Get["QUADRUPOLE"];

```
(*
    One-dimensional z-filtered MQMAS of a spin I = 5/2,
Three pulse sequence,
3Q echo and - 3Q antiecho amplitude optimization with the third pulse,
```



```
Wolfram Mathematica 5.0,
Author: R. HAJJAR
*)
(*------------ Nucleus ------------*)
quadrupoleSpin = 2.5;
larmorFrequencyMhz = 208.61889974; (* Al-27 with 800 MHz NMR spectrometer *)
(*----- Quadrupole interaction ----*)
quadrupoleOrder = 2;
QCCMHz = 5; }\quad\eta=-1
(*--- Rotor Euler angles in PAS ---*)
\alpha PR = 0; 
(*----------- Parameters ----------**)
startOperator = Iz;
\omegaRFkHz= 90; (* strong RF pulse strength in kHz unit *)
\omegaRF3kHz = 9.3; (* weak RF pulse strength in kHz unit *)
spinRatekHz = 5;
powderFile = "rep100_simp";
numberOfGammaAngles = 10;
t1 = 4; (* the first-pulse duration in microsecond unit *)
t2 = 4; (* the second-pulse duration in microsecond unit *)
t3 = 9; (* the third-pulse duration in microsecond unit *)
\Deltat = 0.25; (* pulse duration increment in microsecond unit *)
np = t3/\Deltat; (* number increment of the third-pulse duration *)
(*--------- Pulse sequence ---------*)
elements1 = {{2, 5}, {5, 2}}; (* \pm3Q matrix elements *)
coherence2 = {0}; (* OQ coherences *)
detectelt = {{4, 3}}; (* central-transition matrix element of a spin 5/2 *)
fsimulation := (
    pulse[t1, \omegaRFkHz]; (* first pulse *)
    filterElt[elements1]; (* \pm3 Q coherence pathway selection *)
    pulse[t2, \omegaRFkHz]; (* second pulse *)
    filterCoh[coherence2]; (* OQ coherence pathway selection *)
    acq0;
    For [p = 1, p s np, p++, {
            pulse[\Deltat, \omegaRF3kHz]; (* third pulse *)
            acq[p];
        }];
);
(*--- Execute, plot, and save simulation
```

```
    in "zfilter_P3" file -----------*)
run;
tabgraph["zfilter_P3"];
```

(* --- *)
Rang $\quad t(\mu s) \quad$ intensity
000 .
$0.25 \quad-0.0007129352993$
$0.5-0.001433705113$
$0.75 \quad-0.002165686894$
1. $\quad-0.002906224332$
$1.25-0.003648460088$
$1.5-0.004384546413$
$1.75 \quad-0.00510775821$
2 . $\quad-0.005812808853$
$2.25-0.006495587637$
$2.5 \quad-0.007153618317$
$2.75-0.007786967697$
3. $\quad-0.008398134973$
$3.25-0.008990160432$
$3.5 \quad-0.009564116213$
$3.75-0.01011811309$
4 . $\quad-0.01064876055$
$4.25-0.01115377594$
$4.5-0.01163342335$
$4.75-0.01208974372$
5. $\quad-0.01252475249$
$5.25 \quad-0.01293959077$
$5.5-0.01333524813$
$5.75 \quad-0.01371355034$
6 . $\quad-0.01407679773$
$6.25-0.01442605853$
$6.5-0.01475987204$
$6.75-0.01507498589$
$7 . \quad-0.01536874034$
$7.25-0.01564097868$
$7.5-0.0158937954$
$7.75-0.01612949109$
8 . $\quad 0.01634864614$
$8.25-0.01654985374$
$8.5-0.01673097$
$8.75-0.01689065135$
9. $\quad-0.01702925149$

Intensity (A.U.)

-0.0025	2	4	6	8
-0.005				
-0.0075				
-0.01				
-0.0125				
-0.015				

