Get["QUADRUPOLE"];

```
(*
    One-dimensional SPAM MQMAS of a spin I = 5/2,
    Three pulse sequence with three x phases,
    3Q echo amplitude optimization with the second pulse,
All the 3Q coherences are considered,
    Coherence pathway 0Q -> 3Q -> (1Q, OQ, and -1Q) -> -1Q,
    Wolfram Mathematica 5.0,
Author: R. HAJJAR
*)
(*------------ Nucleus ------------*)
quadrupoleSpin = 2.5;
larmorFrequencyMhz = 208.61889974; (* Al-27 with 800 MHz NMR spectrometer *)
(*----- Quadrupole interaction ----*)
quadrupoleOrder = 2;
QCCMHz = 5; }\quad\eta=-1
(*--- Rotor Euler angles in PAS ---*)
```



```
(*----------- Parameters ----------**)
startOperator = Iz;
\omegaRFkHz=90; (* strong RF pulse strength in kHz unit *)
\omegaRF3kHz = 9.3; (* weak RF pulse strength in kHz unit *)
spinRatekHz = 5;
powderFile = "rep100_simp";
numberOfGammaAngles = 10;
t1 = 4; (* the first-pulse duration in microsecond unit *)
t2 = 4; (* the second-pulse duration in microsecond unit *)
t3 = 9; (* the third-pulse duration in microsecond unit *)
\Deltat = 0.25; (* pulse duration increment in microsecond unit *)
np = t3/\Deltat; (* number increment of the second-pulse duration *)
(*--------- Pulse sequence ---------*)
coherence1 = {3}; (* 3Q matrix coherences *)
coherence2 = {1, 0, -1}; (* \pm1Q and 0Q coherences *)
detectelt = {{4, 3}}; (* central-transition matrix element of a spin 5/2 *)
fsimulation := (
    pulse[t1, \omegaRFkHz]; (* first pulse with x phase *)
        filterCoh[coherence1]; (* 3Q coherence pathway selection *)
    pulse[t2, \omegaRFkHz]; (* second pulse with x phase *)
        filterCoh[coherence2]; (* \pm1Q and OQ coherence pathway selection *)
    acq0;
    For [p = 1, p < np, p++, {
        pulse[\Deltat, \omegaRF3kHz]; (* third pulse with x phase *)
            store[2];
            acq[p];
            recall[2];
        } ];
```

);

```
(*--- Execute, plot, and save simulation
    in "spam_P3_3QxxxS" file -------------*)
run;
tabgraph["spam_P3_30xxxS"];
```

 (* -- *)
 Rang $\quad t(\mu s) \quad$ intensity
$0 \quad 0 \quad-0.03967672866$
$1 \quad 0.25 \quad-0.04016984266$
$0.5-0.04057043626$
$0.75-0.04086439109$
$1 . \quad-0.04106820629$
$1.25-0.04121254595$
$1.5-0.04132453322$
$1.75-0.04142132695$
2 . $\quad 0.04151428345$
$2.25-0.04161346793$
$2.5-0.04172555518$
$2.75-0.04184881512$
3. -0.04197405803
$3.25-0.04209410489$
$3.5-0.04221376484$
$3.75 \quad-0.04234983156$
4 . $\quad 0.04251984155$
$4.25 \quad-0.0427299185$
$4.5-0.04297376511$
$4.75 \quad-0.04324380597$
$5 . \quad-0.04354272933$
$5.25-0.04388271037$
$5.5 \quad-0.0442720407$
$5.75 \quad-0.04470257534$
$6 . \quad-0.04515207285$
$6.25-0.04560138799$
$6.5-0.04605112755$
$6.75-0.04652162819$
$7 . \quad-0.04703537074$
$7.25-0.04759729519$
$7.5-0.04818995602$
$7.75-0.04878656577$
$8 . \quad-0.04936951728$
$8.25-0.04993910141$
$8.5-0.05050798581$
$8.75-0.05108914302$
9 . -0.0516873895

Intensity (A.U.)

