Get["QUADRUPOLE"];

```
(*
    One-dimensional SPAM MQMAS of a spin I = 5/2,
    Three pulse sequence with x, x, and -x phases,
    -3Q antiecho amplitude optimization with the second-pulse duration,
    Coherence pathway 0Q -> -3Q -> (1Q, OQ, and -1Q) -> -1 Q,
    Wolfram Mathematica 5.O,
Author: R. HAJJAR
*)
(*------------ Nucleus ------------**)
quadrupoleSpin = 2.5;
larmorFrequencyMhz = 208.61889974; (* Al-27 with 800 MHz NMR spectrometer *)
(*----- Quadrupole interaction ----*)
quadrupoleOrder = 2;
QCCMHz = 5; }\quad\eta=-1
(*--- Rotor Euler angles in PAS ---*)
\alpha}\mp@subsup{\alpha}{PR}{}=0;\quad\mp@subsup{\beta}{PR}{}=0; \mp@subsup{\gamma}{PR}{}=0
(*----------- Parameters ----------**)
startOperator = Iz;
\omegaRFkHz = 90; (* strong RF pulse strength in kHz unit *)
\omegaRF3kHz = 9.3; (* weak RF pulse strength in kHz unit *)
spinRatekHz = 5;
powderFile = "rep100_simp";
numberOfGammaAngles = 10;
t1 = 4; (* the first-pulse duration in microsecond unit *)
t2 = 4; (* the second-pulse duration in microsecond unit *)
t3 = 9; (* the third-pulse duration in microsecond unit *)
\Deltat = 0.25; (* pulse duration increment in microsecond unit *)
np = t1/\Deltat; (* number increment of the first-pulse duration*)
(*--------- Pulse sequence ---------*)
elements1 = {{5, 2}}; (* -3 Q matrix element *)
coherence2 = {1, 0, -1}; (* \pm1 Q and 0Q coherences *)
detectelt = {{4, 3}}; (* central-transition matrix element of a spin 5/2 *)
fsimulation := (
    acq0;
    For [p = 1, p < np, p++, {
        pulse[\Deltat, \omegaRFkHz]; (* first pulse with x phase *)
            store[2];
            filterElt[elements1]; (* -3 Q coherence pathway selection *)
        pulse[t2, \omegaRFkHz]; (* second pulse with x phase *)
                filterCoh[coherence2]; (* \pm1Q and OQ coherence pathway selection *)
        pulse[t3, -\omegaRF3kHz]; (* third pulse with -x phase *)
                acq[p];
                recall[2];
        }];
);
```

```
(*--- Execute, plot, and save simulation
    in "spam_P1_-3Qxx-x" file -----------*)
run;
tabgraph["spam_P1_-3Qxx-x"];
\begin{tabular}{|c|c|c|}
\hline Rang & \(t(\mu \mathbf{s})\) & intensity \\
\hline 0 & 0 & 0 . \\
\hline 1 & 0.25 & \(7.924622464 \times 10^{-6}\) \\
\hline 2 & 0.5 & 0.0002240724299 \\
\hline 3 & 0.75 & 0.001378791054 \\
\hline 4 & 1. & 0.004377906361 \\
\hline 5 & 1.25 & 0.009504306276 \\
\hline 6 & 1.5 & 0.01619873893 \\
\hline 7 & 1.75 & 0.02342991008 \\
\hline 8 & 2. & 0.03022938645 \\
\hline 9 & 2.25 & 0.03604793428 \\
\hline 10 & 2.5 & 0.04072912412 \\
\hline 11 & 2.75 & 0.04443903396 \\
\hline 12 & 3. & 0.04759563155 \\
\hline 13 & 3.25 & 0.05056637037 \\
\hline 14 & 3.5 & 0.0534930754 \\
\hline 15 & 3.75 & 0.0563881051 \\
\hline 16 & 4. & 0.0592659267 \\
\hline
\end{tabular}
```


