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� Introduction

Evaluation and improvement of a signal enhancement algorithm� originally
proposed by Tufts� Kumaresan and Kirsteins ������ and recently general�
ized by Cadzow ������� are presented	 Little prior information is required
and the proposed method can be applied as a preprocessing step to a large
class of subspace�based signal estimation methods	

In essence� the newly proposed algorithm 
rst arranges the data in a
very rectangular �instead of a square� Hankel structured matrix in order to
make the corresponding signal�only data matrix orthogonal to the noise�
then computes a minimum variance �instead of a least squares� estimate of
the signal�only data matrix and 
nally restores the Hankel structure	

Simulations are given demonstrating a signi
cant improvement in res�
olution performance over Cadzow�s method at a comparable parameter
accuracy	 Moreover� arranging the data in a very rectangular matrix re�
duces drastically the required computation time	 In addition� the newly
proposed signal enhancement algorithm is successfully applied to the quan�
titative time�domain analysis of Nuclear Magnetic Resonance �NMR� data	

� Algorithms

Consider a vector X � 
x�� � � � � xN���T of N observations given by�

X � �X �Xw ��	��

where �X contains the exact signal component and Xw represents the noise	
We are interested in estimating �X from the observed data vector X	 Let us
assume that the exact signal satis
es a model of order K	 For example� in
exponential data modeling this assumption implies that the N data points

�
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�xn of �X satisfy the following model function�

�xn �
KX
k��

ckz
tn
k �

KX
k��

�ake
j�k�e��dk�j��fk�tn n � �� � � � � N � � ��	��

where j �
p�� and tn is the time lapse between the e�ective time origin

and sample xn	 The objective is to estimate the frequencies fk� damping
factors dk� amplitudes ak and phases �k� k � �� � � � �K	 Prior to parameter
estimation� the data are preprocessed as follows�

Data preprocessing	 Arrange the xn in a Hankel matrixHL�M with L �
M � K and N � L�M�� and compute the Singular Value Decomposition
�SVD� �Golub and Van Loan ����� �V H is the conjugated transpose of V ��

H �

�
����

x� x� � � � xM��

x� x� � � � xM
			

			
			

			
xL�� xL � � � xN��

�
���� � UL�L�L�MV H

M�M ��	��

where � � diag���� � � � � �M�� �� � � � � � �M 	
Correct the singular values by applying a correction function fcorr �see
below� and truncate to rank K�

HK � U�fcorr����V
H
� ��	��

U�� V� are the 
rst K columns of U� V and �� � diag���� � � � � �K�	
Finally� restoring the Hankel structure ofHK by arithmetic averaging along
its antidiagonals yields along its 
rst column and last row the cleaned�up
data samples bxn	 These steps can be repeated iteratively	
Parameter estimation	 Estimate now the signal parameters from the
cleaned�up bxn� e	g	 the fk� dk� ak and �k in ��	�� can be estimated through
linear prediction methods �Kumaresan and Tufts ����� Cadzow and Wilkes
����� De Beer and Van Ormondt ����� Van Hu�el et al	 �����	 A better
alternative is Kung�s method �Kung et al	 ������ known as HSVD in NMR
�De Beer and Van Ormondt ������ which circumvents polynomial rooting
and root selection by representing the signal in a state space model set�
ting	 An improved variant� based on Total Least Squares �TLS� and called
HTLS� is presented in �Van Hu�el et al	 ����� and used here	 Hereto� the

bxn are arranged in a Hankel matrix bHbL� bM where bL � cM ���� is chosen to
obtain the best parameter accuracy	

Correction function� Choosing fcorr��� � � and L � bL� M � cM re�
sults in Cadzow�s method� i	e	 the singular values are not corrected and the
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Hankel matrix used in the preprocessing procedure has the same dimen�
sions as the one used in the chosen parameter estimation method	
We call the method minimum variance �MV	 estimation when

L �� M � K and fcorr��� � ��
� � L���I��

�� with ��K � L���

This method computes the MV estimate of the signal�only data matrix �H
given H � �H �W provided WHW equals the identity matrix� up to an
unknown scalar� and the signal�only data are �orthogonal� to the noise in
the sense that �HHW � � �De Moor �����	 Although these conditions are
never satis
ed exactly� they are more and more satis
ed with increasing
overdetermination provided the noise is white and has bounded fourth mo�
ments	 That�s the reason why L �� M is required	 ��� is the estimated
noise variance and can be known exactly or computed either from the last
data points provided they are pure noise or from the noise singular values
as� ��� �

�
�M�K�L

PM

i�K�� �
�
i 	

Other correction functions� as well as a detailed analysis of the signal en�
hancement properties of these methods� are presented in �Van Hu�el �����	

E�ciency and extensions� Based on the number of operations involved
�Golub and Van Loan ������ it is easy to see that the computationally most
intensive part ��	���	�� of the algorithm requires signi
cantly less work
whenever L �� M 	 Denote by Lc �Mc� the number of rows �columns� as
used in Cadzow�s method� and by Lmv �Mmv� the number of rows �columns�
as used in the MV estimation method	 Then the MV estimation method
requires roughly only

�LmvM�
mv � ��M

�
mv �MmvKLmv

�LcM�
c � �M

�
c �McKLc

� ���� ��	��

of the number of �ops performed by Cadzow�s method in the preprocessing
procedure	 Only the highest order terms are considered� hence ��	�� holds
for large L� M 	 E	g	 if N � ��� and K � �� as in Example �� then ��	��
implies that preprocessing a ������ data matrixH by the MV estimation
method is only �� of the work needed for processing a ��� �� matrix by
Cadzow�s method	 With Matlab� ratios of �� were obtained	
The newly presented signal enhancement algorithm can also be applied

�after some straightforward changes� to other problems in signal process�
ing� such as sinusoidal modeling and transfer function modeling where the
data are ordered in slightly di�erently structured matrices� and is not re�
stricted to signals embedded in white noise �see �Van Hu�el ����� how to
modify the data in order to obtain similar results�	

Size of the Hankel matrix� Given N data points xn to be put in an L�
M Hankel matrix H� what�s the best choice for �L�M � � The geometrical�
statistical analysis presented in �De Moor ����� suggests choosing L as
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Figure �� Spectrum of the noise�free simulation signal �real part��

large as possible	 However� as M decreases �i	e	 L increases� the singular
values of the signal�only data matrix �H also decrease� the smallest one
quite strongly if M � K� since �H contains less elements	 This implies
that the signal�to�noise ratio ��K��K�� decreases because the gap between
the smallest signal singular value ��K of �H and the largest noise singular
value �K�� of H in ��	�� narrows enlarging the bias of the signal subspace
estimate of �H	 This may have a deteriorating e�ect on the accuracy of
the estimated signal	 This implies that M can not be too small	 On the
other hand�M may not be large since then the signal�only data can not be
�orthogonal� to the noise implying that the correction function used in MV
estimation is no longer valid	 For that reason� we often choose M � �K	

� Simulation results

Example �� ��� data points� uniformly sampled at �� kHz� are exactly
modeled by a 
fth order model function ��	��� given in Table � and Fig	
�� and representing a typical in vivo ��P NMR signal	 The data are
perturbed by white Gaussian noise whose real and imaginary components
have standard deviation �� 	 Root Mean�Squared Error �RMSE�� bias and
standard deviation values of the parameter estimates are computed using
��� noise realizations �excluding failures�	 A failure occurs if not all peaks
are resolved within the frequency intervals ������ �������� ��������
��� ���� ��� ���� �� Hz	 If respectively no signal enhancement� Cadzow�s
method or MV estimation is used prior to HTLS� the method is called P��
HTLS� CA�HTLS or MV�HTLS	 During preprocessing� MV�HTLS arranges
the data in a ���� �� matrix H while CA�HTLS uses a ��� �� matrix	

Simulations show that MV�HTLS signi
cantly improves the resolution of
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Table �� Bias�standard deviation and exact values of the parameter estimates

of Example �� �� � ���� a�u� stands for arbitrary units and �k � �k � ��	��

expresses the phase in degrees�
Method f� � �����Hz d� � ���Hz a� � ���a	u	 �� � ��

�

CA�HTLS ��	�����	��� �	������	�� �	�����	��� �	�����	���
MV�HTLS �	�����	��� �	������	�� ��	�����	��� ��	�����	���
P��HTLS ��	�����	��� �	������	�� �	�����	��� �	�����	���
Method f� � ����Hz d� � ���Hz a� � ���a	u	 �� � ���

CA�HTLS �	�����	��� ��	������	�� �	�����	��� ��	�����	���
MV�HTLS �	�����	��� ��	������	�� ��	�����	��� ��	�����	���
P��HTLS �	�����	��� �	������	�� �	�����	��� ��	�����	���
Method f� � ����Hz d� � ���Hz a� � ���a	u	 �� � ��

�

CA�HTLS ��	�����	��� �	������	�� �	�����	��� ��	�����	���
MV�HTLS ��	�����	��� �	������	�� ��	�����	��� ��	�����	���
P��HTLS ��	�����	��� �	������	�� �	�����	��� �	�����	���
Method f	 � ���Hz d	 � ���Hz a	 � ���a	u	 �	 � ���

CA�HTLS ��	������	�� �	�����	�� �	�����	��� �	������	��
MV�HTLS ��	������	�� ���	�����	�� ��	�����	��� �	������	��
P��HTLS �	������	�� ��	�����	�� �	�����	��� �	������	��
Method f
 � ���Hz d
 � ���Hz a
 � ����a	u	 �
 � ���

CA�HTLS �	�����	�� ��	������	� ��	�����	��� ��	�����	���
MV�HTLS ���	�����	�� ���	������	� ��	�����	��� �	�����	���
P��HTLS �	�����	�� ���	������	� ��	�����	��� ��	�����	���

interfering peaks	 As shown in Fig	�� the resolution is doubled compared to
Cadzow�s method that still performs better than the nonenhanced method
P��HTLS	 All detected failures in resolution are due to the fact that an
interfering peak� mostly peak �� can not be resolved	

As shown in Table �� di�erences in accuracy of the estimated parameters
between the methods under study are small� especially for peak �� � and
�	 The damping factors and amplitudes of peak � and � and also the
phase of peak � are better estimated by MV�HTLS but the frequencies are
estimated more accurately by CA�HTLS	 This loss in accuracy is due to the
occurrence of a smaller singular value gap �K��K�� in the ���� �� data
matrix H used by MV�HTLS compared to the one in the �� � �� matrix
used in CA�HTLS� thereby also increasing the bias of the estimates	 On
the other hand� increasing the number of columns M of H from � to ��
�square�� 
rst decreases and then increases �fromM � �� on� the failure
rate of MV�HTLS from ��� to ��� while the accuracy of all estimates
remains more or less the same for all M values	 Therefore� we better take
M small �� �K� since a higher M does not improve the performance	

Furthermore� no di�erences in accuracy or resolution have been ob�
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Figure �� Percentage of times that P	�HTLS� CA�HTLS and MV�HTLS fail to

resolve all peaks of Example � versus the noise standard deviation �� �

served between the use of the exact noise variance in the correction function
of MV�HTLS and the use of one of the estimators �as given in Sec	��	

Overestimating the model order �choosing the order � �� further im�
proves clearly the failure rate �not the accuracy� of all methods� but the
di�erences in failure rate remain relatively the same	

Finally� we can apply the signal enhancement algorithm iteratively or
combine several algorithms	 As shown in Fig	�� applying the MV estima�
tion method followed by a Cadzow iteration prior to HTLS� called MV�
CADZOW�HTLS� reduces further the failure rate and also improves the
parameter accuracy wherever CA�HTLS performs better	

Similar experiments have been performed using the signal parameter es�
timation algorithm HSVD but� except for the fact that the accuracy of the
HTLS estimates is generally better than that of the HSVD estimates� the
same conclusions hold	 Another simulation example is described in �Van
Hu�el �����	 Similar observations as for Example � have been made except
that here MV�HTLS exhibits a slightly better or comparable accuracy for
all parameter estimates	
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Figure �� Comparison of CA�HTLS� MV�HTLS and the iterated methods

MV�CADZOW�HTLS� MV�
CADZOW�HTLS and MV��CADZOW�HTLS �i�e�

MV followed by ��
 and � Cadzow iterations� for Example �� �a� percentage of

times that each method fails to resolve all peaks versus the noise standard devi�

ation �� �b� RMSE values� obtained for estimating f� � �
� Hz versus the peak

SNR� �	 log�a����
�
�

� ��� The solid line is the Cram�er�Rao bound�
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� Application to NMR signal �tting

Finally� we apply MV�HTLS and P��HTLS to the quantitative analysis of
in vivo signals in NMR spectroscopy	 The measurement data are assumed
to be modeled by function ��	�� and perturbed by additive white noise	
Furthermore� tn � t��n t in which t� is the time lag between the e�ective
origin and the 
rst data point included in the analysis and  t the sample
interval	 Because of this time delay� the signal parameters estimated by
HTLS must be extrapolated to the time origin	

Example �� Fig	� shows the ��P �NMR signal from a perfused rat liver�
which was obtained in a �	� Tesla� �� cm�wide bore magnet� equipped with
a Biospec spectrometer� and acquired at ��	� MHz	 ��� scans were accu�
mulated using �� �s ����� pulses with a �	��s repetition time	 The peaks
of interest are PDE �phospho�diester�� Pi �anorganic phosphate� and PME
�phospho�monoester�	 The peak at high frequency is a standard compound
with known concentration and frequency so that the concentration of the
other peaks can be estimated absolutely instead of relatively from the com�
puted amplitudes �extrapolated to the time origin�	 ��� data points are
taken� starting from the �th measurement on �the 
rst � are deleted in
order to eliminate the broad hump that appears in the original spectrum�	
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Table �� The signal parameters corresponding to the � exponentially damped

sinusoidal components that �t the peaks PDE�Pi�PME and extrapolated to the

time origin� as estimated by P	�HTLS and MV�HTLS� �k � �k ���	�� expresses

the phase in degrees�
Peak Method fk �Hz� dk �Hz� ak �a	u	� �k �deg	�
PDE P��HTLS ���	�� ���	�� �����	�� �	��

MV�HTLS ��	�� ���	�� �����	�� ��	��
Pi P��HTLS ���	�� ���	�� �����	�� ���	��

MV�HTLS ���	�� ���	�� �����	�� ��	��
PME P��HTLS ���	�� ���	�� �����	�� ���	��

MV�HTLS ���	�� ���	�� �����	�� ��	��

The data are arranged in a ���� �� Hankel matrix during preprocessing
when using MV�HTLS	 The model order is set to ��	

The better 
t of MV�HTLS compared to P��HTLS of the � interfering
peaks PDE�Pi�PME is visualized in Fig	� by drawing the exponentially
damped sinusoidal components that 
t each peak separately	 Table � yields
the computed estimates� extrapolated to time zero	 The smaller damping
factor of PME and phases close to zero� corresponding to physical reality�
clearly indicate that MV�HTLS produces the best 
t and hence the most
accurate estimates	

� Conclusions

A new signal enhancement algorithm based on minimum variance estima�
tion is given demonstrating a signi
cant improvement in resolution perfor�
mance and computational e!ciency over Cadzow�s method at a comparable
parameter accuracy	
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c Research�	
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