HIGH-RESOLUTION SOLID-STATE NMR OF QUADRUPOLAR NUCLEI

PHILIP J. GRANDINETTI OHIO STATE UNIVERSITY COLUMBUS, OH, USA

HTTP://WWW.GRANDINETTI.ORG

TUTORIAL LECTURE PRESENTED AT THE BRUKER USER'S MEETING BRECKENRIDGE, COLORADO JULY 2007

THE BIG PICTURE

ALLOWED NUCLEAR MULTIPOLE MOMENTS AS A FUNCTION OF SPIN I

NMR OF QUADRUPOLAR NUCLEI

IS THERE A PROBLEM?

PERTURBATION EXPANSION OF

NMR TRANSITION FREQUENCY

 $\Omega^{(3)}$

HIGHER ORDER EFFECTS OF QUADRUPOLAR NUCLEI ON NMR

$M \rightarrow -M$ TRANSITIONS ARE UNAFFECTED

BY FIRST-ORDER QUADRUPOLAR SPLITTING

SINGLE CRYSTAL (AND GONIOMETER PROBE)

AVAILABLE?

Vosegaard, Skibsted, Bildsøe, and Jakobsen, *J. Magn. Reson. A*, **122**, 111-119(1996) SINGLE CRYSTAL ⁸⁷RB NMR OF RBCLO4

POLYCRYSTALLINE SAMPLES INTEGER SPINS ²D(I=1),¹⁴N(I=1),¹⁰B(I=3),⁶LI(I=1)

HALF-INTEGER SPINS: NARROW CENTRAL TRANSITION, BUT MAS IS INADEQUATE

CENTRAL TRANSITION NUTATION FREQUENCY

In the limit that $\omega_1 \ll \omega_q$ the effective central transition nutation frequency becomes ...

 $(I+1/2) \,\omega_1$

MAGIC-ANGLE SPINNING: GREAT FOR SPIN 1/2, BUT FOR SPIN >1/2?

SPIN 1/2

SPIN 3/2

VARIABLE ANGLE SPINNING: SPIN 1/2 NUCLEI

VARIABLE-ANGLE SPINNING SPECTRA AS A FUNCTION OF ANGLE

MAGIC-ANGLE SPINNING SPECTRA

AS A FUNCTION OF SPINNING SPEED

VARIABLE ANGLE SPINNING: SPIN > 1/2 (QUADRUPOLAR) NUCLEI

Ganapathy, Schramm, and Oldfield, J. Chem. Phys., 1982, 77, 4360

ONE SOLUTION:

REALLY HIGH MAGNETIC FIELDS

2ND-ORDER BROADENINGS ARE INVERSELY PROPORTIONAL TO MAGNETIC FIELD STRENGTH

²⁷Al MAS spectra of aluminoborate $9Al_2O_3 + 2B_2O_3(A_9B_2)$ compound from 14 to 40 T.

Gan,* Gor'kov, Cross, Samoson, and Massiot J. AM. CHEM. SOC. 2002, 124, 5634- 5635

ANOTHER SOLUTION: BE CLEVER

AVERAGING ANISOTROPY OF RANK ℓ

recognition of E. L. Hahn.)

A SOLUTION: DOUBLE ROTATION

SAMOSON, LIPPMAA, PINES, MOL. PHYS., 65, 1023(1988).

OTHER SOLUTIONS? LET'S MAKE AN ECHO

FIND MIRROR IMAGE ANISOTROPIC LINESHAPES

THE KEY TO UNDERSTANDING DYNAMIC-ANGLE SPINNING (1988: FIRST HIGH RESOLUTION 2D METHOD FOR QUADRUPOLAR NUCLEI)

THE DAS ECHO

2D DYNAMIC ANGLE SPINNING

Mueller, Sun, Chingas, Zwanziger, Terao, and Pines, J. Magn. Reson., 86, 470 (1990).

¹⁷O 2D DAS OF COESITE (A SIO₂ CRYSTALLINE POLYMORPH)

COESITE STRUCTURAL FRAGMENT

MAGIC-ANGLE SPINNING

DYNAMIC-ANGLE SPINNING

ANOTHER SOLUTION: THE MQ-MAS ECHO (HIGH RESOLUTION FOR THE PEOPLE)

TRIPLE QUANTUM MAS SPECTRUM

IS THE MIRROR IMAGE OF THE SINGLE QUANTUM MAS SPECTRUM

When does the echo occur in t_2 ?

	t1 transition	
Spin	(m → - m)	k
3/2:	3QMAS	7/9
5/2:	3QMAS	19/12
	5QMAS	25/12
7/2:	3QMAS	101/45
	5QMAS	11/9
	7QMAS	161/45
9/2:	3QMAS	91/36
	5QMAS	95/36
	7QMAS	7/18
	9QMAS	31/6

2D SHIFTED-ECHO MQ-MAS

... AND ANOTHER SOLUTION: THE ST-MAS ECHO

THE SATELLITE TRANSITION MAS SPECTRUM IS THE MIRROR IMAGE OF THE CENTRAL TRANSITION MAS SPECTRUM

Z. Gan, J. Am. Chem. Soc. 2000, **122,** 3242-3243

When does the echo occur in t_2 ?

Frequency (single quantum)

USE DOUBLE QUANTUM FILTERED ST-MAS TO

ELIMINATE UNDESIRED CT-CT CORRELATION

Hyung-Tae Kwak and Zhehong Gan, J. Magn. Reson. 164 (2003) 369–372

ADVANTAGES	DISADVANTAGES
DOR: • QUANTITATIVE • HIGH SENSITIVITY • LOW RF POWER • ONE DIMENSIONAL EXPERIMENT - QUICK EXPERIMENT (IN PRINC	 SPECIAL PROBE REQUIRED STABLE SPINNING REQUIRES FINESSE SLOW SPINNING SPEEDS (LARGE # OF SIDEBANDS) LARGE COIL LOW RF POWER POOR DECOUPLING.
 DAS: QUANTITATIVE HIGH SENSITIVITY, EVEN WITH NUCHAVING LARGE QUAD. COUPLING LOW RF POWER WORKS WELL FOR DILUTE QUADRUP NUCLEI 	SPECIAL PROBE REQUIRED SPECIAL PROBE REQUIRED SERVICE OF STRONG HOMONUCLEAR DIPOLAR COUPLINGS LONG HOP TIMES (30 MS) LIMITS USE TO SAMPLES WITH LONG LONGITUDINAL RELAXATION.
MQ-MAS: • EASIEST TO IMPLEMENT (NO SPECIA • WORKS WELL FOR ABUNDANT NUCL • WORKS WELL FOR NUCLEI WITH SHO LONGITUDINAL RELAXATION	AL PROBE) • NOT ALWAYS QUANTITATIVE EI • REQUIRES HIGH RF POWER FOR DRT EXCITATION AND MIXING • POOR SENSITIVITY FOR LARGE CQ • COMPLEX SPINNING SIDEBAND BEHAVIOR
ST-MAS: • EASY TO IMPLEMENT (NO SPECIAL F • EXCITES ONLY SINGLE QUANTUM TR • WORKS WELL FOR ABUNDANT NUCL • WORKS WELL FOR NUCLEI WITH SHO LONGITUDINAL RELAXATION	PROBE) • SENSITIVE TO MAGIC-ANGLE MISSET (< 0.01°)

A FEW LOOSE ENDS...

FIELD DEPENDANCE OF ISOTROPIC SHIFT

ISOTROPIC FREQUENCY OF QUADRUPOLAR NUCLEUS IS SUM OF ISOTROPIC

Baltisberger, Gann, Wooten, Chang, Mueller, and Pines, J. Am. Chem. Soc., 1992, 114, 7489

WARNING: NEVER LABEL SPECTRUM AXIS OF QUADRUPOLAR NUCLEI IN SOLIDS AS "CHEMICAL SHIFT". ONLY TRUE IN LIMIT THAT P_Q/V_O GOES TO ZERO.

THE FOURIER TRANSFORM, SHIFT THEOREM, AND SHEARING TRANSFORMATIONS

SHEARING TRANSFORMATION IN DAS, MQ-MAS, ST-MAS

J. Magn. Reson. A, **103**, 72-81 (1993). *J. Magn. Reson. A*, **102**, 195-204 (1993).

$$\begin{split} \mathbf{t}' &= \mathbf{A}\mathbf{t}, \text{ where } s'(\mathbf{t}) = s(\mathbf{A}\mathbf{t}) \\ \mathbf{A} &= \begin{pmatrix} 1+k & 0 \\ -k & 1 \end{pmatrix} \\ \tilde{\omega}' &= \tilde{\omega}\mathbf{A}^{-1}, \\ \text{where } S'(\tilde{\omega}) &= \frac{1}{|\mathbf{A}|}S(\tilde{\omega}\mathbf{A}^{-1}) \end{split}$$

$$t'_{1} = (1+k)t_{1}$$

$$t'_{1} \Delta t'_{1} = (1+k)\Delta t_{1}$$

$$FT^{-1}(t_{2})$$

$$t_{2}$$

EFFECT OF SHEARING TRANSFORMATION

ON SPINNING SIDEBANDS POSITIONS

SHEARED SPECTRA

PROJECTION CONTAINS SIDEBANDS AT SUM/DIFFERENCE OF NON-INTEGER MULTIPLES OF ROTOR FREQUENCY

SHIFTED ECHO DATA ACQUISITION AND PROCESSING OF DAS, MQ-MAS, ST-MAS

PAY THE BILLS...

INTERPRETING QUADRUPOLAR COUPLINGS

(ELECTRIC FIELD GRADIENTS)

Total Electric Field Gradient $\langle R_{2,k} \rangle = \langle \Psi | R_{2,k} | \Psi \rangle$ Nuclear and Electronic Wavefunction

NUCLEAR AND WAVEFUNCTION

THE ELECTRIC FIELD GRADIENT TENSOR

AND ITS ORIENTATION

- EFG is 2nd rank traceless tensor: 5 elements, $\langle R_{2,k} \rangle$, with K = -2,-1,0,1,2.
- There exists a principal axis coordinate system (PAS) where tensor is diagonal... $\langle R^{\rm pas}_{2,\pm1}\rangle=0$
- Further define PAS such that $|\langle R_{2,0}^{
 m PAS}
 angle|>|\langle R_{2,\pm 2}^{
 m PAS}
 angle|$

...Labeling PAS components as $\langle \rho_{2,k} \rangle \equiv \langle R_{2,k}^{\rm pas} \rangle$

• QUADRUPOLAR COUPLING CONSTANT AND ASYMMETRY PARAMETERS ARE DEFINED ...

$$C_q = 2 \frac{eQ}{h} \langle \rho_{2,0} \rangle$$
 and $\eta_q C_q = 2\sqrt{6} \frac{eQ}{h} \langle \rho_{2,\pm 2} \rangle$

IN CARTESIAN COORDINATES... $C_q = e^2 Q \langle q_{zz} \rangle / h$, and $\eta_q = \frac{\langle q_{xx} \rangle - \langle q_{yy} \rangle}{\langle q_{zz} \rangle}$

Note that... $\langle q_{zz}
angle + \langle q_{yy}
angle + \langle q_{xx}
angle = 0$

POINT CHARGE MODEL FOR PREDICTING ELECTRIC FIELD GRADIENTS

- NO ANALYTICAL EXPRESSION FOR EFG EXISTS WITHOUT APPROXIMATIONS.
- MOST DRASTIC IS THE POINT CHARGE MODEL: IT'S CRUDE, BUT OFTEN PROVIDES A

QUALTITATIVE UNDERSTANDING, AND WITH CALIBRATION CAN SOMETIMES BE QUANTITATIVE.

 $\langle R_{2,k} \rangle = \sum_{j=1}^{n} \frac{Z_j e}{d_i^3} \sqrt{\frac{4\pi}{5}} Y_{2,k}(\theta_j, \phi_j)$

APPROXIMATE COORDINATING ATOMS AS POINT CHARGES AND CALCULATE SUM OF ALL COORDINATING ATOMS.

$$\begin{array}{c} \mathbf{x} \quad \text{linear (1-coord.)} \quad \theta = 0, \phi = 0 \\ \mathbf{y} \quad \mathbf{x} \quad \text{linear (2-coord.)} \quad \theta_1 = 0, \quad \phi_1 = 0 \\ \mathbf{\phi} = \mathbf{z} \quad \mathbf{\phi} = \mathbf{z} \quad \theta_2 = 180^\circ, \phi_2 = 0 \end{array} \quad \langle R_{2,0} \rangle = \frac{Ze}{d^3}, \quad \langle R_{2,\pm 1} \rangle = 0, \text{ and } \langle R_{2,\pm 2} \rangle = 0 \\ \langle R_{2,0} \rangle = 2\frac{Ze}{d^3}, \quad \langle R_{2,\pm 1} \rangle = 0, \text{ and } \langle R_{2,\pm 2} \rangle = 0 \end{array}$$

POINT CHARGE MODEL PREDICTS CQ DOUBLES, AND PAS UNCHANGED WHEN ATOM GOES FROM ONE TO TWO-COORDINATED LINEAR.

EXPERIMENTAL ¹⁷ O NMR MEASUREMENTS IN SILICATES					
Non-Bridging Oxygen SI-170	BRIDGING OXYGEN SI-17O-SI				
α -Na ₂ Si ₂ O ₅ C _Q = 2.40 MHz, η = 0.20	α-Na ₂ Si ₂ O ₅	c_{Q} = 5.74 MHz, η = 0.20			
LI ₂ SI ₂ O ₅ C _Q = 2.45 MHz, η = 0.10	LI2SI2O5	c_{Q} = 5.60 MHz, η = 0.10			
Maekawa, Florian, Massiot, Kiyono, Nakamura, J. Phys. Chem. 1996, 100 (17), 5525-5532.					
Xue, Stebbins, Kanzaki, Am, Miner, 1994, 79. 31.					

POINT CHARGE MODEL FOR PREDICTING ELECTRIC FIELD GRADIENTS

Trigonal PlanarPlace quadrupole nucleus at the origin and the z-axis perpendicular to the plane containing 3 point charges $\theta = 90^{\circ}, \phi = 0, \pm 120^{\circ}$ III

$\langle R_{2,0} \rangle = 0, \ \langle R_{2,\pm 1} \rangle = 0, \text{ and } \langle R_{2,\pm 2} \rangle = 0$

Tetrahedral

¹¹ B Examples from Borosilicates	CQ	ETA	
TRIGONAL PLANAR ¹¹ BO3 (RING)	2.65 MHz	0.20	LIN-SHU DU AND
TRIGONAL PLANAR ¹¹ BO ₃ (NON-RING)	2.55 MHz	0.20	JONATHAN F. STEBBINS,
TETRAHEDRAL ¹¹ BO4 (1B,3SI)	0.30 MHz	0.00	J. Non-Cryst. Solids
TETRAHEDRAL ¹¹ BO4 (OB 4SI)	0.30 MHz	0.00	315 (2003) 239-255

POINT CHARGE MODEL FOR PREDICTING ELECTRIC FIELD GRADIENTS

Bent

Place quadrupole nucleus at the origin with z-axis in plane containing atoms and perpendicular to the angle bisector

$$\langle R_{2,0} \rangle = \frac{Ze}{d^3} (3\sin^2 \Omega/2 - 1), \quad \langle R_{2,\pm 1} \rangle = 0, \text{ and } \langle R_{2,\pm 2} \rangle = \frac{Ze}{d^3} \sqrt{\frac{3}{2}} \cos^2 \Omega/2$$
$$C_q = 2 \frac{e^2 Q}{h} \frac{Z}{d^3} (1 - \cos \Omega) \text{ and } \eta = -\frac{3(\cos \Omega + 1)}{3\cos \Omega - 1}$$

¹⁷O QUADRUPOLAR COUPLING PARAMETERS IN SI-¹⁷O-SI LINKAGE AS A FUNCTION OF SI-O-SI ANGLE

ROUGH GUIDE TO SOME

POINT CHARGE MODELS FOR EFG

Name	Structure	Cq	ηq
linear (1)	O€→ ZZ	$2\frac{e^2Q}{h}\frac{Z}{d^3}$	0
linear (2)	$ZZ \leftarrow \bigcirc - \bigcirc \rightarrow ZZ$	$4\frac{e^2Q}{h}\frac{Z}{d^3}$	0
bent (2)	$ZZ \longleftrightarrow \Omega \xrightarrow{\circ} ZZ$	$2\frac{e^2Q}{h}\frac{Z}{d^3}(1-\cos\Omega)$	$-\frac{3(\cos\Omega+1)}{3\cos\Omega-1}$
Trigonal Planar (3)		$-3\frac{e^2Q}{h}\frac{Z}{d^3}$	0
Tetrahedral (4)		0	0
Trigonal Bipyramida	I (5) •- •	$\frac{e^2Q}{h}\frac{Z}{d^3}$	0
Octahedral (6)		0	0

NATURE OF M DETERMINES ¹⁷O QUADRUPOLAR COUPLING CONSTANT IN M-¹⁷O-M LINKAGE

 $[(OH)_{3}M-O-M(OH)_{3}]^{2-}$ $(OH)_{3}M-O-M(OH)_{3}$ $(OH)_{2}OM-O-MO(OH)_{2}$ $(OH)O_{2}M-O-MO_{2}(OH)$

M-O-M Angle and MO distance at optimized value 0 0 AI -5 -5 Ga Şi_{Ge} (NHz) WHz) O -15-Cq (MHz) -10 As Se S C -15 -20 -25 -20 2 1.5 2.5 2 Cation Electronegativity (Pauling Scale) AFTER OLDFIELD AND CO-WORKERS JACS, 106, 2502 (1984), JACS, 108, 7236 (1986) JPC, 91, 1054 (1987).

where M=P and As where M=S and Se

where M=B, Al, and Ga

where M=C, Si, and Ge

LOCAL GEOMETRY IS SECONDARY FACTOR

How does Local Geometry Determine Bridging Oxygen EFG?

With all other factors constant ...

Bridging Oxygen |Cq| values

- decrease with decreasing Si-O-Si angle
- decrease linearly with decreasing Si-O distance

$$C_q(d_{\rm Si-O}, \Omega) = -(5.91 \,\text{MHz}) \left(\frac{1}{2} + \frac{\cos\Omega}{\cos\Omega - 1}\right)^{1.948} - (15 \,\text{MHz/Å}) (d_{\rm Si-O} 1.6 \text{\AA})$$

Bridging Oxygen η_q values - increase with decreasing Si-O-Si angle - are nearly independent of Si-O distance

$$\eta_{\mathit{q}}(\Omega) \!=\! 5.03 \left(\! \frac{1}{2} \!-\! \frac{\cos\Omega}{\cos\Omega \!-\! 1} \right)^{1.09}$$

Clark and Grandinetti, J. Phys. Condensed Matter, 15, S2387-S2395,(2003)

QUADRUPOLAR COUPLING PARAMETERS

CAN BE USED TO MEASURE ANGLES AND DISTANCES

SI-O-SI ANGLE AND DISTANCE DISTRIBUTIONS

IN SILICA GLASS FROM CQ AND $\eta \mathbf{Q}$

COMPARISON OF MODIFIED NMR DISTANCE DISTRIBUTIONS WITH X-RAY

Clark, Grandinetti, Florian, Stebbins, *Phys. Rev. B*, **70**, 064202 (2004).

ACKNOWLEDGEMENTS

CURRENT GROUP

NICOLE TREASE JASON ASH TRAVIS SEFZIK KRISHNA KISHOR-DEY SAMANTHA FARLEY

PAST GROUP MEMBERS

PIERRE FLORIAN ALEX KLYMACHYOV TED CLARK SUBRAMANIAN PRASAD KARL VERMILLION PING ZHANG ZHI YAO HYUNG-TAE KWAK RAMESH SHARMA

"QUADRUPOLE" COLLABORATORS

ALEX PINES, JAY BALTISBERGER, ANTOINE LLOR, MARGARET EASTMAN, YOUNG LEE, BOQIN SUN, YUE WU, JONATHAN STEBBINS, IAN FARNAN, ULRIKE WERNER-ZWANZIGER, SHERYL GANN, JOSEF ZWANZIGER, JOE SACHLEBEN, MAURICE GOLDMAN, ZBIGNIEW OLEJNICZAK, ANDREW KOLBERT, LUCIO FRYDMAN, GERRY CHINGAS, RAZ JELINEK, BRAD CHMELKA, JACEK KLINOWSKI, DOMINIQUE MASSIOT, JOSEPH VIRLET, ZHEHONG GAN, THOMAS VOSEGAARD, LYNDON EMSLEY, DIMITRI SAKELLARIOU, TODD LOWARY, MICHAEL DESCHAMPS, FRANCK FAYON, STEFAN STEUERNAGEL

NATIONAL SCIENCE FOUNDATION