Varian User Meeting, Taichung, June 13, 2006

Some Recent Progress of Solid State NMR Spectroscopy (and Micro-Imaging): Methodologies and Applications 國立中山大學化學系 丁尚武 Shangwu Ding Department of Chemistry, National Sun Yat-sen University

Decoupling Sequences	
• Heteronuclear decoupling:	
CW	
TPPM	
XIX	
CM	
COMORO	
SPINAL	
SDROOPY,eDROOPY,DUMBO, eDUMBO, eDUMBO _{lk}	
 Homonuclear decoupling 	
WAHUHA	
Lee-Goldburg (LG and variants: FSLG, PMLG, wPMLG)	
MREV-8	
BR-24	
BLEW-12	
CORY-24	
TREV-8	
MSHOT-3	
DUMBO, eDUMBO, eDUMBO _{lk} ,	
CNn ^v , RNn ^v	

Pulsed (homonuclear) decoupling

WAHUHA Lee-Goldburg (LG and variants: FSLG, PMLG, wPMLG) MREV-8 BR-24 BLEW-12 CORY-24 TREV-8 MSHOT-3 DUMBO, eDUMBO, eDUMBO_{lk}, CNn^v, RNn^v

From Decoupling to Recoupling

- High resolution achieved with MAS sacrifices information on anisotropy.
- Anisotropy can be recovered with recoupling
- Selective and broadband recoupling
- CSA recoupling
- Dipolar recoupling
- Quadrupolar coupling

How Many Magnetically Nonequivalent Sites in Disodium ATP?

A	(90.0.10)		Ding Lab
в	(90.0.10)	(90, 10, 10)	(90.20,10)
С	(90.30,10)	(90,40,10)	(90.50.10)
D	(90,60,10)	(*0.70,10)	(90,80,10)

3D static ¹³C exchange spectra of polyethyleneoxide polyvinylacetate

Figure 1. (A) Shift in the conformation of Phe87 residue and shift of the water ligand (red and blue balls) upon substrate binding; the PDB files $1BU7^{36}$ (the resting state of the protein, in blue) and $1JP2^{26}$ (the NPG bound state of the protein, in red) were overlaid using 432 backbone atoms within conserved helices D. E., I. L. J. and K, employing Swiss PDB Viewer (SPDBV).⁵³ The RMS deviation for the backbone heavy atoms in this superposition was 0.60 Å. (B) Positions of the Leu-Phe and four Leu-Gly pairs in the heme domain of cytochrome P450 BM-3.³⁶ The unique Leu86-Phe87 pair is close to the heme iron and is involved in the binding pocket, but the Leu-Gly pairs are not. The figures were prepared with programs POV Ray (http://www.povray.org) and SPDBV.⁵³

13C Chemical Shift (ppm) B Figure 4. Pulse sequence (A), and 2D T_1 ¹⁵N measurements on substratebound form of ¹³CO-Leu, ¹⁵N-Gly, ¹⁵N-Phe (B). The SPECIFIC CP spectrum is in red, and the 2D T_1 ¹⁵N filtered experiment for $\tau = 1$ s is in green. The Leuds-Phe87 peak is much reduced in the filtered experiment, due to its more efficient relaxation.

	Biologic science: Chemistry:	growth activities, metabolic mapping,
	Biologic science: Chemistry:	growin activities, metabolic mapping,
•	Chemistry:	chamical chift calacted impaired
•		chemical shint selected maging,
	Drug design: animal	s response to new drugs,
•	Engineering :	artificial joint, polymer flow, 'mouse',
•	Food industry:	processing, packaging, storage,
•	Geology:	fossil characterization,
•	Health science:	osteoarthritis, stroke, cataracts,
•	Image process:	pattern recognition,
•	J-coupling:	structure of molecules,
•	K-space:	new algorithm of image reconstruction,
•	Localization: localize	ed spectroscopy, zoom imaging,
•	Mathematics:	maximum entropy post-processing,

⇒ 20 hr			Ding Lab
(a) Left	(b) Middle (c) Right	★ 1D 1H sp (a) sp (b) sp (c) sp	ectrum for 20 hr: pectral signatures of water. pectral signatures of localization. pectral signatures of sesame.
COr L M R R K K K K K K K K K K K K K K K K K		trans	 •The cssi pulse sequence: imaging matrix: 64×64×1 ⇒ for Left line: chose resto=399.0 Hz ⇒ for Middle line: chose resto=-502.0 Hz ⇒ for Right line: chose resto=-1471.7 Hz

	2 to		Ding Lab
Tx	981.7 500.0 2.0 5.0 3 predelay trise sinc grate*ages tr	3.3 1.1 100.0 1.0 1.0 3.2 100.0 ref hdlpdly sinc tspoil hdlpdly jse+te/2.0-taul grate*agss+te/2.0-tau2	277.8 500.0 trise
Dec			
Gro	277.8 277.8 hsine	277.8 hcosine h	277.8 cosine
Gpe	277.8 277.8 hcosine		277.8 hsine
Gss	277.8 277.8 hcosine	277.8 hsine	277.8 hsine
	Pulse Sequence for M	RI under Magic-Angle-Spinning	9

Concluding Remarks

- Solid state NMR has been a powerful methodology benefiting a large number of disciplines from physics, chemistry, materials science and biology to medicine and social sciences.
- Solid state NMR is still in fast development, clriven by, in particular, advanced materials and biological systems. New pulse sequences keep emerging while old ones find new applications.
- Micro-imaging is relatively underdeveloped, numerous SSNMR pulse sequences are to be employed.
- VARIAN has played a crucial role and continues to be a major driving force.

