Using Symmetry To Design Pulse Sequences in Solid-State NMR

Malcolm Levitt

Stockholm University Sweden

Overview

- Symmetry principles of recoupling
- Double-quantum homonuclear recoupling
- Zero-quantum homonuclear recoupling
- Heteronuclear recoupling: distances and polarization transfer

$MAS + Rf \rightarrow Recoupling$

Types of Recoupling

Spin Interactions and their Rotational Symmetries

	SPACE RANK	SPIN RANK	FIELD RANK
Iso-CS	0	1	1
J	0	0	0
CSA	2	1	1
DD	2	2	0

Rotational Components

	SPACE RANK		SPIN RANK		FIELD RANK
Iso-CS	0		1		1
J	0		0		0
CSA	2		1		1
DD	2	2	2	2	0
		1		1	
		0		0	
		-1		-1	
		-2		-2	

Component Selection for 2Q Homonuclear Recoupling

Structure of $\mathbb{C}N_n^{\nu}$ Sequences

n Complete Sample Revolutions

v Complete Phase Revolutions

Average Hamiltonian Selection Rules

For
$$\mathbb{C}N_n^{\nu}$$
:

 $\overline{H}_{lm\lambda\mu}^{(1)} = 0 \quad \text{if } mn - \mu\nu \neq N \text{ x integer}$

Structure of $\mathbb{R}N_n^{\nu}$ Sequences

Average Hamiltonian Selection Rules

For $\mathbb{R}N_n^{v}$:

If $\lambda = \text{odd}$:

$$\overline{H}^{(1)}_{lm\lambda\mu} = 0 \quad \text{if } mn - \mu\nu \neq N/2 \text{ x odd integer}$$

If $\lambda = even$:

 $\overline{H}_{lm\lambda\mu}^{(1)} = 0 \quad \text{if } mn - \mu\nu \neq N/2 \text{ x even integer}$

Symmetry Solutions for 2Q Recoupling

spinning frequency = 11.850 kHz field = 4.7 T

> Marina Carravetta Mattias Edén

spinning frequency = 7.000 kHz field = 9.4 T

> Marina Carravetta Mattias Edén

Andreas Brinkmann

$2Q \ {}^{13}C \ Spectrum \ with \\ \mathbb{C} \ 14_4^5 \\ \mathbb{C} = 360_0$ [U-¹³C]-catabolite repression HPr (11 kDa), aliphatic region spinning frequency = 14 kHz; field = 9.4 T

SC14 spectrum of CRH - aliphatic resonances

Symmetry Solutions for ZQ Recoupling

[U-¹³C]-tyrosine; spinning frequency = 28 kHz; mixing interval = 1 ms; field = 9.4 T

Andreas Brinkmann Jörn Schmedt auf der Günne

Andreas Brinkmann Jörn Schmedt auf der Günne

Simulations at 38 kHz MAS

Andreas Brinkmann Jörn Schmedt auf der Günne

38kHz spinning; ¹³C₂-glycine parameters

Heteronuclear DD & CSA Recoupling

Xin Zhao, Mattias Edén

Xin Zhao, Mattias Edén

Conclusions

- Symmetry solutions exist for a wide range of decoupling/recoupling tasks in MAS NMR
- Capable of good performance at high spinning frequencies/high fields
- Quantitative spin dynamics -- detailed structural information

Coworkers

Stockholm

- Marina Carravetta
- Andreas Brinkmann
- Xin Zhao
- Mattias Edén
- Ole Johannessen
- Henrik Luthman
- Jörn Schmedt auf der Günne
- Clemens Glaubitz

Leiden

- Huub de Groot
- Peter Verdegem
- Johan Lugtenburg

Bayreuth

- Angelika Sebald
- Heidi Maisel

Lyon (IBCP)

- Anja Bockmann
- Anne Galinier
- François Penin

Funding

- Swedish Science Foundation (NFR)
- Göran Gustafsson Foundation