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ABSTRACT   

The modern graphics processing unit (GPU) found in many standard personal computers is a highly parallel math 

processor capable of nearly 1 TFLOPS peak throughput at a cost similar to a high-end CPU and an excellent 

FLOPS/watt ratio.  High-level linear algebra operations are computationally intense, often requiring O(N
3
) operations 

and would seem a natural fit for the processing power of the GPU.  Our work is on CULA, a GPU accelerated 

implementation of linear algebra routines.  We present results from factorizations such as LU decomposition, singular 

value decomposition and QR decomposition along with applications like system solution and least squares.  The GPU 

execution model featured by NVIDIA GPUs based on CUDA demands very strong parallelism, requiring between 

hundreds and thousands of simultaneous operations to achieve high performance.  Some constructs from linear algebra 

map extremely well to the GPU and others map poorly.  CPUs, on the other hand, do well at smaller order parallelism 

and perform acceptably during low-parallelism code segments.   Our work addresses this via hybrid a processing model, 

in which the CPU and GPU work simultaneously to produce results.  In many cases, this is accomplished by allowing 

each platform to do the work it performs most naturally. 
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1. INTRODUCTION 

The modern graphics processing unit (GPU) found in many standard personal computers is a highly parallel math 

processor capable of nearly 1 TFLOPS peak throughput at a cost similar to a high-end CPU and an excellent 

FLOPS/watt. ratio  There is strong desire to utilize such power, but it can be difficult to harness given the features and 

limitations of the platform.  As such, libraries can be of great utility, allowing novices and experts alike to  access high 

computational performance without knowledge of GPU programming.  Some routines such as FFTs are quite common in 

scientific and numerical computing and it would be wasteful for each user to implement such routines that could instead 

be provided in a centralized library.  Moreover, a library routine that is tuned by an expert will often outperform and be 

more feature robust, allowing the user to instead focus on their particular area of expertise.  In this paper we present 

CULA, a library of linear algebra routines developed using a hybrid computation model employing both CPU and GPU 

power. 

 

When performing numerical analysis there are numerous recurring building blocks, many of which fall under the 

umbrella term of "linear algebra."  At the lowest level, there are important fundamental operations dealing with the 

manipulation of matrices and vectors, typically in simple ways such as multiplication and addition.  Building a level 

upwards are a series of algorithms that cover a broad scope of concepts including, but not limited to: linear system 

solution, various decompositions (QR, SVD), eigenproblem analysis, and least squares solution.  Such operations have 

nearly limitless applications, such as: electromagnetic analysis, financial computations, image processing, and statistics. 

 

Over time, the numerical computing community has settled on a tiered representation of linear algebra operations, as 

described above.  This scheme is embodied in the Basic Linear Algebra Subprograms (BLAS)
1
 and Linear Algebra 

Package (LAPACK)
2
 libraries.  These have also become standardized interfaces, with the typical usage scenario being to 

use a separate offering that has been specially tuned or completely rewritten for a given platform.  Our offering, CULA, 

is a product of this nature.  Specifically, it is a unified BLAS/LAPACK package that is tuned for the hybrid CPU/GPU 

machine. 



 

 
 

 

2. CULA 

CULA is a high-performance linear algebra library that executes in a unified CPU/GPU hybrid environment.  In this 

section, we discuss the functions that CULA provides and the interfaces through which a developer can integrate CULA 

into his or her code.  We follow this with an introduction to some the specialized techniques employed by CULA to 

obtain significant speedups over existing packages. 

 

CULA features a wide variety of linear algebra functions, including but not limited to, least squares solvers (constrained 

and unconstrained), system solvers (general and symmetric positive definite), eigenproblem solvers (general and 

symmetric), singular value decompositions, and many useful factorizations (QR, Hessenberg, etc.)  All such routines are 

presented in the four standard data types in LAPACK computations: single precision real (S), double precision real (D), 

single precision complex (C), and double precision complex (Z). 

 

We support a number of methods for interfacing with CULA.  The two major interfaces are Host and Device which 

accept data via host memory and device memory, respectively.  The Host interface boasts high convenience while the 

Device interface is more manual but can avoid data transfer times.
†
 Additionally there are facilities for interfacing with 

MATLAB and the FORTRAN language.  Lastly is a special interface, called the Bridge interface, which aids in porting 

existing codes that employ Intel MKL, AMD ACML, and Netlib CLAPACK. 

 

CULA employs several specialized techniques in order to attain its speedups.  In the following sections, we describe two 

of the major internal features that are key contributors to the performance of this package: the hybrid execution model 

and low-level BLAS improvements. 

3. HYBRID PROCESSING MODEL 

In the GPU-computing field, a hybrid code such as CULA, is one that utilizes both CPU and GPU for its computation. 

CULA, as it exists today, differs somewhat from our original intent at the outset of development, which was to create a 

purely GPU-based library.  We discovered that the GPU's poor performance for certain types of operations made it very 

difficult to achieve speedups over the CPU.  For example, the LU decomposition features a number of "panel 

factorizations" and a number of BLAS routines.  The panel factorize when implemented on the GPU would often result 

in the GPU being a slowdown compared to the CPU. 

 

As suggested in the literature
3
, it proves worthwhile to bring the panel back to the CPU for processing.  The total time of 

transfer+factorize+transfer will often be shorter than the time for the pure GPU version.  This happens because the 

GPU will be asked to perform operations that it does not excel at - for instance, the scan to find the appropriate pivot 

element for the LU pivoting operation. 

 

Using the CPU for processing these operations introduces a second chance for optimization, which is to overlap the 

operations.  We have produced a thorough treatment on this topic in
4
, but it is also mentioned here for completeness.  

The notion is that while the panel is being transferred to and factorized by the CPU, the GPU can continue doing other 

operations.  This is possible so long there is work that doesn't immediately depend on the CPU results, but for many 

linear algebra algorithms this is often the case.  The result is that the work shifted to the CPU essentially becomes free in 

terms of overall time. 

 

In the end, these two concepts are key to performance.  By allowing the CPU and GPU to perform operations for which 

they are naturally well suited we can avoid a bottleneck.  Furthermore, by overlapping these we can then leverage the 

power of both platforms simultaneously. 

                                                           
†
 See our paper, "Analyzing the Impact of Data Movement on GPU Computations" (reference #4) for a thorough 

discussion. 

  



 

 
 

 

4. BLAS-LEVEL IMPROVEMENTS 

LAPACK style computing often concentrates the so-called "heavy lifting" into calls performed by the underlying BLAS 

layer.  This requires a very highly tuned BLAS, which is a feature on many computing platforms.   Almost every high 

level function in the LAPACK library is comprised of low level linear algebra building blocks know as BLAS.  These 

routines contain the vector and matrix operations such as vector dot product, matrix-vector multiplication, matrix-matrix 

multiplication, and triangular matrix solve.  Since these functions are critical to having a high performance LAPACK 

library, many hardware vendors provide their own tuned BLAS library to fully utilize their hardware.  For example, Intel 

provides a Core architecture optimized library through MKL BLAS and NVIDIA provides a G200 architecture 

optimized BLAS library with CUBLAS. 

 

NVIDIA provides their CUBLAS offering packaged with their GPU development tools
5
, but this library has been found 

to be deficient by the literature and by our own experiments.
6
  There are two classes of ill-performing routines that we 

have identified.  The first class is when a routine simply was not tuned for the sizes and parameters commonly used in 

LAPACK computations.  The second class is when the parallel implementation used by CUBLAS is not well suited to 

the GPU platform - a modified algorithm can greatly improve performance.  We will describe examples of both of these, 

below. 

 

When examining CUBLAS’s performance, we identified the general matrix-vector multiplication routine to have sub-

optimal performance considering the parallelism of the algorithm.  With this in mind, we developed a highly tuned 

matrix-vector routine to fully exploit the parallelism and memory hierarchy of the GPU.  In matrix-vector multiplication, 

every row of the matrix can calculate its contribution to solution vector in parallel. Additionally, in an effort to 

maximum memory reuse, the input vector can be shared amongst the parallel row calculations.  Utilizing these two 

concepts through careful GPU thread mapping and shared memory reuse, we developed a solution that performs up to 

50% better than NVIDIA’s general matrix-vector routine and up to 300% better for transposed matrix-vector 

multiplication.  This low level acceleration accounts for a 25% speedup in LAPACK routines heavy in matrix-vector 

operations. 

 

Matrix-matrix multiplication is widely regarded as the most important routine in the BLAS library.  From a performance 

standpoint, matrix-matrix multiplication is a highly parallel algorithm with a very large amount of memory reuse. This 

allows the routine to perform a very large amount of floating point operations per second.  Knowing that matrix-matrix 

multiplication is a high performance operation, many LAPACK routines are written such that operations are pushed into 

matrix-matrix multiplications through various blocking schemes and algorithms.  Since matrix-matrix multiplication is 

the most critical component in the BLAS library, it was an obvious candidate for an in-depth performance examination 

in the CUBLAS library.  

 

Matrix-matrix multiplication can be divided into four distinct varieties: panel-rectangle multiplication, panel-panel 

multiplication, rectangle-panel multiplication, or rectangle-rectangle multiplication.  In these cases, a panel is a skinny 

matrix that is much larger in one direction while a rectangle matrix is arbitrarily shaped.  The CUBLAS library achieves 

very high performance in rectangle-rectangle multiplication; however, the throughputs of the panel varieties are typically 

much lower.  As the panel variety is necessary for our work, we implemented our own matrix-matrix multiplication 

routine that is specifically optimized for panel multiplication cases.  This is a critical optimization because a number of 

widely used LAPACK functions rely heavily on panel multiplication, the most common of which is LU decomposition 

(getrf routine).  Our custom matrix-matrix multiplication routines achieve speedups of 10% to 30%, when compared to 

CUBLAS for panel sizes of 32 and 64.  This speedup translates to approximately a 10% speedup for many LAPACK 

routines that are heavily dependent on panel based matrix-matrix multiplication. 

  



 

 
 

 

 
 

Figure 1 - Showing the types of matrix-matrix multiply inputs. NVIDIA CUBLAS was optimized primarily for the 4th case shown, 

where there are two large rectangular inputs.  Our work covers the other cases, where one or both of the inputs is "panel" shaped. This 

is a critical usage pattern for LAPACK operations. 

5. LIBRARY-BASED COMPUTING CONCERNS 

As a provider of a library that falls into a fairly novel space like hybridized accelerated computing, we face some unique 

concerns.  For instance, the LAPACK interface which we have attempted to follow was designed during an era in which 

there was only one kind of memory and it was considered to be a very scarce resource.  The GPU hybrid model involves 

two types of processors (one of which, the GPU, might not even be present in the machine) and two types of memory.  

We will discuss this concern from both a usability perspective and then from a technological perspective below. 

 

5.1 LAPACK Interface  

Beyond the inputs and outputs of a particular routine, the LAPACK interface often requires the user provide a workspace 

region.  One of the changes we have made from the LAPACK interface is in the elimination of these workspace 

parameters.  For many routines, this will reduce the parameters by 2 and additionally reduce workspace lookups and 

allocations, greatly simplifying the code: 

      Table 1 - Workspace vs. No Workspace.  The code shown is a workspace query (essentially asking the routine how much 

additional memory it requires) followed by the actual call.  Thus many operations are two stage with a memory allocation between 

them.  Four lines of code becomes one line, and the shorter version is less error prone. 

With Workspace LWORK = -1; 

sgels(&TRANS, &M, &N, &NRHS, A, &LDA, B, &LDB, &QUERY, &LWORK); 

WORK  = (float*)malloc((size_t)QUERY*sizeof(float)); 

LWORK = (size_t)QUERY;  

sgels(&TRANS, &M, &N, &NRHS, A, &LDA, B, &LDB, WORK, &LWORK); 

No Workspace sgels(&TRANS, &M, &N, &NRHS, A, &LDA, B, &LDB); 

 

We made this decision for several reasons.  As       Table 1 listed, this decision had a direct impact on the number of calls 

to CULA, which in turn reduces the potential for user error.  Beyond this, however, the decision was also approached 

due to concerns related to complications arising from implementing these routines on the GPU and the distinction that 

the GPU programming model places on host and GPU memory.  In many instances, a combination of both host and GPU 

workspaces were required to allow a certain function to meet its performance goals.  Rather than add both host-side and 

GPU-side parameters to an interface for which many users already make mistakes, we chose to eliminate the notion of 

explicit workspaces entirely. 

In removing workspaces as a parameter from our interface, we shifted the responsibility of workspace allocation and 

tracking from the user to our library.  While this decision has all of the benefits listed above, it does yield introduce 

performance considerations when compared with the traditional approach.  When LAPACK was first designed, a 

computer's main memory was an extremely scarce resource.  By allowing the user to specify workspaces, the LAPACK 

designers entrusted these users with the task of best managing this scarce resource.  This arrangement could allow a user 

to utilize the knowledge of the algorithm they are implementing to reuse a single workspace in the case that the user 

were to make several successive calls for which a workspace is required.  With CULA's approach of tracking their 

workspace internally, however, this approach prevents the user from explicitly using a workspace as intelligently as 

possible.  Instead, because CULA is now responsible for workspaces, any decisions about workspace optimizations must 
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be made internally to the CULA interface.  To avoid the cost of repeated workspace allocations, we utilize memory 

pools. 

5.2 Memory Pools 

Typically, when a developer has faced a resource that is used often but is expensive to allocate, developers have turned 

to pools. Whether it is memory or threads, pools can provide an effective solution to avoiding the repeated cost of an 

allocation. 

The risk in writing a pool is that the developer's pool will perform less effectively than the interface that is provided by 

the allocation system. For example, consider that the traditional malloc operation may be implemented atop a segment of 

memory that has already been pooled by a lower level allocator. For many applications, creating a custom pool doesn't 

make sense, as the OS developer has put many more hours into the optimization of this routine than an individual 

developer can likely provide. Additionally, a user must worry about concerns over fragmentation and partitioning, issues 

that he or she need not consider when using the operating system's facilities. 

GPU memory, on the other hand, has different costs and implementation details when compared with host memory.  The 

application of memory pools must therefore be reconsidered with these new costs in mind.  We completed a study of the 

costs of allocation of CPU and GPU memory by comparing the time to allocate various sizes of memory with the malloc 

and cudaMalloc routines. 

     Table 2 - Allocation Cost CPU vs. GPU 

Size Time CPU (s) Time GPU (s) 

1 KB 3.26e-06 9.10e-04 

2 KB 2.20e-06 9.09e-04 

4 KB 2.38e-06 9.06e-04 

8 KB 3.56e-06 9.05e-04 

16 KB 3.20e-06 9.12e-04 

32 KB 3.20e-06 9.05e-04 

64 KB 5.98e-06 9.08e-04 

128 KB 3.70e-06 9.07e-04 

256 KB 8.72e-06 9.08e-04 

512 KB 8.34e-06 9.38e-04 

1 MB 6.48e-06 9.89e-04 

2 MB 9.36e-06 1.09e-03 

4 MB 1.26e-05 1.30e-03 

8 MB 1.16e-05 1.73e-03 

16 MB 1.21e-05 2.62e-03 

32 MB 1.21e-05 4.39e-03 

64 MB 1.33e-05 7.94e-03 

128 MB 1.35e-05 1.52e-02 

 

As      Table 2 shows, the cudaMalloc allocator is two to three orders of magnitude more expensive on an allocation than 

the traditional malloc operation.  As sizes smaller than 1MB show, the cudaMalloc operation is dominated by overhead, 

it is not until memory sizes of approximately 2 MB that the allocation cost begins to grow beyond this overhead. 

Even at relatively large sizes, the malloc operation takes a minimal amount of time.  The CUDA allocation, on the other 

hand, takes a non-trivial amount of time.  As such, these costs make a strong case for pooling GPU memory while 

leaving the host memory store to the operating system.  Once the memory is pooled, GPU allocation time drops to a 

trivial amount. 

In CULA, we use a custom memory pool for internal GPU memory allocations.  This allows us to efficiently support the 

removal workspaces and additionally provides us with the flexibility to use additional workspaces where they have not 

been traditionally used by the LAPACK interface.  By explicitly controlling workspaces, we can always ensure that they 

are used in an efficient manner. 



 

 
 

 

6. BENCHMARKING 

In this section we present collected benchmarking statistics for CULA.  We surveyed a wide array of routines and have 

noted the results in Error! Reference source not found., below.  The benchmark system consists of an NVIDIA Tesla 

C1060 GPU, an Intel Core i7 920 processor, and 6 GB RAM.  All problems fit within memory. 

 

These results include all optimizations described above, including hybridized processing, memory pooling, and 

improved underlying BLAS operations. 

 

Our CULA routines were compared to the Intel MKL 10.2 offering, running using all four processor cores in the system.  

It should be noted that MKL 10.2 has been fully optimized for the Core i7 processor on which it was running.  As such, 

this benchmark is of the highest possible quality. 

 

The typical measured problem was a square matrix sized around 8000x8000.  In some cases, there were different 

circumstances, i.e. for routines that are intended to function on non-square matrices. 

 

In all cases, the speedup was calculated by dividing the wall-clock time of the competitor (MKL) by the wall-clock time 

of the corresponding CULA routine.  The data inputs to each routine were identical, so the routines will behave in 

identical ways internally.  

 

 
 

     Figure 2: Benchmarking data for a large number of routines.  The CPU platform is an Intel Core i7 920.  The GPU is a NVIDIA 

Tesla C1060. 
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Double precision routines have been benchmarked as well, and performance has shown to be lower.  The typical 

speedup for these is in the 1.5x to 2x region, which is often not significant enough to justify the use of the GPU.  The 

differential is due to the architecture of the GT200 series of GPUs, which have a very low ratio of double-precision 

hardware to single-precision.  This should be cured in the following generation which is referred to as "Fermi."  The 

Fermi chip brings double precision performance much closer to single-precision
7
, but benchmark figures were not 

available at time of publication. 

 

7. CONCLUSION & FUTURE WORK 

In this paper we presented CULA, a robust linear algebra library for computations in a hybrid CPU/GPU environment.  

The GPU is an attractive candidate for performing the highly parallel operations that arise in such computations, and the 

CPU is very strong at handling the more irregular or serial operations.  Combining the two and using both at once is thus 

a good solution and leads to strong speedups.  Our work on CULA has resulted in a comprehensive variety of 

accelerated mathematical functionality. 

 

While the GPU provides effective speedups for problems of moderate size, small problems will cause the GPU to be 

outperformed by a modern CPU.  This result is an inherent limitation of the GPUs status as a co-processor.  This is often 

not a concern, as for many of these smaller problems, the runtime is often not significant enough to warrant acceleration.  

A problem arises, however, when many of these small problems need to be computed in parallel.  This need re-

introduces the GPU as an effective candidate for acceleration, as the nature of the problem changes from a small, serial 

one to a batched, parallel one.  While existing linear algebra frameworks do not support this style of batched 

computation, in the future we will implement this as a first-class processing paradigm of our library so as to better utilize 

the full capabilities of the GPU and provide significant speedups for this class of problem. 
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