
1/4 www.ni.com

1.

2.

3.

4.

5.

Building a DLL with Visual C++
Publish Date: Aug 03, 2013

Overview
Microsoft's Visual C++ (MSVC) integrated development environment (IDE) can be overwhelming if the programmer has never used it. This document is designed to aid those wanting to compile a
DLL for use with LabVIEW.

: This document applies to MSVC 2010.Note

Table of Contents
Step 1: Creating a DLL Project

Step 2: Editing the Source File

Step 3: Exporting Symbols

Step 4: Specifying the Calling Convention

Step 5: Building the DLL

1. Step 1: Creating a DLL Project
Select to open the New Project dialog box. From the list, select , name your project and click .File»New Project Visual C++ Templates Win32 Project OK

In the next dialog box, you may see the current project settings to be Windows Application. Click to change the Application Type to .Next DLL

2/4 www.ni.com

MSVC creates a DLL project with one source () file, which has the same name as the project. It also generates a file. The file is necessary, but you do not.cpp stdafx.cpp stdafx.cpp

generally need to edit it.

2. Step 2: Editing the Source File
Every DLL file must have a function, which is the entry point for the library. Unless you must do a specific initialization of the library, the default that MSVC created is sufficient.DllMain DllMain

Notice that this function does nothing.

BOOL APIENTRY DllMain(HANDLE hModule,

 DWORD ul_reason_for_call,

 LPVOID lpReserved)

{

 return TRUE;

}

If a library initialization is required, you might need a more complete :DllMain

BOOL WINAPI DllMain(

 HINSTANCEhinstDLL, // handle to DLL module

 DWORD fdwReason, // reason for calling function

 LPVOID lpReserved) // reserved

{

 // Perform actions based on the reason for calling.

 switch(fdwReason)

 {

 case DLL_PROCESS_ATTACH:

 // Initialize once for each new process.

 // Return FALSE to fail DLL load.

 break;

 case DLL_THREAD_ATTACH:

 // Do thread-specific initialization.

 break;

 case DLL_THREAD_DETACH:

 // Do thread-specific cleanup.

 break;

 case DLL_PROCESS_DETACH:

 // Perform any necessary cleanup.

 break;

 }

 return TRUE;

}

Once the function is complete, write the routines that you intend to access from the DLL.DllMain

//Function declarations

;int GetSphereSAandVol(double radius, double* sa, double* vol)

double GetSA(double radius);

double GetVol(double radius);

...

int GetSphereSAandVol(double radius, double* sa, double* vol)

//Calculate the surface area and volume of a sphere with given radius

{

 if(radius < 0)

 return false; //return false (0) if radius is negative

3/4 www.ni.com

 return false; //return false (0) if radius is negative

 *sa = GetSA(radius);

 *vol = GetVol(radius);

 return true;

}

double GetSA(double radius)

{

 return 4 * M_PI * radius * radius;

}

double GetVol(double radius)

{

 return 4.0/3.0 * M_PI * pow(radius, 3.0);

}

For the DLL to compile correctly, you must declare the function (i.e. power, is equivalent to x^y) and the constant M_PI (i.e. 3.14159).pow pow(x,y)

Do this by inserting two lines of code below at the top of the file. The code should look as follows:#include "stdafx.h" .cpp

#include "stdafx.h"

#include "math.h" //library that defines the pow function

#define M_PI 3.14159 //declare our M_PI constant

At this point, you can compile and link the DLL. However, if you do so, the DLL will not export any functions, and thus, will not really be useful.

3. Step 3: Exporting Symbols
To access the functions within the DLL, it is necessary to tell the compiler to export the desired symbols. However, you first must address the issue of C++ name decoration. MSVC compiles your
source as C++ if it has a or extension. If the source file has a extension, then MSVC compiles it as C. If you compile your file as C++, then the function names are normally.cpp .cxx .c

decorated in the output code. This might be problematic because the function name has extra characters added to it. To avoid this problem, declare the function as 'extern "C"' in the function
declaration, as follows:

;extern "C" int GetSphereSAandVol(double radius, double* sa, double* vol)

This prevents the compiler from decorating the name with C++ decorations.

Warning: Without C++ decoration, polymorphic functions are not possible.

When you finish with the C++ decorations, you can actually export the functions. There are two methods to inform the linker which functions to export. The first, and most simple, is to use the
 tag in the function prototype for any function you want to export. To do this, add the tag to the declaration and definition, as follows:__declspec(dllexport)

extern "C" __declspec(dllexport) int GetSphereSAandVol(double radius, double* sa, double* vol);

...

__declspec(dllexport) int GetSphereSAandVol(double radius, double* sa, double* vol)

{

 ...

}

The second method is to use a file to explicitly declare which functions to export. The file is a text file that contains information the linker uses to decide what to export. It has the.def .def

following format:

LIBRARY <Name to use inside DLL>

DESCRIPTION "<Description>"

EXPORTS

 <First export> @1

 <Second export> @2

 <Third export> @3

 ...

For the example DLL, the file will look like this:.def

LIBRARY EasyDLL

DESCRIPTION "Does some sphere stuff."

EXPORTS

 GetSphereSAandVol @1

If you have properly created your DLL project, then the linker automatically looks for a file of the same name as the project in the project directory. To change this option, select .def

. In the folder, click the property page and modify the property to .Project»Properties Linker Input Module Definition File /DEF: <filename>.def

4/4 www.ni.com

See Also:
Microsoft's .DEF file method documentation

4. Step 4: Specifying the Calling Convention

The last thing that you might need to do before compiling the DLL is to specify the calling convention for the functions that you want to export. Usually, there are two choices: C calling convention
or standard calling conventions, also called Pascal and WINAPI. Most DLL functions use standard calling conventions, but LabVIEW can call either.

To specify C calling conventions, you do not need to do anything. This is the default unless you specify otherwise in . If you want to explicitly declare theProject»Properties»C/C++»Advanced
function as a C call, use the keyword in the function declaration and definition:__cdecl

extern "C" __declspec(dllexport) int __cdecl GetSphereSAandVol(double radius, double* sa, double* vol);

...

__declspec(dllexport) int __cdecl GetSphereSAandVol(doublt radius, double* sa, double* vol)

{

 ...

}

To specify standard calling conventions, place the keyword in the function declaration and definition:__stdcall

extern "C" int __stdcall GetSphereSAandVol(double radius, double* sa, double* vol);

...

int __stdcall GetSphereSAandVol(doublt radius, double* sa, double* vol)

{

 ...

}

When using standard calling conventions, the function name is decorated in the DLL. You can avoid this by using the file method of exporting functions, rather than the .def

 method. Therefore, National Instruments recommends that you use the file method to export stdcall functions.__declspec(dllexport) .def

5. Step 5: Building the DLL
Once you write the code, declare what functions to export, and set the calling conventions, you are ready to build your DLL. Select to compile and link your DLL. YouBuild»Build <Your project>
are now ready to use or debug your DLL from LabVIEW. The attached file contains the Visual C++ workspace used to create this DLL and a LabVIEW VI that accesses the DLL.EasyDLL.zip

http://msdn.microsoft.com/library/devprods/vs6/visualc/vccore/_core_export_from_a_dll_using_..def_files.htm

