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Abstract: The goal of this survey is to give a view of the state-of-the-art of computing the Singular Value
Decomposition (SVD) of dense and sparse matrices, with some emphasis on those schemes that are suitable
for parallel computing platforms. For dense matrices, we survey those schemes that yield the complete
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Calcul parallèle de décompositions aux valeurs singulières

Résumé : Nous tentons dans ce rapport un état de l'art pour le calcul parallèle de décompositions aux
valeurs singulières de matrices. Dans le cas de matrices pleines, la décomposition est complète tandis que
dans le cas des matrices creuses, seules les valeurs extrémales sont visées. Nous considérons en particulier
le calcul des plus petites valeurs singulières qui sont les plus di�ciles à estimer mais qui permettent de
mesurer la distance à la singularité de la matrice. Une méthode parallèle pour déterminer un pseudospectre
est présentée en guise de conclusion.

Mots-clé : Décomposition aux valeurs singulières, algorithme parallèle, Jacobi, itération simultannée,
Lanczos, minimisation de la trace, Davidson, Jacobi-Davidson, pseudospectre
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1 Introduction

1.1 Basics

The Singular Value Decomposition (SVD) is a powerful computational tool. Modern algorithms for obtaining
such a decomposition of general matrices have had a profound impact on numerous applications in science
and engineering disciplines. In what follows, we will provide a brief survey of some parallel algorithms
for obtaining the singular value decomposition for dense, and large sparse matrices. For sparse matrices,
however, we focus mainly on the problem of obtaining the smallest singular triplets.

In order to introduce the notations of the chapter, the basic facts related to SVD are presented without
proof. Complete presentations are given in many text books, as for instance [42, 88].

Theorem 1.1 (SVD) If A 2 Rm�n is a real matrix, then there exist orthogonal matrices

U = [u1; � � � ; um] 2 R
m�m and V = [v1; � � � ; vn] 2 R

n�n

such that

� = UTAV = diag(�1; � � � ; �p) 2 R
m�n ; p = min(m;n) (1)

where �1 � �2 � � � � � �p � 0:

De�nition 1.1 The singular values of A are the real numbers �1 � �2 � � � � � �p � 0: They are uniquely
de�ned. For every singular value �i (i = 1; : : : ; p), the vectors ui and vi are respectively the left and right
singular vectors of A associated with �i.

More generally, the theorem holds in the complex �eld but with the inner products and orthogonal matrices
replaced by the hermitian products and unitary matrices, respectively. The singular values, however, remain
real non-negative values.

Theorem 1.2 Let A 2 Rm�n (m � n) have the singular value decomposition

UTAV = �:

Then, the symmetric matrix

C = ATA 2 R
n�n ; (2)

has eigenvalues �1
2 � � � � � �n

2 � 0, corresponding to the eigenvectors (vi), (i = 1; � � � ; n).
The symmetric matrix

B =

�
0 A
AT 0

�
(3)

INRIA



Parallel computation of the singular value decomposition 5

has eigenvalues ��1; : : : ;��n, corresponding to the eigenvectors

1p
2

�
ui
�vi

�
; i = 1; : : : ; n:

The matrix B is called the augmented matrix.

Every method for computing singular values is based on one of these two matrices.

The numerical accuracy of the ith approximate singular triplet (~ui; ~�i; ~vi) as determined via the eigen-
system of the 2� cyclic matrix B is then determined by the norm of the eigenpair residual vector ri de�ned
by

k ri k2= [k B(~ui; ~vi)
T � ~�i(~ui; ~vi)

T k2]=[k ~ui k22 + k ~vi k22]
1

2 ;

which can also be written as

k ri k2= [(k A~vi � ~�i~ui k22 + k AT ~ui � ~�i~vi k22)1=2]= k ~ui k22 + k ~vi k22]1=2 (4)

Alternatively, we may compute the SVD of A indirectly by the eigenpairs of either the n � n matrix
ATA or the m �m matrix AAT . If V = fv1; v2; : : : ; vng is the n � n orthogonal matrix representing the
eigenvectors of ATA, then

V T (ATA)V = diag(�21 ; �
2
2 ; : : : ; �

2
r ; 0; : : : ; 0| {z }

n�r

);

where �i is the ith nonzero singular value of A corresponding to the right singular vector vi. The corre-
sponding left singular vector, ui, is then obtained as ui =

1
�i
Avi. Similarly, if U = fu1; u2; : : : ; umg is the

m�m orthogonal matrix representing the eigenvectors of AAT , then

UT (AAT )U = diag(�21 ; �
2
2 ; : : : ; �

2
r ; 0; : : : 0| {z }

m�r

);

where �i is the ith nonzero singular value of A corresponding to the left singular vector ui. The corresponding
right singular vector, vi, is then obtained as vi =

1
�i
ATui.

Computing the SVD of A via the eigensystems of either ATA or AAT may be adequate for determining
the largest singular triplets of A, but some loss of accuracy may be observed for the smallest singular triplets
(see [20]). In fact, extremely small singular values of A may be computed as zero eigenvalues of ATA (or
AAT ). Whereas the smallest and largest singular values of A are the extremes of the spectrum of ATA or
AAT , the smallest singular values of A lie at the center of the spectrum of B in (3). For computed eigenpairs
of ATA and AAT , the norms of the ith eigenpair residuals (corresponding to (4)) are given by

k ri k2=k ATA~vi � ~�2i ~vi k2 = k ~vi k2 and k ri k2=k AAT ~ui � ~�2i ~ui k2 = k ~ui k2;
respectively. Thus, extremely high precision in computed eigenpairs may be necessary to compute the
smallest singular triplets of A. This fact is analyzed in Section 1.2.

When A is a square nonsingular matrix, it may be advantageous in certain cases to compute the singular
values of A�1 which are 1

�n
� � � � � 1

�1
. This approach has the drawback of solving linear systems involving

RR n�4694



6 Michael W. Berry , Dani Mezher , Bernard Philippe , Ahmed Sameh

the matrix A, but when manageable, it provides a more robust algorithm. Such an alternative is of interest
for some subspace methods (see Section 3). Actually, the method can be extended to rectangular matrices
of full rank by considering a QR-factorization:

Proposition 1.1 Let A 2 Rm�n (m � n) be of rank n. Let

A = QR; where Q 2 R
m�n and R 2 R

n�n ;

such that QTQ = In and R is upper triangular.

The singular values of R are the same as the singular values of A.

Therefore, the smallest singular value of A can be computed from the largest eigenvalue of (R�1R�T ) or of�
0 R�1

R�T 0

�
.

1.2 Sensitivity of the smallest singular value

In order to compute the smallest singular value in a reliable way, one must investigate the sensitivity of the
singular values with respect to perturbations of the matrix at hand.

Theorem 1.3 Let A 2 Rn�n and � 2 Rn�n . The singular values of A and A+� are respectively denoted

�1 � �2 � � � � � �n

~�1 � ~�2 � � � � � ~�n:

They satisfy the following bounds

j�i � ~�ij � k�k2; for i = 1; � � � ; n:

Proof. See [88]. �

When applied to the smallest singular value, this result ends up with the following estimation.

Proposition 1.2 The condition number of the smallest singular value of A is equal to �2(A) = kAk2kA�1k2.

Proof. The result is obtained from

j�n � ~�nj
�n

�
�k�k2
kAk2

� kAk2
�n

:

�

This means that the smallest singular value of an ill-conditioned matrix cannot be computed with high
accuracy even with an algorithm of perfect arithmetic behaviour (ie., backward stable).

INRIA
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Recently, some progress has been made. In [24] it is shown that for some special class of matrices,
an accurate computation of the smallest singular value may be obtained via a combination of some QR
factorization with column pivoting and a one-sided Jacobi algorithm (see Section 2.2).

Since the singular values are roots of a polynomial (e.g. roots of the characteristic polynomial of the
augmented matrix), then when simple, they are di�erentiable with respect to the entries of the matrix. More
precisely, one can states that :

Theorem 1.4 Let � be a simple singular value of the matrix A = (aij) with u = (ui) and v = (vi) being
the corresponding normalized left and right singular vectors. Then, the singular value is di�erentiable with
respect to the matrix A, or

@�

@aij
= uivj ; 8i; j = 1; : : : ; n:

Proof. See [89]. �

1.3 Distance to singularity - Pseudospectrum

Let us consider a linear system de�ned by the square matrix A 2 Rn�n . Often, one needs to quantify how far
is the system under consideration from being singular. It turns out that the smallest singular value �min(A)
is equal to that distance.

Let S be the set of all singular matrices in Rn�n and the distance corresponding to the 2-norm : d(A;B) =
kA�Bk2 for A; B 2 Rn�n .

Theorem 1.5 d(A;S) = �min(A).

Proof. Let us denote � = �min(A) and d = d(A;S). There exist two unitary vectors u and v such that
Au = �v. Therefore (A � �vuT )u = 0. Since k�vuT k2 = �, it appears that B = A � �vuT 2 S and
d(A;B) = � which proves that d � �.

Conversely, let us consider any matrix � 2 Rn�n such that (A +�) 2 S. There exists a unitary vector
u such that (A+�)u = 0. Therefore :

� � kAuk2 = k�uk2 � k�k2;
which concludes the proof. �

This result leads to a useful lower bound of the condition number of a matrix.

Proposition 1.3 The condition number �2(A) = kAk2kA�1k2 satis�es

�2(A) � kAk2
kA�Bk2 ;

for any singular matrix B 2 S.

RR n�4694
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Proof. The result follows from the fact that B = A+ (B �A) and kA�1k2 = 1
�min(A)

. �

For instance in [49], this property is used to illustrate that the condition number of the linear systems arising
from the simulation of �ow in porous media, using mixed �nite element methods, is of the order of the ratio
of the extreme values of conductivity.

Let us now consider the sensitivity of eigenvalues with respect to matrix perturbations. Towards this
goal, the notion of pseudospectrum [91] or of �-spectrum [36] was introduced :

De�nition 1.2 For a matrix A 2 Rn�n (or A 2 C n�n ) and a parameter � > 0, the pseudospectrum is the
set :

��(A) = fz 2 C j 9� 2 C
n�n such that k�k � � and z is an eigenvalue of (A+�)g: (5)

This de�nition does not provide a constructive method for determining the pseudospectrum. Fortunately, a
constructive method can be drawn from the following property.

Proposition 1.4 The pseudspectrum is the set :

��(A) = fz 2 C j �min(A� zI) � �g; (6)

where I is the identity matrix of order n.

Proof. For any z 2 C , z is an eigenvalue of (A+�) if and only if the matrix (A� zI)+� is singular. The
proposition is therefore a straight application of Theorem 1.5. �

This proposition provides a criterion for deciding whether z belongs to ��(A). To represent the pseudospec-
trum graphically, one can de�ne a grid in the complex region under concideration and compute �min(A�zijI),
for all the zij determined by the grid. Although highly parallel, this approach involves a very high volume
of operations. Presently, one prefers to use path following techniques [15, 8, 61]. Section 5 describes one of
these methods. For illustration, the pseudospectrum of a matrix from the Matrix Market [59] test suite is
displayed in Figure 1, where several values of � are shown.

INRIA
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2 Jacobi Methods for Dense Matrices

2.1 Two-sided Jacobi scheme [2JAC]

Consider the standard eigenvalue problem

Ax = �x (7)

where A is a real n� n-dense symmetric matrix. One of the best unknown methods for determining all the
eigenpairs of (7) was developed by the nineteenth century mathematician, Jacobi. We recall that Jacobi's
sequential method reduces the matrix A to the diagonal form by an in�nite sequence of plane rotations

Ak+1 = UkAkU
T
k ; k = 1; 2; :::;

where A1 � A, and Uk = Uk(i; j; �
k
ij) is a rotation of the (i; j)-plane where

ukii = ukjj = ck = cos �kij and ukij = �ukji = sk = sin �kij :

The angle �kij is determined so that ak+1
ij = ak+1

ji = 0, or

tan 2�kij =
2akij

akii � akjj
;

where j�kij j � 1
4�.

For numerical stability, we determine the plane rotation by

ck =
1p

1 + t2k
and sk = cktk;

where tk is the smaller root (in magnitude) of the quadratic equation

t2k + 2�ktk � 1 = 0; �k = cot 2�kij :

Hence, tk may be written as

tk =
sign �k

j�kj+
p
1 + �2k

:

Each Ak+1 remains symmetric and di�ers from Ak only in rows and columns i and j, where the modi�ed
elements are given by

ak+1
ii = akii + tka

k
ij ;

ak+1
jj = akjj � tka

k
ij ;

and

ak+1
ir = cka

k
ir + ska

k
jr; (8)

ak+1
jr = �skakir + cka

k
jr; (9)

INRIA
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in which r 6= i, j. If we represent Ak by

Ak = Dk +Ek +ET
k ; (10)

where Dk is diagonal and Ek is strictly upper triangular, then as k increases k Ek kF approaches zero,
and Ak approaches the diagonal matrix � = diag (�1, �2; : : : ; �n) (k � kF denotes the Frobenius norm).
Similarly, the transpose of the product (Uk � � �U2U1) approaches a matrix whose jth column is the eigenvector
corresponding to �j .

Several schemes are possible for selecting the sequence of elements akij to be eliminated via the plane
rotations Uk. Unfortunately, Jacobi's original scheme, which consists of sequentially searching for the largest
o�-diagonal element, is too time consuming for implementation on a multiprocessor. Instead, a simpler
scheme in which the o�-diagonal elements (i; j) are annihilated in the cycle fashion (1; 2); (1; 3); : : : ; (1; n),
(2; 3); : : : ; (2; n); : : : ; (n�1; n) is usually adopted as its convergence is assured [31]. We refer to each sequence
of n rotations as a sweep. Furthermore, quadratic convergence for this sequential cyclic Jacobi scheme has
been well documented (see [82, 95]). Convergence usually occurs within 6 to 10 sweeps, i.e., from 3n2 to 5n2

Jacobi rotations.

A parallel version of this cyclic Jacobi algorithm is obtained by the simultaneous annihilation of several
o�-diagonal elements by a given Uk, rather than only one as is done in the serial version. For example, let
A be of order 8 and consider the orthogonal matrix Uk as the direct sum of 4 independent plane rotations,
where the ci's and si's for i = 1; 2; 3; 4 are simultaneously determined. An example of such a matrix is

Rk(1; 3)�Rk(2; 4)�Rk(5; 7)�Rk(6; 8);

where Rk(i; j) is that rotation which annihilates the (i; j) o�-diagonal element. If we consider one sweep to
be a collection of orthogonal similarity transformations that annihilate the element in each of the 1

2n(n� 1)
o�-diagonal positions (above the main diagonal) only once, then for a matrix of order 8, the �rst sweep will
consist of 8 successive orthogonal transformations with each one annihilating distinct groups of 4 elements
simultaneously. For the remaining sweeps, the structure of each subsequent transformation Uk; k > 8,
is chosen to be the same as that of Uj where j = 1 + (k � 1) mod 8. In general, the most e�cient
annihilation scheme consists of (2r � 1) similarity transformations per sweep, where r =

�
1
2 (n+ 1)

�
, in

which each transformation annihilates di�erent
�
1
2n
�
o�-diagonal elements (see [78]). Although several

annihilation schemes are possible, the Jacobi algorithm we present below utilizes an annihilation scheme
which requires a minimal amount of indexing for computer implementation. Moreover Luk and Park [57, 56]
have demonstrated that various parallel Jacobi rotation ordering schemes are equivalent to the sequential
row ordering scheme, and hence share the same convergence properties.

Algorithm [2JAC]

STEP 1: (Apply orthogonal similarity transformations via Uk for current sweep).

1. (a) For k = 1; 2; 3; : : : ; n� 1 (serial loop)

RR n�4694



12 Michael W. Berry , Dani Mezher , Bernard Philippe , Ahmed Sameh

simultaneously annihilate elements in position (i; j), where�
i = 1; 2; 3; : : : ;

�
1
2 (n� k)

�
;

j = (n� k + 2)� i:

and additionally for k > 2,�
i = (n� k + 2); (n� k + 3); : : : ; n� � 12k� ;
j = (2n� k + 2)� i:

(b) For k = n simultaneously annihilate elements in positions (i; j), where�
i = 2; 3; : : : ;

�
1
2n
�

j = (n+ 2)� i

STEP 2: (Convergence test).

2. (a) Compute k Dk kF and k Ek kF (see (10)).

(b) If

k Ek kF
k Dk kF < tolerance; (11)

then stop.

Otherwise, go to Step 1 to begin next sweep.

We note that this algorithm requires n similarity transformations per sweep for a dense real symmetric
matrix of order n (n may be even or odd). Each Uk is the direct sum of either

�
1
2n
�
or
�
1
2 (n� 1)

�
plane

rotations, depending on whether k is odd or even, respectively. The annihilation pattern for n = 8 is shown
in table 1, where the integer k denotes an element annihilation via Uk.

In the annihilation of a particular (i; j)-element in Step 1 above, we update the o�-diagonal elements in
rows and columns i and j as speci�ed by (8) and (9). With regard to storage requirements, it would be
advantageous to modify only those row or column entries above the main diagonal and utilize the guaranteed
symmetry of Ak. However, if one wishes to take advantage of the vectorization that may be supported by the
parallel computing platform, we disregard the symmetry of Ak and operate with full vectors on the entirety
of rows and columns i and j in (8) and (9), i.e., we are using a full matrix scheme. The product of the
Uk's, which eventually yields the eigenvectors for A, is accumulated in a separate two-dimensional array by
applying (8) and (9) to the n� n-identity matrix.

In Step 2, we monitor the convergence of the algorithm by using the ratio of the computed norms to
measure the systematic decrease in the relative magnitudes of the o�-diagonal elements with respect to
the relative magnitudes of the diagonal elements. For double precision accuracy in the eigenvalues and
eigenvectors, a tolerance of order 10�16 will su�ce for Step 2(b). If we assume convergence (see [56]), this
multiprocessor algorithm can be shown to converge quadratically by following the work of Henrici [45] and
Wilkinson [95].

INRIA
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x 7 6 5 4 3 2 1
x 5 4 3 2 1 8

x 3 2 1 8 7
x 1 8 7 6

x 7 6 5
x 5 4

x 3
x

Table 1: Annihilation scheme for [2JAC].

2.2 One-sided Jacobi scheme [1JAC]

If A in (7) is not only symmetric but also de�nite, it is considerably more e�cient to apply a one-sided Jacobi
method which in e�ect only post-multiplies A by plane rotations. The derivation of the one-sided Jacobi
method is motivated by the singular value decomposition of rectangular matrices. Speci�cally, suppose A is
a real m� n-matrix with m� n and rank A = r. The singular value decomposition of A can be de�ned as

A = U�V T ; (12)

where UTU = V TV = In and � = diag(�1; : : : ; �n), �i > 0 for 1 � i � r, �j = 0 for j � r + 1. The �rst r
columns of the orthonormal matrix U and the orthogonal matrix V de�ne the orthonormalized eigenvectors
associated with the r nonzero eigenvalues of AAT or ATA.

As indicated in [79] for a ring of processors, using a method based on the one-sided iterative orthog-
onalization method of Hestenes (see also [51, 64]) is an e�cient way to compute the decomposition (12).
Luk [58] recommended this singular value decomposition scheme on the Illiac IV, and corresponding systolic
algorithms associated with two-sided schemes have been presented in [13] and [14]. We now consider a few
modi�cations to the scheme discussed in [79] for the determination of (12) on shared memory multiprocessors,
e.g., see [11].

Our main goal is to determine the orthogonal matrix V = [ ~V ; ~W ], where ~V is n� r, so that

A ~V = Q = (q1; q2; : : : ; qr); (13)

and
qTi qj = �2i Æij ;

where the columns of A are orthogonal and Æij is the Kronecker-delta. Writing Q as

Q = ~U ~� with ~UT ~U = Ir; and ~� = diag(�1; : : : ; �r);

then
A = ~U ~�~V T :
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We construct the matrix V via the plane rotations

(ai; aj)

�
c �s
s c

�
= (~ai; ~aj); i < j;

so that

~aTi ~aj = 0 and k ~ai k2>k ~aj k2; (14)

where ai designates the ith column of matrix A. This is accomplished by choosing

c =

�
� + 

2

�1=2
and s =

�
�

2c

�
if � > 0; (15)

or

s =

�
 � �

2

�1=2
and c =

�
�

2s

�
if � < 0; (16)

where � = 2aTi aj , � =k aj k22, and  = (�2+�2)1=2. Note that (14) requires the columns of Q to decrease in
norm from left to right, and hence the resulting �i to be in monotonic nonincreasing order. Several schemes
can be used to select the order of the (i; j)-plane rotations. Following the annihilation pattern of the o�-
diagonal elements in the sequential Jacobi algorithm mentioned in Section 1, we could certainly orthogonalize
the columns in the same cyclic fashion and thus perform the one-sided orthogonalization serially. This process
is iterative with each sweep consisting of 1

2n(n� 1) plane rotations selected in cyclic fashion.

By adopting the ordering of the annihilation scheme in [2JAC], we obtain a parallel version of the one-
sided Jacobi method for computing the singular value decomposition on a multiprocessor. For example, let
n = 8 and m� n so that in each sweep of our one-sided Jacobi algorithm we simultaneously orthogonalize
pairs of columns of A (see Table 1). For example, for n = 8 we can orthogonalized the pairs (1,8), (2,7),
(3,6), (4,5) simultaneously via postmultiplication by a matrix Vi which consists of the direct sum of 4 plane
rotations. In general, each Vk will have the same form as Uk so that at the end of any particular sweep si
we have

Vs1 = V1V2 � � �Vn;
and hence

V = Vs1Vs2 � � �Vst ; (17)

where t is the number of sweeps required for convergence.

Algorithm [1JAC]

STEP 1: (Postmultiply matrix A by orthogonal matrix Vk for current sweep).

1. (a) Initialize the convergence counter, istop, to zero.
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Parallel computation of the singular value decomposition 15

(b) For k = 1; 2; 3; : : : ; n� 1 (serial loop)

simultaneously orthogonalize the column pairs (i; j), where i and j are given by 1(a) in Step 1 of
[2JAC], provided that for each (i; j) we have

(aTi aj)
2

(aTi ai)(a
T
j aj)

> tolerance; (18)

and i, j 2 fkjk < kming, where kmin is the minimal column index k such that k ak k22< tolerance.
Upon the termination of [1JAC], r = rank A = kmin. Note: if (18) is not satis�ed for any particular
pair (i; j), istop is incremented by 1 and that rotation is not performed.

(c) For k = n

simultaneously orthogonalized the column pairs (i; j), where i and j are given by 1(b) in Step 1
of [2JAC].

STEP 2: (Convergence test).

If istop = 1
2n(n � 1), then compute �i =

p
(ATA)ii, i = 1; 2; : : : ; kmin = r, and stop. Otherwise, go to

beginning of Step 1 to start next sweep.

In the orthogonalization of columns in Step 1, we are implementing the plane rotations speci�ed by
(15) and (16), and hence guaranteeing the ordering of column norms and singular values upon termination.
Whereas [2JAC] must update rows and columns following each similarity transformation, [1JAC] performs
only postmultiplication of A by each Vk and hence the plane rotation (i; j) changes only the elements in
columns i and j of matrix A. The changed elements can be represented by

ak+1
i = caki + sakj ; (19)

ak+1
j = �saki + cakj ; (20)

where ai denotes the ith column of matrix A, and c, s are determined by either (15) or (16). Since no row
accesses are required and no columns are interchanged, one would expect good performance for this method
on a machine which can apply vector operations to compute (19) and (20). Each processor is assigned one
rotation and hence orthogonalizes one pair of the n columns of matrix A.

Following the convergence test used in [64], in Step 2, we count the number of times the quantity

aTi aj

(aTi ai)(a
T
j aj)

(21)

falls, in any sweep, below a given tolerance. The algorithm terminates when the counter istop reaches
1
2n(n � 1), the total number of column pairs, after any sweep. Upon termination, the �rst r columns of
the matrix A are overwritten by the matrix Q from (13) and hence the nonzero singular values �i can be
obtained via the r square roots of the �rst r diagonal entries of ATA. The matrix ~U in (12), which contains
the leading r, left singular vectors of the original matrix A, is readily obtained by column scaling of the
resulting matrix A (now overwritten by Q = ~U ~�) by the nonzero singular values �i. Similarly, the matrix
V , which contains the right singular vectors of the original matrix A, is obtained as in (17) as the product
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of the orthogonal Vk's. This product is accumulated in a separate two-dimensional array by applying the
rotations speci�ed by (19) and (20) to the n� n-identity matrix. It is important to note that the use of the
ratio in (21) is preferable over the use of aTi aj , since this dot-product is necessarily small for relatively small
singular values.

Although our derivation of [1JAC] concerned the singular value decomposition of rectangular matrices, it
is most e�ective for solving the eigenvalue problem in (7) for symmetric positive de�nite matrices. If m = n,
A is a positive de�nite matrix, and Q (13) is an orthogonal matrix. Consequently, it is not di�cult to show
that �

�i = �i
xi =

qi
�i
;

i = 1; 2; : : : ; n;

where �i denotes the ith eigenvalue of A, xi the corresponding normalized eigenvector, and qi the ith
column of matrix Q. If A is symmetric, but perhaps not positive de�nite, we can obtain its eigenvectors by
considering instead A + �I , where � is the smallest quantity that ensures that de�niteness of A + �I , and
retrieve the eigenvalues of A via Rayleigh quotients.

[1JAC] has two advantages over [2JAC]: (i) no row accesses are needed, and (ii) the matrix Q need not be
accumulated.

2.3 Algorithm [QJAC]

As discussed above, [1JAC] is certainly a viable candidate for computing the singular value decomposition
in (12) on multiprocessors . However, for m � n-matrices A in which m � n, the problem complexity
can be reduced if an initial orthogonal factorization of A is performed. One can then apply the one-sided
Jacobi method, [1JAC], to the resulting upper-triangular matrix R (which may be singular) and obtain the
decomposition (12). In this section we present a multiprocessor method, QJAC, which can be quite e�ective
for computing (12) on parallel machines.

Given the m� n-matrix A, where m� n, we perform a block generalization of Householder's reduction
for the orthogonal factorization

A = QR; (22)

where Q is m � n-orthonormal matrix, and R is an n � n-upper-triangular matrix. The block schemes of
LAPACK are used for computing (22) to make use of vector-matrix, matrix-vector (BLAS2), and matrix-
matrix (BLAS3) multiplication modules. The [1JAC] algorithm can then be used to obtain the singular value
decomposition of the upper-triangular matrix R.

Hence, the singular value decomposition of an m� n-matrix (m� n) A (having rank r) de�ned by

A = U�V T ;

where UTU = V TV = Ir, and � = diag(�1; : : : ; �r), �i > 0 for 1 � i � r, can be e�ciently determined as
follows:
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Parallel computation of the singular value decomposition 17

Block Householder-Jacobi [QJAC]

STEP 1: Apply block Householder reduction via (3.6) to the matrix A to obtain the factorization

A = QR; (23)

where Q is m� n with orthonormal columns, and R is upper triangular of order n.

STEP 2: Determine the SVD of the upper-triangular matrix via [1JAC],

R = ~U

�
~�
0

�
V T ; (24)

where ~U and V are n�r-matrices having orthogonal columns (r � rank A) and ~� = diag �i
contains the r nonzero singular values of A.

STEP 3: Recover the left singular vectors ui of A by back-transforming the columns of ~U :

U = Q ~U; (25)

where Q is the product of the Householder transformations applied in Step 1 and ui is the
ith column of U .

Note that in using [1JAC] for computing the SVD of R, we must iterate on a full n� n-matrix which is
initially upper-triangular. This sacri�ce in storage must be made in order to capitalize upon the potential
vectorization and parallelism inherent in [1JAC] on parallel machines with vector processors.

Charlier et al. [18] demonstrate that an implementation of Kogbetliantz's algorithm for computing
the SVD of upper-triangular matrices is quite e�ective on a systolic array of processors. We recall that
Kogbetliantz's method for computing the SVD of a real square matrix A mirrors the [2JAC] method for
symmetric matrices, in that the matrix A is reduced to the diagonal form by an in�nite sequence of plane
rotations

Ak+1 = UkAkV
T
k ; k = 1; 2; : : : ; (26)

where A1 � A, and Vk = Vk(i; j; �
k
ij), Uk = Uk(i; j; �

k
ij) are orthogonal plane rotation matrices which deviate

from In and Im, respectively, in the (i; i)-, (j; j)-, (i; j)- and (j; i)-entries. It follows that Ak approaches
the diagonal matrix � = diag(�1; �2; : : : ; �n), where �i is the ith singular value of A, and the products
(Uk � � �U2U1), (Vk � � �V2V1) approach matrices whose ith column is the respective left and right singular
vector corresponding to �i. For the case when the �i's are not pathologically close, Paige and van Dooren
[65] have shown that the row (or column) cyclic Kogbetliantz's method ultimately converges quadratically.
For triangular matrices, Charlier and van Dooren [17] have demonstrated that Kogbetliantz's algorithm
converges quadratically for those matrices having multiple or clustered singular values provided that singular
values of the same cluster occupy adjacent diagonal position of A� , where � is the number of sweeps required
for convergence. Even if we were to assume that R in (22) satis�es this condition for quadratic convergence
of the parallel Kogbetliantz's method in [65], the ordering of the rotations and subsequent row (or column)
permutations needed to maintain the upper-triangular form is more e�cient for systolic architectures than

RR n�4694



18 Michael W. Berry , Dani Mezher , Bernard Philippe , Ahmed Sameh

for shared-memory parallel machines. One clear advantage of using [1JAC] to determine the SVD of R lies in
that the rotations de�ned by (15) or (16), as applied via the parallel ordering illustrated in Table 1, require
no processor synchronization among any set of the

�
1
2n
�
or
�
1
2 (n� 1)

�
simultaneous plane rotations. The

convergence rate of [1JAC], however, does not necessarily match that of Kogbetliantz's algorithm.

Let
Rk = Dk +Ek +ET

k ;

and

Sk = RT
kRk = ~Dk + ~Ek + ~ET

k ; (27)

where Dk, ~Dk are diagonal matrices and Ek, ~Ek are strictly upper-triangular.

Although we cannot guarantee quadratic convergence for [1JAC], we can always produce clustered singular
values on adjacent positions of ~Dk for any matrix A. If we monitor the magnitudes of the elements of ~Dk and
~Ek in (28) for successive values of k in [1JAC] (for clustered singular values), Sk will converge to a diagonal
form through an intermediate block diagonal form, where each of the principal submatrices (positioned along
~Dk) has diagonal elements which comprise one cluster of singular values of A (see [18] and [11]). Thus, after
a particular number of critical sweeps kcr, we obtain

Skcr =

T1
T2

T3
. . .

. . .

Tnc

(28)

so that the SVD of each Ti, i = 1; 2; : : : ; nc, can be computed in parallel by either a Jacobi or Kogbetliantz's

method. Each symmetric matrix Ti will, in general, be dense of order qi, representing the number of singular
values of A contained in the ith cluster. Since the quadratic convergence of Kogbetliantz's method for
upper-triangular matrices [17] mirrors the quadratic convergence of the two-sided Jacobi method, [2JAC], for
symmetric matrices having clustered spectra [97], we would obtain a faster global convergence for k > kcr
if [2JAC], rather than [1JAC], were applied to each of the Ti. Thus, a hybrid method consisting of an initial
phase of several [1JAC] iterations followed by [2JAC] on the resulting subproblems would combine the optimal
parallelism of [1JAC] and the fast convergence of the [2JAC] method. Of course, the di�culty in implementing
such a method lies in the determination of the critical number of sweeps kcr. We note that such a hybrid SVD
method would be quite suitable for implementation on multiprocessors with hierarchical memory structure
and/or vector processors.
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3 Methods for large and sparse matrices

3.1 Sparse storages and linear systems

When the matrix is large and sparse, a compact storage scheme must be considered. The principle behind
such storage schemes is to store only the nonzero entries and sometimes more data as in band or pro�le
storage schemes. For a more detailed presentation of various compact storage schemes, we refer for instance
to [29, 76]. Here, we consider only the Compressed-Sparse-Row format (CSR) storage scheme.

Let us consider a sparse matrix A of order n with nz (denoted nz in algorithms) non-zero entries. The
CSR format is organized into three one-dimensional arrays :

array a(1:nz) : contains all the nonzero entries of the matrix sorted by rows ; within a row no special
ordering is assumed although it is often preferable to sort the entries by increasing column indices.

array ja(1:nz) : contains all the column indices of the nonzero entries in the same order as the order of
the entries in array a.

array ia(1:n+1) : , ia(i) (i = 1; � � � ; n) is the index of the �rst nonzero entry of the i-th row which is
stored in array a and ia(n+1) is set to nz + 1.

The main procedures which use a matrix stored in that way are the multiplications of a matrix, A or AT ,
by a vector x 2 Rn . The corresponding algorithms are :

Algorithm : y := y + A*x

for i = 1:n,
for l = ia(i) : ia(i+1)-1,

y(i) = y(i) + a(l)*x(ja(l)) ;
end ;

end ;

Algorithm : y := y + AT *x

for i = 1:n,
for l = ia(i) : ia(i+1)-1,

y(ja(l)) = y(ja(l)) + a(l)*x(i) ;
end ;

end

Solving linear systems which are de�ned by sparse matrices is not an easy task. One may consider direct
methods, invariably consisting of matrix factorization, or consider iterative schemes. In direct solvers, care
is needed to minimize the �ll-in in the triangular factors, while in iterative methods, adopting e�ective
preconditioning techniques is vital for fast convergence.

It is usually admitted that direct methods are more robust but are economical only when the triangular
factors are not too dense, and when the size of the linear system is not too large. Reordering schemes are
almost necessary to keep the level of �ll-in as low as possible. Also, while pivoting strategies for dense linear
systems are relaxed to minimize �ll-in, the most e�ective sparse factorization schemes forbid the use of pivots
below a given threshold. It is well known that the QR factorization schemes, one of the most robust, is not
used often in direct solvers as it su�ers from a high level of �ll-in. Such a high level of �ll-in occurs because
the upper triangular factor, R, is the transpose of the Cholesky factor of matrix ATA which is much more
dense than the original matrix A. Nevertheless, we shall see that this orthogonal factorization is a viable
tool for computing the smallest singular value of sparse matrices. A survey of the state-of-the-art of sparse
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matrix factorization may be found in the following references [2, 3, 12, 23, 28, 25, 29, 30, 35]. Current e�cient
packages for LU factorization include UMFPACK [22], SuperLU [52] and MUMPS [4].

When the order of the matrix is so large as to make the use of direct methods prohibitively expensive
in storage and time, one resorts to iterative solvers. Classic iterative solvers such as the relaxation schemes
methods of Jacobi, Gauss Seidel, SOR or SSOR, are easy to use but not as e�ective as Krylov subspace meth-
ods. The latter class uses the matrix only through the procedures of matrix-vector multiplications as de�ned
above. Moreover, under certain conditions, Krylov subspace schemes exhibit superlinear convergence. Often,
however, Krylov subspace schemes are successful only in conjunction with a preconditioning strategy. This
is especially true for nonsymmetric ill-conditioned linear systems. Such preconditioners may be one of the
above relaxation methods, approximate factorizations or approximate inverses of the matrix of coe�cients.
A state-of-the-art survey of iterative solvers may be found in the following references [5, 28, 6, 44, 60, 76] or
other references there. When the matrix is symmetric positive de�nite, a preconditioned Conjugate Gradi-
ent scheme (PCG) may be an optimal choice as an iterative solver, [42]. For symmetric inde�nite systems,
methods like SYMMLQ and MINRES [66] are adequate, but surprisingly PCG is often used with great suc-
cess even though it may fail in theory. For nonsymmetric systems, the situation is less clear since available
iterative schemes cannot combine minimization of the residual, at any given step, for a given norm within
the Krylov subspace, and orthogonalizing it w.r.t. the same subspace for some scalar product. Therefore,
two classes of methods arise. The most popular methods include GMRES [77], Bi-CGSTAB [94], QMR [33]
and TFQMR [32].

Before presenting methods for computing the sparse singular value decomposition, we note that classical
methods for determining the SVD of dense matrices: the Golub-Kahan-Reinsch method [37], [40] and Jacobi-
like SVD methods [11], [46] are not viable for large sparse matrices. Since these methods apply orthogonal
transformations (Householder or Givens) directly to the sparse matrix A, they incur excessive �ll-ins and
thereby require tremendous amounts of storage. Another drawback to these methods is that they will
compute all the singular triplets of A, and hence may be computationally wasteful when only a few of the
smallest, or largest, singular triplets are desired. We demonstrate how canonical sparse symmetric eigenvalue
problems can be used to (indirectly) compute the sparse singular value decomposition.

Since the computation of the smallest singular value is equivalent to computing an eigenvalue of a sym-
metric matrix, which is the augmented matrix or the matrix of the normal equations, in what follows we
present methods that are speci�cally designed for such problems.

3.2 Subspace iteration [SISVD]

Subspace iteration is perhaps one of the simplest algorithms used to solve large sparse eigenvalueproblems.
As discussed in [69], subspace iteration may be viewed as a block generalization of the classical power method.
The basic version of subspace iteration was �rst introduced by Bauer [7] and if adapted to the matrix

B̂ = 2In �ATA; (29)

would involve forming the sequence
Zk = B̂kZ0;
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where 2 is chosen so that B̂ is (symmetric) positive de�nite and Z0 = [z1; z2; : : : ; zs] is an n � s matrix.
If the column vectors, zi, are normalized separately (as done in the Power method), then these vectors will
converge to the dominant eigenvectors of B̂, which are also the right singular vectors corresponding to the
smallest singular values of A. Thus, the columns of the matrix Zk will progressively lose linear independence.
In order to approximate the p-largest eigenpairs of B̂, Bauer demonstrated that linear independence among
the zi's could be maintained via reorthogonalization at each step, by a modi�ed Gram-Schmidt procedure,
for example. However, the convergence rate of the zi's to eigenvectors of B̂ will only be linear.

The most sophisticated implementation of subspace iteration is that of Rutishauser's RITZIT (see [75]).
This particular algorithm incorporates both a Rayleigh-Ritz procedure and acceleration via Chebyshev poly-
nomials. The iteration which embodies the RITZIT program is given in Table 2. The Rayleigh Quotient
matrix, Hk, in step (3) is essentially the projection of B̂2 onto the span Zk�1. The three-term recurrence
in step (6) follows from the adaptation of the Chebyshev polynomial of degree q, say Tq(x), to the interval
[�e; e], where e is chosen to be the smallest eigenvalue of Hk. This use of Chebyshev polynomials has the
desired e�ects of damping unwanted eigenvalues of B̂ and producing an improved rate of convergence which
is considerably higher than the original rate of convergence, governed by �s=�1 (�1 � �2 � � � � � �s), where
�0is are the eigenvalues of Hk, given by the square roots of the diagonal matrix �2

k in step (4) of Table 2.

(1) Compute Ck = B̂Zk�1

(2) Factor Ck = QkRk

(3) Form Hk = RkR
T
k

(4) Factor Hk = Pk�
2
kP

T
k

(5) Form Zk = QkPk
(6) Iterate Zk+j =

2
e B̂Zk+j�1 � Zk+j�2 (j = 2; : : : ; q)

Table 2: Subspace iteration as implemented in Rutishauser's ritzit [SISVD].

We note that one could alternatively compute the eigenpairs of the positive de�nite 2-cyclic matrix

~B =

�
I A
AT I

�
; (30)

where  is an estimate of the largest singular value of A. The smallest singular values of A, in this case,
will lie in the center of the spectrum of ~B (see Section 1.1), and thus prohibit suppression of the unwanted
(largest) singular values by the use of Chebyshev polynomials de�ned on the symmetric interval [�e; e].
Thus, it is preferable to approximate eigenpairs of B̂ = 2In�ATA instead. In practice,  can be chosen as
either k A k1 or k A k1, depending upon the sparse data structure used to store the nonzero elements (row
or column-wise). Once, the eigenvectors of B̂ (right singular vectors of A) have been determined, one can
recover the left singular vectors (ui) of A via ui =

1
�i
Avi (see Section 1.1).

The orthogonal factorization in step (2) of Table 2 may be computed by a modi�ed Gram-Schmidt proce-
dure or by Householder transformations provided that the orthogonal matrix Qk is explicitly available for the
computation of Zk in step (5). On multiprocessor architectures, especially those having hierarchical memo-
ries, one may achieve high performance by using either a block Gram-Schmidt [34] or the block Householder
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orthogonalization method in step (2). To improve upon the two-sided Jacobi algorithm, originally suggested
by Rutishauser [74] for the spectral decomposition in step (4) of ritzit, one may employ a parallel two-
or one-sided Jacobi method on a multiprocessor. In fact, the one-sided Jacobi scheme, when appropriately
adapted for symmetric positive de�nite matrices (see [11]), is quite e�cient for step (4) provided the dimen-
sion of the current subspace, s, is not too large. For larger subspaces, an optimized implementation of the
classical EISPACK [87] pair, TRED2 and TQL2, or Cuppen's algorithm as parallelized by Dongarra and
Sorensen [27] may be used in step (4).

The success of Rutishauser's subspace iteration method using Chebyshev acceleration relies upon the
following strategy for delimiting the degree of the Chebyshev polynomial, Tq

�
x
e

�
, on the interval [�e; e],

where e = �s (assuming s vectors carried and k = 1 initially), �1 = 0:04 and �2 = 4:

qnew = minf2qold; q̂g; where

q̂ =

8>><
>>:

1; if �1 < �1�s

2�max

2
4 �2

arccosh
�
�s
�1

� ; 1
3
5 otherwise:

(31)

The polynomial degree of the current iteration is then taken to be q = qnew. It can easily be shown that the
strategy in (31) insures thatTq

�
�1
�s

�
2

= cosh

�
q arccosh

�
�1
�s

��
� cosh(8) < 1500:

Although this bound has been quite successful for ritzit, we can easily generate several variations of
polynomial-accelerated subspace iteration schemes (SISVD) using a more �exible bound. Speci�cally, we
consider an adaptive strategy for selecting the degree q in which �1 and �2 are treated as control parameters
for determining the frequency and the degree of polynomial acceleration, respectively. In other words, large
(small) values of �1, inhibit (invoke) polynomial acceleration, and large (small) values of �2 yield larger
(smaller) polynomial degrees when acceleration is selected. Correspondingly, the number of matrix-vector
multiplications will increase with �2 and the total number of iterations may well increase with �1. Control-
ling the parameters, �1 and �2, allows us to monitor the method's complexity so as to maintain an optimal
balance between dominating kernels (e.g., sparse matrix multiplication, orthogonalization, and spectral de-
composition). We will demonstrate these controls in the polynomial acceleration-based trace minimization
SVD method discussed in Section 3.4.

3.3 Lanczos methods

3.3.1 The Single-vector Lanczos method [LASVD]

Other popular methods for solving large, sparse, symmetric eigenproblems originated from a method at-
tributed to Lanczos (1950). This method generates a sequence of tridiagonal matrices Tj with the property
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that the extremal eigenvalues of the j� j matrix Tj are progressively better estimates of the extremal eigen-
values of the original matrix H . Let us consider the (m+n)�(m+n) 2-cyclic matrix B given in (3), where A
is the m�n matrix whose singular triplets are sought. Also, let w1 be a randomly generated starting vector
such that kw1k2 = 1. For j = 1; 2; : : : l de�ne the corresponding Lanczos matrices Tj using the following
recursion [67]. De�ne �1 � 0 and v0 � 0, then for i = 1; 2; : : : ; l de�ne Lanczos vectors wi and scalars �i and
�i+1 where

�i+1wi+1 = Bwi � �iwi � �iwi�1; and �i = wT
i (Bwi � �iwi�1);

j�i+1j = kBwi � �iwi � �iwi�1k2: (32)

For each j, the corresponding Lanczos matrix Tj is de�ned as a real symmetric, tridiagonal matrix having
diagonal entries �i(1 � i � j), and subdiagonal (superdiagonal) entries �i+1 (1 � i � (j � 1)), i.e.,

Tj �

0
BBBBBB@

�1 �2
�2 �2 �3

�3 � �
� � �

� � �j
�j �j

1
CCCCCCA : (33)

By de�nition, the vectors �iwi and �iwi�1 in (32) are respectively, the orthogonal projections of Bwi onto
the most recent wi and wi�1. Hence for each i, the next Lanczos vector wi+1 is obtained by orthogonalizing
Bwi with respect to wi and wi�1. The resulting �i, �i+1 obtained in these orthogonalizations, de�ne the
corresponding Lanczos matrices. If we rewrite (32) in matrix form, then for each j we have

BWj =WjTj + �j+1wj+1ej ; (34)

where Wj � [w1; w2; : : : ; wj ] is an n � j matrix whose kth column is the kth Lanczos vector, and ej is the
jth column of the (m+n)� (m+n) identity matrix. Thus, the Lanczos recursion (34) generates a family of
real symmetric tridiagonal matrices related to both B and w1. Table 3 outlines the basic Lanczos procedure
for computing the eigenvalues and eigenvectors of the symmetric 2-cyclic matrix B.

As in subspace iteration, the matrix B is only referenced through matrix-vector multiplication. At
each iteration, the basic Lanczos recursion requires only the two most recently-generated vectors, although
for �nite-precision arithmetic modi�cations suggested by Grcar [43], Partlett and Scott [71], and Simon
[84] require additional Lanczos vectors to be readily accessible via secondary storage. We note that on a
multiprocessor architecture, step (2) in Table 3 may bene�t from any available optimized library routine
that solves the symmetric tridiagonal eigenvalue problem (e.g., multisectioning in [53] or divide and conquer
in [27]).

In using �nite-precision arithmetic, any practical Lanczos procedure must address problems created by
losses in the orthogonality of the Lanczos vectors, wi. Such problems include the occurrence of numerically-
multiple eigenvalues of Tj (for large j) for simple eigenvalues of B, and the appearance of spurious eigenvalues
among the computed eigenvalues for some Tj . Approaches to deal with these problems range between two
di�erent extremes. The �rst involves total reorthogonalization of every Lanczos vector with respect to every
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(1) Use any variant of the Lanczos recursion (32) to generate a family of real symmetric tridiagonal
matrices, Tj (j = 1; 2; : : : ; q).

(2) For some k � q, compute relevant eigenvalues of Tk.
(3) Select some or all of these eigenvalues as approximations to the eigenvalues of the matrix B, and

hence singular values of A.
(4) For each eigenvalue � compute a corresponding unit eigenvector z such that Tkz = �z. Map such

vectors onto the corresponding Ritz vectors y �Wqz, which are then used as approximations to the
desired eigenvectors of the matrix B or the singular vectors of A.

Table 3: Single-vector Lanczos recursion [LASVD].

previously-generated vector [38]. The other approach accepts the loss of orthogonality and deals with these
problems directly. Total reorthogonalization is certainly one way of maintaining orthogonality, however, it
will require additional storage and additional arithmetic operations. As a result, the number of eigenvalues
which can be computed is limited by the amount of available secondary storage. On the other hand, a
Lanczos procedure with no reorthogonalization needs only the two most recently-generated Lanczos vectors
at each stage, and hence has minimal storage requirements. Such a procedure requires, however, the tracking
[20] of the resulting spurious eigenvalues of B (singular values of A) associated with the loss of orthogonality
in the Lanczos vectors, wi.

We employ a version of a single-vector Lanczos algorithm (32) equipped with a selective reorthogonaliza-
tion strategy, LANSO, designed by Parlett and Simon, [71], [84]. This particular method (LASVD) is primarily
designed for the standard and generalized symmetric eigenvalue problem. We simply apply it to either
H = ATA or the 2-cyclic matrix B de�ned in (3).

3.3.2 The Block Lanczos method [BLSVD]

Here, we consider a block analogue of the single vector Lanczos method. Exploiting the structure of the
matrix B in (3), we can obtain an alternative form for the Lanczos recursion (32). If we apply the Lanczos
recursion speci�ed by (32) to B with a starting vector ~u = (u; 0)T such that k~uk2 = 1, then the diagonal
entries of the real symmetric tridiagonal Lanzcos matrices generated are all identically zero. The Lanzcos
recursion in (32) reduces to the following: de�ne u1 � u, v0 � 0, and �1 � 0, then for i = 1; 2; : : : ; k

�2ivi = ATui � �2i�1vi�1;
�2i+1ui+1 = Avi � �2iui:

(35)

The Lanczos recursion (35), however, can only compute the distinct singular values of an m� n matrix
A and not their multiplicities. Following the block Lanczos recursion for the sparse symmetric eigenvalue
problem [93], [41], (35) can be represented in matrix form as

AT Ûk = V̂kJ
T
k + Zk;

AV̂k = ÛkJk + Ẑk;
(36)
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where Ûk = [u1; : : : ; uk], V̂k = [v1; : : : ; vk], Jk is a k�k bidiagonal matrix with Jk[j; j] = �2j and Jk[j; j+1] =

�2j+1, and Zk, ~Zk contain remainder terms. It is easy to show that the nonzero singular values of Jk are the
same as the positive eigenvalues of

Kk �
�

O Jk
JTk O

�
: (37)

For the block analogue of (36), we make the simple substitutions

ui $ Ui; vi $ Vi;

where Ui is m� b, Vi is n� b, and b is the current block size. The matrix Jk is now a block upper bidiagonal
matrix of order bk

Jk �

0
BBBBBB@

S1 RT
1

S2 RT
2

� �
� �
� RT

k�1

Sk

1
CCCCCCA ; (38)

where the Si's and Ri's are b�b upper-triangular matrices. If Ui's and Vi's form mutually orthogonal sets of bk
vectors so that Ûk and V̂k are orthonormal matrices, then the singular values of the matrix Jk will be identical
to those of the original m � n matrix A. Given the upper block bidiagonal matrix Jk, we approximate the
singular triplets of A by �rst computing the singular triplets of Jk. To determine the left and right singular

vectors of A from those of Jk, we must retain the Lanczos vectors of Ûk and V̂k. Speci�cally, if f�(k)i , y
(k)
i ,

z
(k)
i g is the ith singular triplet of Jk, then the approximation to the ith singular triplet of A is given by

f�(k)i , Ûky
(k)
i , V̂kz

(k)
i g, where Ûky

(k)
i , V̂kz

(k)
i are the left and right approximate singular vectors, respectively.

The computation of singular triplets for Jk requires two phases. The �rst phase reduces Jk to a bidiagonal
matrix Bk having diagonal elements f�1; �2; : : : ; �bkg and superdiagonal elements f�1; �2; : : : ; �bk�1g via
a �nite sequence of orthogonal transformations (thus preserving the singular values of Jk). The second
phase reduces Bk to diagonal form by a modi�ed QR algorithm. This diagonalization procedure is discussed
in detail in [40]. The resulting diagonalized Bk will yield the aproximate singular values of A, while the
corresponding left and right singular vectors are determined through multiplications by all the left and right
transformations used in both phases of the SVD of Jk.

There are a few options for the reduction of Jk to the bidiagonal matrix, Bk. Golub, Luk, and Overton
in [39] advocated the use of either band Householder or band Givens methods which in e�ect chase o� (or
zero) elements on the diagonals above the �rst super-diagonal of Jk. In either reduction (bi-diagonalization
or diagonalization), the computations are primarily sequential and o�er limited data locality or parallelism
for possible exploitation on a multiprocessor. For this reason, we adopt the single vector Lanczos bidiago-
nalization recursion de�ned by (35) and (36) as our strategy for reducing the upper block bidiagonal matrix
Jk to the bidiagonal form (Bk), i.e.,

JTk Q̂ = P̂BT
k ;

JkP̂ = Q̂Bk;
(39)
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or

Jkpj = �jqj + �j�1qj�1;
JTk qj = �jpj + �jpj+1;

(40)

where P̂ � fp1; p2; : : : ; pbkg and Q̂ � fq1; q2; : : : ; qbkg are orthonormal matrices of order bk � bk. The
recursions in (40) require band matrix-vector multiplications which can be easily exploited by optimized
level-2 BLAS routines [26] now resident in optimized mathematical libraries on most high-performance
computers. For orthogonalization of the outermost Lanczos vectors, fUig and fVig, as well as the innermost
Lanczos vectors, fpig and fqig, we have chosen to apply a complete or total reorthogonalization [38] strategy
to insure robustness in our triplet approximations for the matrix A. This hybrid Lanczos approach which
incorporates inner iterations of single-vector Lanczos bidiagonalization within the outer iterations of a block
Lanczos SVD recursion is also discussed in [10].

As an alternative to the outer recursion de�ned by (36), which is derived from the equivalent 2-cyclic
matrix B, Table 4 depicts the simpli�ed outer block Lanczos recursion for approximating the eigensystem
of ATA. Combining the equations in (36), we obtain

ATAV̂k = V̂kHk;

where Hk = JTk Jk is the k � k symmetric block tridiagonal matrix

Hk �

0
BBBBBB@

S1 RT
1

R1 S2 RT
2

R2 � �
� � �

� � RT
k�1

Rk�1 Sk

1
CCCCCCA ; (41)

having block size b. We then apply the block Lanczos recursion [38] in Table 4 for computing the eigenpairs
of the n � n symmetric positive de�nite matrix ATA. The tridiagonalization of Hk via an inner Lanczos
recursion follows from simple modi�cations of (34). Analogous to the reduction of Jk in (38), the computation
of eigenpairs of the resulting tridiagonal matrix can be performed via a Jacobi or QR-based symmetric
eigensolver.

As with the previous iterative SVD methods, we access the sparse matrices A and AT for this hybrid
Lanczos method only through sparse matrix-vector multiplications. Some e�ciency, however, is gained in
the outer (block) Lanczos iterations by the multiplication of b vectors rather than by a single vector. These
dense vectors may be stored in a fast local memory (cache) of a hierarchical memory-based architecture,
and thus yield more e�ective data reuse. A stable variant of Gram-Schmidt orthogonalization [75], which
requires e�cient dense matrix-vector multiplication (level-2 BLAS) routines [26] or e�cient dense matrix-
matrix multiplication (level-3 BLAS) routines [50], is used to produce the orthogonal projections of Yi (i.e.,
Ri�1) and Wi (i.e., Si) onto ~V ? and ~U?, respectively, where U0 and V0 contain converged left and right
singular vectors, respectively, and

~V = (V0; V1; : : : ; Vi�1) and ~U = (U0; U1; : : : ; Ui�1):
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(1) [Formation of symmetric block tridiagonal matrix Hk.]
Choose V1 (n� b and orthonormal) and c = maxfbkg.
Compute S1 = V T

1 ATAV1. (V0; R
T
0 = 0 initially).

For i = 2; 3; : : : ; k do: (k = bc=bc)
(2) Compute Yi�1 = ATAVi�1 � Vi�1Si�1 � Vi�1R

T
i�2.

(3) Orthogonalize Yi�1 against fV`gi�1`=0

(4) Factor Yi�1 = ViRi�1.
(5) Compute Si = V T

i ATAVi.

Table 4: Hybrid Lanczos outer iteration [BLSVD].

3.4 The Trace Minimization method [TRSVD]

Another candidate subspace method for the SVD of sparse matrices is based upon the trace minimization
algorithm discussed in [81] for the generalized eigenvalue problem

Hx = �Gx; (42)

whereH and G are symmetric and G is also positive de�nite. In order to compute the SVD of anm�nmatrix
A, we initially replace H with ~B as de�ned in (30) or set H = ATA. Since we need only consider equivalent
standard symmetric eigenvalue problems, we simply de�ne G = Im+n (or In if H = ATA). Without loss of
generality, let us assume that H = ATA, G = In and consider the associated symmetric eigensystem of order
n. If Y is de�ned as the set of all n � p matrices Y for which Y TY = Ip, then using the Courant-Fischer
theorem (see [96]) we obtain

min
Y 2Y

trace(Y THY ) =

pX
i=1

~�n�i+1; (43)

where
p
~�i is a singular value of A, �i = ~�i is an eigenvalue of H , and ~�1 � ~�2 � � � � � ~�n. In other words,

given an n� p matrix Y which forms a section of the eigenvalue problem

Hz = �z; (44)

i.e.,

Y THY = ~�; Y TY = Ip; (45)

~� = diag(~�n; ~�n�1; : : : ; ~�n�p+1);

our trace minimization scheme [TRSVD] [81], see also [9], �nds a sequence of iterates Yk+1 = F (Yk), where
both Yk and Yk+1 form a section of (44), and have the property trace(Y T

k+1HYk+1) < trace(Y T
k HYk). From

(43), the matrix Y in (45) which minimizes trace(Y THY ) is the matrix of H-eigenvectors associated with
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the p-smallest eigenvalues of the problem (44). As discussed in [81], F (Y ) can be chosen so that global
convergence is assured. Moreover, (45) can be regarded as the quadratic minimization problem

minimize trace(Y THY ) (46)

subject to the constraints

Y TY = Ip: (47)

Using Lagrange multipliers, this quadratic minimization problem leads to solving the (n+p)�(n+p) system
of linear equations �

H Yk
Y T
k 0

��
�k

L

�
=

�
HYk
0

�
; (48)

so that Yk+1 � Yk ��k will be an optimal subspace iterate.

Since the matrix H is positive de�nite, one can alternatively consider the p independent (parallel) sub-
problems

minimize ((y
(k)
j � d

(k)
j )TH(y

(k)
j � d

(k)
j )) (49)

subject to the constraints

Y T d
(k)
j = 0; j = 1; 2; : : : ; p;

where d
(k)
j = �kej , ej being the jth column of the identity, and Yk = [y

(k)
1 ; y

(k)
2 ; : : : ; y

(k)
p ]. The corrections

�k in this case are selected to be orthogonal to the previous estimates Yk , i.e., so that (see [54])

�T
k Yk = 0:

We then recast (48) as �
H Yk
Y T
k 0

��
d
(k)
j

l

�
=

�
Hy

(k)
j

0

�
; j = 1; 2; : : : ; p; (50)

where l is a vector of order p re�ecting the Lagrange multipliers.

The solution of the p systems of linear equations in (50) can be done in parallel by either a direct or
iterative solver. Since the original matrix A is assumed to be large, sparse and without any particular sparsity
structure (pattern of nonzeros) we have chosen an iterative method (conjugate gradient) for the systems in
(50). As discussed in [81] and [10], a major reason for using the conjugate gradient (CG) method for the
solution of (50) stems from the ability to terminate CG iterations early without obtaining fully-accurate

corrections d
(k)
j that are more accurate than warranted. In later stages, however, as Yk converges to the

desired set of eigenvectors of B, one needs full accuracy in computing the correction matrix �k.
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3.4.1 Polynomial acceleration techniques for [TRSVD]

The Chebyshev acceleration strategy used within subspace iteration (see Section 3.2), can also be applied
to [TRSVD]. However, to dampen unwanted (largest) singular values of A in this context, we must solve the
generalized eigenvalue problem

x =
1

Pq(�)
Pq(H)x; (51)

where Pq(x) = Tq(x) + �In, Tq(x) is the Chebyshev polynomial of degree q and � is chosen so that Pq(H) is
(symmetric) positive de�nite. The appropriate quadratic minimization problem similar to (49) here can be
expressed as

minimize ((y
(k)
j � d

(k)
j )T (y

(k)
j � d

(k)
j )) (52)

subject to the constraints

Y TPq(H)d
(k)
j = 0; j = 1; 2; : : : ; p:

In e�ect, we approximate the smallest eigenvalues of H as the largest eigenvalues of the matrix Pq(H) whose
gaps are considerably larger than those of the eigenvalues of H .

Although the additional number of sparse matrix-vector multiplications associated with the multiplication
by Pq(H) will be signi�cant for high degrees q, the system of equations via Lagrange multipliers in (50)
becomes much easier to solve, i.e.,�

I Pq(H)Yk
Y T
k Pq(H) 0

��
d
(k)
j

l

�
=

�
y
(k)
j

0

�
; j = 1; 2; : : : ; p: (53)

It is easy to show that the updated eigenvector approximation, y
(k+1)
j , is determined by

y
(k+1)
j = y

(k)
j � d

(k)
j = Pq(H)Yk[Y

T
k P 2

q (H)Yk ]
�1Y T

k Pq(H)y
(k)
j :

Thus, we may not need to use an iterative solver for determining Yk+1 since the matrix [Y T
k P 2

q (H)Yk]
�1 is

of relatively small order p. Using the orthogonal factorization

Pq(H)Yk = Q̂R̂;

we have
[Y T

k P 2
q (H)Yk]

�1 = R̂�T R̂�1;

where the polynomial degree, q, is determined by the strategy de�ned in Section 3.2.

3.4.2 Shifting strategy for [TRSVD]

As discussed in [81], we can also accelerate the convergence of the Yk's to eigenvectors of H by incorporating
Ritz shifts (see [69]) into TRSVD. Speci�cally, we modify the symmetric eigenvalue problem in (44) as follows,

(H � �
(k)
j I)zj = (�j � �

(k)
j )zj ; j = 1; 2; : : : ; s; (54)
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where �
(k)
j = ~�

(k)
n�j+1 is the jth approximate eigenvalue at the kth iteration of [TRSVD], with �j , zj being an

exact eigenpair of H . In other words, we simply use our most recent approximations to the eigenvalues of H
from our kth section within [TRSVD] as Ritz shifts. As was shown by Wilkinson in [98], the Rayleigh quotient
iteration associated with (54) will ultimately achieve cubic convergence to the square of an exact singular

value A, �2n�j+1, provided �
(k)
j is su�ciently close to �2n�j+1. However, since we have �

(k+1)
j < �

(k)
j for all k,

i.e., we approximate eigenvalues of H from above, H � �
(k)
j I will not be positive de�nite and thus we cannot

guarantee the convergence of this shifted [TRSVD] method for any particular singular triplet of A. However,
the strategy outlined in [81] has been quite successful in maintaining global convergence with shifting.

Table 5 outlines the basic steps of [TRSVD]. The scheme appropriately utilizes polynomial (Chebyshev)
acceleration prior to the Ritz shifts. It is important to note that once shifting has been invoked (Step (4)) we

abandon the use of Chebyshev polynomials Pq(H) and solve shifted systems (H replaced by H��(k)j I) of the
form (48) via (50) and the CG algorithm. The context switch from either non-accelerated (or polynomial-
accelerated trace minimization iterations) to trace minimization iterations with Ritz shifting, is accomplished

by monitoring the reduction of the residuals in (4) for isolated eigenvalues (r
(k)
j ) or clusters of eigenvalues

(R
(k)
j ).

(Step 0) Set k = 0, choose an initial n� s subspace iterate Y0 = [y
(0)
1 ; y

(0)
2 ; : : : ; y

(0)
s ].

(Step 1) Form a section as in (45), or determine Yk such that Y T
k Pq(H)Yk = Ip, Y

T
k Yk = ~�.

(Step 2) Compute residuals: r
(k)
j = Hy

(k)
j � ~�

(k)
n�j+1y

(k)
j , and access accuracy.

(Step 3) Analyze the current approximate spectrum (Gershgorin disks).
(Step 4) Invoke Ritz shifting strategy ([81]):

For isolated eigenvalues:

if kr(k)j k2 � �kr(k0)j k2, where � 2 [10�3; 100] and k0 < k for some j.
For a cluster of eigenvalues (size c):

if kR(k)
j kF � �kR(k0)

j kF , where R(k)
j � fr(k)j ; : : : ; r

(k)
j+cg and k0 < k for some j.

(Disable polynomial acceleration if shifting is selected.)
(Step 5) De�ation: reduce subspace dimension, s, by number of H-eigenpairs accepted.
(Step 6) Adjust polynomial degree q via (31) for Pq(H) in iteration k + 1 (if needed).
(Step 7) Update subspace iterate Yk+1 � Yk ��k via (48) or (50).
(Step 8) Set k = k + 1 and go to (Step 1).

Table 5: [TRSVD] algorithm with Chebyshev acceleration and Ritz shifts.

The Chebyshev acceleration and Ritz shifting within [TRSVD] for approximating the the smallest singular
value of a 374� 82 matrix with only 1343 nonzero elements has cut down the number of iterations needed
by [TRSVD] with no acceleration by a factor of 3, using the same stopping criteria. The convergence rate
of [TRSVD] with Chebyshev acceleration plus Ritz shifts (CA + RS) is 3 times higher than [TRSVD] with no
acceleration.
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3.5 Re�nement of Left Singular Vectors

As discussed in Section 1.1, since the smallest singular values of the matrixA lie in the interior of the spectrum
of either the 2-cyclic matrixB (3) or the shifted matrix ~B (30), all four candidate methods will have di�culties
approximating these singular values. The Lanczos-based methods, [LASVD] and [BLSVD] cannot be expected
to e�ectively approximate the interior eigenvalues of either B or ~B. Similarly, subspace iteration [SISVD]
would not be able to suppress the unwanted (largest) singular values if Chebyshev polynomials are de�ned
on symmetric intervals of the form [�e; e]. [TRSVD], however, via direct or iterative schemes for solving the
systems in (50), could indeed obtain accurate approximation of the smallest singular triplets.

In order to target the p-smallest singular triplets of A, we compute the p-smallest eigenvalues and eigen-
vectors of the (operator) matrices listed in Table 6 for LASVD, BLSVD, and TRSVD. With SISVD, we determine
the p-largest eigenpairs of 2In �ATA. As discussed in Section 1.1, we may determine the singular values,
�i, of A and their corresponding right singular vectors, vi, as eigenpairs of either A

TA or 2In�ATA, where
A is m� n and  = kAk1;1. The corresponding left singular vector, ui, must then be determined by

ui =
1

�i
Avi; (55)

which may not be of su�cient accuracy (see Section 1.1) for a given precision in the residual (4). We point
out, however, that alternative operators of the form (shift and invert)

(ATA� ~�2I)�1;

where ~� is a good approximation to an exact singular value of A, can also be used to determine the p-smallest
singular values of A (see [69], [75]). The e�ectiveness of this approach depends on an accurate approximation
of the Cholesky factorization of ATA, or preferably of the QR factorization of A when A is large and sparse
rectangular matrix.

Method Label Operator
Single-Vector Lanczos LASVD ATA
Block Lanczos BLSVD ATA
Subspace Iteration SISVD 2In �ATA
Trace Minimization TRSVD ATA

Table 6: Operators of equivalent symmetric eigenvalue
problems for computing the p-smallest singular triplets of
the m� n matrix A.

For [LASVD], we simply de�ne ~B = ATA in (32) and apply the strategy outlined in Table 3. For [SISVD]
we make the substitution ~B = 2In � ATA for (30) and apply the method in Table 2. Similarly, we solve
the generalized eigenvalue problem in (44) with

H = ATA; G = In;
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and apply the strategy in Table 5 for the appropriate [TRSVD] method. Here, we do not require the shift, 2,
since the trace minimization will converge to the smallest eigenvalues of ATA (and hence squares of singular
values of A) by default. For [BLSVD], we combine the equations in (36) and obtain

ATAV̂k = V̂kHk + Ẑk;

whereHk = JTk Jk is the k�k symmetric block tridiagonal matrix in (41), with the n�k matrix Ẑk containing
the remainder terms. The appropriate block Lanczos (outer) recursion is then given by Table 4.

Having determined approximate singular values, ~�i and corresponding right singular vectors, ~vi, to a
user-speci�ed tolerance for the residual

r̂i = ATA~vi � ~�2i ~vi; (56)

we must then obtain an approximation to the corresponding left singular vector, ui, via (55). As mentioned in
Section 1.1, it is quite possible that square roots of the approximate eigenvalues of either ATA or 2In�ATA
will be poor approximations to exact singular values of A which are extremely small. This phenomenon, of
course, will lead to poor approximations to the left singular vectors. Even if ~�i (computed by any of the four
methods) is an acceptable singular value approximation, the residual corresponding to the singular triplet
f~�i; ~ui; ~vig, de�ned by (4), will be bounded by

krik2 � kr̂ik2=[~�i([k~uik22 + k~vik22)
1

2 ]; (57)

where r̂i is the residual given in (56) for the symmetric eigenvalue problem for ATA or (2In � ATA).
Scaling by ~sigmai can easily lead to signi�cant loss of accuracy in estimating the triplet residual norm,
krik2, especially when ~�i approaches the machine unit roundo� error, �.

One remedy is to re�ne the initial approximation of the left singular vector via (inverse iteration)

AAT ~u
(k)
i+1 = ~�2i ~u

(k)
i ; (58)

where ~u
(0)
i � ui from (55). Since AAT is symmetric semi-de�nite, direct methods developed by Aasen [1],

Bunch and Kaufmann [16], or Parlett and Reid [70] could be used in each step of (58) if AAT is explicitly
formed. With regard to iterative methods, the SYMMLQ algorithm developed by Paige and Saunders [68] can
be used to solve these symmetric inde�nite systems of equations. As an alternative, we consider the following
equivalent eigensystem for the SVD of an m� n matrix A.�

In AT

A Im

��
vi
ui

�
= ( + �i)

�
vi
ui

�
; (59)

where f�i; ui; vig is the ith singular triplet of A and

 = min[1;maxf�ig]: (60)

One possible re�nement recursion (inverse iteration) is thus given by�
In AT

A Im

� 
~v
(k+1)
i

~u
(k+1)
i

!
= ( + ~�i)

 
~v
(k)
i

~u
(k)
i

!
; (61)
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(�In + �ATA)~ui = (�+ �~�2i ); ~vi

(1) Solve eigensystems of the form i = 1; 2; : : : ; p, where
� = 0 and � = 1 for LASVD, BLSVD, and TRSVD, or
� = 2 > �2max and � = �1 for SISVD,

(2) De�ne ~u
(0)
i � 1

~�i
A~vi, i = 1; 2; : : : ; p .

(3) For k = 0; 1; 2; : : : (until krik2 � tolerance or k � kmax).

Solve
�
Im � 1

AA
T
�
~u
(k+1)
i = ( � ~�2i =)~u

(k)
i , i = 1; 2; : : : ; p.

Set ~u
(k+1)
i = ~u

(k+1)
i =k~u(k+1)

i k2.

Table 7: Re�nement procedure for the left singular vector approximations obtained via scaling.

By applying block Gaussian elimination to (61) we obtain a more optimal form (reduced system) of the
recursion �

In AT

0 Im � 1
AA

T

� 
~v
(k+1)
i

~u
(k+1)
i

!
= ( + ~�i)

 
~v
(k)
i

~u
(k)
i � 1

A~v
(k)
i

!
: (62)

Our iterative re�nement strategy for an approximate singular triplet of A, f~�i; ~ui; ~vig, is then de�ned by the
last m equations of (62), i.e.,�

Im � 1


AAT

�
~u
(k+1)
i = ( + ~�i)

�
~u
(k)
i � 1


A~vi

�
; (63)

where the superscript k is dropped from ~vi since we re�ne only our left singular vector approximation, ~ui.

If ~u
(0)
i � ui from (59), then (63) can be rewritten as�

Im � 1


AAT

�
~u
(k+1)
i = ( � ~�2i =)~u

(k)
i ; (64)

with (normalization)

~u
(k+1)
i = ~u

(k+1)
i =k~u(k+1)

i k2:
It is easy to show that the left-hand-side matrix in (63) is symmetric positive de�nite provided (60) holds.

Accordingly, we may use parallel conjugate gradient iterations to re�ne each singular triplet approximation.
Hence, the re�nement procedure outlined in Table 6 may be considered as a black box procedure to follow
the eigensolution of ATA or 2In�ATA by any one of our four candidate methods for the sparse SVD. The
iterations in step (3) of the re�nement scheme in Table 7 terminate once the norms of the residuals of all p
approximate singular triplets (krik2) fall below a user-speci�ed tolerance or after kmax iterations.
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Summary

In this work, we demonstrated that a trace minimization strategy [TRSVD] using Chebyshev acceleration,
Ritz shifting, and an iterative re�nement method for improving left singular vector approximations, can
be quite economical and robust when computing several of the smallest singular triplets of sparse matrices
arising from a vareity of applications. A single-vector Lanczos method [LASVD] can be quite competitive in
speed compared to [TRSVD] at the risk of missing some of the desired triplets due to parameter selection
di�culties. Whereas [TRSVD] is e�ective in achieving high accuracy in approximating all the desired singular
triplets. [LASVD] is acceptable only when moderate to low accurate triplets are needed. A subspace iteration-
based method [SISVD] using Chebyshev acceleration performed poorly for clustered singular values when
polynomials of relatively high degree are used. Typically, this scheme requires less memory than the other
three methods. A block Lanczos SVD method [BLSVD], on the other hand, is quite robust for obtaining
all the desired singular triplets at the expense of large memory requirements. The use of alternative re-
orthogonalization strategies could be a remedy for this di�culty. Finally, we have proposed a hybrid [TRSVD]
method which circumvents the potential loss of accuracy when solving eigensystems of ATA.

3.6 The Davidson methods

3.6.1 General framework of the methods

In 1975, Davidson [21]introduced a method for computing the smallest eigenvalues of the Schrödinger opera-
tor. Later, the method was generalized in two papers [63] and [19] in which the convergence of the method is
proved. More recently, another version of the algorithm, under the name Jacobi-Davidson, was introduced in
[86]. We present here a general framework for the class of Davidson methods, and point out how the various
versions di�er from one another. We should point out that for symmetric eigenvalue problems, the Davidson
method version in [86] is strongly related to the trace minimization scheme discussed in Section 3.4, see [81]
and [80]. All versions of the Davidson method may be regarded as various forms of preconditioning the basic
Lanczos method. To illustrate this point, let us consider a symmetric matrix A 2 Rn�n . Both classes of algo-
rithms generate, at some iteration k, an orthonormal basis Vk = [v1; � � � ; vk] of a k-dimensional subspace Vk
of Rn�n . In the Lanczos algorithm, Vk is a Krylov subspace, but for Davidson methods, this is not the case.
In both classes, however, the interaction matrix is given by the symmetric matrix Hk = Vk

TAVk 2 Rk�k .
Likely with the Lanczos method, the goal is to obtain Vk such that some eigenvalues of Hk are good ap-
proximations of some eigenvalues of A : if (�; y) is an eigenpair of Hk, then it is expected that the Ritz pair
(�; x), where x = Vky, is a good approximation of an eigenpair of A. Note that this occurs only for some
eigenpairs of Hk and at convergence.

Davidson methods di�er from Lanczos in the de�nition of the new direction w which will be incorporated
in the subspace Vk to obtain Vk+1. For Lanczos schemes the vector w is given by w = Avk , whereas
for Davidson methods, a local improvement of the direction of the Ritz vector towards the sought after
eigenvector is obtained by a quasi-Newton step (similar to the trace minimization scheme in [81] and [80]).
In Lanczos, the following vector vk+1 is computed by the three term recursion, if reorthogonalization is not
considered, whereas in Davidson methods, the next vector is obtained by reorthogonalizing w with respect
to Vk. Moreover, in this case, the matrix Hk is no longer tridiagonal. Therefore, one iteration of Davidson

INRIA



Parallel computation of the singular value decomposition 35

methods involves more arithmetic operations than the basic Lanczos scheme; it is at least as expensive as a
Lanczos scheme with full reorthogonalization. Moreover, the basis Vk must be stored which implies the need
for limiting the maximum value kmax in order to control storage requirements. Consequently an algorithm
with periodic restarts must be implemented.

To compute the smallest eigenvalue of matrix A, the skeleton of the basic algorithm is :

Algorithm : Generic Davidson

Choose an initial normalized vector V1 = [v1]
Repeat

for k = 1 : kmax;
compute Wk = AVk ;

compute the interaction matrix Hk = Vk
TAVk ;

compute the smallest eigenpair (�k ; yk) of Hk ;
compute the Ritz vector xk = Vkyk ;
compute the residual rk =Wkyk � �kxk ;
if convergence then exit ;
compute the new direction tk ; (Davidson correction)
Vk+1 = MGS(Vk ; tk) ;

end ;
until convergence ;
V1 = MGS(xk;1; tk) ;

end repeat ;

Algorithms of the Davidson family di�er only in how the vector tk is determined. Note that the above generic
algorithm is expressed in a compact form, the steps which compute Wk or Hk, however, only determine
updates to Wk�1 or Hk�1. In this algorithm MGS denotes the Modi�ed Gram-Schmidt algorithm which is
used to orthogonalize tk with respect to Vk and then to normalize the resulting vector to obtain vk+1.

Similar to the Lanczos algorithm, a block version of Davidson methods may be considered for approxi-
mating the s smallest eigenvalues of A. These are even more closely related to the trace minimization scheme
[81] and [80].
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Algorithm : Generic Block Davidson

Choose an initial orthonormal matrix V1 = [v1; � � � ; vs] 2 Rn�s

Repeat
for k = 1 : kmax=s;

compute Wk = AVk ;

compute the interaction matrix Hk = Vk
TAVk ;

compute the s smallest eigenpairs (�k;i; yk;i)1�i�s of Hk ;
compute the Ritz vectors xk;i = Vkyk;i for i = 1; � � � ; s ;
compute the residuals rk;i =Wkyk;i � �k;ixk;i for i = 1; � � � ; s ;
if convergence then exit ;
compute the new directions (tk;i)1�i�s ; (Davidson correction)
Vk+1 = MGS(Vk ; tk;1; � � � ; tk;s) ;

end ;
until convergence ;
V1 = MGS(xk;1; � � � ; xk;s; tk;1; � � � ; tk;s) ;

end repeat ;

3.6.2 How do the Davidson methods di�er ?

To introduce the correction vectors (tk;i)1�i�s, we assume that a known normalized vector x approximates
an unknown eigenvector x + y of A, where y is chosen orthogonal to x. The quantity � = �(x) (where
�(x) = xTAx denotes the Rayleigh quotient of x) approximates the eigenvalue � + Æ which corresponds to

the eigenvector x + y : � + Æ = �(x + y) = (x+y)TA(x+y)
kx+yk2 . The quality of the approximation is measured by

the norm of the residual r = Ax � �x. Since r = (I � xxT )Ax, the residual is orthogonal to vector x. Let
us denote � the angle \(x; x + y) ; let t be the orthogonal projection of x onto x+ y and z = t� x.

Lemma 3.1 The norms of the involved vectors
are :

kx+ yk =
1

cos2 �
; (65)

kyk = tan �; (66)

kzk = sin �; (67)

ktk = cos �: (68)

Proof. Obvious. �

t 

y 

x=t+z 

z 

x+y 

θ
O

Proposition 3.1 With the previous notations, the correction Æ to the approximation � of an eigenvalue,
and the orthogonal correction y of the corresponding approximate eigenvector x, satisfy:�

(A� �I)y = �r + Æ(x+ y);
y ? x;

(69)

INRIA



Parallel computation of the singular value decomposition 37

in which the following bounds hold :

jÆj � 2kAk tan2 �; (70)

krk � 2kAk tan �
�

sin �

cos2 �
+ 1

�
: (71)

Proof. Equation (69) is directly obtained from

A(x+ y) = (�+ Æ)(x+ y):

Moreover

�+ Æ = �(t);

= (1 + tan2 �) tTAt;

= (1 + tan2 �)(x� z)TA(x � z);

= (1 + tan2 �)(�� 2xTAz + zTAz):

Since z is orthogonal to the eigenvector t, we obtain xTAz = (t+ z)TAz = zTAz and therefore

Æ = �zTAz + tan2 �(�� zTAz);

= tan2 �(� � �(z)); or

jÆj � 2 tan2 � kAk;
which proves (70). Bound (71) is a straight consequence of relations (69), (66) and (70). �

Thus the various version of the Davidson method are based on the following: at iteration k, the Ritz pair
(�; x) under consideration is computed and the determined correction y is added to the space Vk to obtain
Vk+1.

Solving the system (69) is not easy to solve. Since the norm of the non linear term Æ(x + y) is O(�2)
whereas krk = O(�), one may instead consider the approximate problem�

(A� �I)y = �r;
y ? x;

(72)

which has no solution except the trivial solution when � is an eigenvalue. Two alternatives may be considered
to de�ne another approximate problem.

The �rst one, which corresponds to the original Davidson's method, is to approximately solve the problem
:

(A� �I)y = �r; (73)

and then orthogonalize y with respect to the subspace Vk. The solution cannot be the exact one else it would
provide y = �x and no new direction would be incorporated to yield Vk+1.

The second approach is that of trace minimization and the Jacobi-Davidson schemes in which one projects
the linear system (72) onto the hyperplane (x)? orthogonal to x.

More precisely, the di�erent approaches for the correction are :
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Davidson with a preconditionner : solve

(M � �I)y = �r; (74)

where M is some preconditionner of A. In the original Davidson's method, M is taken as the diagonal
of A.

Davidson and Inverse Iteration : when � is close to an eigenvalue, solve approximately

(A� �I)y = �r; (75)

by an iterative method with a �xed number of iterations. In such situation, the method is similar to
inverse iteration in which the ill-conditioning of the system provokes an error which is in the direction
of the sought after eigenvector. The iterative solver, however, must be adapted to symmetric inde�nite
systems.

Trace Minimization and Jacobi-Davidson schemes: solve the problem :�
Q(x)(A � �I)y = �r;
y ? x;

(76)

where Q(x) = I �xxT is the orthogonal projection with respect to x. The system is solved iteratively.
As in the previous situation, the iterative solver must be adapted for symmetric inde�nite systems (the
system matrix can be expressed as Q(x)(A � �I)Q(x)).

A recent study by Simoncini and Elden [85] compares the Rayleigh Quotient method, correction via �Davidson
and Inverse Iteration�, and the Newton Grassmann method which corresponds to corrections via Trace
Minimization or Jacobi-Davidson. The study concludes that the two correction schemes have comparable
behavior. [85] also provides a stopping criterion for controlling the inner iterations of an iterative solver for
the correction vectors.

3.6.3 Application to the computation of the smallest singular value

The smallest singular value of a matrix A may be obtained by applying one of the various versions of the
Davidson methods to obtain the smallest eigenvalue of the matrix C = ATA, or to obtain the innermost
positive eigenvalue of the 2-cyclic augmented matrix in (3). We assume that one has the basic kernels for
matrix-vector multiplications, including the multiplication of the transpose of the original matrix A by a
vector. Multiplying the transpose of a matrix by a vector is considered a drawback, and whenever possible,
the so-called �transpose-free� methods should be used. Even though one can avoid such a drawback when
dealing with the interaction matrix Hk = Vk

TCVk = AVk
TAVk, we still have to compute the residuals

corresponding to the Ritz pairs which do involve multiplication of the transpose of a matrix by a vector.

For the regular single-vector Davidson method, the correction vector is obtained by approximately solving
the system

ATAtk = rk : (77)
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Obtaining an exact solution of (77) would yield the Lanczos algorithm applied to C�1. Once the Ritz value
approaches the square of the sought after smallest singular value, it is recommended that we solve (77)
without any shifts; the bene�t is that we deal with a �xed symmetric positive de�nite system matrix.

The approximate solution of (77) can be obtained by performing a �xed number of iterations of the
Conjugate Gradient scheme, or by solving an approximate linear system Mtk = rk with a direct method.
The latter has been theoretically studied in [72] in which M is obtained from approximate factorizations :

Incomplete LU factorization of A : Here, M = U�1L�1L�TU�T , where L and U are the products of
an incomplete LU factorization of A obtained via the so called ILUTH. In such a factorization, one
drops entries of the reduced matrix A which are below a given threshold. This version of the Davidson
method is called DAVIDLU.

Incomplete QR factorization of A: Here, M = R�1R�T , where R is the upper triangular factor of an
incomplete QR factorization of A. This version of the Davidson method is called DAVIDQR.

Incomplete Cholesky of ATA: Here, M = L�TL�1 where L is the lower triangular factor of an
incomplete Cholesky factorization of the normal equations. This version of the Davidson method is
called DAVIDIC.

Even though the construction of any of the above approximate factorizations may fail, experiments presented
in [72] show the e�ectiveness of the above three preconditioners whenever they exist. It is also shown that
DAVIDQR is slightly more e�ective than either DAVIDLU or DAVIDIC.

Similar to trace minimization, the Jacobi-Davidson method can be used directly on the matrix ATA
to compute the smallest eigenvalue and the corresponding eigenvector. More recently, the Jacobi-Davidson
method has been adapted in [48] for obtaining the singular values of A by considering the eigenvalueproblem
corresponding to the 2-cyclic augmented matrix.

Summary

Computing the smallest singular value often involves a shift and invert strategy. The advantage of Trace
Minimization method and of Davidson methods over Lanczos or subspace iteration methods is to only use
an approximation of the inverse through a preconditionner or through a partial resolution of an iterative
procedure. Trace Minimization and Davidson methods are all based on a Newton-like correction. With
the former a �xed sized basis is updated at each step while with the latter an extension of the subspace
is invoked at each iteration except when restarting. One may assume that expanding the subspace usually
speeds up the convergence. Often, however, using a subspace with �xed dimension results in a more robust
scheme, especially if the size of the subspace is well adapted to the eigenvalue separation (i.e. singular value
separation for our problem).
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4 Parallel computation for sparse matrices

In this section, we present approaches for the parallelization of the two most important kernels: matrix-
vector products and basis orthogonalization. The experiments were done on a 56-processor distributed
memory machine, an Intel Paragon XP/S i860, where communications between processors were handled by
the MPI library. We conclude with the description of a parallel computation of the smallest singular value
of a family of sparse matrices. In that case, the experiment was done on a cluster of workstation.

4.1 Parallel sparse matrix-vector multiplications

Matrix-vector multiplications are usually the most CPU-time consuming operations in most iterative solvers.
As mentioned earlier, the methods devoted to SVD computations involve multiplication by the original matrix
and by its transpose as well. Obviously, only one copy of the matrix is stored. We present here the approach
described in [47] which considers a matrix stored using the CSR format outlined in Section 3.1.

The main goal of data partitioning is to de�ne large-grain local tasks and to overlap communications
with computations. This is not always possible as e�ciency depends on the matrix structure. Because of
the row-oriented compact storage of the sparse matrix, data allocation is performed by rows :

Data allocation :

A =

2
6664

A0

A1

...
...

...
...

Ap�1

3
7775 v =

2
6664

v0
v1
...

vp�1

3
7775

�! Node 0
�! Node 1

�! ...
�! Node (p� 1)

On each processor, the matrix components are stored row-wise as well. These, in turn, are organized into
two parts: local and exterior. On processor k, the local part, denoted Aloc;k de�nes the component which do
not require communication during the multiplication. On the same processor, the exterior part is split into
the blocks Aj

ext;k (j 6= k) as shown below.

Data partition for the multiplications by Az and Az
H :

A =

2
66666664

Aloc;0 A1
ext;0 � � � � � � Ap�1

ext;0

A0
ext;1 Aloc;1 � � � � � � Ap�1

ext;1
...

...
...

...
...

...
A0
ext;p�1 A1

ext;p�1 � � � � � � Aloc;p�1

3
77777775

v =

2
6666664

v0loc
v1loc
...
...

vp�1loc

3
7777775

�! Node 0
�! Node 1

�! ...

�! ...
�! Node (p� 1)

INRIA



Parallel computation of the singular value decomposition 41

Algorithms for the matrix-vector multiplication

k = processor number ; p = number of processors.

Matrix-vector multiplication v ! Av :

Step 1: Send the needed components of vkloc to other processors.

Step 2: Compute wk = Aloc;kv
k
loc.

Step 3: Receive the needed components of vjloc for j 6= k from other processors.

Step 4: Compute wk = wk +
P
j 6=k

Aj
ext;kv

j
loc.

Matrix transpose-vector multiplication v ! AT v :

Step 1: Compute yj = AjT
extv

k
loc;j for j 6= k.

Step 2: Send yj for j 6= k to node number j.

Step 3: Compute wk = AT
loc;kv

k
loc.

Step 4: Receive yj
0

with j0 6= k from other processors.

step 5: Compute wk = wk +
P
j0 6=k

yj
0

.

Matrix DW8192 of the Matrix Market [59] test suite was used to measure the performance of the above
two matrix-vector multiplication schemes. Run times and speed-ups are displayed in Table 8, showing that
one should avoid matrix-vector multiplications involving the transpose of the stored matrix, at least on
architectures similar to the Intel Paragon.

4.2 A parallel scheme for basis orthogonalization

One of the crucial procedures which must be optimized for maximum performance, is the construction of
an orthogonal basis. Let us assume that at some stage, the factor Q of the QR factorization of a matrix
A 2 Rm�n (m� n) must be computed on a parallel computer with distributed memory.

The most common procedure, that of the Modi�ed Gram Schmidt algorithm, does not o�er e�ective
parallelism for the case at hand (m � n). We present here a better procedure from a previous study,
e.g. see [83], in which the QR factorization of A is obtained into two steps : ROCDEC which computes the
triangular factor R by combining Householder and Givens transformations, and ROCVEC which accumulates
the orthogonal transformations to compute vector Qy for any vector y. Assuming that the columns of A are
distributed on a ring of r processors, see Table 9, the two procedures are given below.
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n = 8192; nz = 41746
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Table 8: Timings for matrix-vector multiplications
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Table 9: Distribution by contiguous rows.

Algorithm : ROCDEC

initialize
�
N;m;Nloc; Aloc(1 : Nloc; :)

�
;

for j := 1 : m do
create my reflector[j] and update my local columns
if myid() = 0 then

send row Aloc(j; j : m) to myright()

else
receive row(j:m) from myleft()

create my rotation[1,j] to annihilate Aloc(1; j)
if myid() 6= r � 1 update and send row(j:m) to myright()

endif
endfor
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At completion the factor Q is explicitly available but is shared in the same fashion that the original
matrix Am at the beginning. Hence, the product z = Qy is trivial.

Algorithm : ROCVEC

k := myid() ;
zloc := 0 ;
{ apply orthogonal transformations in reverse order }
for j := m : 1 step �1 do

if (k = 0) then
receive zloc(j) from myright()

i := j ;
else

if (k = r � 1) then
apply my rotation[1; j] on [y(j); zloc(1)]
send the updated y(j) to myleft()

else
receive yj from myright()

apply my rotation[1; j] on [yj ; zloc(1)]
send the updated yj to myleft()

endif
i := 1 ;

endif
apply my reflector[j] on zloc(i : Nloc)

endfor

Data distribution. The factor R is sent to processor Pr�1. To compute the product z = Qy the vector
y 2 Rm must be at the beginning in processor Pr�1. The resulting vector z 2 RN is split at completion.

Parallelism. The application of Householder re�ectors is a completely independent stage. However, to
annihilate the remaining nonzero elements via Givens rotations, it is necessary to transport a row portion
along r processors. But as soon as that portion is passed through a processor, the latter applies its next
re�ector so that there is an overlapping of its computations and the transfer of that row portion to the
other processors. Since there will be a total of m transfers of this sort during the whole factorization,
communication overheads will be masked if m � r. In summary, we expect a reasonable speed-up when
n
r � m and m� r.

Experiment. The following experiment illustrates the superior scalability of the scheme ROC (ROC=ROCDEC+ROCV
with respect to the Modi�ed Gram-Schmidt procedure (MGS). The goal is to compute Qy where Q is the
Q-factor in the QR-factorization of A. In Table 10, we give the running times (in seconds) of the two algo-
rithms with a constant computing load per processor. The column length is n = 104r and the number of
columns is m = 40. The algorithm ROC appears to be much more scalable than MGS.
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r MGS ROC
1 0.16E+01 0.18E+01
2 0.21E+01 0.19E+01
4 0.25E+01 0.20E+01
8 0.28E+01 0.20E+01
16 0.32E+01 0.21E+01
24 0.34E+01 0.21E+01
32 0.36E+01 0.22E+01
56 0.40E+01 0.24E+01

Table 10: Scalability of the orthogonalization process (as illustrated by the running time in seconds)

4.3 Computing the smallest singular value on several processors

As mentioned earlier (see Proposition 1.1) the smallest singular value of A can be computed from the largest
eigenvalue of the matrix

B =

�
0 R�1

R�T 0

�
; (78)

where A = QR is a QR decomposition of A. Typically, one would couple a Lanczos algorithm to a QR
decomposition to compute the largest eigenvalue of B and hence compute the smallest singular value of A.

For large matrix dimensions, the matrix R can be too large to �t in the fast memory. Furthermore, each
iteration of the Lanczos algorithm requires the solutions of two linear systems based on R and RT . Therefore,
parallel QR decomposition algorithms and parallel system solvers are required to e�ciently compute the
smallest singular value.

The multi-frontal QR decomposition (MFQRD), presented in [73], allows a large granularity for paral-
lelism. The MFQRD starts by building a dependency graph that expresses the connections between successive
steps involved in the Householder re�ections. The tree nodes in the elimination tree correspond to matrix
columns where column a is a parent of column b if the application of the Householder re�ection correspond-
ing to column b alters column a. The computation of the Householder re�ections are totally independent
for separated tree leafs. Therefore, the reduction of independent subtrees can be done in parallel. On a
cluster of workstations, one processor computes the elimination tree, isolates a set of independent subtrees
and scatters the subtrees among the di�erent processors of the cluster. Each processor retrieves a subtree
and operates the Householder re�ections. This process leads to a scattered R matrix (row wise) adequate
for parallel solvers. For a detailed description of this procedure, the reader is refered to [61].

Table 11 shows the wall-clock time needed to compute �min for three test matrices S1 2 R1890�1890 ,
S2 2 R

3906�3906 and S3 2 R
32130�32130 . Although the test matrices are obtained from actual applications,

we do not discuss here the physical interpretation of the results. It can be observed that parallelizing the
computation of �min is not bene�cial for S1 and S2, but for S3 speedups of 1:66 and 2:29 are achieved for
the QR decomposition and the Lanczos algorithm, respectively. The total speedup for obtaining �min is 1:85
with a corresponding e�ciency is 61%.

INRIA



Parallel computation of the singular value decomposition 45

Multi-frontal QR decomposition
Matrix 1 Proc. 3 Procs. Speedup E�ciency
S1 3.7 3.6 1.02 0.34
S2 41.8 30.8 1.35 0.45
S3 2353.0 1410.0 1.66 0.55

Lanczos algorithm
Matrix 1 Proc. 3 Procs. Speedup E�ciency
S1 0.7 5.2 0.13 0.04
S2 2.1 15.6 0.14 0.05
S3 1479.0 647.0 2.29 0.76

�min

Matrix 1 Proc. 3 Procs. Speedup E�ciency
S1 4.4 8.8 0.49 0.16
S2 43.9 46.5 0.94 0.32
S3 3822.0 2057.0 1.85 0.61

Table 11: Parallel computation of �min on a small cluster of machines.

5 Application : parallel computation of a pseudo-spectrum

As mentioned earlier in Section 1.3, the computation of the pseudo-spectrum of a matrix A involves a large
volume of arithmetic operations. It is now commonly accepted that path following algorithms which compute
the level curve

�� = fz 2 C j �min(A� zI) = �g; (79)

are of much less complexity than methods based on grid discretization[92]. The �rst attempt in this direction
was published by Brül [15]. Based on a continuation with a predictor-corrector scheme, the process may fail in
the case of angular discontinuities along the level curve [8, 55]. In [90], Wright and Trefethen use the upper
Hessenberg matrix constructed after successive iterations of the implicitly restarted Arnoldi algorithm to
cheaply compute an approximation of the pseudo-spectrum. However, they show that for highly non-normal
matrices the computed pseudo-spectrum is a low approximation of the exact one.

5.1 Parallel Path Following Algorithm using Triangles

In this section, we present the Parallel Path following Algorithm using Triangles (PPAT) for computing the
level curve ��. For a detailed description of this algorithm, the reader is referred to [61, 62].

PPAT uses a numerically stable algorithm that o�ers a guarantee of termination even in the presence of
round-o� errors. Furthermore, the underlying algorithm can handle singular points along the level curve of
interest without di�culty.

The main idea is to line up a set of equilateral triangles along the level curve as presented in Figure 2 and
use a bisection algorithm to compute a numerical approximation of the pseudo-spectrum. More speci�cally,
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Figure 2: Computing a level curve using PPAT.

given a mesh of the complex plane with equilateral triangles, for any triangle Ti of the mesh which intersects
the sought level curve, an adjacent triangle Ti+1 of the same type is de�ned as successor of Ti. Therefore,
from a starting triangle T0, a chain of triangles T1; � � � ; Tn such that Tn = T0 is de�ned. In [62], it is proven
that to compute a level curve of length l, the number of equilateral triangles of size � satis�es

l

�
� n � 10lp

3�
: (80)

PPAT is based on master-slave model where a master node controls a set of slave nodes capable of
computing �min(A � zI) for a given complex value z and of extracting z 2 �� from a segment [zl; zg],
assuming �min(A � zlI) � � < �min(A � zgI). For that purpose, A is broadcast to all workers. Tasks are
queued in a task list managed by the master. Given a triangle Ti along the level curve, the master spawns
two tasks; the �rst computes Ti+1 while the second extracts a new point of the level curve. The dynamic
task scheduling allows better load balancing among the di�erent processors of a heterogeneous network of
workstations.

PPAT exploits the fact that multiple level curve slices can be computed simultaneously. The main idea is
to locate di�erent starting triangles along the level curve and use each triangle to compute a level curve slice.
To get through successfully, the triangles of the di�erent computed slices should align perfectly. Therefore, a
pre�xed lattice is used for all level curve slices. Furthermore, PPAT proceeds in both directions on a single
level curve slice to achieve higher speedups.
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5.2 Speedup and E�ciency

It is shown in [61] that if n is the number of equilateral triangles built to compute an approximation of a
given level curve using a single slice, p the number of processors and q the number of evaluations of �min for
each bisection process, then the speedup is given by

Sp =

(
2n(q+1)
n+2q if p � 2q + 2;
2np(q+1)

p2�2p+2n(q+1) if p < 2q + 2:
(81)

For large values of n, the speedup and e�ciency can be expressed as

Sp = min(p; 2q + 2) +O(1=n);

and

Ep = min

�
1;

2q + 2

p

�
+ O(1=n):

The upper bound of the speedup is given by Smax = 2q + 2. This limit is theoretically achieved whenever
p � 2q + 2.

5.3 Test problems

Three test matrices were selected from the Matrix Market suite [59]. Table 12 summarises their characteristics
(Nz is the number of non zero entries and t�min

is the average computation time for �min(A � zI)). The
application uses up to 20 workers, where the master process shares the same physical processor as the �rst
worker. The underlying hardware is a low cost general purpose network of personal computers (Pentium III,
600MHz, 128MB RAM).

Matrix Order Nz jjAjjF t�min

Olm1000 1000 3996 1:3� 106 0.27s
Rdb3200L 3200 18880 2:8� 103 15.14s
Dw8192 8192 41746 1:6� 103 114.36s

Table 12: Test matrices from the non-Hermitian eigenvalueproblem (NEP) collection.

Figure 3 displays speedups and e�ciencies for computing 100 points on a given level curve with PPAT.
The best performance was observed for matrix Dw8192 which is the largest of the set; a speedup of 10:85 using
12 processors which corresponds to a 90% e�ciency. The lowest e�ciency obtained was 63% for Olm1000
on 13 processors. In a more realistic approach, we have used the 70 processors of the PARASKI cluster at
IRISA to compute, in 41 seconds, the level curve � = 0:05 of Olm1000 split into 15 slices. A single processor
required 4020 seconds to compute the same level curve. The corresponding speedup is 98 with an e�ciency
greater than 1, indicating higher data locality realized for each processor. This result indicates the favorable
scalability of PPAT since PARASKI is a heterogeneous cluster of processors ranging from PII to PIV ; the
sequential time is measured on a randomly selected PIII of the cluster.
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Figure 3: Speedup and E�ciency of PPAT.
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