NMR Studies of Spin Decoherence in Phosphorus-doped Silicon

D. Li, A.E. Dementyev, M. Liu, S.E. Barrett
Department of Physics Yale University

Supported by NSA and ARDA under ARO grant #DAAD19-01-1-0507
and by NSF Grant #OIA-99776546
SEB acknowledges the support of the Alfred P. Sloan Foundation
Si:P NMR

$^{10^{21}}$Si-29 nuclei at Room T

![FT of FID](15.3 \text{ Tesla}
128 scans (6s/scan)]

$^{10^{19}}$P-31 nuclei at Room T

![P-31 Hahn Echo](7.03 \text{ Tesla}
10^6 scans (2ms/scan) 33 minutes)

![FT of Echo](7.03 \text{ Tesla}
33 minutes)
• Why do this?

 - Proposals for Scalable Solid-state Qubits based on spin require "long" nuclear spin decoherence times

 - In real samples we don't know how long "long" is

• Time scales to be measured

 - T_1, T_2^*, T_2, ... etc.

NMR Studies of Spin Decoherence in Si:P

Si:P NMR

Measuring Spin Dynamics of Si-29

Si-29 $T_1 = 5$ sec

10^{21} Si-29 nuclei at Room T
Si:P NMR

10^{21} Si-29 nuclei at Room T
Hahn Echo Formation in the Rotating Coordinate System

- Spins initially polarized along Z-axis
- "$\pi/2$-Pulse" applied along X-axis
 - Spins begin to precess
- Free Precession begins (no H1)
 - Fully polarized along Y-axis
- "Pancake" forms in free precession (no H1)
- "π-Pulse" applied along X-axis
 - "π-Pulse" continues
- "Inverted Pancake" forms within free precession
 - Refocussing
- Free Precession continues
CPMG Echo Sequences on 29Si at 4K

Short Delay Between Echoes
1.14 msec

Long Delay Between Echoes
2.68 msec

Longer Delay Between Echoes
10.36 msec
Other Pulse Sequences for 29Si at Room Temperature

MLEV-4
$\Pi_Y\Pi_Y\Pi_Y\Pi_Y$
3.14ms Delay

XY-8
$\Pi_X\Pi_Y\Pi_X\Pi_Y\Pi_Y\Pi_Y\Pi_X$
7.21ms Delay

CPMG with Composite Pulses
$\Pi_Y = X_{90^\circ} Y_{180^\circ} X_{90^\circ}$
4.18ms Delay
NMR Studies of Spin Decoherence in Si:P

Summary-

• Measurements in samples relevant to scalable, solid-state qubits
 - T_2^* is a lower limit

• Interesting Dynamics to Understand
 - Spin-Spin Coupling for a small number of neighbors
 - Spin Locking Effects in Pulse NMR

• Next Steps
 - Lower Dopant Concentrations
 - Optically Pumped NMR
 - Higher B/T

References-