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Abstract— In this paper we describe a matrix based method
for estimating both a signal subspace dimension as well as
signal parameters when one has an array of sensors, multiple
exponential signals, and significant signal changes after a small
number of snapshots. This method combines the technique of
creating Hankel or Toeplitz matrices from single-channel data
with methods for sensor-array processing using multiple array
snapshots.

I. I NTRODUCTION

In this paper we describe a matrix based method for
estimating a signal subspace dimension while controlling the
probability of false alarm as well as a method for estimating
parameters of that subspace. A common scenario where this
method applies is when the data comes from an array of
sensors, where each array snapshot consists of multiple expo-
nential signals, but significant changes occur in the exponential
signals after a small number of snapshots.

In estimation these exponentials are signals which have
parameter values, such as arrival angles, which we wish
to estimate. In detection these exponentials are components
of interference which we temporarily treat as “signals” to
be enhanced, prior to subtraction. In both cases reduced-
rank approximation to a data matrix is used to improve the
signal-to-noise ratio of the exponential components, prior to
subsequent signal processing.

We discuss a data matrix structure, which we call theblock
Hankel structure, that combines the benefits of creating a
Hankel matrix for single-channel data with the advantages
of multiple channels without changing the signal subspace
dimension.

Next, we present a method for estimating the dimension
of the signal subspace while controlling the probability of
false alarms. If we estimate that the dimension of the signal
subspace is larger than the correct dimension, we say that a
false alarm has occurred. This method is an extension of the
method of Tufts and Shah [1] which applies to Hankel matri-
ces. We then introduce an approximation to this matrix rank
tracking method that reduces the computation significantly,
while maintaining performance.

A major motivation for us is widening the applicability
of the FAST algorithm [2] [3] for subspace tracking. Rank
tracking, implemented using the tests of Frobenius-norm “en-
ergy” of subspace matrices is described in section III below.
This is an important part of FAST. However, until now, the
rank-tracking in FAST could not be applied toblock Hankel
structure matrices.

Finally, we present some results of applying this method to
some simulated sonar array data which was generated by Nor-
man Owsley. Here we estimate the number of sinusoids, their
amplitudes, and their spatial frequencies for each snapshot.

II. CONSTRUCTING ABLOCK HANKEL MATRIX

It is well known [4] [5] [6] that a lengthN single-channel
signal vectorst, which is a linear combination ofk complex
exponentials can be made into anrH × cH Hankel or Toeplitz
matrix which will have rankk, if min(rH , cH) ≥ k. The vector
st can be written as

st =
k∑
l=1

cl,tzl, (1)

where each discrete exponential signal has the form

zl = [1 Z1
l Z2

l · · · ZN−1
l ]T , (2)

in whichZl is a complex number and thecl,t are the complex
scale factors. The creation of a Hankel matrix is shown
pictorially in figure 1. Note thatN = rH + cH − 1.

When we havec different signal vectors,s1, s2 · · · sc, with
kc different complex scale factorscl,t, but the samek expo-
nentials,zl, we can create ablock Hankelmatrix by forming
an rH × cH Hankel matrix from eachN × 1 signal vector,st,
then concatenating them together to form anrH × cHc matrix
which will have rankk, if min(rH , cHc) ≥ k.

Given anN × c data matrixM , consisting ofc snapshots
of signal plus noise,

M = [s1 s2 · · · sc] + [n1 n2 · · · nc], (3)

we can create anrH × cHc block Hankelmatrix B. This is
shown pictorially in figure 2. We often refer to a column of
the original data matrix as a snapshot.

The noise component ofM will increase its dimension
when we create the Hankel blocks, and should continue to
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Fig. 1. Creating a Hankel matrix from a signal vector
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Fig. 2. Creating a Block Hankel matrix from multiple snapshots

fill the full vector space ofM . As an example of how the
block Hankelstructure benefits us, if we have four snapshots
of length 39 which contain eight complex exponentials, we
can create four32 × 8 Hankel blocks, which will give us a
32 × 32 block Hankelmatrix in which the signal component
is contained in an eight dimensional subspace, but the noise
will span the full 32 dimensional vector space.

It should also be noted that whenZl = ejwl in (2) we
can create a forward-backward matrix [7] where the backward
matrix is created by conjugating and reversing the elements of
M along the columns. The results in this paper are only shown
for the forward matrix, but can be easily extended to contain
both the forward and backward matrices.

III. E STIMATING THE SIGNAL SUBSPACERANK

To estimate the rank of the signal subspace, we take the
SVD of B = UΣV H , and define the energy in the subspace
which is orthogonal to the hypothesized signal subspace

Sk+1 =
rH∑

l=k+1

σ2
l = ||(I − UkU

H
k )B||2F (4)

whereSk+1 is the sum of the squares of the singular values of
B less thek largest. In (4)σ2

l is the square of thelth largest
singular value ofB, and Uk is a matrix of thek leftmost
columns ofU .

Using the SVD of the matrixB, we ask questions based on
current hypotheses about the rank of the signal subspace. The
zeroth hypothesis,H0, is that the rank of the signal subspace,
the signal portion of the matrixB, is at least zero. If the signal
portion of the matrixB has exactly rank zero, then there is
no signal and the matrixB consists entirely of noise values.
The kth hypothesis,Hk, is that the rank of the signal portion
of the matrixB is at leastk.

The question that we ask at thekth stage (if we get that
far) is “Given Hk, that we have found out that the signal
rank is at leastk, can we now say thatHk+1 is true?” To
do this we test whether or not the sumSk+1, the energy in
the orthogonal subspace, is greater than a prescribed threshold
value Tk. If sk+1 < Tk, we say that the signal rank isk
and stop our tests. IfSk+1 > Tk we say thatHk+1 is true
and continue our tests. The behavior of this sequence of tests
is controlled by choosing each threshold value so that the
associated probability of false alarm is a valueα which we
choose.

We choose a false alarm probability,α, and compute the
threshold values,Tk, for eachk

P (Sk+1 > Tk|H̄k+1) = α, 0 ≤ k ≤ rH (5)

whereH̄k+1 is the complimentary hypothesis thatHk+1 is not
true, and the value ofSk+1 is produced only by noise. Note
thatα should be the same for allk.

Finally, we find the largestk such thatSk+1 is greater than
Tk, and our rank is thatk. This is a simple iterative step that
is trivial to implement in practice.

These steps for estimating the rank apply for any matrix,
structured or not, because the original matrixM is a block
Hankel matrix with rH = N and cH = 1, while a Hankel
matrix is ablock Hankelmatrix with c = 1 andcH > 1.

IV. CALCULATING THE THRESHOLDVALUES

The threshold values are chosen to control the probability of
false alarm at each stage. Therefore the pertinent probability
density is that of the noise alone in the orthogonal subspace.

A method for calculating the thresholdsTk for an unstruc-
tured matrix, such asM , is presented in [8], and a method for
calculating the thresholds in the Hankel case, which is easily
extended to theBlock Hankelcase, is presented in [1].

The difficulty with the method in [1] is that it requires
the partial fraction expansion of a polynomial with root
multiplicity of 2c. For the case of a Hankel matrix this is not
a big problem becausec = 1, but for theBlock Hankelcase
this not only requires a lot of computation, but also generally
requires variable precision arithmetic.

Here we present a method to approximate the threshold
values which can easily be implemented in a practical system.
They are only a function ofα, σ2, and the matrix dimensions,
rH , cH , andc. The values are compared with the results using
the extension of the method in [1] as well as experimental
results.

We now assume that the noise is distributed complex
normal,nt ∼ CN (0, Iσ2), with zero mean and varianceσ2.
For the caseH0 (no signal present) the expected value,µB ,
and variance,σ2

B , of the squared Frobenius norm ofB are

µB = E
[
||B||2F

]
= σ2rmcmc (6)

and

σ2
B = Var

(
||B||2F

)
= σ4c(dr2m + 2

rm−1∑
i=1

i2) (7)

whererm = min(rH , cH) is the smaller dimension of a single
Hankel block,cm = max(rH , cH) is the longer dimension of
a single block, andd = |rH − cH | + 1 is the number of full
diagonals in a single block.

The distribution of||B||2F is Chi-Square mixture, which is
approximately a scaled Chi-Square withn degrees of freedom
and scale factor1/sB , therefore, because we know the mean
and variance of any Chi-Square variable, we can say

n = E

[
||B||2F
sB

]
=

1
sB
E

[
||B||2F

]
(8)

and

2n = Var

(
||B||2F
sB

)
=

1
s2B

Var
(
||B||2F

)
. (9)



Combining equations 6, 7, 8, and 9, rearranging some terms,
and solving forn andsB we get

n =
2µ2

B

σ2
B

=
6cc2m

3cm − (rm − 1/rm)
(10)

and

sB =
σ2
B

2µB
= σ2 rmcmc

n
(11)

It should be noted thatn will generally not be an integer, but
that is not a problem because the Chi-Square distribution can
be evaluated for all realn.

For a given value ofα, we can findT0/sB by evaluating
the quantile (the inverse cumulative distribution function) of
the Chi-Square distribution at1− α.

T0

sB
= F−1

n (1− α) (12)

Since the quantile is only a function ofα andn, which depends
only on the matrix dimensionsrm, cm, andc, we can calculate
T0/sB before we know the variance of the noise,σ2. If we
then define

T̂0 = σ2 T0

sB
(13)

which is essentiallyT0 with the noise variance insB canceled
out, then when we do get our estimate of the noise variance
we can easily determineT0 as

T0 =
T̂0

σ2
. (14)

In figure 3 we show how well the Chi-Square approximation
compares to the actual distribution which is a Chi-Square
mixture.
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Fig. 3. False Alarm Probability vs. Threshold

V. EVALUATING THE OTHER THRESHOLDS

Now that we have a method to calculateT0, we need to
be able to calculate the other thresholdsTk, for k = 1 · · · rH .
Here we assume that if there are signals present in the data,
the SNR is assumed to be above threshold [9]. That is, the
probability of subspace swap is negligibly small and the signal
singular vectors are independent of the noise.

We assume that to a good approximation, the mean and
variance of the energy in the orthogonal subspace do not
depend on the choice of signal subspace, as long as the noise

does not affect this choice. Therefore, for convenience we
replace replaceUk by the firstk canonical vectors,

Ûk = [ e1, e2, · · · , ek ] (15)

where thekth canonical vectorek is a lengthrH column vector
consisting of all zeros except a single one in thekth position,

ek = [ 0, · · · , 0︸ ︷︷ ︸
k−1

, 1, 0, · · · , 0︸ ︷︷ ︸
rH−k

]T (16)

we can use the method from section IV for calculatingT0 to
calculateTk by replacingrH by rH − k.

We see that when we take the product(I − Û ÛH)B we
zero out the firstk rows ofB but leave the rest of the matrix
unchanged. This means that if hypothesisHk applies, we can
use our mean and variance calculations from the previous
section along with our Chi-Square approximation. The mean
estimate usinĝUk will be identical to the estimate usingUk,
but the variance will not be correct because||(I−UUH)B||2F
will actually be a Chi-Square mixture plus a Gaussian product
mixture.

The reason for this approximation is to permit the thresholds
to be calculated independently of the data.

VI. T HE DATA

In this section we present some results using the techniques
introduced in this paper on simulated data. We make the
following assumptions about the data used in this section.

Each length 48 array snapshotmt, is a sum ofk scaled
complex sinusoids with fixed frequenciesfk, and random
complex scale factorsck,t = Ake

jψk , plus complex white
noisent

mt = nt +
k∑
l=1

ck,tzk (17)

where from (2),Zk = e−j2πfkfs with fs = 0.4, and the
random components have distributions

nt ∼ CN (0, Iσ2) (18)

Ak ∼ N (0, σ2
k) (19)

ψk ∼ U(0, 2π) (20)

Because we know exactly how the simulated data was gen-
erated we also know that these assumptions are simplifications
of the actual data, and do not truly reflect the far more complex
model used for generating the data. In actuality, thezks are not
truly sinusoidal (which is why we didn’t use forward-backward
block Hankelmatrices), thefks are slowly changing between
snapshots at different rates, and theck,t have a much more
complicated distribution.

The steps that we use to come up with the results in this
section are as follow.

• Determine c, the number of sequential snapshots to
use. This will depend on the stationarity of the signal
subspace.

• DeterminerH and cH , the dimensions of the Hankel
blocks. This will depend on the rank of the signal



subspace as well as other factors related to the method
of parameter estimation that is used.

• Determineα, the probability of false alarm, then calculate
the thresholdsTk or T̂k for eachk.

• Create theblock Hankelmatrix B, and take its SVD.
• Estimatek, the signal subspace rank by comparing the

sums of the squares of singular values ofB to the
thresholds.

• Estimate the possible target azimuths.
• Find thek azimuths corresponding to the signal subspace,

and determine their signal level.

To estimate the possible target azimuths, we take the poly-
nomial roots of therH th left singular vector which will be
orthogonal to the signal subspace. We know that it will have
zeros corresponding to the frequencies of the sinusoids in the
signal subspace [5] (as well as many other zeros).

To determine whichk of the rH − 1 possible azimuths
correspond to thek sinusoids, we beamform thek largest left
singular vectors toward all of the possible azimuths, then pick
the azimuth which has the largest beamformed value for a
given singular vector. Once we have picked an azimuth which
corresponds to a singular vector, we say the energy at that
azimuth is the singular value which goes with that singular
vector.

Figure 4 shows the rank estimates for 1800 snapshots using
a block Hankelmatrix with dimensionsc = 8, rH = 33, and
cH = 16. These are the number of azimuth estimates that are
plotted in fig. 5 and fig. 8.

Figure 5 shows the cosine of azimuth estimates using eight
sequential snapshots and ablock Hankelstructure withc = 8,
rH = 33, and cH = 16. Fig. 7 shows the cosine of azimuth
estimates using the same eight sequential snapshots and no
matrix structure withc = 8, rH = 48, and cH = 1. Fig. 6
shows the cosine of azimuth estimates using 24 sequential
snapshots and no matrix structure withc = 24, rH = 48, and
cH = 1.

The two tracks of most interest are the one that is leftmost
between 500 and 1600 and the one that is rightmost between
800 and 1400 in fig. 5. These two tracks are about five orders
of magnitude below the stronger tracks and very near the noise
level. They do not even show up fig. 7 and are not very clear
in fig. 6 which uses three times the amount of data.

Figure 8 is the same as 5 but with target strength indicated
by a color. The colorbar in the figure shows the strength of
the target in decibels.
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Fig. 4. Rank estimation for block Hankel matrix structure with eight
sequential snapshots
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Fig. 5. Cosine of the azimuth of thek strongest sinusoids using eight
sequential snapshots and block Hankel matrix structure
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Fig. 6. Cosine of the azimuth of thek strongest sinusoids using 24 sequential
snapshots and no matrix structure
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Fig. 7. Cosine of the azimuth of thek strongest sinusoids using eight
sequential snapshots and no matrix structure
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