High-Field Solid-State NMR: The Tools and Their Application in Materials Research

Arno Kentgens Department of Physical Chemistry / solid-state NMR, Institute for Molecules and Materials, Radboud University Nijmegen, The Netherlands.

Outline

Basic NMR Introduction

Solid-State NMR

NMR tools for spin 1/2
 Case Study: melaminephosphate flame retardants
 NMR tools for quadrupolar nuclei

>NMR tools for the future

≻NMR above 30 T (1.27 GHz)

≻Microcoil NMR

Polarization Enhancement Techniques

Mechanical Detection of Magnetic Resonance

Nijmegen Science Faculty & Goudsmit Pavilion for NMR Research

The Concept of Spin

Goudsmit en Uhlenbeck 1925: Electrons have an intrinsic magnetic moment caused by the rotation of the electron

Goudsmit -Pauli – Stern 1926: nuclear spin

Goudsmit Pavilion for NMR Research

Nuclear Spin Hamiltonian

Quantum state of the entire sample is fully described by a wave function | \u03c6_{full}>

$$\frac{d}{dt} \left| \psi_{full}(t) \right\rangle = -i \hat{H}_{full} \left| \psi_{full}(t) \right\rangle$$

Effects of rapidly moving electrons is blurred out, their "average" effect is contained in the spin Hamiltonian:
Magnetic

$$\frac{d}{dt} \left| \psi_{spin}(t) \right\rangle = -i \hat{H}_{spin} \left| \psi_{spin}(t) \right\rangle$$

Study Malcolm H. Levitt Spin Dynamics, Wiley, 2001

Nuclear Zeeman Interaction

> Spin interacts with external magnetic field: $\hat{H}_{Zeeman}^{j} = -\hat{\mu}_{i} \cdot \vec{B} = -\gamma_{i} \hat{I}_{i} \vec{B} \xrightarrow{B_{0}//z} + \hat{H}_{Zeeman}^{j} = -\gamma_{j} \hat{I}_{j,z} B_{0}$

Precession in the Magnetic Field

B₀ Larmor precession frequency

stitute for Molecules and Mater

The basic NMR experiment as viewed from the rotating frame

The magnetization is tipped over by a rf-pulse. The precession of the magnetization in the field induces a voltage in the receiver coil.

From Free Induction Decay to Spectrum

Fourier Transform

Chemical Shift

diamagnetism

HFML Nijmegen

$$\vec{B}_{j,loc} = B_0 + \vec{B}_{j,induced}$$
$$\vec{B}_{j,induced} = \begin{bmatrix} \delta_{j,xx} & \delta_{j,xy} & \delta_{j,xz} \\ \delta_{j,yx} & \delta_{j,yy} & \delta_{j,yz} \\ \delta_{j,zx} & \delta_{j,zy} & \delta_{j,zz} \end{bmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ B_0 \end{pmatrix}$$
secular approximation : $\hat{H}_{CS}^j \cong -\gamma_j B_0 \delta_{j,zz}$ (6)

Adecules and Materia

Ethanol: CH₃CH₂OH

С-Н О-Н

In isotropic liquids motionally averaged chemical shift :

$$\hat{H}_{cs,iso}^{j} \cong -\gamma_{j}B_{0}\delta_{j,iso}\hat{I}_{j,z}$$
$$\delta_{j,iso} = \frac{1}{3}(\delta_{j,xx} + \delta_{j,yy} + \delta_{j,zz})$$

Packard, Stanford 1951

Purcell: "Indeed certain branches of this work are now being pursued in chemical laboratories."

Anisotropic Interactions

What Information Can NMR Give

Site Identification

Chemical Shift
 Identification of structural building blocks (¹H,¹³C).
 Coordination of ²⁷Al, ^{69,71}Ga, ²⁹Si etc).
 Hydrogen bonding (¹H,¹⁵N,¹⁷O)
 Majority of periodic table is accessible

•Knight shifts, Fermi-contact shifts etc (Lecture Berthier). © Li-ions in paramagnetic battery materials

Anisotropic ¹³C interactions

FIGURE 5.21 Model compound 'universal' line shapes identification for the four typical types of carbons as indicated. (Reproduced by permission of The Royal Society, London, from reference 60). Figure 2 aliphatic promotic condensed cromotic -150 -100 -50 0 50 100 150 200 ppm from Benzene

Fig. 6.5 Some chemical shift anisotropy lineshapes under conditions of molecular motion. Three different models of molecular motion are considered: (a) two-site hopping, chemical shift tensor principal *z*-axis reorientates by 109.5°, (b) two-site hopping, chemical shift tensor principal *z*-axis reorientates by 120° and (c) three-site hopping about a rotation axis orientated at 70.5° to the chemical shift tensor principal *z*-axis it each site. In all cases, the chemical shift tensor is axially symmetric and the populations of each site are equal. The τ_c^{-1} (Ω) for each case are given with the spectra. The Π matrices used in the calculations

Site Identification

²⁷AI NMR of oxides

4-fold coordinated AI: 80 - 40 ppm

5-fold coordinated AI: 40 - 20 ppm

6-fold coordinated AI: 20 - -10 ppm

δ_{cs} Tetrahedral <u>Al</u>-O-Si

in aluminosilicates

Anisotropic Interactions

Broad lines	³¹ P powder spectra Na ₃ PO ₄
Structural information	
Study dynamics	Na ₄ P ₂ O ₇
Manipulation in ordinary and spin space	
℅ use adequate tools	$\frac{1}{150 \ 100 \ 50 \ 0 \ -50 \ -100 \ -150 \ -200}$

Tool: Magic-Angle Spinning

Direct dipole-dipole interactions

 e_{ik} is the unit vector connecting spin j and k

secular approximation :

homonuclear: $\hat{H}_{DD}^{jk}(\theta_{jk}) = b_{jk} \left(3\cos^2(\theta_{jk}) - 1 \right) \left(3\hat{I}_{jz}\hat{I}_{kz} - \hat{I}_j \cdot \hat{I}_k \right)$ heteronuclear: $\hat{H}_{DD}^{jk}(\theta_{jk}) = b_{jk} \left(3\cos^2(\theta_{jk}) - 1 \right) \left(2\hat{I}_{jz}\hat{I}_{kz} \right)$

Anisotropic Dipolar Interaction

For abundant spins MAS is only effective if spinning speed significantly exceeds the line width

What Information Can NMR Give

Intersite correlations

Dipolar Interactions (through space)
 Spatial proximity of nuclei (~1/r³)
 Homonuclear
 Heteronuclear

•J-couplings (mediated through chemical bonds)

Hyperfine interactions (coupling to electron spin > Lecture Berthier).

Tool: Radio Frequency Irradiation

Heteronuclear decoupling of nuclei by CW-irradiation with resonant RF waves. Pulsed alternatives TPPI, XiX etc.

In Homonuclear decoupling by CW irradiation at the magic angle (Lee-Goldburg decoupling). Pulsed alternatives: WAHUHA, MREV-8, FSLG, Dumbo etc.

Combining Tools

Combined Rotational and Multiple Pulse Decoupling

Recoupling of dipolar interactions using radio-frequency sequences synchronized with sample spinning and matched rf-field strength.

Transfer of coherence of coupled nuclei

¹H Spectroscopy

Case Study: Environment-Friendly Condensed Phase Flame Retardants

Crystal structures unknown Polymerization process unknown FR Mechanism unknown

> A. Brinkmann, E.R.H van Eck & A.P.M. Kentgens Magnetic Resonance in Chemistry, 2007 submitted

Site ID with added anisotropic information

Homonuclear: ¹⁵N-¹⁵N in MP

¹⁵N-¹H distance measurements

MP: Assignment

Hydrogen Bonding & $\pi-\pi$ Stacking

Combined NMR and X-ray Powder Diffraction

V. Brodski, R.Peschar and H. Schenk

Univ. Of Amsterdam

MP

Hydrogen bonding in biological molecules

Proteins and Peptides

Polysaccharides

¹⁷O is a quadrupolar I=5/2 nucleus

Quadrupolar Interaction

secular approximation : $\hat{H}_{Q}^{j}(\theta) = \omega_{j,Q} \left(3\hat{I}_{jz}^{2} - \hat{I}_{j} \cdot \hat{I}_{j} \right)$

with
$$\omega_{j,Q}(\theta) = \frac{3eQ_j}{4I_j(2I_j-1)}V_{j,ZZ}(\theta)$$

T

First order quadrupolar interaction

Second order quadrupolar interaction

What Information Can NMR Give

Site Identification

Quadrupolar Interaction
 Determination of local symmetry (distortions).
 ¹⁷O NMR parameters are sensitive to H-bond formation.
 Majority of periodic table has I>1/2

www.pascal-man.com

Quadrupolar Interaction: Site Symmetry

Framework aluminosilicate glasses with varying charge-balancing cations (Li, Na, K, Rb, Cs) Dirken, Nachtegaal and Kentgens, Solid State Nucl. Magn. Reson. 5 (1995) 189.

Tools: Double Rotation (DOR) Dynamic Angle Spinning (DAS)

Samoson, Lippmaa and Pines, Mol. Phys. 65 (1988) 1013. / Llor and Virlet, Chem.Phys.Lett. 152 (1988) 248. Mueller, Baltisberger, Wooten and Pines, J. Phys. Chem. 96 (1992) 7001.

Kentgens, luga, Kalwei and Koller, J.Am.Chem.Soc. 123 (2001) 2925.

Heteronuclear Recoupling: ¹⁷O-¹H distance measurement

 r_{OH} distance 104 pm is within 5% of the distance determined by neutron diffraction (99 pm).

O-H libration slightly averages dipolar interaction.

A. Brinkmann & A.P.M. Kentgens J. Phys. Chem. B 110 (2006) 16089

Heteronuclear Recoupling: ¹⁷O-¹H distance measurement

A. Brinkmann & A.P.M. Kentgens J. Am. Chem. Soc. 128 (2006) 14758

Summary of Internal Hamiltonians

stitute for Molecules and Material

Conclusions

- Solid state NMR is a powerful analysis technique
 - Probes microscopic interactions (1-100Å)
 - Study structure and dynamics
 - Works in crystalline, partly disordered and amorphous compounds
 - Non-destructive technique needing no special sample preparation
- Novel methodological developments will open new applications in advanced materials science

Sensitivity enhancement is driving methodological developments

Options for signal ophancoment:	Potential gain
Options for signal enhancement.	Polenliai gain
• Double B ₀	3
 Cryo-cooled rf coils 	3
 Population transfer in coupled or 	
quadrupolar spin systems	2-5
Low temperature MAS	10
Microcoil detection	100
 Dynamic Nuclear Polarization (DNP) 	10 ³
 Optical polarization (ODMR / OPMR) 	104
 Hyper polarized Xe, He, Kr 	104
 Para-Hydrogen 	104
Force detection	10 ³ -10 ⁶

SSNMR Beyond 1 GHz

Opportunities and Problems

Opportunities

- Sensitivity (~B^{7/4})
- Resolution (~B B²)
- > High speed (proton) MAS
- Quadrupolar nuclei

Problems

- Intrinsic homogeneity (~10⁻³/cm)
- > Temporal stability (~10⁻⁵)
 - > power supply
 - temperature and flux changes
- Operation time
- Ferro-shims
 High speed MAS

Follow-B

Reference deconvolution

Field profile of a uniformly magnetized cylinder

Shifting the shim off-axis allows reduction of radial gradients Magic Angle Spinning averages residual gradients

Field map with ferroshim

Field map D₂O, after x-y optimization ferroshim Field x-y gradient < 5 kHz (drift dominated) <25 ppm/cm

Reference Deconvolution

$$c(t) = \left(\frac{\mathbf{S}_{\text{ideal-ref}}(t) \times \mathbf{W}(t)}{\mathbf{S}_{\text{exp-ref}}(t)}\right)^{\frac{\gamma_{I}}{\gamma_{S}}}$$
$$S_{c}(\boldsymbol{\omega}) = \text{FT}[\mathbf{S}_{\text{exp}}(t) \times c(t)]$$

Morris, Barjat and Horne, PNMRS 31 (1997) 197-257. Metz, Lam and Webb, Concepts Magn. Reson. 12 (2000) 21-42.

Reference Deconvolution

Discrete field steps
 MAS: resolution is stability limited
 Fourier spectrum distorted (chirp)
 Length of FID determines resolution

Triple-tuned MAS probe ²D reference channel

ND₄Cl reference signal lasts 30 - 50 msec, i.e. intrinsic homogeneity of about 0.15 ppm.

Field Stability

Field stability 10-50 ppm on ¹³C

[©]Follow B option

Blockdiagram Follow-B 1D

- Use first 200 µsec of reference FID to determine field
 - Reset spectrometer frequencies

Use remaining part of ref-FID for deconvolution

Follow B + reference deconvolution

Bruker News and Events AVANCE 900, first results

At 21.1 T separation of the two Sc sites is nearly achieved...

Systems with large quadrupolar interactions

64 scans MAS 38 kHz Fixed phase Averaging => followB => Ref. dec.

1: C_q =15.4 MHz η_Q =0.61 2: C_q =23.4 MHz η_Q =0.10 Intensity ratio exp 1:2.995 theor 1:3

Hydrogen storage

- Important technical issues are weight, volume, discharge/recharge rates, reaction heat, safety and cost
- > IEA (International Energy Agency) targets:
 - at least 5-10 wt.%
 - > H_2 recoverable at < 80°C
 - Loading/unloading at 1 atm absolute pressure.
- > Solid H_2 storage
 - (Complex) Metal hydrides, like NaAlH₄, NaBH₄, LaNi₅H₆.

gasoline 32 MJ/ltr

Mg₂NiH₄ 13 MJ/ltr

H₂ liquid 8 MJ/ltr

LaNi₅H₆

10 MJ/ltr

H₂ gas (200 bar) 2.4 MJ/ltr

 $NaAIH_4 \leftrightarrow Na_3AIH_6 + 2 AI + 3 H_2$

 $Na_3AIH_6 \leftrightarrow 3 NaH + AI + 3/2 H_2$

Static ¹H NMR on Ti-doped NaAlH₄

- Partly release of H₂ -> NaAlH₄ and Na₃AlH₆ are present
- Hahn-Solid-Hahn Echo to avoid spectral distortions
- Two fractions with different relaxation times T₁ and different line widths.
- Na₃AlH₆: Narrowing of the line shape -> proton mobility in the crystal -> fast rotating AlH₆ clusters

¹H and ²⁷Al high-speed (40 kHz) MAS of Ti-doped Alanates at 30 T

 $\begin{aligned} \mathsf{NaAIH}_4 &\leftrightarrow \mathsf{Na}_3\mathsf{AIH}_6 + 2 \ \mathsf{AI} + 3 \ \mathsf{H}_2 \\ \mathsf{Na}_3\mathsf{AIH}_6 &\leftrightarrow 3 \ \mathsf{NaH} + \mathsf{AI} + 3/2 \ \mathsf{H}_2 \end{aligned}$

M. Verkuijlen, E. van Eck, J. van Bentum,B. Dam (Free University of Amsterdam)C. Baldé, K. de Jong (Utrecht University)

¹³C-¹³C homonuclear correlation ¹³C labeled L-alanine

¹³C-¹H heteronuclear correlation of L-alanine CP match v_{1C} =70 kHz; v_{1H} =30kHz; v_r =40 kHz H-X HETCOR cpmas @ 40 kHz, ct =50uss, 10 contours between 10% and 100%. H-X HETCOR cpmas @ 40 kHz, ct =1ms, 10 contours between 10% and 100% Contact time 50µs Contact time 1ms NH_2 OH ¹H (kHz) H (kHz CH CH₃ -20 -10 0 ¹³C (kHz) -30 10 30 0 ¹³C (kHz)

nstitute for Molecules and Material

Conclusion High Field NMR

Using a combination of hardware solutions and NMR tricks, one- and two-dimensional solid-state NMR at 30 Tesla is feasible.

- Quadrupolar systems with either very large or very small quadrupolar interactions
- High resolution proton NMR

Acknowledgements

Physical Chemistry / solid-state NMR Jan van Bentum Ernst van Eck

Andreas Brinkmann Jorge Villenueva Garibay

Paul Knijn Margriet Verkuijlen Sureskumar Vasa Chandrakala Gowda Anna-Jo de Vries

> Gerrit Janssen Jan van Os Hans Janssen

IMM groups of

Jan-Kees Maan

Rob de Groot Gilles de Wijs

Floris Rutjes Jan van Hest Alan Rowan Roeland Nolte Universiteit Twente Han Gardeniers Jacob Bart

> **KBFI Tallinn Ago Samoson** Tiit Anupold Jan Paast

Free University of Amsterdam Bernard Dam Ronald Griessen

> University of Utrecht Cees Baldé Krijn de Jong

ETH Zürich Jeroen van Bokhoven Roel Prins

TechnoCentrum **E. Sweers** B. van den Berg

Nederlandse Organisatie voor Wetenschappelijk Onderzoek