Building a DLL with Visual C++

Publish Date: Aug 03, 2013

Overview
Microsoft's Visual C++ (MSVC) integrated development environment (IDE) can be overwhelming if the programmer has never used it. This document is designed to aid those wanting to compile a
DLL for use with LabVIEW.

Note: This document applies to MSVC 2010.

Table of Contents

. Step 1: Creating a DLL Project

. Step 2: Editing the Source File

. Step 3: Exporting Symbols

. Step 4: Specifying the Calling Convention
. Step 5: Building the DLL

a W N =

1. Step 1: Creating a DLL Project

Select FilenNew Project to open the New Project dialog box. From the Visual C++ Templates list, select Win32 Project, name your project and click OK.

New Project [6
I e - sonby Do) 8 serch et e 2
Instalbed Templates
| S [
) H Win32 Conscle Applicaion Visual T vt
Visual Bagic & progect For cresting 8 Win32 application,
Visuel = consohe application, DLL, or statsc library
e] winazpuejact Visual Cos
ATL
cLr
General
WiFE
Test
Win32
Visual F=
Obser Praject Types
Database
Test Prajects
Hame: EasyDLL
Location: Ci\Usershakozmins| Douments! Visusl Studio 2010 Projects - Browse... |
Salution name: EanyDLL 4 Create drectory for solution
| Add to source corrol

In the next dialog box, you may see the current project settings to be Windows Application. Click Next to change the Application Type to DLL.

Win32 Application Wizard - EasyDLL (2

]

Welcome to the Win32 Application Wizard
Overview These are the current project settings:
Application Settings * Windows application

Click Finish from any window to accept the current sstbings.

After you create the project, see the project's readme. tut fle for nformation
about the praject features and files that are generated.

et) [reh) [cane

1/4 WWW.hi.com

Win32 Application Wizard - EasyDLL

——
Application Settings

Cwerview Application type:
Appication Settings Windows application
Cormsole apglication
@ D
Static lbrary
Additional options:
| Empty project
| Export symbals

< Previous

Add comman header fles for:
ATL
MFC

MSVC creates a DLL project with one source (. cpp) file, which has the same name as the project. It also generates a st daf x. cpp file. The st daf x. cpp file is necessary, but you do not

generally need to edit it.

2. Step 2: Editing the Source File

Every DLL file must have a DI | Mai n function, which is the entry point for the library. Unless you must do a specific initialization of the library, the default DI | Mai n that MSVC created is sufficient.

Notice that this function does nothing.

BOOL API ENTRY DI | Mai n(HANDLE hMbdul e,
DWORD ul _reason_for_call,
LPVA D | pReserved)
{
return TRUE;
}

If a library initialization is required, you might need a more complete DI | Mai n:

BOOL W NAPI DI | Mai n(
HI NSTANCEhi nst DLL, // handle to DLL nodul e
DWORD f dwReason, /'l reason for calling function
LPVO D | pReserved) // reserved

{
/1 Performactions based on the reason for calling.
switch(fdwReason)
{
case DLL_PROCESS_ATTACH:
/1 Initialize once for each new process.
// Return FALSE to fail DLL |oad.
br eak;
case DLL_THREAD_ATTACH:
/1 Do thread-specific initialization.
br eak;
case DLL_THREAD DETACH:
/1 Do thread-specific cleanup.
br eak;
case DLL_PROCESS_DETACH:
/1 Perform any necessary cleanup.
br eak;
}
return TRUE;
}

Once the DI | Mai n function is complete, write the routines that you intend to access from the DLL.

/'l Function declarations

int Get Spher eSAandVol (doubl e radi us, doubl e* sa, double* vol);
doubl e Get SA(doubl e radi us);

doubl e Get Vol (doubl e radi us);

int Get Spher eSAandVol (doubl e radi us, doubl e* sa, double* vol)
//Cal culate the surface area and vol une of a sphere with given radius

{
if(radius < 0)

214

WWW.hi.com

return false; //return false (0) if radius is negative
*sa = Cet SA(radius);
*vol = GetVol (radius);
return true,;

}

doubl e Get SA(doubl e radi us)

t return 4 * MPl * radius * radius;

}

doubl e Get Vol (doubl e radi us)

{ return 4.0/3.0 * M Pl * powradius, 3.0);
}

For the DLL to compile correctly, you must declare the pow function (i.e. power, pow(x, y) is equivalent to x*y) and the constant M_PI (i.e. 3.14159).
Do this by inserting two lines of code below #i ncl ude " st daf x. h" at the top of the . cpp file. The code should look as follows:

#i ncl ude "stdafx. h"
#i ncl ude "nmath. h" //library that defines the pow function
#define M PI 3.14159 //declare our MPI constant

At this point, you can compile and link the DLL. However, if you do so, the DLL will not export any functions, and thus, will not really be useful.

3. Step 3: Exporting Symbols

To access the functions within the DLL, it is necessary to tell the compiler to export the desired symbols. However, you first must address the issue of C++ name decoration. MSVC compiles your
source as C++ ifithas a . cpp or. cxx extension. If the source file has a . ¢ extension, then MSVC compiles it as C. If you compile your file as C++, then the function names are normally
decorated in the output code. This might be problematic because the function name has extra characters added to it. To avoid this problem, declare the function as ‘extern "C" in the function
declaration, as follows:

extern "C' int GetSphereSAandVol (doubl e radi us, double* sa, double* vol);

This prevents the compiler from decorating the name with C++ decorations.

Warning: Without C++ decoration, polymorphic functions are not possible.

When you finish with the C++ decorations, you can actually export the functions. There are two methods to inform the linker which functions to export. The first, and most simple, is to use the
__decl spec(dl | export) tag in the function prototype for any function you want to export. To do this, add the tag to the declaration and definition, as follows:

extern "C' __decl spec(dllexport) int GetSphereSAandVol (doubl e radius, double* sa, double* vol);

__decl spec(dl I export) int GetSphereSAandVol (doubl e radius, double* sa, double* vol)
{

}

The second method is to use a . def file to explicitly declare which functions to export. The . def file is a text file that contains information the linker uses to decide what to export. It has the
following format:

LI BRARY <Nane to use inside DLL>
DESCRI PTI ON "<Descri ption>"
EXPORTS

<First export> @

<Second export> @

<Third export> @

For the example DLL, the . def file will look like this:
LI BRARY EasyDLL
DESCRI PTI ON "Does some sphere stuff."
EXPORTS

Get Spher eSAandVol @

If you have properly created your DLL project, then the linker automatically looks for a . def file of the same name as the project in the project directory. To change this option, select
Project»Properties. In the Linker folder, click the Input property page and modify the Module Definition File property to /IDEF: <filename>.def .

3/4 WWW.hi.com

EaiyDLL Peoparty Pages [

Configuration: | Active{Debuug) =| Putform: |ActiveiWinid) =| | Configuration Merager..
Common Propertees Additional Dependencies leernel 3. by useri libpgd 3L libpwinspool b comdig32. feyad
a Configuraticn Propertis: Igrione A1l Diefauit Libraries
Ignion: Specific Defalt Libares
Mechia Delinitien File JDEF: cliemames del =]

Add Module to Assenbly
Ermibed Managed Resource Fie
Force Symbol References
Delsy Loaded Dl

Assembly Link Resource

4 Lindes
General
Input:
Manifist File
Debugging
System
Optimization
Embedded 0L
Advanced
Comenand Ling
Manifest Tool
ML Docurnert Gensmator
Browse Infoemation
Busld Evarts
Custom Build Step
N TestStand

Mesdule Definition Fle
The DEF option passes » module-definition file (.def) to the linker, Only one def file can be specified to LINK,

[ok Cancel Apply

See Also:
Microsoft's .DEF file method documentation

4. Step 4: Specifying the Calling Convention

The last thing that you might need to do before compiling the DLL is to specify the calling convention for the functions that you want to export. Usually, there are two choices: C calling convention
or standard calling conventions, also called Pascal and WINAPI. Most DLL functions use standard calling conventions, but LabVIEW can call either.

To specify C calling conventions, you do not need to do anything. This is the default unless you specify otherwise in Project»Properties»C/C++»Advanced. If you want to explicitly declare the
function as a C call, use the __cdecl keyword in the function declaration and definition:

extern "C' __decl spec(dllexport) int __cdecl GetSphereSAandVol (doubl e radius, double* sa, double* vol);

__decl spec(dl I export) int __cdecl GetSphereSAandVol (doublt radius, double* sa, double* vol)

}
To specify standard calling conventions, place the __stdcal | keyword in the function declaration and definition:
extern "C' int __stdcall GetSphereSAandVol (doubl e radius, double* sa, double* vol);

int _ stdcall GCetSphereSAandVol (doublt radius, double* sa, double* vol)
{

}

When using standard calling conventions, the function name is decorated in the DLL. You can avoid this by using the . def file method of exporting functions, rather than the
__decl spec(dl | export) method. Therefore, National Instruments recommends that you use the . def file method to export stdcall functions.

5. Step 5: Building the DLL

Once you write the code, declare what functions to export, and set the calling conventions, you are ready to build your DLL. Select Build»Build <Your project> to compile and link your DLL. You
are now ready to use or debug your DLL from LabVIEW. The attached EasyDLL. zi p file contains the Visual C++ workspace used to create this DLL and a LabVIEW VI that accesses the DLL.

4/4 WWW.hi.com

http://msdn.microsoft.com/library/devprods/vs6/visualc/vccore/_core_export_from_a_dll_using_..def_files.htm

