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1 Introduction

Evaluation and improvement of a signal enhancement algorithm, originally
proposed by Tufts, Kumaresan and Kirsteins (1982) and recently general-
ized by Cadzow (1988), are presented. Little prior information is required
and the proposed method can be applied as a preprocessing step to a large
class of subspace-based signal estimation methods.

In essence, the newly proposed algorithm first arranges the data in a
very rectangular (instead of a square) Hankel structured matrix in order to
make the corresponding signal-only data matrix orthogonal to the noise,
then computes a minimum variance (instead of a least squares) estimate of
the signal-only data matrix and finally restores the Hankel structure.

Simulations are given demonstrating a significant improvement in res-
olution performance over Cadzow’s method at a comparable parameter
accuracy. Moreover, arranging the data in a very rectangular matrix re-
duces drastically the required computation time. In addition, the newly
proposed signal enhancement algorithm is successfully applied to the quan-
titative time-domain analysis of Nuclear Magnetic Resonance (NMR) data.

2 Algorithms

Consider a vector X = [xg,...,2x_1]7 of N observations given by:
X=X+X, (2.1)

where X contains the exact signal component and X,, represents the noise.

We are interested in estimating X from the observed data vector X. Let us

assume that the exact signal satisfies a model of order K. For example, in
exponential data modeling this assumption implies that the N data points
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¥, of X satisfy the following model function:

K K
Fn= Y eyt = (apel )elm BT = N =1 (2.2)
k=1 k=1

where j = /=1 and t, is the time lapse between the effective time origin
and sample z,,. The objective is to estimate the frequencies f;, damping
factors dj, amplitudes a; and phases ¢z, k = 1,..., K. Prior to parameter
estimation, the data are preprocessed as follows:

Data preprocessing. Arrange the z,, in a Hankel matrix Hp, « 3y with L >
M > K and N = L4+ M —1 and compute the Singular Value Decomposition
(SVD) (Golub and Van Loan 1989) (V¥ is the conjugated transpose of V):

Lo L1 TM-1
sl 9 N M o
H= , . . =Ursxr¥oxmVirxm (2.3)
LL-1 XL TN-1
where ¥ = diag(o1,...,0m), 01> ...>0uM.

Correct the singular values by applying a correction function feorr (see
below) and truncate to rank K:

Hy = Uy feorr(Z1)VH (2.4)

Uy, Vy are the first K columns of U,V and ¥y = diag(oy,...,0k).
Finally, restoring the Hankel structure of Hg by arithmetic averaging along
its antidiagonals yields along its first column and last row the cleaned-up
data samples Z,. These steps can be repeated iteratively.

Parameter estimation. Estimate now the signal parameters from the
cleaned-up Z,, e.g. the fi,dp, ar and ¢ in (2.2) can be estimated through
linear prediction methods (Kumaresan and Tufts 1982; Cadzow and Wilkes
1991; De Beer and Van Ormondt 1992; Van Huffel et al. 1992). A better
alternative is Kung’s method (Kung et al. 1983), known as HSVD in NMR
(De Beer and Van Ormondt 1992), which circumvents polynomial rooting
and root selection by representing the signal in a state space model set-
ting. An improved variant, based on Total Least Squares (TLS) and called
HTLS, is presented in (Van Huffel et al. 1992) and used here. Hereto, the

T, are arranged in a Hankel matrix HA i Where L= M(—I—l) is chosen to

obtain the best parameter accuracy.

Correction function. Choosing feorr(X) = ¥ and L = E, M = M re-
sults in Cadzow’s method, 1.e. the singular values are not corrected and the
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Hankel matrix used in the preprocessing procedure has the same dimen-
sions as the one used in the chosen parameter estimation method.
We call the method minimum variance (MV) estimation when

L>>M>FK and feorr(Z) = (X% — La’)S™! with % > Lo?

This method computes the MV estimate of the signal-only data matrix H
given H = H+W provided WHW equals the identity matrix, up to an
unknown scalar, and the signal-only data are “orthogonal” to the noise in
the sense that AW = 0 (De Moor 1993). Although these conditions are
never satisfied exactly, they are more and more satisfied with increasing
overdetermination provided the noise is white and has bounded fourth mo-
ments. That’s the reason why L >> M is required. o2 is the estimated
noise variance and can be known exactly or computed either from the last
data points provided they are pure noise or from the noise singular values
.42 = 1 M 2
as: 0, = GroRr Zi:K+1 oF.
Other correction functions, as well as a detailed analysis of the signal en-
hancement properties of these methods, are presented in (Van Huffel 1992).

Efficiency and extensions. Based on the number of operations involved
(Golub and Van Loan 1989), it is easy to see that the computationally most
intensive part (2.3-2.4) of the algorithm requires significantly less work
whenever L >> M. Denote by L. (M) the number of rows (columns) as
used in Cadzow’s method, and by Ly (Mpy ) the number of rows (columns)
as used in the MV estimation method. Then the MV estimation method
requires roughly only

3Ly M2, + 10M3, + My K Ly
TLMZ2 4+ 4M3 + MK L.

of the number of flops performed by Cadzow’s method in the preprocessing
procedure. Only the highest order terms are considered, hence (2.5) holds
for large L, M. E.g. if N = 128 and K = 5, as in Example 1, then (2.5)
implies that preprocessing a 119 x 10 data matrix H by the MV estimation
method is only 2% of the work needed for processing a 65 x 64 matrix by
Cadzow’s method. With Matlab, ratios of 4% were obtained.

The newly presented signal enhancement algorithm can also be applied
(after some straightforward changes) to other problems in signal process-
ing, such as sinusoidal modeling and transfer function modeling where the
data are ordered in slightly differently structured matrices, and is not re-
stricted to signals embedded in white noise (see (Van Huffel 1992) how to
modify the data in order to obtain similar results).

« 100% (2.5)

Size of the Hankel matrix. Given N data points x,, to be put in an L x
M Hankel matrix H, what’s the best choice for (L, M) 7 The geometrical-
statistical analysis presented in (De Moor 1993) suggests choosing L as
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Figure 1. Spectrum of the noise-free simulation signal (real part).

large as possible. However, as M decreases (i.e. L increases) the singular
values of the signal-only data matrix H also decrease, the smallest one
quite strongly if M = K, since H contains less elements. This implies
that the signal-to-noise ratio &g /o 11 decreases because the gap between
the smallest signal singular value g of H and the largest noise singular
value o 41 of H in (2.3) narrows enlarging the bias of the signal subspace
estimate of . This may have a deteriorating effect on the accuracy of
the estimated signal. This implies that M can not be too small. On the
other hand, M may not be large since then the signal-only data can not be
“orthogonal” to the noise implying that the correction function used in MV
estimation is no longer valid. For that reason, we often choose M ~ 2K.

3 Simulation results

Example 1. 128 data points, uniformly sampled at 10 kHz, are exactly
modeled by a fifth order model function (2.2), given in Table 1 and Fig.
1, and representing a typical in vivo >'P NMR signal.  The data are
perturbed by white Gaussian noise whose real and imaginary components
have standard deviation o,. Root Mean-Squared Error (RMSE), bias and
standard deviation values of the parameter estimates are computed using
200 noise realizations (excluding failures). A failure occurs if not all peaks
are resolved within the frequency intervals —1379 & 82, —685+ 82, —271 &+
82,353+ 43,478 &+ 82 Hz. If respectively no signal enhancement, Cadzow’s
method or MV estimation is used prior to HTLS, the method is called P0-
HTLS, CA-HTLS or MV-HTLS. During preprocessing, MV-HTLS arranges
the data in a 119 x 10 matrix H while CA-HTLS uses a 65 x 64 matrix.

Simulations show that MV-HTLS significantly improves the resolution of
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Table 1. Biaststandard deviation and exact values of the parameter estimates

of Example 1. o, = 1.8, a.u. stands for arbitrary units and ¥ = ¢ * 180/7

expresses the phase in degrees.

Method fi=—1379Hz dy; = 208Hz ap = 6.1a.u. 1 = 15°
CA-HTLS -0.0794+5.166 1.616+33.32  0.070+0.639  0.1284+5.884
MV-HTLS 1.371+£4.961  0.187+31.35 -0.512+0.564 -1.395+5.645
PO-HTLS -0.4254+5.095  1.099432.00  0.025+0.591  0.39845.758

Method fo = —685Hz do = 256Hz as = 9.9a.u. o = 15°
CA-HTLS 0.2724+4.057 -0.104424.26  0.0404+0.671 -0.34444.019
MV-HTLS 0.506£4.046 -0.104£24.25 -0.38340.652 -0.411£3.975
PO-HTLS 0.202+4.118  0.330£24.40  0.0414+0.668 -0.063+4.007

Method fs = —271Hz ds = 197Hz az = 6.0a.u. s = 15°
CA-HTLS -0.236+4.810  0.755+27.96  0.113+0.583 -0.116+6.524
MV-HTLS -0.5644+4.723  2.382427.42 -0.26240.555 -0.051+6.345
PO-HTLS -0.486+4.876  0.724427.51  0.0914+0.584  0.39046.605

Method fa = 353Hz dy = 117Hz aq = 2.8a.u. g = 15°
CA-HTLS -0.411£10.01 1.42472.18  0.3504+1.263  0.032+22.91
MV-HTLS -2.140+£12.82 -16.67+£64.87 -0.214+1.146  1.022429.87
PO-HTLS 0.128+13.46  11.76£76.95  0.610%£1.495  1.310£28.03

Method fs = 478Hz ds = 808Hz a5 = 17.0a.u. s = 15°
CA-HTLS 1.82+20.68  -7.90+129.3 -0.069+2.336 -0.171£6.581
MV-HTLS -13.19420.19 -18.31+112.5 -0.2984+2.061  2.84046.003
PO-HTLS 6.494+24.58 -28.874+128.8 -0.439+2.470 -0.394+7.332

interfering peaks. As shown in Fig.2, the resolution is doubled compared to
Cadzow’s method that still performs better than the nonenhanced method
PO-HTLS. All detected failures in resolution are due to the fact that an
interfering peak, mostly peak 4, can not be resolved.

As shown in Table 1, differences in accuracy of the estimated parameters
between the methods under study are small, especially for peak 1, 2 and
3. The damping factors and amplitudes of peak 4 and 5 and also the
phase of peak b are better estimated by MV-HTLS but the frequencies are
estimated more accurately by CA-HTLS. This loss in accuracy is due to the
occurrence of a smaller singular value gap ok /ok 41 in the 119 x 10 data
matrix H used by MV-HTLS compared to the one in the 65 x 64 matrix
used in CA-HTLS, thereby also increasing the bias of the estimates. On
the other hand, increasing the number of columns M of H from 6 to 64
(square), first decreases and then increases —from M = 15 on— the failure
rate of MV-HTLS from 10% to 20% while the accuracy of all estimates
remains more or less the same for all M values. Therefore, we better take
M small (~ 2K) since a higher M does not improve the performance.

Furthermore, no differences in accuracy or resolution have been ob-
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Figure 2. Percentage of times that PO-HTLS, CA-HTLS and MV-HTLS fail to

resolve all peaks of Example 1 versus the noise standard deviation o,.

served between the use of the exact notse vartance in the correction function
of MV-HTLS and the use of one of the estimators (as given in Sec.2).

Overestimating the model order (choosing the order > 5) further im-
proves clearly the failure rate (not the accuracy) of all methods, but the
differences in failure rate remain relatively the same.

Finally, we can apply the signal enhancement algorithm eteratively or
combine several algorithms. As shown in Fig.3, applying the MV estima-
tion method followed by a Cadzow iteration prior to HTLS, called MV-
CADZOW-HTLS, reduces further the failure rate and also improves the
parameter accuracy wherever CA-HTLS performs better.

Similar experiments have been performed using the signal parameter es-
timation algorithm HSVD but, except for the fact that the accuracy of the
HTLS estimates is generally better than that of the HSVD estimates, the
same conclusions hold. Another simulation example is described in (Van
Huffel 1992). Similar observations as for Example 1 have been made except
that here MV-HTLS exhibits a slightly better or comparable accuracy for
all parameter estimates.
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Figure 3. Comparison of CA-HTLS, MV-HTLS and the iterated methods
MV-CADZOW-HTLS, MV-2CADZOW-HTLS and MV-3CADZOW-HTLS (ie.
MYV followed by 1,2 and 3 Cadzow iterations) for Example 1: (a) percentage of
times that each method fails to resolve all peaks versus the noise standard devi-
ation o, (b) RMSE values, obtained for estimating f; = 353 Hz versus the peak
SNR= 10log(ai/(202)). The solid line is the Cramér-Rao bound.
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Figure 4. In vivo * P-NMR signal of Example 2 and its spectrum.

4 Application to NMR signal fitting

Finally, we apply MV-HTLS and PO-HTLS to the quantitative analysis of
in vivo signals in NMR spectroscopy. The measurement data are assumed
to be modeled by function (2.2) and perturbed by additive white noise.
Furthermore, ¢,, = ty+nAt in which ¢y is the time lag between the effective
origin and the first data point included in the analysis and At the sample
interval. Because of this time delay, the signal parameters estimated by
HTLS must be extrapolated to the time origin.

Example 2. Fig.4 shows the 3 P-NMR signal from a perfused rat liver,
which was obtained in a 4.7 Tesla, 30 cm-wide bore magnet, equipped with
a Biospec spectrometer, and acquired at 81.1 MHz. 128 scans were accu-
mulated using 60 ps (72°) pulses with a 0.69s repetition time. The peaks
of interest are PDE (phospho-diester), Pi (anorganic phosphate) and PME
(phospho-monoester). The peak at high frequency is a standard compound
with known concentration and frequency so that the concentration of the
other peaks can be estimated absolutely instead of relatively from the com-
puted amplitudes (extrapolated to the time origin). 150 data points are
taken, starting from the 6th measurement on (the first 5 are deleted in
order to eliminate the broad hump that appears in the original spectrum).
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Table 2. The signal parameters corresponding to the 3 exponentially damped
sinusoidal components that fit the peaks PDE-Pi-PME and extrapolated to the
time origin, as estimated by PO-HTLS and MV-HTLS. ¥x = ¢x+180/7 expresses

the phase in degrees.
Peak Method fr (Hz) dp (Hz) ap (au.) ¢y (deg.)

PDE  PO-HTLS 102.08 196.91 37715.64 3.43
MV-HTLS 9535  266.13 69178.07 10.07

Pi PO-HTLS 236.35  257.16 24323.91 -44.44
MV-HTLS 22541  397.28 60455.14 -3.86

PME PO-HTLS 322.14 67251 69439.97 -44.34
MV-HTLS 318.20 32492 13521.72 12.93

The data are arranged in a 129 x 22 Hankel matrix during preprocessing
when using MV-HTLS. The model order is set to 15.

The better fit of MV-HTLS compared to PO-HTLS of the 3 interfering
peaks PDE-Pi-PME is visualized in Fig.h by drawing the exponentially
damped sinusoidal components that fit each peak separately. Table 2 yields
the computed estimates, extrapolated to time zero. The smaller damping
factor of PME and phases close to zero, corresponding to physical reality,
clearly indicate that MV-HTLS produces the best fit and hence the most
accurate estimates.

5 Conclusions

A new signal enhancement algorithm based on minimum variance estima-
tion is given demonstrating a significant improvement in resolution perfor-
mance and computational efficiency over Cadzow’s method at a comparable
parameter accuracy.

Acknowledgement: the author is a Research Associate of the Belgian
N.F.W.O. (National Fund for Scientific Research).
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that reconstruct the 3 interfering peaks PDE-Pi-PME of the signal in Fig.4, as
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