Get["QUADRUPOLE"];

```
(*
    One-dimensional z-filtered MQMAS of a spin I = 5/2,
Three pulse sequence,
3Q echo and - 3Q antiecho amplitude optimization with the third pulse,
```



```
Coherences belonging to the same pathway are considered,
Wolfram Mathematica 5.0,
Author: R. HAJJAR
*)
(*------------ Nucleus ------------**)
quadrupoleSpin = 2.5;
larmorFrequencyMhz = 208.61889974; (* Al-27 with 800 MHz NMR spectrometer *)
(*----- Quadrupole interaction ----*)
quadrupoleOrder = 2;
QCCMHz = 5; }\quad\eta=-1
(*--- Rotor Euler angles in PAS ---*)
\alpha}\mp@subsup{\alpha}{R}{}=0;\quad\mp@subsup{\beta}{PR}{}=0;\quad\mp@subsup{\gamma}{PR}{}=0
(*----------- Parameters ----------**)
startOperator = Iz;
\omegaRFkHz=90; (* strong RF pulse strength in kHz unit *)
\omegaRF3kHz = 9.3; (* weak RF pulse strength in kHz unit *)
spinRatekHz = 5;
powderFile = "rep100_simp";
numberOfGammaAngles = 10;
t1 = 4; (* the first-pulse duration in microsecond unit *)
t2 = 4; (* the second-pulse duration in microsecond unit *)
t3 = 9; (* the third-pulse duration in microsecond unit *)
\Deltat = 0.25; (* pulse duration increment in microsecond unit *)
np = t3/\Deltat; (* number increment of the third-pulse duration *)
(*--------- Pulse sequence ---------*)
coherence1 = {-3, 3}; (* \pm3Q coherences *)
coherence2 = {0}; (* O Q coherences *)
detectelt = {{4, 3}}; (* central-transition matrix element of a spin 5/2 *)
fsimulation := (
    pulse[t1, \omegaRFkHz]; (* first pulse *)
        filterCoh[coherence1]; (* \pm3Q coherence pathway selection *)
    pulse[t2, \omegaRFkHz]; (* second pulse *)
        filterCoh[coherence2]; (* OQ coherence pathway selection *)
        acq0;
    For [p = 1, p < np, p++, {
            pulse[\Deltat, \omegaRF3kHz]; (* third pulse *)
            acq[p];
        }];
);
```


Intensity (A.U.)

	2
-0.005	4
-0.01	
-0.015	
-0.02	
-0.025	

