Get["QUADRUPOLE"];

```
(*
    One-dimensional SPAM MQMAS of a spin I = 5/2,
    Three pulse sequence with three x phases,
    3Q echo amplitude optimization with the second pulse,
    Coherence pathway 0Q -> %Q -> (1Q, OQ, and -1Q) -> -1Q,
    Wolfram Mathematica 5.0,
Author: R. HAJJAR
*)
(*------------ Nucleus ------------**)
quadrupoleSpin = 2.5;
larmorFrequencyMhz = 208.61889974; (* Al-27 with 800 MHz NMR spectrometer *)
(*----- Quadrupole interaction ----*)
quadrupoleOrder = 2;
QCCMHz = 5; }\quad\eta=-1
(*--- Rotor Euler angles in PAS ---*)
\alpha}\mp@subsup{\alpha}{PR}{}=0;\quad\mp@subsup{\beta}{PR}{}=0; \mp@subsup{\gamma}{PR}{}=0
(*----------- Parameters ----------**)
startOperator = Iz;
\omegaRFkHz=90; (* strong RF pulse strength in kHz unit *)
\omegaRF3kHz = 9.3; (* weak RF pulse strength in kHz unit *)
spinRatekHz = 5;
powderFile = "rep100_simp";
numberOfGammaAngles = 10;
t1 = 4; (* the first-pulse duration in microsecond unit *)
t2 = 4; (* the second-pulse duration in microsecond unit *)
t3 = 9; (* the third-pulse duration in microsecond unit *)
\Deltat = 0.25; (* pulse duration increment in microsecond unit *)
np = t3/\Deltat; (* number increment of the second-pulse duration *)
(*--------- Pulse sequence ---------*)
elements1 = {{2, 5}}; (* 3Q matrix element *)
coherence2 = {1, 0, -1}; (* \pm1Q and 0Q coherences *)
detectelt = {{4, 3}}; (* central-transition matrix element of a spin 5/2 *)
fsimulation := (
    pulse[t1, \omegaRFkHz]; (* first pulse with x phase *)
        filterElt[elements1]; (* 3Q coherence pathway selection *)
    pulse[t2, \omegaRFkHz]; (* second pulse with x phase *)
        filterCoh[coherence2]; (* \pm1Q and OQ coherence pathway selection *)
    acq0;
    For [p = 1, p < np, p++, {
        pulse[\Deltat, \omegaRF3kHz]; (* third pulse with x phase *)
                store[2];
                acq[p];
                recall[2];
        }];
);
```

```
(*--- Execute, plot, and save simulation
    in "spam_P3_3Qxxx" file -----------*)
run;
tabgraph["spam_P3_3Qxxx"];
```

Rang	$t(\mu s)$	intensity
0	0	-0.03365329788
1	0.25	-0.03398480198
2	0.5	-0.03423350811
3	0.75	-0.03438558135
4	1.	-0.03445778848
5	1.25	-0.03448085099
6	1.5	-0.0344817151
7	1.75	-0.03447721748
8	2.	-0.0344783431
9	2.25	-0.03449477256
10	2.5	-0.03453277047
11	2.75	-0.03459016837
12	3.	-0.03465735118
13	3.25	-0.034726781
14	3.5	-0.03480297844
15	3.75	-0.03490244729
16	4.	-0.03504232758
17	4.25	-0.035228191
18	4.5	-0.03545309458
19	4.75	-0.0357088615
20	5.	-0.03599776269
21	5.25	-0.03633183279
22	5.5	-0.03671951299
23	5.75	-0.03715301423
24	6.	-0.03761054803
25	6.25	-0.03807357004
26	6.5	-0.03854376231
27	6.75	-0.03904340809
28	7.	-0.03959780442
29	7.25	-0.04021484517
30	7.5	-0.04087882104
31	7.75	-0.04156202612
32	8.	-0.04224260126
33	8.25	-0.04291410975
34	8.5	-0.04358253311
35	8.75	-0.04425750607
36	9.	-0.04494629298

Intensity (A.U.)

