
Simulation of R- and C-Sequences with
SIMPSON-1.0.1
Jörn Schmedt auf der Günne

13.08.2001

1 Introduction
R- and C-Sequences are two pulse sequence classes which have been used in solid state NMR
spectroscopy. You can find a number of publications on this subject on Malcolm Levitts Hompage [*]
. Here You can find a short introduction on how to calculate theses sequences numerically using
SIMPSON [*] . This includes a small library of routines that allows to setup phase-, timing- and
amplitude lists in a convenient way.

2 Requirements
SIMPSON. Get it here.
R/C-Sequences package. Get it here [*] .
A computer.

3 The R- and C-Library
R- and C-Sequences generate a pulse train which can be specified by the three symmetry numbers the
basic R element (composite pulse defined as in Fig. 1) and the supercycling scheme which is used. An

 sequence symmetry will be written as in the input files. For the composite pulse a

notation will be used, which is explained in following figure [*] .

Figure: An R-Sequence with an R-element .

http://nmr.imsb.au.dk/simpson

To give some examples for this notation:

A C-element consisting out of 2 pi pulses with a 180 degree phase change, would be written as:
 or in terms of fraction-phase-flipangle

A R-element consisting of a simple pi-pulse, would be written as:
 or in terms of fraction-phase-flipangle

Note that this notation also allows for windows in a pulsesequence. One simply has to set the flipangle
to 0.

The simulation of R- and C-sequences is straightforward. The only error-prone step is the calculation
of the numerical values of phases and amplitudes and timings. In fact for a general R- or C-sequence
with a complicated composite pulse this step becomes very tedious. The idea is therefore to provide
functions which calculate phase- amplitude- and timinglists which can be used like phase lists in a
spectrometer pulse program. These functions take R- and C-symmetry, the composite and the
supercycling as input.

In this chapter follows a simple inputfile for the calculation of a double-quantum excitation curve as a
startup example, that doesn’t make use of any of the special functions, then the same example with
these functions and after that a description of all functions and the implemented options.

3.1 Simple Example
This is an input file which performs the calculation of a C7-double quantum curve. The C7-sequence
used is the one from the original C7-paper.

 C-element:

----snip----example1.in-----------

#C7_2_1 with a 360_0 360_180 C-element
spinsys {
 channels 31P
 nuclei 31P 31P
 dipole 1 2 -2000 0 0 0
}

par {
 proton_frequency 400e6
 method direct
 spin_rate 20000
 gamma_angles 1
 np 32
 crystal_file bcr100
 start_operator Inz
 detect_operator -Inz

 verbose 11111111111111
}

proc pulseq {} {
 global par spinsys
 matrix set 1 totalcoherence {2 -2}
 set length_c_ele [expr 2000000.0/$par(spin_rate)/7]
 set amplitude_c [expr $par(spin_rate)*7]
 set phase_incr_c [expr 360.0/7]
 maxdt [expr $length_c_ele/20.0]

-- calculate propagator for C7 C=360_0 360_180 --
 reset
 set phase_c 0
 for {set i 0} {$i < 7} {incr i} {
 pulse [expr $length_c_ele/2.0] $amplitude_c [expr $phase_c]
 pulse [expr $length_c_ele/2.0] $amplitude_c [expr $phase_c+180.0]
 set phase_c [expr $phase_incr_c+$phase_c]
 }
 store 1

#-- calculate evolution and sample points--
 reset
 store 2
 for {set i 0} {$i < $par(np)} {incr i} {
 reset
 prop 2
 prop 1
 store 2
 filter 1
 prop 2
 acq
 }
 }

proc main {} {
 global par spinsys

-- set sweep width --
set par(sw) [expr double($par(spin_rate))/2]

-- start powder loop --
 set f [fsimpson]

-- process and save data --
 fsave $f $par(name).fid
 funload $f
}

--------snip---------

3.2 Simple Example With R- and C-Library
Same as in [*] . This time making use of the R- and C-Library. This requires that the file
RCpackage.tcl is in the same directory as example2.in. Changes are marked in red, explanations for
the red code are marked blue.

 C-element:

----snip----example2.in-----------

C7_2_1 with a 360_0 360_180 C-element

load procedures from RC-library
source ./RCpackage.tcl

spinsys {
 channels 31P
 nuclei 31P 31P
 dipole 1 2 -2000 0 0 0
}

par {
 proton_frequency 400e6
 method direct
 spin_rate 20000
 gamma_angles 1
 np 32
 crystal_file bcr100
 start_operator Inz
 detect_operator -Inz
 verbose 11111111111111
Define C Symmetry and C element
 variable Csym {7 2 1}
 variable composite {{0.5 0.5} \
 {0.0 180.0} \
 {360.0 360.0}}
}

proc pulseq {} {
Make global variables readable
 global par spinsys element_phase_c element_amplitude_c element_length_c shortest_pulse
Calculate maxdt from shortest pulse in the sequence
 maxdt [expr $shortest_pulse/10.0]
 matrix set 1 totalcoherence {2 -2}
 # -- calculate propagator for C-cycle --
 reset
Longest list is usually the phase list. Use phase-, amplitude- and timinglists to calculate the pulse
values.

 for {set i 0} {$i < [llength $element_phase_c]} {incr i} {
 pulse [lindex $element_length_c [expr $i%[llength $element_length_c]]] \
 [lindex $element_amplitude_c [expr $i%[llength $element_amplitude_c]]] \
 [lindex $element_phase_c $i]
 }
 store 1

 # -- calculate evolution and sample points --
 reset
 store 2
 for {set i 0} {$i < $par(np)} {incr i} {
 reset
 prop 2
 prop 1
 store 2
 filter 1
 prop 2
 acq
 }
 }

proc main {} {
Make variables global, so they can be read in ‘‘proc pulseq’’
 global par spinsys element_phase_c element_amplitude_c element_length_c shortest_pulse

-- set sweep width --
 set par(sw) [expr double($par(spin_rate))/[lindex $par(Csym) 1]]

-- Create timing list --
 set element_length_c [generatePulselengthCList $par(Csym) $par(composite) $par(spin_rate)]

-- Create phase list --
 set element_phase_c [C_phase $par(Csym) $par(composite)]

-- determine shortest element -> maxdt --
 set shortest_pulse [smallestNumberInList $element_length_c]

-- Create amplitude list --
 set element_amplitude_c [generateAmplitudeCList $par(Csym) $par(composite) $par(spin_rate)]

-- start powder loop --
 set f [fsimpson]

-- process and save data --
 fsave $f $par(name).fid
 funload $f
}

--------snip---------

What are the advantages compared to example1.in?

Pulse sequence symmetry and composite pulse become parameters
It is possible to change composite pulse, symmetry and spinning frequency without doing any
other changes to the pulse program.

3.3 Procedures and Options
Non-essential options are written in brackets.

phase_list R_phase Rsymmetry Relement [Supercyclenu SupercycleNstep Addphase]
Generates a phase list according to the R-element, R-symmetry (notation see above [*]), the
supercycling scheme and an additive phase. There are two supercycling schemes available. Both may
be switched of by either not specifying the last three parameters or by setting Supercyclenu and
SupercycleNstep to 1. Setting Supercyclenu to 2 introduces a supercycle such that all

phases in are the negative values of . Setting SupercycleNstep to an integer value

introduces a supercycle such that all phases of may be

calculated by adding to the phases of .

timing_list generatePulselengthRList Rsymmetry Relement spin_rate
Generates a timing list according to the R-element, R-symmetry (notation see above [*]) and spin rate

rf_amplitude_list generateAmplitudeRList Rsymmetry Relement spin_rate
Generates a timing list according to the R-element, R-symmetry (notation see above [*]) and spin rate

phase_list C_phase Csymmetry Celement [Supercyclenu SupercycleNstep Addphase]
Generates a phase list according to the C-element, C-symmetry (notation see above [*]), and the
supercycling scheme. There are two supercycling schemes available. Both may be switched of by
either not specifying the last three parameters or by setting Supercyclenu and SupercycleNstep to 1.
Setting Supercyclenu to 2 introduces a supercycle such that all phases in are the

negative values of . Setting SupercycleNstep to an integer value introduces a supercycle

 such that all phases of may be calculated by adding

 to the phases of .

timing_list generatePulselengthCList Csymmetry Celement spin_rate
Generates a timing list according to the C-element, C-symmetry (notation see above [*]) and spin rate

rf_amplitude_list generateAmplitudeCList Csymmetry Celement spin_rate
Generates a timing list according to the C-element, C-symmetry (notation see above [*]) and spin rate

number smallestNumberInList list
Sorts list and returns the smallest number

4 Download Section
Use it at your own risk. The functions described work and are slowly going to be improved to give a
better error feedback.

Download simpson_RC_lib-0.1.tar.gz

5 Feedback and References
Before sending any emails please check that the simple examples, that come with SIMPSON, are
working fine. In case you find mistakes please let me know. email:gunnej@tom.fos.su.se

[1] For information on R- and C-Sequences check Malcolm H. Levitts page. He has written a review
on these sequences for the ‘‘Encyclopedia in NMR’’.

[2] SIMPSON by Niels C. Nielsen and co-workers you can find here.

- -
2001-08-16

http://nmr.imsb.au.dk/simpson
http://www.fos.su.se/~mhl

	Simulation of R- and C-Sequences with SIMPSON-1.0.1
	1 Introduction
	2 Requirements
	 3 The R- and C-Library
	 3.1 Simple Example
	3.2 Simple Example With R- and C-Library
	3.3 Procedures and Options

	 4 Download Section
	5 Feedback and References

