Eyeto Eye with vi a1

* :7,.w! filenamewriteslinesfrom line 7 up to and including the current
line to the named file, clobbering any previous contents (think of the “I”
as meaning “and don’t argue with me!”).

* :g quits, provided you’ve saved your changes (e.g., with :w).
* :g! quits without saving any changes to the file.

* :n doesn’t exit vi, but moves on to the next file if you started up with
more than one file to edit (e.g., vi Fir.java Pine.java). When you’ve
reached the last file in the list, you need to quit—for example, with :q.

2.2.2 Search and Replace

We've mentioned searching for a string with / or 2, but what about replacing?
Once you've located a string with /, you can use cw or C or R or other such
commands to effect the change. Search for the next occurrence with n, and then
you can repeat your change (the last c, s, r, and so on) by typing the period
“.” that will repeat that last substitution, insert, and so on.

But what if you want to make 225 substitutions? Typingn.n.n.n.n.n.
would get old after a while. Here, the ex mode, like any good command line,
comes to the rescue to help with repetitive tasks.

If we want to search and replace all occurrences of one string for another,
we can use the command

:1,$s/one string/another/

Almost all ex commands take an address range, that is, the lines of the file
over which they will operate. If just one line number is given, the command
will operate on that one line. Two numbers, separated by commas, represent
the start and end lines—inclusive—of the operation. The first line is line 1, so
a 0 as line number would mean “before the first line.” The line where the cursor
is currently located is just “.” (a period). The last line of the file can be repre-
sented by the dollar sign ($). You can even do some simple math on the
addresses—for example, .+2 meaning the second line in front of the cursor’s
current line.

TIP

There is a shortcut for the 1, $ address range. Use % to mean “all lines—for
example, $s/one string/another/.



42

Chapter 2 An Embarrassment of Riches: Editors

Here are a few more substitution examples along with an explanation
for each.

.,$s/here/eternity/
From here to the end of the file, replace here with eternity.

27,%-5s/lost/found/
From line 27 to the 5th line prior to the end of the file, replace 1ost with
found.

s/here/now/
Replace here with now, on the current line only.

Each line that has a match will do the substitution on only the firsz occur-
rence of the string. If you want to change all occurrences on those lines, you
append a g (for “global” substitution) to the end of the command. Consider
this snippet of Java:

class tryout
{
int tryout;

tryout (int startval) { // make a new tryout
tryout = startval;
} // tryout constructor

// a tryout-like resetting

public void

setTryout (int toval) {
tryout = toval;

}

// willfindtryoutinhere

} // class tryout

1,8s/tryout/sample/
Works as expected except for line 5, where “tryout” appears as the
constructor name but also in the comment.

1,$s/tryout/sample/g
Works better (note the trailing g). But neither command can deal with
“Tryout” in the setTryout method name. That’s because of the uppercase
“T”, which doesn’t match “tryout”.



2.2 Eyeto Eye with vi 43

1,$s/Tryout/Sample/g
Will make the substitution in that method name.

TIP

Remember to precede these commands with a colon (“:”) to put you into ex
mode which puts your cursor on the status bar of the window.

2.2.3 The Joy of Regular Expressions

The substitution command really becomes powerful when you start using reg-
ular expressions. Our examples so far have only had plain alphanumeric charac-
ters between the slashes of the substitution. But other characters take on special
meanings inside the search and replace strings. Table 2.1 shows just a few.

From this small collection we can do some useful things. We show just a
few in Table 2.2. All commands begin with :1, $ to say that the substitution
will be attempted from the first through the last line of the file.> You could use
a smaller range for any of these substitutions, as we discussed above.

Table 2.1 Regular expression character meanings

Character Meaning

A

The beginning of the line.

$ The end of the line.
Any single character.
* Zero or more repetitions of the previous expression.
+ One or more repetitions of the previous expression.
[] Any of the characters inside the brackets will match—e.g., [abc] matches any

of a, b, c. Ranges are allowed too—e.g., [a-z].

& When used on the right-hand side, stands for whatever was found with the
search string on the left-hand side (for an example, see Table 2.2).

3. Note that % is valid substitute for 1, ¢.



44

Chapter 2 An Embarrassment of Riches: Editors

Table 2.2 Some useful vi substitutions

Command Explanation

:1,8s/ *$// Removes all (any number of) trailing blanks—that is, looks for zero or
more blanks followed immediately by the end of line, and replaces
them with nothing (no characters between the last two slashes).

:1,$s/7.%$/" "/ Puts quotes around the text of each and every line.
:1,8s/7°"// Removes the leading quote from any line that starts with one.

:1,$s/"$// Removes the trailing quote from any line that ends with one.

There is so much more that could be said about regular expressions. They
are one of the most powerful features for making big changes with few
keystrokes. It’s an integral part of sed, Perl, and other tools. It’s in such demand
that it has been added to Java for better pattern matching. See Section 2.6 for
ways to learn more about regular expressions.

2.2.4 Starting Off Right: . exrc

You can preset certain behaviors in vi by putting ex commands in a file called
.exrc in your home directory. Those commands will be read whenever you
invoke vi and before you begin typing commands.

Here’s a simple but useful . exrc example:

" set my favorite options:
set autoindent shiftwidth=4
set ignorecase

As you can see from the example, settings can be combined on one line.
Note also that these lines do 7oz begin with a colon. A colon 75 needed if you
type these lines from within vi—because you need to get into ex mode; but
since these are assumed to be ex commands (hence the name . exrc) they are
going straight to the ex side of vi and no colon is needed. Comment lines
begin with a double quote; the rest of the line is ignored, and doesn’t need a
matching quote.

The ignorecase command tells vi to ignore any difference between
upper- and lowercase characters when searching for text with the / or ? com-
mands. The single character searches on the current line (£ and F) are not



2.3 Editors Galore 45

2.3

affected by this setting. The default for vi is noignorecase, which means case
is significant.

The autoindent setting (can be abbreviated ai) means that when you do
an o or O to gpen a line after or before (o versus 0) the line on which your cursor
rests, vi will automatically add whitespace so that the text that you enter begins
at the same column where the current line begins.

For example, suppose you are editing an if statement like this:

if (userBalance < minDaily) {
userAccount.chargeFees () ;

With your cursor on the middle line, if you type an o or 0, the new (blank)
line will open with your cursor at the fifth character position, right in line with
the “u” of useraccount. If you find that your cursor is flush left when you try
this, then you need to set autoindent. You can do this from within vi by typing
:set ai or the longer :set autoindent. The leading “:” is important—it
gets you to ex mode. (Don’t forget to press Enter at the end of the command.)

The shiftwidth setting tells vi how many character positions to move
text left or right with each << (left) or >> (right) command, as well as when
typing “Dand T in input mode. When typing text in input mode, people often
use the Tab key to indent their text, for example inside an if or for statement.
You can do this in vi, and the actual tab character will be the character in your
text. But if you want tighter indenting, use the ~T (that’s Control-T, “T” for
Tab, we suppose) to increase your indent and ~D to decrease your indent while
in input mode. The vi editor will automatically compute how much whitespace
to use and will put an optimal combination of tabs and spaces as needed to line
things up. Alternately, you can have vi always expand tabs into spaces and not
mix tabs and spaces, but just use spaces, with set expandtab. (Remember to
add a “:” if you want to type this from the command line.)

EDITORS GALORE

There are many editors available to a programmer on a Linux system. Some are
text-based editors, typically antedating GUI interfaces. Many have graphical
interfaces, with mouse-based cut and paste and the like. We will mention sev-
eral here and encourage you to find the one with which you are comfortable.



46

Chapter 2 An Embarrassment of Riches: Editors

The list of choices for editors is quite long. One of the beauties of the
Open Source approach is that personal choices like favorite editors aren’t
squashed by arbitrary decisions: If you want, you can write an editor; others
can adopt it.

Test drive a few; try them on for size. Remember that there can be a
learning curve to climb. Don’t necessarily settle for the easiest to learn—it may
not be able to handle all that you’ll need it to do, which may cost you more in
the long run.

Speaking of editors that aren’t easy to learn, we can’t discuss editors
without a mention of Emacs. To quote the GNU Emacs project home page:*

Emacs is the extensible, customizable, self-documenting real-time display
editor. If this seems to be a bit of a mouthful, an easier explanation is Emacs
is a text editor and more. At its core is an interpreter for Emacs Lisp (“elisp,”
for short), a dialect of the Lisp programming language with extensions to
support text editing. Some of the features of GNU Emacs include:

* Content sensitive major modes for a wide variety of file types, from
plain text to source code to HTML files.

* Complete online documentation, including a tutorial for new users.

* Highly extensible through the Emacs Lisp language.

* Support for many languages and their scripts, including all the Euro-
pean “Latin” scripts, Russian, Greek, Japanese, Chinese, Korean, Thai,
Vietnamese, Lao, Ethiopian, and some Indian scripts. (Sorry, Mayan
hieroglyphs are not supported.)

* A large number of extensions which add other functionality. The

GNU Emacs distribution includes many extensions; many others are
available separately—even a Web browser.

There is another variant of Emacs called XEmacs. It came from the same
code base but split over differences both technical and philosophical.> Now if
you thought that vi had a lot of obscure key sequences, you ain’t seen nothin’
yet. With its Lisp interpreter Emacs is incredibly extensible and powerful, but

4. This is from http: //www.gnu.org/software/emacs/emacs.html#Whatis.

5.If you want to read more about those differences, and how they came about, see
http://www.xemacs.org/About/XEmacsVsGNUemacs.html.



2.3 Editors Galore 47

has a huge learning curve—which is why we aren’t going to cover Emacs or
XEmacs at all in this book.

Our favorite editor is still vi—in part, we're sure, because we already know
it so well. But like any skilled craftsman, even though you may have a favorite
hammer or saw that you use on most of your work, you will still have several
others ready in your toolkit, and use specialized ones for certain tasks.

2.3.1 Editing Your Pipes (sed, the Stream EDitor)

One important kind of editor available on Linux is the stream editor, or sed. It
allows you to perform editing on the data that comes in on standard in and
writes its result to standard out. Similar to the syntax from ex mode in vi (and
based on the simple ed editor), it can be very useful for making changes to large
numbers of files in one go.

You can learn much more about sed from its manpage or from the book
UNIX AWK and SED Programmer’s Interactive Workbook by Peter Patsis.

2.3.2 Simple Graphical Editors

Linux comes with a wide range of open source software, not all of which is in-
stalled on every installation. You may need to use your Linux installation disks
to add these programs to your system. Whether it’s RedHat’s package manager
or SuSE’s YaST2 or Debian’s apt-get, most Linux admin interfaces make it
easy to add these extra packages. Of course you can also resort to the Web for
finding and downloading additional open source software.

Here’s a quick listing of some of the many editors that you might find to
your liking. The description of each is largely “in its own words,” based on the
text that the authors supply with their software.

* jedit is a cross-platform programmer’s text editor written in Java. The
Java-based portability seems appealing. This is a very powerful editor and
a popular choice.

* pico is a small easy to use editor.
* mbedit is a multiplatform editor.

* NEdit is a GUI style text editor for workstations with X Window and
Motif. NEdit provides all of the standard menu, dialog, editing, mouse
support, as well as macro extension language, syntax highlighting, and a
lot of other nice features (and extensions for programmers).



48

Chapter 2 An Embarrassment of Riches: Editors

* xcoral comes up fast; seems well done. Half of the YaST developers swear

by it, not only because of the built-in C/C++/Java browser. This editor
provides support for C, C++, Java, Perl, Ada, and Fortran programs, as
well as INTEX and HTML documents. With the help of the built-in SMall
ANSI C Interpreter (SMAC), xcoral can be configured and extended
in almost arbitrary ways. Examples can be found in the directory
/usr/lib/xcoral (or wherever xcoral is installed on your system).
Further information about xcoral and SMAC is available in the detailed
online help system (also available in HTML and PostScript format).

axe features multiple windows, multiple buffers, configurable menus and
buttons, access to external filters, keyboard macros, comprehensive online
help, and more.

eddi is an X editor based on the TiX shell, with syntax highlighting and

several other useful features.

the: If you're an IBMer from the heyday of mainframes, perhaps you’ve
used xedit from VM/CMS. If so, you might want to check out the, whose
name is the acronym of “The Hessling Editor.”

JED is an extremely powerful but small Emacs-like editor for programmers
that is extensible in a C-like macro language and is able to perform color
syntax highlighting. Among the many features: Emacs, WordStar,
EDT emulation; C, Fortran, TEX, text editing modes; full undo; Emacs-
compatible info reader, and lots more. It claims to be 8-bit clean, so you
can even edit binary files.

Glimmer is the editor formerly known as CodeCommander. It is a full
featured code editor with many advanced features, including full scripting
integration with either Python or Guile.

joe (Joe’s own editor) is a freeware ASCII editor for UNIX. joe is similar
to most IBM PC text editors. The keyboard shortcuts are similar to
WordStar and Turbo C. When joe has several files opened at the same
time, each file is displayed in its own window. Additionally, joe supports
shell windows whereby the output of the executed commands is saved in
a buffer, automatic filename completion (via Tab), help windows, undo/
redo, search and replace using regular expressions.

gEdit is a small but powerful text editor designed expressly for GNOME.
It supports a split-screen mode and plug-ins that make it even more pow-
erful. Developers can develop their own plug-ins if they desire.



2.6 Resources 49

e fte is an editor “with many features and simple usage for X11 and
console.”

* €3 is a very tiny editor (only .07MB) that offers many different modes
such as vi, Emacs, and WordStar. The default mode is WordStar.

* asedit is a simple ASCII text editor for X11/Motif. Mouse support, dialog
boxes, hypertext online help, undo/redo. Named for its author, Andrzej
Stochniol.

2.4 REVIEW

We've given a good foundation for using vi—a set of commands that will help
you with much of your daily editing. While not as pretty as a GUI tool, vi can
be much more productive once you get familiar with the commands. Start with
some basic commands, then refer to this chapter or another vi resource and
learn a new keystroke each week. By next year, you’ll be a master at vi—and
incredibly productive at producing code.

We also described several other editors available under Linux. If you know
them already, or are wed to your mouse, then try one on for size. The choice
of an editor can be as much about personality and “fit” as it is a technical
choice.

2.5 WHAT You STILL DON’T KNOW

There is still a lot more to learn about regular expressions. They may take a bit
of practice, but it is a skill that can be used in a variety of contexts, in a variety
of languages.

2.6 RESOURCES

* Rafeeq Rehman and Christopher Paul, The Linux Development Platform,
Prentice Hall PTR, especially Chapter 2 on editors vim, Emacs, and jed.

* DPeter Patsis, UNIX AWK and SED Programmer’s Interactive Workbook,
Prentice Hall PTR, ISBN 0130826758.






Chapter 3

An Experienced Programmer’s
Introduction to Java

Here the reader is rapidly acquainted with the manner in which Java imple-
ments the OO (Object-Oriented) concepts. The language’s statements are un-
ceremoniously presented. Much deference is paid to other texts in print and
on the Web, since this is well traveled ground. We then present a simple sample
Java application that will be used throughout the rest of this introductory part
as an example that can be easily built in all of the Java environments available
for Linux.

3.1 WHAT YOou WILL LEARN

* Javasyntax and semantics for the familiar (to an experienced programmer)
programming constructs.

* How Java implements the OO: buzzwords of inheritance, encapsulation,
and polymorphism.

* How Java deals with the absence of C++-style multiple inheritance.

51



52

Chapter 3 An Experienced Programmer’s Introduction to Java

3.2

e Why the absence of templates in Java is not as crippling as a C++
programmer might suppose.

* How final is better than virtual and how interfaces are often better
than multiple inheritance.

This is going to be a whirlwind tour. Our book assumes that you already
know programming in general, and have had some exposure to OO program-
ming. We are going to distill into a single chapter material that comprises sig-
nificant portions of other books. In particular, if there are concepts here that
you are not already familiar with, look at Chapters 1-9 of Bruce Eckel’s won-
derful book, Thinking in Java, 3rd ed., published by Prentice Hall PTR (ISBN
0-131-00287-2). It is, genuinely, one of the best books on the market for
learning the Java language and the design principles Java embodies.

If you are somewhat new to programming, but technically quite adept
(maybe a system administrator or database administrator with little formal
programming background), you may want to supplement your reading with a
book that, unlike Eckel’s, is targeted more toward the novice programmer. We
like Java Software Solutions: Foundations of Program Design, 3rd ed., by John
Lewis and William Loftus, Addison-Wesley, 2003 (ISBN 0-201-78129-8).
It will introduce the concepts behind the programming constructs, whereas
we will assume that you know these concepts so we can focus only on the
Java syntax.

FUNDAMENTAL LANGUAGE ELEMENTS

Before the object-oriented structures, Java (like C) has a small number of
fundamental statements and (again, like C and C++) some fundamental
“nonobject” data types.!

1. The existence of these nonobject data types is another thing that brings up criticism of the
Java language. Since Java does not have C++’s operator overloading features, you cannot use
objects in standard algebraic expressions. I'm not sure if the inclusion of scalar classes was mo-
tivated by speed, or by the lack of operator overloading. Whatever the reason, like any other
design compromise, it has both advantages and disadvantages, as we shall see throughout

the book.



3.2 Fundamental Language Elements 53

3.2.1 Scalar Types

Java has a number of built-in scalar (in this context, nonobject) types. We
discuss these below.

3.2.1.1 Integer Types

Java defines four integer types—byte, short, int, and long. Unlike some
languages, Java defines the precision, that is, the bit size, of these types.

e byte: 8 bits

* short: 16 bits
e int: 32 bits

* long: 64 bits

For Java, the goal is “compile once, run anywhere.” Defining that int
means 32 bits—everywhere—helps to achieve this goal. By contrast, when C
language was first defined, its goal was different: to be available quickly on a
variety of architectures, not to produce object code that would be portable be-
tween architectures. Thus, for C, the choice was up to the compiler developer
to choose a size that was most “natural” (i.e., convenient) for that particular
architecture.2 This would make it easiest on the compiler writer. It
succeeded—C was an easy language to implement, and it spread widely.

Back to Java. Note that all these values are signed. Java has no
“unsigned” type.

Note also that byte is listed here. It can be treated as a numeric value, and
calculations performed on it. Note especially that it is a signed number (i.e.,
values range from —128 to 127 and not from 0 to 255). Be careful when pro-
moting a byte to an int (or other numeric value). Java will sign-extend on the
promotion. If the value in the byte variable was a character (e.g., an ASCII
value) then you really wanted it treated like an unsigned value. To assign such
a value to an int you’ll need to mask off the upper bits, as in Example 3.1.

You may never encounter such a situation, but if you are ever working
with bytes (e.g., byte arrays) and start to mess with the individual bytes, don’t
say we didn’t warn you.

2. In fact, C’s only rule is that a short int will not be longer than an int and a long will
not be shorter than an int. It is both ANSI and K&R compatible for all integer types ina C
compiler to be the same size!



54

Chapter 3 An Experienced Programmer’s Introduction to Java

Example 3.1 Coercing a byte to int as if the byte were unsigned

byte c;
int ival;

ival = ((int) c) && OxXFF; // explicit cast needed

3.2.1.2 Floating Point Types

Java provides two different precisions of floating point numbers. They are:

* float: 32 bits
* double: 64 bits

The float type is not very useful at that precision, so double is much
more commonly seen. For other situations where precision is important, but
you can spare some cycles, consider the BigDecimal and BigInteger
object classes.

Java floating point numbers are specified to follow the IEEE floating point
standard, IEEE 754.

3.2.1.3 Other Types

Java also has a boolean type, along with constants true and false. In Java,
unlike C/C++, boolean values are a distinct type, and do not convert to
numeric types. For example, it is common in C to write:

if (strlen(instr)) {
strcpy (buffer, instr);
}

In this case, the integer result of strlen() is used as a boolean, where 0 is
false and any other value is true. This doesn’t work in Java. The expression
must be of a boolean type.

Java also has a char type, which is 7oz the same as a byte. The char is a
character, and in Java, characters are represented using Unicode (UTF-16).
They take two bytes each.

For more discussion on the differences between bytes and chars and
about Unicode, read the Java tutorial on the java.sun.com Web site or visit
www .unicode.org, the international standard’s Web site.



3.2 Fundamental Language Elements 55

3.2.1.4 Operators

Before we move on to the topic of arrays (which are sort of a hybrid scalar/
object type in Java), let’s spend a moment on the operators that can be used in
expressions (Table 3.1). Most deal with numeric or boolean operands. For
completeness, we'll include the operators that deal exclusively with arrays
(the “[17) and classes (“.”, new, and instanceof), even though we haven’t
discussed them yet.

Operators listed on the same row in the table have the same precedence.
Operators with the same precedence, except for the unary operators, group
from left to right. Unary operators group from right to left.

3.2.1.5 Arrays
Example 3.2 demonstrates the array syntax in Java.

Example 3.2 Example array syntax

int [] oned = new int[35]; // array = new typel[size]
int alta [] {1, 3, 5, 14, 11, 6, 24}; // alternative syntax plus
// initialization

int j=0;

for (int 1=0; 1<35; i++) {
oned[i] = valcomp (i, prop, altaljl); // array[index]
if (++3j > alta.length) { // array.length
j = 0;

The array can be declared with the [1 on either side of the variable name.
While our example uses the primitive type int, array syntax looks just the same
for any objects.

Note that in Java, one doesn’t declare the size of the array. It’s only in
creating the array with a new that the array gets created to a particular size.
(The {...} syntax is really just a special compiler construct for what is
essentially a new followed by an assignment of values.)

Multidimensional arrays follow the syntax of simple arrays, but with
additional adjacent square brackets, as shown in Example 3.3.



56

Chapter 3 An Experienced Programmer’s Introduction to Java

Table 3.1 Arithmetic and logical Java operators in order of precedence

Operators Explanation

[1

array indexing, member reference

I unary operators: negate, increment, decrement, logical-not, bitwise-not

(type) new coercion, or casting to a different type; creating a new object

/% multiplication, division, remainder

+ - addition, subtraction

<< >> >>> shift-left, shift-right-sign-extend, shift-right-zero-fill

< > <= >= less-than, greater-than, less-or-equal, greater-or-equal, comparing object

instanceof types

== I= equal, not-equal

& bitwise-and (boolean for boolean operands with no short-circuit)”

~ bitwise-xor (with boolean operands it is a boolean-xor)™

| bitwise-or (boolean for boolean operands with no short-circuit)”

&& logical-and (with short-circuit)®

[ logical-or (with short-circuit)

?: Inline if expression, e.g.,a ? b : csays, if a is true, then the value
is b, else it is c.

= += -= *= /= Assignment; those with an operator, as in a op= b will perform the

§= <<= >>= | operation a op b then assign the result back to a.

>>>= &= "= =

*

Hok

In Java there are two ways to do a boolean AND operation: using & or &&. Remember that

for “a AND b”, if either is false, then the result is false. That means that if “a” is

false, there is no need to evaluate “b” because it will not affect the result. Skipping the

evaluation of “b” in this case is called short-circuiting. Java will use short-circuit evaluation

when using the && operator, but not &. The same applies to the OR operators | | and |

where Java can short-circuit on a true evaluation of the first operand for | |. This is an
«»

important distinction when “a” and “b” are not just simple variable references but rather
method calls or other complex expressions, especially ones with side effects.

XOR is exclusive or, where the result of “a XOR b” is true if “a” or “b” is true, but not
both. For bitwise operands, “a” and “b” refer here to bits in the operand; for boolean
operands it is the one value. Examples: 56 is 3; true~false is true but true~true
is false.




3.2 Fundamental Language Elements 57

Example 3.3 Example two-dimensional array syntax

int [][] ragtag = new int[35][10];

for (int i=0; 1<35; i++) {
for (int j=0; j<10; j++) {
ragtag[il[J] = i*3J;
} // next j
} // next i

Multidimensional arrays are built as arrays of arrays. Therefore, we can
actually allocate it in a piecemeal fashion and have ragged-edged arrays, where
each row has a different number of columns, as shown in Example 3.4.

Example 3.4 Ragged two-dimensional array syntax

int [][] ragtag = new int[17]11[1];

for (int 1=0; i<17; i++) {
ragtagl[i] = new int[10+i];
} // next 1

for (int 1=0; 1i<17; i++) {
System.out.println("ragtag["+i+"] is "+ragtag[i].length+" long.");
} // next i

For a fuller discussion of arrays, see Chapter 9 of Eckel or Chapter 6 of
Lewis&Loftus.

3.2.2 ObjectTypes

The real power in Java, or any object-oriented language, comes not from the
scalar types, cool operators, or powerful control statements it provides (see
below), but from its objects.

Object-oriented programming is a relatively recent innovation in software
design and development. Objects are meant to embody the real world in a more
natural way; they give us a way to describe, in our programs, the real-world
objects with which we deal. If you are programming a business application,
think of real-world business objects such as orders, customers, employees,



58

Chapter 3 An Experienced Programmer’s Introduction to Java

addresses, and so on. Java is an object-oriented programming language and thus
has some significant syntax related to OO concepts.

If you are new to object-oriented programming, be sure to read Chapter 1
of Eckel’s Thinking in Java.

In Java, we define a class to represent the objects about which we want to
program. A class consists of the data and the methods to operate on that data.
When we create a new instance of some class, that instance is an object of that
type of class. Example 3.5 shows a simple class.

Example 3.5 Simple class

class

PairInt

{
// data
int 1i;
int j;

// constructors
PairInt() { i=0; j=0; }
PairInt (int ival, int jval) { i=ival; j=jval; }

// methods

setI(int val) { i=val; }
setd (int val) { j=val; }
int getI() { return 1i; }
int getd() { return j; }

Note that this class defines both data (i, j) and methods (setI (),
getJ (), and so on). We put all this into a file named PairInt.java to match
the name of the class definition.

If some other Java code wanted to create and use a PairInt object, it
would create it with the new keyword followed by a call to a constructor
(Example 3.6).

This example shows only a snippet of code, not the entire PairInt class.
That class, though, would likely reside in its own source file (named for its class
name). In Java you normally create lots of files, one for each class. When it’s



3.2 Fundamental Language Elements 59

Example 3.6 Using simple class

// declare a reference to one:
PairInt twovals;

// now create one:
twovals = new PairInt (5, 4);

// we can also declare and create in one step:
PairInt twothers = new PairInt (7, 11);

time to run the program, its various classes are loaded as needed. We’ll discuss
grouping classes together and how Java locates them in Section 3.3.1.

In Java, each source file contains one class and the file is named after that
class. It is possible to define 7nner classes located inside another class definition
and thus inside its file, but that introduces other complexities that we wish to
avoid discussing at this point. Most importantly, an inner class has access to
even the private members of the enclosing class. (Read more about inner classes
in any of the Java books that we recommend at the end of this chapter.)

For each of the class methods, class data declarations, and the class itself,
Java has syntax to limit the scope, or visibility, of those pieces. The examples
above didn’t include those keywords—that is, they took the default values.
Usually you’ll want to specify something. See Section 3.4.1.

3.2.2.1 Objects as References

So far we have not explained something important about object type variables.
These variables can all be thought of as pointers or references to an object.
When you declare a variable of an object type, what you are declaring is a vari-
able that is capable of referring to an object of that type. When declared, it does
not point at anything. It has a value of n#// and any attempt to use it will result
in a null pointer exception (more on those later).

Before an object variable might be used, it must be made to refer to an
instance of an object. This is done by assignment. You can assign an existing
object, or you can use the new operator.

Any new class will have a constructor, that is, a method whose name is the
name of the class. There can be many different constructors for the same class,



60

Chapter 3 An Experienced Programmer’s Introduction to Java

each with unique types of parameters. For example, the String class has many
different constructors, including one which constructs a new string from a
different string and another that constructs a new String from an array

of bytes.

String strbystr = new String(oldstr);
String strbyarr = new String (myByteArray) ;

3.22.2 Strings

One of the most commonly used classes is the string class. It comes already
defined as part of Java and has some special syntax for initialization which
makes it look familiar. Whereas other objects need a new keyword and a con-
structor call, a String object can be created and initialized with the intuitive
double quotes, as in:

String xyz="this is the stringtext";

The compiler also makes a special allowance for strings with respect to
the plus sign (+). It can be used to concatenate two Strings into a third, new
String.

String phrase = "That is"
String fullsent = phrase + " all.";

It is worth noting that Strings do not change—they are immutable.
When you assign a String the value of one String plus another, there’s a lot
of string object creation going on behind the scenes. If you need to do a lot
of concatenation of Strings, say inside loops, then you should look into the
use of the stringBuffer object. See Appendix A of Thinking in Java, 3rd ed.,
the section titled Overloading “+” and the stringBuffer, for a full discussion
of the tradeoffs here.

There are a variety of methods for string—ones that will let you make
substrings, search for substrings at the start or end or anywhere in the string,
or check for equality of two strings.

Table 3.2 shows some of the most useful methods associated with string
objects.



3.2 Fundamental Language Elements

61

Table 3.2 Useful String methods

Return type Method

Description

int

boolean

boolean

String

String

boolean

boolean

String

length ()

equals (Object obj)

equalsIgnoreCase(String str)

toLowerCase ()

toUpperCase ()

startsWith(String substr)

endsWith(String substr)

substring (int index)

Returns the length, i.e. number of characters,
in the String.

Returns true if the object is a String
object and is equal to the String. (Aside:
the argument takes a generic Object type
rather than only a String object because it’s
meant to override the equals () method in
the class Object of which stringisa
descendant.) This is the way to compare two
Strings to see if they are both holding the
same sequence of characters. Using stringa
== stringB will only tell you if stringa
and stringB are referencing the same object
(pointing to the same location in memory).
What you typically want is
stringA.equals (stringB).

Similar to equals (), but this one only
allows a String parameter, and it ignores
the upper/lower case distinction between
letters. For example:

String sample = "abcdefg";
String sample2 = "AbCJAEfG";
sample.equalsIgnoreCase (sample?2)

returns true.

Returns a string with all characters converted
to lowercase.

Returns a string with all characters converted
to uppercase.

Returns true if the String starts with the
given substring.

Returns true if the String ends with the
given substring.

Returns a string starting at position index
to the end of the String.




62

Chapter 3 An Experienced Programmer’s Introduction to Java

Table 3.2 (Continued)

Return

type Method Description

String

substring (int first, int last) Returns astring starting at position first
and up to, but not including, character
position last. If 1ast is greater than the
length of the String, or last is less than
first, it throws an IndexOutOfBounds
exception.

3.2.2.3 Other Classes: Reading Javadoc

Java comes with a huge collection of existing classes for you to use. The simplest
ones are just wrappers for the primitive classes. There is an int primitive data
type, but Java provides an Integer class, so that you can have an integer as an
object. Similarly, there are classes for Long, Float, Boolean, and so on. Such
classes aren’t nearly as interesting as the myriad other classes that come with
Java. These others provide objects for doing I/O, networking, 2D and 3D
graphics, graphical user interfaces (GUIs), and distributed computing. Java
provides ready-to-use classes for strings, math functions, and for special kinds
of data structures like trees and sets and hash tables. There are classes to help
you with the manipulation of HTML, XML, and SQL, as well as classes for
sound, music, and video. All these objects can be yours to use and enjoy if you
just learn the magic of reading Jzvadoc—online documentation for Java classes.
The documentation for all these classes is viewed with a Web browser. (In a
following chapter we’ll describe how you can make Javadoc documents for the
classes that you write, too.)
The online version of the API documentation can be found at

http://java.sun.com/j2se/1.4.2/docs/api/

for Java 1.4.2. (Similarly, put 1.5.1 or whatever version you want at the
appropriate place in the URL.) When displayed, it shows a three-frame page,
as seen in Figure 3.1, except that we've overlaid the image with three labels:
A, B, and C.

The upper left frame of the Javadoc display, the area labeled with A in our
figure, lists all the packages that are part of Java 2 Standard Edition (J2SE).
While there are many other packages of classes available for Java, these classes
are the standard ones available without any other class libraries, with no



3.2 Fundamental Language Elements 63

File Edit “iew Go Communicator Help
4 = 3 & = s & &8 d
Back Faorgard — Reload Harme Search MNetscape Print Security Shop Stap
Hv| __" Baookmarks JL Metsite: [ﬂqttp://java. sun. com/j2se/1. 4. 2/docs/api s/ {| @I' What's Related
v3| ¢ Java 2 Platiorm SE v1.3.1 ¢ Creating a GUI with JFC/Swing ¢ KavaChart Documentation TOC 4 Radar ¢ Google 4 Project Wittenberg ¢ Welcome to KavaChart ¢
Java™ 2 patform j [ENEITST Package Class Use Tree Deprecated Index Help Java™ 2 Platform |
Std. Ed. v1.42 PREV NEHI [Er— Std. Ed vI4.2
2l Clagses
Packages A Java= 2 Platform, Standard Edition, v 1.4.2
java.applet spr .
e e API Specification
jawa.znwtcolor
java awt datatranster / || This document is the API specification for the Java 2 Platform, Standard Edition, version 1.4.2.
5 — | -
—i | See:
All Classes S Description
ARG Iid
ARG INEUT
ARG UL Java 2 Platform Packages
ANTEror
ANTEvent . Provides the classes necessary to create an applet and the classes an applet
AWTEver fsdarer iava.applet uses to comrnunicate with its applet contest.
T Conteins all of the classes for creafing user interfaces and for paintin
ANTE i N ontains all of the classes for creating user interfaces and for painting
Exception Java.awt graphics and images.
AINTHeyStroke
Imission java.awt.color Provides classes for color spaces.
tion
ractc Vuur‘ java.awt.datat for Prux{ldels interfaces and classes for fransferring data between and within
10 Java.awt.catatransier applications.
ract CellEditor
= r":"':g;';mrpw‘ Drag and Drop is a direct manipulation gesture found in many Graphical User
. Interface systems that provides a mechanism to transter information
t
nEA fava.avt.dnd between two entities logically associated with presentation elements in the
tent GUL
ument
r hannel N Provides interfaces and classes for dealing with different types of events fired
ract LayoutCache: java.awt.event by AWT compenents.
ract LayoutCache. Mode Dimensiol
istrac S:M N java.awt.font Pfbvides classes and interface relating to fonts,
rap ocke
. Provides the Java 2D classes for defining and performing operations on
java.awt.ge . . :
10dError ava.awt.gaom objects related to two-dimensional geometry.
harnel /|| |java.awt.im Provides classes and interfaces for the input method framewrork, Fi
| — - -l -
= i e % aP 2
T —

Figure 3.1 The three frames of a Javadoc page

additional downloads necessary. Other classes are documented in the same
way—with Javadoc—but they are downloaded and displayed separately.

Frame B initially lists all the classes and interfaces available in all of the
packages. When you select a package in A, B will display only those interfaces
and classes that are part of the chosen package.

Frame C starts out with a list and description of all packages. Once you
have selected a package in A, C will show the overview of that package, showing
its classes and interfaces with descriptions.

But C is most often used to display the detailed description of a class.
Choose a class or interface in B and you will see C filled with its descrip-
tion—some opening information followed by a list of the visible members of
that class, followed by the possible constructors for that class and all the meth-
ods in that class (Figure 3.2). Each method is shown with its parameters and a
one-sentence description. Clicking on the method name will open a fuller
description (Figure 3.3).



Chapter 3 An Experienced Programmer’s Introduction to Java

P

Java™ 2 Pilatform
Std. Ed. v14.2

e m g m s em e g g e e o e s

Ll s

Overview Package [EERE] Use Tree Deprecated Index Help
] PREVCLASS HEXT CLASS FRAMES HOFRAMES
SUMMARY: MESTED | FELD | COMSTR| METHOD DETAIL: AELD | COMSTR | METHOD

javalang
Class String

jawa. lang. Ohject
[ jawva.lang. String

1™
o[

All Implemented Interfaces:
CharSequence, Comparable, Serfalizable

public final class String
extends Object
implements Serializable, Comparable, CharSequence

The String class represents character strings, All string literals in Java programs, such as "ahc”, are implemented as instances of
this class.

Strings are constant; their values cannot be changed after they are created, String buffers support mutable strings, Because String
ohjects are imrmutable they can be shared, For example:

Figure 3.2 Javadoc display of class information

equals
public boolean equalsi{Object anObject)

Compares this string to the specified object. The resultis true if and only if the argument is notnull andis a String object
that represents the same sequence of characters as this object.

Overrides:
equals in class Object
Parameters:
anfbject - the object to compare this String against
Returns:
true if the String are equal; false otherwise.
See Also:

conpareTo (java, lang. String), equalsTgnoreCase (java. lang. Strin

Figure 3.3 Javadoc display of a single method

Since you will likely be referencing the Javadoc pages regularly, you may
want to download a copy to your hard drive. From the same page on the
java.sun.com Web site where you can download the Java SDK you can also
download the API documentation.

If you agree to the licensing terms, you will download a large ZIP file. In-
stalling the documentation, then, is just a matter of unzipping the file—but it’s
best if you put it in a sensible location. If you have installed your Java SDK
into a location like /usr/local/java then cd into that directory and unzip
the file that you downloaded. Assuming that you saved the downloaded file
into /tmp, a good place to put temporary files, and assuming that you have in-
stalled your version of Java into /usr/local/java and that you have write



3.2 Fundamental Language Elements 65

permission in that directory (check the permissions with 1s -1d .) then you
can run these commands:

$ cd /usr/local/java
$ unzip -gq /tmp/j2sdk-1_4_2-doc.zip

There may be quite a pause (tens of seconds) while it unzips everything.
The unzip command will spew out a huge list of filenames as it unpacks them
unless you use the -g option (“quiet”) on the command line (which we did, to
avoid all that). The files are all unzipped into a directory named docs. So now
you can point your browser to

file:///usr/local/java/docs/api/index.html

Now you have your own local copy for quick reference, regardless of how
busy the network or Sun’s Web site gets. Be sure to bookmark this page; you’ll
want to reference it often. It’s your best source of information about all the
standard Java2 classes.

3.2.3 Statements

This section is not intended to be a formal presentation of Java syntactic
elements.3 Our purpose here is merely to show you the Java way to express
common programming constructs. You will find that these are fundamentally
similar to the analogous statements in C and C++. For much more detail on
these subjects, see Chapter 3 of Thinking in Java by Bruce Eckel.

Like C, Java has a very small set of statements. Most constructs are actually
expressions. Most operations are either assignments or method calls. Those few
statements that are not expressions fall into two broad categories:

¢ Conditional execution statements

* Loop control statements

By the way, you may have already noticed one of the two kinds of
comments that Java supports. They are like the C/C++ comments—a pair of
slashes (//) marks a comment from there to the end of the line, and a block

3. For those so inclined, Sun has a BNF language grammar (http://java.sun.com/docs/
books/jls/secondﬁedition/html/syntax.doc.html)OnthdrVVébske,andthelcwdsand
Loftus book, Appendix L, has a good set of syntax diagrams.



66

Chapter 3 An Experienced Programmer’s Introduction to Java

comment consists of everything from the opening /* to the closing */
sequence.

3.2.3.1 Conditional Execution

An experienced programmer probably only needs to see examples of if and
other such statements to learn them. It’s only a matter of syntax. Java breaks
no new ground here; it adds no new semantics to conditional execution
constructs.

The if-else statement.  The if can take a single statement without any
braces, but we always use the braces as a matter of good style (Example 3.7).

Example 3.7 A compound Java if-else statement

if (x < 0) {

Yy = z + progo;

} else if (x > 5) {
Yy = z + hmron;
mylon.grebzob() ;

} else {

Yy = z + engrom;
mylon.kuggle() ;

TIP

An important thing to remember about the Java if statement (and all other
conditional tests, such as while, do-while, and for) is that, unlike C/C++,
its expression needs to evaluate to a boolean. In C/C++, numeric expressions
are valid, any nonzero value being considered true, but not so in Java.

The switch statement. For a multiway branch Java, like C/C++, has a
switch statement, though the Java version of switch is a bit more restrictive.
Example 3.8 shows the syntax.

In Java, the expression in the switch statement must evaluate to either
an int or a char. Even short and long are not allowed.

As in C/C++, be sure to put the break statement at the end of each case,
or else control will flow right into the next case. Sometimes this is the desired
behavior—but if you ever do that deliberately, be sure to add a comment.



3.2 Fundamental Language Elements 67

Example 3.8 A switch statement in Java

switch (rval*k+zval)
{
case 0O:
mylon.reset () ;
break;
case 1:
case 4:
// matches either 1 or 4
y = zval+engrom;
mylon.kuggle(y) ;
break;
default:
// all other values end up here
System.out.println("Unexpected value.");
break;

The default case is where control goes when no other case matches the
expression. It is optional—you don’t need to have one among your switch cases.
Its location is also arbitrary; it could come first, but by convention programmers
put it last in the sequence of cases, as a visual “catch all.”

TIP

For whichever case is last (typically default), the ending break is redundant
because control will continue outside the break—but we show it here in the
example, and use it ourselves in our code. Why? Well, code gets edited—for
bug fixes and for feature additions. It is especially important to use break in all
the cases in switch statements that have no default case, but even in
those that do, we keep the break to avoid forgetting it, should another case
ever be added or this last one relocated. We recommend that you do the same.

3.2.3.2 Looping and Related Statements

The while statement. Like the while construct in other computer lan-
guages, the expression inside the parentheses is evaluated, and if true, the
statement following it is executed. Then the expression is evaluated again, and
if still true, the looped statement is again executed. This continues until the
expression evaluates to false (Example 3.9).



68

Chapter 3 An Experienced Programmer’s Introduction to Java

Example 3.9 A Java while statement

while (greble != null)
{
greble.glib() ;
greble = treempl.morph() ;

Technically, the while statement consists of the expression and a single
statement, but that single statement can be replaced by a set of statements en-
closed in braces (you know, the characters { and }). We will always use braces,
even if there is only one statement in our while loop. Experience has shown
that it’s a safer practice that leads to code that is easier to maintain. Just treat
it as if the braces were required syntax, and you’ll never forget to add them
when you add a second statement to a loop.

The do-while loop. To put the terminating check at the bottom of the
loop, use do-while as shown in Example 3.10. Notice the need for the
terminating semicolon after the expression.

Example 3.10 A Java do-while statement

do {

greble.morph () ;
xrof = treempl.glib();

} while (xrof == null);

Die-hard Pascal programmers should note that Java has no repeat-until
statement. Sorry. Of course the logic of an until (condition) is equivalent
to do-while(!condition).

The for loop. The for loop in Java is very similar to C/C++. It consists of
three parts (Example 3.11):

* The initializing expression, done up front before the loop begins

* The conditional expression for terminating the loop



3.2 Fundamental Language Elements 69

* The expression that gets executed at the end of each loop iteration, just
prior to retesting the conditional

Example 3.11 A Java for loop

for (i = 0; 1 < 8; i++) {
System.out.println(i) ;

Unlike C/C++, Java doesn’t have the comma operator for use within arbi-
trary expressions, but the comma is supported as special syntax in Java for
loops. It makes it possible to have multiple initializers in the opening of the
for loop and multiple expressions in the portion repeated at each iteration of
the loop. The result is much the same—you can initialize and increment
multiple variables or objects in your for loop.

More formally, the full syntax of the for loop can be described with fol-
lowing meta-language as shown in Example 3.12 (where the []1* means “zero
or more repetitions of”).

Example 3.12 Java for loop syntax

for ( before [, beforel* ; exit_condition ; each_time [, each_timel*
statement

The biggest difference between C and Java for loops, however, is that Java
allows you to declare one or more variables of a single type in the initializing
expression of the for loop (Example 3.13). Such a variable’s scope is the for
loop itself, so don’t declare a variable there if you want to reference it outside
the loop. It is a very handy construct, however, for enumerators, iterators, and
simple counters.

Example 3.13 A Java for loop with local index

for (int i = 0; 1 < 8; i++) {
System.out.println(i) ;




70

Chapter 3 An Experienced Programmer’s Introduction to Java

As in the if and while statements, the braces are optional when only a
single statement is involved, but good practice compels us always to use the
braces. Additional code can easily be added without messing up the logic—
should one forget, at that point, the need to add braces.

Speaking of the while loop: When do you use a for and when do you
use a while loop? The big advantage of the for loop is its readability. It con-
solidates the loop control logic into a single place—within the parentheses.
Anyone reading your code can see at once what variable(s) are being used to
control how many times the loop executes and what needs to be done on each
iteration (e.g., just increment i). If no initialization is needed before starting
the loop, or if the increment happens indirectly as part of what goes on in the
body of the loop, then you might as well use a while loop. But when the ini-
tialization and iteration parts can be clearly spelled out, use the for loop for
the sake of the next programmer who might be reading your code.

The for loop with iterators.  As of Java 5.0, there is additional syntax for a
for loop. It is meant to provide a useful shorthand when looping over the
members of an iterator.# So what’s an iterator? Well, it has to do with collec-
tions. Uh, oh, we’re surrounded by undefined terms. One step at a time, here.
Java has a whole bunch (we won’t say “collection,” it’s a loaded term) of utility
classes that come with it. We mentioned these classes in our discussion of
Javadoc. While not part of the language syntax, some of these classes are so
useful that you will see them throughout many, if not most, Java programs.

Collection is a generic term (in fact, it’s a Java interface) for several classes
that allow you to group similar objects together. It covers such classes as Lists,
LinkedLists, Hashtables, Sets, and the like. They are implementations of
all those things that you (should have) learned in a Data Structures course in
school. Typically you want to add (and sometimes remove) members from a
collection, and you may also want to look something up in the collection. (If
you’re new to collections, think “array,” as they are a simple and familiar type
of collection.) Sometimes, though, you don’t want just one item from the col-
lection, but you want to look at all of the objects in the collection, one at a
time. The generic way to do that, the way that hides the specifics of what kind
of collection you have (linked list, or array, or map) is called an iterator.>

4. This feature is related to the topic of templates and generics. See Section 3.5.

5. The eatliest versions of Java used an object called an Enumeration. It does much the same
thing as an iterator, but with somewhat clumsier method names. Iterators also allow for a



3.2 Fundamental Language Elements 71

The purpose of an iterator, then, is to step through a collection one item
at a time. Example 3.14 shows a collection being built from the arguments on
the command line. Then two iterators are used to step through the collection

Example 3.14 Using iterators

import java.util.*;

public class
Iter8
{
public static void
main(String [] args)
{
// create a new (empty) ArrayList
ArrayList al = new ArrayList();

// £ill the ArrayList with args
for(int i = 0; i1 < args.length; i++) {
al.add(args([i]);

// use the iterator in the while loop
Iterator itrl = al.iterator();

while(itrl.hasNext ()) {
String onearg;
onearg = (String) (itrl.next());
System.out.println("arg=" + onearg) ;

// define and use the iterator in the for loop:

for(Iterator itr2 = al.iterator(); itr2.hasNext(); ) {
String onearg;
onearg = (String) (itr2.next());

System.out.println("arg=" + onearg) ;

} // main

} // Iters8

remove () method, something that Enumeration doesn’t support. The Enumeration class
is still around, but less frequently used. It is only available from certain older utility classes.



72

Chapter 3 An Experienced Programmer’s Introduction to Java

and print the objects in the collection to the command window. The first iter-
ator uses the while loop, the second one uses a for loop, but they both do the
same thing.

As of Java 5.0, there is another way to work your way through a collection,
one that requires less type casting, but more importantly one that can enforce
the type of objects at compile time.

Notice in Example 3.14 that the result of the next () is coerced into type
string. That’s because everything coming from the iterator (via the next ()
method) comes to us as a generic object. That way an iterator can handle any
type of object, but that also means that it is up to the application program to
know what type should be coming back from the iterator. Any typecasting error
won’t be found until runtime.

With the syntax added in 5.0, not only is there a shorthand in the for
loop for looping with an iterator. There is also syntax to tell the compiler explic-
itly what type of objects you are putting into your collection or array so that
the compiler can enforce that type.

Example 3.15 may help to make this clearer.

Example 3.15 Using a for loop iterator

import java.util.*;

public class

Foreign

{
public static void
main(String [] args)
{

List <String> loa = Arrays.asList(args);
System.out.println("size=" + loa.size());
for(String str : loa) {

System.out.println("arg=" + str);

} // main
} // Foreign

Here we build a List from the arguments supplied on the command line.
Notice the type name inside of angle brackets (less-than and greater-than signs).



3.2 Fundamental Language Elements 73

This is the new syntax that tells the compiler that we are putting Strings into
the List. The compiler will enforce that and give a compile time error if we
try to add any other type to the List.

Now we come to the for loop. Read it as “for str in 1oa” or “for String
values of str iterating over loa.” We will get an iterator working out of sight
that will iterate over the values of 1oa, our List. The values (the result of the
next () method) will be put in the string variable str. So we can use str
inside the body of the loop, with it taking on successive values from the
collection.

Let’s describe the syntax, then, as

for ( SomeType variable : SomeCollectionVariable ) {

}

which will define variable to be of type SomeType and then iterate over the
SomeCollectionvariable. Each iteration will execute the body of the loop,
with the variable set to the next () value from the iterator. If the collection is
empty, the body of the loop will not be executed.

This variation of the for loop works for arrays as well as for these new
typed collections. The syntax for arrays is the same. Example 3.16 will echo the
arguments on the command line, but without loading up a List like we did
in our previous example.

Example 3.16 A for loop iterator for arrays

import java.util.*;

public class
Forn
{

public static void

main(String [] args)

{

for (String str : args) {
System.out.println("arg="+str) ;

} // main
} // Forn




74

Chapter 3 An Experienced Programmer’s Introduction to Java

The break and continue statements. There are two statements that will
change the course of execution of the while, do-while, and for loops from
within the loop. A continue will cause execution to skip the rest of the body
of the loop and go on to the next iteration. With a for loop, this means execut-
ing the iteration expression, and then executing the test-for-termination expres-
sion. With the while and do-while loops, this means just going to the test
expression.

You can quit out of the loop entirely with the break statement. Execution
continues on the next statement after the loop.

3.2.3.3 The return statement

There is one more statement that we need to cover. The return statement is
optionally followed by an expression. Execution of the current method ends at
once upon executing return, and the expression is used as the return value of
the method. Obviously, the type of the expression must match the return type
of the method. If the method is void, there should be no return expression.

3.2.4 Error Handling, Java Style

Errors in Java are handled through exceptions. In some circumstances, the Java
runtime will #hrow an exception, for example, when you reference a null
pointer. Methods you write may also throw exceptions. This is quite similar to
C++. But Java exceptions are classes. They descend from object, and you can
write your own classes that exzend an existing exception. By so doing, you can
carry up to the handler any information you would like. But we’re getting ahead
of ourselves here. Let’s first describe the basics of exceptions, how to catch them,
how to pass them along, and so forth.

In other programming languages a lot of code can be spent checking return
codes of function or subroutine calls. If A calls B and B calls C and C calls D,
then at each step the return value of the called function should be checked
to see if the call succeeded. If not, something should be done about the
error—though that “something” is usually just returning the error code to the
next level up. So function C checks D’s return value, and if in error, returns an
error code for B to check. B in turn looks for an error returned from C and re-
turns an error code to A. In a sense, the error checking in B and C is superflu-
ous. Its only purpose is to pass the error from its origin in D to the function
that has some logic to deal with the error—in our example that’s A.



3.2 Fundamental Language Elements 75

Java provides the try/catch/throw mechanism for more sophisticated
error handling. It avoids a lot of unnecessary checking and passing on of errors.
The only parts of a Java program that need to deal with an error are those that
know what to do with it.

The throw in Java is really just a nonlocal “goto”—it will branch the exe-
cution of your program to a location which can be quite far away from the
method where the exception was thrown. But it does so in a very structured
and well-defined manner.

In our simple example of A calling B calling C calling D, D implemented
as a Java method can #hrow an exception when it runs into an error. Control
will pass to the first enclosing block of code on the call stack that contains a
catch for that kind of exception. So A can have code that will cazch an excep-
tion, and B and C need not have any error handling code at all. Example 3.17
demonstrates the syntax.

Example 3.17 A simple try/catch block

try {

for (1 = 0; 1 < max; 1i++) {

someobj.methodB (paraml, 1);

}
} catch (Exception e) {

// do the error handling here:

System.out.println("Error encountered. Try again.");
}
// continues execution here after successful completion
// but also after the catch if an error occurs

In the example, if any of the calls to methodB() in the for loop go
awry—that is, anywhere inside methodB () or whatever methods it may call an
exception is thrown (and assuming those called methods don’t have their own
try/catch blocks), then control is passed up to the catch clause in our exam-
ple. The for loop is exited unfinished, and execution continues first with the
catch clause and then with the statements after the catch.

How does an error get thrown in the first place? One simply creates an
Exception object and then throws the exception (Example 3.18).



76

Chapter 3 An Experienced Programmer’s Introduction to Java

Example 3.18 Throwing an Exception, step by step

Exception ex = new Exception("Bad News") ;
throw ex;

Since there is little point in keeping the reference to the object for the local
method—execution is about to leave the local method—there is no need to
declare a local variable to hold the exception. Instead, we can create the excep-
tion and throw it all in one step (Example 3.19).

Example 3.19 Throwing an Exception, one step

throw new Exception("Bad News") ;

Exception is an object, and as such it can be extended. So we can create
our own unique kinds of exceptions to differentiate all sorts of error conditions.
Moreover, as objects, exceptions can contain any data that we might want to
pass back to the calling methods to provide better diagnosis and recovery.

The try/catch block can catch different kinds of exceptions much
like cases in a switch/case statement, though with different syntax
(Example 3.20).

Notice that each catch has to declare the type of each exception and
provide a local variable to hold a reference to that exception. Then method calls
can be made on that exception or references to any of its publicly available data
can be made.

Remember how we created an exception (new Exception('"message"))?
That message can be retrieved from the exception with the toString()
method, as shown in that example. The method printstackTrace () is also
available to print out the sequence of method calls that led up to the creation
of the exception (Example 3.21).

The exception’s stack trace is read top to bottom showing the most
recently called module first. Our example shows that the exception occurred
(i.e., was constructed) on line 6 of the class named InnerMost, inside a method
named dootherstuff (). The dootherstuff () method was called from
inside the class MidModule—on line 7—in a method named dostuff ().
In turn, dostuff () had been called by dosomething(), at line 11 inside



3.2 Fundamental Language Elements 77

Example 3.20 Catching different kinds of exceptions

try {
for (i = 0; i < max; 1i++) {
someobj.methodB (paraml, 1i);
} // next 1

} catch (SpecialException sp) {
System.out.println(sp.whatWentWrong()) ;

} catch (AlternateException alt) {
alt.attemptRepair (paraml) ;

} catch (Exception e) {
// do the error handling here:
System.out.println(e.toString());
e.printStackTrace() ;

}

// continues execution here after any catch

Example 3.21 Output from printStackTrace ()

java.lang.Exception: Error in the fraberstam.
at InnerMost.doOtherStuff (InnerMost.java:6)
at MidModule.doStuff (MidModule.java:7)
at AnotherClass.doSomething (AnotherClass.java:11)
at ExceptExample.main (ExceptExample.java:14)

AnotherClass, which itself had been called from line 14 in the
ExceptExample class’ main () method.

We want to mention one more piece of syntax for the try/catch block.
Since execution may never get to all of the statements in a try block (the excep-
tion may make it jump out to a catch block), there is a need, sometimes,
for some statements to be executed regardless of whether all the try code
completed successfully. (One example might be the need to close an I/O con-
nection.) For this we can add a finally clause after the last catch block. The
code in the finally block will be executed (only once) after the try or after
the catch—even if the path of execution is about to leave because of throwing
an exception (Example 3.22).



78

Chapter 3 An Experienced Programmer’s Introduction to Java

Example 3.22 Use of a finally clause

try {
for (i = 0; i < max; 1i++) {
someobj.methodB (paraml, 1i);
} // next 1

} catch (SpecialException sp) {
System.out.println(sp.whatWentWrong()) ;

} catch (AlternateException alt) {
alt.attemptRepair (paraml) ;
throw alt; // pass it on

} catch (Exception e) {
// do the error handling here:
System.out.println(e.toString());
e.printStackTrace() ;

} finally {
// Continue execution here after any catch
// or after a try with no exceptions.
// It will even execute after the AlternateException
// before the throw takes execution away from here.
gone = true;
someobj = null;

3.25 print(),println(),printf ()

We've already used println () in several examples, and assumed that you can
figure out what it’s doing from the way we have used it. Without going whole-
hog into an explanation of Java I/O and its various classes, we’d like to say a
little more about the three various output methods on a PrintStream object.®

Two of the methods, print () and println (), are almost identical. They
differ only in that the latter one appends a newline (hence the 1n) at the end
of its output, thereby also flushing the output. They expect a string as their
only argument, so when you want to output more than one thing, you add the
Strings together, as in:

6. The mention of the PrintStream object was meant to be a hint, to tell you that you can
find out more about this sort of thing on the Javadoc pages for the PrintStream object.



3.2 Fundamental Language Elements 79

System.out.println("The answer is "+val);

“But what if val is not a String?” we hear you asking. Don’t worry, the
Java compiler is smart enough to know, that when you are adding with a
String argument it must convert the other argument to a String, too. So for
any Object, it will implicitly call its tostring () method. For any primitive
type (e.g., int or boolean), the compiler will convert it to a string, too.

The third of the three output methods, printf (), sounds very familiar
to C/C++ programmers, but be warned:

* It is only available in Java 5.07 and after.

e It is similar but not identical to the C/C++ version.

Perhaps the most significant enhancement to printf () is its additional
syntax for dealing with internationalization. It’s all well and good to translate
your Strings to a foreign language, but in doing so you may need to change
the word order and thus the order of the arguments to print £ (). For example,
the French tend to put the adjective affer rather than before the noun (as we do
in English). We say “the red balloon” and they say “le balloon rouge.” If your
program had strings for adjective and noun, then a printf () like this:

String format = "the %s %s\n";
System.out.printf (format, adjective, noun);

wouldn’t work if you translate just the format string:

String format = "le %s %s\n";
System.out.printf (format, noun, adjective);

You’d like to be able to do the translation without changing the code in your
program.8 With the Java version of print£ (), there is syntax for specifying
which argument corresponds to which format field in the format string. It uses

7. Remember, you’ll need the -source 5.0 option on the command line.

8. Java has good support for internationalization, another topic for which we don’t have the
time. The ability to translate the strings without otherwise modifying the program is a crucial
part to internationalization, and the print£ () in Java 5.0 is certainly a help in this regard. In
a similar vein, the Eclipse IDE, covered in Chapter 10, includes a feature to take all string
constants and convert them to external properties at a stroke, making internationalization much
easier to do.



80

Chapter 3 An Experienced Programmer’s Introduction to Java

a number followed by a dollar sign as part of the format field. This may be
easier to explain by example; our French translation, switching the order in
which the arguments are used, would be as follows:

String format = "le %2$s %1S$s\n";
System.out.printf (format, noun, adjective);

The format field $2$s says to use the second argument from the argument
list—in this case, adjective—as the string that gets formatted here. Similarly,
the format field $1$s says to use the first argument. In effect, the arguments
get reversed without having to change the call to println (), only by translat-
ing the format string. Since such translations are often done in external files,
rather than by assignment statements like we did for our example, it means that
such external files can be translated without modifying the source to move ar-
guments around.

This kind of argument specification can also be used to repeat an argument
multiple times in a format string. This can be useful in formatting Date objects,
where you use the same argument for each of the different pieces that make up
a date—day, month, and so on. Each has its own format, but they can be
combined by repeating the same argument for each piece. One format field
formats the month, the next format field formats the day, and so on. Again an
example may make it easier to see:

import java.util.Date;
Date today = new Date();
System.out.printf("%1$tm / %1std / %$1sty\n", today);

The previous statement uses the single argument, today, and formats it
in three different ways, first giving the month, then the day of the month, then
the year. The t format indicates a date/time format. There are several suffixes
for it that specify parts of a date, a few of which are used in the example.”

NOTE

Don’t forget the trailing \n at the end of the format string, if you want the output
to be a line by itself.

9. There are many more, familiar to C/C++ UNIX/Linux/POSIX programmers who have used
the strftime () library call.



3.2 Fundamental Language Elements 81

The details for all the different format fields can be found in the Javadoc
for the java.util.Formatter class, a class that is used by printf () to do
its formatting, but one that you can also use by itself (C programmers: think
“sprintf”).

In order to implement printf () for Java, the language also had to be ex-
tended to allow for method calls with a varying number of arguments. So as of
Java 5.0, a method’s argument list can be declared like this:

methodName (Type ... arglist)

This results in a method declaration which takes as its argument an array
named arglist of values of type Type. That is, it is much the same as if you
declared methodName (Type [] arglist) except that now the Compiler will
let you call the method with a varying number of arguments and it will load up
the arguments into the array before calling the method. One other implication
of this is that if you have a declaration like this:

varOut (String ... slist)
then you can’t, in the same class, also have one like this:
varOut (String [] alist)

because the former is just a compiler alias for the latter.

TIP

We recommend that you avoid methods with variable argument list length. You
lose the compile-time checking on the number of arguments that you supply
(since it can vary). Often the type of the arguments in the list will be Object,
the most general type, to allow anything to be passed in. This, too, circumvents
type checking of arguments, and can lead to runtime class-cast exceptions and
other problems. Methods with variable argument list length are often a lazy
approach, but were necessary to make printf () work, and for that we
are grateful.



82

Chapter 3 An Experienced Programmer’s Introduction to Java

3.3 USING (AND MAKING) JAVA APIs

With every class you write, you define a name—the name of the class. But what
if someone else has already used that name? Java programming should encour-
age reuse of existing code, so how do you keep straight which names are
available?

This is a namespace issue—who can use which names. A classic way to
solve a namespace issue is to divide the namespace up into domains. On the
Internet, host names are sectioned off into domains, so that I can have a host
named Pluto or www and so can lots of others—because each host is gualified
by its domain (e.g., myco.com). Thus www.myco.com isn’t confused with
www . otherco.com or www.hisgroup.org. Each host is named www, but each
is unique because of the qualifying domain.

Java solves the problem in much the same way, but with the names in the
reverse order. Think of the “host” as the class name; the “domain” name, used
to sort out identical host names, is, in Java parlance, the package name. When
you see a name like com.myco. finapp.Account, that can be a Java package
com.myco . finapp qualifying a class named Account.

Beyond just keeping the namespace clean, Java packages serve another
important function. They let you group together similar classes and interfaces
to control access to them. Classes within the same package can access each
others’ members and methods even when they are not declared public, provid-
ed they are not declared to be private. This level of intimacy, sometimes
called package protection, means that you should group classes together that are
related, but avoid grouping too many classes together. It’s tempting just to
put all your classes for a project into the same package, for example,
com.myco.ourproject, but you will provide better safety and perhaps pro-
mote better reuse by grouping them into several smaller packages, for example,

com.myco.util, com.myco.financial, and com.myco.gui.

3.3.1 The package Statement

So how do you make a Java class part of a package? It’s easy—you just put, as
the first (noncomment) line of the file, the package statement, naming the
package to which you want this class to belong. So if you want your account
class to be part of the com.myco. financial package, your Java code would
look as shown in Example 3.23.



3.3 Using (and Making) Java APIs 83

Example 3.23 Use of a package statement

package com.myco.financial;

public class
Account
{

//

Making a class part of a package is easy. What's tricky is putting the class
file in the right location so that Java can find it.

Think of the current directory as the root of your package tree. Each part
of a package name represents a directory from that point on down. So if you
have a package named com.myco.financial then you’ll need a directory
named com and within that a directory named myco and within that a directory
named financial. Inside that financial directory you can put your
Account.class file.

When Java runs a class file, it will look in all the directories named in the
CLASSPATH environment variable. Check its current value:

$ echo $CLASSPATH

$

If it’s empty, as in this example, then the only place where it will look for
your classes will be the current directory. That’s a handy default, because it is
just what you want when your class file has no package statement in it. With
no package statement, your class becomes part of the unnamed package. That’s
fine for simple sample programs, but for serious application development you’ll
want to use packages.

Let’s assume that you’re in your home directory, /home/joeuser, and
beneath that you have a com directory and beneath that a myco directory with
two subdirectories financial and util. Then with your classes in those lower
level directories, you can run your Java program from the home directory.
If you want to run it from any arbitrary directory (e.g., /tmp or
/home/joeuser/alt) then you need to set CLASSPATH so it can find this
package tree. Try:



84

Chapter 3 An Experienced Programmer’s Introduction to Java

S export CLASSPATH="/home/joeuser"
$

Now Java knows where to look to find classes of the
com.myco. financial and com.myco.util packages.

3.3.2 The import Statement

Once we have put our classes into packages, we have to use that package’s name
when we refer to those classes—unless we use the import statement.

Continuing our example, if we want to declare a reference to an Account
object, but Account is now part of com.myco. financial, then we could refer
to it with its full name, as in:

com.myco.financial.Account =
new com.myco.financial.Account (user, number) ;

which admittedly is a lot more cumbersome than just:

Account = new Account (user, number) ;

To avoid the unnecessarily long names, Java has import statements. They
are put at the beginning of the class file, outside the class definition, just after
any package statement. In an import statement, you can name a class with
its full name, to avoid having to use the full name all the time. So our example
becomes:

import com.myco.financial.Account;
//

Account = new Account (user, number) ;

If you have several classes from that package that you want to reference,
you can name them all with a “+”, and you can have multiple different import
statements, as in:

import java.util.*;
import com.myco.financial.*;

//

Account = new Account (user, number) ;

Here are a few things to remember about import statements. First, they
don’t bring in any new code into the class. While their syntax and placement



3.4 Encapsulation, Inheritance, and Polymorphism 85

3.4

is reminiscent of the C/C++ include preprocessor directive, their function is
not the same. An import statement does not include any new code; it only aids
name resolution. Secondly, the “*” can only be used at the end of the package
name; it is not a true wildcard in the regular expression sense of the word.
Thirdly, every class has what is in effect an implicit import java.lang.* so
that you don’t need to put one there. References to string or System or other
core language classes can be made without the need for either the import
statement or the fully qualified name (except as described in the next
paragraph).

If you need to use two different classes that have the same name but come
from different packages, you will still need to refer to them by their full names;
import can’t help you here. As an example of this, consider the two classes
java.util.Dateand java.sql.Date (though with any luck you won’t need
to refer to both of them within the same class).

ENCAPSULATION, INHERITANCE, AND POLYMORPHISM

The classic troika of OOP buzzwords is “encapsulation, inheritance, and
polymorphism.” How does Java do each of these things?

3.4.1 Encapsulation

Encapsulation is the grouping of data and algorithms together into units, and
it’s also about hiding implementation details that are not important to the users
of the unit. The basic unit of encapsulation is the class. All Java code exists in
classes. A class is declared with the class keyword (Example 3.24).

Example 3.24 A sample Java class declaration that doesn’t actually do anything useful

public class
Sample
{

private int id;

public void method ()
{

System.out.println(id) ;
}




86

Chapter 3 An Experienced Programmer’s Introduction to Java

3.4.2 Inheritance

Inheritance is how a class places itself in a hierarchy of existing classes. In Java,
each class inherits from exactly one existing class. A class names the class from
which it inherits with the extends keyword. We said a Java class inherits from
exactly one class, and yet our Example 3.24 doesn’t contain the extends
keyword. What gives?

If a class doesn’t explicitly extend an existing class, it implicitly extends
the “root” Java class, object. The object class has some interesting features,
and the fact that all Java classes directly or indirectly extend object has
interesting consequences that we will explore later.

Persons coming to Java from another object-oriented language whose
name shall remain C++ might wonder about multiple inheritance. Java has the
concept of interfaces. An interface is like a class, except that it may not contain
data'® and may contain only method definitions, without any implementation
(Example 3.25). An interface may not be instantiated (created with the new
operator),!! so how do you make use of interfaces? Well, a class extends exactly
one existing base class, but it may implement any number of interfaces by using
the implements keyword (Example 3.26).

Example 3.25 An interface

public interface
Identifiable
{

public int getID() ;

Asyou can see, a class that implements an interface must provide an imple-
mentation of all the methods defined in the interface. We said that an interface
cannot be instantiated, but you can declare a variable of type Identifiable

10. Actually, an interface may contain final static data, but since we haven’t introduced
these concepts yet, just pretend interfaces cannot contain data for now and we’ll put the lie to
it later.

11. Although you can do something that looks suspiciously like it with anonymous inner
classes—Dbut since we haven’t introduced these concepts yet, just pretend that you cannot instan-
tiate an interface; you will see such use later.



3.4 Encapsulation, Inheritance, and Polymorphism 87

Example 3.26 A class that implements an interface

class
Sample
implements Identifiable

private int id;

public void method()

{
System.out.println(id) ;

public int getID()
{

return id;

and assign an instance of the sample class to it. In fact, you could assign an
instance of any class that implements the Identifiable interface to it.
Interfaces may also have an extends keyword. In other words, an interface
may inherit from an existing interface. This may be useful if you know you will
want to use methods from both the extended and the base interface without
having to cast the object reference. Otherwise extending an interface is
unnecessary since a given class may implement as many interfaces as desired.

3.4.2.1 Inheritance and Encapsulation

Encapsulation and inheritance are related to one another and are controlled by
access modifiers on classes, data members, and methods. Let’s spend a little time
talking about these modifiers and what they mean.

The access modifier keywords are public, private, and protected.
When a data member or method is private, it can only be accessed or called
from within this specific class. Neither classes that extend this class, nor classes
outside this class may access such a data member or call such a method. How-
ever, one instance of a class can access private members of another instance
of the same class. We don’t encourage such use.

When a data member or method is marked protected, however, the only
classes that can access such a data member or method are either 1) classes that
extend this class and their descendants, or 2) other classes in this package (even



88

Chapter 3 An Experienced Programmer’s Introduction to Java

if they don’t extend this class). Classes in other packages (unless they extend
this class) can not get at such members.

A public data member or method may be accessed by any code in
any class.

What if you do not put an access specifier on? Then the item (data mem-
ber, method, or class) has package visibility. Such an item is accessible to any
other class within the package, but no further. Not even derived classes, unless
they are in the same package, are allowed to see it.!2

In terms of how restrictive the access is, you can think of the terms in order
of decreasing strictness as:

®* private

(package)!3
® protected

* public

TIP

Beginner Java programmers often declare everything as public, so that they
can ignore such issues. But then they get the OO religion, and having experi-
enced reliability issues (others messing with their variables) they go to the other
extreme and declare private as much as possible. The problem here is that
they often don’t know how others will want to reuse their code. Restricting every-
thing to private makes reuse more narrow. We prefer using private for
data members but protected for those internal helper methods that you might
otherwise make private; this hides your implementation from most other
classes while allowing someone to override your methods, effectively providing
a way for them to override your implementation. Allow those who would build
on your work the ability to do so without having to reimplement.

Here is a simple example of each type of declaration:

12. If you are a C++ programmer, the following description may mean something to you
(if not, skip this): All classes within a package are essentially “friends.”

13. Remember there is no keyword for package level protection, rather it is the absence of a
keyword that denotes this level of protection. We had to write something in that space on the
page so you'd know what we’re talking about.



3.4 Encapsulation, Inheritance, and Polymorphism 89

private String hidn;
String pkgstr;

protected String protstr;
public String wideOpen;

3.4.2.2 The static statement

Another keyword qualifier on declarations that we need to describe is the
static keyword. When a variable is declared static then there is only one
instance of that variable shared among all instances of the class. Since the vari-
able exists apart from a particular instance of the class, one refers to it with the
class name followed by a dot followed by the variable name, as in system. out.

Similarly, methods can be declared static as well. This also means that
you don’t need an instance of the class to call them, just the class name, as in
System.getProperties ().

Now with Java 5.0, you don’t even need the class name, provided that you
have a static import statement at the top of your class, for example:

import static java.lang.System.*;

3.4.2.3 The final statement

Another way that static is often seen is in conjunction with the final key-
word. When a variable is declared £inal then a value can be assigned to it once,
but never changed. This can make for good constants.

Since public will make the variable visible to all other classes, static
will make it a class variable (available without an instance of that class), and
final will keep it from being altered (even though it is publicly available), then
combining all of those gives us a good declaration for a constant, for example:

public static void long lightSpeed = 186000; // mps

New to Java 5.0 is the explicit creation of enumerated types. Prior to 5.0,
programmers would often use static final constants even when the partic-
ular value was unimportant, as a way to provide compile-time checking of the
use of the constant values. Here is an example of a declaration of a set of
enumerated values:

enum WallMods { DOOR, WINDOW, VENT, GLASSBLOCK };



90

Chapter 3 An Experienced Programmer’s Introduction to Java

TIP

A common technique used with public static final constants is to put
them in an interface definition. (This is the exception to the rule that interfaces
define method signatures but contain no data.) When a class wants to use one
or more of those constants, it is declared to implement that interface:

public MyClass
extends BigClass
implements Comparable, LotsaConstants

{
}

In defining MyClass we have declared that it implements Lot saConstants
(not a name that we recommend you using). That makes all the constants that
we have defined inside the LotsaConstants interface available to the
MyClass class. Since classes can implement many different interfaces, this
doesn’t interfere with the use of other “real” interfaces, such as Comparable.

WARNING

The keyword enum is new to Java 5.0, so older programs that may have used
enum as a variable name and will now cause an error when recompiled for
Java 5.0.

The enum will look very familiar to C/C++ programmers, but there are
some important differences. In C/C++ the values of the enum elements are, in
reality, integer values. Not so in Java. Here they are their own type, but can be
converted to a String via the toString () method, with a value that matches
the name, for easy reading and debugging.

Enumerated values can be used in == comparisons since they will be
defined only once (like other static final constants) and it would only be
references that are passed around. They would be referenced by the name of
the enumeration followed by dot followed by the particular value (e.g.,
WallMods.WINDOW) and used as an object. (We have used uppercase for the
names not out of any syntax requirement, but only to follow the typical naming
convention for constants.)



3.4 Encapsulation, Inheritance, and Polymorphism 91

3.4.3 Polymorphism

Polymorphism (from the Greek poly meaning “many” and morph meaning
“shape”) refers to the language’s ability to deal with objects of many different
“shapes,” that is, classes, as if they were all the same. We have already seen that
Java does this via the extends and implements keywords. You can define an
interface and then define two classes that both implement this interface.
Remember our sample class (Example 3.26). We'll now define another
class, Employee, which also implements the Identifiable interface

(Example 3.27).

Example 3.27 The Employee class

class
Employee
extends Person
implements Identifiable
{
private int empl_id;

public int getID()
{

return empl_id;

Notice that the same method, getID(), is implemented in the Employee
class, but that the field from which it gets the ID value is a different field. That’s
implementation-specific—the interface defines only the methods that can be
called but not their internal implementation. The Employee class not only
implements Identifiable, but it also extends the Person class, so we better
show you what our example Person class looks like (Example 3.28).

To make a really useful Person class would take a lot more code than we
need for our example. The important part for our example is only that it is
quite different from the Sample class we saw earlier.

Example 3.29 demonstrates the use of polymorphism. We only show some
small relevant snippets of code; there would be a lot more code for this to be-
come an entire, complete example. Don’t be distracted by the constructors; we
made up some new ones just for this example, that aren’t in the class definitions
above. Can you see where the polymorphism is at work?



92

Chapter 3 An Experienced Programmer’s Introduction to Java

Example 3.28 The Person class

class

Person

{
String name;
Address addr;

public
Person (String name, Address addr)

{

this.name = name;

this.addr = addr;
} // constructor
// ... lots more code is here
public String getName ()

{

return name;

Example 3.29 An example use of polymorphism

/...

Sample labwork = new Sample(petridish) ;
Employee tech = new Employee (newguy, 27);
Identifiable stuff;

/...
if (mode) {
stuff = labwork;
} else {
stuff

tech;
}
id = stuff.getID();

The key point here is when the call is made to get1D(). The compiler
can’t know at compile time which object will be referred to by stuff, so it
doesn’t know whose get ID () method will be called. But don’t worry—it works



3.5 O, Templates! Where Art Thou? 93

3.5

this all out at runtime. That’s polymorphism—TJava can deal with these different
objects while you, the programmer, can describe them in a generalized way.

One other related keyword should be mentioned here, abstract. When
one declares a class as an abstract class, then the class itself is an incomplete
definition. With an abstract class you define all the data of the class but need
only write method declarations, not necessarily all the code for the methods.
This makes abstract classes similar to interfaces, but in an abstract class, some
of the methods can be fully written out.

If you’d like to know more about polymorphism, “late binding,” and more
of this aspect of Java, read Chapter 7 of Eckel’s Thinking in Java. There is an

extensive example there with much more detail than we can cover here.

O, TEMPLATES! WHERE ART THOU?

Programmers familiar with C++ may be wondering how in the world an OOP
language without templates can be useful.

NOTE

Actually, something very much like templates is available in Java 5.0.14 A new
feature, which Sun calls generics, looks an awful lot like C++ templates
(including similar syntax). It provides compile-time type checking and implicit
casting when retrieving objects from a generic container.

Speaking as programmers who worked with C++ before it had templates,
we can sympathize. Java’s previous lack of true templates does impose some
limits on generic programming, but not as much as one might think. Remem-
ber that unlike C++, all Java classes inherit from exactly one base class, and that
if no base class is specified, they extend the object class. This means that every
single Java class either directly or indirectly extends object, and thus all Java
classes are instances of Object. So if you need, for example, to implement a
container, you can guarantee that it can contain any Java class by implementing
a container for the object type. Java also has runtime type identification fea-
tures that are more than a match for anything C++ has, plus it has type-safe

14. Java 5.0 will only be out by the time this book is completed.



94

Chapter 3 An Experienced Programmer’s Introduction to Java

downcasting! so that in the worst case scenario, your program has a nice, clean
type exception. You simply do not get the kind of “mystery bugs” that you can
get in C++ when you miscast an object.1©

Thanks to interfaces and a true single object hierarchy, many of the uses
of C++ templates go away. We doubt very much that you will miss them. In
many cases, such as STL algorithms and other functional programming imple-
mentations, you can use interfaces to produce similar results.

Critics of the Java language have a point when they complain that all the
type casting of class references in order to expose desired interfaces tends to
produce code that violates object-oriented principles. The fact that a class or
interface implements all these other named interfaces is hard-coded all over the
place in an application’s code. Such critics say this is a bad thing, because it vi-
olates encapsulation and implementation hiding. These critics have a point. If
you find yourself frequently downcasting object references, consider using the
Java 5.0 generics, or try to find another way to code what you want to do.
There may be a better way. In defense of the original Java approach (before
generics), all casts are runtime type safe. An exception is thrown if a class refer-
ence is improperly cast. In C++, if you miscast a pointer, it assumes you meant
it. Java certainly can be awkward, but errors will get caught. Sometimes that is
more important.

VIRTUALLY FINAL

One difficulty anyone writing about Java faces is whether or not to assume your
readers are familiar with C++. In this chapter, we have tried to help those with
C++ experience without requiring such knowledge. But it is in the inevitable
comparisons between those languages that many subtle Java features are best
discussed. We promised you that we would talk about the relative merits of
virtual (a C++ concept) and final (a Java concept). To do that, we have to
assume some knowledge of C++. So, let’s reverse the pattern and talk about the

15. Don’t worry if this is all gibberish to you right now. We will revisit these topics in detail
when we come upon them in the course of our sample project.

16. Actually, we're being a bit optimistic here. While Java programs are not subject to many
mystery bugs, the Java Virtual Machines that run Java code are written in traditional languages,
and there have been VMs with bugs. Time and again we see that there is no “silver bullet.” But
in our experience, Java comes close. So very close.



3.8 Review 95

straight Java facts so we can let the non-C++ folks move on while we go a little
deeper with you C++’ers.

In Java, a method or a class may be declared £inal. A method that is de-
clared £inal may not be overridden in classes that extend the class containing
the final implementation. A class that is declared £inal may not be extended
at all.

Now, the comparisons to C++ require us to talk about a language feature
that does not exist at all in Java. In C++, unless a method is declared virtual,
when a class is used by reference to a base class (for example, when using
Employee as a Person), the base class version of the method is called. If the
method is declared virtual, the version of the method called is the version for
the type of Person referenced (in this case, Employee). In Java, all methods
are virtual. There is no such keyword in Java.

3.7 A USEFUL SIMPLE APPLICATION

3.8

We will use the sample application shown in Example 3.30 in other sections
of this book to illustrate the use of Java tools. This example is so simple (a single
class) that it doesn’t demonstrate the object-oriented aspect of development,
but it does make use of some APIs that take advantage of it. We will not walk
you through this application right here, but present it as a listing of a complete
Java class. Not all of the APIs used in this example will be explained, so you
may want to refer to the Javadoc pages for explanations of object types or
method calls that don’t seem obvious.

REVIEW

We've taken a very quick look at the syntax of Java statements, classes, and
interfaces. Much of the syntax is very reminiscent of C, though Java’s object-
oriented features differ in significant ways from C++. We looked at how to put
Java classes into packages, and at the implications of this for locating the
.class files.

We also showed what the HTML-based Javadoc documentation looks
like. These HTML pages will likely be a handy reference for you as you design
and write your Java code.



96

Chapter 3 An Experienced Programmer’s Introduction to Java

Example 3.30 Single class example: FetchURL

import java.net.*;
import java.io.*;

public class FetchURL {
private URL requestedURL;

public FetchURL (String urlName)
{
try {
requestedURL = new URL (urlName) ;
} catch (Exception e) {
e.printStackTrace() ;

public String toString()
{
String rc = "";
String line;
BufferedReader rdr;

try {
rdr = new BufferedReader (
new InputStreamReader (
requestedURL.openConnection () .getInputStream/ ()
)
)
while ((line = rdr.readLine()) != null)

{
rc = rc + line + "\n";
}
} catch (Exception e) {
e.printStackTrace() ;
rc = null;

return rc;



3.10 Resources 97

public static void main(String[] args)

{

int 1i;
FetchURL f;
for (i = 0; i1 < args.length; i++)

{
System.out.println(args[i] + ":");
System.out.println(new FetchURL (args([i]));
}

3.9 WHAT You STiLL DON’T KNOW

We have deliberately avoided file I/O. For Java, it is a multilayered and complex
topic—and with version 1.4 of Java, there is a whole new set of additional
classes (Fava.nio. *) to consider. We refer you instead to Chapter 11 of Eckel’s
Thinking in Java.

There are also a few Java keywords that we have not yet discussed, notably
synchronize.

Even if you know all the Java syntax, it may still take a while to get familiar
with the way that syntax is typically put to use. Experience and reading other
people’s Java code will be your best teachers—but don’t assume that a particular
approach is good just because someone else uses it; much new code has been
written in the last several years as people have learned Java. Be sure it’s a style
worth imitating, and if you find a better way to do it, use it.

3.10 RESOURCES

Bruce Eckel, Thinking in Java.

Cay S. Horstmann and Gary Cornell, Core Java 2: Volume 1 Fundamentals,
especially Chapter 3.

John Lewis and William Loftus, Java Software Solutions.

The Sun Microsystems Java Tutorial.l”

17. http://java.sun.com/docs/books/tutorial/index.html



98 Chapter 3 An Experienced Programmer’s Introduction to Java

3.11 EXERCISES

1. Write a simple class with amain () method that prints out the arguments
supplied on the command line used to invoke it. First use a for loop to
do this, then a while loop, then a do-while. What differences do you
notice? Which do you find most amenable for this task?

2. Modify the previous class to quit echoing its arguments should it en-
counter an argument of length 5. (You can tell the length of a string
object with the 1length () method, e.g., mystr.length().) Did you use
break, or continue, or some other mechanism?



Chapter 4

Where Am |?
Execution Context

Java claims—and rightly so—to be a “compile once, run anywhere” language.
But when a program starts, that “anywhere” is now a specific somewhere. When
prog yw. p
running a Java application on Linux, or any environment for that matter, the
question arises, “Where am I?” (context, environment, familiar landmarks).
What can a Java program find out about its environment? In particular, on the
g p

Linux platform, (how) can we get at:

e Command-line parameters?

e The current shell’s environment variables?
* The current working directory?

* The location of data files?

The answers to these questions will depend on what kind of Java applica-
tion you are creating, and just how portable you want your application to be.

99



100

Chapter 4 Where Am 1? Execution Context

4.1

4.2

WHAT YOu WILL LEARN

We'll show you how Java provides access to the command-line parameters and
environment variables. We’ll also discuss the Java RunTime and Property
classes. Java’s use of the standard input/output/error streams is also briefly
covered, along with an introduction to those concepts. We'll end with a short
word on portability concerns.

A SIMPLE START

The most basic external information that a program may use is the information
supplied on its invocation—simple parameters or arguments, such as filenames
or options, that can direct its running and make it a more flexible tool. Let’s
start with getting at that information from a Java program.

4.2.1 Command-Line Arguments

When a program is run from the command line, more than just the program
name can be supplied. Here are some examples:

S javac Hi.java
$ mv Acct.java core/Account.java
$ 1s -1

In the first example, we invoked a program called javac and gave it the
parameter Hi . java, the name of the file containing the Java program that we
want javac to compile to Java byte code. (We've got a whole chapter on how
to set up and run the Java compiler, see Chapter 5.) The mv got two command-
line arguments, Acct.java and core/Account.java, which look a lot like
pathnames. The Is command has one argument, -1, which in Linux usually
indicates, by its leading minus sign, that it is an option for altering the behavior
of the command. (In this case it produces the “long” version of the directory
listing.)

Even point-and-click GUIs allow such parameters to be supplied, though
often not visible to the user. In KDE, one can create a new desktop icon that
is a link to an application. Such an icon has a property sheet that lists, on the
Execute tab, the command to be run, including any parameters.

In Java, the parameters supplied on the command line are available to the
main () method of a Java class. The signature for this method is:



4.2 A Simple Start 101

public static void main(String argsl[])

From within main (), the various parameters are available as the elements
of the array of strings. The class in Example 4.1 will display those parameters
when the program is run.

Example 4.1 Java program to dump command-line arguments

/*
* gimple command-line parameter displayer
*/

public class
CLine
{
public static void
main(String [] args)
{
for (int i = 0; 1 < args.length; i++)
{

System.out.println(args[i]) ;

} // main

} // class CLine

We compile and run the example, providing a few command-line
parameters:

$ javac CLine.java

$ java CLine hello world file.txt blue
hello

world

file.txt

blue

$

Not all classes will have main () methods, but any can. Even if several
classes in a package have main () methods, that is not a problem. Which one
will be the “main” main ()? It’s the class we specified when we invoked our
program. In Example 4.1, the main () that is executed is the one in the cLine



102

Chapter 4 Where Am 1? Execution Context

4.3

class. Even if cLine used other classes (it does—String is a class) it doesn’t
matter if those other classes have main () methods or not.

4.2.2 Unit Testing Made Easy

Why all the fuss about main () and command-line parameters? Such main ()
methods are a handy way to provide unit tests for a class. The tests can be
controlled by the command-line parameters. By testing each class you can re-
duce the time to integrate the parts of an application. Furthermore, a set of unit
tests can be built up (e.g., as shell scripts) to provide automated regression tests
for the entire project. As a more rigorous and systematic approach to unit
testing, we discuss junit in Chapter 13.

THE Sy stem CLASS

The Java system class provides some of the answers to questions about our
environment. What follows is not an exhaustive discussion of all the methods
in the system class, but only of those areas that touch on our specific focus—
input/output (I/O) and environment variables.

Be aware that all of the methods in the System class are static. There-
fore you never need to (and you can’t) call a constructor on System. You just
use the “class name, dot, method name” syntax to call the method (e.g.,
System.getProperties ()). Similarly, the accessible fields in system are all
static, so for some of the I/O-related methods you use the “class name, dot,
field name, dot, method name” syntax (e.g., System.out.println()). As of
Java 5.0, you can shorten this, by using a static import, that is:

import static java.lang.System.*;

Then in your other references you can leave off System, for example,
getProperties () and out.println().

4.3.1 Java and Standard I/O
Java adopted the UNIX concept of standard I/O (see Section 1.3.1.1). The

Linux file descriptors are available to a running Java program as I/O streams
via the System class. The System class contains three public static fields



4.3 The System Class 103

named in, out, and err. You've probably already seen out in Java programs
with statements like this:

System.out.println("Hello, world.");

You can also write:

System.err.println("Error message here\n");

and

BufferedReader in = new BufferedReader (new
InputStreamReader (System.in)) ;
while ((line = in.readLine()) !'= null) {

Java parallels Linux nicely on I/O descriptors. If you redirect any of those
file descriptors from the shell command line when you execute a Java program,
then that redirected I/O is available to your Java application—with no
additional work on your part.

In the example above, if you have System.in all wrapped up into a
Buf feredReader from which your program is reading lines, then you can run
that program as:

$ java MyCode

and it will read input as you type it on your keyboard. This may be how you
test your program, but when you put this program to its intended use, you may
want it to be able to read from a file. This you can do without any change to
the program—thanks to file descriptors, input streams, and redirecting input,
for example:

$ java MyCode < file2

which will let the same Java program read from the file named f£ile2 rather
than from keyboard.

Your Java program can also set the values of System.in, System.out,
and System.err as it executes, to change their destinations.

One common example is changing the destination of System.out, the
typical recipient of debugging or logging messages. Say you've created a class



104

Chapter 4 Where Am 1? Execution Context

or even a whole package of classes that write log messages to System.out
(e.g., System.out.println("some message")). Now you realize that you'd
like the output to go somewhere else.

You could redirect standard out, as in:

$ java SomeClass > log

but that requires the user to remember to redirect the output every time the
program is invoked. That’s fine for testing, or if the output is intended to go
to a different place each time it is invoked. But, in this example, we always want
the output to go to the same location.

Without changing any of the System. out .println() statements, all the
messages can be sent to a new location by reassigning the system.out print
stream. The System class has a sezter for out—that is, a method which will let
you set a new value for out. In your Java program, open the new destination
file and give this to the system class:

PrintStream ps = new PrintStream("pathname") ;
System.setOut (ps) ;

It will be used from that point forward in the execution of this program as its
out output stream.

CAUTION

Changing standard out (or in, or err) will make the change for all classes
from here on in this invocation of the Java runtime—they are static fields of
the one System class. Since this is so serious a move, the Java Security
Manager (see Section 5.8.4.2) provides a check for setIO to see if the Java
program is allowed to make such changes. If such a security manager is in
place and you are not allowed to make such changes, an exception
(SecurityException) will be thrown. Note also that the permission applies
to setting any of the fields; it doesn’t divide the permission into setting one
(e.g., out) but not another (e.g., in).

4.3.2 Environment Variables

When Linux programs are run they have the open file descriptors described
above. They also carry with them a list of “name=value” pairs called their
environment. These environment variables allow for context to be shared among



4.3 The System Class 105

several successively executed programs. Some examples of environment
variables are:

* USER is the name you used to log in.
* HOME is the directory where you start when you log in.

e paTH is the list of directories searched for executable files.

To see the environment variables defined in your current shell, type env
at the command prompt:

$ env

HOME=/home/user01

USER=user01

PATH=/bin:/usr/bin:/usr/local/bin: /home/user01l/bin

The names of environment variables, sometimes referred to as shell vari-
ables, are traditionally uppercase, though that is only a convention. The variable
names are treated in a case sensitive fashion (e.g., Home != HOME).

You can set environment variables for use in the current shell with a simple
assighment statement:

S VAR=value

That will set the value for the duration of this shell, but 7oz for any of its sub-
processes. Since running another program is a subprocess, such an assignment
won’t be visible in your running program. Instead, you can export the variable
so that it is carried forward to all subprocesses:!

$ export VAR=value

4.3.3 Java and Environment Variables

If these environment variables are available to all Linux processes, then how do
we get at them from a Java program? Well, we can’t do it quite as directly as
you might think. In previous (1.2 and older) versions of Java, the system class

1. If you are using csh (the C-shell, another Linux command-line interpreter), then the syntax
is slightly different. Instead of export name=value use setenv name value (note the

different keyword and no equal sign).



106

Chapter 4 Where Am 1? Execution Context

Example 4.2 Java program to dump environment variables

/*

* gimple environment examiner

*/

import java.util.*;

public class

AllEnv

{

public static void
main(String [] args)

{

Properties props = java.lang.System.getProperties();
for (Enumeration enm = props.propertyNames (); enm.hasMoreElements() ;)

{

String key = (String) enm.nextElement () ;
System.out.print (key) ;

System.out.print (" = ");

System.out.println (props.getProperty (key)) ;

} // main

} // class AllEnv

had a getenv () method. Its argument was a String name of an environment
variable and it returned the environment variable’s value as a String. This has
been deprecated. In fact, an attempt to use getenv () in more recent versions
of Java will result in an exception. Sun decided that this was too platform-
specific; not all platforms have environment variables.

Now (Java 1.3 and beyond) the preferred approach is to use the
getProperties () and getProperty () methods of the System class. How
are these different from the getenv() approach? To a Linux developer,
getenv () was easy and straightforward—just not very portable. To accommo-
date other systems, Java defines a set of properties that are reasonable to expect
to be defined on any system, and provides a Java property name for each one.

To see the entire list, call the getProperties () method. It returns a
Properties class, which is an extension of the Hashtable class. From this
class you can get an Enumeration of the names, as Example 4.2 demonstrates.

Now compile and run this example:



4.3 The System Class 107

$ javac AllEnv.java
S java AllEnv

and you will get a long list of properties—in no particular order. They are kept
in a hashtable and thus not sorted. Of course it would be easier to use this list
if they were sorted. Linux to the rescue.

$ java AllEnv | sort

I’s often in simple little steps like this that one begins to see the power of
Linux. In Linux, not every desirable feature has to be crammed into every pos-
sible place where it might be used. Instead, features can be written once and
connected to one another as needed. Here what we need is to have the list of
properties sorted. We don’t need to worry that our class didn’t sort its output.
In Linux we just connect the standard output of the Java program with a sort
utility that Linux provides.

So what are all these properties? Many of them have to do with Java-
related information (java.version, and so on), but a few are more general.
Those that parallel the typical Linux environment variables are:

* file.separator is the file separator (“/” on Linux).

* path.separator is the path separator (“:” on Linux).
* line.separator is the line separator (“\n” on Linux).
* user.name is the user’s account name.

* user.home is the user’s home directory.

* user.dir is the user’s current working directory.

But that leaves out so many environment variables, especially the applica-
tion-specific ones (e.g., CvSRoOT). How would a Java program get at these?

Because of this new, more portable way to describe the environment,
there is no easy way to get at other environment variables. There are a few
approaches, but they are all indirect.

First, you can add to the properties list by defining new properties on the
command line when invoking the program, for example:

$ java -Dkey=value AllEnv

You can list several properties on the line by repeating the -D parameter:



108

Chapter 4 Where Am 1? Execution Context

S java -DHOME=/home/mydir -DALT=other -DETC="so forth" AllEnv

Instead of typing those values, you'd probably want to let the Linux shell
put in the values from its environment. So you’d use shell variables, for
example:

$ java -DHOME="${HOME}" -DALT="${ALT}" -DETC="${ETC}" AllEnv

assuming that HOME, ALT, and ETC have already been defined in the shell’s
environment.?

If there are only a few variables that you need to pass to Java, put them on
the command line as shown above. Put that command line into a shell script
and use the script to invoke the program so that the parameters are supplied
every time.

But if you want to access many or all of the environment variables then
you may want to do something a little more complex. Notice the syntax of the
output of the env command. It is in the same format (name=value) as are
properties. So if we use a shell script to invoke our program, we can have it
place all these values into a file by redirecting output, then open this file as a
Java properties file and thus make all the name/value pairs accessible.

The following commands in a shell script attempt to do just that:

env > /tmp/$S$.env
java -DENVFILE=/tmp/$$.env MyClass
rm /tmp/$S$.env

where MyClass is the Java program that you wish to run.

TIP

The shell variable $$ is the numeric process ID of the running process. This
provides a unique ID during each invocation of the program. Each run of the
script will have its own process and thus its own process ID. Thus a single user
could execute this script multiple times concurrently without fear of collision
with himself or others.

2. The quotations around the shell variables keep any embedded spaces as part of the variable’s
value. The curly braces are not strictly necessary in this use.



4.4 The Properties Class 109

4.4

We remove the temporary file with the rm command in the last line of
the script to avoid cluttering our /tmp directory with lots of these files.

But now we have to add code to MyClass to open the file defined by
ENVFILE and read the properties it contains. This leads us naturally to the Java
Properties class, the subject of our next section, where we’ll talk more about
this example.

THE Properties CLASS

The Javadoc page for the Properties class describes it as “a persistent set of
properties . . . saved to . . . or loaded from . . . a stream.” In other words, it is
a hashtable (a set of name/value pairs) that can be read from or written to a
stream—which typically means a file. (Other things can be streams, but for
now, think “file”.)

The great thing about name/value pairs is how readable and usable they
are. When they are written to a file, there’s no fancy formatting, no fixed width
fields, no unreadable encryptions and special characters; it’s just name=value.
You could say that the “=” and the newline are the special characters that pro-
vide all the formatting you need. It means that you can type up a properties file
with the simplest of editors, or even generate one quickly as we saw in the pre-
vious example (here we use a simple filename):

$ env > propertyfile

Properties are also easy to use. Since they’re based on hashtables, there is
no searching code to write. You call a method giving it the name, it returns
the value.

If we pass in the name of the file via the -D parameter, then we can get
that filename in Java with:

System.getProperty ("ENVFILE") ;
where ENVFILE is a name that we made up and used on the command line:
$ java -DENVFILE=propertyfile MyClass

We could also have used:

$ java MyClass propertyfile



110

Chapter 4 Where Am 1? Execution Context

so thatargs [0]3 in the Java code to get the name of the file (see Section 4.2.1),
but since we want to learn about properties, we’ll use the property
methods here.

Now let’s open that property file (Example 4.3).

Example 4.3 Demonstrating the Properties class

import java.io.*;
import java.util.*;

public class
EnvFileIn
{
public static void
main(String [] args)
throws IOException

String envfile = System.getProperty ("ENVFILE", ".envfile");
BufferedInputStream bis = new BufferedInputStream

new FileInputStream(envfile));
Properties prop = new Properties();
prop.load(bis) ;
bis.close();
prop.list(System.out); // dumps the whole list to System.out

} // main

} // class EnvFileln

Notice the way that we got the value for the environment file’s name. This
form of the getpProperty () call provides not only the name we are looking
up (ENVFILE) but also lets us specify a default value in case the name is not
found in the properties list. Here our default value is .envfile.

Just as it was a simple matter of using the 1oad () method to read up an
entire file of properties, so you can write out the entire list of properties to the

3. In C language, the arg[0] is the command being invoked; not so in Java. In Java, the first
element of the array is the first argument of the command line (propertyfile in our
example).



4.5 The Runtime Class 111

4.5

screen with the 1ist() method. The argument to 1list() is either a
PrintStream or a PrintWriter. System.out is a PrintStream, so that
will work.

The format of the properties file is name=value. But it is also possible to
put comments in a properties file. Any line beginning with a “#” is ignored.
Try it.

I¢’s also easy to (re)write a file of properties with the store() method.
The parameters are an OutputStream and a String; the latter will serve as a
label for the parameters, written to an opening comment in the properties file.

If your program needs to examine the list of property names, you can get
an Enumerator of the entire list via the propertyNames () method. Modify
Example 4.3 to replace the 1ist () call with a do-it-yourself version that uses
the Enumerator returned from propertyNames () to list all the names and
values. Hint: Use getProperty () on each name retrieved via the enumeration.

The Java Properties class extends the java.util.Hashtable class.
This means, in part, that all the other Hashtable methods are available to a
Properties class. Methods such as containsKey () or containsValue ()
can be helpful, as can isEmpty (). One caution, though. You should use
setProperty () if you want to add values to Properties, rather than
the Hashtable’s put() method. They do largely the same thing, but
setProperty () enforces that its parameters are Strings. This is important if
you want to write out the properties to a file, as it’s meant for Strings only.

THE Runtime CLASS

Let’s discuss one last way to get to the underlying (Linux) system information.
Be warned, though, that this is the least portable approach of all we have
mentioned.

451 exec|()

Familiar to C/C++ programmers, the exec () call in the Java Runtime class
does much the same thing. It gives you a way to start another program outside
of the current Java Virtual Machine. In doing so, you can connect to its stan-
dard in/out/err and either drive it by writing to its standard in, or read its
results from its standard out. (Yes, that’s correct—we write to its input and
read from its output. If that sounds wrong, think it through. Our Java code is



112

Chapter 4 Where Am 1? Execution Context

on the opposite side of the I/O fence. The external program’s output becomes
our input.)
Example 4.4 shows a Java program that can invoke an arbitrary Linux

program. The output of the program is displayed.

Example 4.4 Java program to execute any Linux program

import java.io.*;

public class
Exec
{
public static void
main (String [] args)
throws IOException

String 1n;
Process p = Runtime.getRuntime () .exec (args) ;
BufferedReader br = new BufferedReader (
new InputStreamReader (
p.getInputStream())) ;
while((ln = br.readLine()) != null) {

System.out.println(1ln) ;
}
System.out.println("returns:" + p.exitValue());

} // main

} // class Exec

The command-line arguments are taken to be the command to be execut-
ed and its arguments. For example:

$ java Exec 1ls -1

Be aware that in this example, only the standard output is captured and
displayed from the invoked process. Error messages written to standard err
will be lost, unless you modify the program to handle this. We leave that as an
exercise for the reader.

Check your Linux knowledge—see if you understand the distinction. If
you invoke the sample Exec program as:



4.7 What You Still Don’t Know 113

4.6

4.7

S java Exec 1ls -1 *.java

the shell does the wildcard expansion before invoking the Java runtime. The
*.java becomes many files listed on the command line (provided that you
have . java files in this directory). If you try to pass the *.java through liter-
ally to exec (1s '*.java') it will likely return an error (which won’t be dis-
played using our example code) and you’ll see a nonzero return status (e.g., 1).
That’s because Is doesn’t expand the *. The shell does that. So Is is looking for

a single file named * . java, which we hope doesn’t exist in your directory.

4.5.2 Portability

Be aware that the more environment-specific code you build, the less portable
your application becomes. It’s not uncommon to use a properties file as a way
to parameterize your program, to customize its behavior in a given installation.
But keep these to a minimum to stay portable. Avoid invoking other programs,
they are likely not available in all environments where Java can run. Java’s claim
to “compile once, run anywhere” is amazingly true—provided you keep away
from logic in your program that goes looking for trouble.

REVIEW

Java command-line parameters are not that different from C/C++ command-
line parameters. Environment variables are a different story. Most of the shell’s
environment variables are not readily accessible, and we looked at how you
might deal with this situation.

We have discussed, among other things, some uses for these classes:
java.util.Properties, java.lang.System, and java.lang.Runtime,
but we have only barely scratched the surface. There are many more methods
available in these classes with which you can do lots more.

WHAT You STiLL DON’T KNOW

The biggest topic in this area that we’ve avoided for now is the Java Native In-
terface (JNI), a mechanism whereby you can get outside of the Java environ-
ment to make calls to existing (native) libraries—for example, Linux system
calls. In a coming chapter we’ll actually give you an example of such a call.



114 Chapter 4 Where Am 1? Execution Context

Then you'll really be able to make your application nonportable and
system-dependent. (But sometimes portability isn’t your goal, right?)

4.8 RESOURCES

Perhaps the best resource for the specifics that you'll need to work with the
topics mentioned in this chapter is the Javadoc documentation on the classes
that we have mentioned. Learn to read Javadoc pages (see Section 3.2.2.3),
bookmark them in your browser, and keep them handy as you write your
Java code.



Chapter 5

The Sun Microsystems Java
Software Development Kit

The Sun Microsystems Java Software Development Kit (Java SDK) is the most
basic toolkit for Java development. In some ways, it remains the most flexible.
Your understanding of Java development should include this very basic toolset,
even if you move beyond it to more “hand-holding” Integrated Development
Environments (IDEs). This chapter introduces all the major components of
the Java 2 Standard Edition (J2SE)! development kit. The Enterprise Edition
is discussed later. There is a third Java SDK (the Micro Edition) for embedded

development which we will not cover in this book.

1. What does the “2” in “Java 2” mean? Hoo boy. Explaining product marketing names is not
always easy. There was Java 1.0. Then there were several releases of Java 1.1.x. Then Sun re-
leased Java 1.2.x, but they started calling it “Java 2”. Since then, they have released Java 1.3.x,
Java 1.4.x and they sdill call it “Java 2”. But it gets even more confusing. Sun is now releasing
what had been preliminarily numbered 1.5, but is now officially called the 5.0 release, though
they still call it Java 2. That’s what the 2 in “J2SE” refers to. So it is Java 2 platform, version
5.0. Any questions? See http: //java.sun.com/j2se/naming_versioning_5_0.html.

115



116

Chapter 5 The Sun Microsystems Java Software Development Kit

5.1 WHAT You WILL LEARN

In this chapter you will learn about the purpose of the programs in the Sun Java
Software Development Kit. We will provide you with some details of their op-
tions and demonstrate their use in compiling our two sample applications. The
next step up in tool automation would be the build tool known as Ant (see
Chapter 9 for more information).

5.2 ALL You NEED, AND NOT ONE THING MORE

These days, many programmers are what we affectionately call “tool junkies.”
They can only develop software with the support of complex integrated devel-
opment environments, their supporting classes, and screen painting tools. By
this, we do not mean to imply that we are Luddites. The right IDE can indeed
be an enormous boost to productivity, but a programmer should be able to
work with any tool. The Sun Java SDK is the lowest common denominator; if
you can be productive with it, then you can be productive with absolutely any
Java development environment. That makes your skills more portable. And
that means more jobs are open to you. And that is good for you and your
employers.

The Sun Microsystems Java SDK (formerly known as, and often still re-
ferred to as the Sun Microsystems Java Development Kit, or JDK) provides
you with all the tools you need to compile, document, run, package, debug,
and deploy Java applications and applets. It does this with a collection of
purely text-based command-line tools. This is no-frills software development.
But a lot of us crusty old types really like that.

You should become comfortable and familiar with these tools. Some IDEs
are just fancy window dressing that calls these tools underneath (some are
not—some have written their own Java compilers, for example). If you can use
these tools comfortably to build any kind of Java program, then you know you
have a mastery of the basics and are not “addicted” to a particular tool. You also
know the “hardest” way to get the job done. This will help you to make good
choices about tools that enhance productivity. Some tools, we find, actually
slow you down or get in your way in some cases. If you know the lowest level,
you can better recognize the merits and flaws of more advanced tools. Enough
justification. On to the SDK.



5.3 The Java Compiler 117

NOTE

By the way, you will notice that we do not cover the installation of the Develop-
ment Kit in this chapter. That is because we are deferring the discussion of in-
stallation for the next chapter, where we also introduce the concept of multiple
concurrent Development Kits on a single box. See Chapter 6 for details.

5.3 THE JAVA COMPILER

At the heart of the SDK is javac, the Java compiler. The general form of javac
follows:

javac [option...] [sourcefile...] [@optfile...]

The option list may be zero or more command-line options. We’ll detail
those later. The sourcefile list may be the name of zero or more Java source
files. Usually you specify just the “main” class of an application. As we will de-
scribe later, javac generally will compile all necessary . java files for any classes
thatmain () class references, directly or indirectly. If you prefix a filename with
the at sign (@), the contents of the file will be treated as if they had been typed
on the command line.

5.3.1 Compiler Behavior, Defaults, and Environment Variables

In the simplest case—compiling a single class, such as our FetchURL. java
class—you get no diagnostics on success (Example 5.1).

Example 5.1 Compiling FetchURL. java

$ javac FetchURL.java
$

There will now be a new file, FetchURL. class, in the directory with the
Java source file. Let’s run that again with a command-line option we will detail
later (Example 5.2).

Boy, our single, simple, one-class application sure uses a lot of classes! It
does. Where did they come from? They come from the classes referenced by



118

Chapter 5 The Sun Microsystems Java Software Development Kit

Example 5.2 Compiling FetchURL. java with the -verbose option

$ javac -verbose FetchURL.

[parsing
parsing
loading
loading
loading

started FetchURL.
completed 479ms]

/usr/java/j2sdkl.
/usr/java/j2sdkl.
/usr/java/j2sdkl.

checking FetchURL]

java
javal]

4
4
4

.1_02/jre/lib/rt.
.1_02/jre/lib/rt.
.1_02/jre/lib/rt.

jar (java/lang/Object.class) ]
jar (java/net/URL.class) ]
jar (java/lang/String.class) ]

[

[

[

[

[

[loading /usr/java/j2sdkl.4.1_02/jre/lib/rt.jar(java/lang/Exception.class)]
[loading /usr/java/j2sdkl.4.1_02/jre/lib/rt.jar(java/lang/Throwable.class) ]
[loading /usr/java/j2sdkl.4.1_02/jre/lib/rt.jar(java/io/BufferedReader.class)]
[loading /usr/java/j2sdkl.4.1_02/jre/lib/rt.jar(java/io/InputStreamReader.class)]
[loading /usr/java/j2sdkl.4.1_02/jre/lib/rt.jar(java/net/URLConnection.class)]
[loading /usr/java/j2sdkl.4.1_02/jre/lib/rt.jar(java/io/Reader.class) ]

[loading /usr/java/j2sdkl.4.1_02/jre/lib/rt.jar(java/io/InputStream.class)]
[loading /usr/java/j2sdkl.4.1_02/jre/lib/rt.jar(java/lang/System.class) ]

[loading /usr/java/j2sdkl.4.1_02/jre/lib/rt.jar(java/io/PrintStream.class)]
[loading /usr/java/j2sdkl.4.1_02/jre/lib/rt.jar(java/io/FilterOutputStream.class) ]
[loading /usr/java/j2sdkl.4.1_02/jre/lib/rt.jar(java/io/OutputStream.class) ]
[loading /usr/java/j2sdkl.4.1_02/jre/lib/rt.jar(java/lang/Error.class)]

[loading /usr/java/j2sdkl.4.1_02/jre/lib/rt.jar(java/net/MalformedURLException.class)]
[loading /usr/java/j2sdkl.4.1_02/jre/lib/rt.jar(java/io/IOException.class)]
[loading /usr/java/j2sdkl.4.1_02/jre/lib/rt.jar(java/lang/RuntimeException.class)]
[loading /usr/java/j2sdkl.4.1_02/jre/lib/rt.jar(java/lang/StringBuffer.class)]
[wrote FetchURL.class]

[total 3469ms]

$

the application, either directly through composition or inheritance, or indirectly
because the classes we used are themselves composed of or inherit from other
classes. How did the Java compiler know where to find these classes? For this,
it used what the Sun documentation calls a bootstrap classpath, which is set when
the SDK is installed. A classpath is a list of directories and/or JAR files that are
searched for classes. We seem to dimly recall that in early versions of Java, there
was only one classpath, and if you changed it, you had to remember to put the
Java runtime JAR file on it, or none of the standard APIs were available. This,
no doubt, is why Sun created the concept of a bootstrap classpath. If you use
any third party JAR files or you create your own, you must tell the compiler
about it by creating your own classpath.

There are two ways to provide a classpath to the Java compiler. One is
through a command-line switch, which we will cover in a moment. The other
is through an environment variable. The CLASSPATH environment variable lists



5.3 The Java Compiler 119

Example 5.3 Setting the CLASSPATH environment variable

$ export CLASSPATH=/home/mschwarz/java/simplelApp:/var/java/lib/project.jar
$ echo S$SCLASSPATH
/home/mschwarz/java/simplelApp: /var/java/lib/project.jar

$

directories and/or JAR or ZIP files that contain classes. Each directory or JAR
file is separated from the others by a colon (“:”), as shown in Example 5.3.
The classpath for the compiler consists of the bootstrap classpath plus the
user-specified classpath. What does the classpath mean in terms of Java class
names? Think of the classpath as a list of “package roots.” In other
words, when you refer to a class like java.sqgl.DriverManager or
net.multitool.SAMoney, the Java compiler is going to go to each
entry in the combined bootstrap-and-user classpath and check there for
java/sql/DriverManager.class or net/multitool/SAMoney.class. If
it doesn’t find the .class file in a candidate directory, it will look for the
.java file. If it finds the . java file, it will compile it and then use the resulting
.class file. When it has a .class file for the class, it stops searching the
classpath. In this way, compiling the single “main” class of an application will
often compile the whole application (we will get to exceptions to that rule later).

5.3.2 javac Options

The Java compiler has many command-line options that modify its behavior.
We will go over the most important ones here. This is not a complete reference!
See the Sun SDK Documentation for complete reference information.

-classpath
Sets the classpath. This overrides the CLASSPATH environment variable, if
one is specified.

-d
This switch is followed by a directory name. Compiled classes are placed
in that directory. Normally, compiled classes are placed in the same
directory as the source code.



120

Chapter 5 The Sun Microsystems Java Software Development Kit

-deprecation
This causes every use or reference to a deprecated class or method to be
displayed on compilation.2

-9
Put full debugging information in the compiled class files. See also -g:
(the next entry in this list).

-g:keyword 1list

This switch gives you fine-grained control over the amount of debug infor-
mation included in compiled class files. The argument after the colon may
be either none, in which case no debug information is included, or a
comma-separated list with any combination of source, to include source
file debugging information, 1ines, to include line number information,
or vars, to include information about local variable names. The default,
if no -g flag of any kind is specified, is to include source file and line
number information only.

—-nowarn
Disables warning messages.

-verbose
Causes the compiler to output information about each class encountered
during compilation. This can be helpful when trying to resolve problems
with missing class definitions.

There are also a number of switches that relate to cross-compiling as well
as UNIX-specific options, but these are not commonly used. Refer to the Sun
Java SDK Tools documentation if you need details on these options.

2. In Java, it is rare for APIs to break support for existing code. Rather than remove old meth-
ods, it is more common to deprecate them. This is done by putting a @deprecated tag in a
Javadoc comment on the class or method. The Java compiler will issue a warning (if the
-deprecated switch is on) whenever a deprecated class or method is used. In general, depre-
cation is a warning that the class or method will be removed in a future version of the code
or library. It is interesting to note that the javac compiler records that a method or class is
deprecated in the binary. Thus the compiler produces different output based on the contents
of a comment. As we have written simple compilers and interpreters, this creeps us out. We
have always wondered why deprecated has not become a Java language keyword.



5.4 The Java Runtime Engine 121

5.4 THE JAVA RUNTIME ENGINE

You can download and install just the software required to run Java applications
without the development tools. This is known as the Java 2 Runtime Edition.

5.4.1 The Basics

You run a Java program by invoking the java command. Usually, the argument
to the command is a class name. That class is loaded, and its main () method
is run.

Remember, this is not a filename, but a class name! The rest of the com-
mand-line arguments that follow the class name are passed as an array of
Strings to themain () method of the named class. Example 5.4 demonstrates

running the FetchURL program.

Example 5.4 Running a Java program with java

$ java FetchURL http://www.yahoo.com/news
http://www.yahoo.com/news:
<html>
<head><title>Yahoo! Directory News and Media</title>
<script type="text/javascript"
src="http://us.jsl.yimg.com/us.yimg.com/lib/common/yg_csstare.js">
</script>
<style>
11 { font-size: 12px; margin-bottom: 2px; }
</style>
<base href=http://dir.yahoo.com/News_and_Media/></head>
<body>

etc.

CAUTION

Remember that if you override the classpath, either with the -classpath or
—-cp command-line options (detailed below) or with the CLASSPATH environ-
ment variable, you must include the “.” directory somewhere in the classpath
if you want Java to include current working directory in the search list. Since “.”
is the default classpath, many people are surprised when they set a classpath
and suddenly can no longer run a . class file in their current directory.



122

Chapter 5 The Sun Microsystems Java Software Development Kit

5.5

The class invoked must be findable on either the bootstrap or user-

specified classpath.

5.4.2 java Options

Just as the Java compiler, the runtime program, java, takes a number of com-
mand-line options. Here are the most commonly used ones:

-classpath or -cp
Sets the runtime classpath. Overrides any value in the cLasspaTh
environment variable.

-Dproperty=value
Allows a system property to be set on the command line.

-jar

Specifies that the first nonoption command-line argument is not a Java
class name, but the name of a JAR file. The JAR file must have a
Main-Class: specification in its MANIFEST (see Section 5.11). The
main () method of the class named by the JAR’s MANIFEST Main-Class:
specification will be called as if that class had been named on the command
line, rather than the JAR file. This is commonly used in shell scripts and
batch files that accompany Java applications distributed in single
.jar files.

There are several other command-line options that are less commonly
used. We will cover some of them in later chapters when their use will make
more sense. Of course, full documentation on all options for this command is
in the Sun Java SDK Development Tools documentation.

COMPLETE, UP-TO-DATE PROGRAM DOCUMENTATION MADE EASY

One of Java’s most useful features is javadoc, a command that (by default
) y
produces comprehensive HTML program documentation directly from the
program source. Since it works from the source, it can be automated, and you
may be certain that the documentation is up-to-date. It takes much of the
documentation burden off of programmers and permits new programmers to
join a project and rapidly come up to speed because there is comprehensive
documentation in a standard format. The javadoc tool produces HTML
) p



5.5 Complete, Up-to-Date Program Documentation Made Easy 123

documentation by default, but this is because it uses a docler that produces
HTML documentation. You can write your own doclet that produces whatever
format you wish. Most find the HTML documentation so satisfactory that
custom doclets are rare.

Javadoc can be a large topic, because it not only documents all classes,
methods, and class variables, but can also use detailed text from specially for-
matted comments in the source code. We will cover Javadoc comments only
briefly here, but you will see examples in our project code throughout this book.

5.5.1 Running javadoc

The javadoc command has the following general form:

javadoc [options...] [package names...] [source filenames...]
[@optfile...]

Options are covered in the next section. You can specify the classes to
document in two ways. First, you can list one or more Java packages on the
command line. Source code for the named packages is searched for on the
source classpath (see Section 5.5.2). Wildcards are not permitted in
package names.

Second, you may list as many Java source files as you like, and you may
use wildcards in the names.

As with the javac compiler above, the @opt £ile allows you to name a text
file whose lines are treated as arguments as if they had been typed on the com-
mand line.

Example 5.5 shows how to run javadoc on our small multiclass sample.

In this case, we were in the “base directory” of the package when we ran
the command. In other words, net was a subdirectory of the current working
directory when we ran Javadoc. Javadoc uses the same default classpaths and
environment variables as javac does, so by default “.” is on the path.

Generally, specifying packages is the most convenient way to document a
number of classes, since packages are how collections of classes are generally
managed in Java development.

Figure 5.1 shows the main screen of the documentation thus produced.



124

Chapter 5 The Sun Microsystems Java Software Development Kit

Example 5.5 Running javadoc with defaults against a package

$ javadoc net.multitool.Payback

Loading source files for package net.multitool.Payback...
Constructing Javadoc information...

Standard Doclet version 1.4.1

Generating

constant-values.html...

Building tree for all the packages and classes...
Building index for all the packages and classes...

Generating
Generating
Generating

overview-tree.html...
index-all.html...
deprecated-list.html...

Building index for all classes...

Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating

$

allclasses-frame.html...
allclasses-noframe.html. ..

index.html. ..

packages.html...
net/multitool/Payback/package-frame.html. ..
net/multitool/Payback/package-summary.html. ..
net/multitool/Payback/package-tree.html. ..
net/multitool/Payback/Account.html...
net/multitool/Payback/Cost.html. ..
net/multitool/Payback/DebtAccount.html. ..
net/multitool/Payback/Payback.html. ..
net/multitool/Payback/Purchase.html...
net/multitool/Payback/SavingsAccount.html. ..
package-list...

help-doc.html. ..

stylesheet.css...

5.5.2 Javadoc Command-Line Options

As with other options documentation in this chapter, this is not intended to
be a complete reference document. We are documenting only the most impor-
tant command-line switches.

-public

Causes only public classes, members, and methods to be documented. You
might want this for end-user documentation of a library.



5.5 Complete, Up-to-Date Program Documentation Made Easy 125

R —— -
2ESDMEFO FODYG LKA/ £
E» Location: | @] filehomsjalibo/s wiindsx html -]
@suSE' @) Java 2 Piatiorm SEv1.8.1 ()] Web Authoring FAQ (WDG) [ () htps/awwnw. mrot neticache_docs! Gmgss |C|ceagle search: mas agorthm S] 1»
All Casses Package Class Tree Deprecaled Index Help I
Account PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES

Cost

Debtaccount

Payhack Package net.multitool.Payback

Furchase
SavingsAccount

Class Summary

Account The Account class is an abstract class the defines the interface to an Account
Cost

DebtAccount
Payback

Purchase

SavingsAccount

Package Class Tree Deprecated Index Help
PREV PACKAGE NEXT PACKAGE FRAMES NOFRAMES

Figure 5.1 Javadoc documentation viewed in Konqueror Web browser

-protected
Causes public and protected classes, members, and methods to be docu-
mented. This is the default documentation level. This is also the most likely
level at which you would want to document code meant for distribution.

-package
We suspect you can see where this is going. This switch causes package,
protected, and public classes, members, and methods to be documented.

-private
This switch causes all classes, members, and methods to be documented.
In our experience, this is the setting you will want to use for internal
projects. It documents everything.

-sourcepath and -classpath
These are the paths that will be searched for source classes or referenced
classes. These switches work like the corresponding switches for the javac
compiler.



126 Chapter 5 The Sun Microsystems Java Software Development Kit

-verbose and -quiet
These switches control how much output is produced as javadoc runs. If
you choose -verbose, detailed information is produced (more than the
default; in current versions, this option mostly shows time measurements
of the parsing of each source file). If you choose the -quiet option,
progress messages are suppressed completely.

-doclet starting class
We’re not going to go into too much detail on this, but this switch allows
you to name a doclet (a class that uses the Doclet API) to use in place of
the default doclet. See the next paragraph for more information.

All of the switches documented so far are provided by the javadoc program
itself. Javadoc, like the rest of the Sun Microsystems Java SDK, is written in
Java. The authors of javadoc took advantage of this. The default behavior of
javadoc is to produce HTML documentation with a standard look and feel.
However, there exists an API, called the Doclet API, which allows you to write
a Java class of your own to process the information parsed out of the source by
javadoc. For details, see the Doclet Overview? on Sun’s Web site.

Sun provides a default doclet that produces HTML documentation. That
doclet takes a number of command-line options as well. We'll cover the most
important of those now. Remember, these are provided by the standard doclet.
If you use the -doclet switch, then these switches will not be available (unless,
of course, the alternate doclet just happens to provide them).

-d directory
By default, the HTML documentation is saved in the same directory as
the source. Use this switch to specify an alternate directory into which
documentation is to be placed.

-use
Causes javadoc to generate a “Use” page for each class and package. Such
a page is a cross-reference to all uses of the class or package.

-version
Causes any @version tag data to be included in the documentation. If
you are using CVS for source control (and why wouldn’t you?) we

3. http://java.sun.com/j2se/1.4.1/docs/tooldocs/javadoc/overview.html



5.5 Complete, Up-to-Date Program Documentation Made Easy 127

recommend adding $1ds after the version tag, which CVS will automati-
cally replace by its ID string containing the filename, CVS revision num-
ber, date/time and the author of last check-in. (For more about CVS, see

Chapter 8.)

—author
Causes any @author tag data to be included in the documentation.

-splitindex
Causes the alphabetical index to be broken into multiple pages, one per
letter. Can be useful when you have a very large number of classes and/or
packages documented in a single Javadoc document set.

-windowtitle title
Sets the title for the document set. The text that follows this switch will
go into the HTML <title> element on documentation pages.

-nodeprecated
This causes all deprecated methods and classes to go undocumented.
Normally they are documented, but marked as deprecated.

-nodeprecatedlist
Drops deprecated classes and methods from indexes, lists, and cross-
references, but leaves the actual documentation in place.

There are actually many more switches. Some of the most important that
we haven’t covered are the -1ink, -1inkoffline, and related tags. If you end
up producing many API packages and document them separately, you can use
these switches to link your separate Javadoc documentation together seamlessly,
so that when you use classes from separately documented packages, the refer-
ences in the documentation for your code will be live links to that separate
documentation. For details on these and other switches, see the Sun
documentation on javadoc.*

4. http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/javadoc.html



128

Chapter 5 The Sun Microsystems Java Software Development Kit

5.5.3 Javadoc Comments

There’s more to Javadoc than just documenting the types and names of classes,
methods, and arguments. A developer can annotate or supplement the docu-
mentation by placing specially formatted comments in his or her code.

A Javadoc comment begins with the C-style open comment plus at least
one more asterisk. It ends with a C-style close comment. In other words:

/* This is a C-style comment, but it
is _not_ a Javadoc comment. */

/** This is a C-style comment, but it
is also a Javadoc comment. */

This isn’t a part of the Java programming language. It is merely a lexical hack
to allow the javadoc program to recognize a comment it should pick up and
process. Javadoc is fairly intelligent about where to place the text extracted from
a Javadoc comment. For example, a Javadoc comment placed just before the
start of a class will appear in the class summary on the package page and at the
top of the class detail page. A Javadoc comment placed just before a method
will appear in the method’s box on the class detail page, and so on.

We encourage you to discover for yourself the relationship between
Javadoc comments and the output of the standard doclet. Use it. Experiment.
Or, you can go and read the official Sun Microsystems documentation on
Javadoc.> That’s your choice.

Since comment text is extracted and placed into certain positions in an
HTML document, you may use HTML tags in your comments to affect how
they are rendered. Be aware that when you do so, you may get unexpected
results if you use any custom doclets.

There’s more to it than that, however. There are a number of macros that
you can place in Javadoc comments to mark data of particular significance. For
example, @author should appear just before the name of the author of a
particular piece of code.

These at-tags must appear after all descriptive text in a Javadoc comment.®
A tag must be at the beginning of a line within the comment (ignoring any

5. http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/javadoc.html

6. The exception is embedded tags, which we will discuss in a moment.



5.5 Complete, Up-to-Date Program Documentation Made Easy

129

Example 5.6 Sample Javadoc comment with at-tags

/

* %

*/

addwWwait - adds in the given wait time to all the counters;

we could say much more about the method here, but let me say

that we sometimes include HTML tags directly in our comments.
Since Javadoc will run all our text together, we may need: <br>
break tags <br>
or paragraph tags <br>
for spacing and separation.
<p>We also add <i>other</i> HTML tags for <b>emphasis</b>.
<p>You should still try to make the comment readable, though,
for the programmer who is editing the source, not
just for those looking at the formatted Javadoc.
@author John Q. Programmer
@version S$IdAS

@param delay - elapsed time, in milliseconds
@throws TakesTooLongException

@returns total time, in milliseconds

@see net.multitool.util.TakesTooLongException, net.multitool.ctrl

public long
addwait (long delay)

{

/

/

.Time#count

preceding whitespace or asterisks). The tag’s data is everything from the end of

the tag to the end of the line (Example 5.6.)
Here are the standard at-tags:

@author

Everything from the tag to the end of the line is taken as the name of the

code’s author.

@deprecated

Marks the method or class deprecated. This tag may be optionally followed
by explanatory text. If present, this text should describe when and why the
class or method was deprecated and what programmers should use instead.



130

Chapter 5 The Sun Microsystems Java Software Development Kit

@exception or @throws
Only valid in the comment for a method or constructor. This tag is
followed by the name of an exception class (a descendant of
java.lang.Exception) and optionally by additional explanatory text.
The intent is to list the exceptions that the method throws.

@param
Only valid in the comment for a method or constructor. This tag should
be followed by the name of a parameter to the method followed by descrip-
tive text. This is used to document method and constructor parameters.

@return
Only valid in the comment for a method.” This tag is followed by
descriptive text meant to document the return value of the method.

@see
Populates a “See Also” section in the documentation that will provide
hyperlinks to related content. There is a general format for linking to any
URL, but the most common use is to refer to other elements in the same
Java program. See below for the general format of such links.

In addition to these standard at-tags, there are other at-tags that may be
embedded in any comment text—either the comment itself or in text that is
an argument to a standard at-tag.

Such tags are placed within curly braces, for example {@example}, within
a Javadoc comment. The one we use the most is the @1ink tag, which allows
you to make a reference to another package, class, method, or class member.
The general format is the same as that for the @see tag:

package_name.class_nameffmember or_method name

Any of these elements is optional.

The embedded at-tags include:

@docRoot
This tag may be used when embedding HTML anchor or image tags
(A or IMG tags) in a Javadoc comment to supply the root part of the

7. But not a constructor in this case, because constructors cannot return a value.



5.6 Dispensing with Applets 131

5.6

documentation path. You should always use this instead of hard-coding
the full URL, or a change in directory structure or server configuration
might break all of your links.

@link
Allows you to embed a cross-reference to another section of the program’s
documentation directly in comment text. The format of a reference is the
same as that for the @see tag.

This list is not complete. As always, see the official documentation?
for details.

DISPENSING WITH APPLETS

While this book does not cover writing applets, we should mention that, since
an applet does not (generally) have amain () method, you need something else
to launch it outside of a browser. Enter appletviewer. This program provides
an execution environment for applets.

Why No Applets?

The decision to not cover applets was based both on limited space and
on some deployment issues with applets. A surprisingly large number of
people are running with either very old browsers that support only
Java 1.1.x features, or that support Java runtime plug-ins but do not have
them installed or enabled. Also, applets have severe limitations (for sound
security reasons), and enabling various features requires a good under-
standing of the securityManager Java classes, which could fill a book
by themselves. We chose to minimize coverage of applets for these
reasons.

8. http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/javadoc.html



132

Chapter 5 The Sun Microsystems Java Software Development Kit

5.7 GOING NATIVE

Now we come to the deeper darker mysteries. Let us take a look at javah. No,
javah is not a Hebrew word. It is not some lost mystical text from the days be-
fore science supplanted magic. It is the Java C header and stub file generator.

If you are not already fairly experienced in writing, compiling, and build-
ing shared libraries in C on a Linux system, we would suggest that you skip this
section, at least until you have developed intermediate skills in these areas.
Otherwise, feel free to proceed.

We're going to walk you very quickly through building a Java native
method here.” Don’t worry if you don’t quite follow it all. We will cover this
topic at greater length elsewhere in the book. For now, we’re giving you the
highlights. Also be sure to check out Section 5.15. We'll point you to many
additional resources on JNI (Java Native Interface) in that section.

Sounds pretty intimidating, huh? Well, depending upon your background
and experience, it can be a bit intimidating. As much as this will hurt some die-
hard Java purists, Java is not the right language for everything. Java’s size and
semiinterpreted nature in particular make Java ill-suited for the “close to the
metal” tasks, such as device drivers and raw socket networking.

Fortunately, Java’s designers were of this rocket-scientist breed (and so,
for that matter, are your bending authors), so they gave Java programmers a
back door: native methods. A native method is a class method whose name, ar-
guments, and return type are declared in Java, but whose underlying implemen-
tation is written in “native code” (usually C, but it could be any compiled
language that can match C’s stack frame conventions).

As an example, let’s implement a native method that will use the native
Linux C library calls to get the current program’s effective user ID and the
name associated with that user.

First, we will write the Java class (Example 5.7).

You may never have seen code like that at the start of a class definition.

The block declared

static { ... }

9. You might be tempted to call our comments in the introduction where we mentioned that
we did not like purely pedagogical examples and that we would provide real, useful code. Well,
we have to confess that there are some features of the Java language that we couldn’t cram into
our real-world examples. This JNI sample is one such. We admit our failure, and we apologize.



5.7 Going Native 133

Example 5.7 Java application with a native method (GetUser. java)

public class GetUser {
static {
System.loadLibrary ("getuser") ;

public native String getUserName () ;
public static void main(String[] args)
{

GetUser usr = new GetUser() ;

System.out.println (usr.getUserName()) ;

is called a static initializer and we’ll discuss it in a moment.

Once you have the Java code, compile it with javac. You now have the
compiled class. The next step is to use the javah tool to build the header file
for your C code.

$ javah GetUser

Example 5.8 shows the header file thus produced.

Note that you run javah on the class file, not on the source file. The nor-
mal class name to classpath mappings apply. The file produced as a result is
called, in this case, GetUser.h. The next step is to write the C code that
implements the method (Example 5.9).

There’s a lot going on here. First, the constant, L_cuserid, is defined in
stdio.h; it represents the number of characters required to hold a user name.
We’re defining a char array to hold that number of characters plus one.!0 We
are then calling the cuserid () function (see the manpage of cuserid(3)) to
get the user name of the effective user ID of the process.

That much is familiar C. But what is the argument list? Our method took
no arguments. And what’s with the functions being called through the pointer
argument?

10. What can we say? We're paranoid about the trailing null. Sue us.



134

Chapter 5 The Sun Microsystems Java Software Development Kit

Example 5.8 Header file for GetUser native methods (GetUser.h)

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class GetUser */

#ifndef _Included_GetUser
#define _Included_GetUser
#ifdef _ cplusplus

extern "C" {

#endif
/*
* Class: GetUser
* Method: getUserName
* Signature: ()Ljava/lang/String;
*/

JNIEXPORT jstring JNICALL Java_GetUser_getUserName
(INIEnv *, jobject);

#ifdef _ cplusplus
}

#endif

#endif

Example 5.9 Native method’s C implementation file (GetUser.c)
#include "GetUser.h"

#include <stdio.h>

JNIEXPORT jstring JNICALL
Java_GetUser_getUserName (JNIEnv *jenv, jobject obj)
{

char buffer[L_cuserid + 1];

cuserid(buffer) ;

return (*jenv)->NewStringUTF (jenv, buffer);

All of the Java class member data and Java class methods may be reached
through the JNIEnv pointer argument. There are also methods provided by
JNI itself. One of those is NewStringUTF (). Remember that Java strings are
Unicode, not 8-bit ASCII, so you must convert to and from Unicode (UTF-8



5.7 Going Native 135

is an 8-bit encoding for Unicode that coincides with ASCII in the low 7 bits,
so it is often used for such conversions). You can think of the INTEnv as a C++
class pointer, or you can think of it as a structure of data and function pointers
(that’s really what a C++ class is, after all). The bottom line is, it provides the
means to access and manipulate the Java environment from your native code.

The second argument, jobject, is the “this” pointer. It points to the
GetUser class, and it is upcast to the JNI equivalent of the Java object
type. If our method took parameters, they would follow these two constant
arguments.

JNI is a huge topic. You can read more about it in the Sun Microsystems
JNI Tutorial,!! or in Java 2 SDK JNI FAQ,!2 or in the JNI 1.1 Specification,!3
or in the associated JDK 1.2 Update!4 or the JDK 1.4 Update.!>

Even with all of this “We’re too busy to explain things to you” going on
here, we've got a lot more to cover before we are done. The next step in our
little demo is to compile the C program and create a shared library of the code.

$ cc -c GetUser.c
$ cc -shared -o libgetuser.so GetUser.o
$ export LD_LIBRARY_ PATH=.

The first line compiles the native method to a . o (object) file. The second
command makes a shared library out of it. Now, refer back to the static initial-
izer in Example 5.7. A static initializer is run before everything else in a class,
even before main (). In this case, it uses the loadLibrary () method of the
System class to load the shared library we just created. Note that library naming
rules of the target OS are applied. The library is named getuser and on
a Linux system it is assumed that that library will be in a file named
libgetuser.so.

The last line sets an environment variable, LD_LIBRARY_PATH, to provide
a path where Java will search for libraries. This is behavior inherited from So-
laris. Linux uses Idconfig to maintain a list of shared libraries. Usually, a library
is placed in a directory named in the file 1d. so.conf and a memory cache of

11. http://java.sun.com/docs/books/tutorial/nativel.1l/index.html

12. http://java.sun.com/products/jdk/faq/jni-j2sdk-faqg.html

13. http://java.sun.com/products/jdk/1.2/docs/guide/jni/spec/jniTOC.doc.html
14. http://java.sun.com/j2se/1.4.1/docs/guide/jni/jni-12.html

15. http://java.sun.com/j2se/1.4.1/docs/guide/jni/jni-14 .html



136

Chapter 5 The Sun Microsystems Java Software Development Kit

these libraries is built and maintained with the ldconfig program. The library
loader in the JVM, however, works as the shared library system in Solaris, where
the LD_LIBRARY_PATH is searched for shared libraries. If you try a JNI method
and get library errors, check your LD_LIBRARY_PATH first. Here, we used
meaning “current directory.” In practice, you wouldn’t do this. You would de-
ploy your shared library to a standard location and have LD_LIBRARY_PATH
preset to that directory or directories. We just wanted to show you how it

works here.

Let’s see our class in action now.

S java GetUser
mschwarz

$ su

Password:

# export LD_LIBRARY_ PATH=.
# java GetUser

root

# exit

exit

$

To JNI or Not to JNI

We dislike religious debates. We have no desire to nail down what taints
the purity of Java and what does not. A warning we do want to give you
is, if you are an experienced UNIX C/C++ developer, you must resist the
temptation to use JNI and native methods all over the place. The Java
APIs are extensive, and there are probably classes that already do what
you want to do. You will be tempted to use native methods because “you
know how to do it in C.” Resist. Find the Java way. JNI is a great way to
introduce subtle and hard to find bugs into your Java programs. Leave
that to the API and JVM coders. ;-)

That said, we don’t want to discourage you from making use of JNI
when it is the right way, or the only way, for what you need to do. The
tool is there. Use it. Just remember what it does cost you in portability
and what it may cost you in maintenance and debugging. Design
decisions have costs and benefits. Try to find the balance.

«w »




5.8 Introducing RMI 137

5.8

Here you see the class being run, and, sure enough, it displays our user-
name. We then run su to become root and (after setting that library path) run
it again—and, sure enough, it tells us we are “root.”

We'll talk more about JNI later in the book, but now you know enough
to be dangerous.

INTRODUCING RMI

Remote Method Invocation (RMI) is a system for distributing application code
over multiple hosts. It is a small part of multitier computing. Much of this book
will be devoted to the how’s and why’s of multitier client/server computing.
Here we are concerned only with the SDK tool rmic, the RMI compiler.

5.8.1 A Brief Introduction to RMI

Remote Method Invocation is a basic client-server model for invoking Java
methods over a network.

5.8.1.1 History and Background

One of the most common problems in computing is how best to make an ap-
plication available to the largest number of users at the least cost. To this end
we have seen the development of “timeshare” systems with dumb terminals all
over the place. We have seen the evolution of distributed GUI systems with X
Windows and its network display system, and with tools like VNC (Virtual
Network Console).!® We have seen the emergence of the PC, providing
autonomous computing at each worker’s desktop. And finally we have seen the
desktop turning slowly back into a terminal (albeit a prettier one) with the
emergence of client-server computing.

What seems to have emerged from this progression is two major kinds of
software systems. One is the PC and associated hardware and software. Devel-
opments here have dramatically increased the power and productivity of indi-
vidual work. The PC revolution was indeed a real change throughout the world
of business and technology. But even with this, there are a host of applications
and business functions that require a collection of data and resources to be
available to multiple workers at the same time. This is the second major kind

16. http://www.realvnc.com/



138

Chapter 5 The Sun Microsystems Java Software Development Kit

of software systems. This second kind used to be the only kind, but now it may,
in a sense, be the minority of applications, but the most critical to an operation.
This second class of system has come to be called enterprise systems.

In enterprise computing, we have the same problem we opened with: How
do you make the information and resources available to everyone who needs
them at the lowest cost? And the answer is (as it always is) “that depends.”

These days, one of the most common solutions is to use a Web server to
publish an application. This works well for a great many applications and it is
much easier to do than many other methods. That explains its popularity. The
Web interface is quite limited, however, so for more user interface intensive
applications, client-server computing evolved. To us techies, all of this stuff is
client-server. In this context however, client-server refers to a 2-tier system
where the Ul and logic exist in a GUI application on a PC and common
resources are in an SQL database all the clients share.

This is also commonly used, but becomes expensive in a couple of cases.
The first is when the database itself becomes a bottleneck because the number
of users grows and grows but only one database can exist. The second is simply
the cost of maintenance. Since the logic exists in the client, any change to the
logic requires updating the software on all clients. Even when a scheme for au-
tomating this exists, it is still time-consuming and costly to get all the changes
out to all users simultaneously. There are workarounds for both of these issues,
but here we are concerned with a different solution altogether.

So, how can we have a UI richer than with a Web application but avoid
the pitfalls of the traditional 2-tier client-server computing? The answer is to
separate the UI from the business logic and the business logic from the under-
lying data store. This results in 3 tiers—presentation, business logic, and data.

Much of this book will concern itself with 3-tier computing solutions.
Java has four major architectures for building 3-tier solutions. One of them

is RMI.77

5.8.1.2 RMI Basics

RMI works by sharing an interface between the client and the server. The inter-
face groups together the methods that a client may call on a server. A class is

17. The others are Enterprise JavaBeans, servlets, and JavaServer Pages. The latter two are Web-
based, and therefore suffer from the Ul deficiencies of Web forms, but Sun calls them part of
Enterprise Java, so we will too.



5.8 Introducing RMI 139

written on the server side that implements the interface, and a special compiler
is used to generate stubs for the server side and the client side. On the client
side, a call to an RMI method looks like any other method call, but it is sent
across the network to the server, where the actual instructions are carried out.
Any return value is then passed back over the network to the client.

We will walk you through a very simple (and very pointless) example just
to show you the tools.

5.8.1.3  Writing the Interface

Our interface is pathetically simple. It is a class that sums two integer arguments
and returns an integer result. Example 5.10 shows the interface file.

NOTE

The names of the classes in the following examples may seem a bit strange,
and they are. It is because we aim to build on this example later.

Example 5.10 The Session interface

package net.multitool.RMIDemo;
import java.rmi.*;

public interface Session extends Remote {
public int add(int x, int y) throws RemoteException;

The two important things to note here are that the interface must extend
java.rmi.Remote and that any remote method must be defined as throwing
java.rmi.RemoteException. If anything goes wrong during an RMI call,
like someone tripping over a network cable, the call will not complete success-
fully and an exception of that type will be thrown. It is not possible to have a
RMI method that cannot throw this exception.

Beyond those features, you can see that defining remote methods is quite
familiar and easy.



140

Chapter 5 The Sun Microsystems Java Software Development Kit

5.8.1.4 Writing the Server Class

An interface is an “empty vessel.” Before any interface can be used, you must
have an actual class that implements the interface. In an RMI application, the
implementing class is the server (Example 5.11).

The class is named SessionImpl to emphasize its relationship with the
Session interface. There is no requirement to match up such names. Likewise,
the RMI name given, //penfold/Session, uses the interface name, but it
could use any name. It is a good idea to develop a naming convention for RMI
interfaces and their implementations. It is ¢ritical to develop naming conven-
tions for RMI registry names, particularly in production environments. With-
out a naming convention, it is difficult to avoid confusion and even chaos.
What happens when multiple business units develop RMI code destined for a
single production server, and they have all made an RMI interface named
Session, or Payment?!® Bad things happen.

There is no “one size fits all” naming convention that we can offer. Possi-
bilities include using package names in RMI registry names, using some element
of the business area as a component of the name (such as AccountingSession,
ShippingSession, ExecutiveSession). All that matters is that an unambigu-
ous standard be created and followed.

Let’s spend some time talking about what this code does.

First, notice that the class extends UnicastRemoteObject. This is not
necessary, but using that as a base class saves a lot of server setup. There are
times when you would want to do such setup manually, but for our purpose
here it saves a lot of effort. The class also implements our remote interface.

The first method is a constructor that calls the superclass constructor. At
first glance, this is pointless. Any Java class gets a default constructor that just
calls the superclass constructor, so why is this here? It is here because the super-
class constructor throws RemoteException. If we didn’t define a constructor
like the one here specifying that it throws RemoteException, the compiler
would complain that there is an unhandled exception. So we define a construc-
tor identical to a default constructor except that it specifies that it can throw
the exception.

18. One solution is to use a more advanced naming system, such as LDAP. See
Section 21.3.2.3.



5.8

Introducing RMI

141

Example 5.11 The Session server implementation
package net.multitool.RMIDemo;
import net.multitool.RMIDemo. *;

import java.rmi.*;
import java.rmi.server.*;

/** SessionImpl is the server class for the Session RMI interface.

*/

public class

SessionImpl
extends UnicastRemoteObject
implements Session

/** Constructor needed to ensure call to UnicastRemoteObject
constructor and to thus propagate the possible exception.

*
*/
public SessionImpl () throws RemoteException {
super () ;

/** A static main() for the server. */
public static void main(String[] arglist)
{

if (System.getSecurityManager () == null) {

System.setSecurityManager (new RMISecurityManager()) ;

String rmiName = "//penfold/Session";

try {
Session adder = new SessionImpl () ;
Naming.rebind (rmiName, adder) ;

} catch (Exception e) {
e.printStackTrace() ;

/** Implementation of the RMI method, add. */

public int add(int x, int y) throws java.rmi.RemoteException

{

return x+y;




142

Chapter 5 The Sun Microsystems Java Software Development Kit

Next, we have the server main () method. It first sets a security manager.
The security manager controls what the VM is allowed to do. A number of
default security managers are provided, and here we use one that is designed
specifically to give safe and reasonable defaults for RMI applications. You can,
of course, write your own security manager. Security managers use “policy
specifications” to alter their capabilities. For now, we will explain enough to
run a simple example. See Section 5.8.4.2 for more information on policies for
our example.

Remember that main () is static, so there is no instance of SessionImpl
yet, and thus also no instance of Session. We declare a variable of type
Session, and set it to a new instance of SessionImpl. (There is no need
to typecast here because SessionImpl implements Session, therefore
SessionImpl is, among other things, a Session.) We now have an instance
of the server class.

Next, the server must make itself available to the world. It does this by
registering itself with the RMI registry (see Section 5.8.3). This is done through
a static method of the java.rmi.Naming class, rebind (). Put simply, this
maps a remote object to a string name in the registry. When clients contact the
registry looking for a name then, if a remote object is mapped to that name,
the communication can take place (yes, we are simplifying at the moment).
The call to rebind () does not return. The server is up and running.

Finally, we have the implementation of our remote method, add ().

This looks like a lot of hassle to go through, and it is, but consider writing
an interface that offers, for example, methods like getbDirContents(),
chDir (), downloadFile(), uploadFile (). You've just written something
like an FTP server. No matter how many methods you add to your interface,
the complexity of the setup code does not increase. Maybe now it looks a little
more useful?

5.8.1.5 Writing the Client Class

At this point, Example 5.12 should be fairly obvious. Our class has just a single
static method, main (). It, like our server side main (), sets up a security man-
ager. It then contacts a registry on the machine named penfold looking for an
instance of a remote interface named Session (again, lookup () is a static
method of the java.rmi.Naming class). We store that reference in a variable
of type Session called sess. We can then call the add () on sess. We'll show
the server and client running shortly.



5.8

Introducing RMI 143

Example 5.12 The RMI client program

package net.multitool.RMIDemo;
import java.rmi.*;

public class Client {
public static void main(String[] arglist) {
if (System.getSecurityManager () == null) {
System.setSecurityManager (new RMISecurityManager()) ;

try {
String name = "//penfold/Session";
// Obtain reference to the remote object
Session sess = (Session) Naming.lookup (name) ;
System.out.println("Pointless RMI Client. 47 + 13 = " +

sess.add(47,13) + ", right?");
} catch (Exception e) {
e.printStackTrace() ;

5.8.2 The rmic Tool

In order for a remote object to make itself available and in order for a client to
be able to call such an object, each method needs a client and server-side szub
to proxy the method call. Arguments to the method call are converted to
streamable data (this process is called marshaling) by the client stub, and that
data is sent over the network to the server stub, which must convert that stream
into object instances on the server side (this is called unmarshaling). The server-
side stub then calls the actual method implementation. When the method re-
turns, any return values and changes to the state of the arguments must be
marshaled by the server stub and sent back to the client stub where they are
unmarshaled and stored in the correct locations on the client.

This was the traditionally painful part of writing multitier clients. What
rmic does is automate the generation of these stubs, so writing a remote method
is only slightly more difficult than writing any other method.



144

Chapter 5 The Sun Microsystems Java Software Development Kit

To generate RMI stubs for our application, run rmic!? against the class
that implements the remote interface:

penfold$ rmic net.multitool.RMIDemo.SessionImpl

When you are writing “traditional” Java RMI, that is just about all you
need to know about rmic. The program actually has a large number of options
and switches, but most of these are to support alternate protocols and systems,

such as CORBA IDL and IIOP. If you know what these are, and make use of

these, you will find details on these options in Sun’s rmic tool documentation.20

5.8.3 The rmiregistry Tool

The rmiregistry is a naming service that binds RMI server stubs to simple
names. Invoking it is incredibly simple. Just type rmiregistry. You may want
to run it on other than the default port (1099). For that, just specify the port
number on the command line:

$ rmiregistry 21099 &

That example shows us running a registry on port 21099 and running it
in the background. You might want to use a nonstandard port in order to run
a test version of the service while the production version remains available on
the standard port.

That is just about all there is to rmiregistry. You can find details in the
Sun Java SDK documentation.

5.8.4 Setting Up Servers and Clients

So far, we have written an RMI interface, a server implementation, and a client
implementation. We have generated RMI stubs for our RMI object. We are

19. Be careful! If you have one or more Java SDKs installed nd you have the GNU Compiler
for Java installed, watch out for your PATH. The Java compiler and the Java runtime from the
JDK don’t collide with gej because the compiler has a different name and gcj compiles to native
binaries. But gcj does have an rmic compiler, and it is usually in /usr/bin, which is usually
ahead of your JDK in the executable path. If you run rmic and it explodes with errors, make
sure you aren’t running the rmic from gcj against . class files from a JDK. (And, yes, this bit
me and had me confused for a while!)

20. http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/rmic.html



5.8 Introducing RMI 145

almost ready to fire our system up and give it a try. But first, we'll give you
some information about our sample environment and talk very briefly about
security.?!

5.8.4.1 What RMI Servers and Clients Need to Be Able to Do

RMI servers and clients need to be able to listen for connections on network
ports, and they need to be able to initiate connections on network ports. Back
in the Java 1.1 days, there were no limits on what RMI methods could do. The
CLASSPATH was assumed to be trusted. With the RMI 1.2 protocol specifica-
tion, the ability to actually pass bytecodes between VMs over RMI was added.
That means that it is possible for clients to pass code to servers. Obviously, this
opens a lot of possible security risks. For this reason, RMI got a security man-
agement layer. It is the same security manager as the one that applets use. It
also provides a default security manager class that has virtually all such capabil-
ities safely turned off. We need to turn on some of these capabilities in order
to make our sample work.

The RMI system expects Java classes to be made available through one of
two paths.

1. The cLassPATH, either the environment variable or on the command line.

2. Through a property that points at URL. This URL may bea file: URL,
oran http: URL.

We are going to do the simplest case for now. We will have our compiled
code installed on both our server system and our client system. The classes will
all be referenced relative to the default classpath (in other words, relative to “.”,
the current directory).

This is not the typical case. The most common case will be for the
classes to be available in a JAR file via a Web server, and for the

java.rmi.server.codebase property to be set to point to the JAR file via

an http: URL.

21. We're going to gloss over this subject for now.



146

Chapter 5 The Sun Microsystems Java Software Development Kit

Example 5.13 A Java security policy file suitable for the RMI example

grant {
permission java.net.SocketPermission "*:1024-65535", "connect,accept";
permission java.net.SocketPermission "*:80", "connect,accept";

i

5.8.4.2 Our Environment

We have two machines. One, penfold, is our server machine. The other,
grovel, is our client machine. To keep things straight in our samples, the shell
prompts will have the host names in them.

If you are using a JDK that supports the 1.2 RMI specification (and we
hope you are—it’s in all current JDKs), you have to give your server and your
client permission to access the network ports needed to run. By default, the
Java runtime will look for a security policy file in the home directory of the
user running the VM. The default name of the file is . java.policy. Exam-
ple 5.13 shows what we suggest you put in this file, at least to run this example.

NOTE

You will have to put this in your home directory both on the server and on all
client machines.

5.8.4.3 Compiling and Running the Server

Our packages here follow Sun’s suggested naming convention of your
domain name, reversed, followed by your package names. It so happens that
Mr. Schwarz’s domain is called multitool.net (named after his first
book, Multitool Linux), so we put all of these classes in a package called
net.multitool.RMIDemo.

For all of the examples in this section, as well as the following section on
building and running the client, assume that our current working directory is
the directory that contains the net directory of our source code.

The output you see in Example 5.14 includes the result of running our
client once. Note that the SessionImpl class doesn’t terminate. It keeps
running to service clients indefinitely.



5.8 Introducing RMI 147

Example 5.14 Compiling and running our server on penfold.

penfold$ javac net/multitool/RMIDemo/SessionImpl.java
penfold$ rmic net.multitool.RMIDemo.SessionImpl
penfold$ rmiregistry &

17286
penfold$ java net.multitool.RMIDemo.SessionImpl
Asked to add 47 and 13

5.8.4.4 Compiling and Running the Client

Example 5.15 shows the actual steps we ran to build and run the client.

Example 5.15 Compiling and running our client on grovel

grovels$ javac net/multitool/RMIDemo/Client.java

grovel$ javac net/multitool/RMIDemo/SessionImpl.java

grovelS$ /usr/java/jdk/bin/rmic net.multitool.RMIDemo.SessionImpl
grovel$ java net.multitool.RMIDemo.Client

Pointless RMI Client. 47+13=60, right?

grovels

NOTE

We compile the server class, SessionImpl, on the client side and run rmic
against it just to produce the stubs the client requires. You could copy the stub
classes from the server machine, or you could put them in a JAR file, put that file
on a Web server, and have the java .rmi . server.codebase property point
to that JAR file. We’re taking the simple way here, but in a real implementation,
you would not do it this way. We’ll cover more realistic cases later.

5.8.5 RMI Summary

RMI greatly simplifies the business of writing multitier client-server applica-
tions. It is suitable for many classes of distributed computing problems, but it
does lack several features that required in large, mission-critical applications.
For one thing, it lacks any sort of transaction support. If a method invocation
fails, the client may not know for certain whether the server finished some work,
like writing to a database, before the failure. Also, the rmiregistry program is



148

Chapter 5 The Sun Microsystems Java Software Development Kit

a very simplistic naming/lookup system. Clients must know where to find the
registry with the resources they need.

RMI is very useful for problems of a certain scale, but it is not, in and of
itself, sufficient for high-volume, highly available, mission-critical enterprise
systems.?2 But that is what J2EE and EJB are for. We'll deal with those in
Part V later in the book.

5.9 THE JAVA DEBUGGER

How can you stand using the SDK? It doesn’t even have a debugger!

Wrong. It has a debugger. It just has an extremely basic command-line
debugger. Example 5.16 shows the output of its help.

Again, we are not going to document everything here. That’s what the
online Sun Microsystems Java SDK documentation is for. Instead, we will use
the debugger to step through the execution of our simple application and show
you some of the debugger’s basic operations.

There are two ways to invoke jdb. One is to attach it to an already running
JVM that has been started with remote debugging enabled. See the Java SDK
documentation for details on that method. Here we’ll show you the simpler
case of invoking the program locally by running the application directly under
the debugger.

The basic invocation is:
$ jdb

You may optionally name the class whose main () is to be executed under
the debugger, but we usually use the run from inside the debugger itself to do
this. Remember that if you want to be able to view local variables in the debug-
ger, you must have compiled your class or classes with the -g option of javac.

In the rest of this section, we will examine an actual debug session. We
will run our single-class application, FetchURL, and use it to retrieve the
index.html file from the Web server on the laptop on which this chapter is
being written. To refresh your memory, remember that the source code for

FetchURL is at Example 3.30. Example 5.17 is what that file looks like.

22. If that sentence did not cause you to get “buzzword bingo,” then you aren’t trying.



5.9 The Java Debugger 149

Example 5.16 The Java debugger help command output

$ jdb GetUser
Initializing jdb

> help

** command list **

run [class [args]] -- start execution of application's main class
threads [threadgroup] -- list threads

thread <thread id> -- set default thread

suspend [thread id(s)] -- suspend threads (default: all)

resume [thread id(s)] -- resume threads (default: all)

where [thread id] | all -- dump a thread's stack

wherei [thread id] | all -- dump a thread's stack, with pc info

up [n frames] -- move up a thread's stack

down [n frames] -- move down a thread's stack

kill <thread> <expr> -- kill a thread with the given exception object
interrupt <thread> -- interrupt a thread

print <expr> -- print value of expression

dump <expr> -- print all object information

eval <expr> -- evaluate expression (same as print)

set <lvalue> = <expr> -- assign new value to field/variable/array element
locals -- print all local variables in current stack frame
classes -- list currently known classes

class <class id> -- show details of named class

methods <class id> -- list a class's methods

fields <class id> -- list a class's fields

threadgroups -- list threadgroups

threadgroup <name> -- set current threadgroup

stop in <class id>.<method>[ (argument_type,...)]

-- set a breakpoint in a method
stop at <class id>:<line> -- set a breakpoint at a line
clear <class id>.<method>[ (argument_type, ...)]

-- clear a breakpoint in a method
clear <class id>:<line> -- clear a breakpoint at a line
clear -- list breakpoints
catch [uncaught|caught|all] <exception-class id>

-- break when specified exception occurs
ignore [uncaught|caught|all] <exception-class id>

-- cancel 'catch' for the specified exception
watch [access]|all] <class id>.<field name>

-- watch access/modifications to a field
unwatch [access|all] <class id>.<field name>

-- discontinue watching access/modifications to a field
trace methods [thread] -- trace method entry and exit



150 Chapter 5 The Sun Microsystems Java Software Development Kit

untrace methods [thread] -- stop tracing method entry and exit

step -- execute current line

step up -- execute until the current method returns to its caller
stepi -- execute current instruction

next -- step one line (step OVER calls)

cont -- continue execution from breakpoint

list [line number|method] -- print source code

use (or sourcepath) [source file path]
-- display or change the source path

exclude [class id ... | "none"]
-- do not report step or method events for specified classes
classpath -- print classpath info from target VM
monitor <command> -- execute command each time the program stops
monitor -- list monitors
unmonitor <monitor#> -- delete a monitor
read <filename> -- read and execute a command file
lock <expr> -- print lock info for an object
threadlocks [thread id] -- print lock info for a thread
pop -- pop the stack through and including the current frame
reenter -- same as pop, but current frame is reentered

redefine <class id> <class filename>
-- redefine the code for a class

disablegc <expr> -- prevent garbage collection of an object
enablegc <expr> -- permit garbage collection of an object

] -- repeat last command

<n> <command> -- repeat command n times
help (or ?) -- list commands

version -- print version information
exit (or quit) -- exit debugger

<class id> or <exception-class id>: full class name with package
qualifiers or a pattern with a leading or trailing wildcard ('*')
NOTE: any wildcard pattern will be replaced by at most one full class
name matching the pattern.

<thread id>: thread number as reported in the 'threads' command
<expr>: a Java(tm) Programming Language expression.

Most common syntax is supported.

Startup commands can be placed in either "jdb.ini" or ".jdbrc"
in user.home or user.dir
>




5.9 The Java Debugger 151

Example 5.17 index.html used in jdb session

<HTML>
<HEAD>
<TITLE>RedHat Linux Laptop</TITLE>
</HEAD>
<BODY>
<H1>RedHat Linux Laptop</H1>
<P>You have contacted Michael Schwarz's RedHat Linux Laptop.
You would probably rather
<A HREF="http://www.multitool.net/">see his permanent Web
page</A> since this server goes up and down all the time, what
with it being on a laptop.</P>
</BODY>
</HTML>

Example 5.18 is an actual transcript of a real jdb session. It is annotated
with explanatory comments. Our goal here is to get you going. The best way
to learn jdb, or indeed any of these tools, is to use them.

Obviously, this little session has merely scratched the surface of the Java
debugger. You can debug multithreaded applications with commands that can
suspend and resume individual threads, list the running threads, switch your
“executable view” between threads, and so forth. You can trace method calls.
You can monitor variables. You can execute expressions (including assignment
expressions, allowing you to force variables to certain values). You can browse
classes. You can dump all local variables with a single command. The debugger
is quite capable, if a bit limited in user interface.?3 Learn it. Play with it. Step
through your favorite Java program with it.

23. As you know, we do not automatically like IDEs and GUI development tools (see Sec-
tion 5.2). A debugger is an exception to that rule. When debugging, a well designed UI with
a code pane, a stack pane, a data viewer, a class browser, a thread selection pane, and so on is
enormously helpful. You need to be able to see all these elements nearly simultaneously; you
need to see the whole system as it runs. The command-line debugger makes everything you need
available, but with a traditional “glass-teletype” U that is quite awkward. By all means, learn
the CLI debugger, but then find a good Java debugger with a windowed UI of some kind. It
is hard to say which compiler Ul is the best, but I think we can safely say the command-line
debugger Ul is the worst! You should know it as a last resort, but use it as a last resort!



152 Chapter 5 The Sun Microsystems Java Software Development Kit

Example 5.18 An actual jdb session, with commentary

$ Jjdb

Initializing jdb

> stop in FetchURL.main (1)

Deferring breakpoint FetchURL.main.

It will be set after the class is loaded.
> run FetchURL http://localhost

run FetchURL http://localhost

Set uncaught java.lang.Throwable

Set deferred uncaught java.lang.Throwable
>

VM Started: Set deferred breakpoint FetchURL.main

Breakpoint hit: "thread=main", FetchURL.main(), line=48 bci=0
48 for (i = 0; i1 < args.length; i++)

main[l] list

44 {

45 int 1;

46 FetchURL f;

47

48 =>(2) for (i = 0; 1 < args.length; i++)

49 {

50 System.out.println(args[i] + ":");

51 System.out.println(new FetchURL (args([il]));
52 }

53 }

main[l] step

>

Step completed: "thread=main", FetchURL.main(), line=50 bci=5
50 System.out.println(args[i] + ":");

main[l] step
> http://localhost:

Step completed: "thread=main", FetchURL.main(), line=51 bci=32
51 System.out.println(new FetchURL(args[i]));

main[l] step

>

Step completed: "thread=main", FetchURL.<init>(), line=8 bci=0
8 {

main[l] list
4 public class FetchURL {
5 private URL requestedURL;



5.9 The Java Debugger 153

6

7 public FetchURL(String urlName)

8 => {

9 try |

10 requestedURL = new URL (urlName) ;
11 } catch (Exception e) {

12 e.printStackTrace() ;

13 }

main[l] step

>

Step completed: "thread=main", FetchURL.<init>(), line=10 bci=4
10 requestedURL = new URL (urlName) ;

main[l] step (3)

>
Step completed: "thread=main", FetchURL.<init>(), line=11 bci=16
11 } catch (Exception e) {

main[l] step

>
Step completed: "thread=main", FetchURL.<init>(), line=14 bci=27
14 }

main[l] step

>
Step completed: "thread=main", FetchURL.main(), line=51 bci=45
51 System.out.println(new FetchURL(args[il));

main[l] step

>
Step completed: "thread=main", FetchURL.toString(), line=19 bci=2
19 String rc = "";

main[l] list

15

16

17 public String toString()

18 {

19 => String rc = "";

20 String line;

21 BufferedReader rdr;

22

23 try {

24 rdr = new BufferedReader (

main[l] step

>

Step completed: "thread=main", FetchURL.toString (), line=24 bci=3
24 rdr = new BufferedReader (



154 Chapter 5 The Sun Microsystems Java Software Development Kit

main[l] step

>
Step completed: "thread=main", FetchURL.toString(), line=30 bci=28
30 while ((line = rdr.readLine()) !'= null)

main[l] step

>
Step completed: "thread=main", FetchURL.toString(), line=32 bci=31
32 rc = rc + line + "\n";

main[l] list

28 )

29

30 while ((line = rdr.readLine()) != null)
31 {

32 => rc = rc + line + "\n";

33 }

34 } catch (Exception e) {

35 e.printStackTrace() ;

36 rc = null;

37 }

main[l] step

>

Step completed: "thread=main", FetchURL.toString(), line=30 bci=55
30 while ((line = rdr.readLine()) !'= null)

main[l] step

>
Step completed: "thread=main", FetchURL.toString(), line=32 bci=31
32 rc = rc + line + "\n";

main[l] step

>
Step completed: "thread=main", FetchURL.toString(), line=30 bci=55
30 while ((line = rdr.readLine()) !'= null)

main[l] step

>
Step completed: "thread=main", FetchURL.toString(), line=32 bci=31
32 rc = rc + line + "\n";

main[l] dump this (4)
this = {
requestedURL: instance of java.net.URL(id=378)
}
main[l] dump rc (5)
rc = "<HTML>
<HEAD>



5.9 The Java Debugger 155

main[1l] list 36

32 rc = rc + line + "\n";
33 }

34 } catch (Exception e) {
35 e.printStackTrace() ;
36 => rc = null;

37 }

38

39 return rc;

40 }

41

main[l] stop at FetchURL:39 (6)

Set breakpoint FetchURL:39

main[l] cont

>

Breakpoint hit: "thread=main", FetchURL.toString(), line=39 bci=79
39 return rc;

main[l] dump rc
rc = "<HTML>
<HEAD>
<TITLE>RedHat Linux Laptop</TITLE>
</HEAD>
<BODY>
<Hl>RedHat Linux Laptop</H1l>
<P>You have contacted Michael Schwarz's RedHat Linux Laptop.
You would probably rather
<A HREF="http://www.multitool.net/">see his permanent Web
page</A> since this server goes up and down all the time, what
with it being on a laptop.</P>
</BODY>
</HTML>
main[l] step
> <HTML>
<HEAD>
<TITLE>RedHat Linux Laptop</TITLE>
</HEAD>
<BODY>
<H1>RedHat Linux Laptop</H1>
<P>You have contacted Michael Schwarz's RedHat Linux Laptop.
You would probably rather
<A HREF="http://www.multitool.net/">see his permanent Web
page</A> since this server goes up and down all the time, what
with it being on a laptop.</P>
</BODY>
</HTML>



156 Chapter 5 The Sun Microsystems Java Software Development Kit
Step completed: "thread=main", FetchURL.main(), line=48 bci=48

48 for (i = 0; i1 < args.length; i++)

main[l] step

>

Step completed: "thread=main", FetchURL.main(), line=53 bci=57

53 }

main[l] step

>

The application exited

$

4,5.

Here we tell the debugger where to break execution to let us run debugger commands.
We do so at the start of the FetchURL class’ main() method. If we did not set a
breakpoint, the run would have run the program to termination, making it no different
from running it with the java command (except perhaps a bit slower).

The list command shows the source line that is about to be executed, along with some
more lines to either side. It is a handy way to get a little context. The standard “next
line” prompt isn’t enough for most of us to get context (unless, of course, we are
looking at a line-numbered printout of the source or an editor window at the same
time, which we often do).

The step steps execution one “line” (what a line is can be a bit fuzzy when there’s a
lot of vertical whitespace in the source, or when multiple method calls occur on one
line). Note the information in the status message. The name of the thread is given (our
sample is single-threaded, so it is always “main”), as is the line number in the source
file and the bei. Note that there is a very similar command, next, that advances to the
next line in the same stack frame. In other words, it won’t step into method calls, it
steps over them.

Here we see two uses of the dump command. First, we apply it to this (which is an
implicit argument to any nonstatic method call) to dump the currently executing ob-
ject. The second instance dumps the rc local variable, which is an accumulating string
containing the requested Web page. At the moment, it contains only the first few lines.

Here we set a breakpoint on a specific source line number. We then use the cont
command to resume “full speed” code execution.




5.11 Bundling a Java Program: Put It in a JAR 157

5.10 RETURN TO THE SOURCE: THE JAVA DECOMPILER

5.11

Java includes a decompiler of sorts called javap. It is sometimes referred to as
the “class file disassembler.” We titled this section “Return to the Source,” but
it is a bit misleading; javap simply provides a way to examine the members and
methods of a compiled Java class?4 even when you do not have its source code.

The javap command takes the same access-modifier command-line argu-
ments as javadoc (-public, -protected, -package, -private) to determine
which attributes and methods are to be reported. An additional switch, -c,
causes the bytecodes of methods to be reported. For details, see Sun’s documen-
tation for javap.2

Example 5.19 shows what you get if you run javap -c on our FetchURL
example.

BUNDLING A JAVA PROGRAM: PUT IT IN A JAR

Distributing a Java application can be a pain. All but the simplest of applica-
tions will have many public classes—and since there can only be one public
Java class per source file, each Java source file becomes a class file, and the ele-
ments of a package name become directory nodes in the path to the class, you
end up with a fairly complex collection of directories and files. Wouldn’t it be
nice to be able to roll the whole mess up into a single binary file for
distribution?

Well, you can. The tool to do the job is called jar, which stands for Java
ARchive.2¢ The files produced by this utility are called /AR files. The JAR for-
mat is the common DOS/Windows ZIP file format, with a few special files to
support some special features we will explain as they come up.

24. In Chapter 7 we will introduce gcj, the GNU Compiler for Java, which compiles Java to
native machine code. javap is useless with such a file. It deals only with JVM bytecodes as
documented in Sun’s JVM Specification.

25. http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/javap.html

26. An abbreviation made up of syllables from words instead of just initials is called a
portmantean. The US Navy is particularly keen on them, using terms like COMSURPAC
(Commander, Surface Fleet, Pacific), COMSUBLANT (Commander, Submarine Fleet,
Atlantic), and so forth. There. Now you can’t claim you didn’t learn anything from this book.



158

Chapter 5 The Sun Microsystems Java Software Development Kit

Example 5.19 javap output for FetchURL.class

Compiled from FetchURL.java
public class FetchURL extends java.lang.Object {
private java.net.URL requestedURL;
public FetchURL(java.lang.String) ;
public java.lang.String toString() ;
public static void main(java.lang.Stringl[]) ;

Method FetchURL(java.lang.String)

13
16
19
20
21
24
27

aload_0

invokespecial #1 <Method java.lang.Object()>
aload_0

new #2 <Class java.net.URL>

dup

aload_1

invokespecial #3 <Method java.net.URL(java.lang.String)>
putfield #4 <Field java.net.URL requestedURL>
goto 27

astore_2

aload_2

invokevirtual #6 <Method null>

goto 27

return

Exception table:
from to target type

4 16 19 <Class java.lang.Exception>

Method java.lang.String toString()

ldc #7 <String "">

astore_1

new #8 <Class java.io.BufferedReader>

dup

new #9 <Class java.io.InputStreamReader>

dup

aload_0

getfield #4 <Field java.net.URL requestedURL>

invokevirtual #10 <Method java.net.URLConnection openConnection()>
invokevirtual #11 <Method java.io.InputStream getInputStream()>
invokespecial #12 <Method java.io.InputStreamReader (java.io.InputStream)>
invokespecial #13 <Method java.io.BufferedReader (java.io.Reader)>
astore_3

goto 55

new #14 <Class java.lang.StringBuffer>

dup

invokespecial #15 <Method java.lang.StringBuffer()>

aload_ 1



5.11 Bundling a Java Program: Put It in a JAR 159

39 invokevirtual #16 <Method java.lang.StringBuffer append(java.lang.String)>
42 aload_2
43 invokevirtual #16 <Method java.lang.StringBuffer append(java.lang.String)>
46 ldc #17 <String "
">
48 invokevirtual #16 <Method java.lang.StringBuffer append(java.lang.String)>
51 invokevirtual #18 <Method java.lang.String toString()>
54 astore_1
55 aload_3
56 invokevirtual #19 <Method java.lang.String readLine()>
59 dup
60 astore_2
61 ifnonnull 31
64 goto 79
67 astore 4
69 aload 4
71 invokevirtual #20 <Method null>
74 aconst_null
75 astore_1
76 goto 79
79 aload_1
80 areturn
Exception table:
from to target type
3 64 67 <Class java.lang.Exception>

Method void main(java.lang.Stringl[])

0 iconst_0

1 istore_1

2 goto 51

5 getstatic #21 <Field java.io.PrintStream out>

8 new #14 <Class java.lang.StringBuffer>

1 dup

12 invokespecial #15 <Method java.lang.StringBuffer()>

15 aload_0

16 iload_1

17 aaload

18 invokevirtual #16 <Method java.lang.StringBuffer append(java.lang.String)>
21 1dc #22 <String ":">

23 invokevirtual #16 <Method java.lang.StringBuffer append(java.lang.String)>
26 invokevirtual #18 <Method java.lang.String toString()>

29 invokevirtual #23 <Method void println(java.lang.String)>
32 getstatic #21 <Field java.io.PrintStream out>

35 new #24 <Class FetchURL>

38 dup

39 aload_0

40 iload_1

41 aaload

42 invokespecial #25 <Method FetchURL (java.lang.String)>



160

Chapter 5 The Sun Microsystems Java Software Development Kit

45
48
51
52
53
54
57

invokevirtual #26 <Method void println(java.lang.Object)>
iinc 1 1

iload_1

aload_0

arraylength

if_icmplt 5

return

A JAR file packages a subdirectory and its descendants into a single file. A Java
CLASSPATH specification may contain a JAR filename everywhere it might
contain a directory name. Let’s say you use the GPL’ed Java personal finance
program called jgnash and you’ve compiled it from source, so you have a direc-
tory off your home directory called jgnash/bin. Suppose you run the program
by directly invoking java to run the class jgnashMain and you have
$HOME/jgnash/bin on your CLASSPATH. You could clean up the mess on your
hard drive by using the jar command to squash all the files in jgnash/bin
together into a single JAR file, as shown in Example 5.20.

Example 5.20 Making a JAR file

$ cd ; mkdir jars
$ jar cvf jars/jgnash.jar jgnash/bin

You could then replace the $HOME/jgnash/bin entry in your CLASSPATH
with $HOME/jars/jgnash.jar. After that you would still run jgnash with
exactly the same java command you always did, but now you got rid of the
cluttered pile of files.

This is only the most basic purpose of jar, however. Its uses extend well
beyond merely concatenating and compressing collections of . class files.

5.11.1 Deploying Applications

One of the best uses of jar is to package applications for distribution. You can
put a large Java application into a single file with jar, and by using a manifest
(which we are about to discuss) you can nominate the main class to run in that
JAR file. You can then provide a shell script (and a batch file, if you are also
deploying to Microsoft Windows) that will set the cLASSPATH to point to the



5.11 Bundling a Java Program: Put It in a JAR 161

JAR file and run java against it. With this simple setup, users need not even
know they are using a Java application—it runs like any other application.

5.11.1.1 The Manifest File

The only way in which jar really differs from any other ZIP archive utility is
in the automatic creation and use of a manifest file, by default named
META-INF/MANIFEST in the archive. Even if you do not specify a manifest file
of your own, the jar utility creates one for you. Let’s take a moment to look at
what goes into the manifest.

A manifest is basically a list of key/value pairs. The key comes at the start
of a line and the value comes at the end of the line with a colon separating the
two. Example 5.21 shows a sample manifest.

Example 5.21 Manifest from the Payback sample application

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.5.3

Created-By: 1.4.1_02-b06 (Sun Microsystems Inc.)
Version: 1.0

Main-Class: net.multitool.Payback.Payback

All of these entries were produced automatically by ant or the jar utility
itself, except for Main-Class, which we specified (albeit with ant, as you will
see in Chapter 9). The manifest has certain values that are always filled in by
jar, but two that you might commonly specify are

* Main-Class, which allows users to run a Java application by merely typ-
ing java someJarFile.jar, without having to know the fully package
qualified name of the class that contains the application’s main ().

* Class-Path, which allows you to specify what the classpath should be
when the application is run.

There are keys specific to applets, to signed applications, to beans, and so
forth. We will address these as it becomes necessary. Full details can, of course,
be found in the Sun’s documentation for jar.?”

27. http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/jar.html



162

Chapter 5 The Sun Microsystems Java Software Development Kit

5.11.1.2 Putting a Compiled Application in a JAR File

Let’s assume we are going to manually put a Java application in a JAR file. We
will want to specify the name of the class that contains the main () method of
the application. First off, you want the JAR’s directory hierarchy to begin at
the folder that contains the first node of each package’s name. Our sample ap-
plication here is in the package net.multitool.Payback, so we want our
present working directory to be the one which contains the net subdirectory.
Here’s a dump of the directory tree from that point after compilation of our
sample application:

$ find . -print

. /net

./net/multitool

./net/multitool/Payback
./net/multitool/Payback/Account.class
./net/multitool/Payback/Purchase.class
./net/multitool/Payback/Cost.class
./net/multitool/Payback/DebtAccount.class
./net/multitool/Payback/Payback.class
./net/multitool/Payback/SavingsAccount.class
./net/multitool/util
./net/multitool/util/SAMoney.class
./net/multitool/util/SAMoneyTest$l.class
./net/multitool/util/SAMoneyTest$2.class
./net/multitool/util/SAMoneyTest.class

We now want to specify which class contains the application’s main ()
method. It happens to be the Payback class, so we create a file called
manifest28 with the following contents:

$ cat manifest
Main-Class: net.multitool.Payback.Payback

Next, we use the jar utility to create the JAR file:

28. It can have any name. The key/value pairs from the file will be placed by the jar utility into
the standard manifest called META-INF/MANIFEST.MF no matter what name you give to
this file.



5.11

Bundling a Java Program: Put It in a JAR 163

S jar cmf manifest payback.jar net

S 1s -la

total 20

AdrwxXrwxr-x 3 mschwarz mschwarz 4096 Aug 4 18:19

drwxrwxXr-x 7 mschwarz mschwarz 4096 Aug 4 17:57

-rw-rw-r-- 1 mschwarz mschwarz 43 Aug 4 18:17 manifest
AdrwXrwxr-x 3 mschwarz mschwarz 4096 Jul 28 16:16 net
-ITW-rw-r--— 1 mschwarz mschwarz 7506 Aug 4 18:21 payback.jar

The options to jar tell it what to do. In our case, -c instructs to create a
JAR file, -m adds the contents of the file named in the next parameter to the
META-INF/MANIFEST file, - £ and the next parameter is the filename of the JAR
file being created. If we had not specified -£, the JAR file would have been
written to standard out and an I/O redirect would be needed, but the result
would have been the same:

$ jar cvm manifest net > payback.jar

$ 1s -la

total 24

drwXrwxr-x 3 mschwarz mschwarz 4096 Aug 4 18:24

drwxXrwXr-x 7 mschwarz mschwarz 4096 Aug 4 17:57 ..
-ITW-Yrw-r--— 1 mschwarz mschwarz 43 Aug 4 18:17 manifest
drwxrwxr-x 3 mschwarz mschwarz 4096 Jul 28 16:16 net
-YW-rw-r--— 1 mschwarz mschwarz 7506 Aug 4 18:27 payback.jar

Everything that follows parameters required by option letters is considered
to be a file or directory that is to be added to the JAR file. The option syntax
for jar is similar to that for pkzip in the DOS/Windows world and the tar
utility in the UNIX world.

As elsewhere in this chapter, we are just getting you started. See Sun’s
documentation for details.

5.11.2 Basic jar Operation
We have already covered the most common case, using jar to create a “rolled-

up” Java application. jar has many command options besides -c and we’ll
document a few of them.

Create a JAR file.

Update a JAR file—replace updated files, add missing files.



164 Chapter 5 The Sun Microsystems Java Software Development Kit
-X
Extract files from a JAR file.
-t
List files in a JAR.
-f
Specify the JAR filename.
-V
Be verbose—display descriptions of what the jar utility is doing as it
does it.
—-m
Add the contents of the named file to the manifest.
5.12 THE REST OF THE TOOLKIT

There are additional utilities in the toolkit. Below is a capsule summary of them
and their purposes.

extcheck
This utility checks an applet JAR file for any extensions it requires that are
in conflict with the current Java runtime environment. (But we don’t
cover applets in this book.)

jarsigner
This is a utility for digitally signing JAR file. Once a JAR is signed, anyone
looking at it can be sure of two things—first, the file was definitely pre-
pared by the owner of the private key that matches the public key used to
verify the signature;?” and second, the JAR file has not been modified in
any way since it was signed. In other words, depending upon the care with
which the signer treats his/her private key, this certifies the authenticity

29. A discussion of public/private keys as an authentication mechanism is beyond our scope
here. As a shameless plug, Mr. Schwarz would like to point you to Chapter 10 of his previous
book, Multitool Linux, which contains a beginner’s introduction to public key authentication
using GnuPG. Of course, a quick Google search will find you many online descriptions that
are free.



5.12 The Rest of the Toolkit 165

and accuracy of the JAR file; you can trust it as much as you trust
the signer.

Generally speaking, an applet must be signed by a key that the user
trusts in order for the applet to increase its security access to the client
machine (open/read/write files, access the printer, and so on). But we don’t
cover applets in this book.

keytool
This tool is used to create and manage the keys we were talking about in
the previous entry. Again, this is used mainly for JAR signing, and JAR
signing is used mainly for applet authentication, but we don’t cover applets
in this book.

rmid
The RMI activation daemon. In the RMI example we showed you in this
chapter, you had to start a server manually and leave it running to process
requests. RMI activation is a system where RMI servers may be started on
demand.

serialver
Reports the RMI serialversionuiD of a class. This can be useful when
trying to track down problems with complex RMI systems, especially when
multiple versions of an RMI interface with the same name must be in use
at the same time.

native2ascii
As mentioned before, Java uses Unicode for all strings. Most of the time,
you and we are working with ASClII-encoded files. This program converts
files from one format to the other.

policytool
Remember how we had to set up a security policy file for our RMI

demonstration (Example 5.13)? Well, this is a Java GUI application for
creating and editing Java policy files.

There are a few more. One group of utilities is related to Kerberos tickets.
Another is related to Java IDL and RMI-IIOP, both of which are to allow Java
to interoperate with CORBA. If you are in a CORBA environment, you will
want to look at those. We've got enough on our plates without trying to jam
CORBA in here. You’re on your own, buddy. Finally, there are a couple of



166

Chapter 5 The Sun Microsystems Java Software Development Kit

5.13

5.14

5.15

programs that support the Java plug-in, which is a way to make Java available
in browsers.30

REVIEW

For all of its humble command-line interface, the Sun Java 2 SDK provides a
complete software development package, with everything you need to write
and run a wide gamut of Java applications.

WHAT You STILL DON’T KNOW

Oh dear, where to start? There are all those programs in the kit we glossed over
right at the end there. We barely scratched the surface of JNI and RMI. We
positively orbited the topics of policy files and JAR manifests.

You now have exposure to the bulk of the Java SDK. It is only the first
step up the learning curve. We'll take you up a few more as the book progresses,
but mastery comes only with time and experience. So use the tools. Write,
compile, and debug a lot of Java code.

RESOURCES

One of the best sources of information on Java is Sun’s Web site for Java,
http://java.sun.com, where you can find a wide variety of information—
tutorials, white papers, API specifications, and more.

30. Those browsers that had Java built into them generally used Java 1.0 or 1.1. After Java 1.1
it became clear that it would be a major pain to have to reintegrate each new version of Java
into each browser product. It would make browser versions and Java releases dependent on one
another and would, in general, be a pain both for Sun and for Microsoft and Netscape (remem-
ber Netscape?). Thus, the plug-in architecture was born (okay, plug-ins were for things
like RealPlayer and Macromedia Flash too). Since Java 1.2, browser integration has been
via plug-ins.



Chapter 6

The IBM Developer Kit for Linux,
Java 2 Technology Edition

This chapter introduces the IBM Java Software Development Kit. It does so
mainly by pointing out how completely the kit mimics the Sun Java Software
Development Kit covered in Chapter 5. Some time is spent on the minor
differences and some installation issues.

6.1 WHAT YOoUu WILL LEARN

* The small number of important differences between the IBM and Sun
Java Software Development Kits.

* How to put more than one version of Java on the same development
machine and how to switch between them painlessly.

167



168

Chapter 6 The IBM Developer Kit for Linux, Java 2 Technology Edition

6.2 USE LINUX FEATURES TO MAKE MULTIPLE JAVA SDKs

PLAY NICELY TOGETHER

We did not spend much time discussing the installation of Java on your Linux
system in previous chapter. In fact, we did not discuss it at all. This is because
the installation instructions that come with the SDK are more than adequate
if you wish only to install a single Java SDK. But what if you want to install,
say, both the Sun Java SDK and the IBM Java SDK? Then things get a bit more
interesting.

We're going to review the concept of filesystem links, and how they work
on Linux. While it may seem odd to discuss them here, we’ll be using links to
switch gracefully between different Java installations. Links are a powerful
feature in Linux filesystems, and switching SDKs is a good application thereof.
If you're already familiar with links, skip ahead to Section 6.2.2.

6.2.1 Links

A link is simply a name attached to a collection of data—that s, to a file. In
other words, every file has one set of data and at least one link (a name). But a
file may have more than one link. In other words, two different filenames may
point to the same data. When you do this, you appear to have two copies of
the file, but a change to one also changes the other. Deleting one, however,
does not delete the other. It merely deletes the link. The file itself is only
deleted when the last link is gone.

6.2.1.1 Hard Links

Links come in two flavors: hard and symbolic. A hard link looks like a file in
and of itself. Let’s show you a hard link, before and after.

$ 1s -la

total 12

drwxrwXr-x 2 mschwarz mschwarz 4096 Jul 8 10:11 .
drwx------ 50 mschwarz mschwarz 4096 Jul 8 10:11 ..
-IYW-rw-r--— 1 mschwarz mschwarz 45 Jul 8 10:11 sample

$ cat sample

This is a sample
file to demonstrate
links.

$



6.2 Use Linux Features to Make Multiple Java SDKs Play Nicely Together 169

As you can see, we have a directory with a single file in it, sample. Now
let’s make a hard link to that file.

$ 1In sample example

$ 1s -la

total 16

drwXrwxr-x 2 mschwarz mschwarz 4096 Jul 8 10:13
drwx------ 50 mschwarz mschwarz 4096 Jul 8 10:11 ..
“ITW-rw-r-- 2 mschwarz mschwarz 45 Jul 8 10:11 example
- IrW-rw-r--— 2 mschwarz mschwarz 45 Jul 8 10:11 sample

$ cat example

This is a sample
file to demonstrate
links.

Notice a few things here. First, other than the size and timestamps being
the same, there is nothing obvious to show that these two files are, in fact, the
same file. Note also the number just ahead of the owning user and group
names. In the first directory listing, sample had 1 in that position; now both
sample and example have 2. This number is the /ink count. It tells you how
many names are linked to the data associated with this name.

We have a couple more things to point out before we move on to soft
links, which are going to be more important for our purposes.

$ chgrp wwwdev example

$ 1s -la

total 16

drwxrwxr-x 2 mschwarz mschwarz 4096 Jul 8 10:13
drwx------ 50 mschwarz mschwarz 4096 Jul 8 10:11 ..

- YW-Yw-r--— 2 mschwarz wwwdev 45 Jul 8 10:11 example
-IrW-rw-r--— 2 mschwarz wwwdev 45 Jul 8 10:11 sample
$ chmod o-r example

S 1s -la

total 16

drwXrwxr-x 2 mschwarz mschwarz 4096 Jul 8 10:13
drwx------ 50 mschwarz mschwarz 4096 Jul 8 10:11 ..
-IrW-rw----— 2 mschwarz wwwdev 45 Jul 8 10:11 example
-IrW-rw----— 2 mschwarz wwwdev 45 Jul 8 10:11 sample
S chgrp mschwarz sample

$ 1s -la

total 16



170

Chapter 6 The IBM Developer Kit for Linux, Java 2 Technology Edition

AdrwXrwxr-x 2 mschwarz mschwarz 4096 Jul 8 10:13
drwx------ 50 mschwarz mschwarz 4096 Jul 8 10:11
-rw-rw----— 2 mschwarz mschwarz 45 Jul 8 10:11 example
-IrW-rw----— 2 mschwarz mschwarz 45 Jul 8 10:11 sample
$

As you can see, a file can have only one set of owners and permissions, no
matter how many links are made to it. Changing the owner or permissions of
one link changes all hard links at the same time. In other words, the security
of a file is like its data: A change to one link is a change to them all.

A link need not be in the same directory as the original name.

S 1ln example /tmp/sample

$ 1s -la

total 16

drwXrwxr-x 2 mschwarz mschwarz 4096 Jul 8 10:13
drwx------ 50 mschwarz mschwarz 4096 Jul 8 10:11 ..
-IrW-rw----— 3 mschwarz mschwarz 45 Jul 8 10:11 example
“ITw-rw---- 3 mschwarz mschwarz 45 Jul 8 10:11 sample
$ 1s -la /tmp

total 132

drwXrwxr-x 2 mschwarz mschwarz 4096 Jul 8 10:23
drwx------ 50 mschwarz mschwarz 4096 Jul 8 10:11 ..
-YwW-rw-r-- 1 mschwarz mschwarz 118081 Jun 3 18:51 jLin.tar.gz
“ITw-rw---- 3 mschwarz mschwarz 45 Jul 8 10:11 sample
$

Here we made a third link in a different directory; /tmp/sample is a third
name for the same data file. Note that we made it from the example link, not
the original filename. In fact, as far as the Linux filesystem is concerned, there
is no “original” name. None of these names is more significant than any other.
When you remove a filename, the link is destroyed and the file’s link count is
decremented. If the link count goes to zero, the file is removed. That’s it.
Nothing else.

Hard links have a couple of drawbacks. One of them is a genuine technical
limitation and the other is more of a usability problem. The technical limitation
is that a hard link cannot be made across mounted filesystems. In the simplest



6.2 Use Linux Features to Make Multiple Java SDKs Play Nicely Together 171

case (we don’t want to muddy the waters with LVM! or RAID? at this
point—most Linux distributions do not do LVM or RAID “out-of-the-box”),
if you have more than one partition or disk drive, these are “mounted” at dif-
ferent points on the directory tree. For example, Mr. Schwarz’s laptop’s mount

table looks like this:

$ mount

/dev/hda2 on / type ext3 (rw)

none on /proc type proc (rw)

usbdevfs on /proc/bus/usb type usbdevfs (rw)
/dev/hdal on /boot type ext3 (rw)

none on /dev/pts type devpts (rw,gid=5,mode=620)
none on /dev/shm type tmpfs (rw)

$

We have one large partition mounted at /, or root, and a small partition
mounted at /boot. In all of our hard link examples so far, we have been making
links on the root filesystem. Example 6.1 shows what happens when an attempt
is made to hardlink between two different mounted devices.

This is what we mean when we say a link cannot cross filesystems.?

The other problem is more “touchy-feely.” With a hard link, you can see
by the link count that other links exist, but you don’t know where they are.
Symbolic links get you around both of these issues.

6.2.1.2 Symbolic Links, or Symlinks

In a sense, symbolic links are much simpler than hard links. A symbolic link is
a file that contains the name of another file or directory. Because it is marked
as a symbolic link, the system will replace it with the contents of the linked file.
Example 6.2 will make this more clear.

1. Logical Volume Manager. This is a tool that lets you arbitrarily aggregate disk drives and
partitions into a “logical volume” that may be mounted and unmounted as a unit. Such tools
are commonly used in serious production servers, but are rare on workstations or simple Linux
servers.

2. Redundant Array of Inexpensive Disks. Another heavy server feature that allows multiple
disk drives to be linked up as if they were a single disk drive and to act as backup to one another
silently and transparently.

3. In a similar vein, there are some networked filesystems that do not support hard links at all
because the server or host system doesn’t support the concept. Attempts to make links on or
to such systems will also fail.



172

Chapter 6 The IBM Developer Kit for Linux, Java 2 Technology Edition

Example 6.1 Attempt to hardlink between mounts

$ 1ln example /boot/sample

In:

$

creating hard link " /boot/sample' to “example': Invalid cross-device link

Example 6.2 Symlinking /etc/passwd

$ 1ls -la

total 8

drwxrwxr-x 2 mschwarz mschwarz 4096 Jul 8 15:30
drwx------ 50 mschwarz mschwarz 4096 Jul 8 15:29

$ 1In -sf /etc/passwd passwd

$ 1ls -la

total 8

drwxrwxr-x 2 mschwarz mschwarz 4096 Jul 8 15:31

drwx------ 50 mschwarz mschwarz 4096 Jul 8 15:29 ..

lrwxrwxrwx 1 mschwarz mschwarz 11 Jul 8 15:31 passwd -> /etc/passwd

$ cat passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon: /sbin:/sbin/nologin

etc.

What we did here works just like a hard link, but note the attributes
on the file: The 1 indicates a symbolic link, and the permissions are
read/write/execute for user, group, and other (or for “world” for short). How-
ever, these permissions apply to the link, not to the file. Just as with hard links,
there is only one set of permissions on the file, and these are on the file that is
pointed to, not on the pointer.

One interesting difference between symlinks and hard links is that sym-
links do not increment the link count on a file. If we remove /etc/password
(a very bad idea, by the way), the symlink would be unaffected, but an attempt
to open or read the symlink would not work, because it points at nothing that
exists. This is called a dangling symlink.

Symlinks may refer to symlinks, and thus you need to be cautious to avoid
circular symlink chains. All the shells we have used on Linux report circular
symlinks as “too many levels of symbolic links,” which sounds like a process
exceeding its stack limits but handling it gracefully.



6.2 Use Linux Features to Make Multiple Java SDKs Play Nicely Together 173

6.2.2 Switching Java Versions by Symlink

Here is the process we went through to install both Sun’s Java 2 SDK and
IBM’s Java 2 SDK on a system at the same time.

1. Download the Sun JDK as a compressed TAR file.

2. Install it to /usr/java. The Sun installer named its directory
j2sdkl.4.1_02, so the full path is /usr/java/j2sdk1.4.1_02.

3. Download the IBM JDK and untar it also in /usr/java. The base
directory in the TAR file was IBMJava2-141, so the path is
/usr/java/IBMJava2-141.

4. Create a symlink called jdk in /usr/java and make it point at the Sun
JDK by default (Example 6.3).

5. Add /usr/java/jdk/bin to the system’s default PATH environment
variable.4 Also add Java_HOME and JDK_HOME environment variables that
point to /usr/java/jdk.

Now when we run javac or any other Java command, we run the version
which is pointed to by the jdak symlink. If we wish to switch to the IBM JDK,
we can just replace the link as show in Example 6.4.

From then on, the machine will be using the IBM Java SDK.

And, of course, by explicitly setting the path and environment variables,
you can use whatever you prefer without changing the symlink for all other
users on the system. This is an excellent example of how the features of the
Linux system can make your life as a Java developer easier—with this general
method, you can keep as many Java SDKs from as many vendors as you wish
and switch between them at will.

Here, we showed you how to do this on a system-wide basis, but you
could, by creating the symlink in your home directory and changing the path
for your user account, switch between versions in your own account only,
leaving the system-wide default alone. Linux provides endless flexibility for
developers.

4. Exactly where you do this depends on your distribution. If you aren’t sure, you can always
do it in the .bash_profile file in your user account’s home directory.



174 Chapter 6 The IBM Developer Kit for Linux, Java 2 Technology Edition

Example 6.3 Symlinking jdk to the Sun Java SDK

# In -s j2sdkl.4.1_02 jdk

# 1s -la

total 16

drwxr-Xr-x 4 root root 4096 Jul 8 15:51

drwxr-xXr-x 17 root root 4096 Jun 17 10:18 ..

drwxr-xr-x 8 root root 4096 May 21 21:09 IBMJava2-141
drwxr-xr-x 8 root root 4096 Mar 5 14:44 j2sdkl1.4.1_02
1lrwXrwxrwx 1 root root 14 Jul 7 22:33 jdk -> j2sdkl.4.1_02
#

Example 6.4 Symlinking jdk to the IBM Java SDK

# rm jdk

# 1n -s IBMJava2-141 jdk

# 1s -la

total 16

drwxr-Xr-x 4 root root 4096 Jul 8 15:51

drwxr-Xr-x 17 root root 4096 Jun 17 10:18 ..

drwxr-Xr-x 8 root root 4096 May 21 21:09 IBMJava2-141
drwxr-xr-x 8 root root 4096 Mar 5 14:44 j2sdkl.4.1_02
1lrwxXrwxrwx 1 root root 14 Jul 7 22:33 jdk -> IBMJava2-141

#

6.3 How THE IBM JDK DIFFERS FROM THE SUN JDK

After the last chapter, which was one of the longest in the book, this chapter
should come as something of a relief. It is one of the shortest in the book. Why?
Because the IBM Java Software Development Kit is practically identical in use
to the Sun package. It differs in only a few respects and that is all we will talk
about here.

One of the biggest differences is the version of Java available from each
vendor. Sun has the newest versions, as they have been defining what those are.
IBM is still releasing the 1.3 versions of Java as Sun begins to release 5.0. But
you may not want or need the “bleeding edge” of the technology.



6.3 How the IBM JDK Differs from the Sun JDK 175

6.3.1 Performance

IBM’s Java implementation appears to run most code faster than the Sun im-
plementation. Benchmarking something as complex as a Java Virtual Machine
is well beyond our scope here (and, in fact, coming up with a benchmark that
will actually predict how much faster your application will run on one environ-
ment versus another is practically impossible). Nonetheless, we have seen some
fairly dramatic performance improvements when running Java applications
under the IBM JVM—improvements on the order of 50%—100%.

[t is interesting to note that it does not matter which Java SDK produced
the bytecode files. We see these improvements when the compiled classes are
run, no matter which compiler (IBM’s or Sun’s) was used to produce them.
This suggests that it is some combination of a faster virtual machine and/or a
better Just-In-Time compiler (JIT) that gives IBM’s runtime its apparent
performance advantage.

For the most part, we use the Sun development kit and runtime, simply
because Sun’s is the definition of Java. But if execution speed is proving to be
critical for your application, consider the IBM Java runtime. You may see some
speed advantages.

6.3.2 Differences in the Commands

You will notice a few differences. For example, there is both a java and a javaw.
Both invoke the Java runtime. The former has the Java console interface, the
latter does not. For our purposes, this does not matter. The IBM Java SDK
comes with an Object Request Broker Daemon (orbd) for CORBA/IIOP while
the Sun SDK does not. Again, for our purposes this doesn’t matter.

For the bulk of the utilities, the differences are so slight that you can use
the Sun documentation for the IBM tools.

6.3.3 IBM Classes

IBM’s Eclipse project (which we begin to cover in Chapter 10) provides a large
GUI API library called SWT. We won’t go into that here; it is covered in
Chapter 17. Of more immediate interest is IBM’s enhanced Bigbecimal class
(com.ibm.math.BigDecimal) which addresses a lot of deficiencies in Sun’s
implementation of decimal arithmetic. We will be using the standard Java class
in our book (as it is the same for all development kits we cover), but you might
want to take a look at IBM’s FAQ document on their enhanced Bigbecimal



176

Chapter 6 The IBM Developer Kit for Linux, Java 2 Technology Edition

6.4

6.5

class.> It also appears that IBM’s class may become the official Sun version in
Java 5.0 when it comes out. The primary feature of this class is its ability to
deal correctly with rounding and precision, which is of great benefit in financial
and scientific applications. Check out IBM’s documentation and see if this is
something you should use.

Note that Java bytecodes are Java bytecodes. You can download and use
the IBM class with the Sun Java Runtime. It is there if you need it.

WHAT ARE ALL THESE “_G” VERSIONS?

One thing you will notice right away when you unpack the IBM Java SDK is
that it has virtually all of the same commands as does the Sun Java SDK, but
there is a whole bunch of them duplicated with a mysterious “_g” suffix. What’s
up with that?

These versions run a Java VM that was compiled with debug information,
so that you can report information about bugs and errors that is of use to IBM
SDK developers in locating and fixing problems. These versions should not be
used for production work, but only to recreate and report bugs.

REVIEW

Well, we told you this one would be short. With a handful of minor exceptions,
the IBM Java SDK is a complete drop-in replacement for the Sun Java SDK.
You could go back to the previous chapter and repeat every example and exer-
cise with the IBM Java SDK, and you would get the same results. There is
definitely some comfort in knowing that even though you don’t have an Open
Source Java VM and SDK, at least you have two vendors the produce function-
ally identical development environments. You are not trapped into a single
vendor’s offering.

5. http://www2.hursley.ibm.com/decimalj/decfaqg.html



6.7 Resources 177

6.6

6.7

WHAT You STiLL DON’T KNOW

What you still don’t know after reading this chapter is similar to what you still
didn’t know after reading Chapter 5. IBM Java SDK has many things we have
not covered, including security policy files, JNI, and RMI.

RESOURCES

The best source of information about IBM’s Java technology is IBM itself.
Search the alphaWorks section of their Web site; we used http://
www .alphaworks.ibm.com/nav/java?openc=java+-+Developer+Kits
and found entries for the Java 1.3 Development Kit for Linux, as well as other
Java-related downloads, including the Jikes Open Source compiler.






Chapter 7

The GNU Compiler for Java
(gcj)

The GNU Compiler for Java provides a native binary compiler for Java code.
In this chapter we’ll show you how to compile a simple binary application from
Java sources.

7.1 WHAT YOU WILL LEARN

You will learn how to compile a binary executable from Java source code using
the gcj compiler.

7.2 A BRAND GNU Way

Quite some time ago Richard Stallman started an effort to create a free version

of UNIX called GNU?! (which stands for GNU’s Not UNIX—a recursive

1. http://www.gnu.org/

179



180

Chapter 7 The GNU Compiler for Java (gcj)

7.3

acronym). More than that, he tried to convince the world that code should be
Free with a capital “F”. By this, he meant that it was unreasonable to provide
software without both providing the source code and the right to use and
modify that code as desired. To ensure this, he and his team created the GPL?
(the GNU Public License) and founded the Free Software Foundation3 to foster
development and promote the idea.

The story of the founding of GNU/ESF and the motivations behind it4
makes for a fascinating reading. Even if you are not interested in Free Software,
the story prompts you to think in new ways about software, property, and
freedom. As interesting as this story is, it is not our topic. The important thing
is how the quest to create a Free operating system lead to a native Java compiler
and the twists and turns on this way.

THE GNU COMPILER COLLECTION

If you are going to write a UNIX-like operating system, and one that is “Free”
(certainly free of anyone else’s intellectual property which might be restricted
from the Free Software point of view), the first thing you need is a C compiler.
Thus, a great deal of early effort by the FSF went into developing what was
originally called the GNU C Compiler, or gec.

Once they had a C compiler, some people began to write hundreds of
utilities from Is to grep, while others began work on HURD, a microkernel for
GNU. That work continues to this day. The bulk of the system commands you
use on Linux were in fact developed by the FSF as part of the GNU project.
This is why Stallman et al. want us all to refer to “GNU/Linux” rather than
“Linux”.> An understandable, if unenforceable, position.

It wasn’t long before an effort began to integrate C++ into gec. As time
progressed, support for more and more languages and for more and more

2. http://www.gnu.org/licenses/gpl.html
3. http://www.fsf.org/
4, http://www.gnu.org/gnu/thegnuproject.html

5. A viewpoint we understand and appreciate, but we do not bow to is that we must a/ways say
“GNU/Linux.” We say it sometimes, but it gets tedious and annoying if used all the time. So
we compromise. We tell you about GNU, but we’ll usually say just “Linux” in the text.



7.4 Compiling Our Simple Application with gcj 181

7.4

architectures® was being added. At some point, it was decided to rename
(reacronym?) gce to mean “GNU Compiler Collection.”

Not too surprisingly, as Java emerged and gained popularity, it became
one of the languages supported by the GCC using a front end called gcj.” That
is what we’ll be talking about here.

COMPILING OUR SIMPLE APPLICATION WITH GCJ

The basic form of ggj is
gcj [options...] [codefile...] [@listfile...] [libraryfile...]

We'll go over the options in a moment. For now, let’s talk about the
various kinds of input files the compiler can process.

In the above command-line synopsis, codefile refers to a Java source
file, a compiled .class file (yes, gcj can convert already compiled Java byte-
codes into native binaries), or even a ZIP or JAR file. A filename prefixed with
the at-sign, @, indicates that the file contains a list of filenames to be compiled.
That’s the @1istfile entry in the command synopsis. Finally, zero or more
library files to link with may be specified on the command line. When you
specify them directly (as opposed to using the -1 command-line option) you
must provide the full name of the library.

Like all the other Java compilers we have talked about so far, gcj supports
the notion of a classpath. It will look in the classpath for unknown classes refer-
enced by the classes you name to the compiler. Since gcj can read and compile
from .class and .jar files, you might think you could just make sure that
the JAR files from Sun or IBM Java SDK are on the g¢j classpath and you
would be able to compile any Java program using any Java APIs. Alas, you
would be wrong. Why? Because the Java APIs are full of native methods,
and which methods are implemented in Java and which are native is not
documented anywhere.

6. A lot of people do not realize this, but gec is a cross-compiler. Precompiled binaries do
not always support this, but if you build your compiler from source, you can use gcc to

compile code for any supported platform. For example, you can compile a program for a
PowerPC-based Macintosh on your Intel-based PC.

7. http://gcc.gnu.org/java/index.html



182

Chapter 7 The GNU Compiler for Java (gcj)

Even if this were not so, it is not permissible under the GPL to distribute
binaries without also offering to distribute source code. So, to distribute the
Sun or IBM API JAR files would be incompatible with the GPL, and to not
distribute them but to depend on them would mean shipping a product that
doesn’t work out of the box and requires users to obtain some non-Free soft-
ware in order to work. That is just not acceptable. So the developers of gcj have
opted to reimplement as much of the Java APIs as possible.

As you can probably guess if you have browsed the Java API Javadoc files,
this is a monumental undertaking. The Java APIs are a moving target, and they
started huge and grow larger with every new release. There is a parallel project
to gej called GNU Classpath® which is attempting to implement the entire Java
API. Tts target for the 1.0 release is to be fully compatible with Java 1.1 and
“largely compatible” with Java 1.2. You might want to look at that project for
better API support than that provided by gcj’s 1ibgej.? If you are curious
about the present status of 1ibgc3’s implementation of the Java APIs, there is
a Web page (frequently updated) that compares the status of it against the
Java 1.4 packages.10

7.4.1 Compiling FetchURL with gcj

We'll discuss gej’s command-line switches in detail in Section 7.5, but we will
have to use a couple of them here. First off, be aware that since gej is actually
part of gec, all of the non-language-specific switches of that system also work
in ggj; thus, -o specifies the name of the binary output file, and so on. There
are many references on gec to which you should refer for details (the manpage
on gec is a good place to start). Example 7.1 shows compiling and running
FetchURL with ggj.

8. http://www.gnu.org/software/classpath/

9. The g¢j and GNU Classpath projects are in the middle of an effort to merge their libraries
into a common library. The GNU Classpath project aims to be a Free Software replacement
for the JRE API JAR file. As such, it is meant to be a library of Java bytecodes that may be used
as a drop-in replacement in any Java runtime environment. For our discussion, we will assume
you are using 1ibgc3j as shipped with ggj itself.

10. http://gcc.gnu.org/java/jdkld-1libgcj.html



7.4 Compiling Our Simple Application with gcj 183

TIP
The source code for FetchURL can be found in Example 3.30.

Example 7.1 Compiling and running FetchURL with gcj

$ gcj -o furl --main=FetchURL FetchURL.java

$ ./furl http://www.multitool.net/pubkey.html
http://www.multitool.net/pubkey.html:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>

<HEAD>

<TITLE>Michael Schwarz's Public GPG key</TITLE>
</HEAD>

<BODY>

<CENTER>

<H1>Michael Schwarz's Public GPG Key</H1>
</CENTER>

<PRE>

Version: GnuPG v1.0.7 (GNU/Linux)

mQGiBDUVv6IQRBACNITIWUXiEuZt fR+0Lgx6tYBAZIRp1jL4206r5nKHMNdsWV71le
FUnhQpQIf+bNGGPMEtO0gOVvFpD6YWKP4uIEh20+uliyIIMs5QH3igqp8kFjbtvZa2l

etc.

We already explained the -o switch which names the resulting binary. The
other switch we use here is --main which specifies the class containing the
main () that should be run when the binary is invoked. Remember that every
Java class may contain amain (). In a multiclass program, the binary needs to
know which main () to run when the binary is executed.

Remember that FetchURL is in the default package,'! so you simply
type the class name as the argument to --main. However, if the class is in a
nondefault package, the fully qualified name must be used.

11. Any class without a package declaration is in the default package.



184

Chapter 7 The GNU Compiler for Java (gcj)

7.4.2 Compiling a Multiclass Program

For contrast, Example 7.2 shows compiling a multiclass program that is
contained in a package (it is the Payback debt/savings/purchase calculator).!2

Example 7.2 Compiling and running a multiclass program

S cd payback/src

S gcj -o payback -I. --main=net.multitool.Payback.Payback \
net/multitool/Payback/Payback.java

$ . /payback

Payback -- A savings/credit comparison tool

Copyright (C) 2003 by Carl Albing and Michael Schwarz
Released under the GNU/GPL. Free Software.

etc.

The -1 switch names a directory that is to be prepended to the classpath.
In this case, we added “.” which is the source directory for the Payback
program.!3 Notice the package elements expressed with dots for the --main
argument, and with slashes for the filename argument.

NOTE

The gcj compiler does pick up and use the CLASSPATH environment variable
if it is specified. Also, gcj has a number of switches besides -I for classpath
manipulation. We won’t cover those here; - is the preferred method (according
to the gcj manpage at any rate).

12. Since this chapter was written, XML features were added to Payback that make it no longer
work with ggj.

13. The Payback code can be found at the book’s Web site: http: //www.javalinux-
book.com/.



7.5 Options and Switches 185

7.5 OPTIONS AND SWITCHES

As we have said, ggj is part of the gcce suite of compilers and therefore supports
all of the non-language-specific options and switches of that suite.
As with most reference material in this book, we will only cover the

highlights. See the gcj manpage or the project’s Web site for full details.4

-Idirname
Add dirname to the classpath ahead of its existing contents.

-Dname[=value]
Add name and optional value to the system properties list. This is only
valid with the --main switch.

--main
Specifies which class contains the application’s main (). This gives the
starting point for an application.

-fno-bounds-check
Disable array bounds checking. Like “real” Java, gcj checks all array oper-
ations to ensure that array bounds are not exceeded. Using this switch
disables that check. It speeds up array operations but can introduce subtle
and hard-to-find bugs. Use at your own risk.

-fno-store-check
Like - fno-bounds-check, this disables a safety feature on arrays. Normal-
ly, when you store an object into an array, a check is made to make sure
that the object is assignment-compatible with the array type (in other
words, that the object is an instanceof () of the array type). Using this
switch disables this test. It speeds up array operations but can introduce
subtle and hard-to-find bugs. Use at your own risk.

There are other switches for native methods, bytecode (as opposed to
native) compilation, and some switches related to resources. We leave it as an
exercise for the reader to learn and use these where needed.

14. http://gcc.gnu.org/java/



186

Chapter 7 The GNU Compiler for Java (gcj)

7.6 REASONS TO USE GCJ

You might think that speed would be the primary reason to use ggj, but this is
not necessarily the case. Yes, g¢j is usually used as a native code compiler
(it can compile to Java bytecode as well, and thus can be used as a replacement
for javac), but there is a lot more to Java performance than that. First off, both
Sun’s and IBM’s JVMs have JIT (“Just-In-Time”) compilers in them, which
convert some or all of a class’s bytecode to native code on the fly. In some cases,
these compilers may do a better job than the gcj compiler, so as a result, initial
runs under a JVM are slower than gcj but later loops or iterations are compara-
ble or faster. Also performance of both gcj and JVM code is highly affected by
memory, stack, and garbage-collection parameters which may be modified with
command-line options or properties files. So speed is not the determining fac-
tor. We have not done sufficient testing or measurement to tell you which en-
vironment produces “the fastest code” from a given source file. (We’re not even
sure exactly what such “sufficient testing” might consist of. All we can suggest
is that your try your code in all three environments and then make your
own choice.)

It is, perhaps, ironic that one of the main reasons why you might wish to
use g¢j is portability. You see, you can only run Sun’s and IBM’s JVMs on
platforms for which they provide a compiled version. Linux runs on several
hardware platforms (such as StrongARM) for which Sun and/or IBM do not
provide JVMs. Also, if you are running Linux on some architectures, there may
be VM for the “official” OS, but none for Linux on that architecture. This is
the case, for example, for SPARC and Alpha. The cross-compilation that gcj
inherits from the GNU Compiler Collection allows you to compile Java to
native code for Linux on those platforms.

Another reason to use gcj might be a desire for better integration with
code compiled from other languages. gcj has JNI support, but also provides its
own inter-language integration system called CNI, for Compiled Native Inter-
face. We don’t have space to cover CNI (and, frankly, we haven’t used it
enough to be good judges), but its proponents claim that it is both easier to use
and more efficient than JNI. You can read up, use it, and judge that for
yourself.

Still another reason might be one that we don’t like very much. Again, it
is ironic that the only Free Software Java compiler is the one best able to pro-
duce proprietary binary code. Code compiled with ggj is as difficult to reverse
engineer as compiled C or C++ code. It is subject to the same sort of binary



7.9 What You Still Don’t Know 187

7.7

7.8

7.9

obfuscation as other native compiled code. If you need to make your code
closed and proprietary, gcj may be the right tool for you. Naturally, we aren’t
very fond of this idea, but it is still a reason one might choose the tool.

Finally, we mentioned that speed wasn’t a certain factor for choosing ggj,
but there is an exception. So far,!> Java is particularly slow at starting and
shutting down virtual machines. If you have a Java program that is invoked on
demand or in a loop and the VM is started and stopped on each invocation,
then g¢j will give you a huge speed improvement, even if the code executes at
the same speed or slightly slower than the JIT JVM code.

REASONS NOT TO USE GCJ

We can think of three reasons not to use gcj. First, the compiled binary will
run only on the target platform, whereas a Java bytecode binary is portable to
any Java runtime without modification or recompilation. Second, g¢j is not
definitive. Sun still “owns” Java and only Sun’s implementation can be pre-
sumed to be “correct.” Third, the gcj API classes are not complete. If you visit
the API status page we mentioned earlier, you can see what is provided and
what is not. If gcj lacks an API your application requires, then you can be sure
g¢j is not the tool for you.

REVIEW

The GNU Compiler for Java is part of the GNU Compiler Collection. It is
generally used to compile Java source code into native binaries. It provides
many of Sun’s API classes, but not all.

WHAT You STiLL DON’T KNOW

You do not know how to interface with C/C++ code using gcj. You do not
know how to use SWT from Eclipse to write GUI apps with ggj.

15. Sun claims that Java 5.0 will show considerable improvement in VM initialization speed.



188

Chapter 7 The GNU Compiler for Java (gcj)

7.10 RESOURCES

There are a number of resources for ggj, including

The gcj home page.!©

The gcj FAQ.17

The g¢j documentation page.'8

The JDK1.4 to 1ibgcj comparison page.!? This resource is particularly

useful in deciding whether gg¢j is an appropriate tool for compiling your
program.

Many features of ggj are, in fact, “inherited” from the parent project,
the GNU Compiler Collection. You can find your way to a lot of good
information from the GCC home page.20

16.
17.
18.
19.
20.

http://gcc.gnu.org/java/

http://gcc.gnu.org/java/fag.html

http://gcc.gnu.org/java/docs.html

http://gcc.gnu.org/java/jdkld-1libgcj.html

http://gcc.gnu.org/



Chapter 8

Know What You Have:
CVS

Source control is such a necessary part of good development practice that it
ranks right up there with a sound compiler as a critical part of any software
project. It may seem like only an administrative overhead to newcomers, but
its effect on a project of any size will be felt over time; it’s not the first version
of a project that needs source control so much as versions 2 and beyond. And
it can be a life saver.

One of the Linux tools that is most appreciated on projects around the
globe is the Concurrent Versioning System, CVS.! It is one of the best, most
reliable pieces of software that these authors have ever used. It should be part
of your repertoire of software skills, even when you’re not running on Linux.
But enough praise; back to practicalities.

1. As we were writing this chapter, the core developers of CVS released version 1.0 of a new
version control system called Subversion. This new system supposedly contains many improve-
ments over CVS. We do not doubt this, and we recommend that you take a look at Subversion
before you select a version control tool. Meanwhile, we know CVS, and most Open Source
projects are currently managed with CVS. Choosing CVS won’t be a bad choice.

189



190 Chapter 8 Know What You Have: CVS

8.1 WHAT You WILL LEARN

* Why you need CVS—the problem with source code.
* How CVS solves this problem.
* Some basic CVS mechanisms:

* Importing source

e Checkout

e Commit

* Tagging

* Branch tagging

e Status

* Log

* Export
* A quick look at a CVS GUL

8.2 SOURCE CONTROL: WHYS AND HOws

Consider the following scenario: A customer has called with a problem in the
software that your development team released over a month ago. Your develop-
ers try to reproduce the problem on their systems without success. What version
of software is your team running? Well, there has been a lot of development
in the last month, a lot has changed. Some new features have been
added—halfway. In other words, it’s close but not really the same software.
And it’s far from being ready to be given to the customer as a fix-release. Well,
what’s changed since the release was shipped six weeks ago? Can you find or
create a set of sources that matches exactly what the customer is running? Can
you then provide a modified version that contains only the fix necessary and
no other changes?

With such low prices for hard drives these days it is now economically
feasible to track your software releases simply by shelving an entire hard drive
with each release of your software. It could contain the source code and all the
tools in use for that version. But it does make search and comparisons a bit
difficult. Still, conceptually, this is almost what you’d like—to be able to access
an image of what your source looked like at any given point in time (for
example, when released).



8.2 Source Control: Whys and Hows 191

Enter cvs—the Concurrent Versioning System. It's a versioning system,
allowing you to retrieve copies of the source based on either date parameters
(e.g., last Tuesday) or the labels that you create. It’s concurrent because it
supports multiple simultaneous users.

You may have used a versioning system before that let multiple program-
mers work with a set of files. Often such systems will “lock” a file while one
user is using it, keeping others from modifying it. CVS doesn’t work that
way—or doesn’t have to. Rather it allows users to each modify the same file
(truly concurrent), and then reconciles the changes when those changes are
made permanent.

To explain all this, it would be best to set down some terminology, as used

by CVS.

repository
The master copy of the source.

sandbox
A developer’s local copy of the source.

checkout
The process of acquiring a copy of the source (one or more pieces) from
the repository.

commit
The process of adding the changes from your sandbox into the repository.

update
The process of revising your sandbox with changes that have occurred in
the repository since you last updated or created your sandbox. When you
“update” your sandbox, other developers’ changes that have been commit-
ted to the repository are merged into your source sandbox.

tag
As a noun, is a special label that you create to mark a milestone in your
source repository; you can return to that milestone by checking out a copy
of the source with that tag.

tag
As a verb, refers to creating a tag in the source repository.



192

Chapter 8 Know What You Have: CVS

Once a repository has been set up for use by a project, each developer
would check out a copy of the source. Thereafter, the typical sequence for a
developer would be:

Edit.
Test.

Commit.

bl

Go to step 1.

In some organizations, developers will commit and then test. Others will
want to only commit changes that have been tested. Which order you choose
is a policy decision by your project, not mandated by CVS.

TIP

We recommend that you test before committing because once you have com-
mitted your changes, they become available to all others developers. The more
people are working together on a project, the more important it is to keep the
source base workable, that is, clean compiling at least, so others can keep
working.

Sometimes the developer needs to do an update step before a commit.
Such a step is used to integrate other developers’ changes into this developer’s
source. Sometimes this goes smoothly; other times it needs some
additional work.

A simple scenario might help explain these steps, too.

Two developers, Ti and Kwan, are working on project Doh. They already
have a repository set up with all the source for project Doh. Each developer,
on his/her own system, checks out a copy of the source (cvs checkout doh).
Now let’s say that part of the source is a Java class file called Account.java
and it has had several changes made already, so Account.java is now at
version 1.7 in CVS.

Let’s say that Ti finds a bug in Account . java and makes a change to fix
that problem. Ti checks in (commits) the changes to Account.java (cvs
commit Account.java) so that the repository now contains Ti’s changes,
which CVS keeps as version 1.8 of Account . java.

All this time Kwan has been busy modifying Account . java (e.g., adding
a new method). Remember that Kwan is working from the 1.7 version. When



8.2 Source Control: Whys and Hows 193

Kwan goes to commit his modified version of Account . java to the repository,
he is notified that Account . java has been changed since his copy was checked
out, and the commit attempt fails. So Kwan does an update which merges the
1.8 version of Account . java in with his modified 1.7 version. If all goes well,
the resulting file will be a 1.8 version of Account . java which includes Kwan’s
new changes in the right place(s). Kwan just commits this to the repository,
and Account . java then stands at version 1.9.

Note that cautionary phrase “if all goes well.” The merge will work if Ti
and Kwan have each modified different parts of the same file. If all Kwan did
was add a new method, it would merge just fine. But what if they both make
changes in the same region of the source file? It is up to the programmer to
resolve such conflicts and commit the source once again.

In such a situation, CVS does what it can to help out. There is an example
of a merge conflict later in this chapter. But such conflicts require human
intervention.

Merging of conflicts is, undoubtedly, a very manual process, but you will
be surprised by how infrequently you need to do this. Most changes will be
merged clean with no manual intervention required. That’s probably because
most often, when two or more programmers are modifying the same file, they
are modifying different sections of it.

With merging, you have the ability to incorporate other developer’s
changes into your version of the source without the fear of losing your changes.
No one’s changes get lost, no one’s files get “stepped on.”

8.2.1 Setup

Before you can use CVS to track your sources, you need to initialize a reposito-
ry. You can use this repository for several different projects, so you only need
to do this setup once.

There are two different ways to connect to a repository—directly on a
filesystem, or indirectly over a network. We will use the simpler filesystem
mechanism for this discussion. The network connections are described in the
references at the end of this chapter.

In order for CVS to know where the repository is located and how to
connect to it, it looks for an environment variable called cvsrooT. You can
assign a value to CVSROOT from the command line each time you create a CVS
project, or for more convenience, you can set it in the shell startup script
(e.g., .bashrc) so that its ready all the time. The cvsroOT value is really only



194

Chapter 8 Know What You Have: CVS

used, though, to set up the project. Once a project is established, the informa-
tion in CVSROOT is kept, along with other data, in a directory of files (called
cvs). From that point on, cvSROOT (the environment variable) no longer needs
to be set. The CVS commands will always use what is in the local sandbox to
determine where the repository is; the value of the environment variable will
be ignored.

It is possible to have different repositories for different projects. One
repository might be for your personal work—revisions of memos and docu-
ments that you create on your local machine and store in a repository also on
your local machine. Another repository might be a shared network-based
repository, used for a project at work. Still another might be a network-based
project for some Open Source work that you do in your spare time. Since the
CVS repository keeps track of whence it comes, you needn’t set a value for
CVSROOT every time you switch projects. Instead, CVS knows from within the
sandbox where to go for its updates, commits, and so on.

So let’s get started and create a CVS repository on our local Linux system,
in our own home directory. We will call the repository srcbank, as it will be
the “bank” where we will deposit our source files.

$ mkdir S${HOME}/srcbank
S export CVSROOOT="${HOME} /srcbank"
$ cvs 1init

The mkdir creates the directory named srcbank as a subdirectory of our
home directory. The export command sets the shell variable cvSROOT to refer
to the location of the new directory. The cvs init command initializes the
repository with some needed directories and data files.

Before the cvs init command, the srcbank directory is empty. After-
ward it contains a directory called cvsrooT (literal name, not the shell variable’s
value) which contains a variety of administrative files—most of which you need
never worry about.

If your are using a remote repository, that is, one that you connect to over
a network (typical when you are sharing a repository amongst team members),
then you need one additional step—you need to log in to the CVS repository’s
server:

$ cvs login



8.2 Source Control: Whys and Hows 195

which will prompt you for a password. Having logged in once, you will not
need to log in again, even after reboots of your system, as CVS keeps the
password (by default; it can be changed) in a file called . cvspass in your home
directory. This makes using CVS with a remote repository (once you’ve logged
in as simple as if the repository were local). From here on, the commands will
all look the same. If your repository is remote, CVS will use the password from
your .cvspass file, without asking you for it.

8.2.2 Import

Are you wanting to use CVS on an existing project? Have you already got your
project at least partly underway? Let’s look at how to enter all those files into
CVS with a single command.

Not every file that is in a working directory needs to be kept under source
control. Some, like . class files, are created from the . java source files. Others
may be just scratch files that you don’t want to keep versioned.

To automatically exclude certain files from ever being included in your
repository, CVS uses a file called . cvsignore that lists filename patterns. Any
filename matching a pattern will be ignored by all CVS commands.

Here is a . cvsignore file that we recommend for Java developers:

*.zip
*.class

This will exclude any file whose name ends in . class or . zip. Note that
the comparison is strictly based on a name, not the actual contents. CVS
doesn’t know what a “class” file is; it is only excluding a file based on its name.

Certain files are not really source files and can’t be managed as such, but
we would still like to keep versions and a history of changes for them. A good
example would be an image file. For example, you may have a corporate logo
in a file called 1ogo. jpg and at some point you may get a new or revised ver-
sion of that file. You can use CVS to track such files, but you need to tell CVS
that this is a binary file, so that CVS doesn’t try to do some special substitutions
that it does on check-in and check-out. (More about those substitutions later.)

For now, let’s just consider how to tell CVS which files are binary. We can
do that on the command line when we create a new file, but for importing a
lot of files at once, and to avoid the need to remember doing that each time we
add a file, we can put patterns for binary filenames in a CVS file called

.CVsSwrappers.



196

Chapter 8 Know What You Have: CVS

Here is a . cvswrappers file that we recommend for Java developers:

#

# A recommended .cvswrappers file

#

# jar files - treat as binary:

*.jar -k 'b’

#

# Image file formats - treat as binary:
*.gif -k 'b'

*.Jpg -k 'b'

*.png -k 'b'

*.tif -k 'b!

#

# Document file formats - treat as binary
# both MSOffice and OpenOffice.org file formats:
*.doc -k 'b'

*.ppt -k 'b'

*.xls -k 'b'

*.sx? -k 'b'

The format of the file is very UNIX-like. A leading # means that the rest
of the line is a comment. The asterisk matches any number of any characters.
The question mark matches a single character.

Now we’re ready to import. The . cvsignore file should be placed in the
topmost directory of the set of files that you want to import. Then, from that
directory, issue the command:

$ cvs import Project YourCo import

where Project is whatever name you want to use for this project (or module)
in CVS, and vourco is the name of your company or some other designator
to differentiate this source from other third-party packages that you may keep
in your repository.

Most importantly, execute the cvs import command from within the
directory, even though the name of the project is likely (but doesn’t have to be)
the same as the name of the directory in which you sit.

For example, consider a fragment of the filesystem shown in Figure 8.1.
You would want to cd into the directory coolj and then issue the import
command:

$ cd coolj
$ cvs import coolj GJSinc import



8.2 Source Control: Whys and Hows 197

mydir

prev coolj misc

|
l |

FetchURL.java | | Sprit.java Tux.java

Figure 8.1 A sample directory structure prior to import

This will create a module named coo1l7 in the repository, whose contents
are all the directories and subdirectories that you see there. But you had to be
in the cool7 directory, which may seem counter-intuitive.

Now go to some other directory, one that is 7oz part of the coolj part of
the tree, and check out a copy of the source. For example:

cd

mkdir devsrc

cd devsrc

cvs checkout coolj

vr r Uy

NOTE

It is important to check out the source after you’ve done the import, and before
you make any changes, because the part of the filesystem that you imported
remains untouched. It has no CVS knowledge, so you can’t commit changes
from that directory, unless you somehow make it CVS-aware. Since these files
are your originals, until you've verified that the cvs import has gone as
planned, it's best not to disturb those files. Create a new directory and check
out the module there.

What do you see after the checkout? There should be a single directory,
coolj, in the directory where you did the checkout (since it was empty when
you started). That directory contains a copy of all the files that you checked in,
along with a directory named cvs inside that directory and every subdirectory.
The cvs directories contain administrative files that help CVS keep track of
things for you, which means no CVS tracking information needs to be kept in



198

Chapter 8 Know What You Have: CVS

your source. You should never need to mess with the files in the cvs directory;
see the Cederqvist reference in Section 8.6 for more information about

these files.

8.2.3 Normal Use

The typical use of CVS occurs after you’ve made some changes to your source
code. At some point, typically after the code compiles cleanly or after the
changes have been tested to some extent, you will want to commit your changes
to the CVS repository. When you commit one or more files, they become the
latest version, the version that others get when they checkout or update the
module. To say it another way, when you commit, you make those changes a
permanent part of the source repository, available to others.
You can commit a single file at a time, like this:

S cvs commit Account.java

Or you can commit several files at a time, like this:

$ cvs commit Account.java User.java Xyz.java

Or you can commit all the changes from a certain point in the filesystem
hierarchy (e.g., the current directory) on down, like this:

$ cvs commit

(Specifying no files implies the current directory. You can also name a directory
explicitly.)

When you commit changes, CVS wants you to provide a bit of commen-
tary to explain what you’ve changed, to say something about this new version.
The comment can be supplied on the command line, with the -m option:

$ cvs commit -m "bug fix"

If you don’t provide the -m parameter and its argument, CVS will invoke
your favorite editor (as specified in the environment variable CVSEDITOR or
VISUAL or else EDITOR, in that order of precedence). The default, on Linux
systems, is to invoke vi (see Figure 8.2). In the editor, you can type one or more
lines of text; when you exit, the commit will continue to completion.



8.2 Source Control: Whys and Hows 199

[x] Bl=a]
Session Edit View Settings Help

] =
WS —— === m—m e

C¥S: Enter Log, Lines beginning with "CVS:' are removed automatically

CWS:

CWS: Committing in

CWS:

CWS: Modified Files:

CWS: Account , java

WS —— = m e

T ¥ ¥ ¥ ¥ ¥ : :» ¥ ¥ ¥ % %

1.0-1 ALL [

s e | [ v

Figure 8.2 CVS asking for commentary as part of a commit

NOTE

If you quit the editor without writing your changes (in vi, that would be : g!) then
CVS will ask if you want to abort the entire commit. If you choose to abort, no
changes will be made to the repository. You'll be right back to where you were
just before typing the cvs commit command.

You will be able to see the comments associated with each version of the
file using the cvs log command (see Section 8.2.6).

As you will want to provide brief but meaningful descriptions in these
comments, it may be helpful to remind yourself what in fact has changed. You
can see the differences between the version that you checked out and the file as
it stands today by using the cvs diff command:

$ cvs diff Account.java

Here, as in commit, you can name one or more files, or even a directory. CVS
will display what lines you’ve added, modified, or removed in each file.



200 Chapter 8 Know What You Have: CVS

Example 8.1 Sample output from cvs diff

$ cvs diff Account.java
albing@cvs.multitool.net's password:
Index: Account.java

RCS file: /usr/lib/cvs/cvsroot/JavaAppDevLinux/majorApp/net/multitool/core/
Account.java,v

retrieving revision 1.10

diff -r1.10 Account.java

31d30

< this.parent = null;

66a66

> * returns an iterator

93c92

< children.put (acct, name) ;
> children.put (name, acct);
$

In Example 8.1, CVS has found three differences—one line being re-
moved, one line being added, and one line being changed. The < precedes lines
from the repository version, and the > precedes lines from the new, that is,
changed, version. The 31d30 shows the line numbers from both versions, sep-
arated by a single character to indicate what difference action is being described:
a for adding lines, d for deleting lines, and c for lines that change.

A typical work sequence might go something like this:

Edit some files.

cvs diff those files.

cvs commit those files.

Go to 1.

bl

The cvs diff command is also quite useful for finding out what changed
between some previous version of a file and the current version:

$ cvs diff -r 1.15 Account.java
or between two different previous versions:

S cvs diff -r 1.12 -r 1.15 Account.java



8.2 Source Control: Whys and Hows 201

or since a certain date:

$ cvs diff -D 06-Sep-03 Account.java

8.2.4 Update

If there are other people working on this project with you, they will also be
making changes. To bring there changes into your sandbox, run the cvs
update command:

$ cvs update

cvs server: Updating .

P Account.java

M User.java

cvs server: Updating subdir

Here, p indicates CVS has patched in changes to that source file; and 1
indicates you have modified the file. Note that xyz.java is not mentioned.
That means there were no updates involved.

The subdirectory subdir was also updated, but no changes were made.
Had a change been made, you would see the modified files mentioned by name.

You can update a single file at a time by naming that file on the command
line, but typically you want to get the changes for all the files in a directory, or
even all the changes throughout the project, since a change in one file may be
dependent on changes in other files.

Sometimes when you try to commit your changes you will be told that the
commit did not succeed because one or more of your files was not up to date.
Not to worry; it’s easy to bring your files up to date. This leads directly into
our next topic. Read on!

8.2.5 Merges

When you commit changes, a new version of each changed file is now part of
the repository. If someone else commits changes, that person’s changes are now
part of the repository as well. But those changes (unlike your own local changes)
are yet to appear in your own local copy of the files, that is your sandbox.

The following CVS command will bring your files up to date with all the
changes made since you checked out your copy (or last did an update):

S cvs update



202

Chapter 8 Know What You Have: CVS

With that command all the files from the current working directory on
down will be updated with the most recent versions of the files from the
repository—and not just updated: changes that you have made in your local
files will be preserved and merged with the new version of the files.

Here’s what a successful merge looks like:

$ cvs update Account.java

cvs server: Updating Account.java

M Account.java

RCS file: /usr/local/srcbank/JavaAppDevLinux/Account.java,v
retrieving revision 1.17

retrieving revision 1.18

Merging differences between 1.17 and 1.18 into Account.java
M Account.java

$

Remember our scenario earlier in the chapter? Our two programmers, Ti
and Kwan, have each modified the same file. If all Kwan changed was adding
a new method, it would merge just fine. But what if they both made changes
in the same region of the source file? Well, the first one to check in his changes
will be fine. His commit will succeed. But the second person to try to commit
changes to the file will find that CVS will report an error:

$ cvs commit Account.java

cvs server: Up-to-date check failed for “Account.java'
cvs [server aborted]: correct above errors first!

cvs commit: saving log message in /tmp/cvsQ9rk01l

Now, attempting to update will put bozh versions in your local file, marked
up by certain character strings to highlight and separate the sections. It is up
to the programmer to resolve those conflicts and commit the source once again.

Here’s an example of how a conflict might look in a source file:

<<<<< ver. 1.7
for (1i=0; 1i<20; i++) {
myData.callSomething (dollars, time);

while (i<20) {
myData.callOtherwise(dollars* (i++), time/60);

>>>>>



8.2 Source Control: Whys and Hows 203

In such a case, the programmer must decide which changes to keep, or
how to combine them. After editing the file and removing the dividing lines
(ie., <<<<<, =====, and >>>>>), recompiling and probably a bit of testing,
too, the programmer can now do a cvs commit to incorporate his changes in
the repository.

8.2.6 Log

With each cvs commit you are prompted for a comment, to describe the
changes that you are committing. What happens to these comments? How can
you see them again? Use the cvs log command to show the history of a file’s
revisions and associated comments.

See Example 8.2 for an example of the cvs output command.

Looking down the output of cvs 1log, you can see

* The complete filename—in the repository—of the file whose log we’re
checking out.

* The local filename in your sandbox.
e Which revision is the “head,” that is, the front-most or default revision.
* Which branch, if any.

* What kind of locking mechanism CVS uses. There are some choices, but
most users of CVS leave this as is.

* The access limitations. CVS can limit who can modify files (see our
reference list if you need to use this).

* A list of all the tags (symbolic names) for this module and to which
revision each refers.

* What kind of keyword substitution happens. For binary files this would
be kb.

¢ The count of revisions for this file.
Then comes a description of each of the revisions, showing

¢ The revision number.

* Some stats on the change including the user ID of the user who committed

the change.

* How many lines were added and deleted compared to the previous revi-
sion.



204 Chapter 8 Know What You Have: CVS

Example 8.2 An example of running the cvs 1log command

$ cvs log Account.java

RCS file: /usr/local/srcbank/JavaAppDevLinux/Account.java,v
Working file: Account.java

head: 1.4

branch:

locks: strict

access list:

symbolic names:

keyword substitution: kv

total revisions: 4; selected revisions: 4
description:

revision 1.4

date: 2003/05/20 11:59:59; author: albing; state: Exp; lines:

more comments added

revision 1.3

date: 2003/05/18 15:03:23; author: albing; state: Exp; lines:

end case fixed

revision 1.2

date: 2003/05/17 11:05:40; author: albing; state: Exp; lines:

actually runs - unit tested

revision 1.1
date: 2003/05/17 10:15:18; author: albing; state: Exp;
a rough structure

+80 -5
+3 -2
+69 -2

* The comment that was entered when the user committed the change.

(For a description of state, and why you will almost always see Exp;, see the

Cederqvist reference in Section 8.6.)

Do you want less output from cvs log? You can restrict the information
to cover only a certain user’s changes (-w), to a certain range of revisions (-r),

and/or between certain dates (-d).
For example,

cvs -walbing -rl.2:1.4 -d05-Sep03 -d28-Sep-03 Account.java

will list only changes committed by user albing, only in the revision range of
1.2 through 1.4, and only between the dates of 05 and 28 September of 2003.



8.2 Source Control: Whys and Hows 205

Note: do 7ot put a space between the -w, -r, or -d and its parameter or CVS
will think that the parameter is the name of a source module, and you will see
a message like this:

$ cvs log -r 1.2:1.4 Account.java
cvs log: nothing known about 1.2:1.4

which will be followed by output about the Account . java module that CVS
does know about.
For more variations on the logging output, type:

$ cvs log --help

8.2.7 cvs status

While the cvs log command will tell you about the history of all revisions of
a file, you sometimes need to know the status of the current file in your sand-
box: Which revision is it? From where did it come? And, most importantly, is
it part of the head or part of a branch?

Those questions can be answered with the cvs status command. Its
output will show the revision number of the file in your sandbox and any
“sticky” tags. But to understand what that means, we need to talk about tags
first.

8.28 cvs tag

We began this chapter asking: “Can you find or create a set of sources that
matches exactly what your customer is running? Can you then provide a mod-
ified version that contains only the fix necessary and no other changes?” Part
of the answers to these questions will depend on your use of the cvs tag
command. With it, you can set down a label across all your source to mark a
particular milestone, so that later you can recall that version of the source.
For example,

$ cvs tag Rel_2_4

will put a tag (that is, a label) called Re1_2_4 on the head revision of all source
files from the directory where this command was executed on down through



206

Chapter 8 Know What You Have: CVS

all its subdirectories. If you run this command from the uppermost directory
in your project sandbox, it will label your entire project.
A tag can be applied to a single file or group of files by listing them

explicitly on the command line.

NOTE

Certain special characters are not allowed in CVS tags. Specifically, the charac-
ters $,.:;@ are not allowed. So you can’t use release_2.4 as a tag.
Too bad.

Tags cut across the various revisions of the source. While you can specify
that a tag goes on the same revision of all sources (e.g., cvs tag -r 1.3
one_dot_three_tag), the more typical use is to tag different revisions of each
module, the revisions that you’ve just been working with and testing.

Figure 8.3 shows a tag (0a) that cuts across the various revisions of the
different sources. With such a tag, someone can check out a copy of the sources
to get the QA release:

$ cvs co -r QA project

a.java a.java a.java
v. 1.1 v.1.2 v.1.3
b.java b.java b.java b.java
v. 1.1 v.1.2 v.1.3 v.1.4
I
l
c.java c.java
v. 1.1 v.1.2
|
QA tag

Figure 8.3 A tag across three files



8.2 Source Control: Whys and Hows 207

Since your project would likely have more than one time in its life that it
would be handed off to 0a, some people will put date information in the tag,
for example, 0a_2003_07_15. Others will use a simple tag, such as 0a, but
such a tag may need to be reused.

If you've put down a tag and decide that you no longer want that tag
(for example, your product is preparing for a new 0a cycle and you want to
reuse last cycle’s tag, or maybe you simply misspelled your tag), you can delete
it using the -d option.

WARNING

Once you delete a tag, it’s gone forever. It is not available even when you recall
earlier versions. If you reuse a deleted tag, it doesn’t remember any history from
its first use.

Imagine your project has just reached a milestone, like the hand-off to 0a,
so you have tagged your source accordingly. Now the 0a group finds a bug and
you fix it. What do you do with the tag? The tag will be on the unfixed version
of source. One thing that you can do, affer you commit your changes, is simply
to move the label:

$ cvs commit Account.java

S cvs tag -F QA Account.java

This will “force” the tag on Account . java to move to the current version.

Such a mechanism works fine for the short term, for quick changes that
are put in shortly after the tag has been set down. But what if it takes 0a several
days to find the bug, and what if, during that time, you've been refactoring
Account. java, or adding features for a future release? In those cases, what you
really need is a branching tag.

8.2.9 BranchingTags

When you use the -b option with a cvs tag command, then the tag you create
is a “branching” tag. That means that you now have two paths in your source
repository. You can check out source from, and commit changes to, either of
those paths. This allows you to keep moving ahead with new development on
the head or tip of the source while providing fixes against a previous version.



208

Chapter 8 Know What You Have: CVS

__ | ajava a.java a.java a.java
v.1.3 v.1.4 V.15 v.16 | Head
a.java a.java
v.1.4 v.15 QA

Figure 8.4 A simple branch and merge

Figure 8.4 shows a single source file with a single branch. The tag (0a)
may have been applied to multiple files, typically to your entire project. The
branched version of each file (for example, 1.3.1.1) is not created until the next
change is checked in for that file, so many of the files with the tag may still be
on their main source branch.

TIP

When do you want to create a branching tag? You can do it at any time that you
lay down a tag. We have found it best to do it right away when you “release”
your software, that is, whenever you hand it off to another group (e.g., QA or
customers). This provides a label (the tag) to identify what exactly was handed
off, but also puts the possibility for branching in place for fixes that may be
needed on that branch.

Let’s look briefly at the steps you would take to lay down a branching tag
named 0Qa, and then apply a fix to that branch.

In the directory where you have your current source, which is what you
just released, set down the branching tag:

$ cvs tag -b QA

NOTE

You have just set down the branching label on the source but you have not
changed your current set of sources. If you make changes in the current direc-
tory (and subdirectories) and check those changes in, you will be making those
changes to the head, not the branch, of the source.



8.2 Source Control: Whys and Hows 209

Example 8.3 Checking out a tagged revision

$ cd

$ mkdir fixes

$ cd fixes

S cvs co -r QA myproject

cvs checkout: Updating myproject

U myproject/Account.java

U myproject/Caltron.java

U myproject/Demo.java

U myproject/Employee.java

U myproject/Person.java

$ cd myproject

$ cvs status Account.java

File: Account.java Status: Up-to-date
Working revision: 1.2 Sat Oct 26 03:32:17 2002
Repository revision: 1.2 /usr/local/srctree/myproject/Account.java, v
Sticky Tag: QA (branch: 1.2.2)
Sticky Date: (none)
Sticky Options: (none)

$

Now that you have the label set down, you need to check out a copy of
that version of the source. Since we are checking out a new copy, be sure that
your CVSROOT environment variable is set appropriately (see above). Then find
some new directory to put your source and check out a copy with the tag, as
shown in Example 8.3.

We did a cvs status after the checkout to show you the important dif-
ference between this version and the other versions. These files will all show a
Sticky Tag in their status. This is the label used to check out or update this
version of the source. When you check in changes to these source files, the
changes will be against that branch, and not the head.

From there on, everything is the same. Make your changes and just check
files in as usual. CVS will remember (via the files in the cvs directory) that
you’re on the branch, so when you check things in, they’ll go to the branch.

The important thing is to create the tag as a branch tag so that you can
commit changes against that branch. The downside, however, is that you now



210

Chapter 8 Know What You Have: CVS

have two different source versions; bug fixes have to be made in both sources,
new features have to be added twice, and so on.

The easiest way to deal with that is to keep your number of active branch
tags small; you likely don’t want to have to apply a fix to 14 different
branches. Also, keep the lifespan of the branches brief—which is, of course, a
relative term.

CVS does provide commands to merge a branch back into the source head.
But for this, we will refer you to other CVS material. Our job is to give you an
overview and a feel for the possibilities. For this sort of task you will want a
complete reference manual.

For more variations on cvs tag, type:

$ cvs tag --help

8.2.10 cvs export

If you want to produce a copy of your source tree without the cvs subdirecto-
ries—just the pure source—you can use the cvs export command. Like the
inverse of import, it will check out a copy of the source, but will not create any
of the cvs subdirectories that allow CVS to manage the commits, checkouts,
logging, status, tags, and so on. In other words, the exported directories are not
a CVS sandbox—they’re just a copy of the files.

NOTE

Changes made to an exported collection of files cannot be committed back to
CVS. Of course you can get the changes back into CVS by creating a sandbox
with a cvs checkout command, copying all or some of the exported files into
that sandbox, and then committing the changes from there. But it's better to
think of export as a one-way street.

8.2.11 A Quick Look behind the Scenes

If you are one of those people who worry excessively about efficiency, let us re-
assure you that CVS is OK. You could think of a CVS repository as saving each
revision of a file (for example, versions 1.1, 1.2, and 1.3), but in fact CVS only
keeps a single full version of a file—the latest version—and then stores the
deltas, that is, changes required to revert back to the previous versions. So it
keeps a full version of 1.3, but then only the differences between 1.3 and 1.2



8.3 AGUI CVS 211

8.3

and the differences between 1.2 and 1.1. This means that it is always very effi-
cient to get the latest version of any file. (Other systems have tried keeping the
original and the deltas for each revision going forward—but that gets very ex-
pensive to retrieve versions with hundreds of modifications. With CVS, the
latest version is always at hand.)

An exception to this are “binary” files, those on which CVS can’t do key-
word substitutions. The revisions of those files, such as JPEG image files, won’t
be stored by deltas, but by complete copies of each revision.

A GUI: JCVS

If you are a die-hard GUI kind of developer, and aren’t yet convinced of the
power and convenience of the command line, then reread Section 1.3.10. If
you are still not convinced, that’'s OK—you can still use CVS with the help of
a GUI written entirely in Java. This is an implementation of the CVS client,
that is, the portion of the CVS system that communicates with a remote server.
The server does the real work of managing the versions; the client collects the
data, manages the local files, and communicates with the server.

If you're going to use jCVS, you will need to get a CVS server up and
running—or maybe your project administrator has already done that. If so,
read on.

8.3.1 Installing jCVS

jCVS can be downloaded from www. jcvs . org where you can get it as a zipped
archive file. Unzip it into a directory and create a shell script to make it easy to
invoke. Since jCVS is an actual Java program, all the shell script needs to do is
to ensure that its JAR files are on the cLASSPATH and then invoke the jCVS
main class.

Here’s a straightforward shell script which will accomplish that:

JCVS="/usr/local/jCVsS-5.2.2"
CLASSPATH="${CLASSPATH}:${JCVS}/jars/activation.jar"
CLASSPATH="${CLASSPATH} :${JCVS}/jars/jcvsii.jar"
CLASSPATH="${CLASSPATH} : ${JCVS}/jars/jh.jar"
CLASSPATH="$ {CLASSPATH} :${JCVS}/jars/js.jar"

java -jar ${JCVS}/jars/jcvsii.jar



212

Chapter 8 Know What You Have: CVS

You would need to change the definition of Jcvs to match the directory
where you unpacked the ZIP file, but the rest will work with your location. Of
course the classpath could all be set on one longer line, but this way is more

readable.

Run jCVS (Figure 8.5) and navigate to the checkout page (Figure 8.6) to
fill in the parameters for your CVS server. Then you should be able to contact

it for checking out your sources (Figure 8.7).

JCVS

Java CVS Client

Figure 8.5 jCVS splash screen

(=1
File Help

[ WorkBench [ Checkout rExpun rlmpun rCreate rTesl |

A

3 work Bench

Project Details

| Token |
Repository |
Root Directory |
Local Directory |
User Name |
Host Wame |

/| connect Method |

Description

Figure 8.6 jCVS initial screen




8.4 Review 213

8.4

[x]
File Help

WorkBench | Checkout rExpun rlmpun rCreate rTesl |

i Server  User Name [alhing |

® FServer [¥] Password | |

CVS Module mproject
CV'S Server cwshast.multitaal. net
CV'S Repository fusrfsourcatres
Checkout Directory |.
Arguments
Checkout Module
Ready.

[ »

1]

Figure 8.7 jCVS checkout screen

Conspicuous in its absence on the jJCVS Web site is a good user manual.
Since we’re proponents of the command line, don’t look for it here, either.

Many, if not most, Java developers these days will be using, at least part
of the time, an Integrated Development Environment (IDE). One of the tools
that these IDEs integrate is a source code manager, and typically for Open
Source tools that means CVS. So while we’re not giving you much info on

JCVS, you will find a useful GUI for CVS inside most IDEs.

REVIEW

This chapter has been all about CVS, one of the great jems of the Open Source
world. Projects all across the globe depend on CVS to track their source
changes, as programmers half a world away collaborate and share source.

We discussed how to import source files into CVS and how to get them
back out. We discussed the mechanism for checking in changes and how to
sort out collisions for the rare occasions when automatic merges don’t succeed.
We described how to tag a set of source files for later retrieval, and how to make



214 Chapter 8 Know What You Have: CVS

those tags into branches in your source tree. We also discussed how to show
the history of those changes and the status of a source file. Finally, we took a
quick look at a GUI for use with CVS, for those so inclined.

8.5 WHAT You STILL DON’T KNOW

* The myriad of administrative commands which help you manage and
maintain a source library. Most of those commands you won’t need, but
it's nice to know that they are available, just in case. Refer to the
Cederqvist document (Section 8.6) for all the gory details.

* How to set up remote users for sharing a CVS repository on a network,
especially the use of the cvs_RsH environment variable.

* How CVS integrates into development tools. We'll see this in the coming
chapters; for example, CVS interaction is built into NetBeans, SunONE
Studio, and Eclipse.

* How good it feels to have CVS come to the rescue so you can recover a
version of something that you thought was lost. May you never have to
learn this the hard way.

8.6 RESOURCES

o Version Management with CVS by Per Cederqvist et al. is the “official”
manual for CVS. It can be viewed as HTML or downloaded as HTML,
PDF, or PostScript from http: //www.cvshome.org/docs/manual /.

* Chapter 6 of The LINUX Development Platform: Configuring, Using and
Maintaining a Complete Programming Environment by Rafeeq Rehman and
Christopher Paul (ISBN 0130826758, Prentice Hall PTR) gives a good
introduction to CVS. They give more information, too, on jCVS as well
as on how to integrate CVS into Emacs.



9.1

Chapter 9

Ant:
An Introduction

Ant! is a tool for building and deploying collections of files. It is particularly
suited to building and deploying Java applications (in no small part because it
is written in Java). Ant is well worth knowing and using for all but the simplest
Java applications.

WHAT YOou WILL LEARN

* How to install and set up Ant.
Enough about XML to read an Ant buildfile.
The basic tags used in most buildfiles.

The extent of our remaining ignorance after completing the chapter.

1. I must mention something about the title of this chapter: There was a Monty Python’s
Flying Circus episode that had this title, and my inner geek couldn’t resist.

215



216 Chapter 9 Ant: An Introduction

9.2 THE NEED FOR A DIFFERENT BUILD TOOL

James Duncan Davidson had a problem. Perhaps you’ve had this problem, too.
It has to do with the building of software—compiling, copying, and otherwise
modifying files to get all the pieces in all the right places for running a collection
of programs.

There are a number of ways to automate the building of software. You can
script the compilation using shell scripts or batch jobs. That works fine, but
there are two problems with that solution. First, scripts are generally not
portable across very different operating systems. That’s a serious problem for a
language like Java, which is intended to be portable across operating systems.
Second, it is difficult if not impossible, using scripting languages, to prevent
wasted compiles; the checking and comparing of date stamps on source and
object files makes scripts large and difficult to maintain.

Very well, we hear you say. There’s make. The make program has been
around for a long time. It is available on many operating systems. It handles
the conditional compilation of files very well. It has been around for centuries
(it seems). It is well known and widely used. All of this is true, but even this
venerable tool falls a bit short in the Java world. First of all, although makefiles
are generally far more portable than other scripts, there are still considerable
variations in details, and make does nothing to mask the differences in file,
path, and disk designations that exist across operating systems. Moreover, both
make and scripts suffer from a more basic problem. Although Java programs
can execute reasonably quickly, the overhead of starting a JVM and tearing it
down again is considerable. Since javac is written in Java, each time it is in-
voked to compile a source file (one file at a time is the make way) this setup
and teardown time cost is paid.

But, we once more hear you protest, you can just use javac on the entire
project! Doesn’t it build everything that needs to be built? In the simplest case,
yes, it does. But as soon as you share code between projects, or use RMI which
requires execution of the rmic compiler, or use E]Bs, or link in native methods,
then javac’s dependency resolution just will not work.

Luckily, James Duncan Davidson had this problem. And luckily it really
bothered him. And even more luckily for us all, he decided to share his solution.



9.3 Obtaining and Installing Ant 217

9.3

His solution was Ant, which we will from now on refer to as ant. Why
ant? Well, he suggests that it might be because ants are little things? that build
big things. He has also suggested (in his preface to the O’Reilly book Anz: The
Definitive Guide, Jesse Tilly and Eric Burke) that it might stand for “Another
Neato Tool.” We're inclined to put forth the former, but believe the latter.

James Duncan Davidson wrote ant and contributed it to the Apache
project, so it is Free Software. And it makes the problems cited above rather

piffling. Through the rest of this chapter we will describe how.

OBTAINING AND INSTALLING ANT

You can obtain ant from the Apache Web site.3 Which version you download
will depend on your system and your needs. There are stable releases and daily
builds. Unless you have a compelling need for a feature not yet in a stable re-
lease, we would suggest you stick with the most recent stable release. As of this
writing, that is version 1.5.1.

If you are using RedHat, or another Linux distribution that uses the
RedHat Package Manager, rpm, then the simplest way to install would be to
download the RPMs linked from the Web site and install those:

$ rpm -1 ant-1.5.1-3jpp.noarch.rpm

You have two other options besides the trusty old RPM method. First,
you may download a binary #arball, a word often used for a compressed file
created with the tar utility, or you may download and compile the ant
source code.

Let’s take these each in turn.

9.3.1 Installing a Binary Tarball

Binary distributions of ant are available in .zip, .tar.gz, and .tar.bz2
formats. Utilities are available for all of these formats for Linux, although you

2. Not so little anymore. As of this writing, the head of the CVS tree for ant weighs in at just
shy of 48MB, and there are 5,239 files in there! These totals include a lot of project documen-
tation, but even considering only the src subdirectory, we are still looking at 18MB and
1,687 files. It is probably incorrect to call ant a “little thing” these days.

3. http://ant.apache.org/



218

Chapter 9 Ant: An Introduction

will find that generally .zip files are intended for Windows machines and
.tar.gz and .tar.bz2 for UNIX systems. The .gz format is decompressed
with the gzip utility and .bz2 files with the bzip2 utility. The bzip2 compres-
sion algorithm produces better compression, while gzip is “more common.” If
you have a modern Linux distribution, you almost certainly have both installed
already.

Once you have the archive file downloaded, you should download one of
the files linked next to it. These are cryptographic hashes of the legitimate
archive file so you may be (more) assured that the software is the software you
think it is. The first, PGP, is an actual digital signature. If you are already famil-
iar with PGP or GnuPG and are comfortable with them, then by all means use
this. It is, as you know, a superior form of validation compared to MD5. But
explaining how to use digital signatures and GPG keys is beyond our scope
here. As for MD5, however, this is fairly easy.

An MDS5 hash is a 128-bit value generated in such a way that it is impos-
sible for two different files of the same length to have the same hash value (ac-
tually, the term used in the literature is “computationally unfeasible,” but for
our purposes that is the same thing). If you run the program md5sum with the
tarball file as an argument and you get the same number as the one you down-
loaded, you may be certain that the file you have is an exact match with the
one that was used to produce the number you downloaded from the Web page.
Remember that this is all that is proved by this. If both the file server and the
Web page have been compromised, then the fact of a match doesn’t mean
much. A mismatch however proves that one of the two has been compromised
and you probably shouldn’t use the tarball.

You should get in the habit of verifying checksums and digital signatures
where they are supported.

If you are still worried about the dual compromise, well, that’s where a
PGP digital signature can help. It not only proves the integrity of the data; it
also proves the identity of the generator. Learn more about PGP (actually, the
Free Software version of it, called GnuPG, at the GnuPG Web site.4

Once you have downloaded both the mds file and the tarball, validate and
extract the tarball (Example 9.1).

Note that we did this in a regular user’s home directory. If you just wish
to use ant yourself, then this is the way to go. If you wish to make ant available

4, http://www.gnupg.org/



9.3 Obtaining and Installing Ant 219

Example 9.1 Validating and extracting the ant tarball

$ cat jakarta-ant-1.5.1-bin.tar.gz.md5
2be27d9e09011bflcc3dl967ee34£7d1

$ md5sum jakarta-ant-1.5.l1-bin.tar.gz
2be27d9e09011bflcc3dl967ee34f7dl Jjakarta-ant-1.5.1-bin.tar.gz

$ zcat jakarta-ant-1.5.1-bin.tar.gz | tar xf -

$ cd jakarta-ant-1.5.1

S 1s

bin docs etc KEYS 1ib
LICENSE LICENSE.dom LICENSE.sax LICENSE.xerces README
welcome.html WHATSNEW

$

to multiple (or all) users on the system, you will want to untar as root and
move the resulting directories to locations convenient to other users, such as
/usr/local.

Whether for one user or for many, there is a handful of remaining tasks
to make ant usable.

9.3.1.1 Environment Variables

The gava_HOME environment variable should already be set as a result of setting
up your JDK. gava_noME should point at the base of your JDK installation.
The ANT_HOME environment variable should be set to point at the untar-
ed installation of ant. In our sample here, it would be ~/jakarta-ant-1.5.1.
Make sure that the bin directory of the ant installation is added to
your PATH.

9.3.2 Installing a Source Tarball

We do not encourage you to install ant from source, although we do encourage
you to download and study the ant source. It is an excellent sample Java
application.

If you must build from source, the start of the process is the same as above.
You download the tarball, verify it with GPG or md5sum, then unzip and
untar it.



220

Chapter 9 Ant: An Introduction

9.4

It begins to differ at this point. The ant source package comes with a shell
script, build. sh, that actually builds a minimal version of ant and then runs
ant to complete the install.

Make sure that the JAVA_HOME and ANT_HOME are set as you want them,
then execute build.sh install. Unless you have installed the optional tasks,>
you will see several warnings about missing classes. You may safely ignore these.

As with the installation of other packages built from source, you will need
to have appropriate permissions for the target directories. This might mean
running the install as root, with all appropriate attention and dread.

A SAMPLE ANT BUILDFILE

Let’s go over the basics of creating an Ant buildfile. We’ll start with an intro-
duction to XML, and then move on to the specific tags Ant supports and how
you might use them to automate a build.

9.4.1 XML for the Uninitiated

The buildfiles of ant, usually named build.xml, are written in Extensible
Markup Language, or XML. Some of the reasons for this are:

e XML is hierarchical.
e XML is standardized.

XML is widely used and familiar to many programmers.

Java has many classes for reading, parsing, and using XML.

XML-based representations of hierarchical data structures are easy to read
and parse for both humans and programs.

XML is a successor to SGML, Standard Generalized Markup Language,
which is a language for defining markup languages. A markup document may
be validated. A validated document is one that conforms to a structural specifi-
cation of the markup tags in the document. Such a specification may be made
using a Document Type Definition (DTD), which is a holdover from the way
SGML markup languages were specified, or using one of the newer specification

5. There is a horde of optional tasks. As the name suggests, they are optional. Include these if
you need them. This is the only mention they will receive.



9.4 A Sample Ant Buildfile 221

standards, such as W3C’s XML Schema. In either case, the DTD or schema
specify what tags may be used in the markup, where they may exist with respect
to one another, what attributes tags may have, and how many times a given tag
may appear in a given place. A document can thus be validated—that is,
checked against the corresponding DTD or schema. It’s not necessary, however;
in many situations, documents can also be used without validation so long as
they are well-formed—that is, conform to the basic syntax of XML.

HTML, with which even nonprogrammers are familiar, is an instance of
a markup language defined in terms of SGML (and XHTML is its reformula-
tion in terms of XML). This book itself was written in Docbook, which is
another SGML markup language.

So, if SGML is such a wonder, why is XML all the rage? Well, SGML is
one of those standards that attempt to “subsume the world.” SGML has very
complex and flexible syntax, with many different ways to represent a simple
markup construct. Thus, to completely implement an SGML parser is difficult.
Recognizing that 90% of the complexity of SGML is needed in only about 1%
of cases, the designers of XML realized that they could make a markup specifi-
cation language only 10% as complicated that would cover 99% of cases (of
course, like 85% of statistics, we're making these numbers up, but you get
the point).

Implementing an XML parser, while not exactly trivial, is much easier
than implementing an SGML parser.

SGML/DSSSL and XML/XSLT are efforts to make the transformation
and presentation of hierarchical data easier and more standardized. If what
you have read here is all that you know about XML (or SGML), you should
certainly consider getting yourself a book on these important standards.

For now, we can say that XML consists of #ags which are set off from data
content by the familiar less-than and greater-than brackets we are used to seeing

in HTML:

<samplexmltag>
Just as in HTML, the tags may have start tag and end tag forms:
<samplexmltag>Sample XML tagged data</samplexmltag>

The entire construct, including the pair of matching tags and everything
inside them, is called an element. The start tags may also, like in HTML, carry
data inside them in the form of astributes:



222

Chapter 9 Ant: An Introduction

<samplexmltag color="blue">Sample XML tagged data</samplexmltag>

If you have an empty element, one that that either does not or cannot have
data between its start tag and end tag, you may “combine” the start and end

tag by putting the slash at the end of the tag:

<samplexmltag color="blue"/>

Obviously, there is more to it than this, but it is enough to begin with.

XML’s uses range from publishing to networked interprocess communica-
tions. Our interest here is in using it to represent a model of a piece of software
and the various ways that software might be built and deployed. So from here
on, we will be discussing not XML in general, but the ant document type. Ac-
tually, ant’s markup language uses unvalidated XML. In other words, there
isn’t officially a schema for ant. Thus, the only formal definition for an ant
XML file is what ant accepts and understands. This is more common than it
should be. Any XML markup vocabulary really should have a schema, but often
XML use starts with “Oh, this is just a quick thing. No one will ever read or
write this markup. Just these two programs of mine.” These famous last words
will one day be right up there with “I only changed one line of code!” As
strongly as we feel about this, ant really can never have a DTD, at least not a
complete one. The custom task feature makes this impossible.

9.4.2 The Buildfile Tags

The buildfile (usually named build.xml) begins with a header announcing
that this is an XML document and specifying what version of XML is being
used in it:

<?xml version="1.0"?>

The <2 and 2> delimiters mark up an XML statement (as opposed to an
XML tag).6 In this case, we are declaring that this is an XML document and
that it is using XML version 1.0.

6. Note that these are the terms we are using to describe XML to a new user. They are not the
formal terms for these document elements. For the proper names, consult an XML reference.



9.4 A Sample Ant Buildfile 223

9.4.2.1 The project Tag

Every buildfile must begin with a project tag. A buildfile must contain exactly
one project tag.
The project tag contains three attributes:

name
The name of the project.

default
The default target (see next section).

basedir
The base directory of the project. Usually this is “.” meaning the directory
the buildfile is in.

The project name is just a name. It is not of particular importance to ant,
although many IDEs that integrate ant will make use of the name attribute of
the project.

The default attribute names a target tag that will be built by default
if a build target is not passed to ant (see Section 9.4.2.2).

9.4.2.2 The target Tag

Every time you run ant, you are building a zarger. If you do not specify a target,
ant will run the target named in the default attribute of the project tag.
A project may contain any number of targets. The target tag has five

attributes:

depends
The name or names of other targets that must be built before this target
may be built.

description
A descriptive name for the target. Displayed when ant -projecthelp
is run.

if

Specifies a property name (see Section 4.4). The target is only built if the
named property is set.



224

Chapter 9 Ant: An Introduction

name
The name of the target. This is the name entered as an argument to ant.
This is also the name that may be used in the default attribute of the
project tag.

unless
This is the reverse of the if attribute. The target is built unless the
property is set.

9.4.2.3 Properties

There is more than one way to set what we might call variables in ant. The
only one we will concern ourselves with here is properties. Properties are like a
simple hash, or associative array. They associate value, which is stored as a
String, with a name, which is also a string. They behave very much like the
Properties class introduced earlier in this book.” You can use buildfile prop-
erties to associate a single name with a single value that you use in multiple
places throughout the buildfile to make configuration changes easier and less
error-prone. Some tasks also expect certain properties to be set, as we shall
soon see.
You set a property with the property tag (Example 9.2).

Example 9.2 A useless build.xml example to demonstrate properties

<?xml version="1.0"?>
<project name="pointless" default="useless" basedir=".">

<target name="useless">
<property name="example.utility" value="nil"/>
<echo>This example's usefulness:
S{example.utility}. OK?</echo>
</target>
</project>

Running ant with Example 9.2 gives this output:

7. In fact, an examination of the ant source code reveals that ant properties are stored in a
HashTable.



9.4 A Sample Ant Buildfile 225

$ ant
Buildfile: build.xml

useless:
[echo] This example's usefulness: nil. OK?

BUILD SUCCESSFUL
Total time: 1 second

9.4.2.4 Tasks

A task is something that must be done to build the target. There is no single
“task” tag; instead, each kind of task has its own tag® so there are many tags
referred to collectively as zask tags.

There are dozens of standard task tags, but only a few of them are “every-
day.” We'll introduce a few of them here, and then talk about the tags that
don’t fall into the project/target/task hierarchy.

Standard task attributes. All ant task tags have at least the three attributes:

id
A unique ID for the task (not required).

taskname
A name for the task, used in logging (not required).

description
A description of the task, used for comments.

The javac task.  The javac task, not surprisingly, runs the Java compiler.
Note that since the Java compiler is written in Java and so is ant, there is no
VM launch overhead to running the compiler. This can make ant many times
faster than make simply for normal compiles.

The javac tag is one of the most complex in ant.

The javac task tag has a very large number of attributes, and may contain
quite a number of other tags within it. First off, it is sensitive to a property,
build.compiler, which may be used to specify that a particular Java compiler
version must be used. The use of this will come up later when we build part of

8. In fact, task tag names correspond to the names of the Java classes that implement them.
This will matter to you only if you wish to write your own ant tasks. We will not take you that

far in this book



226

Chapter 9 Ant: An Introduction

our application using the GNU Compiler for Java, but for now, and in general,
you will not set this property,? compiling with the default compiler for the JDK
version you are using. This is ant’s default behavior.

srcdir
Location of the Java source files.

destdir
Location to store the class files.

includes
Comma- or space-separated list of files (optionally using wildcards) that
must be included; all .java files are included when this attribute is not

specified.

excludes
Comma- or space-separated list of files (optionally using wildcards) that
must be excluded; no files (except default excludes) are excluded when
omitted.

classpath
The classpath to use.

sourcepath
The sourcepath to use; defaults to the value of the srcdir attribute or to
nested src elements. To suppress the sourcepath switch, use
sourcepath="".

classpathref
The classpath to use, given as a reference to a path defined elsewhere.

extdirs
Location of installed extensions.

nowarmn
Indicates whether the -nowarn switch should be passed to the compiler;
defaults to of £ (i.e., warnings are shown).

9. The one place you are likely to need to set this is when you are using a recent JDK to compile
applets that you wish to work in Netscape 4.0 and IE 4.0 and older browsers. But this book
doesn’t teach you Java applets. We swear.



9.4 A Sample Ant Buildfile 227

debug
Indicates whether the source should be compiled with debug information;
defaults to of£. If set to off, -g:none will be passed on the command
line to compilers that support it (for other compilers, no command-line
argument will be used). If set to true, the value of the debuglevel
attribute determines the command-line argument.

debuglevel
Keyword list to be appended to the -g command-line switch. This will be
ignored by all implementations except modern and classic (version 1.2 and
more recent). Legal values are none or a comma-separated list of the fol-
lowdng keyword& lines, vars, and source. If debuglevel is not
specified (by default) nothing will be appended to -g. If debug is not
turned on, this attribute will be ignored.

optimize
Indicates whether compilation should include optimization; defaults
to of f.

deprecation
Indicates whether source should be compiled with deprecation informa-
tion; defaults to of £.

verbose
Asks the compiler for verbose output; defaults to no.

depend
Enables dependency tracking for compilers that support this (Jikes and
classic).

The jar task.  The jar task makes a JAR file.

The javadoc task.  One of the greatest benefits of developing in Java is the
nearly automatic generation of thorough and correct documentation. Javadoc
is the tool that does the job, and the javadoc task is the way to automate
document production in ant. This tag has a number of attributes that specify
where the source to be documented is located, how the documentation is to be
produced, and where the documentation is to be placed.

The copy and mkdir tasks. These tasks are used to copy files and make
directories.



228

Chapter 9 Ant: An Introduction

The rmic task. Remote Method Invocation is a distributed computing
technology (Section 5.8). RMI requires the generation of server and stub classes
that provide the networking support for an RMI-enabled class. This is normally
done by the rmic compiler, and this is one of the common reasons the Java

programmers turn to build automation tools. The rmic tag allows ant to build
RMI classes.

9.4.2.5 Other Tags

So far we have ignored a major component of ant. In order to introduce it, we
need to give you a (painfully) high-level view of how ant works “under
the hood.”

Task tags actually map directly to Java classes that implement the tasks.
Each task class is an instance of the Task class (in other words, it is a Java class
that either directly or indirectly extends the Task class). This is how you can
write your own tasks—download the ant source code and write your classes
that extend the Task class.

Tasks are not, however, the only tags that map to Java classes. There is
another category of tags that do so. They are called dazarypes. These are classes
that directly or indirectly extend the ant DataType class.

Generally speaking, a task may require zero to many datatypes to specify
the data with which the task works. Some such tags include the manifest tag
used in our sample build.xml file discussed later in this chapter.

We'll mention a couple of the most frequently used datatype tags here and
leave looking up the details as an exercise for you.

The PatternSet, Include, and Exclude datatypes. As you may have
noticed, the most common tags we have covered allow you to specify the files
to be processed using the tag’s attributes. Usually, you nominate a base directo-
ry and let the task tag process everything in that directory.

There are times, however, when you need finer grained control than that.
For example, you might wish to exclude all Java classes whose names end in
“rest” (Example 9.3).

Other datatypes.  There are many other datatypes used for various purposes.
One of them, FiltersSet, is able to modify files before they are copied or
moved. This can be useful, for example, to put build information into a source

file for an About dialog.



9.4 A Sample Ant Buildfile 229

Example 9.3 Using the PatternSet datatype

<patternset id="nontest.source">
<include name="**/*_ java">
<exclude name="**/*Test.java">
<patternset>

<target name="build">
<javac destdir="build">
<src path="src"/>
<patternset refid="nontest.source"/>
</javac>
</target>

In general, datatypes give you more sophisticated control than do the at-
tributes of a task. Take a look at the Anr Users Manual'® for full details on ant.

9.4.3 A Real, Live Buildfile

Let’s take it to the next level and examine a real working buildfile.

9.4.3.1 Project Organization

All but the simplest of projects will require multiple classes. Some will require
libraries, multiple programs, binary deployment, Web deployment, enterprise
deployment, and so on. A project will be most successful if you plan out what
goes where in advance. We're going to present a series of suggestions for how
to organize the files involved in developing, building, and deploying a Java
project with ant. By no means is this the only way it might be done, but it has
worked well for us.

9.4.3.2 The build.xml File for Payback

Example 9.4 is the actual Ant buildfile for the Payback program in our source
code examples. These examples are available on the book’s Web site.!!

10. http://ant.apache.org/manual/

11. http://www.javalinuxbook.com/



230

Chapter 9 Ant: An Introduction

Example 9.4 The build.xml file for the Payback application

<?xml version="1.0"?>

<!l--
$Id: 070_antIntro.sgml,v 1.51 2004/04/13 05:10:45 mschwarz Exp $
Buildfile for the Payback program. Payback will calculate
the length of time and real amount of money it takes to make a
purchase using various savings or credit accounts. -->

<project name="Payback" default="all" basedir=".">

<!-- The "init" target sets up properties used throughout
the buildfile. -->

<target name="init" description="Sets build properties">
<echo>Running INIT</echo>
<property name="src" value="${basedir}/src"/>
<property name="build" value="${basedir}/build"/>
<property name="doc" value="S${basedir}/doc"/>

</target>
<!-- The "all" target does nothing but tie together the "jar" and
"doc" targets. -->

<target name="all" depends="jar,doc"
description="Pseudo-target that builds JAR and Javadoc">
<echo>Building ALL</echo>
</target>

<!-- The "build" target compiles the code in the project. -->
<target name="build" depends="init"
description="Compiles the classes">
<echo>Running BUILD</echo>
<mkdir dir="S${build}"/>
<javac destdir="${build}" srcdir="${src}" debug="true"
deprecation="true"/>

</target>
<!-- The "doc" target generates Javadoc documentation of the
project. The "author", "version", and "use" attributes set to

true cause those Javadoc tags to be used in the final document.
The "private" attribute set to true causes private methods and
attributes to be included in the documentation. We tend to use
this for projects to provide complete reference documentation.
You would probably not want to do this for an app or 1lib
distributed as a JAR file only. -->



9.4 A Sample Ant Buildfile

231

<target name="doc" depends="init"
description="Generates Javadoc documentation">
<echo>Running DOC</echo>
<mkdir dir="${doc}/api"/>
<javadoc packagenames="net.multitool.Payback.*"
sourcepath="${src}" destdir="${doc}/api"

author="true" version="true"
use="true" private="true"/>
</target>
<!-- The "jar" target depends on the "build" target. It
all of the class files in the project into a JAR file,
builds a manifest using the "manifest" tag. -->

<target name="jar" depends="build"
description="Builds an application JAR file">
<echo>Running JAR</echo>

places
and

<jar basedir="${build}" jarfile="${basedir}/Payback.jar">
<manifest>
<attribute name="Version" value="1.0"/>
<attribute name="Main-Class"
value="net.multitool.Payback.Payback"/>
</manifest>
</jar>
</target>
<!-- The "run" target depends on the "jar" target. It executes
the class named as the "Main-Class" in the JAR's manifest. -->
<target name="run" depends="jar" description="Runs the program">

<echo>Running RUN</echo>
<java jar="${basedir}/Payback.jar" fork="true">
<arg value="${basedir}/accounts.properties"/>
</java>
</target>

<!-- The "clean" target erases all files and directories
Ant targets might have generated. It returns a copy of
project tree to a "pristine" (some might say "clean") s
<target name="clean" depends="init"
description="Erase all generated files and dirs">
<echo>Running CLEAN</echo>
<delete dir="${build}" verbose="true"/>
<delete dir="${doc}/api" verbose="true"/>
<delete file="Payback.jar" verbose="true"/>
</target>

</project>

that other
the
tate. -->




232 Chapter 9 Ant: An Introduction

9.5 REVIEW

We've taken a very quick tour through the most popular tool for building and
deploying Java applications. We’ve shown you how to install and set up ant.
We've given you enough description of XML so that you can read an ant
buildfile. We've touched briefly on the basic tags used in most buildfiles.

9.6 WHAT You STILL DON’T KNOW

What we’ve covered here will probably explain most of the buildfiles you en-
counter in the wild. It will probably also give you what you need to know to
build most of the buildfiles you will have to build. But we have left out a
fair amount.

You can write your own tasks. That’s a biggie right there. There are many
built-in tasks that we didn’t cover. Look those up. They might be just what
you need if you find yourself saying, “Boy, ant is nice, but I wish it could
do X.” X might already be a built-in task. And if not, you can write it.

Ant has datatypes that can often be used in place of the simple strings al-
lowed in task attributes. Tasks and datatypes are instances of Java base classes
defined in the source code for ant. If you download the source, you can write
your own classes that extend these base classes and you can thus add your own
tags to ant.

9.7 RESOURCES

» The Ant Users Manual'? at the Ant project homepage'3 (which itself is
part of the Apache Project!4) is the definitive resource for ant.

12. http://ant.apache.org/manual/
13. http://ant.apache.org/

14. http://apache.org/



9.7 Resources 233

* O'Reilly has also published Anz: The Definitive Guide by Jesse Tilly and
Eric M. Burke (ISBN 0596001843), which was the first book on ant that

we read.

* If you are into Extreme Programming you’ll want to check out Exzreme
Programming with Ant: Building and Deploying Java Applications with JSB
EJB, XSLT, XDoclet, and JUnit by Glenn Niemeyer and Jeremy Poteet,
published by SAMS (ISBN 0672325624).






Chapter 10

Integrated Development
Environments

Some people prefer glitz. The shiny sparkle has always attracted the human eye.
Sometimes that sparkle is a real gem, a treasure; sometimes it’s only a gum
wrapper on the sidewalk. Integrated Development Environments (IDEs) add
glitz to Java development. At their most basic, they combine (integrate) an
editing environment with a compiler. This gives you

* Language-specific formatting of your Java text (different colors, comments
in italics, and so on)

* Quick feedback on errors (the ability to click on a compile error message
to begin editing at the offending Java statement)

* Automatic word completion, to help you finish typing the names of
methods in your Java code

* A point-and-click GUI for that all important “modern” look-and-feel

If those were all they gave you, IDEs would be, in our opinion, leaning
toward “gum wrapper.” But a good IDE can be more than that. It can be
extended to integrate many different tools, including:

235



236

Chapter 10 Integrated Development Environments

10.1

10.2

* Version control (e.g., CVS, see also Chapter 8)

* One or more Web servers (e.g., Tomcat)

A build control mechanism (e.g., ant, see also Chapter 9)

Other editors besides the built-in editor
A specialized editor for building GUIs
Other languages besides Java

WHAT YOU WILL LEARN

In this chapter we will examine two major Open Source IDEs, NetBeans and
Eclipse. We will show a straightforward installation of each. We will describe
the “operating paradigm” of each and show a few major features. It should be
enough to get you started using them.

There are several major commercial IDEs, including Idea by Intelli],
JBuilder from Borland, WebSphere Studio from IBM, SunONE Studio (Enter-
prise Edition) from Sun, and others. Because they are commercial, and not
Open Source, we will not be covering them; their vendors and other experts
can provide the documentation and training you need. Be advised, however,
that the licenses for such commercial products typically cost anywhere from
several hundred to a few thousand dollars per seat. That can make Open Source
IDEs look very attractive.

NETBEANS: THE OPEN SOURCE IDE

NetBeans is an Open Source IDE, freely available, with full source code. It is
also the basis for the SunONE Studio (more on that product later).

10.2.1 A Brief History of NetBeans!

NetBeans (originally called Xelfi) began in 1996 as a student project in the
Czech Republic, with the goal being to write a Delphi-like Java IDE in Java.
A company called NetBeans was formed around this project. By May of 1999,
after two commercial releases of Developer, the company released a beta of what

1. From the netbeans.org Web site.



10.2 NetBeans: The Open Source IDE 237

was to be Developer 3.0. In October 1999 NetBeans was acquired by Sun Mi-
crosystems. After some additional development, Sun released the Forte for Java
Community Edition IDE—the same IDE that had been in beta as NetBeans
Developer 3.0. There had always been interest in going Open Source at Net-
Beans. In June 2000, Sun open-sourced the NetBeans IDE; now it can be
found at the netbeans . org Web site.

10.2.2 Installing NetBeans

NetBeans can be downloaded from the netbeans . org Web site. You will want
the NetBeans “IDE” and 7ot the NetBeans “platform.” The IDE is the fully
featured Java development environment. The platform is the underlying core
of NetBeans on top of which one can develop other tools—for example, IDEs
for other languages. Installation of the IDE consists of only three steps:

1. Download.
2. Install.

3. Execute.

10.2.2.1 Downloading

The first step is to get the software downloaded onto your system. From the
netbeans.org Web site, navigate your way to a download of the latest IDE.
The prepackaged “installers” might work—but if they fail, you have no infor-
mation as to why, and still less as to what you can do about it. We'll act like
“real programmers” and download an archive file. (Here “archive” means a
collection of software compressed for easier transmission, not “archive” in the
sense of “old documents.”) Click on a link to begin the download
(you'll need to read, review, and accept the license agreement to proceed).
The result should be a file on your system named something like
NetBeansIDE-release35.tar.bz2.

10.2.2.2 Installing

The installation consists of three steps: untarring the file, adjusting a parameter
in a configuration file, then creating a symbolic link for easy startup.?

2. Thanks to John Zoetebier from New Zealand for his contribution on the NetBeans users
mailing list, on which this manual installation procedure is based.



238

Chapter 10 Integrated Development Environments

Uncompress the archive:

bunzip2 NetBeansIDE-release35.tar.bz2

This will leave the file NetBeansIDE-release35.tar in place of the
.bz2 file.
You can examine the contents of the TAR file with:

tar -tvf NetBeansIDE-release35.tar | more

Here the options (-tv£) specify to show a table of contents (-t) in ver-
bose, that is, long, form (-v) from the specified file (-£) followed by the TAR
filename. The output from tar here is piped into more so that you can page
through it. Type g when you’ve seen enough, or leave off the | more to let it
run through without pausing.

Notice that the names of all the files in the TAR archive begin with
netbeans/ which tells us that if we untar the file, it will put all the files into a
directory called netbeans. Therefore, we don’t need to make such a folder
beforehand.

Change directory to the directory where you would like to install
NetBeans. If you are on a system that may be used by different users, you'll
probably want to put it in a more public location like /usr/local or /opt. If
it is for your personal use, you can put it anywhere—just be sure that you have
write permissions on the directory where you want to install NetBeans.
(Reminder: use 1s -1d . to see the permissions of the current directory.)

The tar command to untar everything in place is simple:

tar -xf NetBeansIDE-release35.tar

This will extract (-x) all the files that are in the TAR file (-£f) named
NetBeansIDE-release35.tar. If you'd like to see each file get named as it
is extracted, then change the -xf to -xvf (v for verbose) and you will see a
whole long list of filenames displayed on your screen as the file is unpacked.

Next, we need to adjust the startup parameter in the configuration file.
The file is in the netbeans directory that you just untarred. In there is a direc-
tory named bin, and in there is a file called ide.cfg. Open this file with an
editor and change the line that begins -jdkhome so that the pathname refers
to the location of your Java Development Kit (JDK, see Chapter 5).

Here’s an example of the contents of ide.cfg:



10.2 NetBeans: The Open Source IDE 239

-J-Xms24m -J-Xmx96m
-J-Xverify:none
-jdkhome /usr/local/java/j2sdkl.4.1_01

This specifies that the Java SDK is located in /usr/local/java/
j2sdk1.4.1_01, and in that directory there is a bin directory which contains
java, javac, javadoc, and so on.

Finally, to make the executable easy to run, we will construct a symbolic
link for easy access:

$ 1ln -s /usr/local/netbeans/bin/runide.sh /usr/local/bin/nb

This creates a symbolic link from the runide.sh file in the current
directory to the /usr/local/bin directory, as a file named nb.

10.2.2.3 Running

Now that you have the symbolic link to the script which runs NetBeans, simply
invoke it with nb at a shell prompt. NetBeans will start loading (Figure 10.1).

If you get a message like “Command not found,” check to see if the shell
knows where to look. If you used the same name and location as in the previous
example, then make sure that /usr/local/bin is part of the search path for
the shell. (Reminder: echo $pATH will tell you what directories are searched.
If you need to, add /usr/local/bin to PATH, as in:

wivw.netbeans.org

<2 netBEANSDE 25

Loading pieces of modules. ..

NetBeans IDE and NetBeans Platform are based on software from
netbeans.org, developed under Sun Public License (SPL).For more
information visit www.netheans. arg

Figure 10.1 NetBeans begins



240 Chapter 10 Integrated Development Environments

ol =]
File Edit View Project Build Debug Versioning Tools Window Help R |
o yyinfmnmooaoTaT
Editing [ GUI Editing | Debugging |
Explarer [Filesystems] E
(@ Filesystems Getting Started Using the IDE M
© @ /home/albing/ netbeans /3.5/sam pledir

Opening a File

ﬂ Open a file by
double-clicking its icon () To create a new fila in the IDE
in the Filesystems tab of wou must first select a template
the Explorer, for the type of file you want to
If tha fila isn't in the create,

Creating a File or Object

A | setup wizard
& | Update Center

Key Concepts

[ Filesystems

© Project Default | 52 Runtime x|

xBr 2 B o

Filesystams tab, you
must mount itas a
filesystam to add it to
your class path, To
mount a filesystem:

® |1 the main window;,
choose File-»Mount
Filesystarm,

® |1 tha New wizard,
select the Local
Diractory node, Then
click Maxt,

* Navigate to tha
directory you want to
mount and select that
directory.

If you are mounting a
Java hierarchy, select

*® In the Explorer, right-click
the directory that you want to
put the file in, and choose a
file type from the New
submenu,

® Follow the wizard instructions.

[ Using Projects

You can start working on the
IDE withourt creating a project,

IDE Overview

Getting Started

Tip

If wou hawe a library ||
mounted in
Filesystems that you
do not plan to

modify, you can hide
that filesystemn =

Right-click the
filesystem's node
and choose
Properties. Then set
1he Hidren nronee

4

- ; Hext
thi?ar:cltadge;t,igffe All functions are available e
=hbiRroperties=: Your packag : from the Filesystems tab in
*® Click Finish
the Explorer, You can later
create projects in the IDE and
S| In the main window, configure sattings individually
for each project.
choose File->0pen
File. The IDE will
mount the filesystem.
| velcome o [ I
L |

Figure 10.2 NetBeans’ main window

export PATH="${PATH}:/usr/local/bin"

which you can type from the command line for immediate use and then put
in the .bashrc file in your home directory to set things this way next time you
invoke a shell.)

Also be sure that the script runide.sh has execute permissions on it.
(Reminder: check this with 1s -1 runide.sh and change with chmod a+x
runide.sh.)

If all goes well then after the splash screen, you should see the window
shown in Figure 10.2.

For

more information on

installing  NetBeans, check
http://www.netbeans.org/kb/articles/install.html#unix.

Now let’s take a look at how you might use NetBeans.

out



10.2 NetBeans: The Open Source IDE 241

10.2.3 Getting Around in NetBeans

Let’s take a look, from top down, at NetBeans” main window. First, of course,
is the menu bar. There are lots of choices to explore there. Much of what you'll
do with NetBeans won’t require much use of the menus—there are so many
shortcuts elsewhere.

Next comes a row of icons, which are just shortcuts for menu times.
This row of icons can be customized, and you can even add your own (see
Section 10.2.5).

The three tabs below the icons, labeled Editing, GUI Editing, and
Debugging, modify the window to provide three distinct workspaces. Each
one customizes the window environment for a specific task, but it is still
working on the same files.

Next, on the left, comes the Explorer, which is in many ways similar to
the tools that you may use for traversing filesystems on a Windows or Linux
system.

One oddity of NetBeans is that it doesn’t just use the files as it finds them
in the directories on your hard drive(s). Rather, is requires you to designate a
piece of the filesystem as the part that you want to use. You can designate sev-
eral such pieces. Each piece is “mounted” as if it were a mountable filesystem.
(This is an operating system concept. If you're not familiar with it, don’t worry.
For the purposes of NetBeans, just think of the IDE as too dumb to know
about any files until you tell it about them.)

There are three different types of files that you can mount—Ilocal, CVS,
or JAR. By specifying the type, NetBeans can treat each one in its special way.

* Local files need no special treatment; they are just the local files on your

hard drive.

* Ifa filesystem is mounted under a version control system (CVS or generic
VCS), then its files can have version control operations performed on them
(checkin, checkout, and so on), via commands in the IDE. (More on that
below.) Also, special directories used by the version control system (e.g.,
CVY) are hidden from the display, as you almost never want to manipulate
these files directly.

* When you mount a JAR file or ZIP archive as a filesystem, NetBeans
displays the contents of the archive as if they were just files in a
directory—which can make them easier to manipulate. More importantly,
the JAR is automatically added to the classpath for Java compiling.



242

Chapter 10 Integrated Development Environments

Therefore, any third-party JARs that you may need for your project should
be mounted.

To mount a local directory as a filesystem, right-click on the little icon la-
beled Filesystems in the Explorer [Filesystems] window. Choose Mount, then
Local Directory, and you’ll get a filechooser to let you navigate your file
structure and choose a directory to mount.

IMPORTANT

To ensure that NetBeans knows how to compile your source, you need to mount
the directory that contains the base level of your source as a mountpoint, not
just have that directory somewhere in a tree of directories.

For example, let's say that your source is kept in two packages,
com.coolco.projecta and com.coolco.util which implies that you
have a directory structure with those names. Let’s further assume that you keep
them in a directory called src which is itself contained in a directory called
brolly, as shown in Figure 10.3.

The likely thing to do is to mount the bro1 1y directory, since it will contain
the source and all sorts of other project-related directories. That’s fine, as far
as it goes. But since the mountpoints in NetBeans are also the CLASSPATH
directories, you need to also mount brolly/src, so that directories like
com/coolco/util are found when your Java sources have statements such
as import com.coolco.util.*;.

It's OK to have the same directory show up in different mountpoints. Net-
Beans won’t get confused, although you may. You’ll probably want to edit and
compile from the mountpoint of, in this example, brolly/src. The src folder
inside the brol 1y mountpoint would refer to the same files. Just keep the one
always open and the other closed, and you should be able to keep them straight.

10.2.3.1 Filesystem versus Project

The Explorer window has tabs at the bottom which let you look at different
aspects of your work. In some instances you’ll want the Project view. For this,
you have to mount file’s from the already mounted filesystems in the Filesys-
tem view. Seems redundant, no? The Project view lets you set properties for
the project as a whole or for individual files in the project. These settings apply
to that file only for the project. Another project, looking at the same files, might
have different settings.

For now, don’t worry about the difference. Many people like to work in
the Filesystem view and never bother with projects. Others, especially those
working on multiple products or projects, like Projects as a way to switch



10.2 NetBeans: The Open Source IDE 243

brolly
other scr build.xml
|
com
|
coolco
| |
util projecta
| l
other ProjA.java

Figure 10.3 A simple source structure

between tasks—you can only have one project active at a time, but when you
switch projects, it switches all the mounted filesystems and other settings that
you have configured.

10.2.3.2 Editing

Like other IDEs, NetBeans provides its own editing window. It’s a GUI point-
and-click environment, with syntax highlighting and other helpful features for
a programmer.

At the top of the editing window is a toolbar (Figure 10.4). Each icon on
the toolbar has a tooltip, a help text that pops up when you rest your mouse
pointer over the icon, to explain the somewhat cryptic little icons. Most of the
tools are quite handy. With the pulldown menu, you can navigate to any
method or class variable within the class. The next four buttons deal with
searching: Select any text in your source file, click on the magnifying glass icon,
and the search will be performed for the next occurrence of that text. In addi-

tion, all occurrences are highlighted. This highlighting can be toggled on or off.



Chapter 10 Integrated Development Environments

@ zetBlug V| g e Bosp 3 % ZE I @ B
] + @return Blue value of this bean. a
g4 * <‘
- anhlic int nobPluarsy

Figure 10.4 NetBeans’ Edit screen toolbar

[x]

rFuIIText rObjectName rType rDate |

Search for Text Containing:

™ Substring: |

[[] Match Whale Words Only
[ Match Case

i Regular Expression:

[[] Use This Criterion for Search

Close | ‘ Help |

Figure 10.5 NetBeans’ Find dialog

The toolbar search only works within a single source file. If you want to
search across multiple files, go back to the Explorer window and right-click on
the folder containing the files you wish to search. There is a Find . .. com-
mand in the pop-up menu. That brings up a dialog box (Figure 10.5) that has
multiple tabs for quite extensive filtering of your search. In its simplest use, just
type in the text you want to find, and press Enter.

A list of the files which contain the text will appear in a different window,
citing filename and linenumber for each file. There you can double-click on
any citation to bring up that file in the edit window, at that location.

If you heeded our admonition to learn vi, you'll be glad to know that
NetBeans can handle the fact that the source files can be modified externally
from the IDE. Go ahead and edit any of your source files, even while the IDE



10.2 NetBeans: The Open Source IDE 245

is running. When you next touch the file from within the IDE, NetBeans will
recognize the fact that the file has been modified and load the new version.

If you haven’t yet learned vi, you may find yourself quite comfortable us-
ing the NetBeans editor. If you dig deeper into NetBeans you can find how to
map certain keystrokes to make it even more editor-like. However, mousing
and cut-and-paste may suffice for beginners for quite some time.

10.2.4 Integration with CVS

NetBeans comes with a built-in CVS client, which means that you don’t need
to install any additional features in NetBeans to get it to talk with a CVS server.
It has all it needs to check out and commit files from and to a CVS repository.
NetBeans can be configured to use external (i.e., outside of NetBeans) CVS
commands, but you likely won’t need to do that.

What you will need to do, however, is tell NetBeans that the files you are
using are under CVS control. You do this by mounting the filesystem not as
just a regular filesystem, but as a CVS filesystem. In the Explorer window, go
to the Filesystem tab if you are not already there. On the Filesystem icon,
right-click your mouse, and from the pulldown menu choose Mount, then
Version Control, then CVS (Figure 10.6). What follows will be a wizard-like
series of dialogs which you will fill in to describe the type and location of the
CVS repository with which you want to work. Those choices and values are
specific to your installation, so we’ll leave that for you to figure out with your
network administrator or whoever has set up your repository.

Once mounted, the CVS filesystem’s files will look much like any other
filesystem you have mounted—except that the files will show, via their icon,
when they have been modified and need to be committed, and will show the
version number in parentheses after the filename. The other difference is that
there is now a CVS command on the pulldown menu (Figure 10.7) that
appears when you right-click on one of the filenames (or on its tab in the
Edit view).

Move your mouse over the CVS command; an additional pulldown menu
appears (Figure 10.8). If you've used CVS at all, then you’ll recognize the list
of commands in the cascaded menu. There are the Commit, Update, Diff,
Log, Status, and Checkout commands that you are familiar with. The first
item, Refresh, is likely unfamiliar, though. Not being a CVS command (it’s
not part of the command-line syntax), it is a way for you to tell the IDE to



246 Chapter 10 Integrated Development Environments

Explarer [Filesystems] E &' T —

O Fi : : : ] + @return Blue
&g | Find. AL ‘B.S,’sampledir - .

:% _ =0 Local Directory 3 public int getBE
@ = | Change Order... &5 Archive Files i return

(05

; g Generic WiCs

=10] + @param blue

Customize

2 e

Figure 10.6 Mounting a CVS filesystem

Open

Customize Bean

ersioning Explorer

Include in YWC5 Croup ]
Compile 3
Build F11
Execute k&
Zut Chrl-X
Copy Ctrl-oC
Paste Ctrl-y
Add ¥
Delete Delete
Rename...

Save Az Template. .

Toals ]

Properties

Figure 10.7 Right click on a CVS file

reconsider what it thinks about the CVS-related information displayed in its
icons and the parenthetical text.

If you click on a folder instead of a single file, then the Refresh command
will be followed by Refresh Recursively which will do a refresh on each file

from there on down the tree.



10.2 NetBeans: The Open Source IDE 247

Refrezh

Commit

Update
Diff
Status
Log

Annotate

Checkout

Add
Remowe

Tag

List Modules

Figure 10.8 Cascaded menu with CVS commands

Using the integrated CVS is much like using the command line. If you
want to see the changes that you've made (before committing), use the Diff
command. A window will appear showing the two different versions and
coloring the lines that have been added, deleted, or changed.

When you need to commit your changes, click the filename, then right-
mouse your way to Commit. A dialog window will appear for you to type in
the comment that you want to be associated with this change. (This comment
will appear in the Log command display).

To incorporate the changes others on your project may have made on the
file, use the Update command. A dialog box will display the CVS output
showing what was updated and if any merge conflicts occurred. (See Chapter 8
for more on this.)

The CVS commands in the menu, as we’ve described them so far, don’t
allow you to add any options to the commands. They just run with the defaults.
What if you want to use some of the options available on the CVS command
line? Then hold down the Ctrl key just before your make your CVS choices.
You should see an ellipsis (“...”) appear after each CVS command for which
you can now select options (Figure 10.9).

Of course one of the great things about knowing the command-line ver-
sion (see Chapter 8) is that you’re not limited to what the GUI tools will do
for you. If you can’t find the option you want, just go back to a window with
a shell prompt, cd into the appropriate directory in your source tree, and type
the CVS command by hand. As noted earlier, NetBeans is smart enough to



248

Chapter 10 Integrated Development Environments

Refresh

Cammit...

Update...

Remove...

Status...
Log...
Hiztory...

Annotate...

Check Cut...
Export...

Editing ]
‘Watches ]

Locking ]

Eranching And Tagging #

Diff Craphical...
Diff Textual...
Patch...

Figure 10.9 Cascaded menu after choosing CVS with Ctrl pressed

catch on to the changes made outside of NetBeans to its files, though you may
need to do a Refresh, as described above.

10.2.5 Integration with Ant

If you've already discovered ant, either by using it on a Java project or by
reading this book in chapter order, then you’ll know that it’s a plus to have ant
integrated into NetBeans. As of NetBeans version 3.5, ant comes bundled with
NetBeans and you don’t need to install it separately.

NetBeans recognizes a build.xml buildfile and gives it a special icon. If
you click on the icon for the build.xml file in the Explorer, it will show each
of the properties and then each of the targets (Figure 10.10). Right-click on a
target to choose Execute to run ant with that target. As a shortcut you can ei-
ther select that target and press the F6 key, or you can just double-click on the
target name.

If you are making frequent use of an ant build script in your project, you
may want to add a shortcut—an icon that you can put on the icon panel—that



10.2 NetBeans: The Open Source IDE

249

Editing | Ui Editing | Debugging |

Explarer [Filesystem s]

@ 5 build [Local]
= & property
@ & property:
B & propery:
= &  property:
= &  property:
B & propery:
B & propery:
= &  property:
= &  property:
B & propery:

app.name
app.wersion
build.home
build.cam piler
catalina.home
deploy.hame
compile.debug
compile.deprecation
compile.optimize

3=

b tryout
% path
kool

b appletjars
b clear

b clean

P compile
b deploy
[

[

2

»

dist
[t=1g
javadoc
prepare -

PPYPIPPPPPPPP

Ik
|C0mpi|eja\ta sources |

[ Filesystems ><|—
£ Project Default L 52 Runtime ><|

Figure 10.10 Cascaded menu after choosing CVS

will run a specified ant target. You can also add a keyboard shortcut, to invoke
the target with a keystroke or two. The specific steps for doing that are found
in the NetBeans online help. Just look for the section titled Creating a Shortcut
to a Target.

There is one other topic worth mentioning about integration with ant.
Normally in NetBeans, when you compile a Java class, the IDE does the com-
pilation. You can configure the IDE to use different types and versions of Java
compiler, but it is the IDE which controls the compile. You can invoke a
compile with the F9 key as a shortcut. But if you are building with ant, you
may want ant to do the compiles for you. Fortunately, you can configure
NetBeans to do this. Again, we'll refer you to the NetBeans online help, to a
section called Indirect Ant Compilation.



250

Chapter 10 Integrated Development Environments

10.2.6 Other Add-on Tools

NetBeans is built to allow other tools to be plugged into it. There is a module
that you can add to NetBeans to support C/C++ development. But there are
various other plug-ins available. The best reference for all of those is the
NetBeans Web site.> Many of the add-ons are commercial, but one notable
tool is available, at least in its simple form, as a free download.

Poseidon for UML Community Edition is a UML modeling tool that in-
tegrates with NetBeans. A product of Gentleware AG, it is distributed at their
Web site.4 The Community Edition is offered free of charge, but they have
more advanced (professional, enterprise) versions for sale. Their Web site says
that Poseidon for UML Community Edition has the following features:

* Fully implemented in Java, platform-independent

* All 9 diagrams of the UML supported

* Compliant to the UML 1.4 standard

* XMI supported as standard saving format

* Runs under Java 1.4

* Diagram export into GIF, PS, EPS, SVG, JPEG, and PNG

* Undo/redo (can be turned on in options)

* Copy/cut/paste within the tool

* Drag and drop within the tool

* Zooming and bird’s eye view of the diagrams

* Internationalization and localization for English, German, French, and
Spanish

* Code generation for Java

* Sophisticated support of OCL

* Reverse engineering from Java sources

* Auto-layout of reverse engineered diagrams

* Cognitive support, critique mechanism (by default turned off)

e Simple install and update with JavaWebStart

3. http://www.netbeans.org/about/third-party.html

4.http://www.gentleware.com/



10.4 Eclipse: The Source of SWT 251

10.3

10.4

We won’t be discussing its installation or use, but we encourage you to
explore this option if you need a UML tool.

SUNONE STuDIO COMMUNITY EDITION

SunONE Studio (SOS) Community Edition was built on NetBeans and was
distributed for free. You would even see the NetBeans logo on startup. As of
SOS 5.0 (summer 2003), the Community Edition is no longer available—
NetBeans is what Sun recommends for the no-cost download. (The SOS Enter-
prise Edition is still actively developed and sold by Sun; it is licensed at a cost
similar to other commercial packages.)

EcLIPSE: THE SOURCE OF SWT

Eclipse is yet another GUI IDE. The Standard Widget Toolkit (SWT) was in-
vented as part of this project. Since Eclipse uses SWT for its graphics, it has the
most familiar GUI look and feel, and it is the fastest performer on lower end
hardware.> Eclipse is built as an IDE toolkit. Although it was developed in
Java/SWT, you can use it to develop AWT/Swing applications. It is build
around a plug-in architecture, so it can be an IDE for virtually any language.
To use it for Java, you must actually install the Java plug-ins.

10.4.1 Selecting and Installing Eclipse

The main site for obtaining Eclipse is www.eclipse.org. Installing Eclipse,
particularly for a single user, is incredibly easy. But first, you have a few choices
to make as to what to download. As of this writing, the current production re-
lease of Eclipse is 2.1.2. If you follow the Downloads link from the main page
to the 2.1.2 build, you will see a fairly lengthy list of download choices.

The first major choice you must make is whether or not you plan to write
your own plug-ins and extensions to Eclipse. If you do, you will probably wish
to download the Eclipse Software Development Kit or the source code and

build Eclipse for yourself. We strongly recommend that you choose the Eclipse
SDK binary for GTK. The Motif Ul is quite dated in comparison. The Eclipse

5. It’s the fastest performer on high-end hardware too, but the difference is much less percepti-
ble. Really fast and incredibly fast are hard for humans to discern.



252

Chapter 10 Integrated Development Environments

SDK contains the Eclipse Platform (which you need), the Java Development
Toolkit (which you need), and the Eclipse Platform Development Kit (which
you need only if you plan to develop plug-ins for Eclipse). But by downloading
the Eclipse SDK package, you get everything you need in one go. You could
also download the Eclipse source package and build the whole thing yourself;
save that for a spare week. For now, start with a prebuilt binary.

If you scroll down, you will see a collection of files that have “platform”
in their names. You will note that there are two choices of Linux binary: one
is Motif, the other GTK. If you are not familiar with these, Motif and GTK
are two common extensions to the X Window API that provide widgets and
other common functions and UI features. One of these, Motif, is rather old
and (to brashly add opinion) dated in appearance, but it is very stable and ma-
ture. The other, GTK, stands for GIMP Toolkit and was developed to support
the remarkable GNU Image Manipulation Program (GIMP). There are other
widget/UI libraries that run on top of X Window, notably the Qt library used
by KDE.

So, which to use? If you read the documentation on the Eclipse Web site,
you will see that the Motif version has been more heavily tested and is available
for other platforms than Linux. This is probably because Motif is standard on
most commercial UNIX versions, and thus is where emphasis was placed to get
the “most bang for the buck” in development and testing.

However, we much prefer the look of the GTK version and, to date, have
found no major problems with it, so that is what we use for our examples.
There should be no functional difference between the two—merely differences
in the look and feel of menus, toolbars, and dialogs. One reason to select Motif
might be if you are working in a mixed environment of Linux and other UNIX
platforms, where you may be forced to use the Motif version on some plat-
forms, and do not want the “cognitive dissonance” of switching between
the two.°

So, step one: Download eclipse-SDK-2.1.2-1linux-gtk.zip.

The Eclipse platform is a “generic IDE.” You will see the term perspective
all over Eclipse. A perspective is kind of a collection of tools in the IDE. The
package you just downloaded contains a generic perspective called Resource. A

6. Please note that the differences are fewer and smaller than the differences involved in
switching between any common X Window desktop and Microsoft Windows. If you can
handle that (and many of us do every day), switching between Motif and GTK versions of
Eclipse will be no problem for you.



10.4 Eclipse: The Source of SWT 253

perspective is a set of views, which are panes within the IDE, each having a
specific purpose, such as editing the project contents, editing files, keeping a
task list, and so on, as well as menus and toolbars relevant to those views. The
Resource perspective has its uses, but it is not the main one you will be using
as a Java programmer. As a Java programmer, you will most likely want the Java
perspective.’

First, you must decide if you are going to install Eclipse in a common lo-
cation (such as /usr/local or /opt), or if you are just going to install it in
your home directory for your own use. The answer to this question, naturally,
depends on whether or not you have root access on the machine and whether
or not multiple people actually use the machine.

CAUTION

We are assuming you already have at least one Java SDK installed. If you do
not, refer to Chapter 6 for some tips on installing Java SDKs.

We're going to install in the user’s home directory. Doing this could
hardly be simpler. So, step two: From your home directory, type:
$ unzip eclipse-SDK-2.1.2-linux-gtk.zip

That’s it. You're done. Now just cd to the newly created eclipse directo-
ry and type . /eclipse. The first time you do this, you will see a “Completing
the install” banner (Figure 10.11).

Please wait ... Completing the install.

Figure 10.11 Running Eclipse for the first time

7. Although you will also often be using the Debug perspective.



254

Chapter 10 Integrated Development Environments

iclipse

THEECLCIPSESEROJECT

Figure 10.12 Eclipse splash screen

During this initial run some workspace directories and data files are set
up. These store meta-information about projects and perspectives. After a
moment, you will get the standard splash screen (Figure 10.12).

Following this, you will see the initial Eclipse IDE, with a welcome screen
in the default Resource perspective (Figure 10.13).

Eclipse works with projects. A project is a collection of files that you man-
age as a group. Usually a project is a single program, although it need not be.
Eclipse remembers the state of all projects. If you close Eclipse in the middle
of a debug session on a project, the next time you open Eclipse, it will have that
same project open in the Debug perspective. If you then switch to another
project and switch back, you will come back to the Debug perspective. Eclipse
remembers. But we get ahead of ourselves here. You need to create a project.

10.4.2 Using Eclipse for a New Project

Now that you have Eclipse up and running (Figure 10.13), you will
want to create a Java project. Eclipse has “wizards” (to use the Microsoft
Windows terminology) for creating projects. From the main menu, select
File> New>Project. You will get the screen shown in Figure 10.14.

Now, you are not an idiot. This is not “Java Applications Programming
on Linux for People with Well Below Average Intelligence.” We're not going
to walk you slowly and painfully through a screenshot of every window Eclipse



10.4 Eclipse: The Source of SWT 255

b 4 Resource - Welcome - Eclipse Platform

File Edit Navigate Search Project Run Window Help
SrEHE LR 7 e e

5. Navigator v X X
I @ & fa| E & Eclipse Platform
| -
v 1@ Payback This page will help familiarize you with the Eclipse Workbench.
ETTDGen To get started, read the sections below and click on the related links.

3 Installed Features
To find out more about the features installed in your workbench, choose Help > Welcome...
and select the feature you are interested in.

@ Perspectives, views and editors
A window contains one or more perspectives. A perspective consists of views (e.g. Navigator)
and editors for working with your resources.

The shortcut bar at the far left of the window allows you to open new perspectives and move
between perspectives that are already open. The perspective you are currently working with

8 Outline x is shown in the title of the window and in the shortcut bar as a pushed-in icon.
\An outline is not available.
@ Configuring your perspectives
< ] [2]
% Tasks (0 items) ¥ B P v ox
|f |! |Descn'pt\an Resource |In Folde
4 »

Figure 10.13 The Eclipse Resource perspective

can display and pretend that this is “educational.” We like trees too much to
do that. So let’s pick up the pace a bit. The first screen in Figure 10.14 asks
you to select the type of project. The next screen asks for a project name and
it automatically chooses a directory to house the project. In Section 10.4.3 we
will talk about changing away from this default. For now, trust Eclipse to do
it right. Enter a project name and hit the Next button.

The next screen shows a tabbed display. The first tab allows you to add
folders for source code. If you have already worked out a directory structure for
your project, you may build it here. The next tab is the Projects tab. Here you
specify other projects on which this project depends. The next tab is the
Libraries tab. Basically, it lets you specify the project’s classpath. Eclipse puts
its preferred set of JARs on the classpath by default, including those that are
standard with whichever Java runtime Eclipse found on startup. The last tab is
called Order and Export; it allows you to specify the order in which source



256

Chapter 10 Integrated Development Environments

Select 0.9
Create a Java project ﬁ
Simple
| | Next = ‘ | | | Cancel

Figure 10.14 Step one: New project

folders should be built, as well as to specify which folders are accessible to other
projects that name this project on their Projects tabs (in other words, this is
the “other side” of the Projects tab).

That’s the final wizard box. Hit the Finish button. A dialog box pops up
to tell you that the project you just created is associated with the Java perspec-
tive. Since you are currently in the Resource perspective, it asks you if it
may switch you to the Java perspective. Hit the Yes button, and you will be
rewarded with the Java perspective display (Figure 10.15).

At this point, your exploration of the Eclipse tools would be more fruitful
than anything we could tell you. There is a marvelous book on Eclipse, 7he
Java Developers Guide to Eclipse by Sherry Shavor et al. from Addison-Wesley.
We encourage you to seek out that book.

10.4.3 Using Eclipse for an Existing Project

In the previous section, we mentioned that the second wizard screen in setting
up a Java project allowed you to override the default path for a project. If you
have an existing Java program, point the project path to the directory that is
the base for that program’s packages. When you create the project (in other



10.4 Eclipse: The Source of SWT 257

File Edit Source Refactor MNavigate Search Project Run  Window Help

BB A G| Bk [P ® e e ||BE R

+ x || HSAMoneyTestjava X 2= Outline X
o m -

package net.multitool.util; Sl ke e e

@ fm | HOS4F

I = E{P“"F’a\dhack impurtjunil.framework.": H2 net.multitool.util

- E#sic Z b ‘= import declarations
b 4% net.multitool. Payback public class = @4 SAMoneyTest
= 3 net.multitool.util SAManey Test il <+ moneyl : SAMg

extends TestCase

{
protected SAMoney money1;
protected SAMoney money2;

b [J] Costjava
b [J] SAMoney java
b [J] SAMoneyTest.java

< money2 : SAMg
+ money3 : SAMc
<+ money4 : SAMcg

b [l JRE System Library [j2sd protected SAMoney money3; at SAMoneyTest(S

b (ihjunitjar - fusr/sharefjava protected SAMoney money4; < asetUpl)

I [=doc ' suite()
PBAccounts.xml {SAMoneyTesl(String str) @ testAdd)
£1build.xml super(st); @ resTTvaJ

@WTTDGen ® ¥ main(String[])

}/f constructor SAMoney Test

protected void

setUp() ]
[+] S [*] <[ S [ [»
% Tasks (3 items) B oH v X
|f |! |Descriphun Resource | In Fold [*
& The import net.multitool.util is never used Account.java Paybac|.
“
& The import net.multitocl.Payback is never used Payback.javi Paybac
<] i | [= =4 TODO : locale stuff SAMoney.jan Paybac|+
Package Explorer | Hierarchy ] i | [+]
Wiritable Insert 1:1

Figure 10.15 The Java perspective

words, when you hit the Finish button in the wizard), Eclipse will scan that
directory and analyze what it finds there. It does an excellent job of importing
a project and “eclipsifying” it, even to the point of recognizing and analyzing
an ant’s build.xml file.

10.4.4 Working with Eclipse

Eclipse is a huge topic. We can’t devote enough space to it for this chapter to
qualify as a user guide. The best we can do is to offer you a handful of tips.

* The Java perspective consists mainly of the Package Explorer on the left,
the edit window in the middle, the outline view in the right, and a bottom
window that changes based on context. Initially, it is a task list. When you
run a Java application, the console output is displayed there, overlaying
the task list.



258

Chapter 10 Integrated Development Environments

10.5

* You can do a lot of what you need to get started on a project by right-
clicking in the Package Explorer. For example, you can create a package
by right-clicking and selecting New>Package. When you type a new
package name into the resulting dialog box, all required folders are created
under the project.

* You can create new classes and interfaces in the same way. If you right-
click on a package in the Package Explorer and select New> Class or
New > Interface, an appropriate dialog box comes up, and a skeletal file is
created in the appropriate place.

You can compile, run, and debug programs by hitting buttons on the
toolbar, by selecting from the menu, by right-clicking almost anywhere, and
by keyboard shortcuts. To put it plainly: Eclipse is a modern, rich IDE that
works like other IDEs you have seen.

Eclipse’s real advantages lie in some of the dynamism it offers. As you
know, the authors of this book like text mode and command line, but we must
admit that Eclipse’s refactoring features are a great timesaver. For example,
when you use the refactoring tools to change a method, you can be certain that
every call to that method, everywhere in the project, is updated. Sure, we
staunch CLI guys will tell you that you can use pipes and sed to similar effect,
but even we must admit that you can miss some. We stand by what we have
said: Know all the tools, and you can then choose the right one. But if all you
have is a hammer, you’ll end up using it to repair a china cup.

REVIEW

We've given you the choice of two great development environments. With
them you can do so much more than just edit and compile. Both are expand-
able to include other tools, like CVS and JUnit. Each has a slightly different
paradigm for how they manage files and projects. It seems the longer we work
with one (either one), the more we like it. They kind of grow on you and you
get used to some of the shortcuts that they offer. And yet, there are still those
times when it’s handy to be back at the simple command line.



10.7 Resources 259

10.6

10.7

WHAT You STiLL DON’T KNOW

NetBeans comes with a built-in version of Tomcat for serving up Web pages
and JSP and Java Servlets. It’s very handy for developing and testing on your
desktop. We'll look at that more in Part IV of this book.

In the NetBeans help file, you’ll find this intriguing note:

Using Scripting Languages in NetBeans: NetBeans provides you with a
scripting feature that lets you use scripts to operate the IDE remotely or
from the Scripting Console or by using a scripting file. You can use the
scripting languages provided in the Scripting Console, or you can create a
scripting class through the New From Template wizard. The following
scripting languages are provided with NetBeans: DynamicJava, BeanShell,
and JPython. For information on the scripting languages provided, see
Dynamic]ava athttp://www-sop.inria.fr/koala/djava/, BeanShell at
http://www.beanshell.org/, JPython at http://www.jpython.org/.

We barely got you into Eclipse. Eclipse supports CVS (check out the
Team submenu). Eclipse provides code refactoring features that allow you to
rename classes and methods with automatic update of all affected source.
Eclipse provides a feature to “externalize” strings (which takes all string con-
stants out of a module and makes them into properties references, allowing for
easy internationalization). It is a powerful Java development platform.

RESOURCES

NetBeans.  NetBeans has some very extensive online help. There are also
some very good Web-based documents, including the user guide which can be
found at http://usersguide.netbeans.org/. Of particular value is the
Getting Work Done guide at http://usersguide.netbeans.org/gwd/
which describes itself as “a more detailed introduction to the IDE than available
in the Getting Started tutorial.”

Support for NetBeans, as with many other Open Source projects, happens
online. There is no toll-free number to call. Instead you subscribe to an e-mail
list; all messages sent to the list are then forwarded to everyone on the list.
Anyone can respond, and you are encouraged to respond too, to share what
you know with others. The NetBeans developers are often the ones who answer



260

Chapter 10 Integrated Development Environments

the most difficult questions, but lots of times answers come from others who
have just made it a little further up the learning curve than you.

To subscribe to the nbusers list, send e-mail to nbusers-subscribee@
netbeans.org. You might want to create a special mail folder for the constant
stream of messages that you’ll get from nbusers. We've seen about 15-20 mes-
sages per day, on average, over the past year. You don’t need to read them all,
but as you scan the subject lines, see if there are ones that you might be able to
answer. If you want others to reply to your requests for help, it would only be
fair for you to do likewise. For a directory of the many e-mail lists related to
NetBeans, go to http: //www.netbeans.org/community/lists/.

Eclipse.  The Java Developer’s Guide to Eclipse by Sherry Shavor et al. (ISBN
0321159640, from Addison-Wesley Professional) is an excellent book on the
Eclipse platform, particularly from (as the title suggests) the Java developer’s
point of view. Eclipse is, however, more than just Java. It is designed to be an
“IDE Factory,” providing a framework for almost any task that involves an

edit/compile/deploy kind of lifecycle.



Part Il

Developing
Business Logic






111

Chapter 11

Balancing Acts:
An Imaginary Scenario

In this chapter, the authors wax poetic on practical software development
methodologies, and attempt to introduce a simple, or maybe simplistic, example
application for use in future chapters.

WHAT YOou WILL LEARN

We want to share with you some thoughts on practical software development.
We are not covering anything specific to Linux or Java in this chapter; there
will be no commands to type or syntax to learn here. You may skip ahead to
the next chapter—but at your own peril. Those who know and use good soft-
ware process won't need this chapter, but many programmers don’t fall in to
that category. In fact, some who think they are using good process may be using
too much or too little for their actual situation.

If you are relatively new to the corporate world, or have only worked for
one or two companies in your career to date, you may get a taste of how soft-
ware is done in other corporate cultures. If you are a seasoned programmer with
many such experiences, see if this doesn’t sound all too familiar.

263



264

Chapter 11 Balancing Acts: An Imaginary Scenario

11.2

11.3

You will also see the requirements for a simple budget application that will
be used in succeeding chapters. It has little to do with real budgets, but lots to
do with a simple application that we can use to demonstrate various Java
technologies.

STATEMENT OF THE NEED

Financial planning is something that everyone does. The basic tool of financial
planning is the budget. But unlike the home budget, the budget of a large cor-
poration is managed at multiple levels within the organization. Sure, at some
level, the board, the CEO, and the CFO decide that “we will spend X million
dollars for operations for this quarter,” but that is the start of the process, not
the end.

From there, the feeding frenzy of middle management begins. And keeping
track of things becomes an important aspect of financial control and corporate
governance.

Realistically, any large business will already have processes and tools in
place that meet this need. We are not expecting that what we develop here will
be anything that a business will actually adopt to manage this process. Rather,
our goal is to illustrate some methods of software development that actually
work to build real Java application. The outline of methods and code could be
used to address many classes of enterprise software.

How TO DEVELOP SOFTWARE

There is a science of Software Engineering. The development of software can
be made an engineering discipline, with mathematical rules and metrics of
success. Every aspect of a complete system can be worked out in detail before-
hand so that you know, well before a line of code is written, what the outcome
will be.

That’s not what we’re talking about here.

We are talking about software development not as it happens at NASA,
medical device companies, and in factories where nuclear missiles are made. In
those contexts, the potential costs of error are extremely high, ranging from the
multibillion dollar loss (and public embarrassment) of crashing a spacecraft into
Mars, on through having heart pacemakers fire off incorrectly, right to ending
life as we know it on this planet. In such cases, no matter how much the correct



11.3 How to Develop Software 265

software costs, you pay it because the consequences of not doing it perfectly are

far too high.

TIP

Our discussion is not meant to be scholarship on the topic of software develop-
ment methodology; instead, it is meant to show simple, basic processes that
can bring a reasonable amount of control to a software development project.
These steps are, to name a few, requirements gathering, specification, object
analysis, database design, development iteration (code, unit test, repeat),
and so on.

But most of us who write software do not deal with such consequences.
Most of us are keeping track of purchases and payments. We're recording pro-
duction data. We’re tracking manifests and updating inventories. We are the
great unwashed mass of MIS software developers. Here we, too, want to do it
perfectly right. But every time we go to management and tell them how much
it will cost and how long it will take, the little “mass layoff” vein throbs in their
foreheads. We are always being told to do it faster and cheaper. And so we find
ourselves, again and again, tilting at the windmill of quality.

So where does that leave us? When we go to management with the text-
books of software engineering, they either laugh or scowl. Clearly, the money
people are not prepared to support the cost of doing it right. So what do you
do? The best that you can. The one thing we can tell you for certain is that the
formula for success is not “start writing code and trust to luck.”

[t is fair to say that even the minimal software development method should
include the following steps:

* Requirements gathering

* Use case specification

* Class discovery and problem domain decomposition
e Technical requirements specification (architecturing)
* Testing

* Code and release management

* Production and operations support

* Bug and enhancement tracking



266

Chapter 11 Balancing Acts: An Imaginary Scenario

This list, when done in that order, has been referred to as the classic
“waterfall” model—each step is done in its entirety (or largely so) before
proceeding on to the next step.

Or at least that’s the ideal which programmers have often pursued.

The problem is that the process involves people, and people, especially
those responsible for the requirements, a) are sometimes unimaginative and 2)
keep changing their minds. They start out with some requirements, based on
what they think they’re going to need. But they just aren’t imaginative enough
to think of how terrible their system will be for the average user. They also keep
changing their minds as to what they want.!

The “iterative” approach has been tried as a way to address this problem.
Rather than wait for all requirements to be spelled out perfectly, with the itera-
tive approach you jump right in with what you do know, build that, but expect
changes to come. The sooner you get a working product or prototype into the
hands of the users, the sooner you’ll get feedback on what works, what doesn’,
and what is really wanted (“what works” is used here not in the testing sense,
but in the usability sense).

Note, however, that in the iterative approach, one still gathers require-
ments, develops designs for the code and the tests, develops them, tests (and
fixes) the code, and releases it. It’s just that one does that on a much smaller
and more rapid basis. You get something runnable sooner, and continue to
modify it.

Some people will complain that this makes for more expensive rework,
but we (and others) would disagree. You are refining the process. Your reworks
are less expensive than if you went to the work of building the entire system
only to have some key requirement(s) change—there can be a lot more
“wasteage” there.

Be aware, however, that the iterative approach is 7oz just “whipping the
horses to run faster.” It is not just the waterfall model run at high speed. Rather,
it is using the early iterations of the product as a sort of a “living” requirements
specification, one that you can show to people and that they can try out, in real-
world scenarios, and on which they can give feedback. Don’t expect to be able
to compile complete requirements, but don’t give up on talking to your end

1. Did you notice that we tried to hint at that ever-enjoyable mid-project shifting of require-
ments as we went from a) to 2), changing our numbering scheme midway? Minimal humor,
admittedly, but if you've lived it, you understand.



What Makes a Good Requirement 267

users and other stakeholders either. Requirements are still key to delivering a
solution.

So with either approach, you’ll start with requirements. Let’s look at the
art of requirements.

11.4 WHAT MAKES A GOOD REQUIREMENT

A good requirement is one that states a need but not a solution. Sounds simple,
but it’s easier said than done—especially with solution-oriented technical types.

A typical first cut at a requirement might be something like “Our budget
application should store its data in the database.” While it sounds reasonable,
it is really a solution posing as a requirement.

The first step in refining such a requirement is to ask the simple question:
“Why?” The answer we’re looking for is not “Because we've paid so much for
our database software,” nor is it “Because we all know SQL.” Rather, it should
be something dealing with reliability, fault tolerance, the need for transactional
integrity, and so on.

Sometimes you may have to ask the “why” question more than once, to
refine the requirement(s). “Transactional integrity” is, in a way, a solution. You
could ask, “Why do we need that?” For some projects it may be appropriate to
ask this, because there may not be a real need for it after all.

But don’t overdo it. Push any requirement in a business setting far enough,
and you could get something like “To make money.” That’s not a helpful re-
quirement. You’ve gone too far. Part of the art of requirements is recognizing
when to stop asking why.

A more detailed description of a requirement is that it should be
SMART—Specific, Measurable, Attainable,Repeatable, and Testable. Consider
the following.

A common concern among users of almost any application is that it be
“fast” or “responsive.” While we can sympathize with the concern, it will need
some refinement before it can be considered a (good) requirement. Applying
the “Specific” and the “Measurable” aspects of SMART, we need to specify
what constitutes “fast enough.”

We can try “No button press in the GUI will delay more than .1 second
before providing some evidence of activity to the user, or more than .5 second
before completing its operation.”



268

Chapter 11 Balancing Acts: An Imaginary Scenario

11.5

Sounds more formal, and more specific, but is it realistic (i.e., attainable)?
If the “button press” is one that updates a database across a network, what effect
will network traffic have? What about the size of the operation? If the button
press starts an operation that is dependent on the size of some data set, what’s
the largest it could be and how long will that take?

Depending on how obsessive you or some colleague will be in enforcing
these requirements, you would do well to add a few “weasel words” to give you
some flexibility in the requirements. Phrases like “on average” or “most” will
help. Notice, though, that such words are also the cause of much ambiguity,
working against the “Specific” and “Measurable” aspects of good requirements.
Use them sparingly, if at all.

We should also consider the “testable” aspect of our requirement for speed.
Will we be able to measure this? Can we do so repeatedly? Consider the effect
of network traffic on response times. Under what network load will the tests
be done and the real usage occur? If you want to test under “normal” network
loads, how can you control this (for the sake of repeatability)?

It really is an art to craft good requirements. Moreover, a good require-
ment for one organization may not work well for another. Some teams, groups,
or companies want to be very precise in their use of requirements, viewing them
almost like legal contracts for what will be delivered. Such requirements, how-
ever, would be greeted with derision in other, more informal, organizations.
It’s not that the one will produce good software and the other garbage (well,
they might). It’s more a matter of style. Excessively formal organizations will
drown in the details and spend way too much time (and money) arguing over
the minutiae of the requirements. Overly informal groups will get sloppy with
their requirements and not reap the benefits of building the right thing the first
time. As is so often the case in life, the answer lies in striking a balance between
two forces, one pushing for exactitude and the other pulling you to get going
and do something.

So let’s keep going.

WHOM TO ASK FOR REQUIREMENTS

There are many people to ask about the requirements for a software project or
product. Ask yourself the following questions:

* Who is going to use the software that you develop?



11.6 Requirements for the Budget Application 269

11.6

* Who is going to use the data that comes from the use of the software (i.c.,
who will read the reports generated from the data collected either directly
or indirectly from the running of the software)?

* Who is going to support the software and who will support the machines
on which it will run?

All these people can be considered “stakeholders” in the project.

So where do you start? That’s a political more than a technical question.
Start with your boss and with whoever is the major backer of the project. Then
ask your customers. For in-house IT projects, the “customers” are usually very
accessible; for software products, the customer’s point of view may need to be
represented by marketing and/or customer support people who have had direct
contact with the customer base.

REQUIREMENTS FOR THE BUDGET APPLICATION

Let’s take a look at how such requirements might evolve. We'll look at the
situation through the eyes of a fictional IT guy named Bob.2

11.6.1 Monday Morning, 10 A.m.

Bob gets called in to the office of his manager, Ellen. The conversation goes
something like this:

Bob: Yes, Ellen, you wanted to see me?

Ellen: Come in, Bob. Yes. We're just about to enter another budget
planning cycle. We've got to propose our next year’s budget to the VP by the
end of the quarter, and I got to thinking . . .

Bob: Uh-oh.

Ellen: ... on my way to work today, I got to thinking that we ought to
be able to develop a software tool that would help us do a better job of this
process.

2. We're avoiding giving Bob a title because titles vary so much within our industry. Call
someone an analyst and it may mean that they never code. Call someone a programmer and it
may mean that they only code and never deal with requirements or even designs. Some use
those terms interchangeably. We'll just call him an IT guy.



270

Chapter 11 Balancing Acts: An Imaginary Scenario

Bob: We've used a spreadsheet these past few years to do our budgets. You
want us to develop another spreadsheet application?

Ellen: No, I want a whole new application.

Bob: You want us to reinvent the spreadsheet?

Ellen: No, I want something simpler and more specific to the budgeting
process.

Bob: Tell me more. What are the key features that you see in this
application?

Ellen: Well, first of all it needs to be able to work concurrently with all
the users. With our spreadsheet, we’d have to take turns with the data entry or
we’d risk loosing each other’s changes.

Bob: It may just be that we’re not using our spreadsheet’s advanced
features. Shouldn’t we investigate that first?

Ellen: No, I'd rather have us invest our time in building the tool we know
that we need. At the end of the day your investigation may only show that we
still need the tool, and by then it might be too late to build it.

Bob: I hear you saying that the deadline is rapidly approaching,.

Ellen: Yes—I want to be able to use it for the budget planning at the end
of this quarter. How long do you think it will take you to build it?

Bob: Build what?

Ellen: Haven’t you been listening? The budget tool!

Bob: I know that you mean the budget tool—but you haven’t really given
me enough requirements upon which to base an estimate. Tell me more about
how you envision this tool being used.

Ellen: Well, in the past we've taken last year’s numbers and just bumped
them up by a few percent. Then we look at each category and tweak them. I
want a different approach this year. I'm going to take our department’s budget,
give it a bump, then assign a chunk to each of my reports. I want you to take
those discretionary dollars and spell out how you would spend them.

Bob: Shouldn’t we be providing you with estimates of what we need for
the coming year, rather than you telling us what we have to spend?

Ellen: In theory, perhaps so. But in practice we can only grow the budget
by so much. I'd rather skip the charade and jump right to allocating the dollars
we will likely be able to spend. Then as the year progresses, I'd like to use this
tool to track our spending against this plan.

Bob: But isn’t that why we have that big SAP application?



11.6 Requirements for the Budget Application 271

Ellen: Have you ever tried to use it?! Please! The CFO thought it looked
great—and on paper it did. But that user interface makes it almost impossible
to be productive. And it’s as slow as molasses.

Bob: But back to this new application . . . I'm assuming you’ll want a GUI
on this?

Ellen: Of course. Give it a standard, simple GUI. Something like this.
(She begins to draw on her whiteboard.)

For any given department there will be a “pool” of money. Those dollars
are displayed and can be subdivided into smaller pools of money by creating
subaccounts.

But as the money is subdivided those new accounts and associated dollars
should become visible by others. And as dollars are spent during the year, we’ll
want to track those dollars, so those amounts should be visible, too, and
subtracted from the overall pool of available dollars.

Bob: Wait. . .back up. What needs to be entered to subdivide an
account?

Ellen: The user just picks an account, then chooses to subdivide it, enter-
ing the amount to put in each account . . . or even just a percent of the larger
pot of money.

Bob: So if he picks one account to subdivide, does it split into two, or
three or how many?

Ellen: Let the user choose, but maybe two as a default.

Bob: OK, but we may need to take a harder look at that interaction.

Ellen: So how long will that take? Can you have it ready by the end of this
month?

Bob: I'd like to try the “spiral” approach on this project. I can have
something for you by the end of this week— from which you can tell me if 'm
heading in the right direction. It will just be a beginning, but you’ll be able to
see something run. By the way, is this tool only for our group?

Ellen: For now it is, but I could see other departments wanting to use it
some day. Who knows how far it could go?

3. Remember, this is a fictional account. We are providing justification for why they can’t use
the corporate application. Anyone’s use of such a tool can be less than optimal, reflecting more
on themselves than on the value and usability of the tool.



272

Chapter 11 Balancing Acts: An Imaginary Scenario

11.7

11.6.2 Back at His Desk

Bob is now back at his desk pondering the conversation he had with Ellen.
“These are not like the requirements we learned about in my software engineer-
ing courses,” he muses. “I've got that sketch of the Ul and a brief description
of its functionality. But there seem to be so many unanswered questions.”

So what is Bob supposed to do? He could go back and try to get more
“face time” with Ellen, and ask lots more questions. Sometimes that’s a smart
thing to do. Other times such repetition is seen as annoying and a sign of a
slow-witted analyst, never mind how obscure the initial discussions were or
how many times someone changed their mind about what they want. You will
have to judge each situation as you encounter it. At some point, though, you
have to deal with whatever information you’ve been given, and try to make the
best of it.

So where do you turn? The next best things to do are to begin to docu-
ment the requirements as you understand them, to prototype a solution, and
to start getting buy-in from other stakeholders. Each of these activities may
help bring out more requirements, but that’s not a bad side effect.

DOCUMENTING, PROTOTYPING, AND STAKEHOLDER BUY-IN

Once a project is started, the design must be documented. A prototype may be
built to validate and refine the design. Finally, everyone with a stake in the
success of the design has to be brought up to speed and needs to agree on what
is to be built.

11.7.1 Documenting

After such a conversation, it’s smart to try to get your thoughts down on paper
as soon as possible. Some of what gets said will fade with time, so work quickly
to capture what you can of the requirements that were spoken. Even if you have
to leave lots of blanks, keep moving and get as much of the major requirements
written down as you can, even if they don’t sound very formal or polished.
Then go back, revise and edit your statements, filling in the blanks where you
can. Sometimes you will need to ask others to get the answers to fill in the
blanks. Other times you can use your own judgment and initiative to provide
an answer. Out of this process with its subsequent rewrites will come the
requirements document.



11.7 Documenting, Prototyping, and Stakeholder Buy-In 273

Some organizations are very formal in their understanding of requirements.
They will have company-standard formats which you must follow. But there
is no magic format that will make for good requirements. It really all comes
down to content.

Here’s an informal list of the requirements for the budget application,
based on the conversation between Bob and Ellen.

Features:

e Starts with a single lump sum of dollars.
* How does this first sum get entered?
e Each dollar amount is associated with an “account.”
* Any account may be divided into two or more subaccounts.

* The dollar amount associated with a subaccount is specified either in
absolute dollars or as a percentage.

* What if they don’t add up?
e Can the user mix $ and %?

* Can the user leave the last subaccount’s amount blank for “remaining
dollars™?

* Tracking of the dollars—not enough info, so not in first prototype.
* Multiple users will have access to the data.

* Concurrent use is allowed and supported.

e Short development time, limited resources.

* Has a graphical user interface; earliest versions may be command-line and
terminal interaction.

Not all requirements will be easily forthcoming; not all can be traced back
to an exact quote from the previous discussion. Other requirements will need
to be inferred from the discussion or from department “culture,” or come from
your own judgment:

* Platform: “any” PC in Ellen’s department—>but her developers are all using
Linux platforms.

* Future platforms: “any” PC in the company means any Windows, Linux,
or Mac OS X.

* Reliability: once entered, data is never lost.

* Maintainability: the application must be easy to maintain.



274 Chapter 11 Balancing Acts: An Imaginary Scenario

* Interoperability: there’s no requirement to interoperate with any other
software but here’s an idea for a future version: export/import into CSV
format for spreadsheets, and/or XML format for future expansion).

* Response time: “reasonable” interactive speed; subsecond response when
entering new accounts and values, so that the user can type quickly and
continuously; waiting, if it occurs, should only be at button presses, not
between data entries.

11.7.2 Stakeholder Buy-In

Stakeholder buy-in can be another important part of a software project. As we
discussed in Section 11.5, stakeholders are any of those people who are touched
in some way, direct or indirect, by this software project.

For this simple budgeting program, there will be few stakeholders—it will
largely be Ellen and her direct reports. The system will not likely be a large
drain on computing resources, so system admins don’t need to be brought in
at this point. If and when the project expands to include other users across the
network and across the enterprise, then the system administrators should
definitely be included. There will be few reports from this first cut of the
project, and what few there are will only be read by Ellen and her direct reports,
so again, there are few others that need to be consulted as stakeholders.

The idea at this stage is to listen to other points of view—those of your
stakeholders—to get a different perspective before charging headlong down
one avenue of development.

I£’s not that you will be able to satisfy all points of view—it can be a wor-
thy goal, but it is often unattainable. Rather, you need to hear from all those
involved since your software will affect all those people, and understanding
something about how it will fit into their roles and daily tasks will help you
make better tradeoffs and design better software. It will likely uncover previous-
ly unseen requirements. It also has the political benefit of those people knowing
that you cared enough to listen to them before sending them a finished solu-
tion. It increases the likelihood that your software will be seen as a help, not
hinderance.

4. As engineering types it is difficult for us to understand and appreciate the importance of
this, but in many ways these personal, political, and psychological factors are much more im-
portant to the success of a project than are technical choices. It has taken us years to appreciate



11.7 Documenting, Prototyping, and Stakeholder Buy-In 275

11.7.3 Prototyping

Prototyping can be an effective way to carry on the discussion of both require-
ments and user interface design. Given only a hypothetical or abstract descrip-
tion of some software, it can be very difficult for people to imagine what the
implications of its use will be. A simple prototype can immediately bring the
discussion down to the concrete; people can point at things and say “I like this”
and “I don’t like that” and “How would I do so-and-so” and then see whether
or not it would work. Sometimes, ideas that sound great on paper turn out to
be pretty poor ideas when realized. Prototypes can help you discover that
quickly and easily.

One very useful but inexpensive prototyping mechanism can be
HTML—that is, creating Web pages. Simple static HTML can be fast and
cheap to build, but can begin to approximate what the user interaction will
look like—especially for, but not only for, Web-based solutions. It may not be
an exact replica of the final product, but for a first step it can really get the
discussion moving,.

If the Ul is too complex for a Web page mock-up, you can still use HTML
for prototyping by getting images (screenshots) of what you want your final
solution to look like and then making these images clickable on Web pages, to
simulate some simple user interaction with hyperlinked image sequences.

The idea is to get something “tangible” in front of people as soon as possi-
ble, to further the discussion in a way that written descriptions never can.
(“A picture is worth a thousand words.”)

Once you've built a prototype, shop it around. Hold informal meetings
where you demonstrate the basic functions to stakeholders. We recommend,
as much as possible, meeting with one group of stakeholders at a time. That
way you can keep your conversations focused. If you have two different stake-
holder groups represented and their expertise and interests are wildly different,
you’ll be boring ¥4 the participants all the time. Even if their expertise is similar,
you may have groups with competing or conflicting requirements. While you
need to understand such conflicting requirements and eventually come to some
detente, this meeting is not the best venue for settling those issues; it would
more likely simply scuttle your meeting and void any value from it.

that Dale Carnegie is as important to the software designer as Yourden or Booch. Your users
need to be your friends if you want to succeed.



276

Chapter 11 Balancing Acts: An Imaginary Scenario

11.8

11.9

11.10

After each meeting, review your requirements and see what more you need
to add. Likely at such meetings, you’ll begin to get requests for new features.

You have, in fact, begun the iterative process. Even the most bare-bones
prototype that may only consist of a sequence of pictures is a first cut of your
product. The sooner you can get to a running version, the sooner you will be
able to respond to stakeholder suggestions by adding real features.

REVIEW

A good requirement is one that states a need but not a solution. Your first step
is to uncover the needs, while listening to everyone’s solutions. These require-
ments will develop into feature descriptions. These should be documented and
then prototyped. The prototype, which is in effect the first release of your
product, can then be shown to various groups—stakeholders—as a way to
elicit their feedback. This feedback should begin to factor in to what you will
build, so now you need to move quickly on to building the real product; do
not get stuck enhancing the prototype.

WHAT You STILL DON’T KNOW

Writing good requirements is as much art as it is science, and it involves politi-
cal science as well. This is not something easily taught in a book, but learned
through hard experience.

RESOURCES

One of the original purposes of the World Wide Web was to allow researchers
to share their results. So, you should be able to search the Web for requirements
documents from various projects for examples of requirements specification.
As with any Web search, remember to consider your source. Just because
someone has posted a requirements specification or a template doesn’t make it
a good example.

Here are three examples that we found on a single simple Google search.
They may still be there by now.



11.11 Exercises 277

® http://www.progsoc.uts.edu.au/~timj/thesis/web/srs.html
® http://www2.ics.hawaii.edu/~johnson/413/lectures/5.2.html
® http://www.cc.gatech.edu/people/home/tomoyo/rocky-axel.l.doc

For those who are serious about their software development process, the
Capability Maturity Model for Software from the Software Engineering Insti-
tute at Carnegie Mellon University is the standard. Visit their Web site at
http://www.sei.cmu.edu/cmm/.

If you would like to know more about the spiral approach to software de-
sign, you might want to start with the seminal paper on the topic, “A Spiral
Model of Software Development and Enhancement,” in Computer 21, no. 5
(May 1988), pages 61-72.

To see how the director of the Software Engineering Institute views
the spiral approach, check out the short and readable introduction at
http://www.dacs.dtic.mil/awareness/newsletteres/technews2-1/
disciplined.html.

Another good look at the spiral, or iterative, approach can be found at
http://www.stickyminds.com/se/S3420.asp W&ﬂch.hasa.hypeﬂhﬂifbr
a PDF file of a paper by Philippe Kruchten of Rational Software. The paper
covers some pitfalls common to the first uses of the iterative approach; worth
the read.

A great survey of key papers on three major approaches—spiral and related
topics (including newer work by Boehm), aspect-oriented programming (AOP),
and the rational unified process—is at http://www.rspa.com/reflib/
PrescriptiveModels.html.

11.11 EXERCISES

1. Write requirements for a simple word processor or spreadsheet. Start with
some obvious functionality. Add only enough “bells and whistles” for it
to be usable for beginners. Show this list to others, especially people famil-
iar with similar applications. What features do they find missing that are
important to them? How quickly does your list expand? What might you
do to limit the size and the rate of growth of the features list?



278 Chapter 11 Balancing Acts: An Imaginary Scenario

2. Discuss the requirements for your application with someone who has no
experience with a similar product. How difficult is it to get useful feed-
back? Now show them (the simple features of ) a working spreadsheet or
word processor, as if it were your prototype. Does the conversation change?
In what ways? Is the feedback now more or less useful than before they
saw the prototype?



12.1

Chapter 12

Analysis and Design:
Seeking the Objects

In this chapter, we will present the barest outline of a software development
methodology. For some readers, this will be simplistic and unsuitable. In our
experience, however, there are many businesses out there with very small devel-
opment teams that have very little software engineering experience, even though
they have considerable technical and programming skill. Our goal here is to
present a bare minimum of analysis and design method, so that we can be sure
we have a common basis for discussing the issues of object-oriented analysis

and design.

WHAT YOU WILL LEARN

In this chapter you will learn a very simple method for object discovery and a
simple method of documenting this process.

279



280

Chapter 12 Analysis and Design: Seeking the Objects

12.2

12.3

124

FACING THE BLANK PAGE

So, you have some requirements. Maybe you even have some Ul prototypes.
How do you turn that into an object-oriented design for Java classes? How do
you confront the paralyzing blank white of your whiteboard, terminal session,
or easel?

The simplest way is to start with real-world objects. Stop thinking about
everything you have read about object-oriented programming. Instead, ask
yourself, “What are the real objects involved in this problem?”

In our case, the more you look at it, the simpler it gets. For the moment,
the only real objects we have are people—the users—and accounts, that is,
named pools of money. We know that users get accounts from “above,” and
that they may break those pools down into subaccounts, which they may own
or delegate to other users.

At the broadest level, then, we seem to have two “classes” or types of
real-world objects: Accounts and Users.

UsING CRC CARDS

So, we need two classes. But what goes into those classes? How do we go about
putting the substance into this simplistic framework?

In their now (semi)famous paper presented at the object-oriented program-
ming conference OOPSLA in 1989, Kent Beck and Ward Cunningham intro-
duced a simple, practical design tool for object-oriented design based on a
simple, practical 3x5 file card. The CRC cards for our classes are shown in
Figures 12.1 and 12.2.

But we are getting a bit ahead of ourselves. These CRC cards are an end
product of analysis. They are the starting point for coding. Let’s talk a little bit
about what is on these cards and how we came to that content.

FINDING THE OBJECTS

The basic technique for doing OOA! with CRC cards is to start with a stack

of blank cards. Assemble a design team (this may be one person, or this may

1. (object-oriented analysis)



12.4 Finding the Objects 281

Account

a pool of dollars

members collaborations
*name - a String * persistence (CRUD)
* owner - a User * User

* amount - an SAMoney object
* children - an ArrayList (of Accounts)
* parent - an Account

Figure 12.1 Account CRC card

User

someone who manages budget dollars

members collaborations
* name - a String * persistence (CRUD)
* home - an Account * Account

Figure 12.2 User CRC card

be dozens).2 The first step should always be the nomination of the real-world
objects. Don’t edit or critique at this point. If someone says “computer” as an
object, write “Computer” on the top of a card and put it on the table. If
someone says “Manager” write it on a card and put it on the table.

2. It is fun to gloss over such a complex topic with a single sentence! Obviously, the composi-
tion of a design team is a complicated matter. At the very least, a design team must include a
representative from the programming team and a future user of the system. On small, simple
projects, that may be all you need. On more complex or mission-critical systems, there will
have to be additional representatives, such as people from Operations, Support, Training,
Quality Assurance, and so on.



282

Chapter 12 Analysis and Design: Seeking the Objects

To take our example, suppose we have the following list of CRC cards
after such an open brainstorming session:

* Database

* Capital Account
* Current Account
 CEO

* Computer

* CFO

* Director

* Keyboard

* Manager
Where do you go from here? Let’s articulate a general principle.

The first principle.  If we could teach a programmer only one thing about
software design, it would be this idea: less is more. Or, to quote Antoine de
Saint-Exupéry: “Perfection is achieved not when nothing can be added, but
when nothing can be taken away.” Or, to put it yet another way, always use
the KISS3? principle. The best object design is the smallest possible number of
classes that model the real objects and meet all the requirements.

You are secking simplifying abstractions.

First of all, all the objects that represent technologies or implementation
details should be removed. In our list, this would include “Database,” “Com-
puter,” and “Keyboard.” While it is likely that all three will be involved in the
final product, they are not objects in the problem space. There is no theoretical
reason why an OOA session cannot produce a manual, noncomputer solution.
It is a common tendency to leap from problem analysis directly to technical
solutions. “We can write that in Java,” “We can store those in Oracle,” “That
could be an XML file.” Statements like these are to be avoided at this stage.
Those are details about the implementation. You haven’t got a design to
implement yet!

As we said, you are seeking simplifying abstractions. The next step, after
culling cards that do not represent real objects in the problem space, is to
group together the cards that have any attributes in common. If we look at our

3. An acronym for: Keep It Simple, Stupid!



12.5 Finding the Methods and Attributes 283

12.5

remaining cards, we can quickly see that we have two cards that are accounts:
“Capital Account” and “Current Account.” These are both pools of money.
Put them on top of one another on the table. Likewise, it is fairly obvious that
“CEO,” “CFO,” “Director,” and “Manager” are all people. Put them together
on the table.

Remember that we are looking for simplifying abstractions. The grouped
cards should all be obviously variant types of a generic class of objects. In our
example, the one is a stack of Accounts, and the other is a stack of People, or,
as we will call them, Users. Create new cards for these generic classes. Make a
card with “Account” at the top and put it above the first stack. Make another
card with “User” at the top and put it above the second stack.

There are two ways that this might simplify your design. For now, all cards
below the abstract cards are “on probation.” We are going to move on to define
the attributes (data) and methods (behavior) of our abstract classes. If the ab-
stract class can handle all use cases without having to treat any of the more
specific classes differently, then the specific cards are discarded. If not, then all
functionality that is common across the more specific types will be put on the
abstract class card, and only those data and behaviors that are different will be
put on the more detailed cards.

In the first case, the simplification is a reduction of several potential classes
to a single class. This is always a good thing, when it is possible. In the second
case, you are identifying potential inheritance relationships.

FINDING THE METHODS AND ATTRIBUTES

The next step is to start identifying the data and behavior that characterize your
classes. Always put such items on the most abstract class first. The only time to
add an attribute or method to a more specific class is when it applies to that
class and only that class—in other words, only when it represents a difference
between the general case and the specific case.>

4. We'll talk more about that later in the book. As it happens, all of our simplifications in this
chapter are examples of the first case.

5. In complex cases, you may find an attribute or method that applies to several, but not all,
of the specific cases. In such a case, a new abstract class below the main abstract class, but above
all the specific classes that share that attribute or method, may be called for.



284

Chapter 12 Analysis and Design: Seeking the Objects

12.6 ESSENTIAL AND NONESSENTIAL

So far, we have walked you through a very simple example, and we have made
sound choices at every step. In more complex cases, even the best of us will
make mistakes. We will head down blind alleys. We will group things together
that might belong in separate abstract categories, but should, perhaps, share an
interface. These are not so much errors as judgment calls, and skill at recogniz-
ing them and making the correct decisions comes only with experience.

For now, the most important questions to ask include:

Do I need this class?

We are often tempted to create too many inherited classes. When we
seek more generic, higher level abstractions, it is often possible to use only
the more abstract class. Of course, it is possible to carry that tendency too
far. If your methods contain a lot of “if’s” to handle various subtypes, that
might be a case where you should inherit and overload the method.

Should I get functionality by inheritance or composition?

Inheritance should be reserved only for cases where a class is a more
specific variety of the base class. For example, you might have a Person
class, and then you might have Employee and Customer classes inherit
common attributes and methods from Person. This is frequently called an
“is-a” relationship, as in “A User is a Person.” If your proposed inheritance
relationship makes sense phrased that way, it might well be a good
candidate for inheritance.

Composition is when you use a class as an attribute. To extend our
example, you might have an Address class. You might be tempted to have
Person inherit from Address. But a Person is 7oz an Address. Try it: “A
Person is an Address.” Nope. Instead, you should just have an instance of
the Address class as an attribute of Person. Such a relationship is often
called a “has-a” relationship, as in “A Person has an Address.” If the
relationship makes sense phrased that way, it is a good candidate for
composition. Another way to recognize that you’ve wrongly used inheri-
tance is if you end up having a radically different class inherit from the
same base class. For example, suppose you have a class, Building. Would
it make sense for Building and Person to inherit from Address? Are
Buildings and Persons more specific instances of the same general type of
thing? No, they are not. Building and Person should get Address
functionality by composition.



12.6 Essential and Nonessential 285

* Does this attribute or method belong here?

If you find yourself specifying nearly identical methods in more than
one class, this should make you ask if the classes should have a common
base class from which they should inherit, or if there should be a new
unrelated class that they all share by composition.

If the functionality is the same for a set of classes, and the classes are
specific instances of a more general type, the method should be on the
general class. For example, a changeName () method should probably be
on Person, not on Employee or Customer, because the functionality is the
same for all three classes. By contrast, a changeEmployeeNumber ()
method should be only on Employee. It should not be on Person, because
not all Persons are Employees. There may also be methods that are com-
mon to both Employee and Customer types, but are radically different in
implementation. For example, a changePassword() method might
change a password in a system-wide LDAP server for an Employee, but
might just change a record in a Web site database for a Customer. This is
easily done by writing separate methods in each class.

But should you add a changePassword () method on Person? If you
want to be able to call the method when treating either a Customer or an
Employee as a Person, then you should. But you don’t have to implement
the method on Person. You can declare Person . changePassword as ab-
stract, and then, if you call the method on a Person, it will call the correct
method based on what type of Person (Employee or Customer) the Person
is. Note that if a class contains any abstract methods, the class itself must
be declared abstract and it cannot then be instantiated. Also note that
this is often best accomplished not through abstract classes, but through
interfaces (see Eckel, pp. 321-322).

These are by no means the only considerations that come to bear on what
classes to create and how to arrange and implement them, but they do represent
a good start. They are a foundation on which you can build best practices out
of your own experience and environment.

Whole books have been written on the topics of object-oriented analysis
and object-oriented design. CRC cards are only one part of an array of tech-
niques that can be applied to OOA/OOD. The Unified Modeling Language
(UML) is popular in many MIS circles. UML consists of a variety of different
diagrams which are used to model parts of an object-oriented design. They are:



286 Chapter 12 Analysis and Design: Seeking the Objects

Am | Mature? Or Are You My Mommy?

Let us point you at one more business buzzword link. Even though we
think this particular site and their work are being ill-applied by many
well-intentioned IT managers, there is still a great deal of value in the
Carnegie Mellon Capability Maturity Model (http://www.sei.
cmu.edu/cmm/). At the very least it provides an objective way to assess
the level of process sophistication you have in your organization.

The CMM defines five levels of maturity:
Initial
Repeatable

Defined
Managed

IR A

Optimizing

If we may grossly oversimplify (and why should we stop now?),
“Initial” means you do things differently every time. You just make your
best guess about what the right thing to do is, and you do it. “Repeatable”
means that you have hit upon a method that appears to work, and you
use it consistently. “Defined” means that somebody has written it down.
“Managed” means that the process is actively maintained and supervised
in an effort to adapt it to changing circumstances. “Optimizing” means
that measurements (“metrics”) are made that objectively assess the pro-
cess, and ensure that continuous improvement takes place and can be so
proven.”

What we have shown you in this chapter probably falls in the Repeat-
able category, a long way from the engineering and management nirvana
of Optimizing.

* The problem that seems to come up with this system is that very bad processes may
be very mature and very good processes may be relatively immature. Obviously,
however, an Optimizing process must be steadily moving towards the good.




12.7 Analysis Paralysis 287

12.7

* Class Diagram

* Sequence Diagram

Collaboration Diagram

Use Case Diagram

Activity Diagram

¢ Component Diagram

Deployment Diagram

Using the simple but effective technique of CRC cards can be a good place
to start, but you may soon want to move up the OOA/OOD ladder to use tools
like Umbrello® to make UML diagrams, and perhaps to use the whole UML
toolset.” Many organizations that we know of will pick and choose various
techniques and tools. No matter how far down the road of formal software en-
gineering you go, you must at least make some effort to have a repeatable
process that incorporates continuous improvement.

ANALYSIS PARALYSIS

The catchy phrase “analysis paralysis” has become a cliché. (And how could it
not, being so catchy?) What it refers to, of course, is the tendency to become
bogged down in details; or the tendency to refuse to start implementation until
you are certain that your design is “right.”

This is where using a “spiral” development model can pay off. By doing
frequent small releases, you can expose subtle design flaws at an earlier stage in
development. Often, you can (to trot out another trendy term) “refactor” a
small part of your design or implementation. If you have clean object interfaces,
this can often be done with minimal disruption because a good object model
hides implementation details within classes.

In most cases it is best, once you have the use cases and requirements, to
proceed to a prototype object model and learn by doing.

6.http://uml.sourceforge.net/index.php

7. http://www.uml.org/



288

Chapter 12 Analysis and Design: Seeking the Objects

12.8 REAL SOFTWARE ENGINEERING

Let’s take a moment here and ask a fundamental question. Is this the best way
to make software? And there is another fundamental, but subtly and important-
ly different question: Is this the right way to make software?

There are techniques and methods of Software Engineering that do ap-
proach the ideal of “zero defects.” NASA uses such procedures for manned
spacecraft. Coders for medical devices do likewise. The outline method we have
suggested here doesn’t come close to such methods. So, is what we have de-
scribed the best way to make software? No, it is not. So why don’t we all use
those zero defect methods? That is easy to answer: cost. It is expensive. Virtually
no MIS shop on the planet would be willing to pay the price it takes to get that
stability and certainty. The price isn’t just dollar cost, either. The Space Shuttle,
for example, has computers that still use magnetic core memory, a technology
that was old in the 1970s. Why? Because the restrictions imposed by their
change control systems would essentially require the entire shuttle to be
redesigned and retested if they made such a change.8

But this isn’t an either-or. You do not have to apply either a full-fledged
software engineering methodology, or use nothing at all. Instead, you have to
apply some design, development, and maintenance processes that improve the
probability of success and reduce the cost of failure. When we recommend
version control, requirements gathering, use cases, and CRC cards, we are giv-
ing you a bare-bones set of methods that will help to write fairly successful
software at reasonable cost in reasonable amounts of time.

To some of you, this will be old news. If you are at level 2 or above on the
Capability Maturity Model (see the sidebar in Section 12.6), then you already
have some process. But you would be surprised how many business out there
do not even have source code control in place. To some of you, what we suggest
here will be primitive compared to processes you already have. The point is, no
one’s level of control and process is “right” (to us, that means “cost-justified”)
for all cases. But using no method at all is a risk too great for any business.

8. An exaggeration to be sure, though maybe not as much as you might think, but you get
our point.



12.12 Resources 289

12.9

12.10

12.11

1212

CORE CLASSES

So, let’s meet our core Java classes. Here they are, in all their glory (Exam-
ples 12.1, 12.2).

REVIEW

We have discussed a simple approach to object-oriented analysis and design
through the use of CRC cards. The ideal outcome is a design with the smallest
possible number of classes that model real-world objects while meeting all the
requirements.

WHAT You STILL DON’T KNOW

We could list the names of a number of formal software engineering method-
ologies, but we won’t bother. If this chapter has served as your only introduc-
tion to object-oriented analysis and software engineering, let’s just say you have
a lot of reading to do. But beyond that, there is something you need that is
much more subtle and difficult to pin down: experience. The only way to get
good at analysis and design is to do it. It helps to do it in conjunction with ex-
perienced people, because they can save you time and pain in acquiring your
experience. This chapter is the simplest of foundations. The books give you
knowledge. Experience gives you wisdom.

RESOURCES

Kent Beck and Ward Cunningham, “A Laboratory for Teaching Object-
Oriented Thinking”, in OOPSLA89 Conference Proceedings, New Orleans,
Louisiana, October 1-6, 1989. The special issue of SIGPLAN Notices 24, no. 10
(October 1989) is also available online at http://c2.com/doc/oopslag9/
paper.html#cards.

More on the Capability Maturity Model can be found at
http://www.sei.cmu.edu/cmm/.

Information on the Unified Modeling Language can be found at
http://www.uml.org/.



290

Chapter 12

Analysis and Design: Seeking the Objects

Example 12.1 The Account class
package net.multitool.core;
import net.multitool.util.*;

import java.util.*;
import java.sql.*;

public class
Account
{
private String name; //
private User owner; //
private SAMoney total; //
/7
private SAMoney balance; //
/7
private Account parent; //
/7
private HashMap children; //
/7
private static Connection dbConn = null; //
private ArrayList payments; //
private SAMoney unspent; //
/**

* Create an account, with a pool of dollars
* Use this constructor to create the master

A name to identify this account

The user assigned to this account

Total amt originally allocated to
this account

amt remaining unallocated to any
subaccounts

The account which contains this
account as a child

The collection of subaccounts,
by name

JDBC connection

TODO: unimplemented

TODO: unimplemented

to budget.
account.

* Use createSub to create children of this account.

*/
public
Account (String name, User owner,
throws NumberFormatException
this.name = name;
this.owner =
this.total =
this.balance =

owner;

this.parent = null;
this.children = new HashMap() ;

String total)

new SAMoney (Double.valueOf (total) .doublevValue()) ;
new SAMoney (Double.valueOf (total) .doubleValue()) ;

// N.B. must not be the same object

// Static that connects to the DB and either returns the top account,

// or creates it for us.
public static Account getTopAccount ()
Account topAccount = null;

throws

dbConn =

SQLException {

DriverManager.getConnection ("jdbc:postgresql :budgetPro?user=mschwarz") ;



12.12 Resources 291
if (dbConn != null) {
// We have a database connection.
} else {

// We don't and we must create a top account.

return topAccount;

}

// Simple getter; returns the name.

public String

getName ()

// Simple getter;

public SAMoney
Total() { return total; }

get

{ return name; }

// Simple getter; returns the balance.

public SAMoney

get

Balance () { return balance; }

// Simple getter; returns the parent account.

public Account

get

Parent () { return parent; }

// Simple getter; returns the owner of this account,

public User

get

Owner () { return owner; }

// Census - how many children.

public int
size() { return
/**

children.size(); }

* Get to all the children, via an iterator.

*/

public Iterator

get
{

AllSubs ()

return children.values () .iterator () ;

/x*

*/

Create a new
given a name
The child is
the parent's
allocated to

subaccount (i.e., child)

and an amount.

connected to the parent, and
balance is reduced by the amount
the child.

returns the total pool of money that this account represents.

as a User object.



292 Chapter 12 Analysis and Design: Seeking the Objects

public Account
createSub (String name, String amt)
throws NumberFormatException

Account acct = new Account (name, owner, amt);

// Reduce the parent's unallocated funds.
balance = balance.subtract (acct.getTotal());

// Connect the accounts to each other.
acct.parent = this;
children.put (name, acct);

return acct;

} // createSub

/**

* Looks up and returns the account with the given name.
*/

public Account

getSub (String name)

{

return (Account) children.get (name) ;

} // getSub

} // class Accoun

The Umbrello UML modeller is an Open Source tool for creating the various
UML diagrams. You can find it at http://uml.sourceforge.net/
index.php. We also recommend their online documentation as a good brief
introduction to UML and to Umbrello. It can be found from the main Umbrel-
lo page, or directly at http: //docs . kde.org/en/HEAD/kdesdk/umbrello/.

12.13 EXERCISES

1. Imagine a public library. Carry out the CRC nomination process for a
system to track library members and the collection. What list of objects
do you come up with? What abstract classes do you find? Which did you
discard and why?

2. Extend the purpose of the library program to include generating mailings
to members with overdue materials. Did you add classes? Did you add
methods and/or members? To which classes did you add them?



12.13 Exercises 293

Example 12.2 The User class

package net.multitool.core;

import net.multitool.util.*;
import java.util.*;

public class
User
{
private String name;
private Account home; // TODO: implement

public
User (String username)
{

name = username;

public String
toString ()
{

return name;

} // class User

3. A new requirement is added. The system must allow for books, audio
recordings, and movies to be checked out for different lengths of time.
Did you add classes? Did you add methods and/or members? To which
classes did you add them?






Chapter 13

JUnit:
Automating Unit Testing

Testing may not be your favorite task as a programmer; it probably rates just
above documentation. Yet here is a tool that has made testing more bearable
and more productive for many Java developers—and not just because it has

pretty colors and flashing lights.

13.1 WHAT YoOU WILL LEARN

What JUnit is and why it’s getting so much attention.
* How some people test before they start coding.

* How to install and invoke JUnit.

The major JUnit concepts that you need to understand.

What assertions are available in JUnit.

295



296

Chapter 13 JUnit: Automating Unit Testing

13.2

13.3

JUNIT: WHY ALL THE Fuss?

JUnit is a framework for unit tests. It consists of a handful of classes which you
can use to build bunches of test cases for testing your application. JUnit also
comes with three test “runners” for running your tests and reporting the test
results. So why all the fuss? Why has JUnit been so much in the technical
forefront the last year or two?

Start with a straightforward idea, well executed, that can help almost any
programmer working on any application. Make it something that can be inte-
grated incrementally into existing projects. Make it robust enough to be used
for projects starting “from scratch.” Give it a simple but pleasing GUI, and put
it to work on a few high-profile projects. Give it some good press coverage. And
you’ve got a winner: You’ve got JUnit. Besides, it really does help you get useful
work done; it makes writing tests a little less work and a little more enjoyable.
And working with well-tested code is its own reward—a satisfying experience.

DESIGN THEN TEST THEN CODE

This is the slogan of the test-oriented crowd, and if it sounds a bit impossible,
it is. I’s hype—it got your attention, and there is a bit of truth to it, but don’t
take it too literally.

The approach espoused by the “Testing First” crowd is to start, like all
good software development efforts, with design. But once you have pieces de-
signed, move directly into testing. Now you don’t have any code that can be
tested yet, but you can start writing your tests. Then—although the tests will
fail, as there is no code to run yet—you can begin keeping score on your
progress by running these tests as code gets implemented.

NOTE

Some people like to tout the use of JUnit as an automated tool to track progress,
but that's a little hard to do when you can’'t compile your tests because the
classes they need don’t yet exist. However, if you document your design of a
class by (among other things) creating an empty version of the source, with
Javadoc comments for the class and whatever methods you have come up with
so far, well, then you've got something that will compile, and thus can be used
for tracking progress. It also makes great, tangible documentation. Our point
here, though, is that you are doing some coding before you begin testing. It's
really more of a back-and-forth between coding and testing.



13.4 Installing and Running JUnit 297

13.4

Let’s apply that approach to our previous design discussion. We've de-
scribed an Account class in our design discussion. It needs a name, an owner,
and an amount of money when created. It should have a method to create
subaccounts, ones that are connected to this account and get allocated some or
all of the main account’s money.

Example 13.1 is the basic structure of our Account class.

That’s enough to begin writing a test. We have described the constructor,
with the three parameters that it will need. We've also described a method on
the Account object, one that will create subaccounts. That gives us enough
information to write a test that will create an account and then create subac-
counts of that account. We can test to see if the accounts are created properly
(i.e., are not null) and if the subaccounts use up all the money of the parent
account.

When you “test then code,” you begin to use the objects that you have
designed without getting bogged down in their implementation. You are, in
effect, describing their external interfaces without implementing them. You are
also beginning to use the classes as a user might, though a tester’s use is a bit
different than the way an application might use them. However, as a user of
these classes you are beginning to test the design, by testing the results of the
use cases—are these classes really usable?

You may discover that you need some additional functionality. In our ex-
ample, we can see from the description of our test that we will need a getter
method on the account to return the amount of money that remains unallocat-
ed to subaccounts. Then we can test to see if it gets used up properly.

There are many more test cases that we could develop for the Account
class, but let’s use just these for now, so that the size of our test case is
manageable.

Our next step is to get JUnit installed before we get too deep into
developing our test cases. That will give us something to run these tests.

INSTALLING AND RUNNING JUNIT

I¢’s rather simple to install a standalone version of JUnit. We download a ZIP
file from the JUnit Web site, then unzip it into a directory. Adding the JUnit
JAR file to your cLASSPATH is all that’s needed to make JUnit available for you
to run it.



298

Chapter 13 JUnit: Automating Unit Testing

Example 13.1 The bare bones of our Account class

package net.multitool.core;

import net.multitool.util.*;
import java.util.*;

/**

* The basic Account class for our budgeting example; this is the

* first-cut

*

"implementation" where we have just transferred our

design into Java code. We can use this much to generate Javadocs

* and also to begin our JUnit testing (design, test, code).

*/

public class

Account

{
private
private
private
private

private

/**

String name; // a name to identify this account
User owner; // the user assigned to this account
SAMoney total; // total amt allocated to this account

HashMap children; // the collection of subaccounts,

// by name

Account parent; // it has this account as a child

* Create an account, with a pool of dollars to budget.
* Use this constructor to create the master account.

* Use
*/
public

"createSub" to create children of this account.

Account (String name, User owner, String total)

{
}

/**

* Create a new subaccount (i.e., child), given a name
* and an amount. The child is connected to the parent.

*/

public Account
createSub (String name, String amt)

{

return null; // so it compiles

} // createChild

} // class Account




13.4 Installing and Running JUnit 299

13.4.1 Downloading and Unzipping

Point your browser at the site http: //www.junit.org/ (Figure 13.1). From
the main page, choose the Download heading,.

That takes you to a SourceForge site (Figure 13.2); click on one of the
sites near you, though any will do. The download is only a few hundred
kilobytes, so it shouldn’t take long.

You'll be left with a file named junitx.y.z.zip, where the X, v, z char-
acters are the digits that tell you what release of JUnit this is. Our examples
show the 3.8.1 release.

NOTE

I's a good idea to inspect the ZIP files that you download before you actually
unzip them. We like to know what files and especially what directories are going
to get modified or cluttered up by the unzipping. Some ZIP files come with all
their files inside of a single folder. Those are fine to unzip in place. Other ZIP
files have been built from lots of pieces and unzipping them can make a mess
of your current directory, or worse, of other directories that you may not even
know about. Instead, play it safe and look before you leap. You can see the list
of all the files in the JUnit ZIP file by typing this command:

$ unzip -1 junit3.8.1.zip

The -1 option will produce a listing of the contents of the ZIP file. That
way you can see what subdirectories it will create, that is, if it is going to unpack
into a single directory or make a mess. The JUnit ZIP file is very well behaved
in this respect.

9 * JUnit, Testing Resources for Exwreme Programming - Konquerar i = o x|l
Locaion Edit View Go Bockmaks Tock Setings Window Help <1
P flg = <3 B o
AEoME0 FODY YKAADS
B Lecaton: [JU v it orgingor i v |
Hoce
-
-
_. Org [—Uhe-x:-"swtes
nit ADhEri\Qlé: XProgramming Progrz:anlwrmmg
Getting Started JavaDocs Documentation Articles Books IDEs Extensions Get Involved Training
W{ﬁeﬁwjmmﬁaﬂ%pfﬁzmécém...
T Ll =T . -

Figure 13.1 The JUnit home page



300

Chapter 13 JUnit: Automating Unit Testing

rll@ ar Select a Mirror for File: [junitfjunit3.8.1.zip - Kenquerar

Location Edit View Go Bookmarks Tools Settings Window Heslp

e G0 DY YRAXAD

E# location: F@ http:/prelow Hoads souceforge. net/ it unit3.8.1 zipPdow road

g

S )Lu{ua;l:(dlll{ief% n 0WN mnn

You are regquesting file: /junit'junit3.8.1.zip
Please select a mirror
Host Location Continent Download
!\ \
HEAnEt@ Dwhlin, Ireland Europe ﬂ432 kb
LG RO FROLATON i IESARDS TR
e = = Chapel Hill, W Morth America
-|b-| b].'IO 9 '[j'atazma
MR i i
Wﬂ:ﬁf - Keihanna, Japan Aszia ﬁﬁz kb
ﬂ rinneapolis, kM Morth &merica '[j'ataz kb
A FLOW Sydniey, Australia Ausiralia W M43 o
v Commnications

Figure 13.2 The SourceForge download site

Create a directory and unpack the JUnit ZIP file in there:

mkdir ~/junit

mv junit3.8.1.zip !'$
cd !$

unzip junit3.8.1.zip

vr U Uy

This warning from the installation instructions is worth noting:

IMPORTANT

Don’tinstall the junit . jar into the extention directory of your JDK installation.
If you do so the test class on the filesystem will not be found.



13.4 Installing and Running JUnit 301

The JDK installation directory has a subdirectory named jre/1lib/ext.
Don’t put the JUnit JAR file in there. If you have followed our instructions,
you’re OK, since we had you create a new directory.

To use JUnit, the junit.jar file needs to be in your classpath. For
example:

$ export CLASSPATH="S${CLASSPATH}:${HOME}/junit/junit3.8.1/junit.jar"

That’s all the installing there is. It doesn’t feel like much, because you
haven’t done much. All it provides is a JAR file that you will use when you want
to run tests. That’s where it gets interesting.

13.4.2 Using JUnit

To test out your installation, cd to the directory where you unpacked JUnit.
If it isn’t already part of it, add the current directory (“.”) to your CLASSPATH:

$ export CLASSPATH="S${CLASSPATH}:."
Then try:
$ java junit.swinguil.TestRunner junit.samples.AllTests

You should see a Java Swing GUI appear, with a green bar showing the
progress of the testing (Figure 13.3).

NOTE

You may see an error message like this in your terminal window:

(data/time) java.util.prefs.FileSystemPreferences checkLock...
WARNING: Could not lock System prefs.Unix error code 136742412
(data/time) java.util.prefs.FileSystemPreferences syncWorld

WARNING: Couldn't flush system prefs: java.util.prefs.Backi...

It will keep repeating as long as JUnit’s GUI is running. The easiest fix is
to make the jre directory world-writable while you run the GUI the first time. It
will create the files it needs (in a directory, .systemPrefs), and thereafter
stop pestering you. Remember to change permissions on the directory back to
their original value.



302 Chapter 13  JUnit: Automating Unit Testing

T~ — T ———
JUnit
Test class name:
|junit.samp|es.AIITests |v| | | | Stop |
[ Reload classes every run
s JU
Runs: 113/119 X Errors: O “ Failures: 0
Results:
- Run
il
4 [v]
1 [
|Runnmg:teﬂﬁmﬂvERepemedTeﬂUunniesw.emenﬂnnsﬂmﬂveTeﬁTesU Exit

Figure 13.3 JUnit Swing GUI running tests

This is the GUI part of JUnit, part of what has made it so popular. By
writing JUnit tests, you get to use their GUI If you were to develop your own
testing mechanism, you would also have to (re)invent a GUI.

There is an AWT GUI for the Swing-averse, but it is less featured. There

is also a plain command-line test case runner:

$ java junit.textui.TestRunner junit.samples.AllTests

Time: 3.834

OK (119 tests)



13.5 Writing Test Cases 303

13.5

It prints a period for each test that it runs. (Yes, there are 119 periods
there. Go ahead; count them if you must.) The command-line version is useful
for incorporating JUnit tests into shell scripts (e.g., for testing nightly builds,
e-mailing the results) and is used by ant when it invokes JUnit.

WRITING TEST CASES

Writing a test case for your own Java code consists, at its simplest, of writing a
new class for each class that you want to test. But this class that you create is
built in a special way so that the test harness of JUnit can execute it. That is,
the test case class that you create should meet certain naming conventions, so
that the JUnit test runners can find what they need in order to run your tests.

More specifically, your test cases will extend the JUnit class Testcase.
Now, TestCase is an abstract class, meaning there are parts that you have to
fill in (i.e., methods that you must write) to make it a working class. Moreover,
TestCase implements (in the Java sense of the word) the Test interface. Can
you begin to see how the TestCase class is a framework? It defines the rough
outline of how the test cases will look so that a common test runner can run
any test case, no matter who wrote it.

Let’s look at a simple example, to see what such a test case looks like.
Example 13.2 shows one for testing our Account class.

Example 13.2 Simple test case

package net.multitool.core;

import java.util.*; // needed by our class
import net.multitool.util.*; // needed by our class
import junit.framework.*; // needed by JUnit

/**

* for JUnit testing of Account.java
*/

public class

AccountTest
extends TestCase

// our test instrumentation:
Account base;



304

Chapter 13 JUnit: Automating Unit Testing

// run before each test case:
protected void

setUp ()

{

base = new Account ("Base", new User ("testuser"), "150");

// our one test case
public void
testCreateSub()
{
// Create a subaccount, assigning $50 of our pool of $150.
Account subl = base.createSub("subl", "50");
// Make sure that it created something.
assertNotNull ("Couldn't create subl", subl);

// Now a 2nd subaccount.
Account sub2 = base.createSub("sub2", "75");
assertNotNull ("Couldn't create sub2", sub2);

// Now a 3rd subaccount, to use up all the $.
Account sub3 = base.createSub("sub3", "25");
assertNotNull ("Couldn't create sub3", sub3);

// We should have the same total that we started with.
assertEquals (150, base.getTotal () .getDollars());

// We should have used up all our S.
assertEquals (0, base.getBalance() .getDollars());

// Be sure the (sub)account lookup works:
Account ex2 = base.getSub("sub2");
assertNotNull ("Couldn't find sub2", ex2);
assertSame (sub2, ex2);

} // testCreateSub

} // class AccountTest

Notice how we’ve named our test case class. We take the name of the class
and append Test to the end. This is convenient for us—we can easily see which
classes have test cases; but more importantly, JUnit can use this and other
naming conventions to derive the test case names (more on that later). Notice
also that the method in the Account class that we want to test, called
createsSub (), gets exercised by a method named testCreatesub ()—we



13.5 Writing Test Cases 305

Table 13.1 JUnit Naming

In your original code In your test case
Class MyClass MyClassTest
Method myMethod testMyMethod

prepend the word “test” to the method name, and capitalize the now-no-longer-
first letter. Again, JUnit will use this naming convention, along with
introspection, to automatically derive the test names from the actual method
names (more on that later, t0o). The naming conventions we’ve seen so far are
summarized in Table 13.1.

Let’s take a quick look at the code. We import the framework for JUnit
test cases, so that the compiler can resolve the names that deal with JUnict stuff.
The Testcase class that we extend is part of that JUnit stuff. It’s an abstract
class that defines much of what we use for testing. We just fill in what we need.

The Testcase class defines a method called setup (). The setup()
method is called not just once, but before every test method is called. That way
you can initialize variables and get into a known state before each test. Since
i’s already defined in the Testcase class, we can override it (as in our example)
to do what we want, or we can not include it in our class and get the default
behavior from Testcase (which is to do nothing).

There is also a method named tearbown () which you can override if you
need to close things up at the end of a test case (e.g., close a database connec-
tion). As with setUp (), its default behavior, as defined in Testcase, is to do
nothing.

The test case itself—the method where we will exercise our class—is called
testCreateSub (since we want to test our createSub () method). Inside such
a method (and we could have more than one) we write code which uses the
objects in our application. Then at various junctures in the code we make asser-
tions about the state of things—for example, this variable should be non-null,
or this expression should have this particular value.

Those assertions are, to our way of thinking, the tests. We're testing to see
if the subaccount was created, or if the main account did, indeed, use up all of
its dollars in allocation to the subaccounts. But they are not what is called zests
by JUnit. Rather, each individual method in a test class is considered a single
test. Such test methods are, typically, a collection of assertions surrounding the
use of a single (application) method. So in our example, the method



306

Chapter 13 JUnit: Automating Unit Testing

testCreateSub () is asingle JUnit test which asserts various conditions about
various invocations of the createsub () method. Note that all of the assertions
encountered in the execution of the test class must pass for the test to pass.

So what happens if an assertion fails? The assert method will throw an ex-
ception, reporting the failure. In JUnit terminology, a fazlure is a test that didn’t
pass, whereas an error is a problem with the running of the test. A missing class
or a null pointer exception are errors, whereas an assertNotNull () call failing
is considered a test failure.

The handy thing about the exceptions that the assert methods throw is
that they are, technically speaking, not java.lang.Exception throwables but
rather belong to the java.lang.Error type of throwable. (Don’t confuse this
technical Java use of the word “error” with our more informal use in the previ-
ous discussion of failure versus error.) To quote from the Javadoc page for
java.lang.Error:

A method is not required to declare in its throws clause any subclasses of
Error that might be thrown during the execution of the method but not
caught, since these errors are abnormal conditions that should never occur.

So the use of Error by JUnit’s various assert methods is done simply as a
convenience for us test developers, so that we don’t have to put throws
clauses on all of our method declarations.

13.5.1 JUnit Assertions

These are the various test assertions available with JUnit:

* assertEquals (), comparing
* Dboolean with boolean
* char with char
* short with short
* int with int
¢ long with long
* float with float
* double with double
* Object with object
* String with String



13.5 Writing Test Cases 307

® assertTrue( boolean expression )
® assertFalse( boolean expression )
® assertNull (Object)

®* assertNotNull (Object)

® assertSame (Objectl, Object2)

® assertNotSame (Objectl, Object2)
* fail()

Each of the assert methods comes in two “flavors,” one with a message
string and one without. For example, there is a method assertTrue () which
takes a boolean as its parameter; typically it would be used with an expression,
for example:!

assertTrue( (sample actual) );

If the condition is not true, an AssertionFailedError is thrown. That
means, among other things, that if/when your test fails, it will stop executing
at that point. The tearDown () method, though, will still be executed before
proceeding to the next test.

There is also a method of the same name, assertTrue (), but with a
slightly different signature—it adds a String as its first parameter. The string
is the message to be included in the error report. Using this variation on
assertTrue (), our example would become:

assertTrue ("Sample too small", (sample actual));

In the same way, assertFalse() has two versions—
assertFalse (boolean) and assertFalse (String, boolean)—and so
on for all other assert methods.

1. Yes, the extra parentheses are not needed; they just make the point that this is a boolean ex-
pression being passed as the argument to assertTrue (). We could also have written it as:

boolean result = (sample actual);
assertTrue (result) ;

Again, the extra parentheses are used just to make it clearer.



308

Chapter 13 JUnit: Automating Unit Testing

The string message is very helpful when you get large numbers of com-
parisons and assertions inside your test cases. It can help you identify which
assert in which test failed.

TIP

When writing your assertions, keep in mind the difference between
assertEquals () and assertSame (). The latter will test if the two argu-
ments refer to the very same instance of an object, whereas the former only
checks to see that their values are equal. So any two references to objects that
are the same will also be equal, but not vice versa. For example:

String sample = "value";

String others = "more value".substring(5) ;
assertEquals (sample, others) ; // will pass
assertSame (sample, others) ; // will fail

Digging a little deeper into how all this works, it might be worth pointing
out that the JUnit TestCase class, while an abstract class itself, is also an exten-
sion of another class, the Assert class. The Assert class is the class that defines
all these public static methods for asserting the various conditions (see the list
above). That is why you don’t need any qualifiers on the various assert calls.
They are all part of your test case by virtue of it extending Testcase. It also
means that you could override any of them to get special behavior. This might
be useful for assertEquals (Object, Object), to allow you to compare
objects of your own kinds, but we don’t recommend this. You are better off
overriding the equals () method of your own object than messing with the
JUnit methods. And remember that if you override those behaviors, your tests
will only be as good as your implementation of the assert mechanisms.

13.5.2 Running aTest Case

Recall how we ran the JUnit self-tests after installation. We can now use a
similar command to execute our own test case. With the cLASSPATH still set
as above, try compiling and running the test case:

$ javac net/multitool/core/AccountTest.java
$ java junit.textui.TestRunner net.multitool.core.AccountTest



13.6 Running Test Suites 309

13.6

The TestRunner will use introspection and reflection to dig information
out of the AccountTest class. It will find all the public methods that begin
with test and have no parameters. It will execute setUp (), then one of the
test methods, then tearDown (); then setUp (), then another test method,
then tearDown(), and so on. Our example has only one test method,
testCreatesSub (), so that will be the one test method it runs.

The result of running the test should look like this:

$ java junit.textuil.TestRunner net.multitool.core.AccountTest
Time: 0.071

OK (1 test)

RUNNING TEST SUITES

Quite likely, you’ll want to run several tests, exercising the various classes that
make up your application. Let’s see an example of how to build such a suite of
tests (Example 13.3).

While not defined as an interface, the convention is used by JUnit
TestRunner classes that they will look for a public static method called
suite() in any class that you ask a TestRunner to run. Your class, the one
that will define the suite of tests, should return something that implements the
Test interface. A TestSuite object is one such object, and we can fill it with
tests gleaned automatically by JUnit from the class names that we supply.

We've also added amain () that invokes the text-based user interface for
running these tests. That way you can invoke the tests from the command line
if you like.

Here are the two commands to compile and execute the CoreTest suite,

using the Swing GUI:

$ javac test/net/multitool/core/CoreTest.java
$ java junit.swingui.TestRunner net.multitool.core.CoreTest

When the GUI runs, click on the Hierarchy tab and you can see the vari-
ous tests that make up the suite. Opening the folders will show the tests inside
of suites (Figure 13.4).



310 Chapter 13  JUnit: Automating Unit Testing

Example 13.3 A suite of test cases

package net.multitool.core;
import junit.framework.*;

public class
CoreTest
extends TestCase
{
public
CoreTest (String str)
{
super (str) ;
} // constructor CoreTest

/**

* Constructs a collection of tests to be run by the TestRunner.

*/
public static Test
suite ()
{
/*
* Add the results of each separate Test into a big Suite.
*/

TestSuite suite = new TestSuite("Core Classes");
suite.addTestSuite (net.multitool.util.SAMoneyTest.class);
suite.addTestSuite (AccountTest.class);

suite.addTestSuite (UserTest.class) ;

return suite;
} // suite
public static void
main(String [] args)
{
junit.textuil.TestRunner.run(suite());

} // main

} // class CoreTest




13.6 Running Test Suites 311

[x]

Junit

Test class name:

‘net.muItituul.cure.CureTest |v‘| H Run |

[] Reload classes every run

e Ju

Runs: 5/5 X Errors: 0 X Failures: 0
Results:
[ Core Classes Run
@ [T net.multitool. util. 5.AM oneyTest
i testadd
i testSubtract
i testTwim
@ T net.multitonl. core. AccountTest
i testCreatesub
G- T net multitonl core serTest
| % Test Hierarchy
.................................................................................. =
l
1 [¥]
IFinished: 0,223 seconds Exit

Figure 13.4 The CoreTest running a suite of tests

One last example is the saMoneyTest.java file that was used in the
CoreTest example (Figure 13.4). Did you notice the names displayed in the
test hierarchy? They don’t match the method names used to run the tests in
SAMoneyTest .java because we constructed the suite “by hand” instead of
letting the JUnit introspection and reflection find the methods dynamically.

Such manual approach has some advantages. You can restrict the current
set of tests being executed to a subset of the entire set of tests. You can also, as
this example shows, give other names to the tests. The biggest drawback,
though, is the maintenance cost of having to add the test by hand to the
suite () method whenever you add another test method.



312

Chapter 13 JUnit: Automating Unit Testing

13.7

13.8

REVIEW

We have shown you how to download JUnit and get it running. We have dis-
cussed creating a test case and creating a suite of tests. We've looked at the
Swing GUI for JUnit but also at the command-line interface. We have shown
how our design translates to a minimal code implementation from which we
can begin testing. We've discussed the “design, test, then code” approach, and
how you can use it to track the progress of your implementation.

WHAT You STiLL DON’T KNOW

JUnit can be invoked from ant. It is an optional task (not part of the standard
ant release), but easy to install and get running. Both the junit.jar and ant’s
optional tasks JAR file need to be in your classpath. That’s all it takes. See
http://ant.apache.org/manual/OptionalTasks/junit.html for more
details.

JUnit integrates well with Eclipse and other IDEs. It is easy to install and
very easy to use when it’s part of your IDE. For whichever IDE you choose,
get the JUnit plug-in for it and use it.

One area we haven’t yet discussed is how to do unit testing for the GUI
portion of your application. The basic idea is the same. In order to manipulate
your GUI from the test, you may want to investigate the java.awt.Robot
class. It can be used to generate system input events such as mouse and
keyboard actions.

In fact, we've only begun to describe the various ways that JUnit can be
used for all kinds of testing. Our focus has been on unit tests during code devel-
opment, but JUnit can also be applied to integration and release testing. With
any large Java application, it is crucial to have a good set of regression tests that
can be rerun after features or fixes are added, or after classes have been
refactored. JUnit has proven to be very valuable in these situations.

Finally, remember that JUnit is only a tool. The GIGO law? tells us not
to expect great tests just because we know how to run a tool. Test design, like
any good design skill, is art as well as science. Learning the art of testing wil