

Almanac 2012

Analytical Tables and Product Overview

1001

Innovation with Integrity

50

Analytical Solutions

Bruker – the performance leader in life science and analytical systems.

Right from the beginning, which is now more than fifty years ago, Bruker has been driven by a single idea: to provide the best technological solution for each analytical task.

Today, worldwide, more than 5,400 employees in over 70 locations on all continents are focusing their efforts on this permanent challenge. Bruker systems cover a broad spectrum of applications in all fields of research and development and are used in all industrial production processes for the purpose of ensuring quality and rocess reliability. Bruker continues to build upon its extensive range of products and solutions, expand its broad base of installed systems and maintain a strong reputation amongst its customers. As one of the world's leading analytical instrumentation companies, Bruker remains focused on developing state-of-the-art technologies and innovative solutions for today's ever complex analytical questions.

Bruker – Innovation with Integrity

ISBN-13 978-3-929431-25-4

X-Ray and Elemental Analysis

- X-Ray Fluorescence (XRF)
- X-Ray Diffraction (XRD)
- Crystallography
- Energy Dispersive X-Ray Spectroscopy (EDS)
- Optical Emission Spectroscopy (OES)
- CS/ONH Analysis

Magnetic Resonance

- Nuclear Magnetic Resonance (NMR)
- Magnetic Resonance Imaging (MRI)
- Electron Paramagnetic Resonance (EPR)

Mass Spectrometry and Chemical Analysis

- FT-Mass Spectrometry (FTMS)
- MALDI
- Liquid Chromatography Mass-Spectrometry (LC-MS)
- Inductively Coupled Plasma Mass-Spectrometry (ICP-MS)
- Gas Chromatography Mass Spectrometry (GC-MS)
- CBRNE Detection

Optical Vibrational Spectroscopy

- FT-Infrared Spectroscopy (FT-IR)
- Raman Spectroscopy
- Near Infrared Spectroscopy (NIR)

Microanalysis

- Atomic Force Microscopy (AFM)
- Scanning Probe Microscopy (SPM)
- Stylus and Optical Metrology
- Tribology

Bruker offices

www.bruker.com/map

Bruker Corporation

The Bruker name has become synonymous with the excellence, innovation and quality that characterizes our comprehensive range of scientific instrumentation. Our trusted solutions encompass a wide number of analytical techniques ranging from Magnetic **Resonance to Mass Spectrometry** and Gas Chromatography, to Microanalysis, Optical, and X-Ray Spectroscopy. These market- and technology -leading products are driving and facilitating many key application areas such as life science research, pharmaceutical analysis, applied analytical chemistry applications, materials research and nanotechnology, clinical research, molecular diagnostics and homeland defense. Visit our website to discover more about our technologies and solutions.

www.bruker.com

Karlsruhe, Germany

Rheinstetten, Germany

Bruker – analytical excellence, acknowledged expertise and global presence.

Application lab in Singapore

MR Imaging labs in Ettlingen, Germany

Magnet Production in Wissembourg, France

Santa Barbara, USA

Shanghai, China

Wissembourg, France

Singapore

Yokohama, Japan

Fremont, USA

Content:

Nuclear Magnetic Resonance

- 8 Fourier / Avance III NanoBay
- 10 Avance III / Avance 1000
 12 DNP NMR Spectrometer / Metabolic Profiler
- 14 Magnets / Probes
- 16 CryoProbes & Prodigy / Solid Probes
- 18 TopSpin / Automation
- 20 Complete Molecular Confidence (CMC-se)
- 22 Assure / FoodScreener
- 24 Hyphenation / Latest Technologies 26 Power Supplies / RF Transmitters

Time Domain NMR

- 30 the minispec TD-NMR Analyzers
- 33 HyperQuant

Magnetic Resonance Imaging

- 36 BioSpec
- 38 ClinScan
- 40 PharmaScan
- 41 Icon
- 42 BGA-S Gradient Series
- 43 USR Magnets
- 44 MRI CryoProbe
- 45 Micro-Imaging
- 46 ParaVision / Beyond Standard BioSpecs

Electron Paramagnetic Resonance

- 50 ELEXSYS
- 54 ELEXSYS Accessories
- 55 EMXplus
- 56 EMX*micro*
- 57 e-scan

Mass Spectrometry

- 60 MALDI-TOF
- 62 LC-MS and Ion Trap
- 64 LC-MS and o-TOF
- 66 UHR-TOF and FTMS
- 68 Ion Sources, Software & Applications
- 70 ICP-MS and GC-MS
- 72 GC Systems and GC Accessories
- 74 GC Accessories and Consumables
- 75 Maldi Biotyper Consumables

CBRN Detection

- 78 Prepared for a changing world of threats
- 79 Chemical Hazardous Agent Detection
- 80 Chemical & Radiation Detection
- 81 Biological Detection
- 82 First Responders & Environmental Protection
- 83 Software Solutions

Optical Vibrational Spectroscopy

- 86 FT-IR Spectrometers
- 88 Remote Sensing Systems
- 89 Raman Spectrometers
- 90 FT-IR & Raman Microscopy
- 91 FT-NIR Spectrometers
- 92 Process Analytical Technologies
- 93 Opus-Spectroscopy Software

Analytical X-ray, AFM, OES

- 96 X-ray Diffraction
- 99 X-ray Fluorescence Analysis
- 102 Optical Emission Spectrometry
- 104 CS / ONH Analysis
- 106 Microanalysis
- 107 Chemical and Biological Crystallography

Atomic Force Microscopy

- 110 Atomic Force and Scanning
- Probe Microscopy
- 111 Stylus and Optical Metrology

Tables

Û	2 – 38	NMR Tables
Ū	39 – 48	X-Ray Diffractometry Tables
Ū	49 – 53	EPR / ENDOR Tables
Ū	54 – 61	IR Spectroscopy and Raman Tables
Ū	62 – 76	Mass Spectrometry Tables
Û	77 – 85	Chemical Tables
Û	86 – 94	Physical Tables
Û	95 – 96	International Dailing Codes / World Time Zones

2012 Monthly Calendar

Participation at Exhibitions and Conferences

Bruker Users Meetings worldwide

Training Courses

Represents public holidays.

Nuclear Magnetic Resonance

Solutions for Life Sciences and Analytical Research

Innovation with Integrity

NMR

Fourier

Dedicated high-resolution NMR spectrometer delivers affordable NMR for all your common applications in education and routine chemistry research

Fourier brings NMR within everyone's reach. It delivers powerful performance at extremely compact size, low weight and most importantly, minimal cost. With its new Fourier probe technology and a unique push-button, power on/off concept, ease of siting and handling is guaranteed. Designed and built by the world's NMR market leader, Fourier unique qualities include the

on the SampleXpress Lite

industry standard operating software, TopSpin[™]. TopSpin's various tools for exploring the world of NMR make Fourier the ideal solution for chemistry education and routine analysis. Researchers have access to numerous pre-defined 1D and 2D experiments and interactive, automated processing tools help to transfer spectroscopic data into a corresponding report.

Benefits

- Affordable NMR spectrometer for Chemistry Education and Small Molecule Analysis
- Industry Standard TopSpin software
- Providing higher throughput with the SampleXpress Lite 16 position sample changer
- Proven IconNMR software for automation control
- New robust Fourier NMR probe for easiest handling
- 1D/2D Proton and Carbon NMR for every Chemist

Sample setup with the intuitive IconNMR interface

Avance III NanoBay

The Most Fully Integrated State-of-the-Art NMR Spectrometer Ever

The Avance[™] III NanoBay is the most comprehensively integrated, state-ofthe-art NMR spectrometer ever produced. The NanoBay's innovative design sees Bruker's high-performance Avance III NMR spectrometer technology boldly held within an exceptionally compact enclosure.

Amix[™] provides a collection of powerful tools that enable statistical and spectroscopic analyses of your NMR data. For a wide variety of applications, such as metabolomics, small molecules research and mixture analysis an increase in productivity can be achieved. It delivers high-productivity with highest quality NMR information for pharmaceutical and industrial chemists, as well as food analysis, diagnostics research and other small molecule applications.

			-					del-lages.	4.4	-
-	-		2	-		+	÷	-	-	
	=					- 1	E			
-	41	12.0	-	_			-	-	1222	-
-	A	1111	-		_		-			
	4.		- 2 -				-			
- E1	-						-			
E	-		- 1		-	- 8	E			
	-						**			
-	-		1.2		-	84	**	-		
-	4.	127	1.1	-		- 81	**	-		
	-	10.00		212 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
	-		12.1			11	22	1	_	
88-m	Allowed.	Aller .		-	11.00	10				
										-
	-		-			-	-		No. 100	
	1.11		10.00	and the second	-			* * * ·	_	_
_	1.23		-	A of last her	the second se			- 20		
in the second second	1.11		-	-				- 2	_	
		-	Sec.	1.4.19.46				41		
		-	100	-				- 21		

IconNMR[™] is the graphical user interface for fully automated acquisition and processing. This productivity tool excels whenever large numbers of samples accrue, or where multiple users access your spectrometer.

- Ultra compact, innovative design high-end NMR spectrometer
- Available at 300 and 400 MHz
- Featuring UltraShield[™] Plus magnet technology
- Easy siting in small analytical laboratories
- TopSpin[™] Intuitive routine user interface
- Based on well-proven Avance[™] III spectrometer technology
- High-fidelity NMR information for a wide range of chemical applications

Avance III NanoBay 400 MHz spectrometer

Avance III

The Avance[™] III is the ultimate NMR platform for life-sciences and materials research. Robust, automated and easy-to-use it is the ideal NMR analysis system for the pharmaceutical, biotech, and chemical industries, for metabonomics, materials science, molecular diagnostics, and much more.

The Avance III is the newest generation in the very successful Avance series, which has established Bruker as the clear technological and market leader in NMR and pre-clinical MRI worldwide. The Avance III spectrometer architecture is designed around an advanced digital concept which provides an optimized pathway for high-speed RF generation and data acquisition with highly modular and scalable transmitters and multiple receiver channels.

The Avance III platform provides 25 ns event timing (12.5 ns clock), and simultaneous phase, frequency and amplitude switching with capabilities that exceed the requirements of even the most demanding solid-state NMR experiments. The second-generation digital receiver technology delivers high dynamic range, high digital resolution and large-bandwidth digital filtering. The unique digital lock system provides the utmost in field/frequency stability.

Benefits

- Patented Direct Digital Synthesis
- One-chip RF generation
- Timing Resolution: 12.5 ns
- Minimum event time: 25 ns
- High-speed RF generation and data acquisition
- Scalable transmitters and multiple receiver channels
- High-dynamic range and digital resolution
- Large-bandwidth digital filtering

Ultra-High Field Avance III 850 MHz NMR system

Avance 1000

Bruker is proud to provide the world's highest field NMR system of highest sensitivity and dispersion to the scientific research community. With this instrument, research in biochemistry, structural biology and other molecular research will be pushed to new frontiers.

The first Avance 1000 NMR system equipped with a CryoProbe has been installed at the new 'Centre de RMN à Très Haut Champs' in Lyon, France.

- 1 GHz NMR system with 23.5 T persistent superconducting magnet
- Standard bore, 54 mm diameter
- UltraStabilized[™] sub-cooling technology, achieving the highest field and most compact magnet coil at this field strength
- Proprietary jointing technology enabling high current and high-field joints with minimum resistance for maximum field stability
- 5-mm triple-resonance CryoProbe, enabling unique 1 GHz NMR applications
- 1.3-mm, 2.5-mm & 3.2-mm double and triple resonance MAS probes, enabling unique 1 GHz NMR solids applications

NCO correlation recorded on U[¹⁵N,¹³C]-microcrystalline GB1 without (left) and with (right) a S3E J-decoupling block; 60 kHz MAS, T1max=40 ms, T2max=50 ms, NS=48, exp. time=17 hrs.

1GHz (23.5 T) UltraStabilized magnet installed at Centre de RMN à Très Haut Champs, Lyon, Fr. Courtesy: Prof. L. Emsley.

Acknowledgements:

Dr. Moreno Lelli, Dr. Józef Lewandowski, Dr. Guido Pintacuda, Dr. Anne Lesage, Dr. Benedicte Elena, and Prof. Lyndon Emsley with CRMN, Lyon, France.

DNP-NMR Spectrometer

Sensitivity Boost for Biomolecular NMR

263 GHz DNP - NMR Spectrometer

2 s recycle delay, 9 kHz MAS, 100 K sample temperature, 400 MHz ¹H frequency.

Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron to nuclear spins enhancing sensitivity and dramatically reducing signal averaging time. Bruker Avance DNP-NMR Spectrometers are designed specifically for solid-state NMR, delivering unsurpassed sensitivity for exciting new applications.

Benefits

- DNP-enhanced solid-state
 NMR experiments at high field
- Polarization enhancement yields up to a factor of 80 gain in sensitivity, to date
- Unique high power 263 GHz micro-wave source with easyto-use software-controlled high-power gyrotron (9.7 T)
- Microwave transmission line designed for optimum beam propagation to the sample
- Low-temperature MAS probe technology with cold spinning gas supply and built-in wave guide
- 395 GHz (600 MHz ¹H) and 528 GHz (800 MHz ¹H) spectrometers in development

DNP experiments on membrane-associated HIV gp41protein with uniform ¹³C,¹⁵N labeling at Ala-6 and Gly-10. (**a**) ¹³C CPMAS spectra with and without µwaves showing a factor of 22 DNP signal enhancement at 100 K, 8 kHz MAS, 32 scans, 5 s recycle delay. (**b**) DNP-enhanced DARR ¹³C-¹³C correlation experiment with 15 ms mixing time, 32 scans, 8 kHz MAS, and 200 points in f1.

Metabolic Profiler

Metabolic profiling and finger printing is a key process in the pharmaceutical industry for studying drug efficacy or toxicology. In clinical research, metabolic profiling helps to identify biomarker compounds for early disease detection and monitoring, and enables researchers to study the effects of drugs in biological systems in a rapid and robust method.

Integrated Analysis

The Metabolic Profiler™ is a dedicated, integrated LC-NMR/MS solution for metabolic analysis featuring an Avance NMR spectrometer and a micrOTOF-Q II™. This system provides a simple, easy to use and inexpensive base for acquiring the spectroscopic data needed for basic metabolic profiling. The system delivers the integration of automated sample handling, acquisition, collection and archiving of your data, and enables the comparative and statistical analysis needed for your research.

Data Management

SampleTrack[™] is an Oracle[®]-based information system that utilizes SQL tools for organizing, searching and archiving sample information, which can simplify experimental control of large sample sets.

Statistical Analysis

The AMIX program provides a comprehensive range of powerful tools that enable statistical and spectroscopic analyses of both your NMR and MS data. AMIX features Pattern Match - which can define spectral patterns in multiple ways and project these to spectra. In addition, the Multi-Integration features can be used to identify and quantify metabolites in complex mixtures.

Reference Compound Spectral Database

The most complete metabolite NMR spectral database available which contains over 17,000 spectra of the most common endogenous metabolites. By taking into account the effects of pH, field strength and by using one as well as two dimensional NMR data, the database enables the assignment of metabolites in biofluids, cell extracts and tissues in a unique and unambiguous way. Linking the database to AMIX enables automatic investi-gations, such as matching to mixture spectra. Direct integration into statistical data evaluation is also possible.

AMIX[™] analyzes data and is linked to the Spectral Database for further comparative analysis.

Magnets

Bruker has specialized in the design and production of magnets and cryogenic systems for a wide range of applications, becoming the world's largest manufacturer of superconducting magnets for NMR. Bruker is engaged in every aspect of the magnet business including research and development, production and testing, individual site planning, as well as service and support.

UltraStabilized

UltraStabilized[™] is our innovative magnet technology for Ultra-High Field NMR up to 1000 MHz. This proprietary technology provides reliable, stable operation at reduced helium bath temperature and ambient pressure.

US²

The US² represents the efficient combination of Bruker's renowned magnet technologies (UltraStabilized[™] and Ultra-Shield[™]) for enhanced system performance and siting flexibility at Ultra-High Field strength.

Ascend

This new magnet line at 400 to 850 MHz incorporates the key technologies of the well-established UltraShield[™] Plus magnets, with new innovations for superior performance. The Ascend[™] magnet design features advanced superconductor technology, enabling the design of smaller magnet coils, resulting in a significant reduction in the size of the cryostat. Ascend magnets are therefore easier to site, safer to run and have lower operational costs. These high-performance systems are ideal for structural biology research and materials research applications.

Ascend 500, 600, and 700 MHz systems

Probes

X Observe Probes

These probes are optimized for observation of X-nuclei. They are available in selective or broadbanded versions for double, triple and quadruple resonance experiments, including automated tuning and matching.

¹H Inverse Probes

The inner coil of these versatile probes, in multinuclear or selective configuration, is fully optimized for ¹H observation at highest sensitivity with optimal lineshape. The available configurations and choices of X-nuclei are identical to those for X Observe Probes.

Inverse MicroProbes

For highest ¹H sensitivity per mole of substance, e.g. in natural products applications, Bruker offers 1- and 1.7-mm ¹H/¹³C/¹⁵N fixed-frequency probes.

SmartProbe

SmartProbe

The SmartProbe[™] delivers highest sensitivity on both the multinuclear and proton channel. The SmartProbe design exclusively features a broadband frequency channel enabling fully automated applications on protons and the widest range of X-nuclei. This unique probe technology enables fluorine applications including ¹⁹F observe with ¹H decoupling and vice versa.

SmartProbe Applications with X-nuclei

CryoProbes & Prodigy

CryoProbe™ technology has delivered the single largest increase in detection sensitivity ever achieved in the evolution of NMR equipment. The factor 3-4 jump in sensitivity enables the use of correspondingly smaller sample quantities that are impractical with conventional probes, or enables the user

optimal X-nucleus detection we offer the 5-mm Quad CryoProbe in ¹³C/³¹P/¹⁹F/¹H and ¹⁵N/¹³C/³¹P/¹H versions. All high-resolution CryoProbes are equipped with a ²H lock and a Z-gradient. A ¹H micro-imaging CryoProbe is also offered to enhance the study of sample structure and properties in the micrometer range.

a conventional 5-mm probe. For

CryoProbe Prodigy

to increase sample throughput up to 16-fold.

Product Lines

Bruker offers the largest range of CryoProbe configurations from 400 MHz to 1000 MHz, including proton optimized probes such as our 1.7- and 5-mm inverse triple-resonance probes, as well as 10-mm dual ¹³C observe probes.

The 1.7-mm Micro-CryoProbe offers an increase in sensitivity per mole of more than an order of magnitude compared to

Comparison of the 13C-sensitivity of a standard BBO probe with the CryoProbe Prodigy at 400 MHz. Sample: 50 mM quinine, 32 scans each.

CryoProbe Prodigy with pump and control unit

Prodigy

CryoProbe Prodigy, a new, revolutionary CryoProbe that delivers tremendous boosts in sensitivity at an affordable price. Costing significantly less than a conventional CryoProbe, the broadband CryoProbe Prodigy uses nitrogen-cooled RF coils and preamplifiers to deliver a sensitivity enhancement over room temperature (RT) probes of a factor of 2 to 3 for X-nuclei from ¹⁵N to ³¹P. The sensitivity gain on the proton channel exceeds standard probe performance by a factor of 2 or more.

Solid Probes

Our comprehensive range of the most advanced solids probes are ideal for inorganic and biological samples using experiments such as CP, d.CP, MQMAS, or REDOR.

Maximal spinning rates are 70 kHz for the ultra-high speed 1.3-mm MAS probe for materials science, 30 kHz for the 3.2-mm triple-resonance E^{free} MAS probe for protein research, and 15 kHz for the 4-mm HR-MAS probe with Z gradient for metabolomics studies.

The BioSolids probe product line is based on one of two technologies, TL_2 or E^{free}. For optimum performance these probes are configured as fixed frequency triple resonance probes, most often requested for proton, carbon and nitrogen. TL_2 probes yield the best overall sensitivity with high ¹H sensitivity for inverse detection experiments.

Efree

E^{free} probes are specifically designed to minimize RF heating. The two coil configuration provides enhanced sensitivity for ¹³C and ¹⁵N and the highest tuning and matching stability for safe, long term experiments. Minimized RF heating ensures the integrity of your protein, even while operating at room temperature.

1.3-mm MAS

The 1.3-mm probe product line provides the highest spinning speeds coupled with high-sensitivity and RF fields. Where sample heating might become an issue, convenient low power decoupling can be employed.

Efree probe

TL,

TL₂ technology is the choice when high-decoupling fields are needed for optimum decoupling in J-coupling based experiments and when sample heating is not an issue. TL₂ probes are best used for dry and non-salty samples, or samples that are kept in a frozen state.

1.9-mm MAS

The new 1.9-mm MAS probe now enables fast spinning of nuclei less sensitive than ^{19}F and ^{1}H , offering 42 kHz spinning frequency at 10 μL active sample volume.

NMR using fast magic angle spinning

700 MHz 2D FSLG-HETCOR of L-tyrosine-HCI. Spinning frequency was 42 kHz, RF field for FSLG was 140 kHz. Projections are 1D ¹³C CP/ MAS and ¹H wPMLG-5 spectra, respectively. Note that only directly bonded ¹H – ¹³C correlations are visible.

The Manual and the second seco

NCO PAIN CP with ultrafast sample rotation. Spectra with 3 ms (red) and 6ms (blue) mixing time for long distance contacts in GB1 at 60 kHz rotation, 5°C with 75–80 kHz, ¹³C, ¹⁵N and 15 kHz on ¹H. (Lewandowski et al. JACS 129, 728 (2007))

TopSpin

Ideal for first-time spectrometer users as well as routine users, TopSpin's different acquisition tools make it easy for both beginner and expert to find their way to an NMR spectrum.

TopSpin provides a wealth of data processing visualization and administration features, including:

- Comprehensive set of functionalities for dealing with 1D to 5D data including automatic forward/backward or delayed linear prediction
- Inverse Fourier transform processing of rows, columns, planes and subcubes of nD datasets
- Interactive and automatic multi-dimensional peak picking and integration..

TopSpin User Interface

TopSpin 3.1 on Mac

Features

- PC-standard user interface offers easy accessibility for Windows[®] and Linux[®] users
- Comprehensive functionalities for processing, displaying and analyzing single and multidimensional spectra
- Intuitive acquisition
- Non-uniform sampling
- Small molecule characterization
- BioTools[™] Biomolecular NMR made easy
- Method development environment
- Result publishing, predefined and user-defined layouts
- Lineshape analysis for solidstate NMR, including dynamic NMR
- Regulatory compliance support tools (audit trailing, electronic signature, autoarchiving)
- Special licenses for students and universities

TopSpin for Mac OS X

Entirely programmed in the native Apple Mac OS X environment, the new TopSpin software caters to MAC users' familiarity with the unique and intuitive characteristics of that operating system, while maintaining the proven capabilities, look and feel of TopSpin. Incorporating a comprehensive range of NMR data analysis, processing and simulation features, TopSpin includes modules for efficient small molecule characterization and structural biology research.

Automation

Avance[™] NMR systems meet the most demanding of automation needs by streamlining every aspect of NMR analysis, including sample submission, sample preparation, automatic probe tuning, data acquisition, processing, data distribution and archiving. Depending upon the laboratory's needs or goals, automation may involve highthroughput screening, overnight automation or multi-user open access.

IconNMR

This productivity tool excels whenever large numbers of samples are submitted for standardized experiments, or when many users access the spectrometer. IconNMR[™] supports sample changers and sample preparation robots. The user can set up or supervise measurements remotely via a Web browser from a desktop or pocket PC.

SampleJet

SampleJet[™] changer for 300-700 MHz NMR systems offers both high-throughput as well as individual sample capabilities in a single NMR sample changer. Its versatile design can accept samples from five 96-position racks, allowing batch analysis of up to 480 tubes. In addition, the SampleJet easily accepts single tube samples via a separate carousel that can hold up to forty-seven 1-, 1.7-, 3- and 5-mm tubes.

SampleCase

SampleCase[™] is the first NMR automation solution that provides easy, safe and convenient access to fully-fledged NMR automation at user height. Ensuring simple random access automation without the need for steps or ladders, it also enables manual insertion and ejection of samples with the simple push of a button. The user-friendly system can be fitted to almost any Bruker NMR magnet.

SampleXpress

Bruker's easy-to-use, cost effective solution for medium-throughput automation in NMR routine and research applications. Its compact, exceptionally integrated design drastically reduces sample exchange times to just a few seconds, making SampleXpress[™] ideal for optimizing throughput in standard NMR service laboratories running 30-100 samples per day. In addition, efficiency is maximised thanks to interchangeable, easy-fill cassette modules that can be loaded off-system and in parallel with current experiments. The system is also equipped with integrated bar code reader for automatic sample identification.

SampleCase

ampionpieso

Complete Molecular Confidence (CMC[™])

CMC-i:

Structure Consistency Analysis

Only complete computational NMR spectral analysis provides a safe assessment of the consistency between a given structure and its ¹H NMR spectrum. Finally overcoming tedious manual procedures, optimizing predicted spectral parameters to match experimental data using iterative spectral analysis is now possible in full automation.

 Complete NMR spectral analysis yielding fully assigned spectra and highly accurate spectral parameters extracted from data, even for overlapping signals and strongly coupled spin systems

Single and multiple result view

- Benefits from PERCH's highly sophisticated algorithms for predicting chemical shifts and couplings and optimizing them to match the experimental data using iterative quantum mechanical spectral analysis
- Extremely safe assessment of the consistency between a given structure and its ¹H NMR spectrum data based upon the quality of the fit and the similarity between predicted and actual spectral parameters, with optional use of HSQC information
- Accurate estimation of sample purity

CMC-q: Absolute Quantification

Complete Molecular Confidence for quantification (CMC-q) is a complete workflow solution that facilitates automatic NMR-based quality assurance in batches.

- CMC-q provides quick access to automated NMR quality assurance and quantification of larger batches of samples. Delivering accurate, precise information on sample concentration and water content in typical screening samples, CMC-q also marks questionable structures and provides a suggestion for spectral assignment. This is ideally complemented with LC-MS information such as that derived from Bruker's SmartFormula program.
- Operating on a file-in, file-out basis, the user supplies an input file describing the samples to be measured, and receives an output file of results.
- The spectra interpretation function can also analyze individual datasets and prepare spectra for publication or for further analysis.

CMC-assist: Data Interpretation and Workflow Steamlining

The most powerful software tool for interactive, assisted NMR data analysis is now available. Designed for NMR end-users, CMC-assist efficiently extracts information from complex NMR data, conducts assessments and generates detailed reports for direct transfer to publications, patents and lab journals. CMC-assist not only excels as an off-line analysis interface but its automatied NMR interpretation power can also be used to generate results directly at any Bruker NMR instrument equipped with the latest control software, making it the most efficient and streamlined NMR workflow on the market.

- Seamless integration with Bruker spectrometers
- State-of-the-art analysis engine, powered by modern human logic emulation algorithms
- Automatic results may be refined manually

CMC-se: Structure Elucidation

CMC-se is an NMR software package for simple and efficient structure elucidation of small molecules. With its innovative approach, CMC-se accelerates the spectroscopist's workflow during the elucidation process by automating many of the key analysis and interpretation steps. In combination with Bruker's Avance™ NMR spectrometer product line, CMC-se is the only elucidation tool that integrates high-quality NMR data acquisition with sophisticated software analysis. CMC-se is available for the major operating systems: Windows®, Linux® and Mac OS® X.

- Automatic data analysis includes:
 - Integration and ¹H number determination
 - Multiplet analysis
 - Structural assignment
 - Consistency statement
 - Concentration
- Reports include detailed PDF and multiplet string in different journal formats
- Windows, Linux or Mac operation systems are fully supported

CMC-assist & CMC-se

CMC-assist User Interface

- Simple and efficient structure elucidation of small molecules in drug discovery and natural products research
- Automates many of the necessary analysis and interpretation steps
- Seamless integration of NMR acquisition and sophisticated software analysis
- Enables both accomplished researchers and beginners to expedite the elucidation of unknown substances in diverse pharmaceutical and chemical applications
- Organizes the data for a molecule into a single project, and provides unique graphical tools for data visualization and interpretation

Assure

Assure RMS-Raw Material Screening

Impurities and adulterants in starting materials pose potential health threats when present in the manufacturing of pharmaceutical APIs and drug products. These same impurities and adulterants may also result in lower production yields and increased product purifica-

Category	Conce	entratio	n	Statu	8	Match
Active Ingredient		99.6	1		1	
Aduiterant		0.38%				1
Impurity	0.00%			0		
Unknowns			•			
		Faii	%	relative	to to	tal integ
Compound		Concentration			Status	
Compound		Concer	uas		_	itus
Compound Hydrocodone		Loncen	9	9.64%	qui	itus antified
Compound Hydrocodone Phenetole	_	Concer	9	9.64%	que	antified antified

Quantification results of main components and impurities are reported in a simple to read format with a user defined 'pass/fail' threshold.

Assure SST - System Suitability

Assure-System Suitability Test (SST) is the ideal tool for any NMR spectroscopy laboratory. In full automation, the NMR spectrometer is validated regularly for instrument performance and optimized before you run your samples.

Choose from a list of available individual tests to perform lineshape and sensitivity measurements on your liquid-state NMR spectrometer that will run at a time convenient for your facility.

tion. Screening starting materials by NMR using Assure - Raw Material Screening identifies problem samples prior to use and prevents costly manufacturing mistakes. Designed for GMP and GLP environments, Assure - Raw Material Screening provides a traceable record of sample analysis and results. Applications include pharmaceutical and chemical production and analytical reference standards.

Features

 System Suitability Test for GMP/GLP Labs

- Automated Data Acquisition
- Automated Quantitative and Qualitative Analysis
- Automated Report Generation
- QC Report a 'pass' or 'fail' report
- Detailed Expert Report total analysis
- Lock-out mode for access-limited users
- Convenience Features
- Sample SBASE/KBASE
- Customizable

Probe-specific parameter settings enable use on practically any liquid-state NMR probe.

Assure-SST's Temperature Calibration feature calibrates AND adjusts the temperature of the sample to the actual desired value. Accuracy in temperature provides optimal results for spectral reproducibility from instrument to instrument.

- Fully Automated Performance Validation
- Instrument Optimization
- Monitors performance of 'walk-up' instruments
- Enables NMR specialist to produce more results
- Improves data quality
- Meets GLP requirements

FoodScreener

The JuiceScreener[™], combined with its SGF Profiling[™] technique, can deliver huge amounts of information derived from one single experiment, instead of multiple individual analysis steps. This provides higher throughput and reliability than conventional techniques, leading to a significant reduction in cost per sample. This enables up to 5 times more sample investigations with no change in budget, resulting in an improved and more comprehensive quality control screening program.

Push-Button Routine

SGF Profiling is a fully automated pushbutton routine that needs no interaction from the operator. From sample bar code registration, preparation and handling, to data acquisition and statistical evaluation, all steps are under the control of SampleTrack™, Bruker's laboratory information system.

Spectroscopic Database

Screening is based on a constantly updated, extensive spectroscopic database that includes thousands of NMR spectra from mainly authentic juices. Currently the data base includes about 40 different fruit types from more than 50 production sites worldwide. In addition, the database also provides access to hundreds of small molecule compounds for further analysis of unknown ingredients.

Features

- Fully automated push-button NMR solution including evaluation and reporting
- Simultaneous absolute quantification of all relevant organic ingredients for juice assessment
- High-throughput with minimal sample preparation
- Reduced cost per sample
- Reliable screening method providing targeted and non-targeted multimarker analyses
- Enables the detection of unexpected fraud
- Screening is based on an extensive NMR spectroscopic database of more than 8000 reference juices, obtained from production sites all over the world
- Complex statistical models enable the analysis of: origin authenticity, species purity, fruit content, false labeling, production process control and sample similarity

Hyphenation

Major tools for small molecule research and mixture analysis include HPLC, SPE, NMR and MS. Bruker offers hyphenated systems to meet various research needs. While NMR can be used to investigate the complete mixture, LC-NMR can analyse the individual compounds separated by the chromatography. An LC-NMR interface can easily be added to any NMR system from Bruker thereby also enabling hyphenated LC-(SPE)-NMR(/MS) applications. By combining the structural resolving power of NMR for the separated compounds with the mass accuracy of the micrOTOF, we can offer the most complete system for structural analysis available today.

LC-(SPE)-NMR

Two different methods for coupling are possible: either by coupling the chromatography system directly to the NMR spectrometer, or by the intermediate

spectra from m/z 355.1034 (upper part) of chlorogenic acid and the comparison with ion trap library (lower part) ¹H NMR spectrum of chlorogenic acid and the comparison with reference compound commercially available.

Hyphenated system including sample preparation, NMR, LC and MS

collection of the samples. Direct coupling can be performed as stopflow or on-flow analysis. For intermediate collection loop-storage or collection on solid phase extraction (SPE)-cartridges is possible.

The use of SPE provides an efficient interface between chromatography and NMR even enabling the analysis of low level metabolites.

Immediate Access to Latest Technologies

Contract Bruker Analytical Services

Everyone can now benefit from Bruker's latest technologies, instrumentation, and unmatched experience in analytical applications. We offer supporting services that include advanced high-resolution NMR and mass spectrometry applications. Our customers can benefit from access to the latest developments in the field through Bruker's cooperations with academic and industrial research labs. Our experts can also assist you with special customized projects.

Benefits

- Short and long term support increases project handling capacity
- Latest, most advanced Bruker technologies
- Unique analytical expertise and knowledge
- Method development and feasibility studies

Advanced NMR Services

- Structure verification and elucidation
- Reaction and purity control
- Quantitative analysis
- Variable temperature experiments
- Screening methods for pharmaceutical and clinical research
- Food quality control
- Juice analysis using SGF-profiling
- Metabonomics studies
- Natural product analysis

Additional Analytical Services

- Mass Spectrometry & Imaging
- EPR (ESR) Spectroscopy
- TD (Time Domain) NMR Spectroscopy
- X-ray Diffraction, Crystallography & Fluorescence
- FT-IR Spectroscopy & Microscopy
- Raman Spectroscopy & Microscopy
- LC-(SPE)-NMR/MS

Customized Projects

When additional measures are needed, our technical experts will discuss the range of special capabilities available to you. Whether it is a short term project where specialized equipment is a necessity, method development is required or feasibility studies are needed, we can help you with our extensive resources.

High-Performance Power Supplies

High-Voltage Power Supplies

Bruker high-voltage power supplies find their main applications in IOT- and Klystron-based RF transmitters in Particle Physics. Our power supplies provide high-voltages of up to 50 kV at broad range, from 1 kW up to several Megawatts. The compact solid-state design is based either on the latest switch mode technique or, in the case of highest power applications, based on SCR (Thyristor) control.

Klystron power supply for the MAMI C race track microtron, Mainz University, Germany.

High-Current Power Supplies

Bruker high-current power supplies are employed in industry and particle physics research worldwide. Our high-current power supplies, available for pulsed or DC, monopolar, bipolar or four-quadrant operation, deliver high-currents of up to 30.000 A. Based on the latest switch mode technology they ensure optimum efficiency and enable standalone, fail-safe operation. The option of linear mode regulation provides maximum stability and minimum noise and fluctuations from 1% to better than 1 ppm (part per million).

For high-power applications our high-current power supplies benefit from SCR (Thyristor) control. We offer single- and multi-channel supplies starting in the 100 Watt range going up to several Megawatts.

RF Transmitters

Bruker Radio Frequency Transmitters are established in nuclear physics applications all over the world. Our high-voltage power supplies, capable of emitting power from 100 Watt up to 300 kW and more, benefit from modern switch mode design for optimum efficiency and feature SCR (Thyristor) control to handle the highest power applications.

Choose from single or stacked solidstate amplifiers, whilst IOT amplifiers deliver optimum peak power conversion efficiency.

For arc protection our emitter tubes operate with defined stored energy, with optional solid-state crowbar circuits to protect the sensitive elements. Start-up and operating procedures are handled automatically ensuring standalone, fail-safe operation, while a solidstate safety system ensures maximum protection for the transmitter elements and the user applications.

RF IOT high-power transmitter at ELBE FZD Rossendorf, Dresden, Germany.

Content:

TD-NMR Products

- 30 minispec mq Series
- 31 minispec one Series
- 32 minispec LF Series minispec ProFiler
- 33 HyperQuant

Innovation with Integrity

TD-NMR

the minispec TD-NMR Analyzers

The minispec benchtop product lines utilize Time-Domain (TD-)NMR spectroscopy, a method related to High-Resolution NMR and Magnetic Resonance Imaging MRI. Unique permanent magnet and radio frequency (RF) technologies are applied to investigate the sample as a whole, nondestructive and non-invasive.

the minispec mq Series

the minispec mq Series

The award winning mq series covers a wide range of applications for both R&D and routine quality control and offers multiple expansion capabilities.

With the addition of innovative accessories and readily exchangeable probe assemblies, the mq Series is suited for a full range of time domain NMR measurements. Typical applications are:

Food Industry

- Solid Fat Content in fat compositions (AOCS Cd 16b-93, ISO 8292 & IUPAC 2.150 methods)
- Oil and moisture in seeds and oil seed residues (AOCS Ak4-95, ISO 10565 & 10632 methods, USDA GIPSA approved)
- Solid Fat Content as well as total fat content in chocolate and chocolate related products
- Droplet size analysis in O/W and W/O emulsions Oil, water and protein in dry and wet food and feed

Turnkey solutions for Quality Control (QC) are offered with straight-forward calibrations comprising well-known international recognized standard methods according to ISO, ASTM and AOCS. the minispec series provide also a sound of basis for R&D applications like MRI contrast agent research, determination of droplet size distribution in emulsions and obesity research.

Textile Industry

- Spin Finish on Fibres (OPU)
- Coatings on Polymers

Polymer Industry

- Xylene soluble content in polypropylene
- Density and crystallinity in polyethylene
- Rubber content in polymers like ABS or polystyrene
- Cross-link density of elastomers

Petrochemical Industry

- Hydrogen content in hydrocarbons (ASTM D 7171 method)
- Oil content in paraffin and wax

Pharmaceutical Industry

- Fat and lean in live mice and rats
- Contactless weight determination
- Moisture and solvents in powders and tablets
- Contrast agent investigations near MRI fields: 0.25 T, 0.5 T, 0.75 T, 1.0 T and 1.5 T

Healthcare Industry

- Fluorine content in toothpaste
- Melting properties of cosmetics

R&D and Academics

- All types of temperature dependent relaxation time studies
- Diffusion experiments
- Single-Sided NMR

Dedicated Solutions for -Industrial Quality Control

the minispec turnkey analysis workflow

Readily available calibration standards, such as Bruker's certified SFC samples

No sample preparation, just insert sample into the minispec mq_{one}

the minispec mq_{one} Series

The mq_{one} Analyzer is not just an analytical device. It offers a dedicated solution for the analytical task of daily quality control (QC) in the industry. The simple calibration, the intuitive workflow and the multilingual software allow the operation of the mq_{one} Analyzer by everybody. The three user levels and compliance to 21CFR part 11 lead to safe and fully traceable data. The high performance of the mq_{one} Analyzer guarantees high result quality and the well known Bruker quality ensures a long lifetime of your mq_{one} Analyzer.

the minispec mq_{one} Analyzers

- mq_{one} SFC Analyzer
 Solid-Fat Content (ISO, AOCS)
- mq_{one} Seed Analyzer and mq_{one} Seed Analyzer XL
 Oil and Moisture in Seeds, press cake, residues (ISO, IUPAC, AOCS)
- mq_{one} Hydrogen Analyzer
 Hydrogen in Fuels (ASTM)
- mq_{one} Spin Finish Analyzer
 Finish on Fibre, Oil-Pick-Up (OPU)
- mq_{one} Polymer Analyzer
 Xylene-soluble content in PP
- mq_{one} Total Fat Analyzer
 Total Fat Content determitation
 in Food and Feed

the minispec mq_{one}

multi-lingual software including 3 user levels

the minispec Plus

the minispec LF Series

the minispec LF90 II

the minispec LF series

Bruker's minispec LF Series of whole Body Composition Analyzers provides a precise method for measurement of Lean Tissue, Fat, Free Fluid and Total Body Fluid in live mice and rats. Longitudinal studies are possible as the animal is carefully handled without the need of anaesthesia. Measurements with the LF Series are done in minutes without the need for any sample preparation. With the new minispec LF110 also rats with mass >= 1kg can be analysed.

the minispec LF50 H

Typical applications of the mq-ProFiler are:

- Cross link density, filler materials, aging in tires (even with steel bars) and other polymers
- In-package food analysis: Fat content extent of gel formation, etc.
- Moisture content, porosity, and effect of hydrophobic treatments in building materials
- Fast monitoring of Fat content in high moisture foods like fresh salmon fish
- Porosity, separation of oil from water signal and drainage/absorption/drying study in rocks and other porous materials
- Contamination (oil) in moisture-free soil
- Skin hydration study

the mq-ProFiler

The mq-ProFiler is a compact NMR analyzer equipped with a single-sided magnet and RF probes capable of performing ¹H-NMR experiments on the surface or surface near volume elements. This device is a portable TD-NMR analyzer without any sample size restriction for industrial process/ quality control and research.

HyperQuant

HyperQuant[™] is a benchtop time-domain NMR reader that precisely and quantitatively delivers both the magnetic hyperpolarization and thermal polarization status of a sample. This proprietary solution applies a unique permanent 0.94 Tesla magnet system combined with an innovative MR probe design and novel NMR pulse sequence capabilities. This unique combination enables quantification of the thermal polarization level of ¹³C-labeled samples using volumes as low as 1 ml. The hyperpolarization enhancement factors can be obtained directly on the sample of interest, without the need for a separate calibration reference.

Features

 Direct quantification of magnetic hyperpolarization and thermal polarization levels

HyperQuant

- Calibration-free technology based on direct comparison of hyperpolarized and thermally polarized state
- Turn-key ¹³C application
- Proven bench-top TD-NMR design
- Unique 0.94 T permanent magnet system
- Only 1 ml of sample volume required
- Tracing of the
 ¹³C hyperpolarization decay
- Thermal signal determination with 99% accuracy
- Quantifying concentrations of fully labeled ¹³C samples
- External trigger interface to HyperSense[™]
- Applicable to all hyperpolarization methods including DNP and Para-Hydrogen

HyperQuant

Content:

MRI Products

- 36 BioSpec
- 38 ClinScan
- 40 PharmaScan
- 41 Icon
- 42 BGA-S Gradient Series
- 43 USR Magnets
- 44 MRI CryoProbe
- 45 Micro-imaging
- 46 ParaVision
- 47 Beyond Standard BioSpecs

Magnetic Resonance Imaging

Solutions for Molecular Imaging and Preclinical Research

Innovation with Integrity

MRI

BioSpec

The BioSpec[®] series is designed for the emerging market of preclinical and molecular MRI. State-of-the-art MRI CryoProbe[™] technology together with ultra-high field USR magnets deliver high spatial resolution in vivo enabling customers to come closer to the molecular and cellular level. Thanks to its innovative modular concept, virtually any small animal MR imaging application in life science, biomedical and preclinical research can be conducted. Whatever your application is, the BioSpec series will deliver the optimum solution, will perfectly equip you for the most demanding tasks and challenges.

Standard and optional Product Features

- High-end UltraShield[™] Refrigerated (USR) magnets from 4.7 up to 15,2 Tesla
- A wide range of bore sizes (11 to 40 cm) for investigations on any kind of animals
- Helium zero-boil-off and nitrogen free magnets for reduced service costs
- Scalable Avance III architecture with up to 16 receiver and 6 transmitter channels
- Parallel imaging (GRAPPA) for almost all applications including EPI
- Multiple transmit imaging applications
- BGA-S gradients with highest amplitudes, slew rates, shim strengths, and duty cycles
- Motorized animal positioning for increased throughput
- IntraGate[™] Self gated steady-state cardiac imaging (no external triggering devices)
- Phased-array RF coil technology for maximum sensitivity and minimum scan times
- MRI CryoProbe[™] delivers an exceptional increase in sensitivity to 250 %
- ParaVision[®] Intuitive software package, for multi-dimensional MRI/MRS data acquisition, reconstruction, analysis and visualization
Innovative Animal MRI Solutions for Molecular and Preclinical Imaging

BioSpec benefits from the excellence of Bruker BioSpin, the global market and technology leader in analytical magnetic resonance instruments including NMR, preclinical MRI and EPR. With an install

DTI of the Song Control System (SCS) of Starlings

DTI is used to quantify seasonal changes in the SCS. The density of axonal connections changes under hormonal influences.

Courtesy: De Groof, A. Van der Linden, RUCA, Antwerp, Belgium.

Mouse Abdomen

T2 RARE abdominal mouse imaging with excellent contrast.

Courtesy: D. Elverfeldt, B. Kreher, J. Hennig et al., University Hospital Freiburg, Germany.

base of over 500 MRI systems worldwide and more than 40 local Bruker offices on all continents, you can rely on our long term expertise and dedicated after sales support.

Cardiac Angiography

Visualization of coronary arteries *in vivo* (mice) using IntraGate.

ClinScan

With the ClinScan[®] you enter the field of translational research and molecular imaging. The ClinScan, a 7 T animal MRI and MRS scanner is designed to further facilitate translational research from 'mice to men' in the field of preclinical and molecular imaging.

ClinScan is Bruker BioSpin's solution for an emerging market of research MRI systems that allows a direct and fast transfer of preclinical studies on animal models to clinical studies on humans.

By virtue of the strategic alliance with Siemens Medical Solutions on human high-field MR systems, ClinScan uses the clinical user interface *syngo®* MR. Its operation is identical to that of Siemens Magnetom TIM systems.

Diffusion imaging (DTI)

Product Description

- 7 T Bruker USR magnet (Ultra Shielded Refrigerated, bore size 20 cm or 30 cm)
- Bruker gradient and shim coil (gradient strength of 290 mT/m or 630 mT/m, slew rate of 1160 T/m/s or 6300 T/m/s)
- Bruker RF array coil technology in combination with numerous animal handling accessories
- Siemens Magnetom Avanto technology with up to 32 receive channels
- Clinical routine user interface syngo MR to enable efficient workflow and highly automated state-of-theart MRI and MRS applications on small animals

Multi Modality Imaging - MRI/PET

Simultaneous *in vivo* imaging of a F-18-FDG labeled mouse heart at 7 T. PET and MRI acquisition was done in parallel without interference between the two modalities.

Courtesy: B. Pichler, H. Wehrl, M. Judenhofer et al., Laboratory for Preclinical Imaging University Tübingen, Germany.

ClinScan systems are designed for translational molecular MRI and provide the clinical routine user interface *syngo* MR that facilitates straightforward transfer of protocols from benchtop to bedside and vice-versa.

Application Packages

Application packages for animal MRI resemble the application packages you already know from clinical MRI. Sequences and protocols are optimized for the specific needs in animal MRI.

Standard Imaging

The application suite is a full set of programs and protocols optimized for a wide range of high-field applications.

Parallel Imaging

- iPAT (integrated parallel Imaging) techniques including GRAPPA & mSENSE
- Higher speed and temporal resolution

Diffusion and Perfusion Imaging Echo Planar Imaging (EPI)

- Multi directional diffusion weighting
- Tensor calculation including tractography
- Perfusion applications including processing

Cardiac Imaging

- True FISP & 2D/3D FLASH segmented
- Prospective triggering & retrospective gating
- Retrospectively gated cine imaging BOLD Imaging
- Single Shot EPI with PACE for BOLD-Imaging
- Automatic image reconstruction as well as on-the-fly t-test calculation in real-time for variable paradigms

Spectroscopic Imaging & Spectroscopy

- Spin Echo & STEAM, PRESS and CSI
- Hybrid CSI technique including volume selection and FoV encoding
- Multi-nuclei option

Rat brain, BOLD fMRI

Cardiac imaging

Chemical shift imaging with outer volume suppression

Cartilage of rat knee (DESS) and rat brain, inner ear (CISS 3D)

PharmaScan

Dedicated MR Scanner for Pharmaceutical, Biomedical and Molecular Imaging Research

The PharmaScan[®] is a high-field, easy-touse and at the same time easy-to-install and very cost-effective MR-system. It is designed for MRI applications on small animals such as mice and rats in the field of routine pharmaceutical, biomedical and molecular imaging research. With the integrated automatic image acquisition and analysis, fast and reliable results can be obtained by simple operation of the system by non-academic personnel, without compromising full flexibility for the

MR expert.

Mouse Lung Imaging using Ultra Short TE (UTE) Imaging

Radial scan with ultra short TE enables the visualization of detailed lung structures without using expensive hyperpolarized helium techniques.

High-Resolution DTI

Coronal map of the major principle diffusion direction of a rat brain. The

diffusion tensor imaging, with 30 diffusion directions, is acquired by the segmented echo planar imaging technique.

Standard and optional Product Features

- ¹H MRI and MRS routine system, optimized for small rodents (such as rats, mice, gerbils)
- Actively shielded magnets at 4.7 T and 7 T allows easy and cost-efficient siting
- 16 cm clear bore size with 72 mm free access for the animal
- Parallel imaging (GRAPPA)
- High-performance BGA-9 or BGA-9S (as an option) gradients with highest amplitude, slew rates, shim strengths, and duty cycles optimized for small animal imaging
- No Faraday cage required
- 25 m² floor space required
- Scalable Avance III architecture incorporates up to 4 receivers
- AutoPac[™] Motorized, positioning system for routine animal handling and increased animal throughput
- IntraGate[™] Self gated steady-state cardiac imaging requiring no external trigger devices
- Phased-array RF coil technology for increased sensitivity and reduced scan times
- MRI CryoProbe[™] Sensitivity increase up to a factor of 2.5
- ParaVision[®] Fully intuitive software package for multi-dimensional MRI/ MRS data acquisition, reconstruction, analysis and visualization

lcon

Icon[™] is a compact and easy-to-use 1T permanent magnet high-performance MRI desktop system for preclinical and molecular imaging in biomedical and pharmaceutical research

Designed and built by the world's preclinical MRI market leader, Icon's unique qualities include the industry standard MRI software ParaVision.

ParaVision[®] offers a workflow-oriented routine user interface, enabling a wide range of small rodent and material science MRI applications.

Operators and researchers have access to numerous optimized measurement protocols and powerful interactive processing and analysis tools to deliver immediate results. Optional software packages enable lcon to perform the latest MRI applications, such as pulsed arterial spin tagging, fast echo-planar

Ultra-fast relaxometry in mouse brain (*in vivo*) using a Look-Locker type EPI. The color-coded parametric T_1 map was laid over the anatomical image. This method enables fast contrast agent tracing in the brain with a temporal resolution of of 1:20 min.

image read-out, or ultra-short echo time techniques. The optional DataManager facilitates efficient data management and archiving.

As an education tool, students will find the ParaVision software intuitive, whether it is used to perform research imaging protocols, or to learn programming of new MRI methods.

BGA-S Gradient Series

Maximum Gradient and Shim Performance in Animal MRI

The Bruker gradient series BGA-S[™] delivers unsurpassed performance for the whole range of animal MRI applications. The unique design provides highest gradient strengths and slew rates required for high-field animal imaging. The high cooling efficency results in unmatched duty cycles and as a consequence of it, modern imaging sequences with minimum field of view and a high number of slices for long experiment times can easily be performed. The integrated shim coils add up to ultra-strong shim capabilities. The BGA-S gradients can be operated as inserts and are easily exchangeable for maximum flexibility.

Specifications

	BGA-6S	BGA-9S	BGA-12S	BGA-20S
Outer diameter [mm]	113	150	198	303
Inner diameter [mm]	60	90	114	200
Strength* [mT/m] at I _{max}	1000	760	660	300
Slew rate* [T/m/s] at $U_{\rm max}$	11250	6840	4570	1100
Gradient linearity/DSV [% / mm]	± 5 / 35	±5/60	±4/80	± 3 / 130
Number of RT Shims	9	11	11	9
Max. cont. gradient all axis [mT/m each axis]	500	190	330	87
Max. continous gradient one axis [mT/m]	350	130	220	60
U _{max} [V]/I _{max} [A]	300/100	300/200	500/300	500/300

* Output values have been measured on MRI system

Product Description

- Highest gradient strengths up to 1000 mT/m
- Highest slew ratesExcellent duty cycle
- specifications
- Very high gradient linearityOptimal gradient shielding
- Maximum shim performance

USR Magnets

Combining High-Field Magnet Performance with Easy Handling and Siting

The UltraShielded Refrigerated (USR) horizontal bore magnet product line features ultra-high magnetic fields and variable bore sizes in combination with easy handling and siting. Field strengths offered from 4.7 up to 11.7 T deliver optimum sensitivity for high-resolution MRI and MRS. The various bore diameters from 11 to 40 cm ensure optimal experimental performance on a wide range of animal MRI applications. Active shielding based on our well-proven UltraShield[™] technology provides minimum stray fields. For ease of operation all USR[™] magnets are nitrogen-free and include helium refrigeration for zero boil-off and minimum service intervals.

Features

- Ultra-high magnetic fields
- Variable bore sizes
- Highest field homogeneity
- Compact magnet design
- Excellent field stability
- Optimum external disturbance suppression
- Minimum stray fields
- Easy and cost efficient siting
- Nitrogen free
- Helium refrigeration (zero boil-off¹)
- Longer service intervals (two years)
- Cold delivery and fast installation
- Over 180 USR installations worldwide

High-resolution BOLD activation measured at 11.7 T USR magnet.

Courtesy: J.Seehafer, M.Hoehn, MPI for Neurological Research, Cologne, Germany

USR Magnet Product Line for a wide range of applications								
	47/40 USR	70/20 USR	70/30 USR	94/20 USR	94/30 USR	117/16 USR		
¹ H Frequency (MHz)	200	300	300	400	400	500		
Bore Diameter (cm)	4.7	20	30	9.4 20	9.4 30	16		
Length (m)	1.49	1.31	1.49	1.49	2.01	1.46		
Width (m)	1.65	1.12	1.65	1.65	1.71	1.65		
Ceiling height (m)	2.85	2.60	2.85	2.85	2.90	2.85		
Field Drift (ppm/h)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
Weight (kg)	4.700	2.500	5.000	5.500	11.500	7.000		
Stray Field (radial x axial) (m x m)	2 x 3	1.5 x 1.5	2 x 3	2.0 x 3.0	2.3 x 3.3	1.7 x 2.8		
Service Interval (year)	2	2	2	2	2	2		
Zero Boil-off	Yes ¹							

USR systems are available with field strengths ranging from 4.7 to 11.7 T and bore sizes of 16, 20, 30 or 40 cm as shown in the table.

¹With a valid service contract

MRI CryoProbe

New Signal-to-Noise Horizons in Small Animal MRI

Bruker now offers a new series of MRI CryoProbes for MRI systems. They feature very low temperature, closed cycle cooled RF-coils and preamplifiers offering an increase in signal-to-noise ratio (SNR) to a factor of 2.5 over standard room temperature RF-coils in routine MRI applications. The use of the MRI CryoProbe[™] in routine imaging of the mouse brain *in vivo* at 9.4 T delivers outstanding image quality. The increased signal-to-noise ratio enables one to acquire high-resolution images of the microscopic structures in the mouse brain down to the cellular level.

Comparison with Nissle staining

Comparison of micro-structures in the mouse cerebellum with histological Nissle staining (left). Identification of anatomical structures like white matter, granular layers, molecular layers and Purkinje cell layers are possible. Courtesy: Rudin M., Baltes C. et al., ETH Zurich, Switzerland

Ultra-high resolution $(35 \times 35 \times 200) \ \mu m^3$ mouse brain imaging *in vivo* acquired in 20 minutes.

Courtesy: V. Rasche University of Ulm, Germany

Product Features

- Increase in sensitivity to more than 250 %
- Flexible design for easy siting
- Standardized interface allowing different MRI CryoProbes to be used with one cooling system
- Efficient design allows minimal distances between RF-coil and object
- Carefully controlled thermal environment with no cold surfaces in contact with animal
- Cooling down outside the magnet possible

MRI CryoProbe™ at 11.7 T

Micro-imaging

CryoProbe for Micro-imaging

The extension of Bruker's cryogenic NMR probe expertise into the field of MRI microscopy leads to new and exciting opportunities. Micro-imaging techniques for small samples with diameters up to 5 mm benefit from CryoProbe™ technology and a factor 4 improvement in sensitivity. The result is improved image quality, increased spatial resolution and/or reduced scan times. The MIC CrvoProbes for ¹H at 400-600 MHz offer variable temperature operation over the range from 0 to 80 °C and are used with a Bruker BioSpin Micro2.5 gradient system in vertical wide-bore magnets with bore sizes of 89 mm or larger. The newly developed dual ¹H/¹³C microimaging CryoProbe is also available.

¹³C Chemical Shift Imaging

Detection of sugar transport. An Angiocanthos plant was fed with ¹³C labelled glucose. The C1-¹³C bound protons (coloured) overlayed to a proton

image of the system cross-section C1 α -Glucose (93 ppm (¹³C), 5.42 ppm (¹H)), system field strength 9.4 T, cyclic J cross polarization method in-plane resolution of ¹³C image: 156 x 156 μ m², slice thickness: 5 mm total scan time 4:00 h.

Courtesy of M. Wenzler, Max Planck Institut für chemische Ökologie, Jena, Germany

Research Possibilities

- Investigations on plants, insects and other small animals, embryos, or histological tissue samples.
- Studies of porous and inhomogeneous objects at intermediate field strengths with minimum susceptibility distortions and highest sensitivity.
- Studies of fast dynamic processes.
- Microliter spectroscopy.

Diffusion Tensor Imaging on excised human nerve cord

Excised human nerve cord

Multi Gradient Echo Imaging, TR 600 ms, TE 5 ms, 10 µm x 10 µm x 120 µm

Diffusion Tensor Imaging, TR 2.7 s, TE 14.34 ms, δ 2.5 ms, Δ 7.0 ms, 31 μ m x 31 μ m x 1 mm, effectiv B values 1310 s/mm² - 1704 s/mm², Diffusion Tensor Visualization by AVIZO FIRE

Sample provided by Dr. Joerg Raczkowsky, Karlsruhe Institute of Technology, Institute for Process Control and Robotics, Karlsruhe, Germany Dr. med. Ralph König, Neurochirurgische Klinik University Ulm, BKH Günzburg, Germany

ParaVision 5.1

Ultimate MR-Acquisition and Processing in Preclinical Research and Life Science

ParaVision[®] is Bruker's software package for multi-dimensional MRI/MRS data acquisition, reconstruction, analysis and visualization for its BioSpec[®], PharmaScan[®] and Micro-imaging product lines. It offers an intuitive

New Reconstruction and Processing Features

- Push-button GRAPPA reconstruction
- Sum of squares and phase-sensitive phased-array reconstruction
- Phased-array spectroscopy reconstruction
- Partial Fourier reconstruction
- EPI reconstruction with efficient ghost suppression
- Navigator techniques to reduce motion artifacts in EPI and SPIRAL
- 2D and 3D region growing
- Display and analysis of time-course data with the fitting tool "ISA"
- Frame-selective loading of image sequences for display, e.g. either timecourse frames or slices for a multi-slice movie dataset
- 3D visualization with surface rendering
- Image mask inversion

routine user interface and cutting-edge techniques for animal MR imaging and spectroscopy - including a rich palette of powerful image evaluation and visualization tools.

Product Description

- Intuitive routine workflow
- Application-oriented, ready-to-use protocols
- Self-acting, method-specific scanner adjustments
- Automatic instrumentation recognition
- Parallel imaging option for all suitable acquisition techniques with automatic generation of composed images/ spectra
- Half-Fourier (Partial-Fourier) encoding
- Real-time display of acquired and reconstructed data
- Data archiving including DICOM export
- Development environment with powerful tools for rapid prototyping of user-defined experiments and professional method implementation

Beyond Standard BioSpecs

Vertical BioSpec

The vertical BioSpec® has been engineered for MR research investigations of non-human primates. It enables specifically fMRI studies on monkeys as they are particularly receptive to behavioral conditioning while sitting in upright position. The vertical BioSpecs are offered with two different magnet types operating at 4.7 T and 7 T which both have a high-magnetic field stability and excellent homogeneity. The actively shielded gradient coil with integrated shims is especially designed for a vertically oriented magnet.

FLASH imaging on BioSpec 170/25, in-plane resolution: (80 \times 80) μm^2 Courtesy: D. Le Bihan , NeuroSpin, Paris, France

Ultra-High Field MRI

Bruker is offering up to 17 T horizontal MRI BioSpec, enabling high-resolution *in vivo* preclinical MRI on small animals at a microscopic scale. The magnet with a bore size of 25 cm is based on Bruker's UltraStabilized[™] subcooling technology offering excellent field homogeneity and stability.

A new BGA-S[™] gradient coil with unsurpassed specifications regarding gradient field strength, gradient slew rate, and gradient duty cycle provides best MRI performance.

These innovations will push the current limits of animal MR imaging towards higher spatial and spectral resolution, enabling new applications in the field of molecular imaging and preclinical research.

Content:

EPR Products

- 50 ELEXSYS-II E780
- 51 ELEXSYS-II E500 CW-EPR
- 52 ELEXSYS-II E580 FT/CW
- 53 ELEXSYS-II Imaging Unit
- 54 ELEXSYS-II Multi-Frequency and Multi-Resonance Accessories
- 55 EMX*plus*
- 56 EMX*micro*
- 57 e-scan

Electron Paramagnetic Resonance

Solutions for Life Science and Analytical Research

Innovation with Integrity

ELEXSYS-II E780

The World's First Commercial mm-wave 263 GHz EPR Spectrometer

Bruker has pioneered the world's first commercial mm-wave 263 GHzEPR spectrometer, ELEXSYS-II E780, representing a first step for Bruker's EPR division into quasi-optical microwave technology. It incorporates a unique cryo-free superconducting magnet that can be ramped up to 12 T and is combined with new probe technology for optimum sensitivity, even on large samples up to 5 mm. Based on the well-proven Bruker ELEXSYS concept it provides multiple turn-key operation modes including,

CW-, Pulse-EPR, ENDOR and ELDOR, thus enabling research groups for the first time, to routinely use very high-frequency EPR technology.

Features

- Enables mm-wave very high-field EPR at 263 GHz
- Quasi optical front-end featuring reflection and induction detection
- Cryogen free superconducting EPR magnet incorporating 12 T main coil and 0.2 T high-resolution sweep coil
- Multiple turn-key operation modes including CW-, Pulse-EPR, ENDOR and ELDOR
- High-sensitivity single mode resonator
- Non-resonant probe for samples up to 5 mm
- Variable sample temperature from 4 to 300 K
- Safe and robust operation
- Runs routine software package Xepr

ELEXSYS-II E500 CW-EPR

Redefining research level EPR

Introduced in 1997 the ELEXSYS has become the renowned research platform for modern EPR. Over the years a constant technical evolution has assured to keep track with new emerging demands of the EPR society. The second generation of the pulse devices SpecJet-II and PatternJet-II have been launched in 2006 and just recently DICE-II has become available.

Yet another major development step has now created ELEXSYS-II. The OS9 acquisition server has been replaced and the SuperX microwave bridge has been redesigned with improved specifications. The new multi-purpose signal processing unit (SPU) plays a central role in the expanded capabilities of the ELEXSYS-II, replacing the signal channel, fast digitizer, and rapid scan with a single integrated unit offering unprecedented performance and specifications.

E500 Highlights

- SuperX microwave units of world record sensitivity weak-pitch signal-to-noise of 3000:1
- rapid scan module
- stationary and time resolved experiments
- multi purpose signal processing unit
- reference free spin counting

Standard super-high-Q cavity for ELEXSYS Systems

E500 Accessories

- Teslameter
- Field-Frequency lock
- N₂ and Helium
 VT systems
- automated goniometer
- DICE-II ENDOR system
- microwave frequencies from L- to W-Band
- numerous dedicated probeheads
- large selection of magnet systems

ELEXSYS-II: The only commercial spectrometer series which covers all EPR techniques

	L-Band	S-Band	X-Band	K-Band	Q-Band	W-Band	mm-wave
CW-EPR	•	•	•	•	•	•	•
FT-EPR	•	•	•		•	•	•
CW-ENDOR			•		•		
Pulse-ENDOR			•		•	•	•
Pulse-ELDOR	•	•	•		٠	•	•
Imaging	•	•	•				
Saturation recovery	•	•	•		•		
Rapid scan	•	•	•	•	•		
Transient EPR			•		•	•	
ODMR			•		•		

ELEXSYS-II E580 FT/CW

With the recent introduction of the second generation pulse programmer and transient recorder, PatternJet-II and SpecJet-II, improvements in digital resolution and averaging capabilities have again pushed up the performance level of the E580.

- zero overhead for 1D phase cycling
- zero overhead for 2D blocks
- zero overhead for time evolution averaging (e.g. ESEEM)

PatternJet-II

Virtually no experimental limits are imposed by the PatternJet Series of pulse programmers. Designed for the needs of EPR this pulse programmer features a dynamic range of 10⁹, i.e. ns resolution over a time scale of up to one second. The well established concept of our first generation PatternJet has been technically enhanced and carried on to the second generation PatternJet-II with a 1 GHz clock.

SpecJet II

With the first generation of SpecJet a dramatic improvement in pulse-EPR sensitivity could be achieved by high-speed signal averaging. The SpecJet-II with 1 GHz sampling rate now further enhances the abilities to capture fast and short lived transient signals. The real time display of the averaged echo/FID can now be toggled between time and FT mode and greatly facilitate spectrometer handling and signal optimization.

The extended memory of PatternJet-II and SpecJet-II allow now overhead free direct phase cycling even for 2D data acquisition. A considerable measuring time saving is achieved with this new feature.

52

ELEXSYS-II Imaging Unit

Biomedical research and material science applications by EPR imaging is a rapidly growing field. Bruker's response to this development is the E540 imaging accessory. Based on the proven ELEXSYS architecture, this instrument operates at L- or X-Band and provides the seamless integration of imaging techniques into EPR spectroscopy. The imaging accessory comprises 2D or 3D water cooled gradient coils, power supplies, gradient controller, acquisition and processing software for up to 4D imaging.

Imaging accessory for biomedical application E540GCL

3D gradients with 40 G/cm for imaging in L- and X-Band

E540R36 and E540R23

the 36-mm and 23-mm access L-Band probes for animal research

E540SC

the surface coil L-Band probe for animal research

High-power gradient accessory for X-Band imaging

E540GCX2

- 2D gradients with 200 G/cm
- Compatible with ER 073 magnet
- 25 mm air gap
- ER4108TMHS resonator
- Compatible with ER 4112HV Helium system

ER4108TMHS

Image of two DPPH crystals with 25 μm pixel resolution

Sensitivity profile of L-Band surface coil

E540R36

ELEXSYS-II Multi-Frequency and Multi-Resonance Accessories

Multi-frequency EPR is commonly understood in terms of its relation to CW-EPR spectroscopy. Bruker's commercial Multi-frequency/Multiresonance EPR covers both, CW-EPR and FT-EPR as well as Pulse-ENDOR and Pulse-ELDOR at a multitude of microwave frequencies. Thanks to the ELEXSYS platform design and the advantageous intermediate frequency (IF) concept, every ELEXSYS spectrometer can be expanded for stateof-the-art multi-frequency experiments; now and in the future. All features of the X-Band CW/FT microwave bridge are transferred to the new operating frequency. For each frequency band a dedicated probe provides a maximum of sensitivity and ease of use.

ESEEM Application

S-Band HYSCORE of BDPA

Flexline Pulse-ENDOR Resonator EN4118X-MD4

Distance Measurements

Q-Band 4 Pulse - DEER

High-Frequency/High-Field EPR and ENDOR at 94 GHz

The ELEXSYS family of EPR spectrometers includes two W-band systems, the E600 and E680. The former is optimized for CW-EPR experiments at 94 GHz, while the E680 operates in both CW and FT-mode. The instrument is equipped with a 6 T super conduction magnet featuring an additional high-resolution sweep coil with 2 kG range.

Multi Frequency Options

The Bruker IF Concept allows to add a second or third microwave frequency to the X-band E 580 instrument. These upgrades are available for Q-Band (34 GHz), S-Band (3.4 – 3.8 GHz) and L-Band (0.8 – 1.4 GHz). The upgrade comprises the microwave unit and a dedicated probe for variable temperature operation.

Multi Resonance Options

Electron-Nuclear Double Resonance (ENDOR) accessories are available for the EMX-series in CW mode and for the ELEXSYS series in CW and pulse mode. The frequency range is 1 – 100 MHz for the EMX and 1 – 650 MHz for ELEXSYS. Dedicated ENDOR resonators for CW and pulse operation at variable temperature complete the ENDOR accessory.

Electron-Electron Double Resonance (ELDOR) is a pulse technique and can be added to all pulse spectrometers

of the ELEXSYS line. The most popular distance measurement technique is supported by specialized probes of the Flexline series.

²H Q-Band single crystal HYSCORE

EPR 6T S

EMX*plus*

The foundation of EPR

The EMXplus is the next generation of Bruker's successful EMX spectrometer line, well-known for its premium performance in CW-EPR research. The design of the EMXplus reflects its dedication to the heart of the matter: rapid and high-quality data.

Simply power-on the EMXplus and start your EPR journey. Following self-validation procedures, the EMXplus is ready to use via Bruker's WIN-ACQ software.

The Perfect Duo I

The Signal Channel and Field Controller work together seamlessly to provide practically unlimited resolution on both axes: field and signal intensity.

The Perfect Duo II

The EMXplus Signal Channel now offers two detection channels in one. Simultaneous quadrature and 1st & 2nd harmonic detection schemes are just a mouse click away.

Accessories & Options

- The PremiumX microwave package for enhanced sensitivity
- The Variable Temperature Controller can be incorporated into the EMXplus console
- The ER036TM Teslameter ensures precise g-factor determination in combination with the integrated microwave counter
- The EMX-ENDOR package allows CW-ENDOR experiments to be performed on EMXplus Systems
- The full range of microwave frequencies from L- to Q-Band

Ultra-high-resolution over large sweep

The spectra show oxygen in air at ambient pressure (top) and reduced pressure (middle) measured at Q-Band. A sweep range of 14 kG was recorded with 180000 points, resulting in a resolution of 80 mG, sufficient for the line width of 300 mG at reduced pressure.

EMX*micro*

The EMXmicro completes the EMX family and features an electronics cabinet with the footprint of a PC tower. The instruments micro cabinet can be combined with all electromagnets and microwave bridges from L- to Q-Band.

The standard software of the EMX series for data acquisition and processing is provided by WinACQ and WinEPR.

Dual-mode simultaneous detection of 1st and 2nd harmonic EPR spectrum of a vanadyl sample

Xenon

This new software package is an option for the EMXmicro/plus series. It features a Linux[®] front end PC with a new graphical user interface integrating acquisition and processing in an user friendly environment. Xenon features numerous novel tools for data acquisition and processing, e.g. the direct spin counting method without reference sample.

e-scan

Bruker's e-scan product line of table-top EPR (ESR) readers offer dedicated and tailored turn-key systems for specific Quality Control applications as well as systems for medical and pharmaceutical R&D applications of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS). All e-scan systems have been designed for and have proven rock-solid in 24/7 operation with the best possible price-performance ratio available today.

A few example application fields for e-scan:

- Irradiation Dosimetry with Alanine Dosimeters (ISO/ASTM method)
- Food Irradiation Control (EU standard methods)
- Beer Shelf Life: flavour stability and antioxidant stability (patented application)
- Biomedical EPR research: ROS and RNS detection and quantification

e-scan food control inserts (left) and the cavity template. (right).

EPR spectrum of an irradiated chicken bone recorded with the e-scan Food Analyzer.

Content:

GC/LC/MS-Products

60	MALDI-TOF
62	LC-MS and Ion Trap
64	LC-MS and o-TOF
66	UHR-TOF and FTMS
68	Ion sources, Software & Applications
70	ICP-MS and GC-MS
72	GC Systems and GC Accessories
74	GC Accessories and Consumables
75	MALDI Biotyper Consumables

For research use only. Not for use in diagnostic procedures.

GC/LC and MS-Systems

Research and Analytical System Solutions

Innovation with Integrity

GC/LC/MS-Systems

MALDI-TOF Mass Spectrometers

Bruker's FLEX Series of MALDI based mass spectrometers are industry leaders whose performance level can be easily matched to almost any application need.

Composed of three increasingly powerful systems; microflex[™], autoflex speed[™] and ultrafleXtreme[™], these flexible, powerful, and reliable systems can deliver answers for a wide range of applications such as the MALDI Biotyper solution used in clinical biology to identify microorganisms through characteristic peak patterns; their unique molecular fingerprints.

Capable of utilizing a number of intuitive software packages, the FLEX Series brings the power of MALDI mass spectrometry to any level of user.

ultrafleXtreme

The pinnacle of the FLEX series, the ultrafleXtreme is built to deliver the highest levels of performance in sensitivity, resolution, and mass accuracy for a MALDI instrument.

Highly flexible, the ultrafleXtreme is especially effective in proteomics, molecular imaging and protein analysis settings as it can utilize the full power of patented 1 kHz smartbeam[™] laser technology.

Other cutting edge MALDI technology enhancements such as PAN[™] resolution for broad mass range measurements and LIFT[™] technology to enhance sensitivity, allow the use of the ultrafleXtreme in top-down or bottom-up protein analysis utilizing gel or LC-based workflows. Outstanding in both quanitiative and qualitative applications, the ultrafleXtreme represents the ultimate in MALDI instrument design and performance capabilities.

microflex LT/microflex

The entry level member of the FLEX product family is the microflex series. However, there's nothing minimal about the performance of these instruments. Designed to be compact, affordable, and easy-to-use, the microflex series packs a lot of power into its excellent design. Fully capable of providing answers to a wide range of analytical challenges with its 15k resolution, the microflex series can be scaled to fit many needs with either linear or reflectron based options. The innovative microflex series can bring the value and performance of MALDI mass spectrometry to any laboratory, including those who may have thought mass spectrometry was out of reach.

microflex LT

autoflex speed

The workhorse of the FLEX Series, the autoflex speed has a number of exciting hardware options to deliver a very powerful, yet easy to master, platform for many MALDI based applications. Incorporating proprietary smartbeam 1kHz laser technology, the autoflex speed delivers unrivalled speed, sensitivity, and resolution for an instrument in its class. Hardware options include either MALDI-TOF or MALDI TOF/TOF configurations. The autoflex speed can also be equipped with a number of specially designed software packages to create a customized instrument for key applications like molecular imaging or protein sequencing and analysis.

LC-MS

Bruker's novel amaZon ion trap family of mass spectrometers utilize a unique spherical ion trap architecture that delivers exceptional performance for many analytical tasks.

This design, in combination with an ingenious detector and dual ion funnel transfer technology, offers:

- dramatically improved sensitivity (by a factor of 10x),
- speed up to 52,000 µ/sec
- dynamic range over 4 orders of magnitude
- mass resolution up to 30,000
- high-mass range of 50-3,000 m/z

amaZon ion trap for analytical power and utility

ProteinScape 3.0 bioinformatics database system

ZUNUT KARAN KARANGAN TAUN

Fully automated screening for toxins/drugs based on MS/MS library search. Push button solution in open access environment.

Support of all widely used HPLC, CapLC, nanoLC, and UHPLC systems

Ion Trap Mass Spectrometers

The amaZon series of ion traps are equipped with instantaneous polarity switching capabilities for dealing with a variety of analytes. Capable of MSⁿ analysis, ion traps provide the analytical power necessary for very complex samples.

Some members of the amaZon ion trap instrument family can utilize ancillary chemistries and techniques ETD (Electron Transfer Dissociation) and PTR (Proton Transfer Reaction) to aid in the analysis of proteins and their posttranslational modifications. Bruker's family of ion trap instruments is represented by the amaZon speed, amaZon speed ETD, and amaZon SL instruments.

amaZon SL

A solid, robust, high value platform for fast LC/MSⁿ applications, the amaZon SL is designed to increase productivity for routine analyses such as chemistry support, quality and process control, and other small molecule analysis applications.

The amaZon SL comes equipped with the SmartLine software suite which provides particularly quick and easy access to analytical workflows to help generate reliable results. The amaZon SL is designed for reliable 24/7 operation, even in an open access environment.

amaZon speed

Representing the latest developments in ion trap technology, the amaZon speed provides most of the capabilities of the amaZon family. With greatly enhanced sensitivity, MS/MS speed and "Zero-Delay Alternating" polarity switching, the amaZon speed is an excellent choice for the analysis of complex samples when more in depth and detailed analysis of molecular structure is needed. Supported by spectral MSⁿ libraries, the amaZon speed is the ultimate mass spectrometer for MS/MS based multi-compound screening.

amaZon speed ETD

Designed especially for the analysis of proteins and their post-translational modifications (phosphorylation, glycosylation, etc.), the amaZon speed ETD is the latest generation instrument for the analysis of post translational modifications (PTMs) and proteomics. Incorporating ETD and PTR molecular fragmentation technologies, the amaZon speed ETD system provides extremely valuable information about the location and nature of various PTMs, as well as very useful de novo sequencing power leading e.g. to full coverage of the protein N- and C-terminal sequence.

amaZon speed ETD

Bruker's TOF and quadrupole TOF mass spectrometers feature some of the very latest developments in o-TOF technology to provide maximum confidence for accurate mass molecular formula determination.

Capable of delivering hyper-accurate results, Bruker's o-TOF platforms combine numerous hardware innovations with unique software packages that deliver industry leading sensitivity, 5 orders of magnitude dynamic range, ppm or better mass accuracy and up to 60,000 resolution for the analysis of small molecules and many types of biomolecules.

micrOTOF focus II

An outstanding high-performance system, the micrOTOF II benefits from years of experience in LCMS design, and features an excellent combination of resolution and mass accuracy to deliver outstanding results.

The perfect choice for straight forward molecular formula determination of small molecules, proteins, or small molecule metabolites, the micrOTOF II can help solve some very tough analytical challenges.

o-TOF Mass Spectrometers

micrOTOF-Q II

A high-performance hybrid mass spectrometry system, the micrOTOF-Q II combines the very latest in ESI-qTOF technology in MS and MS/MS modes to enable very high levels of confidence in many applications.

Whether used with direct infusion or with UHPLC, Fast Chromatography, or other separation techniques, the micrOTOF-Q II delivers some of the best results in molecular formula determination available on the market today. When exact molecular formula determination is the goal, the micrOTOF-Q II is the answer.

UHR-TOF Mass Spectrometers

maXis impact

There is no need to make compromises in mass spectrometry anymore. The maXis impact[™] sets a new technology standard where industry leading performance values are all simultaneously available in a single acquisition at full sensitivity.

Powered by a series of patented technology innovations, the maXis impact simply provides the very best results without compromise in a cost effective, benchtop format.

maXis 4G

The maXis 4G, with Full Sensitivity Resolution, continues to advance the performance level and capabilities of this revolutionary series of instruments. With significant enhancements in mass accuracy and resolution, and unparalleled sensitivity and speed, the maXis 4G offers the confidence to measure and identify small molecules, proteins and intact large molecules, such as antibodies, with unprecedented levels of certainty in both MS and MS/MS modes.

Compound identification and structure confirmation

FTMS Mass Spectrometers

solariX ®

solariX, the next-generation hybrid Qq-FTMS, is an easy to use, highperforming system that is equipped to address the most challenging proteomics and complex mixture applications.

The broad-band, ultrahigh-resolving power (> 1,000,000 @ m/z 400, 7 T) is essential for tackling complex mixtures, especially those that are not amenable to on-line separation techniques such as; hydrocarbon related analysis ("petroleomics"), environmental analysis, and metabolomics.

For applications that require highperformance LC-MS or LC-MS/MS, the solariX is ideally suited. New functionality provides more resolution when it is needed most and with optional, faster acquisitions for MS/MS data.

Added top-down versatility is provided with fully enabled Electron Transfer Dissociation (ETD). This exciting new technique, combined with FTMS performance, is superb for the comprehensive analysis of proteins and peptides and their subtle, posttranslational modifications.

BRUKER

The solariX can be configured with Dual ESI/MALDI (based on advanced ion funnel technology) and a range of API source options (APCI, GC-APCI, APPI). Low maintenance, refrigerated magnets are standard with solariX and can be configured with one of several magnetic field options (7T, 9.4T, 12T and 15T).

solariX

Ion Sources

CaptiveSpray

Nanoflow LC-MS in daily laboratory work is still one of the bigger challenges in proteomics. The Bruker CaptiveSpray source is a revolutionary ion source with a patented design that provides easier operation than even standard electro spray. CaptiveSpray delivers nanospray sensitivity, resists plugging, and provides reproducible uninterrupted flow for even the most complex proteomics samples.

The CaptiveSpray can be used also at low μ L flow rates to allow the use of larger ID columns. It fits all current Bruker ESI-MS systems.

DirectProbe DIP: Instant answers from solid samples with APCI or APPI

The DirectProbe (DIP) add-on for the Bruker APCI II and APPI II ion source allows direct analysis of liquid and solid samples without tedious sample preparation. In routine organic synthesis analyses, it simplifies identification and characterization of chemical reaction products without compromising sensitivity.

Vortex around spray concentrates and focuses spray into the MS source

CaptiveSpray LC-MS source

DirectProbe

Software & Application Directed Solutions

Compass & Bioinformatics

Bruker software solutions are designed to provide maximum information with minimal effort. Highly intuitive and extremely user friendly, our software solutions are all designed and delivered with the user and their application in mind:

- Compass[™]: Bruker's unified software environment for intuitive mass spectrometric instrument control and data processing.
- Compass OpenAccess[™]: Automated walk-up LC/MS chemical formula generation
- Compass Security Pack
- ProteinScapeTM the bioinformatics platform for ID and quantitation
- BioToolsTM:Interactive protein analysis
 flexImagingTM: Comprehensive and
- powerful MALDI Imaging ■ MALDI Biotyper™: The easy
- software for microbial ID
- GenoToolsTM: Software solution for the analysis of genomics data
- MetaboliteTools[™]: Identification and confirmation of metabolites
- ProfileAnalysis[™]: Comprehensive statistical evaluation of LC-MS data
- TargetAnalysis™: Unambigous molecular formula identification
- PolyTools[™]: Interpretation of MALDI polymer spectra

Your choice of HPLC

Bruker supports all major vendor HPLC systems for LC-MS applications.

Our flexible software plug-in architecture allows for fully integrated HPLC support and method development. Other HPLC systems can be integrated with a simple contact closure. HPLC Vendors supported by Bruker Compass with full software plug-ins are: Dionex, Waters, Agilent, Hitachi, Thermo/Proxeon, CTC/PAL Autosamplers, Shimadzu and Eksigent.

Applications-Software

Bruker offers dedicated software packages and solutions for various application areas:

• Life Science Research and Clinical Application Solutions

PRIME: Proteomics through Integrated MALDI and ESI MALDI Molecular Imaging Identification of Microorganisms Lipidomics Nucleic Acid Analysis

LC-MS based Metabolomics Metabolite Profiling with LC-MS and NMR

Pharmaceutical and Applied Analytical Application Solutions Identification of Unknowns

Pesticide, Toxin, and Pollutant Screening Drug Metabolite Identification Open Access Chemistry Support Petroleomics Polymer Analysis

ICP-MS

Bruker innovation, making ICP-MS easier

If you've ever wished that ICP-MS could be simpler, wish no more. The aurora M90 makes light work of it. No matter what your requirements, with a Bruker ICP-MS, you can tackle any application with ease.

The aurora M90 delivers industry leading detection limit performance. Collision/reaction interface (CRI) technology makes setup of complex cell systems a thing of the past. Simply turn on the gas flow to remove interferences. It's that simple.

Let Bruker Quantum work for you

If your goal is to spend less time creating methods and optimizing conditions, and more time running samples, Bruker's Quantum software delivers. Enjoy accurate results in less time with an intuitive yet flexible user interface that takes the hard work out of ICP-MS.

The CRI injects helium (He) and hydrogen (H₂) collision and reaction gasses directly into the plasma as it passes through the orifice of the skimmer cone. This innovative approach suppresses interferences before the analytes are extracted into the ion optics.

Gas Chromatograph Mass Spectrometers

Scion SQ

Bruker's long traditions of innovation and product reliability have combined to create a new industry standard for gas chromatography single quadrupole mass detection – the SCION SQ. By understanding, and then designing to exceed the most critical performance and reliability needs of GC users, Bruker has delivered a system that is especially for, and all about, the ultimate success of the GC user. The SCION SQ detector is designed to meet many important user specified requirements - reliable performance, ease of use and simple maintenance-all in a small instrument footprint that saves valuable bench space.

Scion TQ

The SCION triple quadrupole (TQ) detector is a comprehensive solution for your most demanding gas chromatography applications. It delivers unrivalled benchspace savings, the result of an innovative 'lens-free', elliptical ion-path design that delivers ultra-high sensitivity and chemical noise reduction – performance you would expect when innovation merges with a legacy of reliability.

Gas Chromatographs

Laboratory gas chromatography systems (GC)

The 400 Series consists of two gas chromatographs and an associated range of analyzers and solutions designed for leading applications. These systems allow chemists and engineers to employ standard methods and/or high-quality trace sample analysis, in the petrochemical, agrochemical and environmental industries.

The 450-GC is a highly affordable and powerful analytical instrument that offers robust operation in an easy-to-use package. The system gives users a broad choice of injectors, detectors, switching and sampling valves up to three channels. The high-resolution color touch screen is intuitive and supports local languages. The Bruker 430-GC offers the same outstanding performance as the 450-GC but in a compact, single channel package that occupies about half the bench space of conventional multichannel GC.

450-GC + CP-8400

...
Gas Chromatograph Accessories

Injector, Autosampler and Detector Options

Bruker 400-GC Series GC Accessories represent significant value and upgrade instrument performance and efficiency. The 400-GC Series has been designed to allow the incorporation of a wide range of options to expand the performance and enhance the capabilities of the system. These options include:

Autosamplers

The CP-8400 range of AutoSamplers combines unattended system operation features with high-throughput and sample capacity, virtually without sample carry over. These systems can be configured for:

- High-sample throughput with dual and duplicate modes of injection
- Automatic access to two injectors with a single tower to double analysis output
- Liquid, ambient headspace, and SPME sampling
- Pre-programmed injection modes to minimize method development time and guesswork

The SHS-40 Automated Headspace Sampler is designed to take maximum advantage of the productivity and cost benefits of Headspace – Gas Chromatography (HS-GC). Powerful and robust, the SHS-40 enhances the capabilities of any analytical laboratory to comprehensively and efficiently measure volatile organic compounds (VOCs) from a variety of sources.

- Fully Automated: Minimal Operator Intervention
- Highly Productive: Simplified Method Development
- Easily Integrated: Ready to Use with Bruker GC and GC-MS Systems
- Flexible: Use for Direct Analysis or "React and Analyze" Chemistries
- Robust: Very Low Maintenance Requirements and guesswork

Combi PAL/CTC

For Laboratories requiring even greater sample throughput or more extensive sample preparation automation options, Bruker offers the Combi PAL/CTC.

Gas Chromatograph Consumables

Bruker's commitment to providing the very best in analytical systems extends beyond providing great instrumentation. In most cases, a good analytical system encompasses instrument, software and high-quality consumables. Bruker applies the same demanding standards of quality to its wide range of GC consumables. From septa, ferrules and injector liners to vials and tools, we have the parts and consumables to complete the analytical solution. Our latest and newly launched comprehensive range of GC columns and Super Clean™ Gas filters shows our commitment to providing the latest and best in technology.

A Selection of GC Columns to Meet Your Needs

Bruker GC columns span a broad range of column diameters, stationary phases, and capillary column materials: Fused Silica (FS) and Inert Steel (IS). Ideal for either routine or research type analyses. Bruker GC column offerings bridge across many important applications and include a number of offerings such as:

- Standard WCOT (Wall Coated Open Tubular)
- Small internal diameter
- Solid stationary phase PLOT (Porous Layer Open Tubular)
- Inert steel micro-packed an packed colums

Super Clean[™] Gas Filters

Innovative design with product reliability has produced an extensive range of gas filters configured for the most demanding applications. Bruker Gas Purification Systems have the range to satisfy your needs from individual to combination filters, from Ultra purity combined with Ultra capacity, to all in one solution kits. Innovative features designed into the product yield extensive benefits to the user.

- Ultra-high capacity for long life, less change and improved productivity
- High-purity output ensures 99.9999%
 Pure Gas
- "Quick connect" fittings for easy, leak-tight filter changes
- Glass internals prevent diffusion; plastic externally for safety
- Easy-to-read indicators for planned maintenance and improved up-time

MALDI Biotyper Consumables

Added Convenience Enhances Assay Productivity

To make it easier and cost effective to routinely use the MALDI Biotyper, Bruker offers a number of kits and accessories designed and tested to maximize the performance and productivity of the MALDI Biotyper system.

Bacterial Test Standard

The Bacterial Test Standard is a typical *E.coli* extract, containing some additional proteins which can be used for instrument mass calibration as well as a performance verification standard.

HCCA (alpha-Cyano-4-hydroxycinnamic acid) Matrix

The matrix is supplied as solid and should be rehydrated using organic solvent 'OS' solution. Typically 1 ul of matrix is added to each sample prior to analysis.

MALDI Sepsityper[™] Kit 50

The MALDI Sepsityper Kit is for the analysis of microorganisms from positive blood cultures. The process typically takes no longer than 20 minutes.

MALDI Biotyper Targets

Bruker offers the widest range of MALDI targets available, including reusable and disposable targets with and without barcodes.

Reusable Polished Steel Targets -96 Positions

This most common and widely used Assay target provides excellent performance for all sample types. These targets can be cleaned and re-used literally thousands of times.

Disposable Biotargets -48 Positions

The disposable Biotargets are supplied individually bar-coded in boxes of 25 each. Each target contains 48 positions and 5 additional calibration positions. The silicon-based Biotarget can be re-analyzed as often as necessary until all 48 spots have been used.

BigAnchorChip™ Targets

The Bruker patented BigAnchorChip targets are especially designed for handling liquid samples. They are specially prepared with a hydrophobic coating which surrounds hydrophilic sample positions.

Content:

CBRN Products

- 78 Prepared for a changing world of threats
- 79 Chemical Hazardous Agent Detection
- 80 Chemical & Radiation Detection
- 81 Biological Detection
- 82 First Responders & Environmental Protection
- 83 Software Solutions

CBRNE

Chemical, Biological, Radiological, Nuclear and Explosives Detection

Innovation with Integrity

CBRNE Detection

Prepared for a changing World of Threats

Bruker Daltonics – since 30 years a trusted manufacturer of CBRNE detection equipment – offers and constantly improves their sophisticated CBRNE product line and this way tries to help counter chemical, biological, radiological, nuclear and explosive threats. State-ofthe-art technology, ruggedized design and modular accessories allow flexible and extensive applications.

The complete product line for CBRNE detection

CBRNE technology has always been the core competence of Bruker Daltonics. We were the first supplier who covered the complete range of chemical, biological and nuclear detection. Bruker is specialized in development, engineering and manufacturing of military hardened and easy-to-use analytical systems and is ISO9001 certified. The product line supports all possible use cases for the detection of various threats.

Systems for CBRNE Defence

Bruker solutions includes personal and handheld point detectors as well as detection systems for reconnaissance vehicles, battle tanks, shipboardor stationary use. Bruker provides sophisticated CBRNE software solutions for instrument control and systems integration.

Safety & Security

Bruker equipment supports not only the response teams from Fire Departments, Police, Customs and Civil Defence in addition, major events such as summits, concerts, parades and sporting events can be targets for terrorist attacks. Harbours, ports, airports and public buildings are also sensitive to the release of hazardous agents. Bruker detection equipment can be integrated into monitoring

systems for these critical infrastructures using combinations of both static and mobile detection systems.

Bruker offers a wide product range including

- Mobile Mass Spectrometers
- Ion Mobility Spectrometers
- Stand-off detectors based on passiv FTIR
- FTIR ATR ruggedized Spectrometers
- Radiation Meters
- Neutron Induced Gamma Spectrometry
- Generic Biological Aerosol detectors
- PCR and ELISA based biological identifiers

Bruker CBRNE equipment is in service with armed and naval forces, civil defence and first responders worldwide. Our instruments are part of major reconnaissance vehicles in the world like the CBRNRS Fox or the Korean K-216 and part of the chemical and/or radiological detection system of ships like the German frigate F123/124 and the MEKO 100. The systems are also an integrated part of the protection system within German and Swedish Coast Guard ships.

Chemical Hazardous Agent Detection

RAID series

A series of chemical monitors, covering multiple tasks including monitoring of collective protection facilities and CBRN filter stations, as well as handheld or personal point detection for protection purposes. Based on the well-established lon Mobility Spectrometry, all important CWA and Toxic Industrial Chemicals (TIC) can be monitored in realtime.

The μ RAID; the first personal chemical agent detector based on Brukers field proven IMS technology; provides unmatched overall sensitivity in this class of instruments. The expandable TIC capability is organised into five libraries that can be tailored with the relevant instrument dataset to meet your specific requirement.

The innovative RAID-XP combines chemical and radiological detection into one system.

RAID-AFM

(NC version)

The RAID-M 100 is distinguished by its flexible and easy use for portable and hand-held deployment. It is designed for fast and sensitiv detection and identification of CWA and TICs.

The RAID-S2 is specially designed for long term operations. The instrument can either be operated separately, or several instruments can be connected in networks.

RAID-AFM can be deployed for stationary chemical detection in vulnerable areas such as air and sea ports and public facilities such as sports arenas. The innovations of a non-radioactive ionisation source or a gamma radiation detector option makes it the most flexible stationary solution in the world.

Integrated RAID-S2 sensors

RAID-XP

Chemical & Radiation Detection

Stand-off detector for atmospheric pollutants

A compact, mobile infrared detector for real-time remote sensing of chemical agent clouds. All known CWA and important Toxic Industrial Chemicals (TICs) can be automatically identified and monitored over a distance of several kilometres – either stationary or on the move. Latest developments have resulted in linking two ore more RAPID's to setup a triangulation system and allowing tomographic reconstruction of chemical clouds.

Monitoring of public events with stand off detection of chemical clouds.

RAPID

MM2

The MM2 sets a milestone in GC/MS technology with a volume of 43 litres and a weight of 35 kg. Equipped with improved Gas Chromatography/ Mass Spectrometry technique it represents the new generation of quadrupole mass spectrometers. The MM2 is optimized for long-term chemical reconnaissance in various armoured vehicles, as well as for mobile chemical agent inspection and detection missions.

SVG 2

Hand-held, hardened radiation detector, based on state-of-the-art semiconductor technology. Equipped with integrated sensors for gamma and neutron radiation detection, and an external $\alpha/\beta/\gamma$ -probe. SVG2

MM2

Biological Detection VeroTect a generic detector for biological aerosol uses the combination of fluorescence and aerosol shape and size sensors for the detection of biological aerosol clouds. pTD is a fully automated ELISA based on-site identifier for toxins using the VeroTect unique electrical biochip technology in a disposable consumable. M-BL, the mobile biological lab, offers PCR based detection of pathogens with integrated sample preparation in a ruggedized, easy to use format. pTD Sample M-BL Preparation Data Acquisition **MALDI Biotyper** The MALDI Biotyper allows fast and 0 11 12 reliable identification and classification of microorganisms, such as bacteria, archaea, yeasts or fungi. There is neither a need for any prior PCR Analysis amplification, nor for the usage of selective growth media nor for any other pre-assumptions, which may influence the outcome of the analysis. The MALDI Biotyper software identifies microorganisms by the species-specific signal patterns contained in their Detected Sp respective molecular profiles. Reference Escherichia For research use only. Not for use in diagnostic procedures. Library

Escherich

First Responders & Environmental Protection

E²M

The enhanced environmental mass spectrometer E²M is a mobile, compact and lightweight GC/MS system for fast, reliable onsite identification of organic chemicals from any medium (soil, water, air) within 20 minutes via complementary sampling techniques. Typical fields of application are environmental protection, mobile on-site analysis and event monitoring. The E²M fully supports First Responders and Homeland Security detection and identification activities. The instrument has been developed in close co-operation with German Fire Brigades and Disaster Management Authorities.

DE-tector

RAID-M 100

RAID-M 100

The RAID-M 100 is outside the military used by civil defense forces, first responders and fire fighters to challenge the threat of toxic industrial compounds.

DE-tector

The third generation of IMS based trace detectors is formed with the Drugs Explosive detector of Bruker. The twintube IMS design means no split of the sample before it will be ionised with a non radioactive source. CHIRP and IMS-Profiler gives unmatched sensitivity and false alarm suppression.

Mobile-IR in use

Mobile-IR

Most chemical substances have their own infrared signature; just like a fingerprint. With the new Mobile-IR, it is easy to identify unknown chemicals in just a few seconds, by comparing the fingerprint of the substance with included data bases. Unlike other portable instruments, the Bruker Mobile-IR is designed to be used under adverse conditions. It is waterproof to IP67 standards, and offers a high degree of shock protection.

NIGAS

System for automated, non-invasive detection of chemical warfare agents in ammunition, using Neutron Activation Analysis with a non-radioactive source. The instrument is transportable and can be used even under field conditions.

Software Solutions

System Integration

Our CBRNE detectors can be easily integrated into any kind of CBRN detection platform. The systems are deployed under various environmental conditions. Ruggedised design and sophisticated accessories allow flexible and extensive applications for the detection of hazardous compounds by mounting the systems on vehicles, ships, helicopters, shelters or by hand-held use under field conditions. Sophisticated software supports the integration of our CBRNE detectors. Bruker has over thirty years of experience in systems integration.

Bruker XIMS software family are control and data systems for the Bruker Ion Mobility Spectrometers (IMS). They are assigned for instrument control of the detector, for data acquisition and analysis of two- and threedimensional IMS spectra on a PC.

RAPID Control software with alarm window, on-line video picture and function keys for fast access to all system operation parameters.

Analytical support tool XIMS NT

Bruker offers analytical software packages to support the use of their handheld and personal detection equipment in order to get deeper insight into the threat situation and to tailor the instruments to customer specific needs.

CPS – Cloud positioning system

CPS collects data from two ore more RAPID systems. It offers triangulation and tomographic reconstruction of detected chemical clouds.

Content:

Optical Vibrational Spectroscopy

- 86 FT-IR Spectrometers
- 88 Remote Sensing System
- 89 FT-Raman Spectrometers
- 90 FT-IR and Raman Microscopy
- 91 FT-NIR Spectrometers
- 92 Process Analytical Technologies
- 93 OPUS Spectroscopy Software

Optical Vibrational Spectroscopy

Advanced Research and QA/QC Solutions Based on Infrared and Raman Spectroscopy

Innovation with Integrity

IR/NIR/FT-RAMAN

FT-IR

ALPHA with ATR Sampling Module

Bruker Optics has the industry's most comprehensive FT-IR product-line; from the very compact FT-IR spectrometer to the world's highest resolution.

ALPHA

About the size of a lab book, the very compact FT-IR spectrometer Alpha will play a big part in your daily routine. Plug & play set-up, easy-to-use software, combined with QuickSnap[™] sampling modules assure powerful and reliable FT-IR analysis you expect from Bruker. Alpha is ideal for academic teaching and routine industrial applications.

Mobile-IR

TENSOR 27 FT-IR Spectrometer

Mobile-IR Portable FT-IR

Material Identification Anywhere! Bruker's Mobile-IR is a self-contained, rugged portable FT-IR spectrometer that provides benchtop performance, wider spectral coverage and higher spectral resolution. It's ideal for crime scene investigation, environmental monitoring and hazardous material identification applications.

TENSOR Series

If you need a FT-IR spectrometer that can rapidly identify, quantify and verify your routine samples, Tensor is the right tool for your laboratory. It combines the highest performance and outstanding flexibility with ease of use. A full line of sample compartment and external FT-IR accessories enable it to be used for various challenging applications.

Most Comprehensive FT-IR Product Line; from the Smallest in Size to the Highest in Resolution

VERTEX Series

The VERTEX Series is built on a fully upgradeable optics platform that is designed with the utmost flexibility in mind. Multiple input and exit ports allows users to connect various external and internal accessories and components to customize the instrument based on applications. Vertex spectrometers share a wide range of features and utilize patented RockSolid[™] and Ultra-Scan[™] interferometer designs.

VERTEX 70 FT-IR Spectrometer

Vacuum Optics

With the vacuum models, peak sensitivity in the mid-, near- and far IR regions is obtained without the fear of masking very weak spectral features by air water vapor absorptions.For the VERTEX 80v vacuum spectrometer a unique option is available: The new automatic beamsplitter exchange unit BMS-c for automatic spectral range selection without the need of venting the spectrometer vacuum optics.

VERTEX 80v Vacuum FT-IR Spectrometer

IFS 125 Series

The IFS 125 is built for performance with each instrument component optimized to approach the theoretical limit of sensitivity. It offers the highest spectral resolution available down to 0,001 cm⁻¹, a resolving power of up to 10⁶ and the wide wavelength range from 5 cm⁻¹ in the far-IR/THz to 50,000 cm⁻¹ in the UV. The mobile IFS 125/M is dedicated to gas phase absorption studies, requently applicable to atmospheric research.

IFS 125HR

Remote Sensing

HI 90 Hyperspectral Imaging System

HI 90 Hyperspectral Imaging System

Atmospheric, environmental research, volcanology, industrial surveillance and homeland security outline the wide range of applications of the new HI 90, Hyperspectral Imaging system. The HI 90 is ideally suited for real-time identification, quantification, and visualization of gas clouds. In addition, algorithms based on a combination of image processing and spectral analysis can be applied allowing for the system to be used in a range of imaging applications for solids and liquids.

SIGIS 2 Scanning Imaging Remote Sensing System

EM 27 Remote Sensing FT-IR

SIGIS 2 Scanning Imaging Remote Sensing System

SIGIS 2 is a remote sensing system that allows identification, quantification, and visualization of gas clouds from long distances. The system maps a predefined area and results of the analysis are visualized by the video image, overlaid by a chemical image.

The SIGIS 2 can be used for environmental applications, atmospheric research, volcanology, and industrial facility surveillance. The SIGIS 2 is currently being deployed by emergency response forces in Austria, Denmark, Germany, and Italy.

EM 27 Remote Sensing FT-IR

Providing laboratory grade performance, the EM27 remote sensing FT-IR can easily be deployed in the field for various environmental air monitoring applications. Emissions from smoke stacks and waste disposals, hazardous emissions from chemical accidents can be observed with an operating range of up to several kilometers.

FT-Raman

The Raman effect is based on the inelastic scattering of monochromatic light with matter. As the complementary vibrational technique of IR spectroscopy Raman provides detailed molecular structure information.

Bruker Optics added FT-Raman capabilities to its product line shortly after the technique was first reported in late 1980s.

MultiRam

The MultiRAM is a stand-alone highperformance FT-Raman spectrometer. It has a large sample compartment to utilize an extensive range of pre-aligned sampling accessories.

MultiRam Stand-Alone FT-Raman

RAM II FT-Raman Module

Designed as an add-on module, Bruker's RAM II is a dual-channel FT-Raman unit that can be coupled to the VERTEX series multi range FT-IR spectrometers.

RAM II coupled to VERTEX 70 FT-IR

Low Temperature Silicon QC

The CryoSAS is a high-sensitivity system for the quality control of solar and electronic grade silicon material according to international standards. Although sample cooling to very low temperatures is required, the fully automated system is easy to operate, and does not require cryogenic liquids.

CryoSAS

FT-IR & Raman Microscopy

Sample visualization is the important first step in the analysis of almost any sample. Infrared and Raman spectroscopy are versatile and powerful analytical techniques that can be applied to micro-analysis. Bruker's FT-IR and Raman microscopes are built on state-of-the-art optical

SENTERRA Raman Microscope

microscopy platforms that provide optimal sample visualization and also feature chemical imaging and mapping. Areas of applications include material science, forensics, mineralogy, failure analysis, content uniformity, sample homogeneity and quality control.

HYPERION Series

Featuring full automation, infrared chemical imaging, crystal-clear sample viewing and a wide variety of IR and visible objectives, the HYPERION[™] series provide everything needed to conduct the most demanding micro-analysis easily and efficiently. It can be coupled to TENSOR and VERTEX Series FT-IR Spectrometers.

The HYPERION™ 3000 represents the pinnacle of infrared microspectroscopy, incorporating state-of-the-art Focal Plane Array detectors for the most demanding infrared imaging applications. High-resolution chemical images can be collected in a matter of seconds.

SENTERRA

Bruker's SENTERRA[™] is an easy to use Raman microscope that combines many novel features such as the patented SureCal permanent calibration, fluorescence rejection and on-demand confocal depth profiling. With a wide variety of excitation lasers providing high-spectral resolution, it is ready to challenge any microanalysis research applications.

RamanScopellI

When sample fluorescence is a problem, FT-Raman microscopy with near infrared 1064 nm excitation is frequently the only solution. RamanScopeIII can be coupled to Bruker's FT-Raman spectrometers, and be combined with the SENTERRATM dispersive Raman microscope as a hybrid solution.

FT-NIR

Discover the flexibility of Near Infrared Spectroscopy

NIR spectroscopy has largely replaced a number of wet chemical analysis methods. With the fiber optics and the integrating sphere sampling techniques, NIR spectroscopy does not require any sampling preparation. It is a fast and precise tool for the nondestructive analysis of liquids, solids and paste-like materials, saving costs by reducing time and reagent use.

TANGO

Faster, simpler, more secure - with TANGO your NIR analysis speeds up. The new TANGO from Bruker Optics has exactly what users require of an FT-NIR spectrometer suitable for food analysis: Robustness, high precision and straightforward operator guidance. The proven FT-NIR technology by Bruker was combined with an easy-to-use touch screen operation and a small footprint, perfect for those laboratories with limited space.

MPA Multi Purpose Analyzer

Bruker's dedicated FT-NIR spectrometer MPA offers everything you need for the analysis of liquids, solids, powders and tablets. Selection of the different measurement accessories is completely software controlled and validated, without the need for any manual exchange.

MATRIX Series

The award winning MATRIX[™] series process-ready FT-NIR Spectrometers incorporate state-of-the-art optics for outstanding sensitivity and stability. Available configurations include fiber optic coupling up-to 6 probes and integrating sphere.

TANGO

MPA

Process Analytical Technologies

Today, many companies are not only striving to manufacture high-quality products, but also increase production efficiency by installing the analytical systems directly into their production plants. This improves process verifiability and gives the company the opportunity to optimize material use. Bruker's technology base includes FT-IR, FT-NIR, dispersive NIR and Raman Spectroscopy. This allows us to offer a choice of analytical solutions based on applications or sampling points. The robust design of our spectrometers enable use in tough conditions in the production plant.

MATRIX-F duplex FT-NIR Spectrometer

MATRIX-MF FT-IR Reaction Monitoring

MATRIX-F ex for hazardous environments

MATRIX-F FT-NIR Spectrometers

The award winning MATRIX-F FT-NIR spectrometers allow the direct measurement in process reactors and pipelines, leading to a better understanding and control of the process. Its innovative design provides consistent high-quality results, less downtime and direct method transfer. ATEX **II 2G EEx p II T6** version available.

MATRIX-MF FT-IR Spectrometers

Utilizing the information rich mid-IR region for use in both laboratory and process environments, the MATRIX-MF is a process ready spectrometer that is ideal for real-time monitoring and analysis of chemical and biological reactions. ATEX **II 2G Ex px II T6** version available.

FT-NIR measurement heads and probes

A wide range of fiber optic probes is available for the MATRIX-F series – from immersion probes for liquids to reflection probes for solid materials. For contactless measurements, Bruker offers emission heads which collect the reflected light from the sample, also as fully ATEX certified version for gas and dust Ex-zones.

OPUS – Spectroscopy Software

 \bigcirc

"All-in-one" IR and Raman spectroscopy software consisting of a suite of software packages that cover both standard and specialized applications.

Features

- Running under Windows XP and Windows 7 operating system
- Supporting the demands of 21 CFR Part 11"Electronic Records, Electronic Signatures"
- Manipulating multiple spectra and 3D files at the same time
- Providing comprehensive spectra processing routines e.g. integration and baseline correction
- Providing easy to use, intuitive application-specific software interfaces for complete routine analysis tasks

Display and Processing of 3D files

OPUS-VIDEO

- Wizard guides the operator through the full procedure of data acquisition
- Powerful autofocus functionality
- Acquisition of spectral data up to 10 Giga Byte

OPUS-3D

- IR and Raman images may be combined with high-resolution visible images and shown as 2D contour plots or as 3D topography plots
- Multiple data analysis functions from simple "Integration" to "Cluster Analysis", "Spectral Similarity" or "Factorization"

Quantitative Analysis and Quality Control, Process Control

QUANT

- PLS tools box to setup quantitative analytical methods
- Automatic method development and optimization
- Automatic outlier recognition and removal

IDENTIFICATION

- Complete tools box of algorithms for substance identifications
- PCA including visualization by 2D and 3D score plots
- Hierarchical multi-level libraries to separate even similar substances
- Validation with independent samples: positive and negative samples

PROCESS and REACTION MONITORING

- Real time evaluation using multivariate methods and on-line trending
- Communication protocols to DCS (OPC, Profibus DP, Modbus, 4-20 mA, …)
- Interactive setup of integration methods during reaction monitoring
- Automatic end point detection based on PCA or integration results

Content:

X-RAY, XRF, SC-XRD, AFM, OIM MA, OES and CS/ONH

- 96 X-ray Diffraction
- 99 X-ray Fluorescence Analysis
- 102 Optical Emission Spectrometry
- 104 CS/ONH Analysis
- 106 Microanalysis
- 107 Chemical Crystallography
- 108 Automated Crystal-Structure Analysis
- 109 Biological Crystallography
- 110 Atomic Force and Scanning Probe Microscopy
- 111 Stylus and Optical Metrology

Advanced Analytical Solutions

XRD, XRF, SC-XRD, AFM, OIM MA, OES, CS/ONH

Innovation with Integrity

X-RAY, AFM, OES

X-ray Powder Diffraction

Table-top, automated, or scientific workshorse instrumentation

D8 ADVANCE

X-ray diffraction expands analytical capabilities down to the nanometer range. Our highly accurate, reliable and fast diffraction solutions are accompanied by an intuitive and clearly laidout user interface, easy handling, and individual data presentation, as well as perfect integration and communication capabilities.

Applications

- Crystalline phase identification
- Crystalline phase quantification
- % crystallinity
- Crystallite size determination
- Crystal structure analysis
- Texture and preferred orientation
- Microstrain
- Residual stress
- Depth profiling
- Polymorph screening
- High temperature
- Low temperature
- Humidity
- Phase transition
- Nanoparticles

D2 PHASER

... with TURBO X-RAY SOURCE

Thin Film X-ray Diffraction

Quick-Change Artists without Limits

With the capabilities provided by the D8 DISCOVER, laboratory X-ray diffraction enters new frontiers in the nano-world and materials research so that synchrotron measurement campaigns become obsolete in many cases.

Applications

- Crystalline phase identification
- Crystalline phase quantification
- % crystallinity
- Crystallite size determination
- Crystal structure analysis
- Texture and preferred orientation
- Microstrain and relaxation
- Residual stress
- Layer thickness
- Layer roughness
- Lattice parameter
- Chemical composition
- Lateral structures
- Defects
- Depth profiling
- Real space mapping
- Microdiffraction
- Polymorph screening
- High and low temperature
- Humidity
- Phase transition
- Nanoparticles

Small Angle X-ray Scattering and X-ray Metrology

Enter the Universe of Nanostructure Analysis

NANOSTAR U

The innovative Small Angle X-ray Scattering System NANOSTAR is the ideal tool for investigating precipitants in bulk materials and macromolecules like protein solutions with a size on the order of 10 to 1000 Ångstrom.

Applications

- Small Angle X-ray Scattering (SAXS)
- Grazing-incidence SAXS (GISAXS)
- Wide Angle X-ray Scattering (WAXS)
- BioSAXS
- Nanography
- Particle size
- Particle size distribution
- Particle shape
- Orientation distribution
- Particle distances
- High and low temperature
- Subsurface structure
- Roughness
- Molecular volume and mass

The D8 FABLINE is the only X-ray metrology instrument with four combined applications:

- High-Resolution X-Ray Diffraction (HRXRD)
- X-ray Reflectivity (XRR)
- Micro X-ray Fluorescence (µXRF)
- Grazing incidence Diffraction (GID)

X-ray Fluorescence Analysis

Defining the World of Elements in Seconds

X-ray fluorescence spectrometry is the most effective way to perform multielemental analysis determining concentrations in all forms of samples: solids, powders and liquids. Based on the renowned XFlash® silicon drift detector technology Bruker AXS energy dispersive X-ray fluorescence (EDXRF) systems offer highest analytical precision and stability. The S2 PICOFOX allows the analysis of thin films as well as the analysis of traces down to 0.1 ppb using total reflection X-ray fluorescence (TXRF). The S2 RANGER with Touch-Control[™] provides you with instant answers for element concentrations from Na to U in unknown samples.

S2 PICOFOX: True Trace Element Analysis by TXRF

Applications

- Fresh water, sea water
- Sewage, sludge
- Pharmaceuticals
- Blood, urine
- Proteins, macromolecules
- Food, dietary supplements
- Wine, beverages
- Nanoparticles
- Washcoats
- Contaminations
- Aerosols
- Thin films

XFlash Technology

S2 RANGER: EDXRF with TouchControl™

Applications

- Petrochemicals
- Minerals and mining
- Slags
- Cement
- Geology
- Pharmaceuticals
- Metals and alloys
- Soil, sediments and waste

Unrivalled

Excellence in WDXRF: S8 TIGER - S8 LION - S8 DRAGON

Our wavelength dispersive X-ray fluorescence (WDXRF) systems provide you with excellent analytical results for elements from Be to U in your samples. They feature high-accuracy and the best achievable precision for effective process and quality control. They are reliable and robust for all industrial applications, yet flexible and powerful for all non-routine applications in research and development.

> Get in ouch with the power

> > S8 TIGER:

TouchControl[™] and SampleCare[™]

S8 LION and S8 DRAGON Ultimate Analytical Speed Best Precision

Applications

- Cement
- Ferrous and Non-Ferrous Metals
- Industrial Minerals
- Mining

Applications

- Petrochemicals
- Plastics and polymers
- Cement
- Geology
- Metals and alloys
- Precious metals
- Minerals and mining
- Glass and ceramics
- Chemicals and catalysts
- Pharmaceuticals
- Soil, sediments and waste
- Foods

Micro-X-ray Fluorescence Analysis

M1 and M4 Tabletop Micro-XRF Spectrometer Series

M4 TORNADO

Applications

- Minerals
- Metals and alloys
- Electronic components (RoHS)
- Particles
- Forensics
- Layers
- Art conservation, archeology

μ-XRF is the method of choice for the elemental analysis of inhomogeneous or irregularly shaped samples as well as small samples or even inclusions. Bruker's M1 and M4 tabletop spectrometers offer maximum versatility for all applications, whether for routine analysis in quality control or for individual setups analyzing special samples.

M1 MISTRAL and M1 ORA

Applications

- Jewelry
- Metals and alloys
- Layers (M1 MISTRAL)

S1 TURBO^{SD}

The Bruker handheld XRF analyzers provide quick and easy non-destructive analysis. The S1 TURBO^{SD} and S1 SORTER enable fast analysis and ID of most alloys. The TRACER III-V and III-SD tube based systems include the Bruker /NASA joint patented vacuum system and high-resolution detector allows for laboratory grade results of elements from Mg to U.

Applications

ARTAX

- Non-destructive element analysis in
- Art conservation, archeology and archeometry
- Metals, alloys, sheet metal
- Thin layers

Optical Emission Spectrometry

Spark optical emission spectrometers (S-OES) are the ideal instruments for all types of metals. From pure metal trace analysis to high alloyed grades, spark OES covers the complete range from sub-ppm to percentage levels. All relevant elements can directly be analyzed simultaneously. Spark spectrometer instruments cover all types of metal applications. Our range of high-end instruments allows our customers to elevate their business into new levels of quality and process control.

Q4 TASMAN / Q2 ION – Benchtop metals analyzer

Metal samples

Q8 CORONADO -Analysis automation

<image>

Applications

- Process analysis of steels
- Process analysis of cast iron
- Process analysis of aluminum
- Process analysis of copper

Q8 MAGELLAN – Stationary vacuum spectrometer

Applications

Elemental analysis of:

- Iron and steel alloys and its traces
- Nitrogen in steel
- Aluminium alloys and its traces
- Copper alloys and its traces
- Oxygen in copper
- Nickel alloys and its traces
- Cobalt alloys and its traces
- Magnesium alloys and its traces
- Tin alloys and its traces
- Lead alloys and its traces
- Titanium alloys and its traces

O6 COLUMBUS (CPM)

CS / ONH Analysis in Solids

Our innovative analysis instruments allow automatic and fast determination of Carbon, Sulfur, Oxygen, Nitrogen and Hydrogen in solids. Our instruments provide highly accurate measurement within a short analysis time and are highly reliable and userfriendly. The state-of-the-art technology allows not only the use for quality control but also in the various fields of material development. The "One-4-All" analysis software is clear and simply structured and universal for all instruments.

G4 ICARUS HF

CS analyzer with high-frequency furnace

G4 ICARUS TF

CS analyzer with high-temperature tube furnace

Applications

- Iron, steel and alloys
- Aluminum and alloys
- Titanium and alloys
- Zirconium and alloys
- Ores, minerals
- Coal, coke and ash
- Catalysts

G8 GALILEO

O, N, H analyzer

Applications

- Iron, steel and alloys
- Aluminum and alloys
- Copper and alloys
- Titanium and alloys
- Zirconium and alloys
- Ores
- Ceramics
- Minerals

G4 PHOENIX

Determination of diffusible hydrogen

Applications

- Steel
- Aluminum
- Weld material
- Weld seams

Microanalysis (EDS) and Electron Backscatter Diffraction (EBSD)

Accurate, Fast and Easy to Use

The QUANTAX EDS microanalysis system works in conjunction with Scanning Electron Microscopes, as well as Transmission Electron Microscopes (TEM) with the worldwide first SDD series designed for TEM. In addition QUANTAX also provides the option of EBSD analysis with the fully integrated QUANTAX CrystAlign.

Applications

- Metals and alloys
- Semiconductors
- Layers and coatings
- Minerals
- Glasses
- Nano-materials
- Plastics and organic solids
- Biological samples
- Forensics

QUANTAX 800

Chemical Crystallography

Systems as individual as your research

Single Crystal X-ray diffraction is the method of choice for determining the 3-dimensional structure of any kind of chemical compound. The method provides accurate and precise measurements of molecular dimensions in a way that no other investigative technique can begin to approach.

designed to offer highest standards of quality, performance, and reliability. Both feature the new PHOTON 100 detector, a 10x10-cm² CMOS active pixel sensor X-ray detector. This new air-cooled detector is combined with the most flexible and precise sample motion available. A wide selection of dedicated X-ray sources including sealed tube, microfocus tube and rotating anodes completes these systems to give you the best structure possible.

Our D8 Crystallography Solutions, the

D8 QUEST and the D8 VENTURE, are

The compact D8 QUEST hosts single source and is setup for excellent sample access and reachability.

The D8 VENTURE provides a more spacious enclosure, which also allows for solutions including two X-ray sources. This highly versatile setup enables the scientist to switch between Mo- or Cu-radiation, e.g. for absolute structure determination just with a mouse click.

D8 VENTURE

Applications

- Structure determination of new molecules and minerals
- Absolute structure determination on molybdenum and copper radiation
- Integrated treatment of twinned samples
- Electron charge-density studies by high-anglediffraction
- Structural investigation of high-pressure phases
- Modulated structures
- Diffuse scattering

Automated Crystal-Structure Analysis

Walk-up X-ray Structure Determination for Chemists

Bruker AXS' SMART X2S is the first benchtop X-ray crystallography system for fully automated 3D chemical structure determination. It is designed for use by chemists, who need unambiguous answers to their structural questions. The SMART X2S takes small molecule structure determination to the next level of convenience by automating the previously difficult aspects of X-ray structure determination, from sample loading through data collection all the way to report generation and data archiving. Its compact design, low maintenance, low cost of ownership, easy and intuitive operation through a touch screen graphical interface are truly groundbreaking.

SMART X2S

Features

- Structural information for routine samples when you need it – quickly, reliably and cost effectively
- Crystal-in, Structure-out Automation
- Unambiguous synthesis control for working chemists
- Perfectly complements MS, NMR, FT-IR and Raman
Biological Crystallography

Best in-house data - guaranteed

Modern beamlines are designed to collect data from large numbers of ever smaller crystals, and facilitate data collection from crystals with very large unit cell dimensions. These requirements are similarly driving the development of the D8 Structural Biology for the home-lab solutions in the same direction, where X-ray flux on the crystal is comparable with that achieved at bending magnet beamlines. The high X-ray flux sources are combined with highly precise and easy to use sample stages and rounded up by the new, air-cooled CMOS-based PHOTON 100 detector. The D8 QUEST features a new generation of μ S sealed tube microfocus source, while the more spacious D8 VENTURE hosts the TURBO X-RAY SOURCE (TXS) microfocus rotating anode in addition. Demanding SAD-phasing experiments, measuring even an extremely small anomalous signal can be carried out routinely, while high-throughput crystal screening is more efficient than ever before.

Features

- High-intensity microfocus TXS or
- High-brilliance IµS microfocus source
- Large 100-cm² PHOTON CMOS-detector
- KAPPA goniostat for easy sample mounting and high-data multiplicity
- Three years of warranty on the IµS and the PHOTON 100
- Completely air-cooled configurations available
- Minimal down-time
- Lowest cost of ownership
- Excellent sample access and sample visibility
- Intuitive PROTEUM2 software package

D8 VENTURE with microfocus TXS

Atomic Force and Scanning Probe Microscopy

Analyze Nanometer Size Surface Structures within Minutes

Bruker's atomic force microscopes (AFMs) drive the world's leading-edge research in life science, materials science, semiconductor, electrochemistry, and many other applications. The MultiMode® 8 and Dimension® Icon® systems are the latest generation of the world's most widely selected AFMs, offering true atomic resolution for materials research in air or liquids. The Bio-ScopeTM CatalystTM features the most complete integration available between AFMs and high-end inverted and confocal microscopes, and has been specifically engineered to image samples under biologically relevant conditions.

DIMENSION Icon

The N8 range of instruments provides a complete set of solutions for atomic force and scanning probe microscopy (SPM). All systems are based on the unique NANOS SPM head, which uses an interferometric detection principle, enabling optically navigated AFM.

New N8 NEOS, AFM and optical microscope

Automated AFM / AFP Systems

Automated atomic force microscopy and atomic force profiling (AFP) support routine analysis in many different industrial applications, like in-line semiconductor, data storage and MEMS. The systems provide the highest level of measurement performance for a variety of automated and semi-automated metrology applications, performing Atomic Force Profilometry, Critical Dimension AFM scanning, TappingMode[™] for roughness metrology, and deep trench AFM scan modes.

InSight 3DAFM

Stylus and Optical Metrology

Optical Interferometric Profilers

White light interferometric (WLI) optical profilers from Bruker are optimized to address a wide range of advanced production QA/QC and R&D precision machining and manufacturing applications within the high-brightness LED, solar, ophthalmic, semiconductor, medical device and academic research markets. Based on ten generations of proprietary technology advances, Bruker's WLI profilers feature patented, higher brightness dual-LED illumination that, when combined with the systems' superior vertical resolution, provide the high-sensitivity and stability necessary for precision, non-contact 3D surface metrology in applications and environments that are challenging for other metrology systems.

Dektak® 150

Stylus Profilers

Bruker's stylus profilers are the culmination of four decades of proprietary stylus profiler technology. These surface profilers provide repeatable, accurate measurements on varied surfaces, from traditional 2D roughness surface characterization and step height measurements to advanced 3D mapping and film stress analyses.

Trademarks

trademark of Bruker

Amix™ Ascend™ Assure™ Avance™ B-ACS™ BGA-S™ BioSpec[®] ClinScan® СМС™ CryoPlatform™ CrvoProbe™ DICE™ ELEXSYS™ EMXmicro™ EMXplus™ e-scan™ HyperQuant[™] HyperSense™ Icon NMR™ IntraGate™ JuiceScreener™ LINUX®

OS X® ParaVision® PatternJet™ PharmaScan® SampleCase™ SampleJet™ SampleTrack™ SampleXpress™ SFG Profilina™ SmartProbe™ SpecJet™ SuperX-FT™ Syngo® TopSpin™ UltraShield™ UltraStabelized™ USR™ WINDOWS NT® WINDOWS 2000® Xenon™

trademark of Bruker reg. trademark of Bruker reg. trademark of Bruker reg. trademark of Linus Torvalds Metabolic Profiler™ trademark of Bruker reg. trademark of MacIntosh reg. trademark of Bruker trademark of Bruker reg. trademark of Bruker reg. trademark of Siemens trademark of Bruker trademark of Bruker trademark of Bruker trademark of Bruker reg. trademark of Microsoft reg. trademark of Microsoft trademark of Bruker

amaZon ETD™ autoflex speed™ BigAnchorChip™ BioTools™ Biotyper™ Compass™ Compass OpenAccess™ GenoTools™ LIFT™ maXis impact™ MetaboliteTools™ microflex[™] LT micrOTOF ™ II micrOTOF-Q ™ II PAN™ PolyTools™ Profile Analysis[™] ProteinScape™ Sepsityper™ Smartbeam™ solariX® Super Clean™ TargetAnalysis™ ultrafleXtreme™ HYPERION™ MATRIX™ QuickSnap™ RockSolid™ SENTERRA™ UltraScan™ D8™ DIFFRAC™

SampleCare™ TouchControl™ TOPAS™ **XFlash**® **QUANTAX®**

BioScope™ Catalyst™ Icon[®] MultiMode[®] **Dimension**®

TappingMode™ Dektak®

trademark of Bruker Daltonik trademark of Bruker Daltonik

trademark of Bruker Daltonik trademark of Bruker Daltonik trademark of Bruker Daltonik trademark of Bruker Daltonik trademark of Bruker Daltonik trademark of Bruker Daltonik trademark of Bruker Daltonik trademark of Bruker Daltonik trademark of Bruker Daltonik trademark of Bruker Daltonik trademark of Bruker Daltonik trademark of Bruker Daltonik trademark of Bruker Daltonik trademark of Bruker Daltonik reg. trademark of Bruker Daltonik trademark of Bruker Daltonik trademark of Bruker Daltonik trademark of Bruker Daltonik

trademark of Bruker Optics trademark of Bruker Optics

trademark of Bruker AXS reg.trademark of Bruker AXS reg.trademark of Bruker AXS

trademark of AFM system trademark of AFM system reg. trademark of AFM system reg. trademark of AFM system reg. trademark of AFM system brand trademark of AFM technique reg. trademark of SOM system brand

Tables and Others Useful Information

NMR

Ū	2-4	NMR Frequencies vs. Bruker Field Strengths – sorted by increasing atomic number
Ū	5-7	NMR Frequencies vs. Bruker Field Strengths – sorted with decreasing Larmor frequency
Û	8-13	NMR Properties of Selected Isotopes
Ū	14	lsotopes sorted according to spin and nucleon numbers
Ū	15	Properties of Selected Deuterated Solvents for NMR
Ū	16	¹ H Chemical Shifts in Organic Compounds / ¹³ C Chemical Shifts in Organic Compounds
Ū	17	¹⁵ N Chemical Shifts in Organic Compounds / ¹¹ B Chemical Shifts
Ū	18	¹⁷ O Chemical Shifts / ²⁹ Si Chemical Shifts
Ū	19	²⁷ AI Chemical Shifts / MRI Abbreviations and Acronyms
Û	20	Additivity Parameters for ^{13}C Chemical Shifts, Some Representative ^{19}F and ^{31}P Chemical Shifts
Û	21-23	Various NMR Tables
Ū	24-30	Abbreviations and Acronyms Used in Magnetic Resonance
Ū	31/32	Symbols for NMR and Related Quantities
Ū	33/34	¹ H Chemical Shifts for Common Contaminants in Deuterated Solvents
Ū	34/35	¹³ C Chemical Shifts for Common Contaminants in Deuterated Solvents
Ū	36-38	NMR Formulae
Ū	39-48	X-ray Diffractometry Tables
Ū	49-53	EPR/ENDOR
		IR Spectroscopy
Ū	54	Conversion Table for Transmittance and Absorbance Units / Near-Infrared Table
Ū	55	Conversion Table for Energy and Wavelength Units
Ū	56/57	IR Spectroscopy and Raman Tables
Û	58	Vibrational Spectroscopy
Û	59	IR Window Materials
Ū	60/61	Infrared Tables

. . 0 .

		mass Spectrometry
Ū	62-65	Exact Masses of the Isotopes
Ū	66/67	Solid-Phase Peptide Synthesis
Ū	68/69	Molecular Weights of Amino Acid Residues
Ū	70/71	Amino Acid Calculator Table
Ū	72	Matrices / Bruker Matrix Selection Guide
Ū	73	Peptide Fragmentation
Ū	74/75	Relative Isotopic Abundance Table
Ū	76	Molecular Weights
		Chemical Tables
Ū	77-79	Important Abbreviations and Acronyms
Ū	79	Concentration Units for Solutions
0	80/81	Acronyms and Abbreviations in Quantum Chemistry and Molecular Modeling
Ū	82/83	IUPAC Periodic Table of Elements
Ū	84/85	Properties of Selected Nondeuterated Solvents
Ū	85	Electronegativities according to Pauling
		Physical Tables
Ū	86	Fundamental Physical Constants (CODATA 2010)
Ū	87-89	SI Unit System (Système International)
Ū	90/91	SI Values of US and Imperial Measures
Ū	92	Conversion Factors
Ũ	93	Colour, Wave Length, Frequency, Wave Number and Energy of Light / Density of Water / Viscosity of Water
Ū	94	Viscosities of Various Liquids /

Self-Diffusion Coefficients D of Various Liquids at 25°C / Temperature Dependence of the Self-Diffusion Coefficient Dof Water (H₂O)

 ^{95/96} International Dialing Codes / **World Time Zones**

NMR Frequency Tables

NMR Frequencies vs. Bruker Field Strengths – sorted by increasing atomic number

sotone	Spin	Nat	Recenti	vitv			Larmo	r Frequen	cies (MHz	:) vs. Bruk	er Field St	rengths (Tesla)		
)	Abund.			Freq. to ;	3 decimals	are experii	mental for	IUPAC St	andards; fr	eq. to 2 de	c. are calc	culated fror	n magn. m	oments
		(%)	Natural rel. ¹³ C	Molar rel. 'H	7.04925	9.39798	11.7467	14.0954	16.4442	17.6185	18.7929	19.9673	21.1416	22.3160	23.4904
- T	1/2	99.9885	5.87E+03	1.00E+00	300.130	400.130	500.130	600.130	700.130	750.130	800.130	850.130	900.130	950.130	1000.130
2 H		0.0115	6.52E-03	9.65E-03	46.072	61.422	76.773	92.124	107.474	115.150	122.825	130.500	138.175	145.851	153.526
3 H	1/2		1	1.21E+00	320.131	426.795	533.459	640.123	746.786	800.118	853.450	906.782	960.114	1013.446	1066.778
3 He	1/2	1.34E-04	3.48E-03	4.42E-01	228.636	304.815	380.994	457.173	533.352	571.441	609.531	647.620	685.710	723.799	761.889
6 Li	-	7.59	3.79E+00	8.50E-03	44.167	58.883	73.600	88.316	103.032	110.390	117.748	125.106	132.464	139.822	147.180
7 Li	3/2	92.41	1.59E+03	2.94E-01	116.642	155.506	194.370	233.233	272.097	291.529	310.961	330.393	349.825	369.257	388.688
9 Be	3/2	100.0	8.15E+01	1.39E-02	42.174	56.226	70.277	84.329	98.381	105.407	112.433	119.459	126.485	133.510	140.536
10 B	e	19.9	2.32E+01	1.99E-02	32.245	42.989	53.732	64.476	75.220	80.591	85.963	91.335	96.707	102.079	107.451
11 13	3/2	80.1	7.77E+02	1.65E-01	96.294	128.378	160.462	192.546	224.630	240.672	256.714	272.755	288.797	304.839	320.881
13 C	1/2	1.07	1.00E+00	1.59E-02	75.468	100.613	125.758	150.903	176.048	188.620	201.193	213.765	226.338	238.910	251.483
14 N	1	99.636	5.90E+00	1.01E-03	21.688	28.915	36.141	43.367	50.594	54.207	57.820	61.433	65.046	68.659	72.273
15 N	1/2	0.364	2.23E-02	1.04E-03	30.423	40.560	50.697	60.834	70.971	76.039	81.107	86.176	91.244	96.312	101.381
17 0	5/2	0.038	6.50E-02	2.91E-02	40.687	54.243	67.800	81.356	94.913	101.691	108.469	115.248	122.026	128.804	135.582
19 F	1/2	100.0	4.89E+03	8.32E-01	282.404	376.498	470.592	564.686	658.780	705.827	752.874	799.921	846.968	894.015	941.062
21 Ne	3/2	0.27	3.91E-02	2.46E-03	23.693	31.587	39.482	47.376	55.270	59.217	63.165	67.112	71.059	75.006	78.953
23 Na	3/2	100.0	5.45E+02	9.27E-02	79.390	105.842	132.294	158.746	185.198	198.424	211.650	224.876	238.101	251.327	264.553
25 Mg	5/2	10.00	1.58E+00	2.68E-03	18.373	24.494	30.616	36.738	42.859	45.920	48.981	52.042	55.103	58.163	61.224
27 AI	5/2	100.0	1.22E+03	2.07E-01	78.204	104.261	130.318	156.375	182.432	195.460	208.489	221.517	234.546	247.574	260.602
29 Si	1/2	4.685	2.16E+00	7.86E-03	59.627	79.495	99.362	119.229	139.096	149.030	158.963	168.897	178.831	188.764	198.698
31 P	1/2	100.0	3.91E+02	6.65E-02	121.495	161.976	202.457	242.938	283.419	303.659	323.900	344.140	364.380	384.621	404.861
33 S	3/2	0.75	1.00E-01	2.27E-03	23.038	30.714	38.390	46.066	53.742	57.580	61.418	65.256	69.094	72.932	76.770
35 CI	3/2	75.76	2.10E+01	4.72E-03	29.406	39.204	49.002	58.800	68.598	73.497	78.396	83.295	88.194	93.093	97.992
37 CI	3/2	24.24	3.88E+00	2.72E-03	24.478	32.634	40.789	48.945	57.101	61.179	65.256	69.334	73.412	77.490	81.568
39 K	3/2	93.258	2.79E+00	5.10E-04	14.005	18.672	23.338	28.004	32.671	35.004	37.337	39.670	42.003	44.337	46.670
41 K	3/2	6.730	3.34E-02	8.44E-05	7.687	10.249	12.810	15.371	17.932	19.213	20.494	21.774	23.055	24.336	25.616
43 Ca	7/2	0.135	5.10E-02	6.43E-03	20.199	26.929	33.659	40.389	47.119	50.484	53.849	57.214	60.579	63.944	67.309
45 Sc	7/2	100.0	1.78E+03	3.02E-01	72.907	97.199	121.490	145.782	170.074	182.220	194.366	206.511	218.657	230.803	242.949
47 Ti	5/2	7.44	9.18E-01	2.10E-03	16.920	22.557	28.195	33.833	39.470	42.289	45.108	47.926	50.745	53.564	56.383
49 Ti	7/2	5.41	1.20E+00	3.78E-03	16.924	22.563	28.203	33.842	39.481	42.300	45.120	47.939	50.759	53.578	56.398
50 V	9	0.250	8.18E-01	5.57E-02	29.924	39.894	49.865	59.835	69.805	74.790	79.775	84.761	89.746	94.731	99.716
51 V	7/2	99.750	2.25E+03	3.84E-01	78.943	105.246	131.549	157.852	184.155	197.306	210.458	223.609	236.761	249.912	263.064
53 Cr	3/2	9.501	5.07E-01	9.08E-04	16.965	22.617	28.270	33.922	39.575	42.401	45.227	48.054	50.880	53.706	56.532
55 Mn	5/2	100.0	1.05E+03	1.79E-01	74.400	99.189	123.978	148.768	173.557	185.951	198.346	210.741	223.135	235.530	247.924
57 Fe	1/2	2.119	4.25E-03	3.42E-05	9.718	12.955	16.193	19.431	22.669	24.288	25.906	27.525	29.144	30.763	32.382
59 Co	7/2	100.0	1.64E+03	2.78E-01	71.212	94.939	118.666	142.393	166.120	177.984	189.847	201.711	213.575	225.438	237.302
61 Ni	3/2	1.1399	2.40E-01	3.59E-03	26.820	35.756	44.692	53.628	62.564	67.032	71.500	75.968	80.436	84.904	89.372
63 Cu	3/2	69.15	3.82E+02	9.39E-02	79.581	106.096	132.612	159.127	185.643	198.901	212.158	225.416	238.674	251.931	265.189
65 Cu	3/2	30.85	2.08E+02	1.15E-01	85.248	113.652	142.055	170.459	198.863	213.065	227.266	241.468	255.670	269.872	284.074
67 Zn	5/2	4.102	6.92E-01	2.87E-03	18.779	25.035	31.292	37.549	43.806	46.934	50.063	53.191	56.319	59.448	62.576
69 Ga	3/2	60.108	2.46E+02	6.97E-02	72.035	96.037	120.038	144.039	168.041	180.041	192.042	204.043	216.043	228.044	240.045
71 Ga	3/2	39.892	3.35E+02	1.43E-01	91.530	122.026	152.523	183.020	213.517	228.765	244.013	259.262	274.510	289.758	305.007

NMR Frequency	Tables
---------------	--------

NMR Frequencies vs. Bruker Field Strengths – sorted by increasing atomic number

Isotone	Spin	Nat	Recent	ivitv			Larmo	hr Frequen	cies (MHz	:) vs. Bruke	er Field St	rengths (Tesla)		
	2	Abund.			Freq. to	3 decimals	are experi	mental for	IUPAC Stá	andards; fre	eq. to 2 de	c. are calc	ulated fror	n magn. m	oments
		(%)	Natural rel. ¹³ C	Molar rel. 'H	7.04925	9.39798	11.7467	14.0954	16.4442	17.6185	18.7929	19.9673	21.1416	22.3160	23.4904
73 Ge	9/2	7.76	6.44E-01	1.41E-03	10.469	13.958	17.446	20.934	24.423	26.167	27.911	29.655	31.399	33.144	34.888
75 As	3/2	100.0	1.49E+02	2.54E-02	51.390	68.513	85.635	102.758	119.881	128.442	137.003	145.564	154.126	162.687	171.248
77 Se	1/2	7.63	3.15E+00	7.03E-03	57.239	76.311	95.382	114.454	133.525	143.061	152.597	162.133	171.668	181.204	190.740
79 Br	3/2	50.69	2.37E+02	7.94E-02	75.195	100.248	125.302	150.356	175.410	187.937	200.464	212.991	225.518	238.045	250.572
81 Br	3/2	49.31	2.88E+02	9.95E-02	81.055	108.061	135.068	162.074	189.081	202.584	216.087	229.591	243.094	256.597	270.100
83 Kr	9/2	11.500	1.28E+00	1.90E-03	11.548	15.395	19.243	23.091	26.938	28.862	30.786	32.710	34.633	36.557	38.481
85 Rb	5/2	72.17	4.50E+01	1.06E-02	28.977	38.632	48.287	57.942	67.597	72.425	77.252	82.080	86.907	91.735	96.562
87 Rb	3/2	27.83	2.90E+02	1.77E-01	98.204	130.924	163.645	196.365	229.086	245.446	261.806	278.166	294.527	310.887	327.247
87 Sr	9/2	7.00	1.12E+00	2.72E-03	13.007	17.341	21.675	26.009	30.342	32.509	34.676	36.843	39.010	41.177	43.344
γ 68	1/2	100.0	7.00E-01	1.19E-04	14.707	19.607	24.507	29.408	34.308	36.758	39.208	41.658	44.108	46.558	49.008
91 Zr	5/2	11.22	6.26E+00	9.49E-03	27.901	37.197	46.494	55.790	65.086	69.734	74.382	79.031	83.679	88.327	92.975
93 Nb	9/2	100.0	2.87E+03	4.88E-01	73.460	97.936	122.413	146.889	171.365	183.603	195.841	208.079	220.317	232.555	244.794
95 Mo	5/2	15.90	3.06E+00	3.27E-03	19.559	26.076	32.593	39.110	45.627	48.885	52.144	55.402	58.661	61.919	65.178
97 Mo	5/2	9.56	1.96E+00	3.49E-03	19.970	26.623	33.277	39.931	46.585	49.911	53.238	56.565	59.892	63.219	66.546
99 Tc	9/2		1	3.82E-01	67.554	90.063	112.571	135.079	157.588	168.842	180.096	191.350	202.604	213.858	225.113
99 Ru	5/2	12.76	8.46E-01	1.13E-03	13.821	18.427	23.032	27.637	32.242	34.545	36.847	39.150	41.452	43.755	46.057
101 Ru	5/2	17.06	1.58E+00	1.57E-03	15.491	20.652	25.814	30.975	36.136	38.717	41.298	43.878	46.459	49.040	51.620
103 Rh	1/2	100.0	1.86E-01	3.17E-05	9.563	12.750	15.936	19.123	22.309	23.902	25.496	27.089	28.682	30.275	31.869
105 Pd	5/2	22.33	1.49E+00	1.13E-03	13.734	18.310	22.886	27.463	32.039	34.327	36.615	38.903	41.191	43.479	45.767
107 Ag	1/2	51.839	2.05E-01	6.74E-05	12.149	16.197	20.244	24.292	28.340	30.364	32.388	34.412	36.436	38.460	40.483
109 Ag	1/2	48.161	2.90E-01	1.02E-04	13.967	18.620	23.274	27.927	32.581	34.908	37.234	39.561	41.888	44.215	46.541
111 Cd	1/2	12.80	7.27E+00	9.66E-03	63.674	84.890	106.105	127.320	148.536	159.144	169.751	180.359	190.967	201.575	212.182
113 Cd	1/2	12.22	7.94E+00	1.11E-02	66.608	88.802	110.995	133.188	155.381	166.478	177.574	188.671	199.767	210.864	221.961
113 In	9/2	4.29	8.85E+01	3.51E-01	65.626	87.491	109.357	131.223	153.089	164.022	174.954	185.887	196.820	207.753	218.686
115 In	9/2	95.71	1.99E+03	3.53E-01	65.766	87.679	109.592	131.504	153.417	164.373	175.330	186.286	197.242	208.198	219.155
115 Sn	1/2	0.34	7.11E-01	3.56E-02	98.199	130.918	163.636	196.355	229.074	245.433	261.793	278.152	294.511	310.871	327.230
117 Sn	1/2	7.68	2.08E+01	4.60E-02	106.943	142.575	178.208	213.840	249.472	267.288	285.104	302.921	320.737	338.553	356.369
119 Sn	1/2	8.59	2.66E+01	5.27E-02	111.920	149.211	186.502	223.792	261.083	279.728	298.374	317.019	335.664	354.309	372.955
121 Sb	5/2	57.21	5.48E+02	1.63E-01	71.823	95.753	119.684	143.615	167.545	179.510	191.476	203.441	215.406	227.372	239.337
123 Sb	7/2	42.79	1.17E+02	4.66E-02	38.894	51.854	64.813	77.772	90.731	97.211	103.691	110.170	116.650	123.129	129.609
123 Te	1/2	0.89	9.61E-01	1.84E-02	78.543	104.713	130.883	157.052	183.222	196.307	209.392	222.477	235.562	248.647	261.731
125 Te	1/2	7.07	1.34E+01	3.22E-02	94.690	126.240	157.790	189.340	220.889	236.664	252.439	268.214	283.989	299.764	315.539
127 I	5/2	100.0	5.60E+02	9.54E-02	60.048	80.056	100.063	120.071	140.078	150.082	160.086	170.090	180.093	190.097	200.101
129 Xe	1/2	26.4006	3.35E+01	2.16E-02	83.467	111.277	139.087	166.897	194.707	208.613	222.518	236.423	250.328	264.233	278.138
131 Xe	3/2	21.2324	3.51E+00	2.82E-03	24.742	32.986	41.230	49.474	57.718	61.840	65.962	70.084	74.206	78.328	82.450
133 Cs	7/2	100.0	2.84E+02	4.84E-02	39.365	52.482	65.598	78.714	91.830	98.388	104.946	111.504	118.062	124.620	131.178
135 Ba	3/2	6.592	1.94E+00	5.01E-03	29.816	39.751	49.685	59.620	69.554	74.521	79.489	84.456	89.423	94.390	99.357
137 Ba	3/2	11.232	4.62E+00	7.00E-03	33.353	44.466	55.579	66.692	77.805	83.361	88.918	94.474	100.031	105.587	111.144
138 La	2	0.090	4.97E-01	9.40E-02	39.600	52.794	65.989	79.183	92.377	98.974	105.572	112.169	118.766	125.363	131.960
139 La	7/2	99.910	3.56E+02	6.06E-02	42.395	56.521	70.647	84.772	98.898	105.961	113.023	120.086	127.149	134.212	141.275
141 Pr	5/2	100.0	1.97E+03	3.35E-01	91.89	122.51	153.12	183.74	214.36	229.67	244.97	260.28	275.59	290.90	306.21

				_	_	_														<u> </u>	_	<u> </u>							_	_	_	_	_									-
noments	23.4904	54.48	33.56	41.68	34.36	248.65	109.75	30.70	40.26	240.41	34.38	48.20	211.38	28.85	82.72	175.016	48.69	114.20	81.06	40.59	25.50	119.912	41.669	225.275	227.546	22.826	77.664	17.99	19.54	214.996	17.69	179.132	66.124	571.306	576.913	209.233	160.714	243.51	239.93	18.416		
n magn. n	22.3160	51.76	31.88	39.60	32.64	236.22	104.26	29.17	38.25	228.39	32.66	45.79	200.82	27.40	78.59	166.266	46.26	108.49	77.01	38.56	24.23	113.917	39.586	214.013	216.170	21.685	73.781	17.09	18.56	204.247	16.80	170.176	62.819	542.745	548.071	198.773	152.679	231.34	227.93	17.496		
esla) Jated fron	21.1416	49.04	30.20	37.52	30.93	223.78	98.78	27.63	36.24	216.37	30.94	43.38	190.25	25.96	74.45	157.517	43.83	102.78	72.95	36.53	22.95	107.922	37.503	202.751	204.794	20.544	69.899	16.19	17.59	193.499	15.92	161.221	59.513	514.183	519.230	188.313	144.644	219.16	215.94	16.575		
rengths (1 c. are calcu	19.9673	46.31	28.53	35.43	29.21	211.35	93.29	26.10	34.22	204.35	29.22	40.97	179.68	24.52	70.32	148.767	41.39	97.07	68.90	34.51	21.68	101.927	35.420	191.488	193.418	19.403	66.016	15.29	16.61	182.751	15.03	152.265	56.207	485.621	490.388	177.852	136.610	206.99	203.94	15.654	T	-
er Field St ag. to 2 de	18.7929	43.59	26.85	33.35	27.49	198.92	87.80	24.56	32.21	192.33	27.50	38.56	169.11	23.08	66.18	140.017	38.96	91.36	64.85	32.48	20.40	95.932	33.337	180.226	182.042	18.262	62.133	14.39	15.63	172.002	14.15	143.310	52.901	457.060	461.546	167.392	128.575	194.81	191.95	14.734	T	-
vs. Bruke ndards; fre	17.6185	40.86	25.17	31.26	25.77	186.49	82.32	23.03	30.20	180.31	25.78	36.15	158.54	21.63	62.04	131.268	36.52	85.65	60.80	30.45	19.13	89.938	31.253	168.964	170.667	17.120	58.251	13.49	14.66	161.254	13.26	134.354	49.595	428.498	432.704	156.932	120.541	182.64	179.96	13.813	T	
cies (MHz) IUPAC Sta	16.4442	38.14	23.49	29.18	24.06	174.06	76.83	21.49	28.19	168.29	24.07	33.74	147.98	20.19	57.91	122.518	34.09	79.94	56.74	28.42	17.85	83.943	29.170	157.701	159.291	15.979	54.368	12.59	13.68	150.505	12.38	125.399	46.290	399.937	403.862	146.471	112.506	170.47	167.96	12.892	T	
r Frequent	14.0954	32.69	20.14	25.01	20.62	149.20	65.86	18.42	24.16	144.26	20.63	28.92	126.84	17.31	49.64	105.019	29.22	68.53	48.64	24.36	15.30	71.953	25.004	135.177	136.539	13.697	46.602	10.79	11.73	129.009	10.61	107.488	39.678	342.813	346.178	125.551	96.437	146.12	143.97	11.051	T	
Larmo are experii	11.7467	27.25	16.78	20.84	17.18	124.34	54.88	15.35	20.13	120.22	17.19	24.10	105.71	14.42	41.37	87.519	24.35	57.11	40.53	20.30	12.75	59.964	20.837	112.652	113.788	11.415	38.837	9.00	9.77	107.512	8.84	89.577	33.067	285.690	288.494	104.630	80.367	121.77	119.98	9.209	T	
decimals	9.39798	21.80	13.43	16.68	13.75	99.48	43.91	12.28	16.11	96.18	13.75	19.28	84.57	11.54	33.10	70.020	19.48	45.69	32.43	16.24	10.20	47.974	16.671	90.128	91.036	9.132	31.072	7.20	7.82	86.015	7.08	71.667	26.455	228.567	230.810	83.710	64.298	97.42	95.99	7.368	T	-
Frea. to 3	7.04925	16.35	10.07	12.51	10.31	74.62	32.94	9.21	12.08	72.14	10.32	14.46	63.43	8.66	24.82	52.521	14.61	34.27	24.33	12.18	7.65	35.984	12.505	67.603	68.284	6.850	23.306	5.40	5.86	64.518	5.31	53.756	19.843	171.444	173.127	62.789	48.229	73.08	72.00	5.527	T	-
vity	Molar rel. ¹ H	3.39E-03	7.93E-04	1.52E-03	8.52E-04	1.79E-01	1.54E-02	1.45E-04	3.26E-04	6.94E-02	4.74E-04	1.31E-03	1.98E-01	5.04E-04	5.66E-04	5.52E-03	1.35E-03	3.13E-02	3.98E-02	1.40E-03	5.47E-04	3.74E-02	7.50E-05	1.39E-01	1.43E-01	1.24E-05	2.44E-03	2.91E-05	3.73E-05	1.04E-02	2.76E-05	5.94E-03	1.49E-03	1.96E-01	2.02E-01	9.06E-03	1.44E-01	1.44E-02	6.90E-02	1.54E-04		
Recepti	Natural rel. ¹³ C	2.43E+00	3.87E-01	1.34E+00	6.92E-01	5.04E+02	4.73E+01	1.26E-01	3.00E-01	4.08E+02	5.26E-01	1.91E+00	1.16E+03	6.77E-01	3.32E+00	4.63E+00	1.28E+00	1.79E+02	6.05E+00	1.53E+00	4.38E-01	2.20E+02	6.31E-02	3.05E+02	5.26E+02	1.43E-03	2.32E+00	6.38E-02	1.37E-01	2.07E+01	1.62E-01	5.89E+00	1.16E+00	3.40E+02	8.36E+02	1.18E+01	8.48E+02	-	4.06E+02	6.53E-03		
Nat.	. ninor	12.2	8.3	14.99	13.82	47.81	52.19	14.80	15.65	100.0	18.889	24.896	100.0	22.869	100.0	14.28	16.13	97.41	2.59	18.60	13.62	99.988	14.31	37.40	62.60	1.96	16.15	37.3	62.7	33.832	100.0	16.87	13.18	29.52	70.48	22.1	100.0		100.0	0.7204		
Spin		7/2	7/2	7/2	7/2	5/2	5/2	3/2	3/2	3/2	5/2	5/2	7/2	7/2	1/2	1/2	5/2	7/2	7	7/2	9/2	7/2	1/2	5/2	5/2	1/2	3/2	3/2	3/2	1/2	3/2	1/2	3/2	1/2	1/2	1/2	9/2	1/2	3/2	7/2		
tope		PN	Nd	Sm	Sm	B	З	Gd	Gd	đ	Dγ	Dλ	운	꿉	E T	٩	٩٨	3	Ξ	Ŧ	Ŧ	Ta	M	Re	Re	S	0s	<u> </u>	<u>_</u>	æ	Au	Hg	Hg	F	F	Pb	Bi	Po	Pa	-		
Isc		143	145	147	149	151	153	155	157	159	161	163	165	167	169	171	173	175	176	177	179	181	183	185	187	187	189	191	193	195	197	199	201	203	205	207	209	209	231	235		

NMR Frequencies vs. Bruker Field Strengths – sorted by increasing atomic number

NMR Frequency Tables

NMR Frequency Tables

NMR Frequencies vs. Bruker Field Strengths -	 sorted with decreasing 	J Larmor 1	frequency
--	--	-------------------	-----------

Isoto	be	Spin	Nat.	Receptiv	/itv			Larmo	r Frequen	cies (MHz	r) vs. Bruk	er Field St	trengths (1	Tesla)		
		-	Abund.		-	Freq. to	3 decimals	are experi.	mental for	IUPAC Sti	andards; fre	eq. to 2 de	c. are calc	ulated fron	n magn. m	oments
			(%)	Natural rel. ¹³ C	Molar rel. 'H	7.04925	9.39798	11.7467	14.0954	16.4442	17.6185	18.7929	19.9673	21.1416	22.3160	23.4904
m	Ŧ	1/2		1	1.21E+00	320.131	426.795	533.459	640.123	746.786	800.118	853.450	906.782	960.114	1013.446	1066.778
-	Ŧ	1/2	99.9885	5.87E+03	1.00E+00	300.130	400.130	500.130	600.130	700.130	750.130	800.130	850.130	900.130	950.130	1000.130
19		1/2	100.0	4.89E+03	8.32E-01	282.404	376.498	470.592	564.686	658.780	705.827	752.874	799.921	846.968	894.015	941.062
3	He	1/2	1.34E-04	3.48E-03	4.42E-01	228.636	304.815	380.994	457.173	533.352	571.441	609.531	647.620	685.710	723.799	761.889
205	F	1/2	70.48	8.36E+02	2.02E-01	173.127	230.810	288.494	346.178	403.862	432.704	461.546	490.388	519.230	548.071	576.913
203	F	1/2	29.52	3.40E+02	1.96E-01	171.444	228.567	285.690	342.813	399.937	428.498	457.060	485.621	514.183	542.745	571.306
31	٩	1/2	1 00.0	3.91E+02	6.65E-02	121.495	161.976	202.457	242.938	283.419	303.659	323.900	344.140	364.380	384.621	404.861
7		3/2	92.41	1.59E+03	2.94E-01	116.642	155.506	194.370	233.233	272.097	291.529	310.961	330.393	349.825	369.257	388.688
119	Sn	1/2	8.59	2.66E+01	5.27E-02	111.920	149.211	186.502	223.792	261.083	279.728	298.374	317.019	335.664	354.309	372.955
117	Sn	1/2	7.68	2.08E+01	4.60E-02	106.943	142.575	178.208	213.840	249.472	267.288	285.104	302.921	320.737	338.553	356.369
87	æ	3/2	27.83	2.90E+02	1.77E-01	98.204	130.924	163.645	196.365	229.086	245.446	261.806	278.166	294.527	310.887	327.247
115	Sn	1/2	0.34	7.11E-01	3.56E-02	98.199	130.918	163.636	196.355	229.074	245.433	261.793	278.152	294.511	310.871	327.230
11	В	3/2	80.1	7.77E+02	1.65E-01	96.294	128.378	160.462	192.546	224.630	240.672	256.714	272.755	288.797	304.839	320.881
125	Te	1/2	7.07	1.34E+01	3.22E-02	94.690	126.240	157.790	189.340	220.889	236.664	252.439	268.214	283.989	299.764	315.539
141	Pr	5/2	1 00.0	1.97E+03	3.35E-01	91.89	122.51	153.12	183.74	214.36	229.67	244.97	260.28	275.59	290.90	306.21
71	Ga	3/2	39.892	3.35E+02	1.43E-01	91.530	122.026	152.523	183.020	213.517	228.765	244.013	259.262	274.510	289.758	305.007
65	Cu	3/2	30.85	2.08E+02	1.15E-01	85.248	113.652	142.055	170.459	198.863	213.065	227.266	241.468	255.670	269.872	284.074
129	Xe	1/2	26.4006	3.35E+01	2.16E-02	83.467	111.277	139.087	166.897	194.707	208.613	222.518	236.423	250.328	264.233	278.138
81	Br	3/2	49.31	2.88E+02	9.95E-02	81.055	108.061	135.068	162.074	189.081	202.584	216.087	229.591	243.094	256.597	270.100
63	Cu	3/2	69.15	3.82E+02	9.39E-02	79.581	106.096	132.612	159.127	185.643	198.901	212.158	225.416	238.674	251.931	265.189
23	Na	3/2	1 00.0	5.45E+02	9.27E-02	79.390	105.842	132.294	158.746	185.198	198.424	211.650	224.876	238.101	251.327	264.553
51	>	7/2	99.750	2.25E+03	3.84E-01	78.943	105.246	131.549	157.852	184.155	197.306	210.458	223.609	236.761	249.912	263.064
123	Te	1/2	0.89	9.61 E-01	1.84E-02	78.543	104.713	130.883	157.052	183.222	196.307	209.392	222.477	235.562	248.647	261.731
27	A	5/2	100.0	1.22E+03	2.07E-01	78.204	104.261	130.318	156.375	182.432	195.460	208.489	221.517	234.546	247.574	260.602
13	ပ	1/2	1.07	1.00E+00	1.59E-02	75.468	100.613	125.758	150.903	176.048	188.620	201.193	213.765	226.338	238.910	251.483
79	盗	3/2	50.69	2.37E+02	7.94E-02	75.195	100.248	125.302	150.356	175.410	187.937	200.464	212.991	225.518	238.045	250.572
151	B	5/2	47.81	5.04E+02	1.79E-01	74.62	99.48	124.34	149.20	174.06	186.49	198.92	211.35	223.78	236.22	248.65
55	Mn	5/2	100.0	1.05E+03	1.79E-01	74.400	99.189	123.978	148.768	173.557	185.951	198.346	210.741	223.135	235.530	247.924
8	₽.	9/2	100.0	2.87E+03	4.88E-01	73.460	97.936	122.413	146.889	171.365	183.603	195.841	208.079	220.317	232.555	244.794
209	P	1/2		1	1.44E-02	73.08	97.42	121.77	146.12	170.47	182.64	194.81	206.99	219.16	231.34	243.51
45	ő	7/2	100.0	1.78E+03	3.02E-01	72.907	97.199	121.490	145.782	170.074	182.220	194.366	206.511	218.657	230.803	242.949
159	٩	3/2	100.0	4.08E+02	6.94E-02	72.14	96.18	120.22	144.26	168.29	180.31	192.33	204.35	216.37	228.39	240.41
69	g	3/2	60.108	2.46E+02	6.97E-02	72.035	96.037	120.038	144.039	168.041	180.041	192.042	204.043	216.043	228.044	240.045
231	Pa	3/2	100.0	4.06E+02	6.90E-02	72.00	95.99	119.98	143.97	167.96	179.96	191.95	203.94	215.94	227.93	239.93
121	8 S	5/2	57.21	5.48E+02	1.63E-01	71.823	95.753	119.684	143.615	167.545	179.510	191.476	203.441	215.406	227.372	239.337
2 3	ദ	7/2	100.0	1.64E+03	2.78E-01	71.212	94.939	118.666	142.393	166.120	177.984	189.847	201.711	213.575	225.438	237.302
187	å	5/2	62.60	5.26E+02	1.43E01	68.284	91.036	113.788	136.539	159.291	170.667	182.042	193.418	204.794	216.170	227.546
185	Re	5/2	37.40	3.05E+02	1.39E-01	67.603	90.128	112.652	135.177	157.701	168.964	180.226	191.488	202.751	214.013	225.275
<mark>66</mark>	<mark>ب</mark>	9/2		I	3.82E-01	67.554	90.063	112.571	135.079	157.588	168.842	180.096	191.350	202.604	213.858	225.113
113	ਲ	1/2	12.22	7.94E+00	1.11E-02	66.608	88.802	110.995	133.188	155.381	166.478	177.574	188.671	199.767	210.864	221.961
115	<u>_</u>	9/2	95.71	1.99E+03	3.53E-01	65.766	87.679	109.592	131.504	153.417	164.373	175.330	186.286	197.242	208.198	219.155

NMR	Frequency	Tables
-----	-----------	--------

NMR Frequencies vs. Bruker Field Strengths – sorted with decreasing Larmor frequency

Isotop	e	Spin	Nat.	Receptiv	/ity	L		Larmo	or Frequen	cies (MHz	z) vs. Bruke	er Field St	rengths (1	Tesla)		
			Abund.			Freq. to	3 decimais	are experi	mental tor		andards; tre	eq. to 2 de	c. are calc	ulated fror	n magn. m	oments
			(%)	Natural rel. ¹³ C	Molar rel. 'H	7.04925	9.39798	11.7467	14.0954	16.4442	17.6185	18.7929	19.9673	21.1416	22.3160	23.4904
113	_	9/2	4.29	8.85E+01	3.51E-01	65.626	87.491	109.357	131.223	153.089	164.022	174.954	185.887	196.820	207.753	218.686
195	æ	1/2	33.832	2.07E+01	1.04E-02	64.518	86.015	107.512	129.009	150.505	161.254	172.002	182.751	193.499	204.247	214.996
111	3	1/2	12.80	7.27E+00	9.66E-03	63.674	84.890	106.105	127.320	148.536	159.144	169.751	180.359	190.967	201.575	212.182
165	የ	7/2	100.0	1.16E+03	1.98E–01	63.43	84.57	105.71	126.84	147.98	158.54	169.11	179.68	190.25	200.82	211.38
207	Pp	1/2	22.1	1.18E+01	9.06E-03	62.789	83.710	104.630	125.551	146.471	156.932	167.392	177.852	188.313	198.773	209.233
127		5/2	100.0	5.60E+02	9.54E-02	60.048	80.056	100.063	120.071	140.078	150.082	160.086	170.090	180.093	190.097	200.101
29	Si	1/2	4.685	2.16E+00	7.86E–03	59.627	79.495	99.362	119.229	139.096	149.030	158.963	168.897	178.831	188.764	198.698
77	s	1/2	7.63	3.15E+00	7.03E-03	57.239	76.311	95.382	114.454	133.525	143.061	152.597	162.133	171.668	181.204	190.740
199	Нg	1/2	16.87	5.89E+00	5.94E-03	53.756	71.667	89.577	107.488	125.399	134.354	143.310	152.265	161.221	170.176	179.132
121	ę	1/2	14.28	4.63E+00	5.52E-03	52.521	70.020	87.519	105.019	122.518	131.268	140.017	148.767	157.517	166.266	175.016
75 ,	As	3/2	100.0	1.49E+02	2.54E-02	51.390	68.513	85.635	102.758	119.881	128.442	137.003	145.564	154.126	162.687	171.248
209	ï	9/2	100.0	8.48E+02	1.44E-01	48.229	64.298	80.367	96.437	112.506	120.541	128.575	136.610	144.644	152.679	160.714
7	Ţ	-	0.0115	6.52E-03	9.65E-03	46.072	61.422	76.773	92.124	107.474	115.150	122.825	130.500	138.175	145.851	153.526
9		-	7.59	3.79E+00	8.50E-03	44.167	58.883	73.600	88.316	103.032	110.390	117.748	125.106	132.464	139.822	147.180
139	а	7/2	99.910	3.56E+02	6.06E-02	42.395	56.521	70.647	84.772	98.898	105.961	113.023	120.086	127.149	134.212	141.275
6	Be	3/2	100.0	8.15E+01	1.39E-02	42.174	56.226	70.277	84.329	98.381	105.407	112.433	119.459	126.485	133.510	140.536
17 (0	5/2	0.038	6.50E-02	2.91E-02	40.687	54.243	67.800	81.356	94.913	101.691	108.469	115.248	122.026	128.804	135.582
138	a	Ð	060.0	4.97E-01	9.40E-02	39.600	52.794	65.989	79.183	92.377	98.974	105.572	112.169	118.766	125.363	131.960
133 (്	7/2	100.0	2.84E+02	4.84E-02	39.365	52.482	65.598	78.714	91.830	98.388	104.946	111.504	118.062	124.620	131.178
123	Sb	7/2	42.79	1.17E+02	4.66E-02	38.894	51.854	64.813	77.772	90.731	97.211	103.691	110.170	116.650	123.129	129.609
181	Ta	7/2	99.988	2.20E+02	3.74E-02	35.984	47.974	59.964	71.953	83.943	89.938	95.932	101.927	107.922	113.917	119.912
175	Lu L	7/2	97.41	1.79E+02	3.13E-02	34.27	45.69	57.11	68.53	79.94	85.65	91.36	97.07	102.78	108.49	114.20
137	Ba	3/2	11.232	4.62E+00	7.00E-03	33.353	44.466	55.579	66.692	77.805	83.361	88.918	94.474	100.031	105.587	111.144
153	B	5/2	52.19	4.73E+01	1.54E-02	32.94	43.91	54.88	65.86	76.83	82.32	87.80	93.29	98.78	104.26	109.75
10	8	с	19.9	2.32E+01	1.99E-02	32.245	42.989	53.732	64.476	75.220	80.591	85.963	91.335	96.707	102.079	107.451
12	z	1/2	0.364	2.23E-02	1.04E-03	30.423	40.560	50.697	60.834	70.971	76.039	81.107	86.176	91.244	96.312	101.381
20	>	9	0.250	8.18E-01	5.57E-02	29.924	39.894	49.865	59.835	69.805	74.790	79.775	84.761	89.746	94.731	99.716
135	ß	3/2	6.592	1.94E+00	5.01E-03	29.816	39.751	49.685	59.620	69.554	74.521	79.489	84.456	89.423	94.390	99.357
35	5	3/2	75.76	2.10E+01	4.72E-03	29.406	39.204	49.002	58.800	68.598	73.497	78.396	83.295	88.194	93.093	97.992
 82	å	5/2	72.17	4.50E+01	1.06E-02	28.977	38.632	48.287	57.942	67.597	72.425	77.252	82.080	86.907	91.735	96.562
91	4	5/2	11.22	6.26E+00	9.49E-03	27.901	37.197	46.494	55.790	65.086	69.734	74.382	79.031	83.679	88.327	92.975
 6	z	3/2	1.1399	2.40E-01	3.59E-03	26.820	35.756	44.692	53.628	62.564	67.032	71.500	75.968	80.436	84.904	89.372
169	٤	1/2	100.0	3.32E+00	5.66E-04	24.82	33.10	41.37	49.64	57.91	62.04	66.18	70.32	74.45	78.59	82.72
131	Xe	3/2	21.2324	3.51E+00	2.82E-03	24.742	32.986	41.230	49.474	57.718	61.840	65.962	70.084	74.206	78.328	82.450
37 (5	3/2	24.24	3.88E+00	2.72E-03	24.478	32.634	40.789	48.945	57.101	61.179	65.256	69.334	73.412	77.490	81.568
176	Lu	7	2.59	6.05E+00	3.98E–02	24.33	32.43	40.53	48.64	56.74	60.80	64.85	68.90	72.95	77.01	81.06
21	R	3/2	0.27	3.91E-02	2.46E–03	23.693	31.587	39.482	47.376	55.270	59.217	63.165	67.112	71.059	75.006	78.953
189	S	3/2	16.15	2.32E+00	2.44E-03	23.306	31.072	38.837	46.602	54.368	58.251	62.133	66.016	668.69	73.781	77.664
33 33	s	3/2	0.75	1.00E-01	2.27E-03	23.038	30.714	38.390	46.066	53.742	57.580	61.418	65.256	69.094	72.932	76.770
14	z	1	99.636	5.90E+00	1.01E-03	21.688	28.915	36.141	43.367	50.594	54.207	57.820	61.433	65.046	68.659	72.273
43 (ca Ca	7/2	0.135	5.10E-02	6.43E-03	20.199	26.929	33.659	40.389	47.119	50.484	53.849	57.214	60.579	63.944	67.309

NMR	Frequency	Tables
-----	-----------	--------

NMR Frequencies vs.	Bruker Field Strength	is – sorted with decre	easing Larmor frequency
· · · · · · · · · · · · · · · · · · ·	•		· · · · ·

Isoto	be	Spin	Nat.	Recen	tivitv			Larmo	or Frequen	icies (MHz	z) vs. Bruk	er Field St	rengths (1	Tesla)		
	2	-	Abund.			Freq. to (3 decimals	are experi	imental for	- IUPAC St	andards; fr	eq. to 2 de	c. are calc	ulated fror	n magn. m	oments
			(%)	Natural rel. ¹³ C	Molar rel. 'H	7.04925	9.39798	11.7467	14.0954	16.4442	17.6185	18.7929	19.9673	21.1416	22.3160	23.4904
97	٩	5/2	9.56	1.96E+00	3.49E-03	19.970	26.623	33.277	39.931	46.585	49.911	53.238	56.565	59.892	63.219	66.546
201	Hg	3/2	13.18	1.16E+00	1.49E-03	19.843	26.455	33.067	39.678	46.290	49.595	52.901	56.207	59.513	62.819	66.124
<mark>95</mark>	٩	5/2	15.90	3.06E+00	3.27E-03	19.559	26.076	32.593	39.110	45.627	48.885	52.144	55.402	58.661	61.919	65.178
67	Zn	5/2	4.102	6.92E-01	2.87E-03	18.779	25.035	31.292	37.549	43.806	46.934	50.063	53.191	56.319	59.448	62.576
25	Mg	5/2	10.00	1.58E+00	2.68E-03	18.373	24.494	30.616	36.738	42.859	45.920	48.981	52.042	55.103	58.163	61.224
<mark>23</mark>	స	3/2	9.501	5.07E-01	9.08E-04	16.965	22.617	28.270	33.922	39.575	42.401	45.227	48.054	50.880	53.706	56.532
49	Ħ	7/2	5.41	1.20E+00	3.78E-03	16.924	22.563	28.203	33.842	39.481	42.300	45.120	47.939	50.759	53.578	56.398
47	Ħ	5/2	7.44	9.18E-01	2.10E-03	16.920	22.557	28.195	33.833	39.470	42.289	45.108	47.926	50.745	53.564	56.383
143	Nd	7/2	12.2	2.43E+00	3.39E-03	16.35	21.80	27.25	32.69	38.14	40.86	43.59	46.31	49.04	51.76	54.48
101	Ru	5/2	17.06	1.58E+00	1.57E-03	15.491	20.652	25.814	30.975	36.136	38.717	41.298	43.878	46.459	49.040	51.620
89	۲	1/2	100.0	7.00E-01	1.19E-04	14.707	19.607	24.507	29.408	34.308	36.758	39.208	41.658	44.108	46.558	49.008
173	Υb	5/2	16.13	1.28E+00	1.35E-03	14.61	19.48	24.35	29.22	34.09	36.52	38.96	41.39	43.83	46.26	48.69
163	Dγ	5/2	24.896	1.91E+00	1.31E-03	14.46	19.28	24.10	28.92	33.74	36.15	38.56	40.97	43.38	45.79	48.20
39	¥	3/2	93.258	2.79E+00	5.10E-04	14.005	18.672	23.338	28.004	32.671	35.004	37.337	39.670	42.003	44.337	46.670
109	Ag	1/2	48.161	2.90E-01	1.02E-04	13.967	18.620	23.274	27.927	32.581	34.908	37.234	39.561	41.888	44.215	46.541
66	Ru	5/2	12.76	8.46E-01	1.13E-03	13.821	18.427	23.032	27.637	32.242	34.545	36.847	39.150	41.452	43.755	46.057
105	Pd	5/2	22.33	1.49E+00	1.13E-03	13.734	18.310	22.886	27.463	32.039	34.327	36.615	38.903	41.191	43.479	45.767
87	Sr	9/2	7.00	1.12E+00	2.72E-03	13.007	17.341	21.675	26.009	30.342	32.509	34.676	36.843	39.010	41.177	43.344
147	Sm	7/2	14.99	1.34E+00	1.52E-03	12.51	16.68	20.84	25.01	29.18	31.26	33.35	35.43	37.52	39.60	41.68
183	>	1/2	14.31	6.31E-02	7.50E-05	12.505	16.671	20.837	25.004	29.170	31.253	33.337	35.420	37.503	39.586	41.669
177	₩	7/2	18.60	1.53E+00	1.40E-03	12.18	16.24	20.30	24.36	28.42	30.45	32.48	34.51	36.53	38.56	40.59
107	Ag	1/2	51.839	2.05E-01	6.74E-05	12.149	16.197	20.244	24.292	28.340	30.364	32.388	34.412	36.436	38.460	40.483
157	BG	3/2	15.65	3.00E-01	3.26E-04	12.08	16.11	20.13	24.16	28.19	30.20	32.21	34.22	36.24	38.25	40.26
83	х	9/2	11.500	1.28E+00	1.90E-03	11.548	15.395	19.243	23.091	26.938	28.862	30.786	32.710	34.633	36.557	38.481
73	e	9/2	7.76	6.44E-01	1.41E-03	10.469	13.958	17.446	20.934	24.423	26.167	27.911	29.655	31.399	33.144	34.888
161	δ	5/2	18.889	5.26E-01	4.74E-04	10.32	13.75	17.19	20.63	24.07	25.78	27.50	29.22	30.94	32.66	34.38
149	Sm	7/2	13.82	6.92E-01	8.52E-04	10.31	13.75	17.18	20.62	24.06	25.77	27.49	29.21	30.93	32.64	34.36
145	PN	7/2	8.3	3.87E-01	7.93E-04	10.07	13.43	16.78	20.14	23.49	25.17	26.85	28.53	30.20	31.88	33.56
57	ዲ	1/2	2.119	4.25E-03	3.42E-05	9.718	12.955	16.193	19.431	22.669	24.288	25.906	27.525	29.144	30.763	32.382
103	æ	1/2	100.0	1.86E-01	3.17E-05	9.563	12.750	15.936	19.123	22.309	23.902	25.496	27.089	28.682	30.275	31.869
155	BG	3/2	14.80	1.26E-01	1.45E-04	9.21	12.28	15.35	18.42	21.49	23.03	24.56	26.10	27.63	29.17	30.70
167	Ъ	7/2	22.869	6.77E-01	5.04E-04	8.66	11.54	14.42	17.31	20.19	21.63	23.08	24.52	25.96	27.40	28.85
41	¥	3/2	6.730	3.34E-02	8.44E-05	7.687	10.249	12.810	15.371	17.932	19.213	20.494	21.774	23.055	24.336	25.616
179	Hf	9/2	13.62	4.38E-01	5.47E-04	7.65	10.20	12.75	15.30	17.85	19.13	20.40	21.68	22.95	24.23	25.50
187	S	1/2	1.96	1.43E-03	1.24E-05	6.850	9.132	11.415	13.697	15.979	17.120	18.262	19.403	20.544	21.685	22.826
193	<u>_</u>	3/2	62.7	1.37E-01	3.73E-05	5.86	7.82	9.77	11.73	13.68	14.66	15.63	16.61	17.59	18.56	19.54
235	∍	7/2	0.7204	6.53E-03	1.54E-04	5.527	7.368	9.209	11.051	12.892	13.813	14.734	15.654	16.575	17.496	18.416
191	-	3/2	37.3	6.38E-02	2.91E-05	5.40	7.20	9.00	10.79	12.59	13.49	14.39	15.29	16.19	17.09	17.99
197	Au	3/2	100.0	1.62E-01	2.76E-05	5.31	7.08	8.84	10.61	12.38	13.26	14.15	15.03	15.92	16.80	17.69
	1												1			

Z = proton number, **A** = mass number, **Half-Life** where appropriate in years (y), days (d), hours (h), minutes (m); **I** = spin quantum number; **NA** = natural abundance (IUPAC 2003); $\mu_z = z$ -component of nuclear magnetic moment in units of the nuclear magneton (μ_N); **Q** = electric quadrupole moment in units of fm² = 10⁻³⁰ m² (1 fm² = 0.01 barns); calc. magnetogyric ratio $\gamma = \mu_z/\hbar$ *l*. Note: for μ_z and **Q** the experimental uncertainty begins with the last significant digit.

			Isotope	Spin	Nat. Abund.	Rel. Nucl.	Quadrupole	Magnetogyric
			(half-life)	-	2003	Magn. Mom.	Moment	Ratio
					(TICE 2001)	(measured)		(calc., free atom)
Z	Δ	Svm	Name	1	NA (%)	U -///N	0 [fm ²]	v [10 ⁷ rad s ⁻¹ T ⁻¹]
0	1	n	Neutron	1/2		-1.9130427	_ []	-18.3247183
1	1	H	Hydrogen	1/2	99 9885	2 79284734		26 7522208
· ·	2	H (D)	Deuterium	1	0.0115	0.857438228	0.286	4,10662919
	3	H (T)	Tritium (12.32 v)	1/2		2.97896244		28.5349865
2	3	He	Helium	1/2	0.000134	-2.12749772		-20.3789473
3	6	Li	Lithium	1	7.59	0.8220473	-0.0808	3.937127
-	7	Li	Lithium	3/2	92.41	3,2564625	-4.01	10.397704
4	9	Be	Beryllium	3/2	100	-1.17749	5.288	-3.75966
5	10	B	Boron	3	19.9	1.80064478	8.459	2.87467955
	11	В	Boron	3/2	80.1	2.688649	4.059	8.584707
6	13	C	Carbon	1/2	1.07	0.702412		6.728286
-		-		.,=				
7	14	N	Nitrogen	1	99.636	0.40376100	2.044	1.9337798
	15	N	Nitrogen	1/2	0.364	-0.28318884		-2.7126189
8	17	0	Oxygen	5/2	0.038	-1.89379	-2.558	-3.62806
9	19	F	Fluorine	1/2	100	2.626868		25.16233
10	21	Ne	Neon	3/2	0.27	-0.661797	10.155	-2.113081
11	23	Na	Sodium (Natrium)	3/2	100	2.2176556	10.4	7.0808516
12	25	Mg	Magnesium	5/2	10.00	-0.85545	19.94	-1.63884
13	26	AI	Alumin(i)um (7,17E5 v)	5		2.804	27	2.686
13	27	AI	Alumin(i)um	5/2	100	3.6415069	14.66	6.9762780
14	29	Si	Silicon	1/2	4.685	-0.55529		-5.31903
15	31	Р	Phosphorus	1/2	100	1,13160		10.8394
				.,=				
16	33	S	Sulfur	3/2	0.75	0.643821	-6.78	2.055685
17	35	CI	Chlorine	3/2	75.76	0.8218743	-8.165	2.6241991
	37	CI	Chlorine	3/2	24.24	0.6841236	-6.435	2.1843688
18	39	Ar	Argon (269 y)	7/2		-1.59		-2.17
19	39	K	Potassium (Kalium)	3/2	93.258	0.3915073	5.85	1.2500612
	40	К	Potassium (1.248E9 v)	4	0.0117	-1.298100	-7.3	-1.554286
	41	K	Potassium	3/2	6.730	0.21489274	7.11	0.68614062
20	41	Са	Calcium (1.02E5 y)	7/2		-1.594781	-6.7	-2.182306
	43	Са	Calcium	7/2	0.135	-1.317643	-4.08	-1.803069
21	45	Sc	Scandium	7/2	100	4.756487	-22.0	6.508800
22	47	Ti	Titanium	5/2	7.44	-0.78848	30.2	-1.51054
	49	Ti	Titanium	7/2	5.41	-1.10417	24.7	-1.51095
23	50	V	Vanadium (1.4E17 y)	6	0.250	3.345689	21	2.670650
	51	V	Vanadium	7/2	99.750	5.1487057	-5.2	7.0455139
24	53	Cr	Chromium	3/2	9.501	-0.47454	-15	-1.51518
25	53	Mn	Manganese (3.74E6 y)	7/2		5.024	-	6.875
	55	Mn	Manganese	5/2	100	3.46871790	33	6.64525453
26	57	Fe	Iron, Ferrum	1/2	2.119	0.09062300		0.8680627
	59	Fe	Iron (44.507 d)	3/2		-0.3358		-1.0722
27	59	Co	Cobalt	7/2	100	4.627	42 s	6.332
<u> </u>	60	Со	Cobalt (1925.2 d)	5		3.799	44	3.639
28	61	Ni	Nickel	3/2	1,1399	-0.75002	16.2	-2.39477
29	63	Cu	Copper, Cuprum	3/2	69.15	2.227346	-22.0	7.111791
<u> </u>	65	Cu	Copper, Cuprum	3/2	30.85	2.3816	-20.4	7.6043
30	67	Zn	Zinc	5/2	4.102	0.8752049	15.0	1.6766885
31	69	Ga	Gallium	3/2	60 108	2 01659	17.1	6 43886
	71	Ga	Gallium	3/2	39,892	2 56227	10.7	8 18117
32	73	Ge	Germanium	9/2	7.76	-0.879/677	-19.6	-0.9360306
33	75	As	Arsenic	3/2	100	1 43947	31.4	4 59615
3/	77	Se	Selenium	1/2	7.63	0.53507/2		5 125288
4	11	100	Gelenium	1 1/4	1.00	0.0000740		0.120000

Theor. NMR freq. v_0 calc. from γ and scaled to ¹H = 100.0 MHz; Molar Receptivity **R**_M(**H**) relative to equal number of protons is proportional to $\gamma^3 / (l+1)$; Receptivity at nat. abundance **R**_{NA}(**C**) relative to ¹³C; recommended Reference sample (IUPAC 2001); *experimental* reson. freq. of ref. sample on the unified Ξ scale (at B_0 where TMS (¹H) = 100.0 MHz).

Numbers containing E are in exponential format.

		Theoretical	Molar	Receptivity	Reference Sample	Measured.
		NMR Freq.	Receptivity	at Nat. Abund.		NMR Freq.
		(free atom)	(rel ¹ H)	(rel ¹³ C)		(rel ¹ H ref)
•	Cum.		(rei. ri)	(rei. c)	Pafaranaa	
A	Sym	69 /070	2 21E 01		nelerence	
1		100,0000	1.00E+00	5 97E 102	1% Ma Si in CDCI	100 00000
		15 2506		0.07E+03		15 250600
2	Т	106 6640	1.01E+00	0.52L-05		106 662074
2		76 1767	1.21E+00	2.405.02		76 170076
3	не	/0.1/0/	4.42E-01	3.48E-03		14 716006
0		14.7170	8.50E-03	3.79E+00	9.7 m LiCi in D ₂ O	14.710080
		38.8667	2.94E-01	1.59E+03	9.7 m LiCi în D ₂ O	38.863/9/
9	Ве	14.0536	1.39E-02	8.15E+01	0.43 m BeSO ₄ in D ₂ O	14.051813
10	В	10.7456	1.99E-02	2.32E+01	15% BF ₃ .Et ₂ O in CDCl ₃	10.743658
11	В	32.0897	1.65E-01	7.77E+02	15% BF ₃ .Et ₂ O in CDCl ₃	32.083974
13	С	25.1504	1.59E–02	1.00E+00	1% Me₄Si in CDCl₃	25.145020
					DSS in D ₂ O	25.144953
14	N	7.2285	1.01E-03	5.90E+00	MeNO ₂ + 10% CDCI ₃	7.226317
15	N	10.1398	1.04E-03	2.23E-02	MeNO ₂ + 10% CDCI ₃	10.136767
					liquid NH₃	10.132767
17	0	13.5617	2.91E-02	6.50E-02	D ₂ O	13.556457
19	F	94.0570	8.32E-01	4.89E+03	CCI₃F	94.094011
21	Ne	7.8987	2.46E-03	3.91E-02	Neon gas, 1.1 MPa	7.894296
23	Na	26.4683	9.27E-02	5.45E+02	0.1 M NaCl in D ₂ O	26.451900
25	Mg	6.1260	2.68E-03	1.58E+00	11 M MgCl ₂ in D ₂ O	6.121635
26	AI	10.0399	4.05E-02			
27	AI	26.0774	2.07E-01	1.22E+03	1.1 m Al(NO ₃) ₃ in D ₂ O	26.056859
29	Si	19.8826	7.86E-03	2.16E+00	1% Me₄Si in CDCl ₃	19.867187
31	Р	40.5178	6.65E-02	3.91E+02	H₃PO₄ external	40.480742
					(MeO)₃PO internal	40.480864
33	S	7.6842	2.27E-03	1.00E-01	(NH ₄) ₂ SO ₄ in D ₂ O (sat.)	7.676000
35	CI	9.8093	4.72E-03	2.10E+01	0.1 M NaCl in D ₂ O	9.797909
37	CI	8.1652	2.72E-03	3.88E+00	0.1 M NaCl in D ₂ O	8.155725
39	Ar	8.1228	1.13E-02			
39	К	4.6727	5.10E-04	2.79E+00	0.1 M KCl in D₂O	4.666373
40	K	5.8099	5.23E-03	3.59E-03	0.1 M KCl in D ₂ O	5.802018
41	К	2.5648	8.44E-05	3.34E-02	0.1 M KCl in D ₂ O	2.561305
41	Са	8.1575	1.14E-02			
43	Са	6.7399	6.43E-03	5.10E-02	0.1 M CaCl ₂ in D ₂ O	6.730029
45	Sc	24.3299	3.02E-01	1.78E+03	0.06 M Sc(NO ₃) ₃ in D ₂ O	24.291747
47	Ti	5.6464	2.10E-03	9.18E-01	TiCl ₄ neat + 10% C ₆ D ₁₂	5.637534
49	Ti	5.6479	3.78E-03	1.20E+00	TiCl ₄ neat + 10% C ₆ D ₁₂	5.639037
50	V	9.9829	5.57E-02	8.18E-01	VOCl ₃ + 5% C ₆ D ₆	9.970309
51	V	26.3362	3.84E-01	2.25E+03	VOCl ₃ + 5% C ₆ D ₆	26.302948
53	Cr	5.6638	9.08F-04	5.07F-01	K_2CrO_4 in D_2O (sat)	5.652496
53	Mn	25.6983	3.56E-01		1120104 III DZO (000.)	0.002100
55	Mn	24,8400	1.79F-01	1.05F+03	0.82 m KMnO₄ in D₂O	24,789218
57	Fe	3 2448	3 42E-05	4 25E-03	$Fe(CO)_{5} + 20\% C_{2}D_{6}$	3 237778
59	Fe	4 0079	3 22E-04	1.202 00	10(00/3 1 20/0 0606	0.207770
59	Co	23 6676	2 78F_01	1.64F+03	0.56 m K ₂ [Co(CNI) ₂] in D ₂ O	23 727074
60	Co	13 6026	1.01E-01		0.00 m N ₃₁ 00(010/6) m D ₂ 0	20.727074
61	Ni	8,9517	3 59F-03	2 40F_01	Ni(CO), + 5% C ₂ D ₂	8 936051
63	Cu	26 5839	9.39E_02	3.82E+02	$[Cu(CH_0CN)_4]C[O_4]$ in CH_0CN (sat) \pm 5% C_0D_2	26 515473
65	Cu	28.4250	1 15F_01	2 08F±02	$[Cu(CH_{0}CN)_{4}[ClO_{4}]$ in CH_{0}CN (sat.) $\pm 5\%$ C_D	20.010470
67	Zn	6 2675	2.87E_03	6 92E_01	$7n(NO_{-})$, in D.O (sat.)	6 256803
69	Ga	24 0685	6 97F_02	2.46F±02	$1.1 \text{ m Ga}(NO_{1}) \text{ in } D_{2}O$	2/ 00135/
71	Ga	24.0000	1.42E 01	2.401+02	$1.1 \text{ m Ga}(\text{NO}_{3/3} \text{ m D}_2\text{O})$	24.001334
70	Ga	2 1000	1.45E-01	6 1/E 01		30.490704 3 /00015
75	Ac	3.4989	2.545.02	1 40E+02		17 12261/
75	AS	10.1507	Z.04E-UZ	2 155 - 00		10.071510
	Se	19.158/	1.U3E-U3	J 3.19E+UU	IVIE25€ + 5% C6D6	19.0/1513

Z	Α	Sym	Name	1	NA (%)	μ_{z} / $\mu_{ m N}$	a [fm ²]	γ [10 ⁷ rad s ⁻¹ T ⁻¹]
	79	Se	Selenium (2.95E5 y)	7/2		-1.018	80	-1.393
35	79	Br	Bromine	3/2	50.69	2.106400	30.5	6.725619
	81	Br	Bromine	3/2	49.31	2.270562	25.4	7.249779
36	83	Kr	Krypton	9/2	11.500	-0.970669	25.9	-1.033097
37	85	Rb	Rubidium	5/2	72.17	1.3533515	27.6	2.5927059
	87	Rb	Rubidium (4.81E10 y)	3/2	27.83	2.751818	13.35	8.786403
38	87	Sr	Strontium	9/2	7.00	-1.093603	33.5	-1.163938
39	89	Y	Yttrium	1/2	100	-0.1374154	. = .	-1.316279
40	91	Zr	Zirconium	5/2	11.22	-1.30362	-17.6	-2.49743
41	93	Nb	Niobium	9/2	100	6.1705	-32	6.5674
42	95	IVIO	Malubdanum	5/2	15.9	-0.9142	-2.2	-1./514
	97	IVIO	Malubdanum (CE 024 h)	5/Z	9.50	-0.9335	25.5	-1.7884
10	99		Toobpotium (2.1EE v)	0/2		0.375 E 6947	12.0	5.09
43	99	Bu	Buthenium	9/2 5/2	12.76	-0.641	79	-1 228
44	101	Ru	Buthenium	5/2	17.06	-0.716	/5.7	-1.220
/5	103	Rh	Bhodium	1/2	100	-0.010	43.7	-0.8/677
46	105	Pd	Palladium	5/2	22.33	-0.642	66	-1 230
47	107	Aa	Silver Argentum	1/2	51 839	-0 1136797		-1.088918
.,	109	Aa	Silver	1/2	48.161	-0.13069		-1.2519
48	111	Cd	Cadmium	1/2	12.80	-0.5948861		-5.698315
	113	Cd	Cadmium (7.7E15 y)	1/2	12.22	-0.6223009		-5.960917
49	113	In	Indium	9/2	4.29	5.5289	79.9	5.8845
	115	In	Indium (4.41E14 y)	9/2	95.71	5.5408	81	5.8972
50	115	Sn	Tin	1/2	0.34	-0.91883		-8.8013
	117	Sn	Tin	1/2	7.68	-1.00104		-9.58880
	119	Sn	Tin (Stannum)	1/2	8.59	-1.04728		-10.0317
51	121	Sb	Antimony (Stibium)	5/2	57.21	3.3634	-36	6.4435
	123	Sb	Antimony	7/2	42.79	2.5498	-49	3.4892
	125	Sb	Antimony (2.7586 y)	7/2		2.63		3.60
52	123	Te	Tellurium (9.2E16 y)	1/2	0.89	-0.7369478		-7.059101
	125	Te	Tellurium	1/2	7.07	-0.8885051		-8.510843
53	127		lodine	5/2	100	2.81327	-71	5.38957
= 1	129		lodine (1.57E7 y)	//2		2.6210	-48	3.5866
54	129	Xe	Xenon	1/2	26.4006	-0.///9/6	11.1	-7.45210
FF	131	Xe		3/2	21.2324	0.691862	-11.4	2.209077
55	133	CS Po	C(a)esium	2/2	6 502	2.382025	-0.343	3.533250
50	130	Dd	Barium	3/2	0.092	0.030027	24.5	2.077090
57	137		Lanthanum (6E4 y)	3/2 7/2	11.252	2 695	24.5	2.99207
57	138	La	Lanthanum (1.05F11 y)	5	0.090	3 713646	45	3 557240
07	139	La	Lanthanum	7/2	99.910	2 7830455	20	3 808333
58	139	Ce	Cerium (137 64 d)	3/2	00.010	1.06	20	3.38
	141	Ce	Cerium (32,508 d)	7/2		1.09		1.49
59	141	Pr	Praeseodymium	5/2	100	4.2754	-5.89	8.1907
60	143	Nd	Neodymium	7/2	12.2	-1.065	-63	-1.4574
	145	Nd	Neodymium	7/2	8.3	-0.656	-33	-0.898
61	145	Pm	Promethium (17.7 y)	5/2		3.8	21	7.3
62	147	Sm	Samarium (1.06E11 y)	7/2	14.99	-0.8148	-25.9	-1.115
	149	Sm	Samarium	7/2	13.82	-0.6717	7.5	-0.9192
63	151	Eu	Europium	5/2	47.81	3.4717	90.3	6.6510
<u>.</u>	153	Eu	Europium	5/2	52.19	1.5324	241	2.9357
64	155	Gd	Gadolinium	3/2	14.80	-0.2572	127	-0.8212
0.5	157	Gd	Gadolinium	3/2	15.65	-0.3373	135	-1.0770
65	159	1b	Terbium	3/2	100	2.014	143.2	6.431
66	161	Dy	Dysprosium	5/2	18.889	-0.480	251	-0.920
67	103	Dy	Dysprosium	5/2	24.896	0.0/3	200	1.289
6/	165	HO	Holmium (4570 y)	7/2	100	4.23	300	5.79
	100	Но	Holmium (1200 v)	7	100	2.60	240	2.004
60	167	Fr	Erbium	/ 	22.060	-0 5620	357	_0.7716
00	169	Fr	Erbium (9.40 d)	1/2	22.009	0.0009		4 646
69	169	Tm	Thulium	1/2	100	-0 231		-2.21
00	171	Tm	Thulium (1.92 v)	1/2	100	-0.228		-2.18
70	171	Yb	Ytterbium	1/2	14,28	0.49367		4.7288
	173	Yb	Ytterbium	5/2	16.13	-0.67989	280	-1.30251
71	175	Lu	Lutetium	7/2	97.41	2.232	349	3.0547

Α	Sym	vo [MHz]	R _м (H)	R _{NA} (C)	Reference	Ξ [MHz]
79	Se	5.2072	2.97E-03			
79	Br	25.1404	7.94E-02	2.37E+02	0.01 M NaBr in D ₂ O	25.053980
81	Br	27.0997	9.95E-02	2.88E+02	0.01 M NaBr in D ₂ O	27.006518
83	Kr	3.8617	1.90E-03	1.28E+00	Kr gas	3.847600
85	Rb	9.6916	1.06E-02	4.50E+01	0.01 M RbCl in D ₂ O	9.654943
87	Rb	32.8436	1.77E–01	2.90E+02	0.01 M RbCl in D ₂ O	32.720454
87	Sr	4.3508	2.72E-03	1.12E+00	0.5 M SrCl ₂ in D ₂ O	4.333822
89	Y	4.9203	1.19E–04	7.00E-01	Y(NO ₃) ₃ in H ₂ O/D ₂ O	4.900198
91	Zr	9.3354	9.49E-03	6.26E+00	$Zr(C_5H_5)_2Cl_2$ in CH_2Cl_2 (sat.) + 5% C_6D_6	9.296298
93	Nb	24.5488	4.88E-01	2.87E+03	K[NbCl ₆] in CH ₃ CN / CD ₃ CN (sat.)	24.476170
95	Mo	6.5467	3.27E-03	3.06E+00	2 M Na ₂ MoO ₄ in D ₂ O	6.516926
97	IVIO	0.0849	3.49E-03	1.96E+00	2 IVI INa ₂ IVIOU ₄ IN D ₂ U	0.053095
99		13.4272	2.42E-03			22 500226
99	Ru	4 5903	3.02E-01	8.46E_01	$\frac{1}{1004} \frac{1}{1004} \frac{1}{1002} \frac{1}{1002} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	4 605151
101	Ru	5 1274	1.10E 00	1.58E+00	$0.3 \text{ MK}_{4}[\text{Ru}(\text{CN})_{6}] \text{ in } D_{2}O$	5 161369
103	Rh	3.1652	3.17E-05	1.86E-01	Bh(acac) ₂ in CDCl ₂ (sat.)	3.186447
105	Pd	4.5975	1.13E-03	1.49E+00	K ₂ PdCl ₆ in D ₂ O (sat.)	4.576100
107	Ag	4.0704	6.74E-05	2.05E-01	$AgNO_3$ in D_2O (sat.)	4.047819
109	Ag	4.6795	1.02E-04	2.90E-01	AgNO ₃ in D ₂ O (sat.)	4.653533
111	Cd	21.3003	9.66E–03	7.27E+00	Me ₂ Cd neat liq.	21.215480
113	Cd	22.2820	1.11E-02	7.94E+00	Me ₂ Cd neat liq.	22.193175
113	In	21.9963	3.51E–01	8.85E+01	0.1 M In(NO ₃) ₃ in D ₂ O + 0.5 M DNO ₃	21.865755
115	In	22.0436	3.53E-01	1.99E+03	$0.1 \text{ M In}(\text{NO}_3)_3 \text{ in } \text{D}_2\text{O} + 0.5 \text{ M DNO}_3$	21.912629
115	Sn	32.8994	3.56E-02	7.11E-01	Me ₄ Sn + 5% C ₆ D ₆	32.718749
117	Sn	35.8430	4.60E-02	2.08E+01	$Me_4Sn + 5\% C_6D_6$	35.632259
119	Sh	37.4986	5.27E-02	2.66E+01	$Me_4Sn + 5\% C_6D_6$	37.290632
122	Sb	24.0858	1.03E-01	5.48E+02	KSDCI6 III CH3CN / CD3CN (Sal.)	23.930577
125	Sh	13.0425	4.00L=02	1.172+02		12.333217
123	Te	26.3870	1.84F-02	9.61E-01	MeaTe + 5% CaDa	26 169742
125	Те	31.8136	3.22E-02	1.34E+01	Me ₂ Te + 5% C ₆ D ₆	31,549769
127	1	20.1462	9.54E-02	5.60E+02	0.01 M KI in D ₂ O	20.007486
129	1	13.4067	5.06E-02			
129	Xe	27.8560	2.16E-02	3.35E+01	XeOF ₄ neat liq.	27.810186
131	Xe	8.2575	2.82E-03	3.51E+00	XeOF ₄ neat liq.	8.243921
133	Cs	13.2073	4.84E-02	2.84E+02	$0.1 \text{ M CsNO}_3 \text{ in } D_2 O$	13.116142
135	Ва	10.0092	5.01E-03	1.94E+00		9.934457
137	Ва	12 7952	7.00E-03	4.62E+00	0.5 IVI Bacl ₂ IN D ₂ O	11.112928
137	La	13.7652	9.40E-02	/ 97E_01		13 19/300
139	La	14 2356	6.06E-02	3.56E+02	0.01 M LaCla in DaO	14 125641
139	Ce	12.6514	1.01E-02	0.002102	0.01 W 2003 W 220	11.120011
141	Се	5.5755	3.64E-03			
141	Pr	30.6168	3.35E-01	1.97E+03		
143	Nd	5.4476	3.39E-03	2.43E+00		
145	Nd	3.3555	7.93E-04	3.87E-01		
145	Pm	27.2124	2.35E-01			
147	Sm	4.1678	1.52E-03	1.34E+00		
149	Sm	3.4358	0.52E-04	0.92E-01		
151	Eu	24.8014 10.9727	1.79E-UI	5.04E+02 4.73E+01		
155	Gd	3 0697	1.54C-02	1 26F_01		
157	Gd	4.0258	3.26E-04	3.00E-01		
159	Tb	24.0376	6.94E-02	4.08E+02		
161	Dy	3.4374	4.74E-04	5.26E-01		
163	Dy	4.8195	1.31E-03	1.91E+00		
163	Но	21.6369	2.13E-01			
165	Но	21.1356	1.98E-01	1.16E+03		
166	Но	9.2072	5.83E-02		(+6 keV excited state)	
167	Ēr	2.8842	5.04E-04	6.77E-01		
169	Er	17.3658	5.24E-03	0.005.00		
169	Tm	0.2/11 9.1607	5.00E-04	3.32E+00		
171	Yh	17 6762	5.52E_02	4 63E±00	0 171 M Yb(n-C-Me-), (THE) in THE	17 /199306
173	Yh	4 8688	1.35E-03	1 28F+00		17.400000
175	Lu	11.4185	3.13E-02	1.79E+02		

Z	Α	Sym	Name	1	NA (%)	μ_z / μ_N	Q [fm ²]	γ [10 ⁷ rad s ⁻¹ T ⁻¹]
	176	Lu	Lutetium (3.78E10 v)	7	2.59	3.169	497	2,168
72	177	Hf	Hafnium	7/2	18.60	0.7935	337	1.0858
	179	Hf	Hafnium	9/2	13.62	-0.641	379	-0.682
73	179	Та	Tantalum (1.82 y)	7/2		2.289	337	3.132
	180	Та	Tantalum (1.2E15 y)	9	0.012	4.825	495	2.568
	181	Та	Tantalum	7/2	99.988	2.3705	317	3.2438
74	183	W	Tungsten (Wolfram)	1/2	14.31	0.11778476		1.1282407
75	185	Re	Rhenium	5/2	37.40	3.1871	218	6.1057
	187	Re	Rhenium (4.35E10 y)	5/2	62.60	3.2197	207	6.1682
76	187	Os	Osmium	1/2	1.96	0.06465189		0.6192897
	189	Os	Osmium	3/2	16.15	0.659933	85.6	2.107130
77	191	lr	Iridium	3/2	37.3	0.1507	81.6	0.4812
	193	lr	Iridium	3/2	62.7	0.1637	75.1	0.5227
78	195	Pt	Platinum	1/2	33.832	0.60952		5.8385
79	197	Au	Gold, Aurum	3/2	100	0.148158	54.7	0.473060
80	199	Hg	Mercury, Hydrargyrum	1/2	16.87	0.5058855		4.845793
	201	Hg	Mercury	3/2	13.18	-0.560226	38.6	-1.788770
81	203	TI	Thallium	1/2	29.52	1.6222579		15.539339
	205	TI	Thallium	1/2	70.48	1.6382146		15.692186
82	205	Pb	Lead (1.73E7 y)	5/2		0.7117	23	1.3635
	207	Pb	Lead (Plumbum)	1/2	22.1	0.58219		5.5767
83	209	Bi	Bismuth	9/2	100	4.1103	-51.6	4.3747
84	209	Po	Polonium (102 y)	1/2		0.68		6.51
86	211	Rn	Radon (14.6 h)	1/2		0.601		5.76
87	212	Fr	Francium (19.3 m)	5		4.62	-10	4.43
88	225	Ra	Radium (14.9 d)	1/2		-0.734		-7.03
89	227	Ac	Actinium (21.77 y)	3/2		1.1	170	3.5
90	229	Th	Thorium (7.34E3 y)	5/2		0.46	430	0.88
91	231	Pa	Protactinium (3.25E4 y)	3/2	100	2.01	-172	6.42
92	233	U	Uranium (1.592E5 y)	5/2		0.59	366.3	1.13
	235	U	Uranium (7.04E8 y)	7/2	0.7204	-0.38	493.6	-0.52
	238	U	Uranium (4.468E9 y)	0	99.274		1390	
93	237	Np	Neptunium (2.14E6 y)	5/2		3.14	386.6	6.02
94	239	Pu	Plutonium (2.410E4 y)	1/2		0.203		1.94
	241	Pu	Plutonium (14.4 y)	5/2		-0.68	560	-1.30
95	241	Am	Americium (432.7 y)	5/2		1.58	314	3.03
	243	Am	Americium (7.37E3 y)	5/2		1.50	286	2.87
96	243	Cm	Curium (29.1 y)	5/2		0.41		0.79
	245	Cm	Curium (8.48E3 y)	7/2		0.5		0.68
	247	Cm	Curium (1.56E7 y)	9/2		0.37		0.39
97	247	Bk	Berkelium (1.4E2 y)	(3/2)		no data		
	249	Bk	Berkelium (320 d)	7/2		2.0		2.7
98	251	Cf	Californium (9.0E2 y)	1/2		no data		
99	252	Es	Einsteinium (472 d)	(5)		no data		
	253	Es	Einsteinium (20.47 d)	7/2		4.10	670	5.61
100	253	Fm	Fermium (3.0 d)	(1/2)		no data		
	257	Fm	Fermium (100.5 d)	(9/2)		no data		
							1	

This Table (updated Oct. 2009) was assembled and calculated by W.E. Hull using information from the following sources:

De Laeter et al. Pure Appl Chem 75 (2003) 683-800. (isotope abundances)

Harris RK, et al. *Pure Appl Chem* 73 (2001) 1795-1818 and 80 (2008) 59-84. (shift references) Mills I, et al. *Quantities, Units and Symbols in Physical Chemistry* (IUPAC recommendations 1993, corrections 1995). Blackwell Scientific (1993, 1995).

Pyykkö P. Spectroscopic nuclear quadrupole moments. Mol. Phys. 99 (2001) 1617-1629.

Α	Sym	v₀ [MHz]	R _м (H)	R _{NA} (C)	Reference	Ξ [MHz]
176	Lu	8.1049	3.98E-02	6.05E+00		
177	Hf	4.0588	1.40E-03	1.53E+00		
179	Hf	2.5502	5.47E-04	4.38E-01		
179	Та	11.7085	3.37E-02			
180	Та	9.5979	1.06E-01	7.48E-02	(+77 keV excited state)	
181	Та	12.1254	3.74E-02	2.20E+02	KTaCl ₆ in CH₃CN (sat.)	11.989600
183	W	4.2174	7.50E-05	6.31E-02	1 M Na ₂ WO ₄ in D ₂ O	4.166387
185	Re	22.8233	1.39E-01	3.05E+02	0.1 M KReO ₄ in D ₂ O	22.524600
187	Re	23.0568	1.43E-01	5.26E+02	0.1 M KReO ₄ in D ₂ O	22.751600
187	Os	2.3149	1.24E-05	1.43E-03	0.98 M OsO4 in CCl4	2.282331
189	Os	7.8765	2.44E-03	2.32E+00	0.98 M OsO ₄ in CCl ₄	7.765400
191	lr	1.7986	2.91E-05	6.38E-02		
193	lr	1.9538	3.73E-05	1.37E-01		
195	Pt	21.8243	1.04E-02	2.07E+01	1.2 M Na ₂ PtCl ₆ in D ₂ O	21.496784
197	Au	1.7683	2.76E-05	1.62E-01		
199	Hg	18.1136	5.94E-03	5.89E+00	Me ₂ Hg neat liq. (toxic!)	17.910822
201	Hg	6.6864	1.49E-03	1.16E+00	Me ₂ Hg neat liq. (toxic!)	6.611583
203	TI	58.0862	1.96E-01	3.40E+02	TI(NO ₃) ₃	57.123200
205	TI	58.6575	2.02E-01	8.36E+02	TI(NO ₃) ₃	57.683838
205	Pb	5.0966	1.54E-03			
207	Pb	20.8458	9.06E-03	1.18E+01	Me ₄ Pb + 5% C ₆ D ₆	20.920599
209	Bi	16.3525	1.44E-01	8.48E+02	Bi(NO ₃) ₂ sat. in conc. HNO ₃ + 50% D ₂ O	16.069288
209	Po	24.3479	1.44E-02			
211	Rn	21.5193	9.97E-03			
212	Fr	16.5423	1.81E-01			
225	Ra	26.2814	1.82E-02			
227	Ac	13.1288	1.13E-02			
229	Th	3.2941	4.17E-04			
231	Pa	23.9899	6.90E-02	4.06E+02		
233	U	4.2251	8.80E-04			
235	U	1.9437	1.54E-04	6.53E-03	UF ₆ + 10% C ₆ D ₆	1.841400
238	U					
237	Np	22.4860	1.33E-01			
239	Pu	7.2686	3.84E-04			
241	Pu	4.8696	1.35E-03			
241	Am	11.3146	1.69E-02			
243	Am	10.7417	1.45E-02			
243	Cm	2.9361	2.95E-04			
245	Cm	2.5576	3.5TE-04			
247	Cm	1.4720	1.05E-04			
240	PL	10 2202	2.255.02			
249	DK	10.2302	2.20E-02			
253	Fs	20.9719	1 9/F_01			
200	23	20.3713	1.542-01			

Stone NJ. *Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments (2001)* [http://www.nndc.bnl.gov/nndc/stone_moments/nuclear-moments.pdf].

LBNL Isotopes Project Nuclear Data Dissemination Home Page. *Table of Nuclear Moments* [http://ie.lbl.gov/toipdf/mometbl.pdf].

NUDAT 2 half-life data: http://www.nndc.bnl.gov/

Isotopes sorted according to spin and nucleon numbers

		Isotope	Spin			Isotope	Spin			Isotope	Spin
1	Н	Hydrogen	1/2	39	K	Potassium	3/2	173	Yb	Ytterbium	5/2
3	Н	Tritium *	1/2	41	К	Potassium	3/2	185	Re	Rhenium	5/2
3	He	Helium	1/2	53	Cr	Chromium	3/2	187	Re	Rhenium	5/2
13	С	Carbon	1/2	61	Ni	Nickel	3/2	229	Th	Thorium *	5/2
15	Ν	Nitrogen	1/2	63	Cu	Copper	3/2	237	Np	Neptunium *	5/2
19	F	Fluorine	1/2	65	Cu	Copper	3/2	241	Am	Americium *	5/2
29	Si	Silicon	1/2	69	Ga	Gallium	3/2	243	Am	Americium *	5/2
31	Р	Phosphorus	1/2	71	Ga	Gallium	3/2	10	В	Boron	3
57	Fe	Iron	1/2	75	As	Arsenic	3/2	39	Ar	Argon *	7/2
77	Se	Selenium	1/2	79	Br	Bromine	3/2	43	Ca	Calcium	7/2
89	Y	Yttrium	1/2	81	Br	Bromine	3/2	45	Sc	Scandium	7/2
103	Rh	Rhodium	1/2	87	Rb	Rubidium	3/2	49	Ti	Titanium	7/2
107	Ag	Silver	1/2	131	Xe	Xenon	3/2	51	V	Vanadium	7/2
109	Ag	Silver	1/2	135	Ba	Barium	3/2	59	Со	Cobalt	7/2
111	Cd	Cadmium	1/2	137	Ba	Barium	3/2	123	Sb	Antimony	7/2
113	Cd	Cadmium	1/2	139	Ce	Cerium *	3/2	133	Cs	C(a)esium	7/2
115	Sn	Tin	1/2	155	Gd	Gadolinium	3/2	139	La	Lanthanum	7/2
117	Sn	Tin	1/2	157	Gd	Gadolinium	3/2	143	Nd	Neodymium	7/2
119	Sn	Tin	1/2	159	Tb	Terbium	3/2	145	Nd	Neodymium	7/2
123	Te	Tellurium	1/2	189	Os	Osmium	3/2	147	Sm	Samarium	7/2
125	Te	Tellurium	1/2	191	lr	Iridium	3/2	149	Sm	Samarium	7/2
129	Xe	Xenon	1/2	193	lr	Iridium	3/2	165	Ho	Holmium	7/2
169	Tm	Thulium	1/2	197	Au	Gold	3/2	167	Er	Erbium	7/2
171	Yb	Ytterbium	1/2	201	Hg	Mercury	3/2	175	Lu	Lutetium	7/2
183	W	Tungsten	1/2	227	Ac	Actinium *	3/2	177	Hf	Hafnium	7/2
187	Os	Osmium	1/2	231	Pa	Protactinium *	3/2	181	Ta	Tantalum	7/2
195	Pt	Platinum	1/2	17	0	Oxygen	5/2	235	U	Uranium *	7/2
199	Hg	Mercury	1/2	25	Mg	Magnesium	5/2	245	Cm	Curium *	7/2
203	TI	Thallium	1/2	27	Al	Alumin(i)um	5/2	249	Bk	Berkelium *	7/2
205	TI	Thallium	1/2	47	Ti	Titanium	5/2	253	Es	Einsteinium *	7/2
207	Pb	Lead	1/2	55	Mn	Manganese	5/2	73	Ge	Germanium	9/2
209	Po	Polonium *	1/2	67	Zn	Zinc	5/2	83	Kr	Krypton	9/2
211	Rn	Radon *	1/2	85	Rb	Rubidium	5/2	87	Sr	Strontium	9/2
225	Ra	Radium *	1/2	91	Zr	Zirconium	5/2	93	Nb	Niobium	9/2
239	Pu	Plutonium *	1/2	95	Mo	Molybdenum	5/2	99	Tc	Technetium *	9/2
251	Cf	Californium *	1/2	97	Mo	Molybdenum	5/2	113	In	Indium	9/2
2	Н	Deuterium	1	99	Ru	Ruthenium	5/2	115	In	Indium	9/2
6	Li	Lithium	1	101	Ru	Ruthenium	5/2	179	Hf	Hafnium	9/2
14	Ν	Nitrogen	1	105	Pd	Palladium	5/2	209	Bi	Bismuth	9/2
7	Li	Lithium	3/2	121	Sb	Antimony	5/2	138	La	Lanthanum	5
9	Be	Beryllium	3/2	127	1	lodine	5/2	212	Fr	Francium *	5
11	В	Boron	3/2	141	Pr	Praeseodymium	5/2	50	V	Vanadium	6
21	Ne	Neon	3/2	145	Pm	Promethium *	5/2	176	Lu	Lutetium	7
23	Na	Sodium	3/2	151	Eu	Europium	5/2				
33	S	Sulfur	3/2	153	Eu	Europium	5/2				
35	CI	Chlorine	3/2	161	Dy	Dysprosium	5/2				
37	CI	Chlorine	3/2	163	Dy	Dysprosium	5/2				

* Unstable isotope with lifetime suitable for NMR.

Properties of Selected Deuterated Solvents for NMR

Solvent	Formula	MW _{ave}	Density	MP	BP	RI	Dielec.	¹ H shift (Mult.)	J(HD)	¹³ C Shift (Mult.)	J(CD)	H₂O/ HDO Shift
			[d ₄ ²⁰]	[°C]	[°C]	[<i>n</i> _D ²⁰]	[ɛ]	[ppm]	[Hz]	[ppm]	[Hz]	[ppm]
Acetic Acid-d4	$C_2D_4O_2$	64.08	1.119	15.9	115.5	1.368	6.1	11.65 2.04 (5)	2.2	178.99 20 (7)	20	11.5
Acetone-d6	C ₃ D ₆ O	64.12	0.872	-93.8	55.5	1.3554	20.7	2.05 (5)	2.2	29.92 (7) 206.68 (13)	19.4 0.9	2.84/ 2.81
Acetonitrile-d3	C_2D_3N	44.07	0.844	-46	80.7	1.3406	37.5	1.94 (5)	2.5	1.39 (7) 118.69	21	2.12
Benzene-d6	C ₆ D ₆	84.15	0.950	6.8	79.1	1.4986	2.3	7.16		128.39 (3)	24.3	0.4
Chloroform-d1	CDCl ₃	120.38	1.500	-64.1	60.9	1.4445	4.8	7.24		77.23 (3)	32	1.55
Cyclohexane-d12	$C_6 D_{12} O$	96.24	0.890	7	78		2	1.38		26.43 (5)	19	0.80
Deuterium oxide	D ₂ O	20.03	1.107	3.8	101.4	1.328	78.5	4.81				
1,2-Dichloroethane-d4	$C_2D_4Cl_2$	102.99	1.307	-35	83	1.443		3.72 (5)		43.6 (5)	23.5	
Dichloromethane-d2	CD_2Cl_2	86.95	1.362	-97	39.5	1.362		5.32 (3)	1.1	54 (5)	27.2	1.52
Diethylether-d10	C ₄ D ₁₀ O	84.19	0.78	-116.3	34.6			3.34 (m) 1.07 (m)		65.3 (5) 14.5 (7)	21 19	
Diethylene glycol dimethyl ether-d14 (diglyme-d14)	C ₆ D ₁₄ O ₃	148.26	0.95	-68	162			3.49 (br) 3.40 (br) 3.22 (5)	1.5	70.7 (5) 70 (5) 57.7 (7)	21 21 21	
1,2-Dimethoxyethane-d10 (glyme-d10)	$C_4 D_{10} O_2$	100.18	0.86	-58	83			3.40 (m) 3.22 (5)	1.6	71.7 (5) 57.8 (7)	21 21	
N,N-Dimethyl- formamide-d7	C ₃ D ₇ NO	80.14	1.04	-60	153	1.428	36.7	8.03 2.92 (5) 2.75 (5)	1.9 1.9	163.15 (3) 34.89 (7) 29.76 (7)	29.4 21.0 21.1	3.45
Dimethyl sulfoxide-d6	$C_2 D_6 O_S$	84.17	1.190	20.2	190	1.4758	46.7	2.50 (5)	1.9	39.51 (7)	21.0	3.3
1,4-Dioxane-d6	$C_4 D_8 O_2$	96.16	1.129	12	99	1.4198	2.2	3.53 (m)		66.66 (5)	21.9	2.4
Ethanol-d6	C ₂ D ₆ O	52.11	0.888	-114.5	78	1.358	24.5	5.29 3.56 1.11 (m)		56.96 (5) 17.31 (7)	22 19	5.2
Methanol-d4	CD4O	36.07	0.89	-99	65	1.3256	32.7	4.87 3.31 (5)	1.7	49.15 (7)	21.4	4.86
Methyl cyclohexane-d14	C7D14	112.27	0.77	-126	101	1.4189						
Nitrobenzene-d5	C ₆ D ₅ NO ₂	128.14	1.253	6	211	1.5498		8.11 (br) 7.67 (br) 7.50 (br)		148.6 134.8 (3) 129.5 (3) 123.5 (3)	24.5 25 26	2.42
Nitromethane-d3	CD_3NO_2	64.06	1.19	-26	100	1.3795		4.33 (5)		62.8 (7)	22	2.2
2-Propanol-d8	C ₃ D ₈ O	68.15	0.786	-89.5	82.4	1.3728		5.12 3.89 (br) 1.10 (br)		62.9 (3) 24.2 (7)	21.5 19	
Pyridine-d5	C5D5N	84.13	1.02	-41	114	1.5079	12.4	8.74 7.58 7.22		150.35 (3) 135.91 (3) 123.87 (3)	27.5 24.5 25	4.97
Tetrachloroethane-d2	$C_2D_2Cl_4$	169.86	1.7	-43	146	1.493		5.91 (5)		74.2 (5)		1.5
Tetrahydrofuran-d8	C ₄ D ₈ O	80.16	0.99	-108	64	1.4035	7.6	3.58 1.73		67.57 (5) 25.37 (5)	22.2 20.2	2.42
Toluene-d8	C ₇ D ₈	100.19	0.94	-85	109	1.4932	2.4	7.09 (m) 7.00 6.98 (m) 2.09 (5)	2.3	137.86 129.24 (3) 128.33 (3) 125.49 (3) 20.4 (7)	23 24 24 19	0.45
2,2,2-Trifluoroacetic Acid-d1	$C_2 DF_3 O_2$	115.03	1.50	-15	71	1.30		11.50		164.2 (4) 116.6 (4)		11.5
2,2,2-Trifluoroethanol-d3	$C_2D_3F_3$	87.06	1.42	-44	77	1.30		5.02 3.88 (4x3)	2 (9)	126.3 (4) 61.5 (4x5)	22	5

This Table summarizes the physical properties of deuterated solvents and the chem. shifts (rel. to TMS) and deuterium couplings for the solvent signals and the approximate shifts for residual water (last column).

¹H Chemical Shifts in Organic Compounds

¹³C Chemical Shifts in Organic Compounds*

>0-0<	Ketone				1	1		<u> </u>		1		1			[[ļ			[]
>C=0	Aldehyde		1																					[
>C=0	Acid	1	1		1	1																		
>0=0<	Ester, Amide		1	1	1							1												
>C=S	Thioketone	-									1													[
>C = N <	Azomethine					1	1	1																
— C ≖N	Nitrile				1							-												
>C-N~	Heteroaromatic		1	-	1		1	1	-															
>C=C<	Alkene																							
>C=C<	Aromatic		1																					
>C=C<	Heteroaromatic																							
-C=C-	Alkyne																							
>0-0€	(C Quaternary)																							
>0-0<																								
>C-N<																								
>C-S∽						1											1							İ
>C • Hal								1																
>CH-C <	(C Tertiary)												1											
>CH-0~																								
>CH-N<		L				1												1			L			
>CH-S~			ļ																			ļ.,		
>CH - Hał																								
-CH2-C<	(C Secondary)					1														-				propan
-CH2-0~	· · · · · · · · · · · · · · · · · · ·																							
-CH2-N<				_																				
-CH2-S~											1											_		
			ļ																	ļ				
H ₃ C-C<	(C Primary)		1								1													
H ₃ C-0~	` ```````````````````````````````````		+																		· · · · ·			
H ₃ C - N <	<u> </u>		_								1													
H ₃ C-S~	、		ļ	_																				
H ₃ C - Hał			ļ		+						1	.		ļ							.			
Resonance	es of comm					-						.L., I			I		l	L		1	ĻĮ			
solvents				(CH3) 2	0 CS2		L	CF,COOH	l	l	1	C ₆ H ₆ CF	соон	L	CCI4	L	CHCI3	1,4 Dioxan	CH,	OH DMSO	(CH	200	<u> </u>	
	ppm (T	MIS) 2	20 2	210 3	200 1	98 1	80 1	70 l	6U î	50 1	40 1	30 1	20 1	10 1	08 9	KU 8	10 7	0 8	0 5	i0 4	10 3	18 2	20 1	.U ()

* Relative to internal tetramethylsilane.

¹⁵N Chemical Shifts in Organic Compounds*

Aliobatic Amines - Primary		1		
- Secondary				
- Tertiary				
Alinhatic Ammonium lons — Primary				
- Secondary				
- Tertiary				
Amino Acids (Cation, Zwitterion)				
Enamines				
Anilinium Ions				
Piperidines, Hydroquinolines				
Aminophosphines				
Guanidines			=N<	
Ureas, Carbamates, Lactams				
Amides - Primary				
Secondary				
— Tertiary				
Thioureas				
Thioamides				
Nitramines		NO ₂	-N<	
Indoles, Pyrroles				
Hydrazones		=N	N <	
Triazenes	-N=N-N(===	■ <u>₩₩₩</u> <u>-</u> Ň=N-N<		-N=N-N(
Imides				
Nitriles, Isonitriles			C≡N	æĈ
Pyrrole-like Nitrogens				
Diazo	>=N=N		>=N=N	
Diazonium		⇒C−N≣N ■	<u> </u>	
Pyridines				· · · · · · · · · · · · · · · · · · ·
Pyridine-like Nitrogens				
Imines				
Oximes				
Азоху				
Nitro				
Azo Ar-NO S-NO		· · · · · · · · · · · · · · · · · · ·		
Nitroso	■ N–N=0		l	
Secondary Standards		neat CH, NO, sat. aq. NH, I	<u><u></u></u>	sat. aq. NH, NO,
nom 900 - 800 - 600	500	400 3	00 200	100

PPM 980 800 000 300 400 300 200
* Relative to external liquid ammonia at 25°C. Data taken from: G. C. Levy and R. L. Lichter: "Nitrogen-15 Nuclear Magnetic Resonance

¹¹B Chemical Shifts*

Spectroscopy", J. Wiley, 1979.

¹⁷O Chemical Shifts*

²⁹Si Chemical Shifts*

* Relative to Si(CH₃)₄.

²⁷Al Chemical Shifts*

* Relative to AI(H₂O)³⁺₆.

MRI Tables

Method	Description	Equivalent acronyms
SINGLEPULSE	Basic pulse-and-acquire spectroscopy	FID
NSPECT	Non-localized spectroscopy with NOE and decoupling options	FID
CSI	Chemical shift imaging with optional PRESS localization	
PRESS	Localized MRS with double spin echo	
STEAM	Localized MRS with stimulated echo (for short TE)	
ISIS	Localized MRS with inversion-based voxel definition	OSIRIS
DtiEpi	Diffusion tensor imaging with EPI (SE and STE)	PGSE-EPI
DtiStandard	Diffusion tensor imaging with 2DFT (SE and STE)	PGSE
EPI	Echo-Planar Imaging (GE and SE), single-shot or interleaved, with navigator-based phase stabilization and automatic ghost correction	
FAIR_EPI	Pulsed arterial spin labelling-based perfusion imaging with EPI	
FC2D_ANGIO	Time-of-flight angiography flow-compensated	TOF-angio
FL2D_ANGIO	Time-of-flight angiography w/o flow-comp. (short TE)	
FISP	Fast gradient echo with steady state signal selection (FID, echo or fully balanced), and optional inversion recovery for T1 mapping.	FLASH, FAST, FISP, PSIF, CE-FAST, SSFP, GRASS, TrueFISP
FLASH	Gradient echo	FISP, GRASS, FAST
GEFC	Gradient echo with flow compensation	
MDEFT	T1-weghted hi-res imaging with inversion-recovery preparation	MPRAGE
MGE	Multiple gradient echo	
MSME	Multiple spin echo including T2 mapping	
RARE	Fast spin echo based on CPMG sequence	FSE, TSE
RAREVTR	RARE with variable TR for simultaneous T1&T2 mapping	
RAREst	Fast spin echo for short TE using slew-rate-optimized gradients	HASTE
FLOW_MAP	Quantitative flow mapping and PC-angio	
UTE	Ultra-short TE radial scan	
FieldMap	Quantitative B0 mapping, part of the MAPSHIM tool for localized high-order shimming	
SPIRAL	Fast MRI with spiral k-space scan	
IntraGate-FLASH	Cardiac and respiration-cine with retrospective (trigger-free) gating	

Substituent	S _i (δ _i)	S _i (δ _o)	S _i (δ _m)	S _i (δ _p)	Substituent	S _i (δ _l)	S _i (δ _o)	S _i (δ _m)	S _i (δ _p)
-H	0.0	0.0	0.0	0.0	-1	-32.3	9.9	2.6	-0.4
–CH₃	9.3	0.6	0.0	-3.1	–OH	26.9	-12.7	1.4	-7.3
-CH ₂ CH ₃	15.7	-0.6	-0.1	-2.8	–OCH₃	30.2	-14.7	0.9	-8.1
-CH(CH ₃) ₂	20.1	-2.0	0.0	-2.5	-NH ₂	19.2	-12.4	1.3	-9.5
-C(CH ₃) ₃	22.1	-3.4	-0.4	-3.1	-N(CH ₃) ₂	22.4	-15.7	0.8	-11.8
-Cyclopropyl	15.1	-3.3	-0.6	-3.6	$-N(C_6H_5)_2$	19.3	-4.4	0.6	-5.9
-CH ₂ CI	9.1	0.0	0.2	-0.2	-NO ₂	19.6	-5.3	0.8	6.0
–CH ₂ Br	9.2	0.1	0.4	-0.3	–CN	-16.0	3.5	0.7	4.3
-CF ₃	2.6	-2.2	0.3	3.2	-NCO	5.7	-3.6	1.2	-2.8
–CH₂OH	13.0	-1.4	0.0	-1.2	-SC(CH ₃) ₃	4.5	9.0	-0.3	0.0
-CH=CH ₂	7.6	-1.8	-1.8	-3.5	-COH	9.0	1.2	1.2	6.0
–C≡CH	-6.1	3.8	0.4	-0.2	-COCH ₃	9.3	0.2	0.2	4.2
$-C_6H_5$	13.0	-1.1	0.5	-1.0	-COOH	2.4	1.6	-0.1	4.8
-F	35.1	-14.3	0.9	-4.4	-COO ⁻	7.6	0.8	0.0	2.8
–CI	6.4	0.2	1.0	-2.0	-COOCH ₃	2.1	1.2	0.0	4.4
–Br	-5.4	3.3	2.2	-1.0	-COCI	4.6	2.9	0.6	7.0

Some Representative ¹⁹F Chemical Shifts Referenced to CFCl₃

	δ / ppm		δ / ppm		δ / ppm
MeF	-271.9	CFBr ₃	7.4	FCH=CH ₂	-114
EtF	-213	CF ₂ Br ₂	7	$F_2C=CH_2$	-81.3
CF ₂ H ₂	-1436	CFH₂Ph	-207	$F_2C=CF_2$	-135
CF₃R	-60 to -70	CF ₂ Cl ₂	-8	C ₆ F ₆	-163
AsF ₅	-66	[AsF ₆]⁻	-69.5	[BeF ₄] ⁻	-163
BF₃	-131	CIF ₃	116; -4	CIF₅	247; 412
IF ₇	170	MoF ₆	-278	ReF ₇	345
SeF ₆	55	[SbF ₆] [−]	-109	SbF₅	-108
[SiF ₆] ²⁻	-127	TeF ₆	-57	WF ₆	166
XeF ₂	258	XeF ₄	438	XeF ₆	550

Some Representative ³¹P Chemical Shifts Referenced to 85 % H₃PO₄

(a) Phosphorus (III) compounds								
	δ / ppm		δ / ppm					
PMe ₃	-62	PMeF ₂	245					
PEt₃	-20	PMeH ₂	-163.5					
P(<i>n</i> -Pr)₃	-33	PMeCl ₂	192					
P(<i>i</i> -Pr)₃	-19.4	PMeBr ₂	184					
P(<i>n</i> -Bu) ₃	-32.5	PMe ₂ F	186					
P(<i>i</i> -Bu)₃	-45.3	PMe ₂ H	-99					
P(<i>s</i> -Bu)₃	7.9	PMe ₂ Cl	96.5					
P(t-Bu) ₃	63	PMe ₂ Br	90.5					

(b) Phosphorus (V) compounds								
	δ / ppm		δ / ppm					
Me ₃ PO	36.2	Me₃PS	59.1					
Et₃PO	48.3	Et₃PS	54.5					
[ME ₄ P] ⁺	24.4	[Et ₄ P]+	40.1					
[PO ₄] ³⁻	6.0	[PS ₄] ³⁻	87					
PF ₅	-80.3	[PF ₆]⁻	-145					
PCI ₅	-80	[PCl ₄]+	86					
MePF ₄	-29.9	[PCI ₆] ⁻	-295					
Me ₃ PF ₂	-158	Me ₂ PF ₃	8.0					

Some Important Silylated Compounds Used as ¹H Shift References

Name	Chemical formula	Abbre- viation	Mole- cular weigth	Boiling or melting point (°C)	δ ¹ H ppm rel. TMS
Tetramethylsilane	(CH ₃) ₄ Si	TMS	88.2	BP = 26.3	0
Hexamethyldisilane	(CH ₃) ₃ Si–Si(CH ₃) ₃	HMDS	146.4	BP = 112.3	0.037
Hexamethyldisiloxane	(CH ₃) ₃ Si–O–Si(CH ₃) ₃	HMDSO	162.4	BP = 100	0.055
Hexamethyldisilazane	(CH ₃) ₃ Si–NH–Si(CH ₃) ₃	HMDSA	161.4	BP = 125	0.042
3-(trimethylsilyl)propane sulfonic acid soduim salt	(CH ₃) ₃ Si(CH ₂) ₃ SO ₃ Na	TSPSA	218.3	MP = 200	0.015
sulfonate		DSS			
3-(trimethylsilyl)propionic acid sodium salt	(CHa)aSi(CHa)aCOONa	TSP	168.2	MP > 300	0.000
4,4-dimethyl-4-silapentane sodium carboxylate	(0.13/30/(0.12/2000)14	DSC	100.2		0.000
3-(trimethylsilyl) 2,2,3,3-tetra- deuteropropionic acid sodium salt	(CH ₃) ₃ Si(CD ₂) ₂ COONa	TSP-d ₄	172.2	MP > 300	0.000
Octamethylcyclotetrasiloxane	(CH ₃) ₂ Si[O–Si(CH ₃) ₂] ₃ –O	OCTS	296.8	BP = 175 MP = 16.8	0.085
1,1,3,3,5,5-hexakis-(trideutero- methyl)-1,3,5-trisilacyclohexane	$\begin{bmatrix} (CD_3)_2Si-CH_2-Si(CD_3)_2 \\ I \\ CH_2-Si(CD_3)_2-CH_2 \end{bmatrix}$	CS-d ₁₈	216.6	BP = 208	-0.327
Tetrakis-(trimethylsilyl)-methane	[(CH ₃) ₃ Si] ₄ C	TTSM	304.8	MP = 307	0.236

Enhancement Factors η_{NOE} and η_{INEPT} for X {1H} Nuclear Overhauser and INEPT Experiments

х	¹⁹ F	³¹ P	¹¹ B	¹³ C	¹⁵ N	²⁹ Si	⁵7Fe	¹⁰³ Rh	¹⁰⁹ Ag	¹¹⁹ Sn	¹⁸³ W
η _{NOE} ^a	0.53	1.24	1.56	1.99	-4.93	-2.52	15.41	-15.80	-10.68	-1.33	11.86
η _{іνерт} ь	1.06	2.47	3.12	3.98	-9.86	-5.03	30.82	-31.59	-21.37	-2.67	23.71

 $^{\rm a}$ The maximum possible intensity enhancement is equal to 1 + η_{NOE} in the extreme narrowing limit.

For "F or "1P as polarization source (irradiated nucleus) the factors η_{NOE} and η_{NEPT} are reduced by the factor 0.941 [γ ("F]) γ ("H)] and 0.405 [γ ("P)/ γ ("H)]

Relevant Properties of Cryogenic Fluids

(Liquid helium and nitrogen are used in supercon magnets)

Cryogen	Normal Boiling Point (K)	Latent Heat (J/g)	Amount of Liquid Evaporated by 1 Watt (I/hour)	Liquid Density (g/ml)	Gas Density at NTP (g/ml)	Liquid to NTP Gas Volume Ratio	Enthalpy Change (gas) B.P. to 77 K (J/mole)	Enthalpy Change (gas) 77 to 300 K (J/mole)
Liquid Helium	4.2	20.9	1.038	0.125	1.79 x 10⁻⁴	1 : 700	384	1157
Liquid Hydrogen	20.39	443	0.115	0.071	8.99 x 10 ⁻⁵	1 : 790	590	2900
Liquid Nitrogen	77.55	198	0.023	0.808	1.25 x 10⁻³	1 : 650	_	234
Liquid Oxygen	90.19	212.5	0.015	1.014	1.43 x 10⁻³	1 : 797	_	From BP: 193

NTP = normal room temperature and atmospheric pressure

¹H, ¹H Coupling Constants in Selected Organic Molecules

	Х	${}^{3}J_{cis}$	${}^{3}J_{trans}$	² J		Х	³ J
H X	Н	11.6	19.1	2.5	H₃C-CH₂-X	Li	8.90
C = C	Li	19.3	23.9	7.1		Si(C ₂ H ₅) ₃	8.0
н́н	СООН	10.2	17.2	1.7		Н	7.5
	CN	11.75	17.92	0.91		C ₆ H ₅	7.62
	C ₆ H ₅	11.48	18.59	1.08		CN	7.60
	CH ₃	10.02	16.81	2.08			7.45
	OCH ₃	7.0	14.1	-2.0		Br	7.33
	CI	1.3	14.6	-1.4		CH₃	7.26
	Br	7.1	15.2	-1.8		CI	7.23
	F	4.65	12.75	-3.2		N(C ₂ H ₅) ₂	7.13
						OC ₂ H ₅	6.97
						+O(C ₂ H ₅) ₂	4.7

	Х	³ <i>J</i> (1,2)	³ <i>J</i> (1,3)	³ J(2,4)	³ <i>J</i> (3,5)	³ <i>J</i> (2,5)	²J(2,3)
	н	8.97	5.58	8.97	8.97	5.58	-4.34
$H^2 \wedge H^4$	CI	7.01	3.58	10.26	10.58	7.14	-6.01
	Br	7.13	3.80	10.16	10.45	7.01	-6.12
	1	7.51	4.37	9.89	9.97	6.63	-5.94
	NH ₂	6.63	3.55	9.65	9.89	6.18	-4.29
	CN	8.43	5.12	9.18	9.49	7.08	-4.72
	СООН	8.04	4.57	9.26	9.66	7.14	-4.00
	COCI	7.88	4.43	9.19	9.99	7.59	-4.46
	COCH₃	7.96	4.55	8.76	9.60	6.94	-3.41

0.1	x	³ <i>J</i> (1,2)	⁴ <i>J</i> (1,3)	⁵ <i>J</i> (1,4)	⁴ <i>J</i> (1,5)	³ <i>J</i> (2,3)	⁴ <i>J</i> (2,4)
	Н	7.54	1.37	0.66	1.37	7.54	1.37
3⟨	Li	6.73	1.54	0.77	0.74	1.42	1.29
	CH ₃	7.64	1.25	0.60	1.87	7.52	1.51ª
	COOCH ₃	7.86	1.35	0.63	1.79	7.49	1.31
	I	7.93	1.14	0.47	1.88	7.47	1.75
	Br	8.05	1.12	0.46	2.1	7.44	1.78
	CI	8.05	1.13	0.48	2.27	7.51	1.72
	NH ₂	8.02	1.11	0.47	2.53	7.39	1.60
^a ⁴ <i>J</i> (1, CH ₃) -0.75	N(CH ₃) ₂	8.40	1.01	0.43	2.76	7.29	1.76
⁵ J(2, CH ₃) 0.36	N(CH ₃) ₃	8.55	0.92	0.48	3.05	7.46	1.69
⁶ J(3, CH₃) -0.62	NO ₂	8.36	1.18	0.55	2.40	7.47	1.48
^{b 3} <i>J</i> (1, F) 8.91 ⁴ <i>J</i> (2, F) 5.69	ОН	8.17	1.09	0.49	2.71	7.40	1.74
	OCH ₃	8.30	1.03	0.44	2.94	7.36	1.76
<i>⁵J</i> (3, F) 0.22	F	8.36	1.07	0.43	2.74	7.47	1.82 ^b

Substituent Effect S(*i*,*j*) for J_{HH} in Monosubstituted Benzenes

pos. <i>i,j</i>	F	CI	Br		NO ₂	OCH ₃
1,2	+0.81	+0.61	+0.53	+0.39	+0.77	+0.79
1,3	-0.34	-0.23	-0.27	-0.25	-0.20	-0.32
1,4	-0.24	-0.16	-0.20	-0.19	-0.16	-0.22
1,5	+1.21	+0.87	-0.71	+0.51	+1.02	+1.33
2,3	-0.04	+0.03	-0.05	-0.04	-0.07	-0.16
2,4	+0.39	+0.34	+0.36	+0.37	+0.08	+0.38

Typical Stray Field Data for NMR Magnet Systems

Magnet System ¹H MHz/mm Bore	Axial Distance (m) from Magnet Center to 5 Gauss (0.5 mT) Line	Radial Distance (m) from Magnet Center to 5 Gauss (0.5 mT) Line
200 MHz/154 mm US PLUS LH	1.80	0.90
300 MHz/54 mm US LH	0.90	0.60
300 MHz/54 mm Fourier US LH	0.90	0.60
300 MHz/54 mm Ascend ULH	0.90	0.60
300 MHz/89 mm Ascend	1.10	0.55
300 MHz/154 mm US PLUS LH	2.00	1.00
400 MHz/54 mm Ascend	1.00	0.50
400 MHz/54 mm Ascend ULH	1.00	0.50
400 MHz/54 mm Ascend RS	1.00	0.50
400 MHz/89 mm Ascend	1.20	0.60
400 MHz/89 mm Ascend DNP	1.50	1.10
400 MHz/154 mm US PLUS LH	2.55	1.50
500 MHz/54 mm Ascend	1.20	0.60
500 MHz/54 mm Ascend ULH	1.20	0.60
500 MHz/54 mm Ascend RS	1.20	0.60
500 MHz/89 mm Ascend	1.20	0.60
500 MHz/154 mm US PLUS LH	2.55	1.50
600 MHz/54 mm Ascend	1.40	0.70
600 MHz/54 mm Ascend ULH	1.40	0.70
600 MHz/89 mm Ascend	2.00	1.00
600 MHz/89 mm Ascend DNP	2.00	1.00
700 MHz/54 mm Ascend	1.60	0.80
750 MHz/54 mm Ascend	2.00	1.00
750 MHz/89 mm Ascend	2.80	1.40
800 MHz/54 mm Ascend	2.50	1.50
850 MHz/54 mm Ascend	2.70	1.60
850 MHz/89 mm US ² WB	4.60	3.30
900 MHz/54 mm US ²	4.60	3.30
900 MHz/89 mm US ² WB	4.60	3.30
950 MHz/54 mm US ²	4.60	3.30
1000 MHz/54 mm UltraStabilized	15.00	12.00

LH = Long Hold, ULH = Ultra Long Hold

2D	Two-Dimensional
3D	Three-Dimensional
ACCORDION	2D technique, simultane- ous incrementing of evolution and mixing times
ADA	Alternated Delay Acquisition
ADC	Analog-to-Digital Conver- ter, Apparent Diffusion Constant
ADEQUATE	Astonishingly Sensitive Doubl E QUA ntum Transfer Experiment
ADLF	Adiabatic Demagnetization in the Laboratory Frame
ADRF	Adiabatic Demagnetization in the Rotating Frame
A.E.COSY	Alternative Exclusive COSY
AFP	Adiabtic Fast Passage
AHT	Average Hamiltonian Theory
AJCP	Adiabatic J Cross Polarization
AMCP	Amplitude-Modulated Cross Polarization
ANGIO	MR ANGIOgraphy
АРНН-СР	Adiabatic-Passage Hartmann-Hahn Cross Polarization
APT	Attached Proton Test
AQ	AcQuisition
ARP	Adiabatic Rapid Passage
ASIS	Aromatic Solvent-Induced Shift
ASL	Arterial Spin Labeling
ASTM	American Society for Testing and Materials
BASE	BA sis imaging with SE lective-inversion preparation
BB	B road B and, as in decoupling
BDR	Broadband Dipolar Recoupling
bEPI	blipped EPI
bFFE	balanced Fast-Field Echo
BIRD	Bllinear Rotation Decoupling
BIRD/2	half BIRD , bilinear π /2 pulse
BLEW	A windowless multiple- pulse decoupling sequence

BLEW-n	Burum-Linder-Ernst Win- dowless homonuc. dipolar dec. sequence of <i>n</i> pulses
BMS	Bulk Magnetic Susceptibility
BOLD	Blood Oxygenation Level- Dependent contrast (MRI)
BOSS	BimOdal Slice-Selective
BP	B i P hasic
BPP	Bloembergen/Purcell/ Pound (theory)
BR-n	Burum-Rhim homonuclear dipolar decoupling sequence of <i>n</i> pulses
BSP	Bloch-Siegert Phase
BURP	Band-selective Uniform Response Pure-phase pulse
bTFE	balanced Turbo Field Echo
BW	B and W idth
BWR	Bloch-Wangsness-Redfield theory
CA	Contrast Agent
CAMELSPIN	Cross-relaxation Appro- priate for Minimolecules Emulated by Locked SPINs
CBCA(CO) NH	Cβ (<i>i</i> -1) and C α(<i>i</i> -1), N (<i>i</i>), H _N (<i>i</i>) 3D correl.
CBCANH	$\mathbf{C}\boldsymbol{\beta}(i,i-1)$ and $\mathbf{C}\boldsymbol{\alpha}(i,i-1)$, $\mathbf{N}(i)$, $\mathbf{H}_{\mathbf{N}}(i)$ 3D correl.
CCPPA	Coupled Cluster Polarization Propagator Approximation
CE	Contrast-Enhanced
CEST	Chemical Exchange Saturation Transfer
CH-COSY	Carbon-Hydrogen COrrelation SpectroscopY
CHESS	CHE mical S hift S elective Imaging Sequence
CHIRP	rf pulse with linear freq. modulation
CIDEP	Chemically Induced Dyna- mic Electron Polarization
CIDNP	Chemically Induced Dyna- mic Nuclear Polarization
CINE	"movie-like" MRI
CISS	Constructive Interference Steady State
CNR	Contrast-to-Noise Ratio
COLOC	CO rrelated Spectroscopy via LO ng-Range C oupling
COLOC-S	COLOC with S uppression of one-bond correlations

CONOESY	Combined COSY/NOESY
CORMA	COmplete Relaxation Matrix Analysis
CORY-n	CORY modification of BR-n
COSS	COrrelation with Shift Scaling
COSY	COrrelated SpectroscopY
COSY-45	COSY with 45° mixing pulse
COSYDEC	COSY with F ₁ DECoupling
COSYLR	COSY for Long-Range couplings
СР	Cross Polarization, Circular Polarization
CPD	Composite-Pulse Decoupling
CPMAS	Cross Polarization Magic- Angle Spinning
CPMG	Carr-Purcell-Meiboom-Gill Sequence
CRAMPS	Combined Rotation And Multiple Pulse Spectroscopy
CRAZED	Correlated Spectroscopy Revamped by Asymmetric Z-gradient Echo Detection
CRINEPT	Cross-correlated Relaxation- enhanced INEPT
CS	Contiguous Slice
CSA	Chemical Shift Anisotropy
CSCM	Chemical Shift Correlation Map
CSI	Chemical Shift Imaging
СТ	Constant Time
CW	Continuous Wave
CYCLCROP	CYCLic CROss Polarization
CYCLOPS	CYCLically Ordered Phase Sequence
CYCLPOT	CYCL ic PO larization T ransfer
DAC	Digital-to-Analog Converter
DAISY	Direct Assignment Inter- connection SpectroscopY
DANTE	Delay Alternating with Nutation for Tailored Excitation
DAS	Dynamic Angle Spinning
DCNMR	NMR in Presence of an Electric D irect C urrent
DD	Dipole-Dipole
DE	Dual Echo, Driven Equilibrium

DECSY	Double-quantum Echo Correlated SpectroscopY
DEFT	Driven Equilibrium Fourier Transform
DEPT	Distortionless Enhan- cement by Polarization Transfer
DEPTH	spin-echo sequence for spatial localization
DEPTQ	DEPT including quaternary carbons
DFT	Discrete Fourier Transformation
DICE	DIrect Connectivity Experiment
DICOM	Digital Imaging and COm- munications in Medicine
DIGGER	Discreet Isolation from Gradient-Governed Elimination of Resonances
DIPSI	Composite-pulse Decoupling In the Presence of Scalar Interactions
DISCO	DI fferences and S ums within CO SY
DLB	Differential Line Broadening
DAUAD	
DININK	Dynamic NIVIR
D.NOESY	Direct cross-relaxation NOESY
D.NOESY DNP	Dynamic NINK Direct cross-relaxation NOESY Dynamic Nuclear Polarization
DNMR D.NOESY DNP DOC	Dynamic NINK Direct cross-relaxation NOESY Dynamic Nuclear Polarization Double COnstant-Time sequence
DNMR D.NOESY DNP DOC DOPT	Dynamic NINIR Direct cross-relaxation NOESY Dynamic Nuclear Polarization Double COnstant-Time sequence Dipolar Order Polarization Transfer
DNMR D.NOESY DNP DOC DOPT DOR	Dynamic NINIR Direct cross-relaxation NOESY Dynamic Nuclear Polarization Double COnstant-Time sequence Dipolar Order Polarization Transfer Double-Orientation Rotation
DNMR D.NOESY DNP DOC DOPT DOR DOSY	Dynamic NIVIR Direct cross-relaxation NOESY Dynamic Nuclear Polarization Double COnstant-Time sequence Dipolar Order Polarization Transfer Double-Orientation Rotation Diffusion-Ordered SpectroscopY
DINMIR D.NOESY DNP DOC DOPT DOR DOSY DOUBTFUL	Dynamic NIMIR Direct cross-relaxation NOESY Dynamic Nuclear Polarization Double COnstant-Time sequence Dipolar Order Polarization Transfer Double-Orientation Rotation Diffusion-Ordered SpectroscopY DOUBle Quantum Transition for Finding Unresolved Lines
DINMIR D.NOESY DNP DOC DOPT DOR DOSY DOUBTFUL DPFGSE	Dynamic NINIR Direct cross-relaxation NOESY Dynamic Nuclear Polarization Double COnstant-Time sequence Dipolar Order Polarization Transfer Double-Orientation Rotation Diffusion-Ordered SpectroscopY DOUBle Quantum Transition for Finding Unresolved Lines Double Pulsed Field Gradient Spin Echo
DINMIR D.NOESY DNP DOC DOPT DOR DOSY DOUBTFUL DPFGSE DQ	Dynamic NIVIR Direct cross-relaxation NOESY Dynamic Nuclear Polarization Double COnstant-Time sequence Dipolar Order Polarization Transfer Double-Orientation Rotation Diffusion-Ordered SpectroscopY DOUBle Quantum Transition for Finding Unresolved Lines Double Pulsed Field Gradient Spin Echo Double Quantum
DINMIR D.NOESY DNP DOC DOPT DOR DOSY DOUBTFUL DPFGSE DQ DQC	Dynamic NINIR Direct cross-relaxation NOESY Dynamic Nuclear Polarization Double COnstant-Time sequence Dipolar Order Polarization Transfer Double-Orientation Rotation Diffusion-Ordered SpectroscopY DOUBle Quantum Transition for Finding Unresolved Lines Double Pulsed Field Gradient Spin Echo Double Quantum Coherence
DNMR D.NOESY DNP DOC DOPT DOR DOSY DOUBTFUL DPFGSE DQ DQC DQF	Dynamic NIVIR Direct cross-relaxation NOESY Dynamic Nuclear Polarization Double COnstant-Time sequence Dipolar Order Polarization Transfer Double-Orientation Rotation Diffusion-Ordered SpectroscopY DOUBle Quantum Transition for Finding Unresolved Lines Double Pulsed Field Gradient Spin Echo Double Quantum Coherence Double Quantum Filter
DINIMIR D.NOESY DNP DOC DOPT DOR DOSY DOUBTFUL DPFGSE DQ DQC DQF DQF-COSY	Dynamic NIVIR Direct cross-relaxation NOESY Dynamic Nuclear Polarization Double COnstant-Time sequence Dipolar Order Polarization Transfer Double-Orientation Rotation Diffusion-Ordered SpectroscopY DOUBle Quantum Transition for Finding Unresolved Lines Double Pulsed Field Gradient Spin Echo Double Quantum Coherence Double Quantum Filter Double Quantum Filtered COSY
DINIMIR D.NOESY DNP DOC DOPT DOR DOSY DOUBTFUL DPFGSE DQ DQC DQF DQF-COSY DQSY	Dynamic NIVIR Direct cross-relaxation NOESY Dynamic Nuclear Polarization Double COnstant-Time sequence Dipolar Order Polarization Transfer Double-Orientation Rotation Diffusion-Ordered SpectroscopY DOUBle Quantum Transition for Finding Unresolved Lines Double Pulsed Field Gradient Spin Echo Double Quantum Coherence Double Quantum Filter

DRAMA	Dipolar Recovery At the Magic Angle
DREAM	Double-quantum Relay Enhancement by Adiabatic Mixing
DRESS	Depth RESolved Spectrosocpy
DRIVE	DRIVen Equilibrium
DRYCLEAN	Diffusion-Reduced water signals in spectroscopY of moleCules moving sLowEr thAN water
DSA	Data-Shift Acquisition
DSC	Dynamic Susceptibility Contrast
DSE	Dual Spin Echo
DTI	Diffusion Tensor Imaging
DTRCF	Double Tilted Rotating Coordinate Frame
DTSE	Double Turbo Spin Echo
DUMBO	Decoupling Using Mind- Boggling Optimization – a numerically optimized phase-modulated homonuc. dipolar dec. sequence
DWI	Diffusion-Weighted Imaging
E-BURP	Excitation BURP pulse
EC	Eddy Currents
E.COSY	Exclusive COrrelation SpectroscopY
	WI IPCT descupling with
ECO-WURST	Elimination of Cycling Oscillations
ECO-WURST EFG	Elimination of Cycling Oscillations Electric Field Gradient
ECO-WURST EFG EM	Elimination of Cycling Oscillations Electric Field Gradient Exponential Multiplication
ECO-WURST EFG EM EMF	Elimination of Cycling Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force
ECO-WURST EFG EM EMF ENDOR	Elimination of Cycling Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force Electron-Nuclear DOuble Resonance
ECO-WURST EFG EM EMF ENDOR ENMR	Elimination of Cycling Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force Electron-Nuclear DOuble Resonance Electrophoretic NMR
ECO-WURST EFG EM EMF ENDOR ENMR EPI	Elimination of Cycling Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force Electron-Nuclear DOuble Resonance Electrophoretic NMR Echo-Planar Imaging
ECO-WURST EFG EM EMF ENDOR ENMR EPI EPR	Elimination of Cycling Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force Electron-Nuclear DOuble Resonance Electrophoretic NMR Echo-Planar Imaging Electron Paramagnetic Resonance
ECO-WURST EFG EM EMF ENDOR ENMR EPI EPR EPS	Elimination of Cycling Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force ElectronNuclear DOuble Resonance Electrophoretic NMR Echo-Planar Imaging Electron Paramagnetic Resonance Echo-Planar Spectroscopy
ECO-WURST EFG EM EMF ENDOR ENMR EPI EPR EPS ES, ESP	Elimination of Cycling Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force Electron-Nuclear DOuble Resonance Electrophoretic NMR Echo-Planar Imaging Electron Paramagnetic Resonance Echo-Planar Spectroscopy Echo Spacing
ECO-WURST EFG EM EMF ENDOR ENMR EPI EPR EPS ES, ESP E-SHORT	Elimination of Cycling Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force Electron-Nuclear DOuble Resonance Electrophoretic NMR Echo-Planar Imaging Electron Paramagnetic Resonance Echo-Planar Spectroscopy Echo Spacing Enhanced SHORT repetition MRI
ECO-WURST EFG EM EMF ENDOR ENMR EPI EPR EPS ES, ESP E-SHORT ESR	Elimination of Cycling Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectronMotive Force ElectronNuclear DOuble Resonance Electrophoretic NMR Echo-Planar Imaging Electron Paramagnetic Resonance Echo-Planar Spectroscopy Echo Spacing Enhanced SHORT repetition MRI Electron Spin Resonace
ECO-WURST EFG EM EMF ENDOR ENMR EPI EPR ES, ESP E-SHORT ESR E.TACSY	Elimination of Cycling Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force Electron-Nuclear DOuble Resonance Electrophoretic NMR Echo-Planar Imaging Electron Paramagnetic Resonance Echo-Planar Spectroscopy Echo Spacing Enhanced SHORT repetition MRI Electron Spin Resonace Exclusive TACSY
ECO-WURST EFG EM EMF ENDOR ENMR EPI EPR ES, ESP E-SHORT ESR E.TACSY EXORCYCLE	Elimination of Cycling Oscillations Electric Field Gradient Exponential Multiplication ElectroMagnetic Field ElectroMotive Force Electron-Nuclear DOuble Resonance Electrophoretic NMR Echo-Planar Imaging Electron Paramagnetic Resonance Echo-Planar Spectroscopy Echo Spacing Enhanced SHORT repetition MRI Electron Spin Resonace Exclusive TACSY 4-step phase cycle for spin echoes

FA	Flip Angle
FADE	FA SE Acq. with D ouble E cho
FAIR	Flow-sensitive Alternating Inversion Recovery
FASE	Fast Advanced Spin Echo
FAST	Fourier-Acquired STeady State
FASTMAP	FAST <i>B</i> ⁰ Field MAP ping for shimming
FATE	FAst Turbo Echo
FC	Flow Compensation
FC2D_ANGIO	Flow-Compensated time- of-flight 2D ANGIO graphy
FE	Field Echo, Frequency Encoding
FFE	Fast Field Echo
FFLG	Flip-Flop Lee-Goldburg decoupling
FFT	Fast Fourier Transform
FGRE	Fast Gradient-Recalled Echo
FID	Free Induction Decay
FIDS	Fltting of Doublets and Singlets
FieldMap	B ₀ Field Mapping for localized shimming
FIRFT	Fast Inversion-Recovery Fourier Transform
FISP	Fast Imaging with Steady- state Precession
FL2D_ANGIO	FLow-sensitive 2D ANGIOgraphy
FLAIR	FLuid Attenuation Inversion-Recovery
FLASH	Fast Low-Angle SHot imaging
FLOCK	Long-range HETCOR using 3 BIRD pulses
FLOPSY	Flip-FlOP SpectroscopY
FLOW_MAP	Quantitative FLOW MAP ping and PC-angiography
FMP	Fast MultiPlanar
fMRI	functional MRI
FOCSY	FOldover-Corrected SpectrospcopY
FONAR	Field-focusing MRI
FOV	Field Of View
FPT	Finite Perturbation Theory
FR	Frequency Encoding
FS	Fat Saturation, Fast Scan

FSE	Fast Spin Echo
FSLG	Frequency-Switched Lee- Goldburg – a homonuc. dipolar dec. scheme
FSPGR	F ast SP oiled GR adient Echo
FT	Fourier Transform
FUCOUP	FUlly COUPled Spectroscopy
FWHM	Full (line) W idth at H alf M aximum
GARP	Globaly Optimized Alter- nating Phase Rectangular Pulses
GE	Gradient Echo
GEFC	Gradient Echo with Flow Compensation
gem-COSY	geminal-filtered COSY
GES	Gradient-Echo Spectroscopy
GFE	Gradient Field Echo
GRASE	GRAdient and Spin Echo
GRASP	GRadient-Accelerated SPectroscopy
GRASS	Gradient-Recalled Acquisi- tion in the Steady State
GRE	Gradient-Recalled Echo
GRECCO	GR adient-Enhanced Carbon COupling
GROESY	Gradient-Enhanced Selective 1D ROESY
GROPE	Generalized compensation for Resonance Offset and Pulse length Errors
GS	Gradient Spectroscopy
gs	gradient-selected (e.g. gs-COSY)
H,X-COSY	H,X shift correlation (X-detected)
HASTE	Half-Fourier Acquisition Single-shot Turbo spin Echo
HBHA (CBCA CO) NH	H β (<i>i</i> -1) and Hα(<i>i</i> -1), N(<i>i</i>), H _N (<i>i</i>) 3D correl.
HCACO	H α(<i>i</i>), C α(<i>i</i>), C'O (<i>i</i>) 3D correl.
HCACON	H α(<i>i</i>), C α(<i>i</i>), C'O (<i>i</i>), N (<i>i</i> +1) 4D correl.
HCA(CO)N	H α(i), C α(i), N (i+1) 3D correl.
HCA(CO) NNH	H α(<i>i</i>), C α(<i>i</i>), N (<i>i</i> +1), H _N (<i>i</i> +1) 4D correl.

HCANNH	$\mathbf{H}\boldsymbol{\alpha}(i), \mathbf{C}\boldsymbol{\alpha}(i), \mathbf{N}(i), \mathbf{H}_{\mathbf{N}}(i)$ 3D correl.
(H)CC(CO) NH	C α,β,(i), N (i+1), H _N (i+1) 3D correl.
HCCH-COSY	$\mathbf{H}\boldsymbol{\alpha}(i), \mathbf{C}\boldsymbol{\alpha}(i), \mathbf{H}\boldsymbol{\beta}(i)$ 3D correl.
HCCH- TOCSY	total correlation of side- chain H and C
HDQC	Heteronuclear Double- Quantum Correlation
HEED	Hahn spin-Echo ExtendeD sequence
HET2DJ	HETeronuclear 2D J-correlated
HETCOR	HETeronuclear CORrelation Spectroscopy
HETLOC	HETeronuclear LOng-range Couplings
HEHAHA	HEteronuclear HArtmann HAhn
HMBC	Heteronuclear Multiple- Bond Correlation
HMQ	Heteronuclear Multiple- Quantum
HMQC	Heteronuclear Multiple- Quantum Coherence
HMSC	Heteronuclear Multiple- and Single-bond Correlation
HNCA	$\mathbf{H}_{\mathbf{N}}(i)$, $\mathbf{N}(i)$, $\mathbf{C}_{\alpha}(i)$ and $\mathbf{C}_{\alpha}(i-1)$ 3D shift correlation
HNCA-J	3D HNCA to measure ${}^{3}J(H_{N_{r}}H\alpha)$
HN(CA)NNH	H _N (<i>i</i>), N (<i>i</i>), N (<i>i</i> +1) and N (<i>i</i> -1) 3D correl.
HN(CA)CO	$\mathbf{H}_{\mathbf{N}}(i)$, $\mathbf{N}(i)$, $\mathbf{C'O}(i)$, and $\mathbf{C'O}(i-1)$ 3D shift correlation
H(N)CACO	$H_N(i)$, $C\alpha(i)$, $C'O(i)$ 3D shift correlation
HNCAHA	$H_N(i)$, $N(i)$, $C_{\alpha}(i)$, $H_{\alpha}(i)$ 4D shift correlation
HNCO	H _N (<i>i</i>), N(<i>i</i>), C'O(<i>i</i> -1) 3D shift correlation
HN(CO)CA	$H_N(i)$, $N(i)$, $C\alpha(i-1)$ 3D shift correlation
H(N)COCA	$H_N(i+1)$, C'O(i), C $\alpha(i)$ 3D shift correlation
HN(CO) CAHA	$\mathbf{H}_{\mathbf{N}}(i+1), \mathbf{N}(i+1), \mathbf{C}_{\mathbf{\alpha}}(i), \mathbf{H}_{\mathbf{\alpha}}(i)$ 4D shift correlation
HOESY	Heteronuclear Overhauser Effect SpectroscopY
НОНАНА	HOmonuclear HArtmann- HAhn Spectroscopy

HORROR	double-quantum HO mo- nuclea R RO tary R esonance
HQQC	Heteronuclear Quadruple- Quantum Correlation
HR	High Resolution
HRPA	Higher Random Phase Approximation
HS	H omo S poil
HSL	Heteronuclear Spin Lock
HSQC	Heteronuclear Single- Quantum Coherence
HTQC	Heteronuclear Triple- Quantum Correlation
I-BURP	Inversion BURP pulse
ICE	Indirect Connectivity Experiment
IDESS	Improved DE pth S elective single surface coil S pectroscopy
IDR	Inverted Direct Response
IEPI	Interleaved EPI
IFT	Inverse FT
IGLO	Individual Gauge for different Localized Orbitals
INADE- QUATE	Incredible Natural Abu- dance DoublE QUAnatum Transfer Experiment
INAPT	INEPT with selective 1H excitation
INDOR	INternuclear DOuble Resonance
INEPT	Insensitive Nuclei Enhanced by Polarization Transfer
INEPT+	INEPT with refocusing period for in-phase multiplets
INEPT-R	INEPT R efocused for 1H- dec. spectra
INSIPID	INadequate Sensitivity Improvement by Proton Indirect Detection
IntraGate- FLASH	Cardiac and respiration cine MRI with retrospec- tive (trigger-free) gating
INVERSE	H, X correlation via ¹ H detection
IPAP	In- P hase A nti- P hase (in 2D)
IR	Inversion-Recovery
IRMA	Iterative Relaxation Matrix Analysis
ISECR	In-pha SE CR oss peaks (method)

ISIS	Image-Selected In-vivo Spectroscopy (single-voxel)
IST	Irreducible Spherical Tensor
IVIM	IntraVoxel Incoherent Motion
JCP	J Cross-Polarization
J-mod	J modulation
JR	J ump-and- R eturn sequence (90 _y -τ -90 _{-y})
J-res	J-resolved 2D
LAS	Laboratory Axis System
LASE	Low-Angle SE
LB	Line Broadening (via EM)
LG	Lorentz-Gauss window function
LIS	Lanthanide Induced Shift
LORG	Local ORiGin
LOSY	LOcalized SpectroscopY
LP	Linear Polarization, Linear Prediction
LPSVD	Linear Prediction using Singular Value Decomposition
LSR	Lanthanide Shift Reagent
LUT	LookUp Table
MAGROFI	MAgnetization Grid
	no tating name imaging
MARCO POLO	Multiple Analysis by Reduction of Cross peaks and Ordering of Patterns in an Overdetermined Library Organization
MARCO POLO MARDI- GRAS	Multiple Analysis by Reduction of Cross peaks and Ordering of Patterns in an Overdetermined Library Organization Matrix Analysis of Relaxati- on for DIstance GeometRy of an Aqueous Structure
MARCO POLO MARDI- GRAS MARF	Multiple Analysis by Reduction of Cross peaks and Ordering of Patterns in an Overdetermined Library Organization Matrix Analysis of Relaxati- on for DIstance GeometRy of an Aqueous Structure Magic Angle in the Rotating Frame
MARCO POLO MARDI- GRAS MARF MAS	Multiple Analysis by Reduction of Cross peaks and Ordering of Patterns in an Overdetermined Library Organization Matrix Analysis of Relaxati- on for Distance GeometRy of an Aqueous Structure Magic Angle in the Rotating Frame Magic-Angle Spinning
MARCO POLO MARDI- GRAS MARF MAS MASS	Multiple Analysis by Reduction of Cross peaks and Ordering of Patterns in an Overdetermined Library Organization Matrix Analysis of Relaxati- on for Distance GeometRy of an Aqueous Structure Magic Angle in the Rotating Frame Magic-Angle Spinning Magic-Angle Sample Spinning
MARCO POLO MARDI- GRAS MARF MASS MASS MAST	Multiple Analysis by Reduction of Cross peaks and Ordering of Patterns in an Overdetermined Library Organization Matrix Analysis of Relaxati- on for Distance GeometRy of an Aqueous Structure Magic Angle in the Rotating Frame Magic-Angle Spinning Magic-Angle Sample Spinning Motion Artifact Suppression Technique
MARCO POLO MARDI- GRAS MARF MASS MASS MAST MDEFT	Multiple Analysis by Reduction of Cross peaks and Ordering of Patterns in an Overdetermined Library Organization Matrix Analysis of Relaxati- on for Distance GeometRy of an Aqueous Structure Magic Angle in the Rotating Frame Magic-Angle Spinning Magic-Angle Spinning Magic-Angle Sample Spinning Motion Artifact Suppression Technique Modified Driven Equilibrium FT method
MARCO POLO MARDI- GRAS MARF MAS MASS MAST MDEFT ME	Multiple Analysis by Reduction of Cross peaks and Ordering of Patterns in an Overdetermined Library Organization Matrix Analysis of Relaxati- on for DIstance GeometRy of an Aqueous Structure Magic Angle in the Rotating Frame Magic-Angle Spinning Magic-Angle Spinning Magic-Angle Sample Spinning Motion Artifact Suppression Technique Modified Driven Equilibrium FT method MultiEcho
MARCO POLO MARDI- GRAS MARF MASS MASS MAST MDEFT ME MEDUSA	Multiple Analysis by Reduction of Cross peaks and Ordering of Patterns in an Overdetermined Library Organization Matrix Analysis of Relaxati- on for DIstance GeometRy of an Aqueous Structure Magic Angle in the Rotating Frame Magic-Angle Spinning Magic-Angle Spinning Magic-Angle Sample Spinning Motion Artifact Suppression Technique Modified Driven Equilibrium FT method MultiEcho Technique for the Determination of Dynamic Structures
MARCO POLO MARDI- GRAS MARF MASS MASS MAST MDEFT ME MEDUSA MEM	Multiple Analysis by Reduction of Cross peaks and Ordering of Patterns in an Overdetermined Library Organization Matrix Analysis of Relaxati- on for DIstance GeometRy of an Aqueous Structure Magic Angle in the Rotating Frame Magic-Angle Spinning Magic-Angle Spinning Magic-Angle Sample Spinning Motion Artifact Suppression Technique Modified Driven Equilibrium FT method MultiEcho Technique for the Determination of Dynamic Structures Maximum Entropy Method
MARCO POLO MARDI- GRAS MARF MASS MASS MAST MDEFT ME MEDUSA MEM MEMP	Multiple Analysis by Reduction of Cross peaks and Ordering of Patterns in an Overdetermined Library Organization Matrix Analysis of Relaxati- on for Distance GeometRy of an Aqueous Structure Magic Angle in the Rotating Frame Magic-Angle Spinning Magic-Angle Spinning Magic-Angle Sample Spinning Motion Artifact Suppression Technique Modified Driven Equilibrium FT method MultiEcho Technique for the Determination of Dynamic Structures Maximum Entropy Method MultiEcho MultiPlanar
MARCO POLO MARDI- GRAS MARF MAS MASS MAST MDEFT ME MEDUSA MEM MEMP MESS	Multiple Analysis by Reduction of Cross peaks and Ordering of Patterns in an Overdetermined Library Organization Matrix Analysis of Relaxati- on for DIstance GeometRy of an Aqueous Structure Magic Angle in the Rotating Frame Magic-Angle Spinning Magic-Angle Spinning Magic-Angle Sample Spinning Motion Artifact Suppression Technique Modified Driven Equilibrium FT method MultiEcho Technique for the Determination of Dynamic Structures Maximum Entropy Method MultiEcho Single Shot

MGE	Multiple Gradient Echo
MINIP	MIN inmum Intensity P rojection
MIP	M aximum Intensity P rojection
MLEV	M. Levitt's CPD sequence
MLM	M aximum L ikelihood M ethod
MOTSA	Multiple Overlapping Thin Slab(Slice) Acquisition
MP	Multiple Pulse, MultiPlanar, Magnetization-Prepared
MPFn	Multiple-Pulse Decoupling with Phase and Frequency Switching with <i>n</i> offsets
MP-GR	M ulti P lanar G radient- R e- called Acq. in Steady State
MPR	MultiPlanar Reconstruction
MP-RAGE	Magnetization-Prepared RApid Gradient Echo (MP-GRE)
MQ	Multiple-Quantum
MQC	M ultiple- Q uantum C oherence
MQF	Multiple-Quantum Filter
МОНРТ	Multiple-Quantum Heteronuclear Polarization Transfer
MQS	Multiple-Quantum Spectroscopy
MR	Magnetic Resonance
MRA	MR Angiography
MREV-n	Mansfield-Rhim-Elleman- Vaughan homonuc. dipolar dec. cycle of <i>n</i> pulses
MRV	MR Venography
MRI	Magnetic Resonance Imaging
MRS	Magnetic Resonance Spectroscopy
MRSI	Magnetic Resonance Spectroscopic Imaging
MRT	Magnetic Resonance Tomography
MS	M ulti S lice
mSENSE	modified SENSE
MS-EPI	MultiShot EPI
MSHOT-n	Magic Sandwich High- Order Truncation homo- nuc. dipolar decoupling sequence with <i>n</i> TREV-4 sandwiches
MSME	MultiSlice MultiEcho (T2 mapping)

MSOFT	MultiSlice Off-resonance FaT Suppression
MSP	Multiple Sensitive Point
MSPGSE	Multiple-Stepped PGSE
MT	Magnetization Transfer
MTC	Magnetization Transfer Contrast
MTSA	Multiple Thin-Slab Acquisition
MUSIC	MUItiplicity-Selective In- phase Coherence transfer
MVS	Multiple Volume Spectroscopy
NEDOR	Nuclear Electronic DOuble Resonance
NERO	Nonlinear Excitation with Rejection on Resonance
NEWS	Narrow-gap non-Excitation for Water Suppression
NEX	Number of EX citations
NMR	Nuclear Magnetic Resonance
NOE	Nuclear Overhauser Effect
NOE-DIFF	NOE-DIFFerence spectroscopy
NOESY	NOE -based 2D shift correlation
NOVEL	Nuclear Orientation Via Electron spin Locking
NPW	No Phase Wrap
NOCC	Nuclear Quadrupole Coupling Constant
NQR	Nuclear Quadrupole Resonance
NQS	Non-Quaternary Suppression
NSPECT	Non-localized SPECTroscopy
OBTUSE	Offset Binomial Tailored for Uniform Spectral Excitation
OCS	O ptimized C osine- S ine pulse
ODMR	Optically Detected Magnetic Resonance
OS	Overcontiguous Slices
OSIRIS	Outer-Volume-Suppressed Image-Related In vivo Spectroscopy – a modifica- tion of ISIS
PACE	Prospective Acquisition CorrEction
PAR	Phase-Alternated Rotation of magnetization

-

PARACEST	PARAmagnetic Chemical Exchange Saturation Transfer
PAS	Principal Axis System
PC	Phase Contrast
PCA	Phase Contrast Angio- graphy
P.COSY	Purged COSY
PD	Proton Density
PDLF	Proton-Detected Local Field
PE	Phase Encoding
P.E.COSY	Primitive E.COSY, Purged Exclusive COSY
PEDRI	Proton-Electron Double Resonance Imaging
PELF	Proton-Encoded Local Field
PENDANT	Polarization ENhancement During Attached Nucleus Testing
PEP	Preservation of Equivalent Pathways
PFG	Pulsed Field Gradient
PFGSE	Pulsed Field Gradient Spin Echo
PGSE	Pulsed Gradient Spin Echo
PISEMA	Polarization Inversion with Spin Exchange at the Magic Angle
PITANSEMA	Polarization Inversion Time Averaged Nutation Spin Exchange at the Magic Angle
PJR	Power-adapted Jump and Return
PMFG	Pulsed Magnetic Field Gradient
PMLG	Phase-Modulated Lee-Goldburg dipolar decoupling
PMRFI	Phase-Modulated Rotating- Frame Imaging
POF	P roduct O perator F ormalism
POMMIE	Phase Oscillations to MaxiMIze Editing
POST	Permutationally Offset- STabilized
PRE	Proton Relaxation Enhancement
Presat	Presaturation (usually of solvent)
PRESS	Point-RESolved Spectroscopy

PRFT	Partially Relaxed Fourier Transform
PROPELLER	Periodically Rotated Over- lapping ParallEL Lines with Enhanced Reconstruction
PS	Partial Saturation
PS-COSY	Phase-Sensitive COSY
PSD	Phase-Sensitive Detection
PSIF	mirrored FISP (SE acquisition)
PT	Polarization Transfer
PW	Pulse Width
PWI	Perfusion-Weighted Imaging
٥	Quality Factor (of RF coil/circuit) Quantitative (e.g. QMRI, QCSI)
QF	Q uadrupole moment/ F ield gradient (interaction or relaxation mechanism)
Q Flow	Flow Quantification
QPD	Quadrature Phase Detection
QUEST	QUick Echo Split Imaging Technique
QUIPSS	QUantitative Imaging of Perfusion using a Single Subtraction
RAM	Rapid Acquisition Matrix
RARE	Rapid Acquisition Relaxation Enhanced
RAREst	RARE with s hort t E using slew-rate-optimized gradients
RAREVTR	RARE with Variable TR (simultaneous $T_1 \& T_2$ mapping)
RASE	Rapid Acquisition Spin Echo
RBW	Receiver BandWidth
RCF	Receiver BandWidth Rotating Coordinate Frame
RCF RCT	Receiver BandWidth Rotating Coordinate Frame Relayed Coherence Transfer
RCF RCT RE	Receiver BandWidth Rotating Coordinate Frame Relayed Coherence Transfer Rapid Excitation (MRI)
RCF RCT RE REAPDOR	Receiver BandWidth Rotating Coordinate Frame Relayed Coherence Transfer Rapid Excitation (MRI) Rotational Echo Adiabatic Passage DOuble Resonance
RE-BURP	Receiver BandWidth Rotating Coordinate Frame Relayed Coherence Transfer Rapid Excitation (MRI) Rotational Echo Adiabatic Passage DOuble Resonance Refocused Band-selective Uniform Response Pure phase
RE-BURP	Receiver BandWidth Rotating Coordinate Frame Relayed Coherence Transfer Rapid Excitation (MRI) Rotational Echo Adiabatic Passage DOuble Resonance Refocused Band-selective Uniform Response Pure phase Multistep RElayed Coherence SpectroscopY

RELAY	RELAY ed Correlation Spectroscopy
REPAY	Reverse Editing of Protons According to multiplicitY
REREDOR	Rotor-Encoded REDOR
REST	REgional Saturation Technique
RF	Radio Frequency
RFDR	RF-Driven Recoupling
RF-FAST	RF-spoiled FAST
RFOV	Rectangular FOV
RICE	Rapid Imaging using Composite Echo
RIDE	RIng Down Elimination
RINEPT	Reverse INEPT
RISE	Rapid Imaging using Spin Echo
RMSD	Root-Mean-Square Deviation
ROAST	Resonant Offset Averaging in the STeady State
RODI	ROtatin-grame relaxation Dispersion Imaging
ROE	Rotating-frame Overhauser Effect
ROESY	ROE -based 2D shift correlation
ROI	Region Of Interest
ROPE	Respiratory Ordered PE
ROTO	ROESY-TOCSY Relay
RPA	Random Phase Approximation
RR	Rotational Resonance
RSSARGE	RF-Spoiled SARGE
RT	Respiratory Trigger
RUFIS	Rotating UltraFast Imaging Sequence
SA	Shielding Anisotropy
SAR	Specific Absorption Rate (RF)
SARGE	Spoiled steady-state Acquisition with Rewinded Gradient Echo
SAT	SAT uration
SB	Sine-Bell window function
SC	Scalar Coupling
S.COSY	COSY with shift S caling in F1
SCT	SCan Time
SCUBA	Stimulate Cross peaks Under Bleached Alphas
SD	Spin Dipolar

SDDS	Spin Decoupling Difference Spectroscopy
SDEPT	Selective DEPT
SE	Spin Echo
SECSY	Spin-Echo Correlated SpectroscopY
SEDOR	Spin-Echo DOuble Resonance
SEDRA	Simple Excitation for Dephasing of Rotational echo Amplitudes
SEDUCE	SElective Decoupling Using Crafted Excitation
SEFT	Spin-Echo Fourier Transform Spectroscopy (with J modulation)
SELCOSY	SELective COSY
SELTICS	Sideband ELimination by Temporary Interruption of the Chemical Shift
SELINCOR	SELective INverse CORrelation
SELINQUATE	SELective INADEQUATE
SELRESOLV	SELective RESolution of C,H Coupling
SEMS	Spin-Echo MultiSlice
SEMUT	Subspectral Editing Using a MUltiple-Quantum Trap
SENSE	SENSitivity Encoding
sEPI	spiral EPI
SEPT	Selective INEPT
SERF	SElective ReFocussing
SESAM	SEmi-Selective Acquisition Modulated (Decoupling)
SFAM	Simultaneous Freq. and Ampl. Modulation
SFORD	Single Frequency Off- Resonance Decoupling
SGSE	Steady-Gradient Spin-Echo
SHECOR	Selective HE teronuclear COR relation
SHORT	SHORT repetition techniques
SI	Spectroscopic Imaging
SIAM	Simultaneous acq. of In-phase and Antiphase Multiplets
SIP	Saturation Inversion Projection
SIMBA	Selective Inverse Multiple- Bond Analysis
SINEPT	SINE-dependent PT

SINGLE PULSE	SINGLE PULSE-acquire spectroscopy
SIS	Substituent-Induced Shift
SJR	Second-order Jump and Return
SKEWSY	SKEWed Exchange SpectroscopY
SL	Spin-Lock pulse
SLF	Separated Local Field
SLITDRESS	SLIce inTerleaved Depth REsolved Surface coil Spectroscopy
SLOPT	Spin-LOcking Polarization Transfer
SMART	Shimadzu Motion Artifact Reduction Technique
SMASH	Short Minimum Angle SHot, SiMultaneous Acquisition of Spatial Harmonics
SNR or S/N	Signal-to-Noise Ratio
SOPPA	Second-Order Polarization Propagator Approach
SORS/STC	Slice-selective Off-Reso- nance Sinc Pulse / Satura- tion Transfer Contrast
SPACE	SPA tial and C hemical-Shift Encoded E xcitation
SPAIR	SPectral Selection Attenu- ated Inversion Recovery
SPECIFIC-CP	SPECtrally Induced Filtering In Combination with Cross Polarization
SPEED	Swap PhasE-Encoded Data
SPGR	SPoiled Gradient-Recalled
SPI	Selective Population Inversion
SPIDER	Steady-state Projection Imaging with Dynamic Echo Train Readout
SPIO	SuperParamagnetic Iron Oxide
SPIR	Spectral Presaturation Inversion-Recovery
SPIRAL	MRI with SPIRAL <i>k</i> -space scan
SPRITE	Single-Point Ramped Ima- ging with T1 Enhancement
SPT	Selective Population Transfer
SQ	Single-Quantum
SQC	Single-Quantum Coherence
SQF	Single-Quantum Filter

SR	Saturation-Recovery
SRP	Self-Refocusing Pulse
SS	Slice Selection (gradient), Single Slice
SSB	Shifted Sine-Bell window function
SSFP	Steady-State Free Precession
SSFSE	Single-Shot FSE
SSI	Solid State Imaging
SSMP	Single-Slice Multiple-Phase
ssNMR	solid-state NMR
SSTSE/T2	Single-Shot TSE with T2 weighting
ST	Saturation Transfer, Slice Thickness
STAGE	Small Tip Angle GE
STE	STimulated Echo
STEAM	STimulated Echo Acquisiti- on Mode for imaging
STEP	STE Progressive Imaging
STERF	Steady-State TEchnique with Refocused FID
STIR	Short T1 Inversion- Recovery
STREAM	Suppressed Tissue with REfreshment Angiography Method
STUD	Sech/Tanh Universal Decoupling – an adiabatic decoupling scheme
SUBMERGE	SUppression By Mistuned Echo and Repetitive Gradient Episodes
SUSAN	Spin decoupling employing Ultra-broadband inversion sequences generated via Simulated ANnealing
SWATTR	Selective Water Attenuation by T2 and T1 Relaxation
SVS	Single-Volume Spectroscopy
T1	T1-weighted (method)
T1W	T1-Weighted
T2	T2-weighted (method)
T2W	T2-Weighted
T2*W	T2*-Weighted
TACSY	TAylored Correlation SpectroscopY
TANGO	Testing for Adjacent Nuclei with a Gyration Operator

TART	Tip Angle Reduced T ₁ Imaging
TD	Trigger Delay, Time Difference
TCF	Time Correlation Function
TE	Time delay between exci- tation and Echo maximum
TEDOR	Transferred-Echo DOuble Resonance
TEI	TE Interleaved
TF	Turbo Factor
TFE	Turbo Field Echo
TGSE	Turbo Gradient Spin Echo
THRIVE	T1W High-Resolution Iso- tropic Volume Examination
TI	Time following Inversion
TIR	Turbo IR
TMR	Topical Magnetic Resonance
TOBSY	TO tal through- B ond correlation S pectroscop Y
TOCSY	TO tal C orrelation S pectroscop Y
TOF	Time-Of-Flight
TOE	Truncated NOE
TONE	Tilt-Optimized Nonsaturated Excitation
TORO	TOCSY-ROESY Relay
TOSS	TOtal Suppression of Sidebands
TPPI	Time-Proportional Phase Incrementation
ТРРМ	Two-Pulse Phase Modulation
TPR	Time and Phase Reversal
TQ	Triple-Quantum
TQF	Triple-Quantum Filter
TR	Time for R epetition of excitation
T/R	Transmit/Receive
TRAPDOR	TRAnsfer of Populations in DOuble Resonance
TRCF	Tilted R otating C oordinate F rame
TREV-n	Time- REV ersal echo sequence of <i>n</i> pulses for homonus, dipolar dec
TRNOE	TRansferred NOE
TRNOE TROSY	TRansferred NOE Transverse Relaxation Optimized SpectroscopY

TrueFISP	FISP with balanced gradient waveform
TS	Time of Saturation
TSE	Turbo Spin Echo
TSETSE	double-resonance Two- Spin Effect for correlation spectroscopy
TSR	Total SR
Turbo- FLASH	FLASH sequence during one IR period
U-BURP	Universal BURP pulse
UE	Unpaired Electron (relaxation mechanism)
UFSE	UltraFast SE
UNCOSY	UNiform excitation COSY
USPIO	UltraSmall Paramagnetic Iron Oxide
UTE	Ultra-short TE radial scan
UTSE	Ultra-short TSE
VAPRO	VAriable PROjection method
VAS	Variable Angle Spinning
VE	Velocity-Encoded
VEC	Velocity-Encoded Cine (MRI)
VEMP	Variable-Echo MultiPlanar
VENC	Velocity ENCoding value
VEST	Volume Excitation STimulated echoes
VIGRE	Volumetric Interpolated GRadient Echo
VOI	Volume Of Interest
VOSING	VOlume-selective Spectral editING
VOSY	VOlume-Selective SpectroscopY
VPS	Volumes Per Segment
VSOP	Very Small superparamag- netic iron Oxide Particles
WAHUHA	WAugh-HUber-HAeberlen Sequence
WALTZ	CPD Sequence Containing the Elements 1-2-3
WATER- GATE	WATER suppression through GrAdient Tailored Excitation
WATR	Water Attenuation by Transverse Relaxation
WEFT	Water Eliminated Fourier Transform
WET	Water suppression En- hanced through T1 effects

WFOP	Water Fat Opposed Phase
WFS	Water Fat Separation (Shift Difference)
WHH-n	WAHUHA dec. cycle of <i>n</i> pulses
WIM-n	Windowless Isotropic Mix- ing dec. cycle of <i>n</i> pulses
WURST	Wideband, Uniform Rate, and Smooth Truncation – an adiabatic decoupling sequence
XCORFE	H, X COR relation using a F ixed E volution time
XD-NOESY	eXchange-Decoupled NOESY
X-FILTER	Selection of ¹ H- ¹ H corre- lation when both H are coupled to X
X-HALF- FILTER	Selection of ¹ H- ¹ H corre- lation when one H is coupled to X
Z-COSY	Z-filtered COSY
Z-FILTER	pulse sandwich for elimina- tion of signal components with dispersive phase
ZECSY	Zero-Quantum-Echo Correlation SpectroscopY
ZIP	Zero-fill Interpolation Processing
ZQ	Zero Quantum
ZQC	Zero-Quantum Coherence
ZQF	Zero-Quantum Filter
ZZ- Spectro- scopy	Selection of coherences involving ZZ or longitudinal two-spin order
ZZZ- Spectro- scopy	Selection of coherences involving longitudinal 3-spin order
β -COSY	COSY with low-angle mixing pulse
Ψ-COSY	pseudo-COSY using incremented freq selective excitation

Symbols for NMR and Related Quantities*

Roman alphabet	
a or A	Hyperfine (electron-nucleus) coupling constant
<i>A</i> _q ^(l,m)	The <i>m</i> th component of an irreducible tensor of order / representing the nuclear spin operator for an interaction of type <i>q</i>
В	Magnetic field (strictly the magnetic flux density or magnetic induction)
B ₀	Static magnetic field of an NMR spectrometer
B ₁ , B ₂	Radiofrequency magnetic fields associated with frequencies ν_1,ν_2
B	Local magnetic field of random field or dipolar origin
С	Spin-rotation interaction tensor
C _x	Spin-rotation coupling constant of nuclide X
D	Dipolar interaction tensor
D _{i,j}	Dipolar coupling constant between nuclei (<i>i</i> and <i>j</i>), in Hz
D ^c	Nuclear receptivity relative to that of ¹³ C
DP	Nuclear receptivity relative to that of ¹ H
E	Electric field strength
F	Spectral width
$F_1, F_2 \text{ or } f_1, f_2$	The two frequency dimensions of a two-dimensional spectrum
Â _G	Nuclear spin operator for a group, G, of nuclei
F _G	Magnetic quantum number associated with $\pmb{\hat{F}}_{_{\mathrm{G}}}$
g	Nuclear or electronic <i>g</i> factor (Landé splitting factor)
G	Magnetic field gradient amplitude
Ĥ	Hamiltonian operator
H _{i,j}	Matrix element of Hamiltonian operator
Î,	Nuclear spin operator for nucleus j
$\hat{l}_{j^+}, \hat{l}_{j^-}$	'Raising' and 'lowering' spin operators for nucleus <i>j</i>
l _j	Magnetidc quantum number associated with $\hat{\pmb{l}}_{j}$
J	Indirect coupling tensor
ⁿ J _{AB}	Spin-spin coupling constant for nuclei A and B through <i>n</i> bonds in Hz
<i>J</i> (ω)	Spectral density of fluctuations at angular frequency ω
ⁿ K _{AB}	Reduced nuclear spin-spin coupling constant $K_{AB} = 4\pi^2 J_{AB}/h\gamma_A\gamma_B$ in $T^2 J^{-1}$

L	Angular momentum
mj	Eigenvalue of $\hat{\mathbf{j}}_{i^z}$ (magnetic component quantum number)
m _{tot}	Total magnetic component quantum number for a spin system (eigenvalue of $\sum_i \hat{\mathbf{J}}_{i,2}$)
m _{tot} (X)	Total magnetic component quantum number for X-type nuclei
M _o	Equilibrium macroscopic magnetization per unit volume in the presence of B o
M _x , M _y , M _z	Components of macroscopic magnetization per volume
M _n	<i>n</i> th moment of spectrum (M_2 = second moment, etc.)
<i>Π</i> _α , <i>Π</i> _β	Populations of the α and β spin states
N	Total number of nuclei of a given type per unit volume in the sample
q	Electric field gradient tensor in units of the elementary charge
eQ	Nuclear quadrupole moment, Q is in m ² and e is the elementary charge in C
R ^x ₁	Spin-lattice (longitudinal) relaxation rate constant for nucleus X
R ^x ₂	Spin-spin (transverse) relaxation rate constant for nucleus X
R ^X _{1p}	Longitudinal relaxation rate constant for nucleus X in the reference frame rotating with B ₁
S	Signal intensity
Ŝ	Electron (or, occasionally, nuclear) spin operator; cf. Î
t ₁ , t ₂	Time dimensions for two-dimensional NMR
T _c	Coalescence temperature under chem. exchange for signals in an NMR spectrum
<i>T</i> ^x ₁	Spin-lattice (longitudinal) relaxation time of the X nucleus
T_2^{χ}	Spin-spin (transverse) relaxation time of the X nucleus
<i>T</i> ₂ *	Net dephasing time for M_x or M_y
<i>T</i> ^X ₁ _{<i>p</i>}	Longitudinal relaxation time for the X nucleus in the reference frame rotating with ${\pmb B}_1$
T _d	Pulse (recycle) delay
T _{ac}	Acquisition time
T _q ^(l,m)	The <i>m</i> th component of an irreducible tensor of order <i>l</i> representing the strength of an interaction of type <i>q</i>

* IUPAC Recommendations: Magnetic Resonance in Chemistry, Vol. 36, 145-149 (1998)

Symbols for NMR and Related Quantities*

V	Electric field gradient tensor. $V = eq$, where e is the elementary charge
$V_{\alpha \beta}$	Elements of Cartesian electric field gradient tensor
W _o , W ₁ , W ₂	Relaxation rate constants (transition probabilities per time) between energy levels differing by 0, 1 and 2 in $m_{\rm tot}$
W _{rs}	Transition probability between spin states <i>r</i> and <i>s</i>
O	
Greek alpha	
α	Nuclear spin wavefunction (eigenfunction of \hat{I}_2) for the $m_1 = + \frac{1}{2}$ state of a spin- $\frac{1}{2}$ nucleus
α	The Ernst angle (for optimum sensitivity)
β	Nuclear spin wavefunction (eigenfunction of \hat{I}_2) for the $m_1 = -\frac{1}{2}$ state of a spin- $\frac{1}{2}$ nucleus
γ×	Magnetogyric ratio of nucleus X
δ_{\times}	Chemical shift (for the resonance) of nucleus of element X, usually in ppm
Δn	Population difference between nuclear states (Δn_{\circ} at Boltzmann equilibrium)
$\Delta\delta$	Change or difference in δ
$\Delta v_{\scriptscriptstyle 1/2}$	Full width in frequency units of a resonance line at half-height
$\Delta \sigma$	Anisotropy in $\sigma [\Delta \sigma = \sigma_{zz} - \frac{1}{2}(\sigma_{xx} + \sigma_{YY})]$
Δχ	(i) Susceptibility anisotropy $(\Delta \chi = \chi_{\parallel} - \chi_{\perp})$; (ii) difference in electronegativities
\mathcal{E}_{\circ}	Permittivity of the vacuum
ζ	Anisotropy in shielding, expressed as $\sigma_{\mbox{\tiny zz}}$ - $\sigma_{\mbox{\tiny iso}}$
η	(i) Nuclear Overhauser enhancement;(ii) tensor asymmetry factor; (iii) viscosity
к	Skew of a tensor
θ	Angle, especially for that between a given vector and $\pmb{B}_{\! \circ}$
μ	(i) Magnetic dipole moment (component μ_z along B _o); (ii) electric dipole moment
μ_{o}	Permeability of the vacuum
μ_{B}	Bohr magneton (earlier $eta_{ m e}$)
$\mu_{\rm N}$	Nuclear magneton (earlier β_{N})
\boldsymbol{v}_i	Larmor or resonance trequency of nucleus <i>j</i> (in Hz)
Vo	(i) Spectrometer operating frequency;(ii) Basic Larmor or resonance frequency for a given isotope

<i>V</i> ₁	Frequency of primary RF magnetic field B_1 (excitation, detection)
<i>V</i> ₂	Frequency of secondary RF magnetic field B_2 (decoupling)
Ξx	Normalized resonance frequency for nucleus X relative to $v_{\rm H}$ for tetramethylsilane (TMS) at the same $B_{\rm O}$ field; $\Xi_{\rm x}$ = 100 $v_{\rm x}/v_{\rm H}$ (TMS)
ρ	Density matrix
Ô	Density operator
ρ_{ij}	Element of matrix representation of $\hat{ ho}$
σ	Shielding tensor
σ_{i}	(Isotropic) shielding constant of nucleus j
$\sigma_{\scriptscriptstyle \parallel}, \sigma_{\scriptscriptstyle \perp}$	Components of shielding tensor σ parallel and perpendicular to the symmetry axis
$\hat{\sigma}$	Reduced density operator
τ	(i) Time between RF pulses or recovery time following inversion (ii) lifetime in dynamic NMR studies
τ	Correlation time for molecular motion, especially for isotropic molecular tumbling
$ au_{ m d}$	Dwell time for data sampling
$ au_{null}$	Recovery time leading to null M _z after a 180° pulse
$ au_{ m p}$	Pulse duration
$ au_{ m sc}$	Correlation time for relaxation by the scalar mechanism
$ au_{ m sr}$	Correlation time for spin-rotation relaxation
$ au$ III, $ au_{\perp}$	Correlation times for molecular tumbling parallel and perpendicular to the symmetry axis
χ	(i) Magnetic susceptibility; (ii) nuclear quadrupole coupling constant ($\chi = e^2 q_{ZZ} Q/h$)
$\omega_{j}, \omega_{o}, \omega_{1}, \omega_{2}$	As for v_{i} , v_{o} , v_{1} , v_{2} but in angular frequency units (rad/s)
Ω	Span of a tensor
$\boldsymbol{\Omega}_1, \boldsymbol{\Omega}_2$	Angular frequency of RF fields B ₁ , B ₂

* IUPAC Recommendations: Magnetic Resonance in Chemistry, Vol. 36, 145-149 (1998)
NMR Tables

¹H Chemical Shifts for Common Contaminants in Deuterated Solvents

	Proton	mult., J	CDCI ₃	(CD ₃) ₂ CO	(CD ₃) ₂ SO	C_6D_6	CD₃CN	CD ₃ OD	D ₂ O
residual solvent H			7.26	2.05	2.50	7.16	1.94	3.31	4.79
H ₂ O		S	1.56	2.84 ª	3.33 ª	0.40	2.13	4.87	
acetic acid	CH₃	S	2.10	1.96	1.91	1.55	1.96	1.99	2.08
acetone	CH₃	S	2.17	2.09	2.09	1.55	2.08	2.15	2.22
acetonitrile	CH₃	S	2.10	2.05	2.07	1.55	1.96	2.03	2.06
benzene	СН	S	7.36	7.36	7.37	7.15	7.37	7.33	
<i>t</i> -butanol	CH₃	S	1.28	1.18	1.11	1.05	1.16	1.40	1.24
	OH	S			4.19	1.55	2.18		
t-butyl methyl ether	CCH ₃	S	1.19	1.13	1.11	1.07	1.14	1.15	1.21
	OCH ₃	S	3.22	3.13	3.08	3.04	3.13	3.20	3.22
BHT ^b	ArH	S	6.98	6.96	6.87	7.05	6.97	6.92	
	OHC	S	5.01		6.65	4.79	5.20		
	ArCH ₃	s	2.27	2.22	2.18	2.24	2.22	2.21	
	ArC(CH ₃) ₃	S	1.43	1.41	1.36	1.38	1.39	1.40	
chloroform	CH	s	7.26	8.02	8.32	6.15	7.58	7.90	
cyclohexane	CH ₂	s	1.43	1.43	1.40	1.40	1.44	1.45	
1.2-dichloroethane	CH ₂	s	3.73	3.87	3.90	2.90	3.81	3.78	
dichloromethane	CH ₂	S	5.30	5.63	5.76	4.27	5.44	5.49	
diethyl ether	CH ₃	t. 7	1.21	1.11	1.09	1.11	1.12	1.18	1.17
	CH ₂	a. 7	3.48	3.41	3.38	3.26	3.42	3.49	3.56
dialyme	CH ₂	m m	3.65	3.56	3.51	3.46	3.53	3.61	3.67
	CH ₂	m	3.57	3.47	3.38	3.34	3.45	3.58	3.61
	OCH ₂	s	3 39	3.28	3.24	3 11	3 29	3.35	3.37
1 2-dimethoxyethane	CH ₂	s	3 40	3.28	3.24	3.12	3.28	3.35	3.37
	CH ₂	s	3 55	3 46	3 43	3.33	3 45	3.52	3 60
dimethylacetamide	CH ₂ CO	5	2.09	1.97	1.96	1 60	1.97	2.07	2.08
	NCH ₂	S	3.02	3.00	2.94	2.57	2.96	3.31	3.06
	NCH ₂	s	2.94	2.83	2.01	2.07	2.00	2.92	2.90
dimethylformamide	CH	S	8.02	7.96	7.95	7.63	7.92	7.97	7.92
	CH	ر	2.96	2.94	2.89	2 36	2.89	2.99	3.01
	CH ₂	5	2.00	2.04	2.00	1.86	2.00	2.00	2.85
dimethylsulfoxide	CH ₂	ر	2.60	2.70	2.70	1.68	2.50	2.65	2.00
dioxane	CH ₂	S	3 71	3 59	2.54	3 35	3.60	3.66	3 75
ethanol	CH ₂	t 7	1 25	1 12	1.06	0.96	1 12	1 19	1 17
	CH ₂	a 7 ^d	3 72	3.57	3.44	3 34	3.54	3.60	3.65
		9, 7 s ^{c,d}	1 32	3 39	4.63	0.04	2.47	0.00	0.00
ethyl acetate	CHOCO	۰ د	2.05	1 97	1.00	1 65	1 97	2 01	2 07
	CH ₂ CH ₂	α 7	4 12	4 05	4.03	3.89	4.06	4 09	4 14
	CH ₂ CH ₂	+ 7	1.12	1.00	1.00	0.00	1.00	1.00	1.11
ethyl methyl ketone		, <i>r</i>	2 14	2.07	2.07	1 58	2.06	2.12	2 19
	CH ₂ CH ₂	0.7	2.14	2.07	2.07	1.00	2.00	2.12	3.18
	CH ₂ CH ₂	+ 7	1.06	0.96	0.91	0.85	0.96	1.01	1 26
ethylene glycol	CH	c, 7	3.76	3.28	3.3/	3 /1	3.51	3 59	3.65
"grease" ^f	CH	m	0.76	0.20	0.04	0.41	0.86	0.88	0.00
grease	CH-	bre	1.26	1 20		1.36	1 27	1 20	
n-beyane	CH-	+	0.88	0.88	0.86	0.89	0.89	0.90	
THOADHO	CH	m	1 26	1 28	1 25	1.24	1.00	1 29	
ΗΜΡΔ ^g	CHo	495	2.65	2 59	2.53	2 /0	2.57	2.6/	2.61
methanol	CH-	u, 3.3	2.00	2.00	2.00	2.40	2.07	2.04	2.01
methanol		c.h	1.49	2 1 2	1.01	5.07	2.20	0.04	0.04
nitromethano	СН	5	1.09	J.12	4.01	2 0/	/ 21	1 21	1 10
		+ 7	4.33	4.43	4.42	2.94	4.31	4.34	4.40
		L, /	1.00	0.00	1.00	1 22	1 20	1 20	
			1.2/	1.27	1.27	1.20	1.23	1.23	
		1		1	1		1	1	

Reprinted with permission from: J. Org. Chem. 1997, 62, 7512-7515

© 1997 American Chemical Society

NMR Tables

	Proton	mult.	CDCI ₃	(CD ₃) ₂ CO	(CD ₃) ₂ SO	C_6D_6	CD₃CN	CD ₃ OD	D ₂ O
<i>i</i> -propanol	CH₃	d, 6	1.22	1.10	1.04	0.95	1.09	1.50	1.17
	СН	sep, 6	4.04	3.90	3.78	3.67	3.87	3.92	4.02
pyridine	CH(2)	m	8.62	8.58	8.58	8.53	8.57	8.53	8.52
	CH(3)	m	7.29	7.35	7.39	6.66	7.33	7.44	7.45
	CH(4)	m	7.68	7.76	7.79	6.98	7.73	7.85	7.87
silicone grease ⁱ	CH ₃	S	0.07	0.13		0.29	0.08	0.10	
tetrahydrofuran	CH ₂	m	1.85	1.79	1.76	1.40	1.80	1.87	1.88
	CH ₂ O	m	3.76	3.63	3.60	3.57	3.64	3.71	3.74
toluene	CH₃	S	2.36	2.32	2.30	2.11	2.33	2.32	
	CH(<i>o/p</i>)	m	7.17	7.1-7.2	7.18	7.02	7.1-7.3	7.16	
	CH(<i>m</i>)	m	7.25	7.1-7.2	7.25	7.13	7.1-7.3	7.16	
triethylamine	CH ₃	t, 7	1.03	0.96	0.93	0.96	0.96	1.05	0.99
	CH ₂	q, 7	2.53	2.45	2.43	2.40	2.45	2.58	2.57

¹H Chemical Shifts for Common Contaminants in Deuterated Solvents (continued)

^a In these solvents the intermolecular rate of exchange is slow enough that a peak due to HDO is usually also observed; it appears at 2.81 and 3.30 ppm in acetone and DMSO, respectively. In the former solvent, it is often seen as a 1:1:1 triplet, with ${}^{2}J_{H,D} = 1$ Hz. b 2,6-di-*tert*-butyl-4-methylphenol. ^e The signals from exchangeable protons were not always identified. ^d In some cases (see note *a*), the coupling interaction between the CH₂ and the OH protons may be observed (J = 5 Hz).^e In CD₃CN, the OH proton was seen as a multiplet at $\delta = 2.69$, and extra coupling was also apparent on the methylene peak. ^f Long-chain, linear aliphatic hydrocarbons. Their solubility in DMSO was too low to give visible peaks. ^g Hexamethylphosphoramide. ^h In some cases (see notes *a*, *d*), the coupling interaction between the CH₃ and the OH protons may be observed (J = 5.5 Hz). ^f Poly(dimethylsiloxane). Its solubility in DMSO was too low to give visible peaks.

¹³C Chemical Shifts for Common Contaminants in Deuterated Solvents

			(CD ₃) ₂ CO	(CD ₃) ₂ SO	C_6D_6	CD₃CN	CD ₃ OD	D ₂ O
solvent signals		77.16	29.84	39.52	128.06	1.32	49.00	
			206.26			118.26		
acetic acid	CO	175.99	172.31	171.93	175.82	173.21	175.11	177.21
	CH₃	20.81	20.51	20.95	20.37	20.73	20.56	21.03
acetone	CO	207.07	205.87	206.31	204.43	207.43	209.67	215.94
	CH₃	30.92	30.60	30.56	30.14	30.91	30.67	30.89
acetonitrile	CN	116.43	117.60	117.91	116.02	118.26	118.06	119.68
	CH₃	1.89	1.12	1.03	0.20	1.79	0.85	1.47
benzene	СН	128.37	129.15	128.30	128.62	129.32	129.34	
<i>t</i> -butanol	С	69.15	68.13	66.88	68.19	68.74	69.40	70.36
	CH₃	31.25	30.72	30.38	30.47	30.68	30.91	30.29
t-butyl methyl ether	OCH₃	49.45	49.35	48.70	49.19	49.52	49.66	49.37
	С	72.87	72.81	72.04	72.40	73.17	74.32	75.62
	CCH₃	26.99	27.24	26.79	27.09	27.28	27.22	26.60
BHT	C(1)	151.55	152.51	151.47	152.05	152.42	152.85	
	C(2)	135.87	138.19	139.12	136.08	138.13	139.09	
	CH(3)	125.55	129.05	127.97	128.52	129.61	129.49	
	C(4)	128.27	126.03	124.85	125.83	126.38	126.11	
	CH₃Ar	21.20	21.31	20.97	21.40	21.23	21.38	
	CH₃C	30.33	31.61	31.25	31.34	31.50	31.15	
	С	34.25	35.00	34.33	34.35	35.05	35.36	
chloroform	СН	77.36	79.19	79.16	77.79	79.17	79.44	
cyclohexane	CH ₂	26.94	27.51	26.33	27.23	27.63	27.96	
1,2-dichloroethane	CH ₂	43.50	45.25	45.02	43.59	45.54	45.11	
dichloromethane	CH ₂	53.52	54.95	54.84	53.46	55.32	54.78	
diethyl ether	CH₃	15.20	15.78	15.12	15.46	15.63	15.46	14.77
	CH ₂	65.91	66.12	62.05	65.94	66.32	66.88	66.42

NMR Tables

¹³C Chemical Shifts for Common Contaminants in Deuterated Solvents (continued)

		CDCl ₃	(CD ₃) ₂ CO	(CD ₃) ₂ SO	C_6D_6	CD₃CN	CD ₃ OD	D ₂ O
diglyme	CH ₃	59.01	58.77	57.98	58.66	58.90	59.06	58.67
	CH ₂	70.51	71.03	69.54	70.87	70.99	71.33	70.05
	CH ₂	71.90	72.63	71.25	72.35	72.63	72.92	71.63
1,2-dimethoxyethane	CH ₃	59.08	58.45	58.01	58.68	58.89	59.06	58.67
	CH ₂	71.84	72.47	17.07	72.21	72.47	72.72	71.49
dimethylacetamide	CH ₃	21.53	21.51	21.29	21.16	21.76	21.32	21.09
	CO	171.07	170.61	169.54	169.95	171.31	173.32	174.57
	NCH ₃	35.28	34.89	37.38	34.67	35.17	35.50	35.03
	NCH ₃	38.13	37.92	34.42	37.03	38.26	38.43	38.76
dimethylformamide	СН	162.62	162.79	162.29	162.13	163.31	164.73	165.53
	CH ₃	36.50	36.15	35.73	35.25	36.57	36.89	37.54
	CH ₃	31.45	31.03	30.73	30.72	31.32	31.61	32.03
dimethyl sulfoxide	CH ₃	40.76	41.23	40.45	40.03	41.31	40.45	39.39
dioxane	CH ₂	67.14	67.60	66.36	67.16	67.72	68.11	67.19
ethanol	CH₃	18.41	18.89	18.51	18.72	18.80	18.40	17.47
	CH ₂	58.28	57.72	56.07	57.86	57.96	58.26	58.05
ethyl acetate	CH₃CO	21.04	20.83	20.68	20.56	21.16	20.88	21.15
	CO	171.36	170.96	170.31	170.44	171.68	172.89	175.26
	CH ₂	60.49	60.56	59.74	60.21	60.98	61.50	62.32
	CH₃	14.19	14.50	14.40	14.19	14.54	14.49	13.92
ethyl methyl ketone	CH₃CO	29.49	29.30	29.26	28.56	29.60	29.39	29.49
	CO	209.56	208.30	208.72	206.55	209.88	212.16	218.43
	CH ₂ CH ₃	36.89	36.75	35.83	36.36	37.09	37.34	37.27
	CH_2CH_3	7.86	8.03	7.61	7.91	8.14	8.09	7.87
ethylene glycol	CH ₂	63.79	64.26	62.76	64.34	64.22	64.30	63.17
"grease"	CH ₂	29.76	30.73	29.20	30.21	30.86	31.29	
<i>n</i> -hexane	CH ₃	14.14	14.34	13.88	14.32	14.43	14.45	
	CH ₂ (2)	22.70	23.28	22.05	23.04	23.40	23.68	
	CH ₂ (3)	31.64	32.30	30.95	31.96	32.36	32.73	
HMPA ^b	CH₃	36.87	37.04	36.42	36.88	37.10	37.00	36.46
methanol	CH₃	50.41	49.77	48.59	49.97	49.90	49.86	49.50°
nitromethane	CH₃	62.50	63.21	63.28	61.16	63.66	63.08	63.22
<i>n</i> -pentane	CH₃	14.08	14.29	13.28	14.25	14.37	14.39	
	CH ₂ (2)	22.38	22.98	21.70	22.72	23.08	23.38	
	CH ₂ (3)	34.16	34.83	33.48	34.45	34.89	35.30	
i-propanol	CH ₃	25.14	25.67	25.43	25.18	25.55	25.27	24.38
	СН	64.50	63.85	64.92	64.23	64.30	64.71	64.88
pyridine	CH(2)	149.90	150.67	149.58	150.27	150.76	150.07	149.18
	CH(3)	123.75	124.57	123.84	123.58	127.76	125.53	125.12
	CH(4)	135.96	136.56	136.05	135.28	136.89	138.35	138.27
silicone grease	CH ₃	1.04	1.40	05.14	1.38	00.07	2.10	05.07
tetrahydrofuran	CH ₂	25.62	26.15	25.14	25.72	26.27	26.48	25.67
taliana a		6/.9/	68.07	67.03	67.80	68.33	68.83	68.68
toluene		21.46	21.46	20.99	21.10	21.50	21.50	
		137.89	138.48	137.35	137.91	138.90	138.85	
	CH(0)	129.07	129.76	128.88	129.33	129.94	129.91	
		128.26	129.03	128.18	128.56	129.23	129.20	
		125.33	120.12	125.29	125.68	120.28	120.29	0.07
trietnyiamine		11.61	12.49	11.74	12.35	12.38	11.09	9.07
	CH ₂	46.25	47.07	45.74	46.77	47.10	46.96	47.19

^a See footnotes for Table 1. ^b ${}^{2}J_{PC}$ = 3 Hz. ^c Reference material; see text.

Reprinted with permission from J. Org. Chem. 1997, 62, 7512-7515

© 1997 American Chemical Society

NMR Formulae

Quantity	Formula (bold face = vectors)	Definitions (SI units) (see SI section for constants and units)
Magnetic Field Magnetic Force	$B = \mu_o H$ $F = Q v \times B$	
Nuclear Spin Spin Angular Mom. Magn. Moment	$ \begin{aligned} & \mathbf{I} \\ & \hbar \ m_{\rm I} \\ & \mathbf{\mu}_{\rm I} = \gamma_{\rm I} \ \hbar_{\rm I} \ \mathbf{I} = \ g_{\rm I} \ \beta_{\rm N} \ \mathbf{I} \end{aligned} $	$ \begin{split} \gamma &= \text{magnetogyric ratio (rad s^{-1} T^{-1}); } \hbar = h/2\pi \\ \beta_{\text{N}} &= \mu_{\text{B}} \text{ (nuclear magneton); } g_{\text{I}} = \text{nuclear } g \text{ factor } \\ m_{\text{I}} &= \text{quantum no. } (-I, -I+1, \ldots + I) \end{split} $
Zeeman Interaction Larmor Freq. Nutation Vector	$H = -\boldsymbol{\mu}_{1} \cdot \boldsymbol{B}_{0}, E = -m_{1} \gamma_{1} \hbar B_{0}$ $\omega_{0} = \gamma_{1} B_{0}, \nu_{0} = \gamma_{1} B_{0}$ $\boldsymbol{\omega} = -\gamma_{1} \boldsymbol{B}$	$ω$ in rad s ⁻¹ , v in Hz ($\Delta m_1 = \pm 1$), $\gamma = \gamma/2\pi$ (clockwise precession in lab frame for $\gamma > 0$)
Boltzmann Pop. Diff. Equil. Magn.	$\begin{split} \Delta N/N &\sim \gamma_1 \hbar/2 kT \left(\Delta m_{\rm I} = \pm 1 \right) \\ M_0 &= B_0 [N \gamma_1^2 \hbar^2 l(l+1) / 3 kT] \end{split}$	N = number of nuclei with spin <i>I</i> T = temperature (K)
Rotating Frame (r.f.) and residual field	$\gamma \Delta \boldsymbol{B}_{0} = \gamma \boldsymbol{B}_{0} + \boldsymbol{\omega}_{r.f.}$ $\boldsymbol{\Omega} = -\gamma \Delta \boldsymbol{B}_{0} = \boldsymbol{\omega}_{0} - \boldsymbol{\omega}_{r.f.}$	$ \begin{split} \boldsymbol{\omega}_{r.f.} &= \text{rot. frame vector (detector freq.) in} \\ \text{direction } \boldsymbol{\omega}_0 (-z \text{ axis for } \gamma > 0) \\ \Delta \boldsymbol{B}_0 &= \text{residual field in r.f.} \\ \boldsymbol{\Omega} &= \text{precession freq. in r.f. (clockwise in r.f. for } \boldsymbol{\omega}_0 > \boldsymbol{\omega}_{r.f.}) \end{split} $
Effective RF Field Amplitude and Tilt Nutation		$B_1 = \text{RF}$ field vector in <i>xy</i> plane; nutation is ccw around $\omega_{\text{eff}} = -\gamma B_{\text{eff}}$, $\theta = \text{tilt}$ angle between B_{eff} and <i>xy</i> -plane; for $\Delta B_0/B_1 < 0.1$: $\theta < 6^\circ$, $B_{\text{eff}} \approx B_1$ $\tau_p = \text{RF}$ pulse width (s); $\tau_{90} = 90^\circ$ pulse
Optimum flip angle	$\cos\beta_{\rm opt} = \exp(-TR/T_1)$	TR = pulse repetition time
Relaxation rates	spin-lattice: $R_1 = 1/T_1$ spin-spin: $R_2 = 1/T_2 = \pi \Delta v_o$	$\Delta v_{\rm o}$ = natural Lorentzian linewidth at half-height
Bulk Susceptibility Correction	for cylindrical samples with external ref. in coaxial capillary $\delta_{corr} = \delta_{obs} + C (\chi_{ref} - \chi_{sample})$	$C = +2\pi/3$ (tube perpendicular to B_0) $C = -4\pi/3$ (tube parallel to B_0)
Spin-echo amplitude in constant <i>B</i> ₀ gradient	$M(2 \tau) = M_0 \exp[-2 \tau/T_2 - (2/3)(\gamma G)^2 D\tau^3]$	90- τ -180- τ Hahn echo with gradient <i>G</i> <i>D</i> = diffusion coeff. in gradient direction
Spin-echo attenuation in PFG-SE experiment	In $(S_{echo} / S_0) = -bD$ $b = (\gamma \delta G)^2 (\Delta - \delta/3)$	$G = B_0$ gradient pulse amplitude (T/m) δ = pulse width; Δ = pulse spacing
Rotational Correlation Time	Stokes-Einstein Relation $\tau_{\rm c} = (4\pi\eta \ r^3) / (3kT)$	τ_c = rot. correlation time for isotropic tumbling η = viscosity; r = molecular radius (sphere)
Nuclear Oberhauser Enhancement	$M_{\rm s}$ {I}/ $M_{\rm s}$ (0) = 1 + 0.5($\gamma_{\rm l}/\gamma_{\rm s}$)($R_{\rm l}^{\rm ls}/R_{\rm l}^{\rm s}$) (extreme narrowing; $\omega_{\rm s}\tau_{\rm c}$ << 1)	enhancement of spin S due to continuous irradiation of spin I; R_1^{IS} = dipolar relaxation of S via <i>I</i> ; R_1^{S} = relaxation of S via all mechanisms
Polarization Transfer	$M_{\rm S}$ {PT}/ $M_{\rm S}$ (0) = $\gamma_{\rm I}/\gamma_{\rm S}$	PT from / to S via J _{IS}
Lorentzian Lineshape	$\begin{aligned} a(\omega) &= R_2 / [R_2^2 + \Delta \omega^2] \\ d(\omega) &= \Delta \omega / [R_2^2 + \Delta \omega^2] \end{aligned}$	$a(\omega), d(\omega) =$ absorption, dispersion signals $\Delta \omega = \omega - \Omega$

NMR Formulae

NMR Relaxation

Mechanisms (isotropic tumbling, SI units)	Remarks
Intramolecular Heteronuclear Dipole-Dipole Spin / relaxed by Spin <i>S</i> $R_1^1 = E_{1S} r_{1S}^{-6} [(1/12)J_0(\omega_1 - \omega_S) + (3/2)J_1(\omega_1) + (3/4)J_2(\omega_1 + \omega_S)]$	Factor ($\mu_0/4\pi$) = 10 ⁻⁷ is required for conversion from cgs-Gauss units to MKSA (SI) units.
$\begin{split} R_2^{1} &= E_{\rm IS} r_{\rm IS}^{-6} \left[(1/6) J_0(0) + (1/24) J_0(\omega_{\rm I} - \omega_{\rm S}) + (3/4) J_1(\omega_{\rm I}) + (3/2) J_1(\omega_{\rm S}) + (3/8) J_2(\omega_{\rm I} + \omega_{\rm S}) \right] \\ \text{where } E_{\rm IS} &= (\mu_0/4\pi)^2 (\gamma_{\rm I} \gamma_{\rm S} \hbar)^2 S(S+1) \\ \text{Extreme narrowing: } R_1^{-1} &= (4/3) E_{\rm IS} r_{\rm IS}^{-6} \tau_{\rm c} (\omega \tau_{\rm c} << 1) \\ \text{For several spins } S: \text{ use } \sum r_{\rm IS}^{-6} \\ \text{NB: } T_1^{-1} &= 1/R_1^{-1} \text{ only when } S \text{ is saturated} \end{split}$	Spectral Densities for random isotropic rotation $J_q(\omega) = C_q [\tau_c/(1 + \omega^2 \tau_c^2)]$ (q = 0, 1, 2) $C_0 = 24/15; C_1 = 4/15; C_2 = 16/15$ extreme narrowing: $J_q(\omega) = C_q \tau_c$
Intramolecular Homonuclear Dipole-Dipole	
Spin I_k relaxed by Spin I_1 $R_1^{-1} = E_1 r_{kl}^{-6} (3/2) [J_1(\omega_l) + J_2(2\omega_l)]$ $R_{1\rho}^{-1} = E_1 r_{kl}^{-6} [(3/8)J_0(\omega_1) + (15/4)J_1(\omega_l) + (3/8)J_2(2\omega_l)]$ $R_2^{-1} = E_1 r_{kl}^{-6} [(3/8)J_0(0) + (15/4)J_1(\omega_l) + (3/8)J_2(2\omega_l)]$ where $E_1 = (\mu_0/4\pi)^2 \gamma_1^{-4} \hbar^2 I(I + 1)$ Extreme narrowing: $R_1^{-1} = R_2^{-1} = 2 E_1 r_{kl}^{-6} \tau_c (\omega\tau_c << 1)$ For several spins <i>I</i> : use $\sum r_{kl}^{-6}$	
Intermolecular Heteronuclear Dipole-Dipole	$E_{\rm IS} = (\mu_0/4\pi)^2 (\gamma_1 \gamma_S \hbar)^2 S(S+1)$
Spin / on mol. A relaxed by Spin S on mol. B ($\omega \tau_{\rm C} << 1$) $R_1^{-1} = 16\pi c_{\rm S} E_{\rm IS}$ / (27 $r_{\rm IS} D_{\rm trans}$) (pair distribution function = step function)	$c_{\rm S}$ = conc. of spins S $r_{\rm IS}$ = distance of closest approach $D_{\rm trans}$ = ($D_{\rm A}$ + $D_{\rm B}$) / 2
Intermolecular Homonuclear Dipole-Dipole	$E_{1} = (\mu_{0}/4\pi)^{2} \gamma_{1}^{4} \hbar^{2} / (/ + 1)$
Spin / on mol. A relaxed by Spin / on mol. B ($\omega \tau_{\rm C} << 1$) $R_1^{I} = 8\pi c_i E_i / (9 r_{II} D_{\rm trans})$	$c_{\rm I}$ = conc. of spins <i>I</i> $r_{\rm II}$ = distance of closest approach
$R_1^{-1} = (4\pi/3) c_1 E_1 (\tau/r_{II}^{-3}) [1 + (2r_{II}^{-2}/5 D_{\text{trans}} \tau)]$	τ = mol. jump time

Spherical Harmonics

Spherical harmonics up to rank 2 expressed in polar and orthogonal Cartesian coordinates

Y _{0,0}	=	$\sqrt{\frac{1}{4\pi}}$		
Y _{1,0}	=	$\sqrt{\frac{3}{4\pi}}\cos\theta$	=	$\sqrt{\frac{3}{4\pi}} \frac{z}{r}$
Y _{1,±1}	=	$\overline{+} \sqrt{\frac{3}{8\pi}} \sin \theta e^{\pm i\varphi}$	=	$\overline{+}$ $\sqrt{\frac{3}{8\pi}} \frac{x \pm i y}{r}$
Y _{2,0}	=	$\sqrt{\frac{5}{16\pi}}$ (3 cos ² θ - 1)	=	$\sqrt{\frac{5}{16\pi}} \frac{2z^2 - x^2 - y^2}{r^2}$
Y _{2,±1}	=	$\overline{+} \sqrt{\frac{15}{8\pi}} \cos \theta \sin \theta e^{\pm i \varphi}$	=	$\overline{+}$ $\sqrt{\frac{15}{8\pi}} \frac{(x\pm iy)z}{r^2}$
Y _{2,±2}	=	$\sqrt{\frac{15}{32\pi}}$ sin ² θ $e^{\pm 2i\varphi}$	=	$\sqrt{\frac{15}{32\pi}} \frac{(x\pm iy)^2}{r^2}$

NMR Formulae

Mechanisms (isotropic tumbling, SI units)	Remarks
Chemical Shift Anisotropy (CSA)	predominant relaxation mech. for non-
molecular tumbling modulates the interaction of the chem.	protonated X nuclei $E_{CSA} = \gamma^2 B_0^2 \Delta \sigma^2$
$R_1 = (2/5) E_{\text{CSA}} [\tau_c / (1 + \omega^2 \tau_c^2)]$	$\Delta \sigma = \sigma_{\perp} - \sigma_{\parallel}$ (in ppm) (assuming axial symmetry of tensor)
$R_2 = (1/90) E_{CSA} \{ 8\tau_c + [6\tau_c + (1 + \omega^2 \tau_c^2)] \}$	(
Quadrupole Relaxation ($l > 1/2$) $R_1 = R_2 = (3/40) C_1 [1 + \eta^2/3] C_{OF}^2 \tau_c (\omega \tau_c << 1)$	$C_{I} = (2I + 3) / [P(2I - 1)]$ $C_{QF} = e^{2} Q q_{zz} / \hbar = quadrupolar$ coupling in Hz; η = asymmetry param.
Spin-Rotation Interaction (SR)	
Relaxation arises from the interaction of the nuclear spin	
molecular magnetic moment modulated by molecular collisions:	
$\left(\frac{1}{T}\right) = \frac{2 \ln kT}{2 \hbar c} C_{\text{eff}}^2 \tau_{\text{J}}$	
1_{1}^{1} sr $3 n^{2}$	
h = moment of inertia of the molecule	
C_{eff} = effective spin-rotational coupling constant τ_{eff} = angular momentum correlation time	
With τ_{i} , τ_{i} = $\frac{I_{i}}{I_{i}}$, we can introduce the regrigatational	
correlation time and we obtain:	
$\left(\frac{1}{T_1}\right)_{\rm SR} = \frac{I_1^2}{9\hbar^2} C_{\rm eff}^2 \cdot \frac{1}{\tau_{\rm c}}$	
Scalar Coupling (SC)	
This relaxation mechanism can occur if the nucleus / in question is scalar coupled (with coupling constant)	
to a second spin ($S \ge \frac{1}{2}$) and the coupling is modulated	
by either chemical exchange (SC relaxation of the first kind) or the relaxation of spin $S \in \alpha$, if $S > \frac{1}{2}$	
(SC relaxation of the second kind). In this case spin	
splittings disappear and single lines are observed.	
$\left(\frac{1}{T_1}\right)_{\rm SC} = \frac{8\pi^2 J^2 S (S+1)}{3} \left[\frac{\tau_{\rm SC}}{1 + (\omega_1 - \omega_{\rm S})^2 \tau_{\rm SC}^2}\right]$	
$\left(\frac{1}{T_{c}}\right)_{cc} = \frac{4\pi^{2} J^{2} S (S+1)}{3} \left[\tau_{SC} + \frac{\tau_{SC}}{1 + (\omega_{c} - \omega_{c})^{2} \tau_{SC}^{2}}\right]$	
$\tau_{\rm SC} = \tau_{\rm e}$, if exchange time $\tau_{\rm e} \ll t_1$ of either spin (first kind) $\tau_{\rm SC} = T_{\rm S}^{\rm S}$ (the relaxation time of spin S) if $T_{\rm I}^{\rm S} \ll \tau_{\rm e}$, 1/2 πJ (second kind)	
ω_1 and ω_s are the resonance of <i>I</i> and <i>S</i> at the magnetic field in which $\left(\frac{1}{T_{1,2}}\right)_{sc}$ is measured.	

Bond Lengths of Main Group Elements

	н	В	С	Ν	0	F	AI	Si	Р	S	CI	Ga	Ge	As	Se	Br	In	Sn	Sb	Те	I
н	68	115	111	99	92	86	152	147	143	135	130	152	154	154	148	144	176	172	174	169	167
В	115	162	157	145	138	131	199	195	190	181	176	199	201	200	194	191	224	219	221	216	213
С	111	157	158	148	143	137	192	188	185	182	178	193	196	197	195	193	216	213	215	211	210
Ν	99	145	148	146	142	138	179	175	173	172	173	180	184	186	185	186	203	200	202	199	199
0	92	138	143	142	144	142	171	168	167	166	168	173	177	180	179	181	195	193	195	192	193
F	86	131	137	138	142	148	163	161	160	160	163	166	170	173	173	176	187	185	188	185	186
AI	152	199	192	179	171	163	244	236	227	217	210	239	238	237	229	225	268	261	261	253	249
Si	147	195	188	175	168	161	236	230	222	213	206	234	234	232	225	222	260	255	256	249	245
Р	143	190	185	173	167	160	227	222	218	210	204	227	229	228	222	219	251	247	249	244	241
Si	135	181	182	172	166	160	217	213	210	206	202	218	220	222	219	216	241	238	240	235	235
CI	130	176	178	173	168	163	210	206	204	202	202	211	215	217	215	216	234	231	233	230	230
																		-			
Ga	152	199	193	180	173	166	239	234	227	218	211	238	238	237	230	226	263	259	260	253	250
Ge	154	201	196	184	177	170	238	234	229	220	215	238	240	239	233	230	263	258	260	255	252
As	154	200	197	186	180	173	237	232	228	222	217	237	239	240	235	231	261	257	259	254	253
Se	148	194	195	185	179	173	229	225	222	219	215	230	233	235	232	230	254	250	252	248	248
Br	144	191	193	186	181	176	225	222	219	216	216	226	230	231	230	230	249	246	248	245	245
					4.05	4.07			054						050		 	0.05	0.05		
In	1/5	223	216	202	195	187	268	260	251	241	234	263	262	260	253	249	292	285	285	277	2/3
Sn	172	219	213	200	193	185	261	255	247	238	231	259	258	257	250	246	285	280	281	273	270
Sb	174	221	215	202	195	188	261	256	249	240	233	260	260	259	252	248	285	281	282	275	272
Те	169	216	211	199	192	185	253	249	244	235	230	253	255	254	248	245	278	273	275	270	267
I	167	213	210	199	193	186	249	245	241	235	230	250	252	253	248	245	274	270	272	267	266

Bond valences *s* may be calculated from experimental bond lengths (*d*) after Pauling's correlation equation (Pauling, The Nature of Chemical Bond) using this single bond length (d_0). The constant *b* is commonly taken to be 37 pm.

$$s = \exp\left[\left(d_0 - d\right)/b\right]$$

 $d = d_0 - (b \ln s)$

The single bond lengths are listed in pm. They are calculated from the modified Schomaker-Stevenson equation (Blom, Haaland, *J. Mol. Struc.* 128 (1985) 21-27).

Laue Classes and Point Groups

Crystal System	Laue Class	Point Group	Crystal System	Laue Class	Point Group
Triclinic	-1	1 -1	Trigonal/Hexagonal	-3	3 -3
Monoclinic	2/m	2 m 2/m		-3m1 (-31m) 6/m	<i>321 (312)</i> 3m1 (31m) -3m1 (-31m) <i>6</i>
Orthorhombic	mmm	222 mm2 mmm		6/mmm	-6 6/m <i>622</i> -62m
Tetragonal	4/m	4 -4			6/mmm
	4/mmm	4/11 422 -42m 4mm 4/mmm	Cubic	m-3 m-3m	23 m-3 432 -43m m-3m

Space Groups

Point groups and space groups without centers of inversion or mirror planes are printed in italics. Those space groups which are uniquely determinable from the systematic absences and the symmetry of the diffraction pattern are printed in bold type.

Crystal System	Point Group	SG #	Condensed Symbol	Full Symbol	Crystal System	Point Group	SG #	Condensed Symbol	Full Symbol
triclinic	1 -1	1 2	<i>P1</i> P-1				63 64	Cmcm Cmca	C 2/m 2/c 2(1)/m C 2/m 2/c 2(1)/a
monoclinic	2 m 2/m	3 4 5 6 7 8 9 10	P2 P2(1) C2 Pm Pc Cm Cc Cm Cc P2/m P2/11/m	P 1 2 1 P 1 2(1) 1 C 1 2 1 P 1 n 1 P 1 c 1 C 1 n 1 C 1 c 1 P 1 2(1)/m 1 P 1 2(1)/m 1			65 66 67 68 69 70 71 72 73 74	Cmmm Cccm Cmma Ccca Fmmm Fddd Immm Ibam Ibam	C 2/m 2/m 2/m C 2/c 2/c 2/m C 2/c 2/c 2/a F 2/m 2/m 2/a F 2/d 2/d 2/d I 2/m 2/m 2/m I 2/b 2/a 2/m I 2(1)/c 2(1)/c 2(1)/a I 2(1)/m 2(1)/c 2(1)/a
		12 13 14 15	C2/m P2/c P2(1)/c C2/c	C 1 2/m 1 P 1 2/c 1 P 1 2(1)/c 1 C 1 2/c 1	tetragonal	4	75 76 77	P4 P4(1) P4(2)	P 4 P 4(1) P 4(2)
orthorhombic	222	16 17 18 19 20 21 22 23	P222 P222(1) P2(1)2(1)2 P2(1)2(1)2(1) C222(1) C222 F222 F222 I222	P 2 2 2 P 2 2 2(1) P 2(1)2(1) 2 P 2(1) 2(1) 2(1) C 2 2 2(1) C 2 2 2 F 2 2 2 I 2 2 2		-4 4/m	78 79 80 81 82 83 84 85 86	P4(3) /4 I4(1) P-4 I-4 P4/m P4(2)/m P4(2)/m P4(2)/n	P 4(3) 1 4 I 4(1) P -4 I -4 P 4/m P 4 (2)/m P 4/2)/n
	mm2	24 25 26 27 28 29 30	12(1)2(1)2(1) Pmm2 Pmc2(1) Pcc2 Pma2 Pca2(1) Pnc2 Pmc2 Pmc2(1)	<i>I</i> 2(1) 2(1) 2(1) P m m 2 P m c 2(1) P c c 2 P m a 2 P c a 2(1) P n c 2 B m n 2 (1)		422	87 88 89 90 91 92 93	14/m 14(1)/a P422 P42(1)2 P4(1)22 P4(1)2(1)2 P4(2)22 P4(2)22 P4(2)22	1 4/m 1 4/m 1 4/1)/a P 4 2 2 P 4
	mmm	312 333 34 356 37 38 39 40 41 42 43 44 45 46 47 48 50 512 53 54 55 56 57 58 59 60 61 62	Prini2(1) Pha2 Pha2 Pha2(1) Pnn2 Cmc2(1) Ccc2 Amm2 Amm2 Amm2 Ama2 Ama2 Amm2 Fdd2 Imm2 Fdd2 Imm2 Iba2 Imm2 Iba2 Imm2 Pmm4 Pnnn Pccm Pban Pmna Pnna Pmna Pcca Pbam Pcca Pbam Pbcn Pbcca Phoc	P in 12(1) P ba2 P ha2(1) P nn2 C m m2 C m c2(1) C cc2 A m m2 A ba2 F m m2 A ba2 F m m2 F d d2 I m m2 I m m2 I ba2 I m m2 P 2/m 2/m 2/m P 2/n 2/n 2/m P 2/c 2/m P 2/c 2/m P 2/n 2(1)/m 2/a P 2(1)/c 2(1)/a P 2(1)/m 2/m P 2(1)/m 2/m P 2(1)/m 2/m P 2(1)/m 2/m P 2(1)/m 2(1)/m P 2(1)/m 2(1)/m P 2(1)/n 2(1)/m P 2(1)/a 2(1)/a P 2(1)/a 2(1)/a P 2(1)/a 2(1)/a		4mm -42m	94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 200 121 122 123 124 125	P4(3)22 P4(3)22 P4(3)2(1)2 I422 I4(1)22 P4mm P4bm P4(2)cm P4(2)cm P4(2)mc P4(2)mc P4(2)mc P4(2)mc P4(2)bc I4mm I4(1)md I4(1)cd P4(2)bc I4mm I4(1)md I4(1)cd P-42c P-42c P-42c P-42c P-42c P-42c P-4b2 P-4n2 I-4m2 I-4c2 I-4m2	P 4(2) 2(1) 2 P 4(3) 2(1) 2 I 4 2 2 I 4(1) 2 2 P 4 mm P 4 b m P 4 (2) c m P 4(2) c m P 4(2) c m P 4(2) n m P 4(2) m c P 4(2) m c P 4(2) m c P 4(2) b c I 4 m m I 4(1) m d I 4(1) m d I 4(1) c d P -4 2 m P -4 2 c P -4 2 (1) c P -4 m 2 P -4 n 2 P

Crystal System	Point Group	SG #	Condensed Symbol	Full Symbol	Crystal System	Point Group	SG #	Condensed Symbol	Full Symbol
		126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	P4/nnc P4/mbm P4/mmc P4/nmm P4/ncc P4/2)/mmc P4(2)/nbc P4(2)/nbc P4(2)/mbc P4(2)/mbc P4(2)/nmm P4(2)/nmm P4(2)/nmm P4(2)/nmm I4/mmm I4/mad I4(1)/amd I4(1)/acd	P 4/n 2/n 2/c P 4/m 2(1)/b 2/m P 4/m 2(1)/n 2/c P 4/n 2(1)/n 2/c P 4/n 2(1)/m 2/m P 4/n 2(1)/c 2/c P 4(2)/n 2/b 2/c P 4(2)/n 2/c 2/m P 4(2)/n 2(1)/b 2/c P 4(2)/n 2(1)/b 2/c P 4(2)/n 2(1)/c 2/m P 4(2)/n 2(1)/c 2/m I 4(m 2/m 2/m I 4(1)/a 2/m 2/d I 4(1)/a 2/c 2/d	cubic	23 m-3 432	195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211	P23 F23 I23 P2(1)3 I2(1)3 Pm-3 Pm-3 Fm-3 Fm-3 Fm-3 Im-3 Pa-3 Ia-3 P422 P4(2)32 F432 F432 F4(1)32 I432 P4(1)32	P 2 3 F 2 3 I 2 3 P 2(1) 3 P 2(1) 3 P 2/m -3 P 2/m -3 F 2/m -3 F 2/m -3 P 2(1)/a -3 I 2(1)/a -3 P 4 3 2 P 4 3 2 F 4 3 2 F 4 (1) 3 2 I 4 3 2 P 4 (2) 3 2
trigonal	3 -3 <i>32</i> 3m	143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162	P3 P3(1) P3(2) R3 P-3 R-3 P312 P321 P3(1)12 P3(1)12 P3(2)21 P3(2)21 P3(3)21 P31m P3c1 P31m P33m P33m P33m P31m P34m P34m P34m	P3 P3(1) P3(2) R3 P-3 R-3 P312 P321 P3(1)12 P3(1)12 P3(2)12 P3(2)21 R32 P3(2)21 P3(2)22		-43m m-3m	212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230	P4(3)32 P4(1)32 I4(1)32 P-43m F-43m F-43m F-43n F-43c I-43d Pm-3m Pn-3m Pm-3n Pm-3m Fm-3c Fd-3m Fd-3c Im-3m Ia-3d	P 4(3) 32 P 4(1) 32 I 4(1) 32 P -4 3 m F -4 3 m F -4 3 m F -4 3 c I -4 3 d P 4(m -3 2/m P 4(n -3 2/m P 4(n -3 2/m F 4(1)/d -3 2/m F 4(1)/d -3 2/m F 4(1)/d -3 2/m I 4(1)/a -3 2/d
		163 164 165 166 167	P-31c P-3m1 P-3c1 R-3m R-3c	P -3 1 2/c P -3 2/m 1 P -3 2/c 1 R -3 2/m R -3 2/c					
hexagonal	6 -6 6/m 622 6mm -6m 6/mmm	168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 184 185 186 187 190 191 192 193 194	P6 P6(1) P6(5) P6(2) P6(3) P-6 P6/m P622 P613/m P6522 P6122 P6522 P6122 P63/22 P63/22 P63/mc P-62c P6/mmm P63/mcm P63/mcm P63/mcm	P 6 P 6(1) P 6(5) P 6(2) P 6(4) P 6(3) P -6 P 6(3) P -6 P 6(1) 2 2 P 6(1) 2 2 P 6(1) 2 2 P 6(1) 2 2 P 6(2) 2 2 P 6(3) 2 2 P 6(3) 2 2 P 6(3) 2 2 P 6(3) m c P -6 c 2 P					

Periodic Table of Elements for X-ray Applications

1 1.01			Atomi	c numl	ber		Atom	ic wei	ght				
Hydrogen 0.0007				25		70							
3 6.94	4 9.01			-35		/9	0.90						
Lithium 0.534	Beryllium 1.85				Б	r			poitu	lalon	a 3)		
	Kα1.2 0.108 74.34			Bro	min	• 3.	12		ensity	(g/cl	(1°)		
11 22.99	12 24.31	Spec	tral line —	- Κα 1.2	11.9	29	.96						
Sodium 0.97	Magnesium 1.74							Br	agg a	ngle	(2 0)		
Kα 1.2 1.0 25.00 Kα 1.2 1.0 55.08 Kβ1 1.1 24.40	Kα 1.21.320.70Kα 1.21.3136.72Kβ 11.320.00			En	ergy (keV)							
19 39.10	20 40.08	21 44.96	22 47.87	23	50.94	24	52.00	25	54.94	26	55.85	27	58.93
K	Ca	Sc	Ti			C	r	M	n	F	e	C	0
Potassium 0.86 Kα 1.2 3.3 136.67 Kα 1.2 3.2 E0.60	Calcium 1.54 Kα 1.2 3.7 113.07 Kα 1.2 3.7 45.20	Scandium 2.99 Kα12 4.1 97.68 Kα12 4.1 40.59	Titanium 4.54 Kα12 4.5 86.12 Kα12 4.5 26.67	Vanadium Kα1.2 5.0	6.11 76.92	Chromium Kα 1.2 5.4	7.15 69.34	Manganes Kα1.2 5.9	e 7.44 62.96	Iron Kα 1.2 6.4	7.87 57.51	Cobalt Kα 1.2 6.9	8.56 52.79
Кр1 3.6 118.10	Kα 1.2 3.7 43.20 Kβ1 4.0 100.21 Lα1 0.3 82.68	Kg1 4.5 87.28 Lα1 0.4 69.50	Kβ1 4.9 77.25 Lα1 0.5 59.83	Kμ 1.2 5.0 Kβ1 5.4 Lα 1 0.5	69.12 52.35	Kμ 1.2 5.4 Kβ 1 6.0 Lα 1 0.6	62.35 46.33	Kμ 1.2 5.5 Kμ 1 6.5 Lα 1 0.6	56.63 41.45	Kμ 1.2 0.3 Kβ 1 Z1 Lα 1 0.3	51.72 37.30	Kα 1.2 6.3 Kβ 1 7.7 Lα 1 0.8	47.46 33.77
	Lβ1 0.3 81.61	Lβ1 0.4 68.67	Lβ1 0.5 58.97	Lβ1 0.5	51.49	Lβ1 0.6	45.49	Lβ1 0.6	40.65	Lβ1 0 .3	36.60	Lβ1 0.8	33.12
37 85.47	38 87.62	39 88.91	40 91.22	41	92.91	42	95.94	43	(98)	44	101.07	45	102.91
Rb	Sr	Y	Zr	N	b	M	0	T	C	R	lu	R	h
Rubidium 1.53 Kα 1.2 13.4 26.61	Strontium 2.64 Kα 1.2 14.1 25.15	Yttrium 4.47 Kα1.2 14.9 23.79	Zirconium 6.51 Kα 1.2 15.8 22.50	Niobium Kα 1.2 16.6	8.57 21.35	Molybdem Kα 1.2 17.5	um 10.22 20.28	Technetium Kα1.2 18.4	n 11.5 19.29	Rutheniu Ka 1.2 19.	12.37 3 18.37	Rhodium Kα 1.2 20.2	12.41 17.51
Kα 1.2 13.4 37.99 Kβ1 15.0 23.75 In1 17 112.69	Kα 1.2 14.1 35.85 Kβ1 15.8 22.42 Image: state	Kα 1.2 14.9 33.90 Kβ1 16.7 21.19 I=1 10 95.07	Kα 1.2 15.8 32.04 Kβ1 17.7 20.07 I=1 20 97.06	Kα 1.2 16.6 Kβ1 18.6 Image: training trainin	30.38 19.03	Kα 1.2 17.5 Kβ 1 19.6 L = 1 2.2	28.84 18.06 76.41	Kα 1.2 18.4 Kβ1 20.6	27.42	Kα 1.2 19. Kβ1 21.	³ 26.10 7 16.34	Kα 1.2 20.2 Kβ 1 22.7	24.87 15.57
Lβ1 1.8 108.08 Kα12 18.4 62.00	Lβ1 1.9 98.53 Kα12 141 58.31	Lβ1 2.0 90.57 Ko12 14.9 54.95	Lβ1 2.1 83.76 Kα12 15.8 51.75	Lβ1 2.3 Kα1.2 16.6	77.84	Lβ1 2.4 Ku 1.2 175	72.63	Lβ1 2.5 Ka12 18.4	67.98 44.03	Lβ1 2.3 Ka12 19	63.82 41.84	Lβ1 2.8 Kα12 20.2	60.05 39.82
Kp1 15.0 54.79 55 132.91	601 15.8 51.54	Kβ1 167 48.57 57 138.91	K01 177 45.28	KØ1 18.6	43.39	KØ1 19.6 74	41.11	κβ1 20.6 75	39.01	KØ1 21.	7 37.07	<pre>(01 22.7</pre>	35.51
Cs	Ba	La	Hf	T	3	V	V	R	e	Ċ)s		102.22
Caesium 1.87 Kα 1 30.9 16.16	Barium 3.59 Kα 1 32.1 15.54	Lanthanium 6.15 Kα1 33.4 14.96	Hafnium 13.31 Kα1 55.8 8.95	Tantalum Kα1 57.6	16.65 8.68	Tungsten	19.25	Rhenium	21.02	Osmium	22.61	Iridium	22.65
Lα1 4.3 91.80 Lβ1 4.6 83.58	Lα1 4.5 87.16 Lβ1 4.8 79.24	Lα1 4.7 82.90 Lβ1 5.0 75.27	Lα1 7.9 45.87 Lβ1 9.0 39.90	Lα1 8.2 Lβ1 9.3	44.41 38.47	Lα1 8.4 Lβ1 9.7	43.01 37.12	Lα1 8.7 Lβ1 10.0	41.68 35.82	Lα1 8.1 Lβ1 10.	40.42 4 34.59	Lα1 9.2 Lβ1 10.7	39.21 33.42
			Mα1 1.6 119.17 Lα1 79 121.27	Mα1 1.7 Lα1 8.1	112.11 115.36 94.92	Mα 1 1.8 Lα 1 8.4	106.03 110.13 90.75	Mα1 1.8 Lα1 8.7	100.66 105.43	Mα1 1.9 Lα1 8.9	95.64	Mα1 2.0 Lα1 9.2	91.50 97.24 80.01
87 (223)	88 (226)	89 (227)	20 20 2040	ich an	04.02	-11	00.70		00.30	ich. 10	00.00	-p+ 10/	00.01
Fr	Ra	Ac		Lant	hani	des, /	Actin	ides					
Francium 1.87 Lα1 12.0 29.65 LB1 14.8 24.06	Radium 5.5 Lα1 12.3 28.89 Lα1 15.2 23.31	Actinium 10.07 Lα1 12.7 28.17 Lα1 15.7 22.59		58	140.12	59	140.91	60	144.24	61	(145)	62	150.36
24.00	20.01			C	e	P	r	N	d	P	m	S	m
Analyser crystal Nan XS-B La/E	ne, material ₄C multilayer	2d-value (nm) 19.0		Cerium Lα 1 4.8	6.77 128.13	Praseodym	nium 6.77 119.69	Neodymiu Lα1 5.2	m 7.01	Prometh Lα1 5.4	ium 7.26 106.48	Samarium Lα1 5.6	7.52 101.12
XS-C Ti0 ₂ XS-N Ni/E	C multilayer N multilayer	12.0		Lα 1 4.8 Lβ 1 5.3	79.00	Lα1 5.0 Lβ1 5.5	75.41 68.23	Lα1 5.2 Lβ1 5.7	72.12 65.10	Lα1 5.4 Lβ1 6.0	69.03 62.19	Lα1 5.6 Lβ1 6.2	66.22 59.49
XS-55 W/S	i multilayer	5.5											
TIAP Tha	cmc structure	2.75		90	232.04	91	231.04	92	238.03	93	(237)	94	(244)

ADP

PET

InSb

LiF (200)

LiF (220)

LiF (420)

Ge Ammonium dihydrogen phosphate

Pentaerythrite

Germanium

Lithium fluoride

Lithium fluoride

Lithium fluoride

Indium antimonide

1.064

0.874

0.748

0.653

0.403

0.285

0.180

Our Portfolio for Elemental Analysis

hydrogen									
│									
lithium	beryllium								
	Be								
sodium	magnesium 12								
Na	Mg								
potassium 19	calcium		scandium 21	titanium 22	vanadium 22	chromium	manganese 25	iron 26	cobalt 27
K	Ca •		Sc :	Ti 🚦		Čr •	Mn.	Fe	Co
rubidium 27	strontium		yttrium 20	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium
Rb	Sr 🚦		Y S	Žr 🚦	Nb	Mo	² Tc	Ru 🚦	Rh
caesium	barium 56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium
Cs •	Ba 🛔	*	Lu	Hf •	Ta 🚦	Ŵ.	Re	Os	lr 🚦
francium 87	radium 88	89-102	lawrencium	rutherfordium	dubnium 105	seaborgium	bohrium 107	hassium 108	meitnerium 109
Fr •	Ra•	**	Lr•	Rf	Db	Sg	Bh	Hs	Mt

lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium
57	58	59	60	61	62	63
La	Ce	Pr	Nd	Pm	Sm	Eu
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium
89	90	91	92	93	94	95
Ac •	Th	Pa •	U	Np•	Pu •	Am

- Spark Spectrometers
- CS/ONH-Analyzers

								helium 2
								He
			boron 5	carbon	nitrogen 7 ●	oxygen 8	fluorine 9	neon 10
			B •	Č •	Ň •	Ŏ •	Ĕ	Ne
			aluminium 13	silicon 14	phosphorus 15	sulfur	chlorine 17	argon 18
			ĂÎ •	Si 🖁	P •	S	ČI •	År
nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
Ni 🚦	Cu 🕯	Žn	Ga	Ge	As	Se	Br 🖠	Kr
palladium 46	silver 47	cadmium	indium 19	tin 50	antimony 51	tellurium 52	iodine 53	xenon
Pd	Åg	Cd	ln 🚦	Sn	Sb 🚦	Te		Xe
platinum 78	gold 79	mercury	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon
Pt	Au 🖁	Hg	TI 🚦	Pb	Bi 🚦	Po :	Ăt :	Rn
ununnilium 110	unununium 111	ununbium 112		ununquadium 11 4				
Uun	Uuu	Uub		Uuq				
	L		 	•]		I	
gadolinium 64	terbium 65	dysprosium 66	holmium	erbium 68	thulium 69	ytterbium 70		
Gd	Tb 🚦	Dy	Ho	🛛 Er 🚦	Tm	Yb		
curium	berkelium 97	californium	einsteinium	fermium	mendelevium	nobelium 102		
Cm	Bk	Cf	Es	Fm	Md	No		

- Handheld XRF-Analyzers
 - µ-XRF Spectrometers

Spectral Lines used for OES

Element	Lambda Air [nm]	Lambda Vacuum [nm]	Type I Atom II ION
Ag	230,9644	231,0354	
Ag	235,7920	235,8641	II
Ag	241,3184	241,3918	II
Ag	328,0683	328,1628	
Ag	338,2890	338,3861	
Al	256,7987	256,8757	
Al	266,0386	266,1178	I
Al	305,9933	306,0823	
Al	308,2153	308,3048	
Al	394,4006	394,5122	
Al	396,1520	396,2641	I
As	188,9789	189,0420	
As	234,9840	235,0559	
As	289,8710	289,9560	
Au	242,7950	242,8687	
Au	264,1480	264,2267	
Au	267,5950	267,6745	
В	182,5786	182,6410	I
В	208,9590	209,0255	
В	249,6770	249,7523	
В	345,1410	345,2399	
Ba	455,4042	455,5319	11
Be	234,8610	234,9329	
Be	298,6090	298,6910	
Be	301,9330	302,0210	
Be	313,0420	313,1327	II
Bi	306,7720	306,8612	I
Bi	351,0850	351,1854	1
С	133,5207	133,5708	II
С	165,7478	165,8122	
С	193,0268	193,0905	1
Ca	393,3664	393,4778	
Ca	396,8470	396,9593	II
Ca	422,6730	422,7920	
Ca	443,4960	443,6205	1
Cd	214,4410	214,5085	
Cd	228,8022	228,8728	
Cd	308,0827	308,1722	II
Cd	346,6200	346,7193	1
Cd	361,0508	361,1538	1
Cd	467,8149	467,9458	
Ce	399,9240	400,0371	11
Ce	401,2390	401,3524	II
Ce	413,7646	413,8813	
Ce	418,6600	418,7780	
Ce	446,0210	446,1462	
Со	228,6156	228,6861	II
Со	258,0320	258,1093	II
Со	345,3505	345,4494	
Cr	265,8590	265,9381	II
Cr	267,7160	267,7956	

Element	Lambda Air [nm]	Lambda Vacuum [nm]	Type I Atom II ION
Cr	286,2570	286,3411	
Cr	298,9190	299,0062	
Cr	425,4332	425,5529	
Cu	200.0348	200.0996	
Cu	224,2618	224,3314	
Cu	296,1160	296,2025	
Cu	324,7540	324,8477	
Cu	327.3960	327,4904	
Cu	453,0819	453,2089	
Cu	510,5540	510.6963	
Fe	187.6710	187,7340	
Fe	249.3260	249.4012	11
Fe	259 9400	260 0177	11
Fe	271 4410	271 5215	11
Fe	273.0730	273,1538	
Fe	281 3287	281 4116	1
Fe	360 8859	360,9888	
Fe	371 9935	372 0993	
Fe	238 2040	238 2767	
Ga	417 2040	417 3216	1
Ge	303 9067	303 9951	
H	121,5144	121,5668	
Hf	277.3360	277.4179	
Ha	253.6520	253.7282	
Hg	435,8350	435,9575	
Hg	579,0660	579,2266	I
In	260,1760	260,2538	I
In	293,2630	293,3488	I
In	451,1323	451,2588	l
lr	380,0120	380,1199	l
К	766,4900	766,7010	I
La	412,3230	412,4393	II
La	433,3753	433,4972	II
Li	497,1750	497,3137	I
Li	610,3650	610,5340	I
Mg	279,0790	279,1613	II
Mg	279,5530	279,6354	II
Mg	285,2130	285,2968	
Mg	291,5450	291,6304	I
Mg	382,9350	383,0437	I
Mg	383,8290	383,9379	1
Mg	448,1130	448,2387	II
Mg	517,2699	517,4140	
Mn	257,6100	257,6872	
Mn	263,8170	263,8956	II
Mn	293,3060	293,3918	II
Mn	346,0330	346,1321	
Mn	403,3073	403,4213	
Mn	403,4490	403,5630	
Mo	202,0300	202,0952	11
Mo	277,5400	277,6219	

_	Lambda	Lambda	Туре
Element	Air [nm]	Vacuum [nm]	I Atom II ION
Mo	281,6150	281,6979	
Mo	290,9120	290,9972	
Mo	308,7620	308,8517	
Mo	386,4110	386,5206	
N	149,2192	149,2625	
N	174,4631	174,5252	
Na	588,9950	589,1583	
Na	589,5920	589,7558	
Nb	210,9420	211,0089	
Nb	313,0790	313,1698	
Nb	319,4980	319,5904	
Nb	410,0400	410,1557	
Nb	410,0920	410,2078	
Nb	416,4660	416,5834	
Nd	410,9460	411,0620	
Ni	218,5500	218,6184	
Ni	225,3850	225,4548	
Ni	231,6040	231,6752	
Ni	243,7890	243,8629	
Ni	341,4760	341,5740	
Ni	351,5054	351,6059	
Ni	352,4540	352,5548	
Ni	361,9392	362,0424	
Ni	376,9455	377,0526	
Ni	471,4420	471,5739	
Ni	490,4413	490,5783	
0	130,1661	130,2168	
P	178,2249	178,2870	
P	253,5650	253,6412	
P	255,3262	255,4028	
Pb	220,3505	220,4193	
Pb	283,3052	283,3885	
Pb	322,0538	322,1468	I
Pb	405,7820	405,8966	
Pb	416,8033	416,9208	
Pd	324,2700	324,3635	I
Pd	340,4580	340,5557	
Pd	360,9550	361,0580	I
Pr	418,9480	419,0661	II
Pt	265,9450	266,0241	
Pt	270,5890	270,6692	
Pt	299,7970	299,8844	
Rh	343,4890	343,5875	
Ru	349,8940	349,9941	I
S	180,6688	180,7311	
Sb	206,8341	206,9001	
Sb	217,5810	217,6492	I
Sb	231,1470	231,2181	
Sb	259,8050	259,8827	
Sb	276,9950	277,0768	
Sb	287,7920	287.8764	

	Lambda	Lambda	Туре
Element	Air	Vacuum	
Sh	326 7510	326 8452	
Sc	361 3840	361 4871	
Se Se	196.0259	196,0901	i
Si	212 4150	212 4821	1
Si	251 6123	251 6880	
Si	288 1595	288 2440	
Si	390 5523	390 6629	I
Sm	443 4320	443 5565	i
Sn	189 9278	189 9910	
Sn	266 1248	266 2040	
Sn	276 1780	276 2596	
Sn	283,9990	284 0825	
Sn	317 5050	317 5969	
Sr	460 7330	460 8621	
Sr	487 2490	487,3851	
Ta	240.0630	240 1361	
Ta	331 1160	331 2113	1
Te	169 9536	170,0000	1
Te	185 6573	185 7200	1
Te	214 2750	214 3425	1
То	238 5780	238 6508	I
Th	401 9129	402 0265	
Ti	311 2050	311 2953	
Ti	32/ 1990	32/ 2926	
Ti	337 2800	337 3769	
Ті	365 3500	365 4541	1
Ti	367 1670	367 2716	1
Ti	368 5200	368 62/19	I
Ті	498 1730	498 3120	1
ті	351 9240	352 0246	
ті	377 5720	377 6792	1
V	214 0087	214 0761	
v	288 2500	288 3345	
V	311 0710	311 1612	
V	369 2225	369 3276	
v	437,9240	438,0471	
Ŵ	209,8600	209,9266	
Ŵ	220,4480	220,5168	
Ŵ	400,8750	400,9883	
Y	371,0300	371,1356	
Y	464.3700	464,5000	
Zn	206,1910	206,2569	
Zn	213,8560	213,9234	
Zn	250,2001	250,2755	
Zn	334,5020	334,5982	
Zn	481,0530	481,1875	
Zr	332,6800	332,7757	
Zr	343,8230	343,9216	
Zr	349,6210	349,7210	
Zr	357,2470	357,3490	

Conversion from the 2 \varTheta Bragg angle using Ag, Mo and Cu radiation to

resolution and vice versa.

Calculations based on Bragg's Law: 2 $d \sin \Theta = n \lambda$

For λ , the mean of α_1 and α_2 (2/3 α_1 + 1/3 α_2) was taken, resulting in following wavelengths:

Ag	0.56083	Å

- Mo 0.71073 Å
- Cu 1.54178 Å

2 <i>⊙</i> _{Ag} (°)	2 <i>⊙</i> ™₀ (°)	2 <i>⊙</i> _{Cu} (°)	d (Å)	sin Θ/λ	2 <i>⊙</i> _{Ag} (°)	2 <i>⊙</i> _{Mo} (°)	d (Å)	sin Θ/λ
3.21	4.07	8.84	10.000	0.050	50.00	64.77	0.664	0.754
3.63	4.61	10.00	8.845	0.057	53.32	69.30	0.625	0.800
6.43	8.15	17.74	5.000	0.100	53.82	70.00	0.620	0.807
7.24	9.18	20.00	4.439	0.113	60.00	78.64	0.561	0.892
7.89	10.00	21.80	4.077	0.123	60.96	80.00	0.553	0.904
10.00	12.68	27.73	3.217	0.155	67.83	90.00	0.503	0.995
10.73	13.61	29.78	3.000	0.167	68.23	90.59	0.500	1.000
10.80	13.70	30.00	2.979	0.168	70.00	93.25	0.489	1.023
12.88	16.34	35.92	2.500	0.200	74.38	100.00	0.464	1.078
14.29	18.14	40.00	2.254	0.222	80.00	109.09	0.436	1.146
15.75	20.00	44.26	2.046	0.244	80.54	110.00	0.434	1.153
16.12	20.47	45.34	2.000	0.250	84.60	117.05	0.417	1.200
17.69	22.47	50.00	1.824	0.274	86.22	120.00	0.410	1.219
19.37	24.62	55.10	1.667	0.300	89.02	125.35	0.400	1.250
20.00	25.43	57.03	1.615	0.310	90.00	127.30	0.397	1.261
20.96	26.65	60.00	1.542	0.324	91.31	130.00	0.392	1.275
21.55	27.41	61.85	1.500	0.333	95.72	140.00	0.378	1.322
23.57	30.00	68.31	1.373	0.364	99.32	150.00	0.368	1.359
24.09	30.66	70.00	1.344	0.372	100.00	152.24	0.366	1.366
25.93	33.03	76.15	1.250	0.400	101.99	160.00	0.361	1.386
27.04	34.47	80.00	1.199	0.417	103.47	168.56	0.357	1.400
29.81	38.05	90.00	1.090	0.459	103.64	170.00	0.357	1.402
30.00	38.29	90.72	1.083	0.461	104.20	180.00	0.355	1.407
31.31	40.00	95.80	1.039	0.481	110.00		0.342	1.461
32.36	41.36	100.00	1.006	0.497	120.00		0.324	1.544
32.57	41.63	100.87	1.000	0.500	127.62		0.313	1.600
34.67	44.37	110.00	0.941	0.531	130.00		0.309	1.616
36.72	47.06	120.00	0.890	0.562	138.36		0.300	1.667
38.50	49.39	130.00	0.851	0.588	140.00		0.298	1.676
38.96	50.00	132.92	0.841	0.595	150.00		0.290	1.722
39.33	50.48	135.36	0.833	0.600	160.00		0.285	1.756
39.97	51.34	140.00	0.820	0.609	170.00		0.281	1.776
40.00	51.37	140.19	0.820	0.610	180.00		0.280	1.783
41.04	52.75	149.00	0.800	0.625				
41.14	52.88	150.00	0.798	0.626				
41.98	54.00	160.00	0.783	0.639				
42.49	54.67	170.00	0.774	0.646				
42.66	54.90	180.00	0.771	0.649				
46.23	59.67		0.714	0.700				
46.48	60.00		0.711	0.704				
47.23	61.02		0.700	0.714				

EPR/ENDOR Frequency Table

Z	A	E	Spin I	Nat. Abund. [%] (Half-life)	calc. X-Band ENDOR Freq. [MHz at 0.350 T]	$g = \mu / (\mathbf{I} \mu_{N})$	g μ _Ν / g _e μ _Β	Quadrupole Moment Q [fm ² =
0	1		1/0		(free nucleus)	2.0200054	1 040660 F 02	0.01 barnj
1	1		1/2	99 9885	1/ 9021186	5 58569468	_1 519270 E_03	
1	2	H	1	0.0115	2.28756617	0.857438228	-2.332173 E-04	0.286
	3	Н	1/2	(12.32 y)	15.8951945	5.95792488	-1.620514 E-03	
2	3	He	1/2	0.000134	11.3519357	-4.25499544	1.157329 E-03	
3	6 7	Li Li	1 3/2	7.59 92.41	2.193146 5.791961	0.8220473 2.1709750	-2.235912 E-04 -5.904902 E-04	-0.0808 -4.01
4	9	Be	3/2	100.0	2.09429	-0.784993	2.13513 E-04	5.288
5	10	В	3	19.9	1.601318	0.600214927	-1.632543 E-04	8.459
6	12	B	3/2	80.1	4.782045	1.792433	-4.875293 E-04	4.059
7	14	N	1	99.636	1 077197	0 40376100	-1 098202 E-04	2 044
,	15	N	1/2	0.364	1.511043	-0.56637768	1.540508 E-04	2.011
8	17	0	5/2	0.038	2.02098	-0.757516	2.06039 E-04	-2.558
9	19	F	1/2	100.0	14.01648	5.253736	-1.428980 E-03	
10	21	Ne	3/2	0.27	1.177076	-0.441198	1.20003 E-04	10.155
11	22	Na	3/2	100.0	3.944334	0.5820 1.4784371	-1.583 E-04 -4.021247 E-04	10.4
12	25	Mg	5/2	10.00	0.91290	-0.34218	9.3071 E–05	19.94
13	27	AI	5/2	100.0	3.886082	1.4566028	-3.961859 E-04	14.66
14	29	Si	1/2	4.685	2.96293	-1.11058	3.02070 E-04	
15	31	P	1/2	100.0	6.03801	2.26320	-6.15575 E-04	0.70
16	33	S	3/2	0.75	1.145104	0.429214	-1.16/43 E-04	-0.78
17	36	CI	2	(3.01 E5 y)	1.71476	0.642735	-1.748195 E-04	-1.80
	37	CI	3/2	24.24	1.216786	0.4560824	-1.240513 E-04	-6.435
18	39	Ar	7/2	(269 y)	1.21	-0.454	1.234 E-04	
19	39 40	K K	3/2	93.258	0.696337	0.2610049	-7.099152 E-05 8 82686 E-05	5.85 -7.3
	41	ĸ	3/2	6.730	0.382209	0.143261827	-3.896623 E-05	7.11
20	41 43	Ca Ca	7/2	(1.02 E5 y)	1.215637	-0.4556517	1.239341 E-04	-6.7 -4.08
21	45	Sc	7/2	100.0	3.625677	1.358996	-3.696376 E-04	-22.0
22	47	Ti	5/2	7.44	0.84144	-0.31539	8.5784 E-05	30.2
	49	Ti	7/2	5.41	0.84166	-0.315477	8.58076 E-05	24.7
23	50 51	V	6 7/2	99.750	3.924649	0.5576148 1.4710588	-1.516674 E-04 -4.001178 E-04	-5.2
24	53	Cr	3/2	9.501	0.844019	-0.31636	8.6048 E–05	–15 or –2.8
25	53	Mn	7/2	(3.74 E6 y)	3.8296	1.4354	-3.9043 E-04	22
26	55	IVIN	5/2	2 1 1 9	3.701688	1.38/48/16	-3.//3869 E-04	33
20	59	Co	7/2	100.0	3.527	1.322	-3.596 E-04	42
	60	Co	5	(1925 d)	2.027	0.7598	-2.067 E-04	44
28	61	Ni	3/2	1.1399	1.33399	-0.50001	1.3600 E-04	16.2
29	63 65	Cu	3/2	69.15	3.961568	1.484897 1.5877	-4.038817 E-04 -4.318525 E-04	-22.0 -20.4
30	67	Zn	5/2	4.102	0.933986	0.35008196	-9.521988 E-05	15
31	69	Ga	3/2	60.108	3.58672	1.34439	-3.6567 E-04	17.1
	71	Ga	3/2	39.892	4.55726	1.70818	-4.6461 E-04	10.7
32	73	Ge	9/2	7.76	0.521409	-0.1954373	5.315759 E-05	-19.6
33	75	As	3/2	7.62	2.56025	0.959647	-2.01017 E-04	31.4
54	79	Se	7/2	(2.95 E5 y)	0.7760	-0.2909	7.911 E-05	80
35	79	Br	3/2	50.69	3.746454	1.404267	-3.819508 E-04	30.5
36	83	Kr	9/2	11 500	0.575479	-0 215704	5 86701 E-04	25.4
	85	Kr	9/2	(10.756 y)	0.596	-0.2233	6.075 E-05	43.3
37	85 87	Rb Bb	5/2	72.17	1.444247 4.894398	0.5413406	-1.472409 E-04	27.6 13.35
38	87	Sr	9/2	7.00	0.648363	-0.243023	6.61005 E-05	33.5
39	89	Y	1/2	100.0	0.733223	-0.2748308	7.475208 E-05	

1 49

EPR/ENDOR Frequency Table

Z	Α	E	Spin I	Nat. Abund. [%] (Half-life)	calc. X-Band ENDOR Freq. [MHz at 0.350 T] (free nucleus)	$g = \mu / (\mathbf{I} \mu_{N})$	g μ _Ν / g₀ μ _Β	Quadrupole Moment <i>Q</i> [fm ² = 0.01 barn]
40	91	Zr	5/2	11.22	1.39118	-0.521448	1.41830 E-04	-17.6
41	93	Nb	9/2	100.0	3.6583	1.37122	-3.72963 E-04	-32
42	95 97	Mo Mo	5/2 5/2	15.90 9.56	0.9756 0.9962	-0.3657 -0.3734	9.9462 E–05 1.016 E–04	-2.2 25.5
43	99	Тс	9/2	(2.1 E5 y)	3.3703	1.2633	-3.4360 E-04	-12.9
44	99 101	Ru Ru	5/2 5/2	12.76 17.06	0.684 0.764	-0.256 -0.286	6.97 E–05 7.79 E–05	7.9 45.7
45	103 105	Rh Rh	1/2 7/2	100.0 (35.36 h)	0.47169 3.39	-0.17680 1.27	4.8088 E-05 -3.46 E-04	
46	105	Pd	5/2	22.33	0.685	-0.257	6.98 E-05	66
47	107 109	Ag Ag	1/2 1/2	51.839 48.161	0.606574 0.69734	-0.2273593 -0.26138	6.184016 E–05 7.1094 E–05	
48	111 113	Cd Cd	1/2 1/2	12.80 12.22	3.174203 3.320483	-1.1897722 -1.2446018	3.236098 E-04 3.385231 E-04	
49	113 115	ln In	9/2 9/2	4.29 95.71	3.2779 3.2850	1.2286 1.2313	-3.3418 E-04 -3.3490 E-04	79.9 81
50	115 117	Sn Sn	1/2 1/2	0.34 7.68	4.9027 5.34136	-1.8377 -2.00208	4.9983 E-04 5.44552 E-04	
E 1	119	Sn	1/2	8.59	5.5881	-2.09456	5.69706 E-04	26 az 45
51	121 123 125	Sb Sb Sb	5/2 7/2 7/2	42.79 (2.75856 y)	1.9436 2.00	0.72851	-3.05929 E-04 -1.9815 E-04 -2.04 E-04	-30 01 -45 -49
52	123 125	Te Te	1/2 1/2	0.89 7.07	3.932218 4.740899	-1.4738956 -1.7770102	4.008894 E-04 4.833345 E-04	
53	127 129		5/2 7/2	100.0 (1.57 E7 y)	3.00222 1.9979	1.125308 0.7489	-3.060760 E-04 -2.0368 E-04	-71 -48
54	129 131	Xe Xe	1/2 3/2	26.4006 21.2324	4.15114 1.230549	-1.555952 0.461241	4.232082 E-04 -1.254545 E-04	-11.4
55	133	Cs	7/2	100.0	1.968173	0.7377214	-2.006551 E-04	-0.343
	134	Cs	4 7/2	(2.0652 y) (2.3 E6 v)	2.0828	0.78069	-2.0357 E-04 -2.12341 E-04	38.9 5.0
	137	Cs	7/2	(30.07 y)	2.163	0.8109	-2.205 E-04	5.1
56	133 135 137	Ba Ba Ba	1/2 3/2 3/2	(10.51 y) 6.592 11 232	4.11749 1.491586 1.66716	-1.54334 0.559085 0.62489	4.19778 E-04 -1.520672 E-04 -1.69967 E-04	16.0 24 5
57	137	La	7/2	(6 E4 y)	2.054	0.7700	-2.094 E-04	26
	138	La	5	0.090	1.981533	0.7427292	-2.020172 E-04	45
59	139	La Pr	5/2	100.0	2.121403	0.7951559	-2.1627690 E-04 -4.65152 E-04	_5.89
60	143	Nd	7/2	12.2	0.8118	-0.3043	8 2764 F-05	-63
	145	Nd	7/2	8.3	0.5000	-0.1874	5.0979 E-05	-33
61	147	Pm	7/2	(2.623 y)	1.97	0.737	-2.00 E-04	74
62	147 149	Sm Sm	7/2 7/2	14.99 13.82	0.6211 0.5120	-0.2328 -0.1919 0.1452	6.332 E-05 5.220 E-05 2.949 E.05	-25.9 7.5 71
63	151	Eu	5/2	(90 y) 47 81	3 70487	1.38868	_3 77711 F_04	90.3
05	152	Eu	3	(13.537 y)	1.7253	0.6467	-1.759 E-04	271
	153	Eu	5/2	52.19	1.6353	0.6130	-1.667 E-04	241
	154	Eu	3 5/2	(4.753 y)	1.62	0.608	-1.65 E-04	240
64	155 157	Gd Gd	3/2 3/2	14.80 15.65	0.4575 0.5999	-0.1715 -0.2249	4.664 E–05 6.116 E–05	127 135
65	157	Tb	3/2	(71 y)	3.57	1.34	-3.64 E-04	141
	158 159	Tb Tb	3 3/2	(180 y) 100.0	1.563 3.5821	0.5860 1.3427	-1.594 E-04 -3.6520 E-04	270 143.2
66	161 163	Dy Dy	5/2 5/2	18.889 24.896	0.512 0.718	-0.192 0.269	5.22 E-05 -7.32 E-05	251 265
67	165	Ho	7/2	100.0	3.150	1.181	-3.211 E-04	358
68	167	Er	1/2	22.869	0.4298	-0.1611	4.382 E-05	357
70	171	Tm	1/2	(1.92 y)	1.23	-0.456	1.257 E-04 1.240 E-04	200
70	173	Yb	5/2	14.28	0.72555	-0.27196	-2.0855 E-04 7.3970 E-05	∠õU

EPR/ENDOR Frequency Table

Z	A	E	Spin I	Nat. Abund. [%] (Half-life)	calc. X-Band ENDOR Freq. [MHz at 0.350 T] (free nucleus)	$g = \mu / (\mathbf{I} \mu_{N})$	g μ _Ν / g₀ μ _Β	Quadrupole Moment <i>Q</i> [fm ² = 0.01 barn]
71	173 174 175 176	Lu Lu Lu Lu	7/2 1 7/2 7	(1.37 y) (3.31 y) 97.41 2.59	1.74 5.1 1.7016 1.208	0.651 1.9 0.6378 0.4527	-1.772 E-04 -5.2 E-04 -1.735 E-04 -1.231 E-04	349 497
72	177 179	Hf Hf	7/2 9/2	18.60 13.62	0.6049 0.380	0.2267 -0.142	-6.166 E-05 3.87 E-05	337 379
73	181	Та	7/2	99.988	1.8069	0.67729	-1.8422 E-04	317
74	183	W	1/2	14.31	0.628478	0.2355695	-6.407328 E-05	
75	185 187	Re Re	5/2 5/2	37.40 62.60	3.4012 3.4359	1.2748 1.2879	-3.4675 E-04 -3.5029 E-04	218 207
76	187 189	Os Os	1/2 3/2	1.96 16.15	0.344971 1.173760	0.12930378 0.439955	-3.516974 E-05 -1.196648 E-04	85.6
77	191 193	lr Ir	3/2 3/2	37.3 62.7	0.26804 0.2912	0.10047 0.1091	-2.7326 E-05 -2.9684 E-05	81.6 75.1
78	195	Pt	1/2	33.832	3.25229	1.21904	-3.31570 E-04	
79	197	Au	3/2	100.0	0.26351	0.098772	-2.6865 E-05	54.7
80	199 201	Hg Hg	1/2 3/2	16.87 13.18	2.699312 0.996420	1.011771 -0.3734838	-2.751947 E-04 1.015850 E-04	38.6
81	203 204 205	TI TI TI	1/2 2 1/2	29.52 (3.78 y) 70.48	8.656069 0.12 8.741211	3.24451580 0.045 3.2764292	-8.824859 E-04 -1.22 E-05 -8.911661 E-04	
82	207	Pb	1/2	22.1	3.1065	1.1644	-3.1670 E-04	
83	207 209	Bi Bi	9/2 9/2	(32.9 y) 100.0	2.419 2.437	0.9069 0.9134	-2.4667 E-04 -2.4844 E-04	–58 –51.6
84	209	Po	1/2	(102 y)	3.63	1.36	–3.70 E–04	
86	211	Rn	1/2	(14.6 h)	3.207	1.202	-3.269 E-04	
87	212	Fr	5	(20 min)	2.47	0.924	–2.51 E–04	-10
88	225	Ra	1/2	(14.9 d)	3.916	-1.468	3.993 E-04	
89	227	Ac	3/2	(21.77 y)	2.0	0.73	–1.99 E–04	170
90	229	Th	5/2	(7.34 E3 y)	0.491	0.184	-5.00 E-05	430
91	231	Pa	3/2	100.0 (3.25 E4 y)	3.57	1.34	-3.64 E-04	-172
92	233 235	U U	5/2 7/2	(1.592 E5 y) 0.7204	0.630	0.236	-6.42 E-05	366.3
				(7.04 E8 y)	0.290	-0.109	2.95 E-05	493.6
93	237	Np	5/2	(2.14 E6 y)	3.351	1.256	-3.416 E-04	386.6
94	239 241	Pu Pu	1/2 5/2	(2.410 E4 y) (14.4 y)	1.08 0.726	0.406 -0.272	–1.104 E–04 7.40 E–05	560
95	241 243	Am Am	5/2 5/2	(432.7 y) (7.37 E3 y)	1.69 1.60	0.632 0.60	-1.72 E-04 -1.63 E-04	314 286
96	243 245 247	Cm Cm Cm	5/2 7/2 9/2	(29.1 y) (8.48 E3 y) (1.56 E7 y)	0.438 0.38 0.22	0.164 0.14 0.082	-4.46 E-05 -3.89 E-05 -2.24 E-05	
97	249	Bk	3.5	(320 d)	1.5	0.6	-1.6 E-04	
99	253	Es	3.5	(20.47 d)	3.13	1.17	–3.19 E–04	670

revision 2009 based on NMR Properties Table, W. E. Hull; no. of decimal places reflects precision.

EPR Tables

Useful Relationships for EPR

Magn. Moment of the electron $\mu_e = g_e \ \mu_B \ S = g_e \ \mu_B \ / 2 (g_e \text{ defined as negative})$ alternatively: $\mu_e = -g_e \ \mu_B \ / 2 (\text{with } g_e \text{ positive})$ $\mu_B = \beta_e = \text{Bohr magneton}$	Magn. Moment for nucleus n with spin I_n $\mu_n = g_n \mu_N I_n = \gamma_n \eta I_n$ $\mu_N = \beta_N$ = nuclear magneton
Resonance Condition - EPR $v_e = g \mu_B B_0 / h$ $v_e [GHz] = 13.996246 g B_0 [T]$ $B_0 [T] = 0.071447730 v_e [GHz] / g $ $ g = 0.071447730 v_e [GHz] / B_0 [T]$ $ g = 3.04198626 v_e [GHz] / v_{H20} [MHz]$	Resonance Condition - NMR $v_n = g_n \mu_N B_0 / h = \gamma_n B_0 / 2\pi$ for ¹ H: v_{H20} [MHz] = 42.5763875 B_0 [T] B_0 [T] = 0.0234871970 v_{H20} [MHz]
Hyperfine Coupling A [MHz] = 2.99792458 ×10 ⁴ A [cm ⁻¹] = 13.996246 g A [mT] = 1.3996246 g A [G]	$A [cm^{-1}] = 0.333564095 \times 10^{-4} A [MHz]$ = 4.6686451 × 10 ⁻⁴ g A [mT] = 0.46686451 × 10 ⁻⁴ g A [G]
Magnetic Field (flux density) = B_0 [in Tesla]	$1 T = 10^4 G = 10 kG; 1 mT = 10 G; 1 G = 0.1 mT$

see Physical Tables for Fundamental Constants

Skin Depth Table

Material	Specific Resistivity	Depth a	at 9.6 GHz	Depth a	at 100 kHz
	x 10 ⁻⁶ ohm-cm	μm	μin	mm	in
Silver	1.629	0.656	25.8	0.203	0.008
Copper. annealed	1.724	0.674	26.6	0.209	0.008
Gold	2.440	0.802	31.6	0.249	0.010
Aluminum	2.824	0.863	34.0	0.267	0.011
Rhodium	5.040	1.153	45.4	0.357	0.014
Tungsten	5.600	1.216	47.9	0.377	0.015
Molybdenum	5.700	1.226	48.3	0.380	0.015
Zinc	5.800	1.237	48.7	0.383	0.015
Brass	ca. 7.	1.359	53.5	0.421	0.017
Cadmium	7.600	1.416	55.8	0.439	0.017
Nickel	7.800	1.435	56.5	0.444	0.017
Platinum	10.000	1.624	64.0	0.503	0.020
Palladium	11.0	1.704	67.1	0.528	0.021
Tin	11.5	1.742	68.6	0.540	0.021
Lead	22.0	2.409	94.9	0.747	0.029

EPR Tables

Table for Various Free Radicals Generated in Aqueous Solution

Radical	Sample solution	Т (°С) <i>р</i> Н	<i>Τ</i> ₁ (μs)	Radical	Sample solution	Т (°С) <i>р</i> Н	<i>Τ</i> ₁ (μs)
•CH₃	0.1-0.5 M DMSO 1.0 M NaOH	19 <i>p</i> H = 14	0.2	•CH ₂ OH	0.5-1.0 M CH ₃ OH 1.0 M phosphate buffer	17 <i>p</i> H = 6.6-6.8	0.6
•CH₂COO⁻	0.5 M NaOAc 1.0 M NaOH	17-19 <i>p</i> H = 14	2.0	CH₃C•HOH	0.5 M CH ₃ CH ₂ OH 1.0 M phosphate buffer	18 <i>p</i> H = 6.6-6.8	1.3
•CH(COO ⁻) ₂	0.5 M malonic acid 2.0 M NaOH	18 pH = 14	2.9	(CH ₃) ₂ C [•] OH	0.25 M <i>i</i> -propanol 0.5 M phosphate buffer	17 pH = 6.8	2.7
-OC•(COO-)2	0.1 M tartronic acid 1.2 M NaOH	17 pH = 14	3.6 3.5≤ <i>T</i> 1<4.0	CH ₂ OD	$0.5 \text{ M CH}_3\text{OH in D}_2\text{O}$ acidif with H_2SO_4	9 pD = 3.6	0.72
-000,H000-	0.1 M tartronic acid 1.2 M NaOH	17 pH = 14	1.4			19 pD = 3.2	0.53
•CH ₂ O ⁻	0.5 M CH₃OH 0.1 M NaOH	10 <i>p</i> H = 13	~0.1 0.08≤ <i>T</i> 1<0.15	(CH ₃) ₂ C [•] OD	0.5 M <i>i</i> -propanol in D ₂ O acidif with H ₂ SO ₄	19 <i>p</i> D = 3.5	2.2
•CH₃C•OH	0.5 M CH ₃ CH ₂ OH 1.0 M NaOH	18 pH = 14	0.7		0.5 M isopropanol in D_2O ; 0.5 M phosphate buffer	19 pD = 7.0	2.5
(CH ₃) ₂ CO ^{•-}	0.5 M <i>i</i> -propanol 1.0 M NaOH	16 pH = 14	1.6				

Relaxation Times of Some Organic Free Radicals (Saturation-Recovery Method)

Radical	T ₁ (μs)	T ₂ (μs)
1,2-dicarboxylvinyl	9.0±1	7.0±2
chelidonic acid trianion	5.0±0.5	4.5±1
ascorbate radical	2.3±0.5	1.0±0.3
<i>p</i> -benzosemiquinone anion	2.0±0.3	1.8±0.5
2,5-di- <i>t</i> -butyl-benzosemiquinone anion	11.5±0.5	

Values of T₂ for Various Organic Radicals at 77 K (ESE Method)

Radical	Matrix	T₂ (μs)	
naphthalene anion	MTHF	3.4	
naphtalene- <i>d</i> ₈ anion	MTHF	3.2	
1.3,5-triphenylbenzene anion	MTHF	3.2	
triphenylene anion	MTHF	3.2	
DPPH	MTHF	3.2	
DPPH	fluorolube (FS-5)	10.0	
perylene cation	sulfuric acid	10.4	
anthracene cation	sulfuric acid	10.4	
naphthacene cation	sulfuric acid	10.4	
thianthrene cation	sulfuric acid	10.0	
anthracene-d ₁₀ cation	sulfuric acid- d_2	200.0	
anthracene cation	boric acid	14.6	
biphenyl cation	boric acid	14.6	
<i>p</i> -terphenyl cation	boric acid	14.2	
naphthalene cation	boric acid	13.2	
1,3,5-triphenylbenzene cation	boric acid	13.8	
coronene cation	boric acid	10.0	
triphenylene cation	boric acid	9.8	
thianthrene cation	boric acid	10.0	

IR Spectroscopy Tables

Conversion Table for Transmittance and Absorbance Units

Transmittance [%]	Absorbance	Transmittance [%]	Absorbance	Transmittance [%]	Absorbance	Transmittance [%]	Absorbance
1.0	2.000	26.0	.585	51.0	.292	76.0	.119
2.0	1.699	27.0	.569	52.0	.284	77.0	.114
3.0	1.523	28.0	.553	53.0	.276	78.0	.108
4.0	1.398	29.0	.538	54.0	.268	79.0	.102
5.0	1.301	30.0	.523	55.0	.260	80.0	.097
6.0	1.222	31.0	.509	56.0	.265	81.0	.092
7.0	1.155	32.0	.495	57.0	.244	82.0	.086
8.0	1.097	33.0	.481	58.0	.237	83.0	.081
9.0	1.046	34.0	.469	59.0	.229	84.0	.076
10.0	1.000	35.0	.456	60.0	.222	85.0	.071
11.0	.959	36.0	.444	61.0	.215	86.0	.066
12.0	.921	37.0	.432	62.0	.208	87.0	.060
13.0	.886	38.0	.420	63.0	.201	88.0	.056
14.0	.854	39.0	.409	64.0	.194	89.0	.051
15.0	.824	40.0	.398	65.0	.187	90.0	.046
16.0	.796	41.0	.387	66.0	.180	91.0	.041
17.0	.770	42.0	.377	67.0	.174	92.0	.036
18.0	.745	43.0	.367	68.0	.167	93.0	.032
19.0	.721	44.0	.357	69.0	.161	94.0	.027
20.0	.699	45.0	.347	70.0	.155	95.0	.022
21.0	.678	46.0	.337	71.0	.149	96.0	.018
22.0	.658	47.0	.328	72.0	.143	97.0	.013
23.0	.638	48.0	.319	73.0	.137	98.0	.009
24.0	.620	49.0	.310	74.0	.131	99.0	.004
25.0	.602	50.0	.301	75.0	.125	100.0	.000

Near-Infrared Table

IR Spectroscopy Tables

Conversion Table for Energy and Wavelength Units

Wavenumber	Wavelength	Wavelength	Frequency	Electron Volt	Wavenumber	Wavelength	Wavelength	Frequency	Electron Volt
20	[µ11]	E 000 000		[CV]	1 000 0	10.00	10.000	20.070	10 200
2.0	3 500.00	3 500 000	120	.00 025	1 100 0	0.00	0.001	29 979	12 530
4.0	2 500.00	2 500 000	120	.00 050	1 200.0	9.09	9 091	32 977	.13 038
0.0	1 250 00	1 250 000	240	.00 074	1 200.0	0.33	7 602	20 072	.14 070
0.0	1 200.00	1 250 000	240	.00 099	1 400 0	7.09	7 142	30 973 /1 071	17 259
12.0	1 000.00	000 000	300	.00 124	1 400.0	7.14	7 143	41 971	.17 300
14.0	714 29	714 296	420	00 174	1 600.0	6.07	6 250	44 908	10 027
14.0	625.00	625,000	420	00 109	1 700.0	5 99	5 002 5 002	47 500 50 964	21 077
18.0	555.56	555 556	480 540	00 223	1 800 0	5.66	5 556	53 962	.21077
20.0	500.00	500,000	600	00 223	1 900.0	5.30	5 263	56 960	23 557
22.0	454.55	454 545	000	00 240	2 000 0	5.20	5 000	59 958	24 797
24.0	416 57	416 667	719	00 298	2 200 0	4 55	4 545	65 954	27 276
26.0	384.62	384 615	779	00.322	2 400 0	4 17	4 167	71 950	29 756
28.0	357.14	357 143	839	00.347	2 600 0	3.85	3 846	77 945	32 236
30.0	333.33	333 333	898	00.372	2 800 0	3.57	3 571	83 941	34 716
32.0	312 50	312 500	959	00 397	3 000.0	3.33	3 333	89 937	37 195
34.0	294 12	294 118	1 019	00 422	3 200.0	3 13	3 125	95 933	39 675
36.0	277.78	277 778	1 079	.00 446	3 400.0	2.94	2 941	101 929	.42 155
38.0	263.16	263 158	1 139	.00 471	3 600.0	2.78	2 778	107 924	.44 634
40.0	250.00	250 000	1 199	.00 496	3 800.0	2.63	2 632	113 920	.47 114
50.0	200.00	200 000	1 499	.00 620	4 000.0	2.50	2 500	119 916	.49 594
60.0	166.67	166 667	1 799	.00 744	5 000.0	2.00	2 000	149 895	.61 992
70.0	142.86	142 857	2 099	.00 868	6 000.0	1.67	1 667	179 874	.74 390
80.0	125.00	125 000	2 398	.00 992	7 000.0	1.43	1 429	209 853	.86 789
90.0	111.11	111 111	2 698	.01 116	8 000.0	1.25	1 250	239 832	.99 187
100.0	100.00	100 000	2 988	.01 240	9 000.0	1.11	1 111	269 811	1.11 586
110.0	90.91	90 909	3 298	.01 364	10 000.0	1.00	1 000	299 790	1.23 984
120.0	83.33	83 333	3 597	.01 488	11 000.0	.91	909	329 769	1.36 382
130.0	76.92	76 923	3 897	.01 612	12 000.0	.83	833	359 748	1.48 781
140.0	71.43	71 429	4 197	.01 736	13 000.0	.77	769	389 727	1.61 179
150.0	66.67	66 667	4 497	.01 860	14 000.0	.71	714	419 706	1.73 578
160.0	62.50	62 500	4 797	.01 984	15 000.0	.67	667	449 685	1.85 976
170.0	58.82	58 824	5 096	.02 108	16 000.0	.62	625	479 664	1.98 374
180.0	55.56	55 556	5 396	.02 232	17 000.0	.59	588	509 643	2.10 773
190.0	52.63	52 632	5 696	.02 356	18 000.0	.56	556	539 622	2.23 171
200.0	50.00	50 000	5 996	.02 480	19 000.0	.53	526	569 601	2.35 570
220.0	45.45	45 455	6 595	.02 728	20 000.0	.50	500	599 580	2.47 968
240.0	41.67	41 667	7 195	.02 976	22 000.0	.45	455	659 538	2.72 765
260.0	38.46	38 462	7 795	.03 224	24 000.0	.42	417	719 496	2.97 562
280.0	35.71	35 714	8 394	.03 472	26 000.0	.38	385	779 454	3.22 358
300.0	33.33	33 333	8 994	.03 720	28 000.0	.36	357	839 412	3.47 155
320.0	31.25	31 250	9 593	.03 967	30 000.0	.33	333	899 370	3.71 952
340.0	29.41	29 412	10 193	.04 215	32 000.0	.31	312	959 328	3.96 749
360.0	27.78	27 778	10 792	.04 463	34 000.0	.29	294	1 019 286	4.21 546
380.0	26.32	26 316	11 329	.04 711	36 000.0	.28	278	1 079 244	4.46 342
400.0	25.00	25 000	11 992	.04 959	38 000.0	.26	263	1 139 202	4.71 139
500.0	20.00	20 000	14 990	.06 199	40 000.0	.25	250	1 199 160	4.95 936
600.0	16.67	16 667	17 987	.07 439	50 000.0	.20	200	1 498 950	6.19 921
700.0	14.29	14 286	20 985	.08679					
800.0	12.50	12 500	23 983	.09 919					
900.0	11.11	1 11111	26 981						

IR Spectroscopy Tables

Detectors

Valid for FT-IR spectrometers

IR Spectroscopy and Raman Tables

Stokes Shifts (0-3500 cm⁻¹) of Various Laser Sources

1 57

Vibrational Spectroscopy

Selected Force Constants and Bond Orders of Organic and Inorganic Compounds (according to Siebert)

Bond	Force	Bond		Bond	Force	Bond	
A-B	f (N cm ⁻¹)	Order	Compound	A-B	f (N cm ⁻¹)	Order	Compound
<u> </u>	5 1 /	0.77		66	22	1.0	S(CH)
1:1:	1.24	0.77			2.0	1.0	
	2.50	1.2			2.12	1.2	
D-D	16.5	1.2			2.31	0.69	
	22.42	3.2	N		<u> </u>	1.00	
	11 /1	3.Z		C-3e	2.34	0.96	
<u>0-0</u>	11.41	1.4			2.42	0.00	
	4.45	0.58		C-Rn	2.4	1.2	$(Rn(CN)_6)^\circ$
	0.17	0.24		C-Ag	2.0	0.99	
01-01	4.00	2.0			7.05	0.79	
31-31	~1.7	~0.9			7.05	1.1	
	5.50	2.1		N-B	/.Z	1.0	
P-P	2.07	0.95			18.07	3.0	
3-3	4.96	1.7		IN-IN NUNI	22.42	3.2	
5-5	2.5	0.99		IN-IN NL NL	10.01	2.4	
	3.24	1.1		IN-IN	13.15	2.0	IN-IN-IN
	0.11	0.2		N-O	25.07	3.1	N-O ⁺
As-As	3.91	1.8	AS ₂	N-O		2.3	
5e-5e	3.01	1.0	~~Se ₂	N-O	15.49	2.1	
Br-Br	2.30			N-O		2.0	
KD-KD	0.08	0.2		N-O	11.78		
		1.0		N-F	4.16	0.00	
SD-SD	2.61	1.9		N-SI	3.8		
le-le	2.37	1./		N-S	12.54	2.5	NSF3
1-1	1.70	1.Z		N-S	8.3	1.9	HNSU
Hg-Hg	1.69	1.5	Hg ₂ ²⁺	N-S	3.1	0.87	H ₃ N-SO ₃
Pb-Pb	4.02	3	Pb ₂	0-Li	1.58	0.66	LIO
BI-BI	1.84	1.6	BI ₂	О-Ве	/.51	1.8	BeO
H-B	2.75	0.68	BH ₃	0-B	13.66	2.5	BO
H-C	5.50	1.0	CH ₄	0-В	6.35	1.3	BO33-
H-N	7.05	1.1	NH ₃	0-0	16.59	2.0	<u>O⁺2</u>
H-0	8.45	1.1	H ₂ O	0-0	11.41	1.4	
<u>H-O</u>	7.40	1.0	HO-	0-0	6.18	0.89	0-2
H-F	8.85	1.1		0-0	5.70	0.83	
H-AI	1.76	0.60		O-Na	~3.2	~1.1	Na-OH
H-SI	2.98	0.84	SIH ₄	O-Mg	3.5	1.1	MgO
Н-Р	3.11	0.82	PH ₃	0-AI	5.66	1.5	AIO
H-S	4.29	1.0		0-AI	3.8	1.1	AI(OH)-4
H-CI	4.81	1.0	HCI	0-51	9.25	2.1	SIO
H-Ge	2.81	0.82	GeH ₄	0-51	4.75	1.2	SIO-44
H-As	2.85	0.81	ASH ₃	0-P	9.41	2.0	PO
H-Se	3.51	0.93		0-P	6.16	1.4	PO ³⁻ 4
H-Br	3.84	0.98	HBr	0-5	10.01	2.0	
H-Sh	2.03	0.76			4.26	1.0	
<u>п-эр</u>	2.09	0.77			3.30	0.82	
H-1	2.92	0.97			2.85	1.2	
	5.50	1.0		0-11	7.19	2.4	
	3.82	1.1		0-0	7.30	2.3	0
	0.15	3.2		0-Cr	5.82	1.9	
	9.15	1.9			5.10	1.0	
	7.0	1./		0-Fe	2.07	1.7	L CHO
	4.4	1.1		0.00	2.97	0.93	
	11.07	3.0			6.45	1.0	SoO
CN	6 6 7	1.2		0.36	2.40	1.0	Ba CaMaO (aalid)
	10.04	1.0		0 8.	6.70	1.2	
0.0	15.00	<u>2.8</u>		0-Ru		2.2	
0.0		2.4		O-Ag	2.00	0.79	Agu ShQ
0.0	12.70	2.0		0-50	5.03	1./	
0.0	7.80 5.1	1.3		O-Te		1.0	RaO
C-0	0.1 6.00	0.90			6.22	1.0	
	0.30	2.4		0-Ce	5.60	2.0	
C 9	0.30	2.4		0.14	0.00 2 F	1.4	NIDA HO (not mart
0-3	/ /.0/	∠.∪	0.02	0-140	ວ.ວ	0.1	

IR Window Materials

Material	Transmission Range [cm ⁻¹] ([micrometers])	Refractive Index n at 2000 cm ⁻¹	Reflectance loss per surface	Hardness (Knoop)	Chemical Properties
Infrasil SiO ₂	57,000-2,800 (0.175-3.6)	1.46	~ 3.3%	461	Insoluble in water; soluble in HF.
UV Sapphire AL ₂ O ₃	66,000-2,000 (0.15-5.0)	1.75	~ 7.3%	1370	Very slightly soluble in acids and bases.
Silicon Si	10,000-100 (1.0-100)	3.42	~ 30%	1150	Insoluble in most acids and bases; soluble in HF and HNO3.
Calcium Fluoride CaF ₂	66,000-1,200 (0.15-8.0)	1.40	~ 2.8%	158	Insoluble in water; resists most acids and bases; soluble in NH ₄ salts.
Barium Fluoride BaF ₂	50,000-900 (0.2-11)	1.45	~ 3.3%	82	Low water solubility; soluble in acid and NH₄CI.
Zinc Sulfide, Cleartran ZnS	22,000-750 (0.45-13.0)	2.25	~ 15%	355	Soluble in acid; insoluble in water.
Germanium Ge	5,000-600 (2.0-17)	4.01	~ 36%	550	Insoluble in water; soluble in hot H_2SO_4 and aqua regia.
Sodium Chloride NaCl	28,000-700 (0.35-15)	1.52	~ 4.5%	15	Hygroscopic; slightly soluble in alcohol and NH_3 .
AMTIR GeAsSe Glass	11,000-900 (0.9-11)	2.50	~ 18%	170	Insoluble in water. Soluble in bases.
Zinc Selenide ZnSe	20,000-500 (0.5-20)	2.43	~ 17%	150	Soluble in strong acids; dissolves in HNO ₃ .
Silver Chloride AgCl	23,000-400 (0.42-25)	2.00	~ 11%	10	Insoluble in water; soluble in NH ₄ OH.
Potassium Bromide KBr	33,000-400 (0.3-25)	1.54	~ 4.5%	7	Soluble in water, alcohol, and glycerine; hygroscopic.
Cesium lodide Csl	33,000-150 (0.3-70)	1.74	~ 7.3%	20	Soluble in water and alcohol; hygroscopic.
KRS-5 TIBr/I	16,000-200 (0.6-60)	2.38	~ 17%	40	Soluble in warm water; soluble in bases; insoluble in acids.
Polyethylene PE (high density)	600-10 (16-1,000)	1.52	~ 4.5%	5	Resistant to most solvents.
Diamond C	45,000-10 (0.22-1,000)	2.40	~ 17%	7000	Insoluble in water, acids, and bases.
TPX ^(TM) Methylpentene Resin	350-10 (28-1,000)	1.43	~ 3.3%		Similar to PE but transparent and more rigid.

Infrared Tables

Infrared Tables

1600 1500 1500
+ -
1
N−N=C
H-

Atomic Masses and Representative Abundances of the Isotopes (NIST)

The masses and abundances of the isotopes we use for generating molecular formulas, simulating patterns and SNAP peak finding basically are taken from the National Institute of Standards and Technology (NIST).

Z = Atomic number, M = mass number; Ratios are calculated with most abundant isotope = 1.

Z	ш	Σ	Exact Mass	Abund.	Valency	N	ш	Σ	Exact Mass	Abund.	Valency
~	тc		1.00782503207	0.999885	-	17	ਹ	35	34.96885268 26.06500250	0.7576	-
	– د	N M	3.0160492777	G 1000.0		ά	Δr	36	35 967545106	0.003365	C
2	He	ω4	3.0160293191 4.00260325415	1.34e-6 0.99999866	0	2	ā	8 8 8 9	37.9627324 39.9623831225	0.000632 0.996003	þ
м	:-	9	6.015122795 7.01600455	0.0759 0.9241	-	19	×	39 40	38.96370668 39 96399848	0.932581	-
4	Be	6	9.0121822		2			41	40.96182576	0.067302	
Ð	B	5 5	10.0129370 11.0093054	0.199 0.801	m	20	Ca	40 42	39.96259098 41.95861801	0.96941 0.00647	2
9	ပ	12	12 (by definition) 13.0033548378 14.003241989	0.9893 0.0107	4			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	42.9587666 43.9554818 45.9536926	0.00135 0.02086 0.00004	
7	z	4	14.0030740048	0.99636	e	21	Sc	45	41.9559119	1	n
		<u>e</u>	10.000	U.UU304		22	F	46	45.9526316	0.0825	4
00	0	16 18	15.99491461956 16.99913170 17.9991610	0.99757 0.00038 0.00205	7		:	47 48 49	46.9517631 47.9479463 48.9478700	0.0744 0.7372 0.0541	
ი	ш	19	18.99840322	1	-			50	49.9447912	0.0518	
10	Ne	20	19.9924401754 20.99384668	0.9048 0.0027	0	23	>	50 51	49.9471585 50.9439595	0.00250 0.99750	ъ
		22	21.991385114	0.0925		24	స	50	49.9460442	0.04345	en en
1	Na	23	22.9897692809	-	1			52	51.9405075	0.83789	
12	Mg	24 25	23.985041700 24.98583692	0.7899 0.1000	2			53 54	52.9406494 53.9388804	0.09501 0.02365	
		26	25.982592929	0.1101		25	ЧЧ	55	54.9380451	-	2
13	AI	27	26.98153863	1	3	26	Fe	54	53.9396105	0.05845	2
14	Si	28 29 30	27.9769265325 28.976494700 29.97377017	0.92223 0.04685 0.03092	4			56 57 58	55.9349375 56.9353940 57.9332756	0.91754 0.02119 0.00282	
15	٩	31	30.97376163	-	с м	27	ട	59	58.9331950	-	2
		32	31.97390727			28	ïŻ	58	57.9353429	0.680769	2
16	s	32	31.97207100	0.9499	2			60 61	59.9307864 60 9310560	0.262231	
		34 33 36	32.97145870 33.96786690 35.96708076	0.0075 0.0425 0.0001				62 64	61.9283451 63.9279660	0.036345 0.009256	

Atomic Masses and Representative Abundances of the Isotopes (NIST)

The masses and abundances of the isotopes we use for generating molecular formulas, simulating patterns and SNAP peak finding basically are taken from the National Institute of Standards and Technology (NIST).

• /					
Z = Atomic number,	M = mass number	; Ratios are ca	alculated with r	most abundant i	sotope = 1.

	Σ	Exact Mass	Abund.	Valency	N	ш	Σ	Exact Mass	Abund.	Valency
83		62.9295975	0.6915	-	40	z	6	89.9047044	0.5145	4
65		64.9277895	0.3085				91	90.9056458	0.1122	
64		63.9291422	0.48268	2			92	91.9050408	0.1715	
99		65.9260334	0.27975				94	93.9063152	0.1738	
67		66.9271273	0.04102				96	95.9082734	0.0280	
68		67.9248442	0.19024		41	qN	93	92.9063781	1	5
2		69.9253193	0.00631		42	Å	92	91.906811	0.1477	6
69		68.9255736	0.60108	ო			94	93.9050883	0.0923	
۲		70.9247013	0.39892				95	94.9058421	0.1590	
20	1	69 9242474	0 2038	4			96	95.9046795	0.1668	
2 2		71 9220758	0.2731	+			97	96.9060215	0.0956	
33		72.9234589	0.0776				86	97.9054082	0.2419	
4		73.9211778	0.3672				<u>1</u> 0	99.907477	0.0967	
76		75.9214026	0.0783		43	Tc	97	96.906365		4
75		74.9215965	1	ო			8	97.907216		
4	1	73.9224764	0.0089	2			66	98.9062547		
76		75.9192136	0.0937		44	Bu	96	95.907598	0.0554	с С
1		76.9199140	0.0763				86	97.905287	0.0187	
78		77.9173091	0.2377				66	98.9059393	0.1276	
80		79.9165213	0.4961				100	99.9042195	0.1260	
82		81.9166994	0.0873				55	100.9055821	0.1706	
79		78.9183371	0.5069	1			102	101.9043433	0.1862	
<u></u>	-	80.9162906	0.4931		AF AF	å	102	1 07 905504		0
78		77.9203648	0.00355	0	9 4	3	3 5	102.303304	0.0102	
8		/9.9163/90	0.02286		f	-	5	102 004036	0.0105	4
82		81.9134836	0.11593				105	104.905085	0.2233	
3 2		82 911507	0.11300				106	105.903486	0.2733	
88		85.91061073	0.17279				108	107.903892	0.2646	
ц В	-	84 911789738	0 7217	-			11	109.905153	0.1172	
26		86.909180527	0.2783	_	47	Ag	107	106.905097	0.51839	-
8		83.913425	0.0056	2			109	108.904752	0.48161	
86		85.9092602	0.0986	I	48	ខ	106	105.906459	0.0125	2
5 28		86.9088771	0.0700				108	107.904184	0.0089	
88		87.9056121	0.8258				110	109.9030021	0.1249	
8 8	-		, , , , , , , , , , , , , , , , , , ,				11	110.9041781	0.1280	
89	+	88.9058483	<u> </u>	m			112	111.9027578	0.2413	
							113	112.9044017	0.1222	
							114	113.9033585	0.2873	
	_						116	115.904756	0.0749	

Atomic Masses and Representative Abundances of the Isotopes (NIST)

The masses and abundances of the isotopes we use for generating molecular formulas, simulating patterns and SNAP peak finding basically are taken from the National Institute of Standards and Technology (NIST).

Z = Atomic number, M = mass number; Ratios are calculated with most abundant isotope = 1.

Valency	3	4	e	ю							2						2		т						e	e						
Abund.	0.00090 0.99910	0.00185 0.00251 0.88450 0.11114	-	0.272 0.122	0.238	0.083	0.057	0.056			0.0307	0.1499	0.1124	0.1382	0.0738 0.2675	0.2275	0.4781	0.5219	0.0020	0.0218	0.1480	0.2047	0.7480	0.2186	1	0.00056	0.00095	0.02329	0.18889	0.25475	0.24896	0.28260
Exact Mass	137.907112 138.9063533	135.907172 137.905991 139.9054387 141.909244	140.9076528	141.9077233 142.9098143	143.9100873	144.9125736	147.916893	149.920891	144.912749	146.9151385	143.911999	146.9148979	147.9148227	148.9171847	149.9172755 151 9197327	153.9222093	150.9198502	152.9212303	151.9197910	153.9208656	154.9226220	155.9221227	157 9241039	159.9270541	158.9253468	155.924283	157.924409	159.9251975	160.9269334	161.9267984	162.9287312	163.9291748
Σ	138 139	136 138 140 142	141	142 143	144	145	146 148	150	145	147	144	147	148	149	150	154	151	153	152	154	155	156	151	160	159	156	158	160	161	162	163	164
ш	La	Ce	Ł	PN					Pm		Sm						B		Bg						٩	5	•					
N	57	58	59	60					61		62						63		64						65	99						
																									-							
Valency	e	4					Ð		2							-	0	•							-	2						
Abund. Valency	0.0429 3 0.9571	0.0097 4 0.0066 0.0034 0.1454	0.0768	0.2422 0.0859	0.3258	0.0579	0.5721 5	0.4279	0.0009 2	0.0255	0.0089	0.0474	0.0707	0.1884	0.31/4 0.3408	-	0.000952 0	0.00890	0.019102	0.264006	0.040710	0.212324	0.203030	0.088573	1	0.00106 2	0.00101	0.02417	0.06592	0.07854	0.11232	0. /1698
Exact Mass Abund. Valency	112.904058 0.0429 3 114.903878 0.9571 3	111.904818 0.0097 4 113.902779 0.0066 113.903342 114.903342 0.0034 115.901741	116.902952 0.0768	117.901603 0.2422 118.903308 0.0859	119.9021947 0.3258	121.9034390 0.0463 123.9052739 0.0579	120.9038157 0.5721 5	122.9042140 0.4279	119.904020 0.0009 2	121.9030439 0.0255	122.9042700 0.0089	123.9028179 0.0474	124.9044307 0.0707	125.9033117 0.1884	127.3044631 0.3174 129.9062244 0.3408	126.904473 1 1	123.9058930 0.000952 0	125.904274 0.000890	127.9035313 0.019102	128.9047794 0.264006	129.9035080 0.040710	130.9050824 0.212324	131.3041333 0.203000 133 9053945 0 10/357	135.907219 0.088573	132.905451933 1 1	129.9063208 0.00106 2	131.9050613 0.00101	133.9045084 0.02417	134.9056886 0.06592	135.9045759 0.07854	136.9058274 0.11232	137.9052472 0.71698
M Exact Mass Abund. Valency	113 112.904058 0.0429 3 115 114.903878 0.9571 3	112 111.904818 0.0097 4 114 113.902779 0.0066 114.903342 0.0034 115 114.903342 0.0034 115.901741 0.1454	117 116.902952 0.0768	118 117.901603 0.2422 119 118.903308 0.0859	120 119.9021947 0.3258	122 121.9034390 0.0463 124 123.9052739 0.0579	121 120.9038157 0.5721 5	123 122.9042140 0.4279	120 119.904020 0.0009 2	122 121.9030439 0.0255	123 122.9042700 0.0089	124 123.9028179 0.0474	125 124.9044307 0.0707	126 125.9033117 0.1884	128 12/.9044631 0.31/4 130 129.9062244 0.3408	127 126.904473 1 1	124 123.9058930 0.000952 0	126 125.904274 0.000890	128 127.9035313 0.019102	129 128.9047794 0.264006	130 129.9035080 0.040710	131 130.9050824 0.212324	132 131.3041333 0.203000 134 133 9053945 0.10/357	136 135.907219 0.088573	133 132.905451933 1 1	130 129.9063208 0.00106 2	132 131.9050613 0.00101	134 133.9045084 0.02417	135 134.9056886 0.06592	136 135.9045759 0.07854	137 136.9058274 0.11232	138 137.9052472 0.71698
E M Exact Mass Abund. Valency	In 113 112.904058 0.0429 3 115 114.903878 0.9571 3	Sn 112 111.904818 0.0097 4 114 113.902779 0.0066 0.0066 4 115 114.903342 0.0034 1 1 116 115.901741 0.1454 0.1454 1	117 116.902952 0.0768	118 117.901603 0.2422 119 118.903308 0.0859	120 119.9021947 0.3258	122 121.9034390 0.0463 124 123.9052739 0.0579	Sb 121 120.9038157 0.5721 5	123 122.9042140 0.4279	Te 120 119.904020 0.0009 2	122 121.9030439 0.0255	123 122.9042700 0.0089	124 123.9028179 0.0474	125 124.9044307 0.0707	126 125.9033117 0.1884	128 12/3044631 0.31/4 130 129.9062244 0.3408	I 127 126.904473 1 1	Xe 124 123.9058930 0.000952 0	126 125.904274 0.000890	128 127.9035313 0.019102	129 128.9047794 0.264006	130 129.9035080 0.040710	131 130.9050824 0.212324	132 131.3041333 0.203000 134 133 9053945 0 10/357	136 135.907219 0.088573	Cs 133 132.905451933 1 1	Ba 130 129.9063208 0.00106 2	132 131.9050613 0.00101	134 133.9045084 0.02417	135 134.9056886 0.06592	136 135.9045759 0.07854	137 136.9058274 0.11232	138 137.9052472 0.71698

Atomic Masses and Representative Abundances of the Isotopes (NIST)

The masses and abundances of the isotopes we use for generating molecular formulas, simulating patterns and SNAP peak finding basically are taken from the National Institute of Standards and Technology (NIST).

Z = Atomic number, M = mass number; Ratios are calculated with most abundant isotope = 1.

Valency	e e		2				1	2						e		4				5	4	4	e				SUC		re Appl. Chem.	2005); and	positions	V and 180 and	ances.	please refer
Abund.	0.373	0.627	0.00014	0.32967	0.33832	0.07163	-	0.0015	0.0997	0.1687	0.2310	0.2986	0.0687	0.2952	0.7048	0.014	0.241	0.221	0.524	1	-	-	5.4e-05	0.007204	0.992742		Atomic Weights and Isotopic Compositi	slab/data/comp.cfm [2010, July 15].	omic Weights of the Elements 2007, Pu bure H Hidaka H & Daiser K I R Ros	01, J. Phys. Chem. Ref. Data 34(1), 57 Asse Evaluation. Murclear Physics A 7900	VIST Atomic Weights and Isotopic Com	have an abundance of 95 % of 13C, 15	d to calculate isotopically marked substa opes is available.	or quickly inspecting the valencies used
Exact Mass	190.9605940	192.9629264	189.959932 101 0610380	193.9626803	194.9647911 195.9649515	197.967893	196.9665687	195.965833	197.9667690	198.9682799	199.9683260 200.9703023	201.9706430	203.9734939	202.9723442	204.9744275	203.9730436	205.9744653	206.9758969	207.9766521	208.9803987	232.0380553	231.0358840	234.0409521	235.0439299	238.0507882		., and Dragoset, R.A. (2003), A	able: http://www.nist.gov/phys rds and Technolom/ Gaithersh	. Wieser and M. Berglund, Atc	positions of the Elements, 200 Thibault The 2003 Atomic M.	 Hillbault, HIE 2003 AUTICIN /additions were made to the N 	It and Ot were defined which h	 These elements were addec complete list of atoms and isot 	toms are listed additionally. Fo
Σ	191	193	190	194	195 196	198	197	196	198	199	2002	202	204	203	205	204	206	207	208	209	232	231	234	235	238		hwab, D.J	line] Availa	al as M.E	topic Com	difications	ents Ct, N	N and 16C vare the c	s of the at Valencies.
ш	-		£				Au	Hg)					F		Ч				Bi	f	Pa	∣∍			.seou	y, J.S., Sch	n 3.0). [Onl	Ily publishe	Taylor, Isot	lowing mo	n 3.0) table ional elem	of 12C, 14I n the softv	al valencie e Table of V
N	77		78				79	80						81		82				83	90	91	92			Befere	Course	(versio	Origina	P.D.P.	The fol	 Addit 	۲: منابع م	 Typic to the
ency																																		
Vale	<i>с</i> о	ო				сл С		1					с С		4						5		9				4		с					
Abund. Vale	1 3	0.00139 3	0.01601	0.22869	0.26978 0.14910	1 000	0.0013	0.0304	0.1428	0.2183	0.1613 0.3183	0.1276	0.9741 3	0.0259	0.0016 4	0.0526	0.1860	0.2728	0.1362	0.3508	0.00012 5	0.33366	0.0012	0.2030	0.3064	0.2843	0.3740	0.6260	0.0002 3	0.0159	0.0196	0.1324 0.1615	0.2626	0.4078
Exact Mass Abund. Vale	164.9303221 1 3	161.928778 0.00139 3	163.929200 0.01601 165.9303331 0.33503	166.9320482 0.22869	167.9323702 0.26978 169.9354643 0.14910	168.9342133 1 3	167 933897 0 0013 2	169.9347618 0.0304	170.9363258 0.1428	171.9363815 0.2183	1/2.9382108 0.1613 173.9388621 0.3183	175.9425717 0.1276	174.9407718 0.9741 3	175.9426863 0.0259	173.940046 0.0016 4	175.9414086 0.0526	176.9432207 0.1860	177.9436988 0.2728	178.9458161 0.1362	179.9465500 0.3508	179.9474648 0.00012 5		1/9.946/04 0.0012 6	181.3462042 0.2030 182.950230 0.1431	183.9509312 0.3064	185.9543641 0.2843	184.9529550 0.3740 4	186.9557531 0.6260	183.9524891 0.0002 3	185.9538382 0.0159		187.9553322 0.1324 188.9581475 0.1615	189.9584470 0.2626	191.9614807 0.4078
M Exact Mass Abund. Vale	165 164.9303221 1 3	162 161.928778 0.00139 3	164 163.929200 0.01601 166 165 0303031 0 33503	167 166:9320482 0.22869	168 167.9323702 0.26978 170 169.9354643 0.14910	169 168,9342133 1 3	168 167 933897 0 0013 2	170 169.9347618 0.0304	171 170.9363258 0.1428	172 171.9363815 0.2183	1/3 1/2.9382108 0.1613 174 173 9388621 0.3183	176 175.9425717 0.1276	175 174.9407718 0.9741 3	176 175.9426863 0.0259	174 173.940046 0.0016 4	176 175.9414086 0.0526	177 176.9432207 0.1860	178 177.9436988 0.2728	179 178.9458161 0.1362	180 179.9465500 0.3508	180 179.9474648 0.00012 5 100 100 0.00020 0.00020 5		180 1/9.946/04 0.0012 6	182 101.3402042 0.2030 183 182 9502330 0.1431	184 183.9509312 0.3064	186 185.9543641 0.2843	185 184.9529550 0.3740 4	187 186.9557531 0.6260	184 183.9524891 0.0002 3	186 185.9538382 0.0159	18/ 186.955/505 0.0196	188 187.9558382 0.1324 189 188 9581475 0.1615	190 189.9584470 0.2626	192 191.9614807 0.4078
E M Exact Mass Abund. Val	Ho 165 164.9303221 1 3	Er 162 161.928778 0.00139 3	164 163.929200 0.01601 166 165 9202921 0.32503	167 166.9320482 0.22869	168 167,9323702 0.26978 170 169,9354643 0.14910	Tm 169 168 9342133 1 3	Vh 167 933897 0.0013 2	170 169.9347618 0.0304	171 170.9363258 0.1428	172 171.9363815 0.2183	174 172 9388671 0.3183	176 175.9425717 0.1276	Lu 175 174.9407718 0.9741 3	176 175.9426863 0.0259	Hf 174 173.940046 0.0016 4	176 175.9414086 0.0526	177 176.9432207 0.1860	178 177.9436988 0.2728	179 178.9458161 0.1362	180 179.9465500 0.3508	Ta 180 179.9474648 0.00012 5 100 179.04770560 0.00002 5		W 180 1/9.946/04 0.0012 6	102 101.3402042 0.2030 183 182 9502330 0.1431	184 183.9509312 0.3064	186 185.9543641 0.2843	Re 185 184.9529550 0.3740 4	187 186.9557531 0.6260	Os 184 183.9524891 0.0002 3	186 185.9538382 0.0159		188 187.3558382 0.1324 189 188 9581475 0.1615	190 189.9584470 0.2626	192 191.9614807 0.4078

Solid-Phase Peptide Synthesis

Mass Shift of Modifications, Protection Groups and Artifacts

m/z shift [Da]	Modification	Abbreviation	Sum formula change	Valid residues	Origin
-186,07931	Trp->Null		-C ₁₁ H ₁₀ N ₂ O	W	Deletion
-163,06333	Tyr->Null		-C ₉ H ₉ NO ₂	Y	Deletion
-156,10111	Arg->Null		-C ₆ H ₁₂ N ₄ O	R	Deletion
-147,06841	Phe->Null		-C ₉ H ₉ NO	F	Deletion
-137,05891	His->Null		-C ₆ H ₇ N ₃ O	Н	Deletion
-131,04049	Met->Null		-C₅H ₉ NOS	М	Deletion
-129,04259	Glu->Null		-C ₅ H ₇ NO ₃	E	Deletion
-128,09496	Lys->Null		-C ₆ H ₁₂ N ₂ O	К	Deletion
-128,05858	GIn->Null		-C ₅ H ₈ N ₂ O ₂	Q	Deletion
-115,02694	Asp->Null		-C ₄ H ₅ NO ₃	D	Deletion
-114.04293	Asn->Null		-C4HeN2O2	N	Deletion
-113.08406	lle->Null		-CeH11NO		Deletion
-113.08406	Leu->Null		-CeH11NO	L	Deletion
-101 04768	Thr->Null		-C4H2NO2	т	Deletion
-99.06841	Val->Null		-CeHoNO	V	Deletion
-9705276	Pro->Null		-C-H-NO	P	Deletion
-8703203	Ser->Null		-CoHrNOo	S	Deletion
-71 03711	Ala->Null		-C.H.NO	Δ	Deletion
-5702146	Gly-Null		-C-H-NO	G	Deletion
-16 01872	Byro-glutamination (N-term)		-02H3NO	0	N-terminal
0.09/02	Description			NO	Artofact
14.01565	Methyleticn				Chamical Madification
14,01505	Methylation	Ma			
14,01000	Ovidation	IVIE	-H+UH3	T	FINOC
15,99492		UX	+0		Arteract
16,01872	Amidation (C-term)	-	-0+NH20	all Amino acids	C-terminal
27,99492	Formylation	For	-H+CHU	VV V	BOC
28,03130	Dimethylation		+C ₂ H ₄	KR	Chemical Modification
28,03130	Ethylation	Et	-H+C ₂ H ₅	Y	Boc
29,00274	Formyl (N-term)		+CHO	M	N-terminal
31,98983	Double Oxidation Tryptophane		+02	W	Artefact
42,01057	Acetylation	Ac	-H+C ₂ H ₃ O	ĸ	Fmoc
42,04695	Trimethylation		+C ₃ H ₆	KR	Chemical Modification
44,98508	Nitration	NO2	-H+NO ₂	Y	Chemical Modification
44,98508	Nitration	NO2	-H+NO ₂	R	Boc
47,94445	Selenocystein		-S+Se	С	Chemical Modification
56,06260	Diethylation		+C4H8	К	Chemical Modification
56,06260	tertButyl	tBu	-H+C ₄ H ₉	CSTY	Fmoc
56,06260	tertButyl	tBu	-H+C ₄ H ₉	STY	Boc
57,02146	Gly->GG		+C ₂ H ₃ NO	G	Double coupling
68,06260	Piperidine	Pip	+C5H8	DE	Artefact
71,03711	Propionamidation		+C ₃ H ₅ NO	С	Cys-State
71,03711	Ala->AA		+C ₃ H ₅ NO	А	Double coupling
71,03711	Acetamidomethyl	Acm	-H+C ₃ H ₆ NO	С	Fmoc/Boc
72,05752	tertButoxy	OtBu	-H+C ₄ H ₉ O	DE	Fmoc/Boc
79,96633	Phosphorylation		-H+PO ₃ H ₂	STY	Chemical Modification
86,07317	tertButoxymethyl	Bum	-H+C ₅ H ₁₁ O	Н	Fmoc
87,03203	Ser->SS	İ	+C ₃ H ₅ NO ₂	S	Double coupling
88,03467	tertButylthio	tButhio	-H+C4H3S	С	Fmoc
90,04695	Benzyl	Bzl	-H+C7H7	CST	Fmoc
90,04695	Benzyl	Bzl	-H+C ₇ H ₇	CSTY	Boc
95,98230	Trifluoroacetylation	Tfa	-H+C ₂ F ₃ O	к	Fmoc/Boc
97.05276	Pro->PP		+C ₅ H ₇ NO	Р	Double coupling
99.06841	Val->VV		+C5H9NO	V	Double coupling
100.05243	tertButoxycarbonyl	Boc	-H+C ₆ H ₀ O ₂	all Amino acids	Boc
	1				

Solid-Phase Peptide Synthesis

Mass Shift of Modifications, Protection Groups and Artifacts

101.0488 The-TT	m/z shift [Da]	Modification	Abbreviation	Sum formula change	Valid residues	Origin
103.0018 Q_{PS-C} C_{PS} C_{C} Double coupling104.06200 $+4cP_{11}NO$ $EB0$ $+4cP_{11}O$ EC Bcc 106.04187 $Banzylaxy$ $B20$ $+4cP_{11}NO$ I Double coupling113.04466 $Iae>11$ $+CP_{11}NO$ I Double coupling114.04233 $Asn>NN$ $+CP_{11}NO$ N Double coupling114.04233 $Asn>NN$ $+CP_{11}NO$ N Double coupling115.0284 $Asn>NN$ $+CP_{11}NO$ N Double coupling120.05752 $2Phenylaxymetryl$ $0.2PhPr$ $+4cP_{11}O$ C FraceBoc120.05752 $4Metroxyberryl$ $Born$ $+4cP_{11}O$ C FraceBoc120.05752 $4Metroxyberryl$ $Born$ $+4cP_{11}O$ K Double coupling120.05752 $4Metroxyberryl$ $Born$ $+4cP_{11}O$ K Double coupling120.05752 $4Metroxyberryl$ $Born$ $+4cP_{11}O$ K Double coupling120.05762 $4Metroxyberryl$ $Born$ $+4cP_{11}O$ K Double coupling120.0562 $Barrylaxymetryl$ $Born$ $+4cP_{11}O$ K Double coupling120.0562 $Barrylaxymetryl$ K F Double coupling120.0562 $Barrylaxymetrylaxyme$	101,04768	Thr->TT		+C ₄ H ₇ NO ₂	Т	Double coupling
No.02000 4-Methylamyl MeBril 4+CpH ₂ C Boc 106.04187 Berzlowy B810 4+CpH ₂ NO DE FraceBoc 113.04066 Leu>L 4-CpH ₂ NO L Double coupling 113.04076 Leu>L 4-CpH ₂ NO L Double coupling 113.04076 Leu>L 4-CpH ₂ NO L Double coupling 113.04076 Leu>L 4-CpH ₂ NO L Double coupling 113.02406 Asn>ND Outle coupling 4-CpH ₂ NO C FraceBoc 113.0252 Bernyloxymethyl Born 4+CpH ₂ O C FraceBoc 120.05752 Bernyloxymethyl Born 4+CpH ₂ O K Double coupling 120.05762 Gin>QO 4-CH ₂ H ₂ O K PraceBoc Double coupling 120.05762 Gin>QO Quble coupling 4-CH ₂ H ₂ O K PraceBoc 120.05752 Bernyloxymethyl Born 4-CH ₂ H ₂ O K PraceBoc 120.0456 Outple <td>103,00918</td> <td>Cys->CC</td> <td></td> <td>+C₃H₅NOS</td> <td>С</td> <td>Double coupling</td>	103,00918	Cys->CC		+C ₃ H ₅ NOS	С	Double coupling
IDEGNITZ Bancylawy Bal H=C+H,O DE FranceRoc 113.08406 IIe>II Double coupling I Double coupling 113.08406 Lex>LL C/EH,NO L Double coupling 114.04233 Asn>NN C/EH,NO, N Double coupling 115.02894 Asn>NN O/EH,NO, D Double coupling 115.02894 Asn>NN O/EH,NO, D Double coupling 113.020752 2-Phenylikopropi MeOBI H=C/H,O, H Error 120.05752 Benzkownethyl Born H=C/H,O, H Born Double coupling 120.04581 Mer>MM - +C/H,NO, E Double coupling 120.04591 Mer>MM - +C/H,NO, K Double coupling 120.04593 Mer>MM - +C/H,NO, K FrancePoo 120.04582 Adamentylony O-14da +H ArCH,NO, FrancePoo 120.045000000 O-14da H+C,H,O,	104,06260	4-Methylbenzyl	MeBzl	-H+C ₈ H ₉	С	Boc
113.08406 Ite>II Double coupling 113.08406 Leu>LL 4-CH,NO L Double coupling 113.08406 Leu>LL 4-CH,NO L Double coupling 113.08408 Leu>LL 4-CH,NO L Double coupling 113.08408 Leu>LL 4-CH,NO, D Double coupling 113.08408 Asp>DD -CH,NO, D Double coupling 113.08408 Asp>DD -CH,NO, C Fmor 120.05752 AMenoyhenyl Born +CH,NO, H Boc 120.05752 Benzylow,enthyl Born +CH,NO, K Double coupling 128.06960 Lys-XK -CH,NO, K Double coupling 128.06978 Benzlow,enthyl Z +CH,NO, K Double coupling 134.04991 Mei-SMM -CH,AO, K Fmor@Boc 134.04938 Adamantylow, O-1-Ada +CH,HO, K Emode 144.09882 Adamantylow, O-1-Ada	106,04187	Benzyloxy	BzIO	-H+C7H7O	DE	Fmoc/Boc
1130496 Lu->LL CH-NO L Double coupling 114,04283 An->NN	113,08406	lle->ll		+C ₆ H ₁₁ NO	1	Double coupling
114.0283 Asn-NN C-CH/MO, N Double coupling 115.02894 Asn-SD -C-H/MO, D Duble coupling 115.02894 Asn-SD D Prince Frince 120.05752 4-Methovybenzyl MoEBal H+CAH_O C Frince 120.05752 4-Methovybenzyl Born H+CAH_O C Frince 120.05752 4-Methovybenzyl Born H+CAH_O C Frince 128.0588 Gin-SCO -C-CHAO, K Double coupling Double coupling 128.05878 Gin-SEE -CCHAO, E Double coupling Double coupling 128.05878 Mer-SMM -C-CHAO, K FroodDoc FroodDoc 131.04049 MersH -C-CHAO, K FroodDoc FroodDoc 134.05888 Adamantyloxy O-1-Ada H+C-H_Q,O F Double coupling 143.05882 Adamantyloxy O-2-Ada H+C-H_Q,O F Double coupling 155.0901 2	113.08406	Leu->LL		+C ₆ H ₁₁ NO	L	Double coupling
115.02894 Agp-DD +C_H/NG D Double coupling 118.07252 2-Phiny/sograph O-2-PhilP +H-C_H/O C France 120.07572 Benz/sograph MCOB2 H+C_H/O C France/Soc 120.07572 Benz/sograph Bom +H-C_H/O, H Boc 128.05888 Gin->CO Double coupling +C_H/NO, C Double coupling 128.05486 Lys->KK +C_H/NO, K Double coupling 128.05486 Met>MM +C_H/NO, K Double coupling 128.05481 Met>MM +C_H/NO, K Double coupling 124.05871 Benz/soysattonyl Z +H-C_H/O, K FranceBoc 128.05885 Gin>S H+C_H/NO, F Double coupling H 124.06881 Pine>FF -C_H/NO, F Double coupling 124.06882 Adamanylowy O-2Ada H+C_H/NO, N Double coupling 156.0111 Arg>-PR Col-H/NO,	114,04293	Asn->NN		$+C_4H_6N_2O_2$	N	Double coupling
118,07825 2-Phenylisopropyl 0-2-PhiPr H+C ₄ H ₁ DE Frace 1120,05752 4-Mettovyberzyl M60Ebl H+C ₄ H ₂ O C FraceBoc 120,05752 6-Mettovyberzyl Born H+C ₄ H ₂ O C FraceBoc 128,05588 Gin>OQ -+C ₄ H ₂ N ₂ O K Double coupling 128,05496 Lys>KK -+C ₄ H ₂ N ₂ O K Double coupling 128,04596 Gin>EE -+C ₄ H ₂ N ₂ O K Double coupling 131,04493 Mets-MM -+C ₄ H ₂ N ₂ O K PromotBoc 131,04493 Mets-MM -+C ₄ H ₂ N ₂ O H Double coupling 142,0681 Phes-FF ++C ₄ H ₂ N ₂ O D PromotBoc 144,08882 Adamantyloxy O-1-Ada H+C ₄ H ₂ O D PromotBoc 154,00885 Tosyl Hs-C ₄ H ₂ O D PromotBoc E 154,00885 Tosyl Hs-C ₄ H ₂ O R PromotBoc E 154,00883 Ty-SY PromotBoc	115.02694	Asp->DD		+C4H5NO3	D	Double coupling
120.05752 4-Methoxybenzyl MeOB2l +H+C_H\0 C FmodBac 120.05752 Benzylowmethyl Bom H+C_H\0,O Q Double oxuping 128.05558 Gin>QO C-LH.NQ K Double oxuping 128.05558 Gin>QO Double oxuping K Double oxuping 129.04259 Gin>QO Double oxuping K Double oxuping 131.04049 Met>MM +C_HANO, E Double oxuping 131.04039 Benzyloxyarbonyl Z +H-C_HAO, K FmodBac 132.05881 Benzyloxyarbonyl Z +H-C_HAO, H Double oxuping 143.0582 Adamantylow O-1Ada +H-C_HAO, F Double oxuping 144.05882 Adamantylow O-2Ada +H-C_HAO, R Double oxuping 156.0111 Args-RR -C_HANO, R Double oxuping 163.0333 17y-SY -Col-HAAA +H-C_HAO, R Double oxuping 163.06333 Tyr-SY -C	118.07825	2-Phenylisopropyl	0-2-PhiPr	-H+C ₉ H ₁₁	DE	Fmoc
120.05752 Benzyloxymethyl Born H+G/H/O H Boc 120.05552 Benzyloxymethyl Born +CH4N-Q; Q Double coupling 120.05563 GIN>-SQQ +CH4N-Q; Q Double coupling 120.05563 GIN>-SE +CH4N-Q; E Double coupling 131.04049 Met>-MM +CH4N-Q; K Double coupling 131.04049 Met>-MM +CH4N-Q; K Fmoc8boc 131.04049 Met>-MM +CH4N-Q; K Fmoc8boc 131.04049 Met>-MM +CH4NO F Double coupling 143.08578 Benzyloxycarboryl C1-4Ad +H-CH-R,Q; D Fmoc8boc 144.05882 Adamantyloxy O1-4Ad +H-CH-R,Q; D Boc 156.0111 Arg-RR Co-HAD R Fmoc8boc EncyH,NO R Double coupling 156.8373 1-H4,CH-R,Q; Y Fmoc8boc Fmoc8boc EncyH,NO; N Fmoc8boc EncyH,NO; R	120.05752	4-Methoxybenzyl	MeOBzl	-H+CoHoO	С	Emoc/Boc
128,05886 Gin-SQQ	120.05752	Benzyloxymethyl	Bom	-H+C ₀ H ₀ O	Н	Boc
128.09496Lys-NC120.00200129.0429Glu-SE $+QH_1NO_1$ KDouble coupling131.04049Met>MM $+QH_1NO_5$ KDouble coupling131.04049Met>MM $+QH_1NO_5$ KFmoc/Boc137.0591His-SHH $+QH_1NO_5$ KFmoc/Boc147.05841Phe>FF $+QH_1NO_6$ FDouble coupling148.0882Adamantyloxy $O-1.4da$ $+H-C_0H_1O_7$ DBoc148.08882Adamantyloxy $O-2.4da$ $+H-C_0H_1O_7$ DBoc156.10111Arg>RR $+CH_1NO_6$ RDouble coupling157.089012.6 DichrobenzyldicHB $+CH_2H_1O_7$ NDouble coupling163.063371.4(4.4Dimethyl-2.6-dioxe-cyclohexylidene)-ethylDde $+H-C_1H_1O_7$ YEmoc/Boc166.001462.4 DintrophenzylDrp $+H-C_1H_1O_7$ KFmoc/Boc166.001472.4 DintrophenzylDrp $+H-C_1H_1O_7$ KFmoc/Boc166.001482.4 DintrophenzylDrp $+H-C_1H_1O_7$ KFmoc/Boc167.097212.4 DintrophenzylDrp $+H-C_1H_1O_7$ KFmoc/Boc180.07582XanthylXan $+H-C_1H_1O_7$ KFmoc/Boc180.075842.4,6-TimethoxybenzylTmob $+H-C_1H_1O_7$ KFmoc180.075842.4,6-TimethoxybenzylMts $+H-C_1H_1O_7$ KFmoc180.075842.4,6-TimethoxybenzylMts $+H-C_1H_1O_7$ RFmoc <td>128 05858</td> <td>GIn->00</td> <td></td> <td>+CeHeN2O2</td> <td>0</td> <td>Double coupling</td>	128 05858	GIn->00		+CeHeN2O2	0	Double coupling
Table Sol File Total Sol File Double coupling 131,04049 Met-MM +0,H,NO, E Double coupling 131,04049 Met-MM +0,H,NO, K Double coupling 131,04049 Met-MM +0,H,NO, K Processor 133,05881 His-SHH +0,H,NO, K Processor 134,05878 Benryloxycationyl Z +H+C,H,O, K FronzoBoc 148,08882 Adamantyloxy O-1-Ada +H,C,H,O, H Double coupling 148,08882 Adamantyloxy O-2-Ada +H+C,H,O, R ProceBoc 148,08882 Adamantyloxy O-2-Ada +H+C,H,O, R ProceBoc 146,08881 Tosy Tos +H+C,H,O, R ProceBoc 146,08881 Ty-SYY O-2-Ada +H+C,H,O, R FroceBoc 163,00532 Ty-SYY O-2-Z +H+C,H,O, R Froce 164,00784 2,4-Dintrophenyl Dnp +H+C,H,O,	128,09496	l ve-sKK		+CcHiaNaO	ĸ	Double coupling
$ \begin{array}{c cccc} \hline 120,2122 \\ \hline 120,2122 \\ \hline 120,2027 \\ \hline 131,0404 \\ \hline 131,0404 \\ \hline 131,0404 \\ \hline 131,0581 \\ \hline 132,0581 \\ \hline 142,0882 \\ \hline Adamantylox \\ \hline Phe>FF \\ \hline 142,0882 \\ \hline Adamantylox \\ \hline 0-1-Ada \\ \hline +1+C_0H_{10}O \\ \hline D \\ \hline Fmoo/Boc \\ \hline 144,0882 \\ \hline Adamantylox \\ \hline 0-2-Ada \\ \hline +1+C_0H_{10}O \\ \hline D \\ \hline Boc \\ \hline 144,0882 \\ \hline Adamantylox \\ \hline 0-2-Ada \\ \hline +1+C_0H_{10}O \\ \hline D \\ \hline Boc \\ \hline 144,0882 \\ \hline Adamantylox \\ \hline 0-2-Ada \\ \hline -1+C_0H_{10}O \\ \hline D \\ \hline Boc \\ \hline 157,0801 \\ \hline 2,6Dichlorobenzyl \\ \hline 157,9601 \\ \hline 2,6Dichlorobenzyl \\ \hline 157,9601 \\ \hline 2,6Dichlorobenzyl \\ \hline 157,9601 \\ \hline 2,6Dichlorobenzyl \\ \hline 144,048,02 \\ \hline 144,048,02 \\ \hline 144,048,02 \\ \hline 157,9601 \\ \hline 2,6Dichlorobenzyl \\ \hline 157,9601 \\ \hline 2,6Dichlorobenzyl \\ \hline 144,044,02 \\ \hline V \\ \hline 166,00146 \\ \hline 2,4Dintthyl_2,6-dioxo-cyclohexylidenei-ethyl \\ \hline Dde \\ \hline +1+C_0H_1O_0 \\ \hline V \\ \hline 166,00146 \\ \hline 2,4Dintthyl_2,6-dioxo-cyclohexylidenei-ethyl \\ \hline Dde \\ \hline +1+C_0H_1O_0 \\ \hline V \\ \hline 180,07864 \\ \hline 2,40-Introphenzyl \\ \hline 0 \\ \hline 180,07864 \\ \hline 2,40-Introphenzyl \\ \hline 0 \\ 180,07864 \\ \hline 2,40-Introphenzyl \\ \hline 0 \\ \hline 0 \\ 180,07864 \\ \hline 2,40-Introphenzyl \\ \hline 0 \\ \hline 0 \\ \hline 180,07873 \\ \hline 0 \\ 0 \\ \hline 0 \\ 180,0787 \\ \hline 0 \\ 0 \\ \hline 0 \\ 180,07864 \\ \hline 2,40-Introphenzyl \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ 0 \\$	129,00100	Glussee		+C_H_NO_	F	Double coupling
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	131 04049	Met->MM		+C-H-NOS	M	Double coupling
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13/ 03678	Benzyloxycarbonyl	7	-H+CHO	K	Emoc/Boc
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12705901		2		к Ц	Double coupling
147,004-11 14-0-11-00 14-0-11-00 14-0-0-00 15-0000-000000000 148,08882 Adamantyloxy O-1-Ada -H+C-11-0,0 D Fmoc/Boc 148,08882 Adamantyloxy O-2-Ada -H+C-11-0,0 R Double coupling 156,0011 Arg>-RR	137,05051			+C6H7N30	E	Double coupling
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	147,00041	Adamentulava	0.1 Ada		D	Emac/Pace
HestoreAdditionDezhadHerch-OpBoc156,00862TosylTosH+C,H-Q,SHRFrmor/Boc156,008672,6-DichlorobenzyldiCH82H+C,H-Q,FYDouble coupling163,08333Tlyr>YYDedH+C,H-Q,FYDouble coupling164,0837314,4-Dimethyl-2,6-dioxo-cyclohexylidene)-ethylDdeH+C,H-Q,HYDouble coupling166,001462,4-DinitrophenylDnpH+C,H-Q,DKFrmoc166,001462,4-DinitrophenylDnpH+C,H-Q,DKFrmoc160,078642,4-Erlimethyc/pecryloxycarbonyl2-CLZH+C,H-Q,DNQBoc180,078642,4-ErlimethoxybenzylTmobH+C,H-Q,SNFrmoc180,078642,4-ErlimethoxybenzylTmobH+C,H-Q,SRFrmoc182,04015Mesitylene-2-sulfonylMtsH+C,H-Q,SRFrmoc182,04015Mesitylene-2-sulfonylMtsH+C,H-Q,SRFrmoc206,130681-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene)-3-methylbutylivDde+H+C,H-Q,SRFrmoc211,947292-Bromobenzyloxycarbonyl2-BrZH+C,H-B,Q,SRFrmocFrmoc222,068081-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene)-3-methylbutylivDde+H+C,H-Q,SRFrmoc222,068081-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene)-3-methylbutylivDde+H+C,H+Q,SRFrmoc222,068081-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene)-3-methylbutylMtr+H+C,H+Q,S </td <td>140,00002</td> <td>Adamentulovu</td> <td>0-1-Aua</td> <td></td> <td>D</td> <td>Pinoc/doc</td>	140,00002	Adamentulovu	0-1-Aua		D	Pinoc/doc
105 105 111 <th111< th=""> <th111< th=""> <th111< th=""></th111<></th111<></th111<>	148,08882	Adamantyloxy	U-2-Ada		U	BUC
10b, (011)Alg->ht1-Left Alg. (0)ftDotable coupling157,999012,6-Dichlorobenzyldi-Cl-BzlI+H-Cl-HL, (Cl-YYFmoc/Boc163,063331:44-ADimethyl-2,6-dioxo-cyclohexylidene)-ethylDdeI+H-Cl-HL, (Cl-YYDouble coupling166,001462,4-DinitrophenylDnpI+H-Cl-HL, (Cl-YKFmoc/Boc166,001462,4-Dinitrophenyl2-Chlzrohonenzyloxycarbonyl2-Cl-ZI+H-Cl-HL, (Cl-YKFmoc/Boc180,05752XanthylXanI+H-Cl-HL, (Cl-YNOBocIBO,078642,4-FinnethoxybenzylTmobI+H-Cl-HL, (Cl-YNFmoc/Boc180,0078642,4-GritmethoxybenzylTmobI+H-Cl-HL, (Cl-YNFmoc/BocIBO,07864SRFmoc182,04015Mesitylene-2-sulfonylMtsI+H-Cl-HL, (Cl-YNBocIBO,07331Trp>-VWVBocIBO,07331Trp>-VWVBocIBO,07331ITp>-VWVBocIBO,07331ITp>-VWVBocIBO,07331ITp>-VWVBocIBO,07331ITp>-VWVBocIBO,07331ITp>-VWVBocIBO,07331ITp>-VWVBocIBO,07331ITp>-VWVBocIBO,07331ITp>-VWVBocIBO,07331ITp>-VWVBocIBO,07331ITp>-VWVBocIBO,07331ITp>-VWVBocIBO,07331ITpVWVBocIBO,07331ITp>-VWVIBO,07331ITp>-VWVIBO,0735RFmocIBO,0735IBO,0735IBO,0735IBO,0735IBO,0735IBO,0735IBO,0735	154,00885	losyl	105	-H+C7H7O2S	HK	Fmoc/Boc
15./399UT 2.(E)Dichlorobenzylu dic/Els2l I+H Y Imod/Boc 163.06333 Tyr>YY Double coupling I-d(A-Dimethyl-2,6-dioxo-cyclohexylidene)-ethyl Dde I+H Fmoc Fmoc 166,00146 2.4-Dinitrophenyl Dnp I+H C_HA_NO_0 K Fmoc 166,00146 2.4-Dinitrophenyl Dnp I+H C_HA_HA_O_0 K Fmoc 180.07864 2.4-Dinitrophenzyloxycarbonyl 2-C-Z I+H NQ Boc 180.07864 2.4-A:Firmethoxybenzyl Tmob I+H NQ Boc 180.07864 2.4-A:Firmethoxybenzyl Mts I+H C_Ha_0,S R Fmoc 182.04015 Mesitylene-2-sulfonyl Mts I+H C_Ha_0,S RW Boc 186.07931 Trp-WW V H H C_Ha_0,Q K Fmoc 212.05072 4-Methoxy-2.3,6-trimethoxyloenzyloencyl Ptr HT I+H C_Ha_0,Q R Fmoc/Boc 220,0938 R Fmoc<	156,10111	Arg->KK		+C ₆ H ₁₂ N ₄ U	К	Double coupling
165,003331/F>YY1 $+4c_BH_BO_2$ YDouble coupling164,003731-44,4-Dimethyl-2,6-dioxo-cyclohexylidene)-ethylDde $-H+C_BH_BO_2$ KFmoc166,001462,4-DinitrophemylDrp $-H+C_BH_BO_2$ KFmoc/Boc167,997812-Chlorobenzyloxycarbonyl2-Ch-Z $-H+C_BH_BO_2$ NBoc180,005752XanthylXan $-H+C_2H_BO_3$ NFmoc180,005762XanthylXan $-H+C_2H_BO_3$ NFmoc182,04015Mesitylene-2-sulfonylMts $-H+C_2H_BO_5$ RFmoc182,04015Mesitylene-2-sulfonylMts $-H+C_2H_BO_5$ RWBoc182,04015Mesitylene-2-sulfonylMts $-H+C_2H_BO_5$ RWBoc182,04015Mesitylene-2-sulfonylMts $-H+C_2H_BO_5$ RWBoc206,130681-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene)-3-methylbutylivDde $-H+C_2H_BO_2$ KFmoc212,050724-Methoxy-2,3.6-trimethyl-benzenesulfonylMtr $-H+C_2H_BO_2$ YBoc220,06086FluorenylmethoxycarbonylFmoc $-H+C_2H_BO_2$ NQFmoc220,07760Biotinylation $-H+C_2H_BO_2$ NQFmoc242,09955TritylTrt $-H+C_2H_BO_2$ NQFmoc242,09955TritylTrt $-H+C_2H_BO_3$ RFmoc250,070582.2,4,6,7-Pentamethyl-dihydrobenzofurane-5-sulfonylPtf $-H+C_2H_BO_3$ RFmoc271,10024-Methoxytrity	157,96901	2,6-Dichlorobenzyl	di-CI-Bzi	-H+C7H5Cl2	Y	Fmoc/Boc
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	163,06333	lyr->YY		+C ₉ H ₉ NO ₂	Y	Double coupling
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	164,08373	1-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene)-ethyl	Dde	-H+C ₁₀ H ₁₃ O ₂	K	Fmoc
167:99781 2-Chorobenzyloxycarbonyl 2-C-Z -H+C ₂ H ₂ ClO ₂ K Fmoc/Boc 180.07572 Xanthyl Xan -H+C ₁₈ H ₉ O NQ Boc 180.07864 2,4,6-Timethoxybenzyl Tmob H+C ₁₈ H ₉ O ₃ N Fmoc 182.04015 Mesitylene-2-sulfonyl Mts -H+C ₆ H ₁₀ O ₅ RW Boc 182.04015 Mesitylene-2-sulfonyl Mts -H+C ₆ H ₁₀ O ₅ RW Boc 188.07931 Trp->VW +H+C ₆ H ₁₀ O ₅ RW Boc Encord 206.13068 1-4,4-Dimethyl-2,6-dioxo-cyclohexylidenel-3-methylbutyl ivDde -H+C ₆ H ₁₀ O ₂ K Fmoc 211.95072 4-Methoxy-2,3,6-trimethyl-benzenesulfonyl 2-BrZ -H+C ₆ H ₁₀ O ₂ R Fmoc/Boc 212.05072 4-Methoxy-2,3,6-trimethyl-benzenesulfonyl Mtr -H+C ₆ H ₁₀ O ₂ R Fmoc/Boc 212.05072 4-Methoxy-2,3,6-trimethyl-benzenesulfonyl Fmoc -H+C ₆ H ₁₀ O ₂ K Chemical Modification 226,07760 Biotinylation +H-C ₆ H ₁₀ O ₂ K Chemical Modification 242,10955 Trityl Trt	166,00146	2,4-Dinitrophenyl	Dnp	$-H+C_6H_3N_2O_4$	Н	Boc
180.07562XanthylXan-H+C ₁₃ H ₅ ONQBoc180.078642,4,6-TrimethoxybenzylTrnob-H+C ₄ H ₁₉ O ₃ NFrnoc182,04015Mesitylene-2-sulfonylMts-H+C ₄ H ₁₀ O ₅ SRFrnoc182,04015Mesitylene-2-sulfonylMts-H+C ₄ H ₁₀ O ₅ SRWBoc180,07931Trp->WW+C ₁₁ H ₁₉ N ₂ OWDouble coupling206,130681-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene)-3-methylbutylivDde-H+C ₄ H ₄ BrO ₂ YBoc211,947292-Bromobenzyloxycarbonyl2-Br-Z-H+C ₆ H ₄ BrO ₂ YBoc211,950724-Methoxy-2,3,6-trimethyl-brazenesulfonylMtr-H+C ₁₉ H ₁₉ O ₂ RFrnoc/Boc222,06808FluorenylmethoxycarbonylFrnoc-H+C ₁₉ H ₁₉ O ₂ KChemical Modification226,07760Biotinylation-H+C ₁₉ H ₁₉ O ₂ KChemical Modification226,09384,4-DimethoxybenzhydrylMbh-H+C ₁₉ H ₁₉ O ₂ KChemical Modification242,10955TritylTrt-H+C ₁₉ H ₁₉ O ₂ RFrnoc242,10955TritylTrt-H+C ₁₉ H ₁₉ O ₂ RFrnoc250,082022,2,4,6,7-Pentamethyl-dihydrobenzofurane-5-sulfonylPbf-H+C ₁₉ H ₁₉ O ₂ SRFrnoc256,072762,5,78-Pentamethyl-chromane-6-sulfonylPmc-H+C ₁₉ H ₁₉ O ₂ SRFrnoc250,082022,2,4,6,7-Pentamethyl-chromane-6-sulfonylPmc-H+C ₁₉ H ₁₉ O ₂ SRFrnoc250,082022,2,5	167,99781	2-Chlorobenzyloxycarbonyl	2-CI-Z	-H+C ₈ H ₆ ClO ₂	K	Fmoc/Boc
180.07864 2,4,6-Trimethoxybenzyl Tmob -H+C ₁₉ H ₁₃ O ₃ N Fmoc 182,04015 Mesitylene-2-sulfonyl Mts -H+C ₄ H ₁₁ O ₂ S R Fmoc 182,04015 Mesitylene-2-sulfonyl Mts -H+C ₄ H ₁₁ O ₂ S RW Boc 186,07331 Trp->WW ++C ₁₁ H ₁₉ N ₂ O W Double coupling 206,13068 1-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene)-3-methylbutyl ivDde -H+C ₁₂ H ₁₉ O ₂ K Fmoc 211,94729 2-Bromobenzyloxycarbonyl 2-BrZ -H+C ₆₄ H ₈ DO ₂ Y Boc 212,05072 4-Methoxy-2,3,6-trimethyl-benzenesulfonyl Mtr -H+C ₁₉ H ₁₉ O ₂ K Chemical Modification 222,06808 Fluorenylmethoxycarbonyl Fmoc -H+C ₁₉ H ₁₉ O ₂ NQ Fmoc 224,0955 Trityl Trt -H+C ₁₉ H ₁₉ O ₂ NQ Fmoc 242,10955 Trityl Trt -H+C ₁₉ H ₁₉ O ₂ NQ Fmoc 256,12520 4-Methyltrityl Mtt -H+C ₁₉ H ₁₉ O ₃ R Fmoc	180,05752	Xanthyl	Xan	-H+C ₁₃ H ₉ O	NQ	Boc
182,04015Mesitylene-2-sulfonylMts $-H+C_2H_{10}O_S$ RFmoc182,04015Mesitylene-2-sulfonylMts $-H+C_2H_{10}O_S$ RWBoc186,07931Trp->WW $+C_{11}H_{10}V_2$ WDouble coupling206,13068 $1/4(4-Dimethyl-2,6-dioxo-cyclohexylidene)-3-methylbutylivDde-H+C_{12}H_{10}O_2KFmoc211,947292-Bromobenzyloxycarbonyl2-Br-Z-H+C_6H_6BO_2YBoc212,050724-Methoxy-2,3,6-trimethyl-benzenesulfonylMtr-H+C_{10}H_{10}O_2all Amino acidsFmoc222,06808FluorenylmethoxycarbonylFmoc-H+C_{10}H_{10}N_5,O_2KChemical Modification226,07760Biotinylation+C_{10}H_{11}N_5,O_2KChemical Modification224,10955TritylTrt-H+C_{10}H_{10}S_1NQFmoc242,10955TritylTrt-H+C_{10}H_{10}S_5RFmoc252,082022,2,4,6,7-Pentamethyl-dihydrobenzofurane-5-sulfonylPbf-H+C_{10}H_{10}O_5RFmoc256,125204-MethytritylMtt-H+C_{20}H_{10}O_5RFmoc272,120124-MethoxytritylMmt-H+C_{20}H_{20}O_5RFmoc274,07582-Chlorotrityl2-Cl-Trt-H+C_{20}H_{20}O_5RFmoc274,107582-Chlorotrityl2-Cl-Trt-H+C_{20}H_{20}O_5RFmoc274,107244-Methytrityl-2,6-dioxo-cyclohexylidene)-3-methylbutyl-aminojbenzyloxyODmab-H+C_{20}H_{20}N_0_5DEFm$	180,07864	2,4,6-Trimethoxybenzyl	Tmob	-H+C ₁₀ H ₁₃ O ₃	N	Fmoc
182,04015Mesitylene-2-sulfonylMts $-H+C_9H_{11}O_2S$ RWBoc186,07331Trp->VWV $+C_{11}H_{10}O_2$ WDouble coupling206,13068 $1-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene)-3-methylbutylivDde+H+C_{13}H_{19}O_2KFrmoc211,947292-Bromobenzyloxycarbonyl2-BrZ+H+C_8H_{B1}O_2YBoc212,050724-Methoxy-2,3,6-trimethyl-benzenesulfonylMtr-H+C_{13}H_{13}O_3SRFrmoc/Boc222,06808FluorenylmethoxycarbonylFrmoc-H+C_{13}H_{11}O_2all Amino acidsFrmoc226,07760Biotinylation+C_{10}H_{14}N_5,O_2KChemical Modification226,09384,4-DimethoxybenzhydrylMbh-H+C_{13}H_{15}O_2NQFrmoc242,10955TritylTrt-H+C_{13}H_{15}O_2NQFrmoc242,10955TritylTrt-H+C_{13}H_{15}O_3SRFmoc242,10955TritylMtt-H+C_{13}H_{12}O_3SRFmoc250,02022,2,4,6,7-Pentamethyl-dihydrobenzofurane-5-sulfonylPbf-H+C_{13}H_{12}O_3SRFmoc250,125204-MethyltritylMtt-H+C_{20}H_{12}O_3SRFmoc272,120124-MethoxytritylMmt-H+C_{20}H_{10}O_3SRFmoc274,070582-ChlorotritylQCFrmoc14(N-14,4-Dimethyl-2,6-dioxo-cyclohexylidene)-3-methylbutyl-amino/benzyloxyODmab-H+C_{20}H_{10}N_06CC380,08211Fluorescein-H+C_{20}$	182,04015	Mesitylene-2-sulfonyl	Mts	-H+C ₉ H ₁₁ O ₂ S	R	Fmoc
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	182,04015	Mesitylene-2-sulfonyl	Mts	-H+C ₉ H ₁₁ O ₂ S	RW	Boc
206,13068 1-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene)-3-methylbutyl ivDde -H+C ₁₃ H ₁₉ O ₂ K Fmoc 211,94729 2-Bromobenzyloxycarbonyl 2-Br-Z -H+C ₁₃ H ₁₉ O ₂ K Fmoc 212,05072 4-Methoxy-2,3,6-trimethyl-benzenesulfonyl Mtr -H+C ₁₉ H ₁₉ O ₂ S R Fmoc/Boc 222,06808 Fluorenylmethoxycarbonyl Fmoc -H+C ₁₉ H ₁₉ O ₂ all Amino acids Fmoc 226,07760 Biotinylation -H+C ₁₉ H ₁₉ O ₂ K Chemical Modification 226,09938 4,4'-Dimethoxybenzhydryl Mbh -H+C ₁₉ H ₁₉ O ₂ NQ Fmoc 242,10955 Trityl Trt -H+C ₁₉ H ₁₉ O ₂ NQ Fmoc 242,10955 Trityl Trt -H+C ₁₉ H ₁₅ CHNQ Boc 252,08202 2,2,4,6,7-Pentamethyl-dihydrobenzofurane-5-sulfonyl Pbf -H+C ₁₃ H ₁₉ O ₃ S R Fmoc 266,09767 2,2,5,78-Pentamethyl-chromane-6-sulfonyl Pmc -H+C ₁₄ H ₁₉ O ₃ S R Fmoc 272,12012 4-Methoxytrityl Mmt -H+C ₂₀ H ₂₀ H ₂₀ O	186,07931	Trp->WW		+C ₁₁ H ₁₀ N ₂ O	W	Double coupling
211,94729 2-Bromobenzyloxycarbonyl 2-Br-Z -H+C ₈ H ₆ BrO ₂ Y Boc 212,05072 4-Methoxy-2,3,6-trimethyl-benzenesulfonyl Mtr -H+C ₁₀ H ₁₃ O ₃ S R Fmoc/Boc 222,06808 Fluorenylmethoxycarbonyl Fmoc -H+C ₁₀ H ₁₃ O ₂ S R Fmoc/Boc 226,07760 Biotinylation +C ₁₀ H ₁₄ N ₂ S ₁ O ₂ All Amino acids Fmoc 226,09938 4,4'-Dimethoxybenzhydryl Mbh -H+C ₁₀ H ₁₅ O ₂ NQ Fmoc 242,10955 Trityl Trt -H+C ₁₉ H ₁₅ CHNOST Fmoc 242,10955 Trityl Trt -H+C ₁₉ H ₁₅ CHNQ Boc 252,08202 2,2,4,6,7-Pentamethyl-dihydrobenzofurane-5-sulfonyl Pbf -H+C ₁₃ H ₁₂ O ₃ S R Fmoc 266,09767 2,2,5,78-Pentamethyl-chromane-6-sulfonyl Pmc -H+C ₁₀ H ₁₉ O ₃ S R Fmoc 272,12012 4-Methyltrityl Mmt -H+C ₂₀ H ₁₇ O C Fmoc 276,07058 2-Chlorotrityl 2-Chlorotrityl 2-Chlorotrityl Fmoc Fmoc	206,13068	1-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene)-3-methylbutyl	ivDde	-H+C ₁₃ H ₁₉ O ₂	К	Fmoc
212,05072 4-Methoxy-2,3,6-trimethyl-benzenesulfonyl Mtr -H+C ₁₀ H ₁₂ O ₂ S R Fmoc/Boc 222,06808 Fluorenylmethoxycarbonyl Fmoc -H+C ₁₀ H ₁₂ O ₂ S All Amino acids Fmoc 226,07760 Biotinylation +C ₁₀ H ₁₄ N ₂ S ₁ O ₂ K Chemical Modification 226,09938 4,4'-Dimethoxybenzhydryl Mbh -H+C ₁₀ H ₁₅ O ₂ NQ Fmoc 242,10955 Trityl Trt -H+C ₁₀ H ₁₅ O ₂ NQ Boc 242,10955 Trityl Trt -H+C ₁₀ H ₁₅ CHNOST Fmoc 242,10955 Trityl Trt -H+C ₁₀ H ₁₅ CHNQ Boc 252,08202 2,2,4,6,7-Pentamethyl-dihydrobenzofurane-5-sulfonyl Pbf -H+C ₁₃ H ₁₇ O ₃ S R Fmoc 266,09767 2,2,5,78-Pentamethyl-chromane-6-sulfonyl Pmc -H+C ₁₄ H ₁₉ O ₃ S R Fmoc 272,12012 4-Methoxytrityl Mmt -H+C ₂₀ H ₁₇ O C Fmoc 327,18344 4(N-11-(4, 4-Dimethyl-2,6-dioxo-cyclohexylidene)-3- methylbutyll-amino}benzyloxy ODmab -H+C ₂₀ H ₁₆ NO ₃	211,94729	2-Bromobenzyloxycarbonyl	2-Br-Z	-H+C ₈ H ₆ BrO ₂	Y	Boc
222,06808FluorenylmethoxycarbonylFmoc $-H+C_{15}H_{11}O_2$ all Amino acidsFmoc226,07760Biotinylation $+C_{10}H_{14}N_2S_1O_2$ KChemical Modification226,099384,4'-DimethoxybenzhydrylMbh $-H+C_{15}H_{15}O_2$ NQFmoc242,10955TritylTrt $-H+C_{19}H_{15}$ CHNQSTFmoc242,10955TritylTrt $-H+C_{19}H_{15}$ CHNQBoc252,082022,2,4,6,7-Pentamethyl-dihydrobenzofurane-5-sulfonylPbf $-H+C_{13}H_{17}O_3S$ RFmoc256,097672,2,5,78-Pentamethyl-dihydrobenzofurane-6-sulfonylPmc $-H+C_{14}H_{19}O_3S$ RFmoc272,120124-MethyltritylMmt $-H+C_{20}H_{17}O$ CFmoc276,070582-ChlorotritylZ-ChlorotritylZ-ChlorotritylYFmoc327,183444(N-[1-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene]-3-methylbutyl]-amino]benzyloxyODmab $-H+C_{22}H_{18}N_0O_8$ DEFmoc388,08211Fluorescein $+C_{22}H_{16}N_0S_5$ CKRSChemical Modification421,07324Fluorescein $-H+C_{20}H_{40}N_0O_8$ KChemical Modification431,28920Biotinylation $-H+C_{20}H_{40}N_6O_8$ KChemical Modification672,29816CyDye-Cy3CChemical Modification $-H+C_{20}H_{40}N_6O_8$ CChemical Modification	212,05072	4-Methoxy-2,3,6-trimethyl-benzenesulfonyl	Mtr	-H+C ₁₀ H ₁₃ O ₃ S	R	Fmoc/Boc
226,07760Biotinylation $+C_{10}H_{14}N_2S_1O_2$ KChemical Modification226,099384,4'-DimethoxybenzhydrylMbh $-H+C_{15}H_{15}O_2$ NQFmoc242,10955TritylTrt $-H+C_{19}H_{15}$ CHNQSTFmoc242,10955TritylTrt $-H+C_{19}H_{15}$ CHNQBoc252,082022,2,4,6,7-Pentamethyl-dihydrobenzofurane-5-sulfonylPbf $-H+C_{13}H_{17}O_3S$ RFmoc256,125204-MethyltritylMtt $-H+C_{20}H_{17}$ HKFmoc266,097672,2,5,78-Pentamethyl-chromane-6-sulfonylPmc $-H+C_{14}H_{19}O_3S$ RFmoc272,120124-MethoxytritylMmt $-H+C_{20}H_{17}O$ CFmoc276,070582-Chlorotrityl2-CL-Trt $-H+C_{19}H_{14}Cl$ YFmoc327,183444(N-[1-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene)-3-methylbutyl]-amino]benzyloxyODmab $-H+C_{20}H_{20}N_{03}$ DEFmoc388,08211Fluorescein $+C_{22}H_{18}N_1O_6$ CChemical Modification421,07324Fluorescein $-H+C_{20}H_{40}N_5O_5$ CKRSChemical Modification431,28920Biotinylation $-H+C_{20}H_{40}N_5O_6$ CChemical Modification672,29816CyDye-Cy3CChemical Modification $-H+C_{20}H_{40}N_5O_6$ CChemical Modification	222,06808	Fluorenylmethoxycarbonyl	Fmoc	-H+C ₁₅ H ₁₁ O ₂	all Amino acids	Fmoc
226,09938 4,4'-Dimethoxybenzhydryl Mbh -H+C ₁₅ H ₁₅ O ₂ NQ Fmoc 242,10955 Trityl Trt -H+C ₁₉ H ₁₅ CHNQST Fmoc 242,10955 Trityl Trt -H+C ₁₉ H ₁₅ CHNQ Boc 252,08202 2,2,4,6,7-Pentamethyl-dihydrobenzofurane-5-sulfonyl Pbf -H+C ₁₃ H ₁₇ O ₃ S R Fmoc 256,12520 4-Methyltrityl Mtt -H+C ₂₀ H ₁₇ O ₃ S R Fmoc 266,09767 2,2,5,7,8-Pentamethyl-chromane-6-sulfonyl Pmc -H+C ₁₄ H ₁₉ O ₃ S R Fmoc 272,12012 4-Methoxytrityl Mmt -H+C ₂₀ H ₁₇ O C Fmoc 276,07058 2-Chlorotrityl 2-CLTrt -H+C ₁₉ H ₁₄ Cl Y Fmoc 327,18344 4(N-[1-4,4-Dimethyl-2,6-dioxo-cyclohexylidene]-3- methylbutyl]-amino]benzyloxy ODmab -H+C ₂₀ H ₂₈ NO ₃ DE Fmoc 388,08211 Fluorescein +C ₂₂ H ₁₄ N ₁₀ 6 C Chemical Modification 421,07324 Fluoresceinisothiocyanat FITC +C ₂₂ H ₁₄ N ₁₀ O ₅ CKRS	226,07760	Biotinylation		$+C_{10}H_{14}N_2S_1O_2$	K	Chemical Modification
242,10955 Trityl Trt -H+C ₁₉ H ₁₅ CHNQST Fmoc 242,10955 Trityl Trt -H+C ₁₉ H ₁₅ CHNQ Boc 252,08202 2,2,4,6,7-Pentamethyl-dihydrobenzofurane-5-sulfonyl Pbf -H+C ₁₃ H ₁₇ O ₃ S R Fmoc 256,12520 4-Methyltrityl Mtt -H+C ₂₀ H ₁₇ HK Fmoc 266,09767 2,2,5,7,8-Pentamethyl-chromane-6-sulfonyl Pmc -H+C ₁₄ H ₁₉ O ₃ S R Fmoc 272,12012 4-Methoxytrityl Mmt -H+C ₂₀ H ₁₇ O C Fmoc 276,07058 2-Chlorotrityl 2-Cl-Trt -H+C ₁₉ H ₁₆ Cl Y Fmoc 327,18344 4(N-[1-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene]-3- methylbutyl]-amino]benzyloxy ODmab -H+C ₂₀ H ₂₈ NO ₃ DE Fmoc 388,08211 Fluorescein +C ₂₂ H ₁₄ N ₁₀ 6 C Chemical Modification 421,07324 Fluoresceinisothiocyanat FITC +C ₂₂ H ₁₄ N ₁₀ O ₅ CKRS Chemical Modification 431,26920 Biotinylation -H+C ₂₀ H ₄₀ N ₆ O ₈ S K Chemical Modi	226,09938	4,4'-Dimethoxybenzhydryl	Mbh	-H+C ₁₅ H ₁₅ O ₂	NQ	Fmoc
242,10955 Trityl Trt -H+C ₁₉ H ₁₅ CHNQ Boc 252,08202 2,2,4,6,7-Pentamethyl-dihydrobenzofurane-5-sulfonyl Pbf -H+C ₁₃ H ₁₇ O ₃ S R Fmoc 256,12520 4-Methyltrityl Mtt -H+C ₂₀ H ₁₇ HK Fmoc 266,09767 2,2,5,7,8-Pentamethyl-chromane-6-sulfonyl Pmc -H+C ₁₄ H ₁₉ O ₃ S R Fmoc 272,12012 4-Methoxytrityl Mmt -H+C ₂₀ H ₁₇ O C Fmoc 276,07058 2-Chlorotrityl 2-Cl-Trt -H+C ₁₉ H ₄₆ Cl Y Fmoc 327,18344 4(N-[1-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene)-3- methylbutyl]-amino]benzyloxy ODmab -H+C ₂₀ H ₂₈ NO ₃ DE Fmoc 388,08211 Fluorescein +C ₂₂ H ₁₄ N ₁₀ 6 C Chemical Modification 421,07324 Fluoresceinisothiocyanat FITC +C ₂₂ H ₁₄ N ₁₀ O ₅ CKRS Chemical Modification 431,26920 Biotinylation -H+C ₂₀ H ₄₀ N ₆ O ₈ S K Chemical Modification 672,29816 CyDye-Cy3 -C Chemical Modification -H+C ₂₀ H	242,10955	Trityl	Trt	-H+C ₁₉ H ₁₅	CHNQST	Fmoc
252,08202 2,2,4,6,7-Pentamethyl-dihydrobenzofurane-5-sulfonyl Pbf -H+C ₁₃ H ₁₇ O ₃ S R Fmoc 256,12520 4-Methyltrityl Mtt -H+C ₂₀ H ₁₇ HK Fmoc 266,09767 2,2,5,7,8-Pentamethyl-chromane-6-sulfonyl Pmc -H+C ₁₄ H ₁₉ O ₃ S R Fmoc 272,12012 4-Methoxytrityl Mmt -H+C ₂₀ H ₁₇ O C Fmoc 276,07058 2-Chlorotrityl 2-CLTrt -H+C ₁₉ H ₁₄ Cl Y Fmoc 327,18344 4(N-[1-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene]-3- methylbutyl]-amino]benzyloxy ODmab -H+C ₂₀ H ₂₆ NO ₃ DE Fmoc 388,08211 Fluorescein +C ₂₂ H ₁₄ N ₁₀ 6 C Chemical Modification 421,07324 Fluoresceinisothiocyanat FITC +C ₂₂ H ₁₄ N ₁₀ O ₅ CKRS Chemical Modification 431,26920 Biotinylation -H+C ₂₀ H ₄₀ N ₆ O ₈ K Chemical Modification 672,29816 CyDye-Cy3 -K Chemical Modification -H+C ₂₀ H ₄₀ N ₆ S ₁₀ C Chemical Modification	242,10955	Trityl	Trt	-H+C ₁₉ H ₁₅	CHNQ	Boc
256,12520 4-Methyltrityl Mtt -H+C ₂₀ H ₁₇ HK Fmoc 266,09767 2,2,5,7,8-Pentamethyl-chromane-6-sulfonyl Pmc -H+C14H ₁₉ O ₃ S R Fmoc 272,12012 4-Methoxytrityl Mmt -H+C20H ₁₇ O C Fmoc 276,07058 2-Chlorotrityl 2-CLTrt -H+C18H ₁₈ O ₁ Y Fmoc 327,18344 4(N-[1-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene]-3- methylbutyl]-amino]benzyloxy ODmab -H+C20H ₂₈ NO ₃ DE Fmoc 388,08211 Fluorescein +C22H ₁₄ N ₁₀ 6 C Chemical Modification 421,07324 Fluoresceinisothiocyanat FITC +C22H ₁₄ N ₁₀ O ₅ CKRS Chemical Modification 431,26920 Biotinylation -H+C20H ₄₀ N ₄ O ₄ S K Chemical Modification 672,29816 CyDye-Cy3 -KcysH ₄₄ N ₄₅ S ₁₀₆ C Chemical Modification	252,08202	2,2,4,6,7-Pentamethyl-dihydrobenzofurane-5-sulfonyl	Pbf	-H+C ₁₃ H ₁₇ O ₃ S	R	Fmoc
266,09767 2,2,5,7,8-Pentamethyl-chromane-6-sulfonyl Pmc -H+C14His00s R Fmoc 272,12012 4-Methoxytrityl Mmt -H+C20Hir20 C Fmoc 276,07058 2-Chlorotrityl 2-CLTrt -H+C18His00s Y Fmoc 327,18344 4{N-[1-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene]-3- methylbutyl]-amino]benzyloxy ODmab -H+C20His00s DE Fmoc 388,08211 Fluorescein +C22His00s C Chemical Modification 421,07324 Fluoresceinisothiocyanat FITC +C22His00s CKRS Chemical Modification 431,26920 Biotinylation -H+C20His00s K Chemical Modification 672,29816 CyDye-Cy3 -Cys3 -C Chemical Modification	256,12520	4-Methyltrityl	Mtt	-H+C ₂₀ H ₁₇	НК	Fmoc
272,12012 4-Methoxytrityl Mmt -H+C ₂₀ H ₁₇ O C Fmoc 276,07058 2-Chlorotrityl 2-Cl-Trt -H+C ₁₉ H ₁₄ Cl Y Fmoc 327,18344 4{N-[1-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene]-3- methylbutyl]-amino]benzyloxy ODmab -H+C ₂₀ H ₂₆ NO ₃ DE Fmoc 388,08211 Fluorescein +C ₂₂ H ₁₄ N ₁ O ₆ C Chemical Modification 421,07324 Fluoresceinisothiocyanat FITC +C ₂₂ H ₁₆ N ₃ O ₅ CKRS Chemical Modification 431,26920 Biotinylation -H+C ₂₀ H ₄₀ N ₆ O ₈ S K Chemical Modification 672,29816 CyDye-Cy3 +C ₅₇ H ₄₀ N ₆ S ₁₀ S ₁₀ S C Chemical Modification	266,09767	2,2,5,7,8-Pentamethyl-chromane-6-sulfonyl	Pmc	-H+C ₁₄ H ₁₉ O ₃ S	R	Fmoc
276,07058 2-Chlorotrityl 2-CLTrt -H+C ₁₉ H ₁₄ Cl Y Fmoc 327,18344 4{N-[1-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene)-3- methylbutyl]-amino]benzyloxy ODmab -H+C ₂₀ H ₂₆ NO ₃ DE Fmoc 388,08211 Fluorescein +C ₂₂ H ₁₄ N ₁ O ₆ C Chemical Modification 421,07324 Fluoresceinisothiocyanat FITC +C ₂₂ H ₁₆ N ₃ O ₅ CKRS Chemical Modification 431,26920 Biotinylation -H+C ₂₀ H ₄₀ N ₄ O ₄ S K Chemical Modification 672,29816 CyDye-Cy3 +C ₅₇ H ₄₄ N ₄ S ₁ O ₆ C Chemical Modification	272,12012	4-Methoxytrityl	Mmt	-H+C ₂₀ H ₁₇ O	С	Fmoc
327,18344 4{N-[1-[4,4-Dimethyl-2,6-dioxo-cyclohexylidene]-3- methylbutyl]-amino]benzyloxy ODmab -H+C ₂₀ H ₂₆ NO ₃ DE Fmoc 388,08211 Fluorescein +C ₂₂ H ₁₄ N ₁ O ₆ C Chemical Modification 421,07324 Fluoresceinisothiocyanat FITC +C ₂₂ H ₁₆ N ₂ O ₅ CKRS Chemical Modification 431,26920 Biotinylation -H+C ₂₀ H ₄₀ N ₄ O ₄ S K Chemical Modification 672,29816 CyDye-Cy3 +C ₂₇ H ₄₆ N ₄ S ₁ O ₆ C Chemical Modification	276,07058	2-Chlorotrityl	2-CI-Trt	-H+C ₁₉ H ₁₄ Cl	Y	Fmoc
388,08211 Fluorescein +C22H_14N_1O8 C Chemical Modification 421,07324 Fluoresceinisothiocyanat FITC +C221S_1H_18N_2O5 CKRS Chemical Modification 431,26920 Biotinylation -H+C20H_46N_4O4S K Chemical Modification 672,29816 CyDye-Cy3 +C37H_46N_5O6 C Chemical Modification	327,18344	4{N-[1-(4,4-Dimethyl-2,6-dioxo-cyclohexylidene)-3- methylbutyl]-amino}benzyloxy	ODmab	-H+C ₂₀ H ₂₆ NO ₃	DE	Fmoc
421,07324 Fluoresceinisothiocyanat FITC +C21S,H1s/N2O5 CKRS Chemical Modification 431,26920 Biotinylation -H+C20Ha0N4O4S K Chemical Modification 672,29816 CyDye-Cy3 +C37Ha4Na5O6 C Chemical Modification	388,08211	Fluorescein		+C ₂₂ H ₁₄ N ₁ O ₆	С	Chemical Modification
431,26920 Biotinylation -H+C ₂₀ H ₄₀ N ₄ O ₄ S K Chemical Modification 672,29816 CyDye-Cy3 +C ₃₇ H ₄₆ N ₄ S ₅ O ₈ C Chemical Modification	421,07324	Fluoresceinisothiocyanat	FITC	+C ₂₁ S ₁ H ₁₅ N ₃ O ₅	CKRS	Chemical Modification
672,29816 CyDye-Cy3 +C ₃₇ H ₄₄ N ₄ S ₁ O ₆ C Chemical Modification	431,26920	Biotinylation		-H+C ₂₀ H ₄₀ N ₄ O ₄ S	К	Chemical Modification
	672,29816	CyDve-Cy3	1	+C37H44N4S1O6	С	Chemical Modification

Molecular Weights of Amino Acid Residues

Amino Acid Structure	Name	Symbol	1 Letter Code	Elemental Composition (Residue)	Monoisotopic Mass (Residue)	Averaged Mass (Residue)
H,N, H,C,OH CH ₃	Alanine	Ala	A	C₃H₅NO	71.03712	71.08
H,N,H,C,OH CH, SH	Cysteine	Cys	С	C₃H₅NOS	103.00919	103.15
H,N,B,C,OH CH, O OH	Aspartic acid	Asp	D	$C_4H_5NO_3$	115.02695	115.09
H,N,H,CH, CH, CH, CH,	Glutamic acid	Glu	E	C ₅ H ₇ NO ₃	129.0426	129.12
H,N, H,C,OH	Phenylanaline	Phe	F	C ₉ H ₉ NO	147.06842	147.18
H,N, B,C,OH	Glycine	Gly	G	C ₂ H ₃ NO	57.02146	57.05
H,N,H,COH CH,NH	Histidine	His	Н	C ₆ H ₇ N ₃ O	137.05891	137.14
CH, CH, CH, CH, CH, CH, CH, CH, CH, CH,	Isoleucine	lle	1	C ₆ H ₁₁ NO	113.08407	113.16
H,N, H,COH CH, CH, CH, CH, CH, NH,	Lysine	Lys	К	C ₆ H ₁₂ N ₂ O	128.09497	128.17
H,N, H,C,OH CH, CH, CH,CH,	Leucine	Leu	L	C ₆ H ₁₁ NO	113.08407	113.16

Masses of Terminal Groups

C-Terminal Groups Free Acid Amide Monoisotopic Mass 17.00274 16.01872 Averaged Mass 17.00735 16.02262

Amino Acid Structure	Name	Symbol	1 Letter Code	Elemental Composition (Residue)	Monoisotopic Mass (Residue)	Averaged Mass (Residue)
H,N,H,COH CH ₂ ,CH ₂ ,CH ₃ CH ₂ ,SH ₃	Methionine	Met	М	C₅H₃NOS	131.04049	131.20
H,N,H,COH CH, CH, O NH,	Asparagine	Asn	N	$C_4H_6N_2O_2$	114.04293	114.10
$\begin{array}{c} H_{N} = H_{C} C_{OH} \\ C_{N_{2}} C_{N_{1}} \\ C_{N_{2}} C_{N_{1}} \\ C_{N_{2}} \end{array}$	Proline	Pro	Р	C₅H ₇ NO	97.05277	97.12
H,N, H,COH CH, CH, CH, O NH,	Glutamine	Gln	Q	C ₅ H ₈ N ₂ O ₂	128.05858	128.13
H,N,H,COH CH, CH, CH, NH HN,NH,	Arginine	Arg	R	C ₆ H ₁₂ N ₄ O	156.10112	156.19
H,N,H,COH CH, OH	Serine	Ser	S	C ₃ H ₅ NO ₂	87.03203	87.08
CH CH OH	Threonine	Thr	Т	C ₄ H ₇ NO ₂	101.04768	101.11
H,N, H,COH CH, CH, CH,	Valine	Val	V	C₅H₃NO	99.06842	99.13
CH, NH	Tryptophan	Trp	W	C ₁₁ H ₁₀ N ₂ O	186.07932	186.21
HIN BCOM	Tyrosine	Tyr	Y	C ₉ H ₉ NO ₂	163.06333	163.18
L	N-Terminal Hydrogen N-Formyl N-Acetyl	Groups	L Composi H HCO CH₃CC	tion Monois 29 20 43	1 sotopic Mass 1.00783 9.00274 3.01839	Averaged Mas 1.0079 29.01808 43.04447

Amino Acid Calculator Table

Residues Sorted by Molecular Weight

Sums and Differences of 2 Amino Acid Residues

Residue Mass Differences

		G	Α	S	Р	v	т	с	I	L
		57.05203	71.07902	87.07832	97.11704	99.13299	101.10531	103.14344	113.15998	113.15998
G	57.05203	114.10406	14.02699	30.02629	40.06501	42.08097	44.05328	46.09141	56.10795	56.10795
Α	71.07902	128.13105	142.15804	15.99931	26.03803	28.05398	30.02629	32.06442	42.08097	42.08097
S	87.07832	144.13035	158.15734	174.15665	10.03872	12.05467	14.02699	16.06512	26.08166	26.08166
Р	97.11704	154.16907	168.19606	184.19537	194.23409	2.01595	3.98827	6.02640	16.04294	16.04294
v	99.13299	156.18502	170.21201	186.21132	196.25004	198.26599	1.97232	4.01045	14.02699	14.02699
т	101.10531	158.15734	172.18433	188.18363	198.22235	200.23831	202.21062	2.03813	12.05467	12.05467
С	103.14344	160.19547	174.22246	190.22176	200.26048	202.27644	204.24875	206.28688	10.01654	10.01654
I	113.15998	170.21201	184.23900	200.23831	210.27703	212.29298	214.26529	216.30342	226.31997	0.00000
L	113.15998	170.21201	184.23900	200.23831	210.27703	212.29298	214.26529	216.30342	226.31997	226.31997
N	114.10406	171.15609	185.18308	201.18238	211.22110	213.23705	215.20937	217.24750	227.26404	227.26404
D	115.08866	172.14069	186.16768	202.16699	212.20571	214.22166	216.19398	218.23211	228.24865	228.24865
٥	128.13105	185.18308	199.21006	215.20937	225.24809	227.26404	229.23636	231.27449	241.29103	241.29103
К	128.17468	185.22671	199.25370	215.25300	225.29172	227.30768	229.27999	231.31812	241.33466	241.33466
E	129.11565	186.16768	200.19467	216.19398	226.23270	228.24865	230.22096	232.25909	242.27564	242.27564
м	131.19742	188.24945	202.27644	218.27574	228.31446	230.33041	232.30273	234.34086	244.35740	244.35740
Н	137.14152	194.19355	208.22054	224.21985	234.25857	236.27452	238.24684	240.28497	250.30151	250.30151
F	147.17714	204.22917	218.25616	234.25546	244.29418	246.31014	248.28245	250.32058	260.33712	260.33712
R	156.18813	213.24016	227.26714	243.26645	253.30517	255.32112	257.29344	259.33157	269.34811	269.34811
Y	163.17645	220.22848	234.25546	250.25477	260.29349	262.30944	264.28176	266.31989	276.33643	276.33643
w	186.21391	243.26594	257.29293	273.29224	283.33096	285.34691	287.31922	289.35735	299.37390	299.37390

Amino Acid Calculator Table

N	D	٥	к	E	М	н	F	R	Y	w
114.10406	115.08866	128.13105	128.17468	129.11565	131.19742	137.14152	147.17714	156.18813	163.17645	186.21391
57.05203	58.03664	71.07902	71.12265	72.06362	74.14539	80.08950	90.12511	99.13610	106.12442	129.16188
43.02504	44.00965	57.05203	57.09566	58.03664	60.11840	66.06251	76.09812	85.10911	92.09743	115.13490
27.02574	28.01034	41.05272	41.09636	42.03733	44.11910	50.06320	60.09882	69.10980	76.09812	99.13559
16.98702	17.97162	31.01400	31.05764	31.99861	34.08038	40.02448	50.06010	59.07108	66.05940	89.09687
14.97106	15.95567	28.99805	29.04169	29.98266	32.06442	38.00853	48.04415	57.05513	64.04345	87.08092
12.99875	13.98335	27.02574	27.06937	28.01034	30.09211	36.03621	46.07183	55.08282	62.07113	85.10860
10.96062	11.94522	24.98761	25.03124	25.97221	28.05398	33.99808	44.03370	53.04469	60.03301	83.07047
0.94407	1.92868	14.97106	15.01470	15.95567	18.03744	23.98154	34.01716	43.02814	50.01646	73.05393
0.94407	1.92868	14.97106	15.01470	15.95567	18.03744	23.98154	34.01716	43.02814	50.01646	73.05393
228.20812	0.98461	14.02699	14.07062	15.01160	17.09336	23.03747	33.07308	42.08407	49.07239	72.10985
229.19272	230.17733	13.04238	13.08602	14.02699	16.10875	22.05286	32.08848	41.09946	48.08778	71.12525
242.23510	243.21971	256.26209	0.04364	0.98461	3.06637	9.01048	19.04609	28.05708	35.04540	58.08287
242.27874	243.26335	256.30573	256.34936	0.94097	3.02274	8.96684	19.00246	28.01345	35.00176	58.03923
243.21971	244.20432	257.24670	257.29033	258.23131	2.08177	8.02587	18.06149	27.07247	34.06079	57.09826
245.30148	246.28608	259.32846	259.37210	260.31307	262.39484	5.94411	15.97972	24.99071	31.97903	55.01649
251.24558	252.23019	265.27257	265.31621	266.25718	268.33894	274.28305	10.03562	19.04660	26.03492	49.07239
261.28120	262.26581	275.30819	275.35182	276.29279	278.37456	284.31867	294.35428	9.01099	15.99931	39.03677
270.29219	271.27679	284.31917	284.36281	285.30378	287.38555	293.32965	303.36527	312.37625	6.98832	30.02579
277.28050	278.26511	291.30749	291.35113	292.29210	294.37386	300.31797	310.35359	319.36457	326.35289	23.03747
300.31797	301.30258	314.34496	314.38859	315.32957	317.41133	323.35544	333.39105	342.40204	349.39036	372.42783

Sum of 2 Residues

isobaric and close-to-isobaric mass differences are color coded isobaric and close-to-isobaric substitutions by 2 residues are color coded

Matrices / Bruker Matrix Selection Guide

Matrix name	Elemental Composition	Structure	MH _{mono} + [Th]	Average Mass	Order No.
2,5-Dihydroxyacetophenon (2,5-DHAP)	C ₈ H ₈ O ₃	но	153,05462	152,20	231829
2,5-Dihydroxybenzoic acid (2,5-DHB)	$C_7H_6O_4$	HOUTOH	155,03388	154,12	201346
3-Hydroxypicolinic acid (3-HPA), 1g	$C_6H_5NO_3$		140,03422	139,11	201224
α-Cyano-4-hydroxycinnamic acid (HCCA)	$C_{10}H_7NO_3$	HO ON ON	190,04987	189,17	201344 255344
super 2,5-Dihydroxybenzoic acid (sDHB), 5g	C ₇ H ₆ O ₄	HO		154,12	209813
	$C_8H_8O_4$	Н ₃ СО, СН ОН		168,15	
Sinapinic acid (SA)	C ₁₁ H ₁₂ O ₅	H ₃ CO HO OCH ₃	225,07575	224,22	201345

*) http://polymers.msel.nist.gov/maldirecipes

Peptide Fragmentation

Typical fragment ions observed

- Low energy CID:
 - b and y
 - a, b, y and i, including neutral losses of NH_3 from a and b

- PSD:ISD:
- a, c, z+
- ECD-FTICR:
- a, c, z+2, y c and z

Relative Isotopic Abundance Table

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
Н	99.99	0.0115															Н
He				100													He
Li						7.59	92.41										Li
Be									100								Be
В										19.9	80.1						В
С												98.93	1.07				С
N														99.64	0.36		N
0																99.76	0

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	
0	0.04	0.21															0
F			100														F
Ne				90.48	0.27	9.25											Ne
Na							100										Na
Mg								78.99	10.00	11.01							Mg
AI											100						AI
Si												92.22	4.69	3.09			Si
Р															100		P
S																94.99	S

	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	
S	0.75	4.25		0.01													S
CI			75.76		24.24												CI
Ar				0.34		0.06		99.60									Ar
K							93.26	0.01	6.73								K
Са								96.94		0.647	0.135			0.004		0.187	Ca
Sc													100				Sc
Ti														8.25		73.72	Ti

	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	
Ti	5.41	5.18															Ti
V		0.25	99.75														V
Cr		4.345		83.79	9.501	2.365											Cr
Mn																	Mn
Fe						5.845		91.75		0.28							Fe
Co																	Co
Ni									68.08			26.22	1.14	3.63		0.93	Ni
Cu															69.15		Cu
Zn																48.27	Zn

	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	
Cu	30.85																Cu
Zn			4.10	19.02		0.63											Zn
Ga					60.11		39.89										Ga
Ge						20.38		27.31	7.76	36.72		7.83					Ge
As																	As
Se												9.37	7.63	23.77		49.61	Se
Br																	Br
Kr														0.36		2.29	Kr

	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	
Se																	Se
Br	49.31																Br
Kr		11.59	11.50	56.99		17.28											Kr
Rb					72.17		27.83										Rb
Sr				0.56		9.86	7.00	82.58									Sr
Y																	Y
Zr										51.45	11.22	17.15		17.38		2.80	Zr
Nb																	Nb
Mo												14.77		9.23		16.68	Mo
Ru																5.54	Ru

	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	
Mo	9.56	24.19	9.67														Mo
Ru		1.87	12.76	12.60		31.55		18.62									Ru
Rh																	Rh
Pd						1.02		11.14	22.33	27.33		26.46		11.72			Pd
Ag											51.84		48.16				Ag
Cd										1.25		0.89		12.49		24.13	Cd
Sn																0.97	Sn

Relative Isotopic Abundance Table

	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	
Cd	12.22	28.73		7.49													Cd
In	4.29		95.71														In
Sn		0.66	0.34	14.54	7.68	24.22	8.59	32.59		4.63		5.79					Sn
Sb											42.79						Sb
Te								0.09		2.55	0.89	4.74		18.84		31.74	Te
1																	1
Xe												0.10		0.09		1.91	Xe

	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	
Te		33.8															Te
Xe	26.40	4.10	21.23	26.91		10.44		8.86									Xe
Cs																	Cs
Ba		0.11		0.10		2.42	6.59	7.85		71.70							Ba
La										0.09	99.91						La
Ce								0.19		0.25		88.45		11.11			Ce
Pr																	Pr
Nd														27.2	12.2	23.8	Nd
Sm																3.1	Sm

145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	
8.30			5.70		5.60											Nd
			11.24	13.82	7.38		26.75		22.75							Sm
						47.81										Eu
							0.20		2.18	14.80	20.47		24.84		21.86	Gd
																Tb
											0.06		0.10		2.33	Dy
	145 8.30	145 146 8.30 17.20	145 146 147 8.30 17.20 14.99	145 146 147 148 8.30 17.20 5.70 14.99 11.24	145 146 147 148 149 8.30 17.20 5.70 5.70 14.99 11.24 13.82	145 146 147 148 149 150 8.30 17.20 5.70 5.60 14.99 11.24 13.82 7.38	145 146 147 148 149 150 151 8.30 17.20 5.70 5.60 5.60 47.81	145 146 147 148 149 150 151 152 8.30 17.20 5.70 5.60 5.60 47.81 47.81	145 146 147 148 149 150 151 152 153 8.30 17.20 5.70 5.60 5.219	145 146 147 148 149 150 151 152 153 154 8.30 17.20 5.70 5.60 5.60 22.75 22.75 14.99 11.24 13.82 7.38 26.75 22.75 0.20 2.18 0.20 2.18 2.18	145 146 147 148 149 150 151 152 153 154 155 8.30 17.20 5.70 5.60 5.60 22.75 22.75 14.99 11.24 13.82 7.38 26.75 22.75 47.81 0.20 2.18 14.80	145 146 147 148 149 150 151 152 153 154 155 156 8.30 17.20 5.70 5.60 5.60 5.70 5.60 5.70 5.60 5.70 5.70 5.60 5.70 5.60 5.70 5.60 5.70 5.70 5.60 5.70 5.70 5.73 26.75 22.75 5.70 5.73 47.81 52.19 5.219 5.70 5.219 5.71 5.219 5.71 </td <td>145 146 147 148 149 150 151 152 153 154 155 156 157 8.30 17.20 5.70 5.60 5.70 5.60 5.70</td> <td>145 146 147 148 149 150 151 152 153 154 155 156 157 158 8.30 17.20 5.70 5.60 5.60 5.70 5.60 5.70 5.70 5.60 14.99 11.24 13.82 7.38 26.75 22.75 5.219 5.219 0.20 2.18 14.80 20.47 15.65 24.84 0.00 2.18 14.80 20.47 15.65 24.84</td> <td>145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 8.30 17.20 5.70 5.60 5.60 5.70 5.60 5.70 5.60 5.70 5.60 14.99 11.24 13.82 7.38 26.75 22.75 5.70 5.70 5.70 VIEW INFORMATION OF COLSPANSION /td> <td>145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 8.30 17.20 5.70 5.60 5.60 22.75 5.70 5.60 5.70 5.70 5.60 5.70 5.60 5.70 5.60 5.70 5.60 5.70 5.60 5.70 5.70 5.60 5.70 5.70 5.60 5.70 5.70 5.70 5.60 5.70</td>	145 146 147 148 149 150 151 152 153 154 155 156 157 8.30 17.20 5.70 5.60 5.70 5.60 5.70	145 146 147 148 149 150 151 152 153 154 155 156 157 158 8.30 17.20 5.70 5.60 5.60 5.70 5.60 5.70 5.70 5.60 14.99 11.24 13.82 7.38 26.75 22.75 5.219 5.219 0.20 2.18 14.80 20.47 15.65 24.84 0.00 2.18 14.80 20.47 15.65 24.84	145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 8.30 17.20 5.70 5.60 5.60 5.70 5.60 5.70 5.60 5.70 5.60 14.99 11.24 13.82 7.38 26.75 22.75 5.70 5.70 5.70 VIEW INFORMATION OF COLSPANSION	145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 8.30 17.20 5.70 5.60 5.60 22.75 5.70 5.60 5.70 5.70 5.60 5.70 5.60 5.70 5.60 5.70 5.60 5.70 5.60 5.70 5.70 5.60 5.70 5.70 5.60 5.70 5.70 5.70 5.60 5.70

	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	
Dy	18.89	25.48		28.26													Dy
Ho																	Ho
Er		0.14		1.60		33.50	22.87	26.98		14.91							Er
Tm																	Tm
Yb								0.13		3.04	14.28	21.83	16.13	31.83		12.76	Yb
Lu																2.59	Lu
Hf														0.16		5.26	Hf

	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	
Hf	18.60		13.62	35.08													Hf
Та				0.012	99.99												Ta
W				0.12			14.31	30.64		28.43							W
Re											62.60						Re
Os								0.02		1.59	1.96	13.24		26.26		40.78	Os
lr															37.3		lr
Pt														0.014		0.78	Pt

	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	
lr																	lr
Pt		32.97	33.83	25.24		7.16											Pt
Au																	Au
Hg				0.15		9.97	16.87	23.10	13.18	29.86		6.87					Hg
TI											29.52		70.48				TI
Pb												1.4		24.1	22.1		Pb

	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	
Bi																	Bi
	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	
Th								100									Th
11										0.005	0.72			00.27			11

recommended mass number

recommended mass number for cool plasma

Molecular Weights

Molecular Weights of Selected Glycan Residues

Residue Name	Symbol	Elemental Composition	Monoisotopic Mass	Average Mass
Deoxyribose	dRib	$C_5H_8O_3$	116,04734	116,12
Arabinose	Ara	$C_5H_8O_4$	132,04226	132,11
Ribose	Rib	$C_5H_8O_4$	132,04226	132,11
Xylose	Xyl	$C_5H_8O_4$	132,04226	132,11
Fucose	Fuc	$C_{6}H_{10}O_{4}$	146,05791	146,14
Galactosamine	GalN	$C_6H_{11}NO_4$	161,06881	161,16
Glucosamin	GlcN	$C_6H_{11}NO_4$	161,06881	161,16
Galactose	Gal	$C_{6}H_{10}O_{5}$	162,05282	162,14
Glucose	Glc	$C_{6}H_{10}O_{5}$	162,05282	162,14
Mannose	Man	C ₆ H ₁₀ O ₅	162,05282	162,14
Glucuronic acid	GlcA	C ₆ H ₈ O ₆	176,03209	176,13
N-acetylgalactosamin	GalNAc	$C_8H_{13}NO_5$	203,07937	203,20
N-acetylglucosamin	GlcNAc	$C_8H_{13}NO_5$	203,07937	203,20
Muramic acid	Mur	C ₁₁ H ₁₇ NO ₇	275,10050	275,26
N-acetylneuraminic acid	NANA	C ₁₁ H ₁₇ NO ₈	291,09542	291,26

Molecular Weights of Nucleotide Residues (compatible to BioTools 3.2)

Nucleotide Residue	Elemental Composition	Monoisotopic Mass	Averaged Mass
AMP	$C_{10}H_{12}N_5O_6P$	329,05252	329,21
GMP	$C_{10}H_{12}N_5O_7P$	345,04744	345,21
UMP	$C_9H_{11}N_2O_8P$	306,02530	306,17
СМР	$C_9H_{12}N_3O_7P$	305,04129	305,18
dAMP	$C_{10}H_{12}N_5O_5P$	313,05761	313,21
dGMP	$C_{10}H_{12}N_5O_6P$	329,05252	329,21
dTMP	$C_{10}H_{13}N_2O_7P$	304,04604	304,20
dCMP	$C_9H_{12}N_3O_6P$	289,04637	289,18
Hypoxanthine	$C_{10}H_{11}N_4O_6P$	314,04162	314,19
7-deaza-dGMP	$C_{11}H_{13}N_4O_6P$	328,05727	328,22
7-deaza-dAMP	$C_{11}H_{13}N_4O_5P$	312,06236	312,22
2-amino-purine	$C_{10}H_{12}N_5O_5P$	313,05761	313,21
dAMP-thioCH3	$C_{11}H_{14}N_5O_4SP$	343,05041	343,30
dGMP-thioCH3	$C_{11}H_{14}N_5O_5SP$	359,04533	359,30
dTMP-thioCH3	$C_{11}H_{15}N_2O_6SP$	334,03885	334,29
dCMP-thioCH3	$C_{10}H_{14}N_{3}O_{5}SP$	319,03918	319,28
ddCMP	$C_9H_{12}N_3O_5P$	273,05146	273,19
ddAMP	$C_{10}H_{12}N_5O_4P$	297,06269	297,21
ddTMP	$C_{10}H_{13}N_2O_6P$	288,05112	288,20
ddGMP	$C_{10}H_{12}N_5O_5P$	313,05761	313,21

Important Abbreviations and Acronyms

Α	adenine
AA	anisylacetone
AAO	acetaldehyde oxime
AC	acetate
Ac	acetyl [CH ₃ C(0)-]
acac	acetylacetone
ACTH	adrenocorticotropic hormone (corticotropin)
ADMA	alkyldimethylamine
ADP	adenosine 5'-diphosphate
AIBN	azobis(isobutyronitrile)
Ala	alanine (A)
Am	amyl
AMP	adenosine 5'-monophosphate
AN	acetonitrile
APS	adenosine 5'-phosphosulfate
Ar	aryl
Arg	arginine (R)
Asn	asparagine (N)
Asp	aspartic acid (D)
ATA	anthranilamide
ATP	adenosine 5'-triphosphate
BA	benzyladenine
BaP (BAP)	benzo[a]pyrene
BBP	benzyl butyl phthalate
BHC	benzene hexachloride
BHT	2,6-di-t-butyl-4-methylphenol
bipy	2,2'-bipyridyl
Bn	benzyl (also Bz, BZL, or Bnz)
BN	benzonitrile
Boc	t-butyloxycarbonyl
BOM	benzyloxymethyl [PhCH ₂ OCH ₂ –]
BON	β-oxynaphthoic acid
BPBG	butyl phthalyl butyl glycolate
Bs	brosylate [BrC ₆ H ₄ SO ₂ -]
BSA	<i>O,N-</i> bistrimethylsilyl acetamide
BTA	benzoyltrifluoroacetone
Bu	butyl
Bz	benzoyl
C	cytosine
p CBA	p-carboxybenzaldehyde
Cbz	carbobenzyloxy [PhCH ₂ OC(O)-]
CD	cyclodextrin
CDP	cytidine 5'-diphosphate

CE	cyanoethyl
CMP	cytidine 5'-monophosphate
CoA	coenzyme A
Cp (or cp)	cyclopentadiene
12-Crown-4	1,4,7,10-tetraoxacyclododecane
СТА	citraconic anhydride
Cys	cysteine (C)
DAA	diacetone acrylamide
DAP	dodecylammonium propionate
DCB	dicyanobenzene
DCEE	dichloroethyl ether
DDD	2,2'-dihydroxy-6,6'-dinaphthyl disulfide
DDH	1,3-dibromo-5,5-dimethylhydantoin
DDM	diphenyldiazomethane
DDT	1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane
DEA	N, N-diethylaniline or diethyl amine
DEC	diethylaminoethyl chloride hydrochloride
DHA	dehydroacetic acid
DHP	dihydropyran
Diglyme	diethylene glycol dimethyl ether
Diox	dioxane
DMAc	N, N-dimethylacetamide
DMAA	N, N-dimethylacetoacetamide
DME	1,2-dimethoxyethane (glyme)
DMF	dimethylformamide
DML	dimyristoyl lecithin
DMS	dimethylsiloxane
DMSO	dimethyl sulfoxide
DMSO2	dimethyl sulfone
DMT	dimethyl terephthalate
DNA	deoxyribonucleic acid
DNF	2,4-dinitrofluorobenzene
DOCA	deoxycorticosterone acetate
DPG	2,3-diphosphoglycerate
DPL	dipalmitoyl lecithin
dpm	dipivaloyImethanato
DPPH	diphenylpicrylhydracyl
DST	disuccinimidyl tartrate
DTBN	di-t-butyl nitroxide
E	trans config. (entgegen)
EAA	ethyl acetoacetate
EAK	ethyl amyl ketone
EBA	N-ethyl-N-benzylaniline

Important Abbreviations and Acronyms

EBBA	N-(p-ethoxybenzylidene)-p-butylaniline
EDC	ethylene dichloride
EDTA	ethylenediaminetetraacetic acid
EGS	ethylene glycol bis(succinimidyl succinate)
en	ethylenediamine
Et	ethyl
EVA	ethylene vinyl acetate
FA	furfuryl alcohol
FAD	flavin adenine dinucleotide
FMA	fluoroscein mercuric acetate
Fmoc	9-fluorenylmethoxycarbonyl
Fuc	fucose
G	guanine
Gal	galactose
GDP	guanosine 5'-diphosphate
Glc	glucose
Gln	glutamine (Q)
Glu	glutamic acid (E)
Gly	glycine (G)
Glyme (glyme)	1,2-dimethoxyethane
HAB	4,4'-bis(heptyl)azoxybenzene
Hex	hexane (or hexyl) or hexose
HFA	hexafluoroacetone
His	histidine (H)
HMDS	hexamethyldisilazide
HMPA	hexamethylphosphoramide
HMPT	hexamethylphosphorous triamide
HOAB	<i>p-n</i> -heptyloxyazoxybenzene
HOAc	acetic acid
Нур	hydroxyproline
IH	immobilized histamine
IHP	inositolhexaphosphate
lle	isoleucine (I)
IMP	inosine 5'-monophosphate
IPN	isophthalonitrile
KDP	potassium dihydrogen phosphate
LAH	lithium aluminum hydride (LiAlH ₄)
LAP	leucine aminopeptidase
LDH	lactic dehydrogenase
Leu	leucine (L)
Lys	lysine (K)
M	metal
MA	maleic anhydride

MAA	methoxyacetic acid
Man	mannose
MBBA	N-(p-methoxybenzylidene)-p-butylaniline
MCA	monochloroacetic acid
Ме	methyl
MEM	β -methoxyethoxymethyl
Mes	mesityl = 2,4,6-trimethylphenyl
Met	methionine (M)
ММН	methylmercuric hydroxide
МОМ	methoxymethyl
Ms	mesyl = methanesulfonyl = CH ₃ SO ₂ -
MSA	methanesulfonic acid
MTPA	α-methoxy-α-trifluoromethylphenylacetic acid
MVK	methyl vinyl ketone
NAC	N-acetyl
NAD(P)	nicotinamide adenine dinucleotide (phosphate)
NAD(P)H	nicotinamide adenine dinucleotide (phosphate)
NAI	N-acetylimidazole
NCA	N-chloroacetamide
Nf	nonaflate ($C_4F_9SO_2-$)
NM	nitromethane
NMA	<i>N</i> -methylacrylamide
NMF	N-methylformamide
Ns	<i>p</i> -nitrobenzenesulfonyl
NTA	nitrilotriacetic acid
OCBA	o-chlorobenzoic acid
ОСТ	o-chlorotoluene
ODCB	o-dichlorobenzene
Р	polymer substituent
PAA	<i>p</i> -azoxyanisole
PAS	<i>p</i> -aminosalicylic acid
PBA	pyrene butyric acid
PBLG	poly(Lbenzyl µ-glutamate)
PC	propylene carbonate
PCA	perchloric acid
РСВ	polychlorinated biphenyl
PCP	pentachlorophenol
PDMS	poly(dimethylsiloxane)
PEG	polyethylene glycol
PET	
Ph	phenyl
Phe	phenylalanine (F)
phen	1,10-phenanthroline

Important Abbreviations and Acronyms

PMA	poly(methacrylic acid)	THF	tetrahydrofuran
PMMA	poly(methyl methacrylate)	THP	tetrahydropyran
POC	cyclopentyloxycarbonyl	Thr	threonine (T)
POM	poly(oxymethylene)	TIPS	triisopropylsilyl
PPA	poly(phosphoric acid)	ТМВ	N,N,N'N'-tetramethylbenzidine
Pr	propyl	ТММ	trimethylenemethane
Pro	proline (P)	TMS	tetramethylsilyl
PS	polystyrene	TMU	tetramethylurea
PTFE	polytetrafluoroethylene	TNM	tetranitromethane
PVA	poly(vinyl alcohol)	TNT	2,4,6-trinitrotoluene
PVC	poly(vinyl chloride)	Tol	p-tolyl
PVF	poly(vinyl fluoride)	ТР	thymolphthalein
PVP	poly(vinyl pyrrolidone)	TPC	thymolphthalein complexone
Pyr (or Py)	pyridine	TPE	tetraphenylethylene
RNA	ribonucleic acid	Tr	trityl = triphenylmethyl
SDS	sodium dodecyl sulfate	Triglyme	triethylene glycol dimethyl ether
Ser	serine (S)	TRIS	tris(hydroxymethyl)aminomethane
SLS	sodium lauryl sulfate	Тгр	tryptophan (W)
Т	thymine	Ts	tosyl = <i>p</i> -toluenesulfonyl
TAB	trimethylammonium bromide (TMAB)	Tyr	tyrosine (Y)
TBE	tetrabromoethane	U	uracil
TCA	trichloroacetic acid	UTP	uridine 5'-triphosphate
TCNQ	tetracyanoquinodimethane	Val	valine (V)
TEA	triethylamine	ХуІ	xylose
Tf	triflate [CF ₃ SO ₂ -]	Ζ	cis configuration (zusammen)
TFA	trifluoroacetic acid		
			•

Concentration Units for Solutions

Name	Symbol	Definition
Weight percent	wt %	(Grams of solute per grams of solution) x 100
Mole fraction	X _A	Moles of A per total number of moles
Molar	М	Moles of solute per liter of solution
Normal	N	Equivalents of solute per liter of solution
Formal	F	Formula weights of solute per liter of solution
Molal	т	Moles of solute per kg of solvent
Weight formal	f	Formula weight of solute per kg of solvent

Acronyms and Abbreviations in Quantum Chemistry and Molecular Modeling

AEE	Average Excitation Energy
AM1	Austin Method 1, a modified MNDO method (semi-empirical)
AMBER	Assisted Model Building and Energy Refinement, P. Kollman's empirical force field for biopolymers
AMFI	Atomic Mean Fleld approximation for SO coupling
AO	Atomic Orbital
ARCS	Aromatic Ring Current Shielding
BOMD	Born-Oppenheimer Molecular Dynamics simulation
CC	Coupled Cluster methods (ab initio)
CCSD(T)	Coupled Cluster method at Singles, Doubles, Triples level
CDFT	Current Density Functional Theory (ab initio)
CFT	Crystal Field Theory
CHARMM	CHemitry at HARvard Macromolecular Mechanics, empirical force field implementation of M. Karplus
CHF	Coupled Hartree-Fock perturbation theory
CI	Configuration Interaction
CNDO	Complete Neglect of Differential Overlap (semi-empirical)
CNDO/n	Complete Neglect of Differential Overlap (level <i>n</i> = 1 or 2)
CNDO/2H	CNDO/2 modified for hydrogen bonding
CPMD	Car-Parrinello Molecular Dynamics simulation
CSGT	Continuous Set of Gauge Transformations (ab initio)
DFT	Density Functional Theory (ab initio)
DFTB	Density Functional Tight Binding method
DGEOM	Distance GEOMetry
DHF	relativistic four-component D irac- H artree- F ock method
DZ	Double Zeta, a basis set consisting of two STOs for each atomic orbital
EH	Extended Hückel theory
EHT	Extended Hückel MO Theory
EOM	Equation Of Motion
FEMO	Free-Electron Molecular Orbitals
FPT	Finite Perturbation Theory
GGA	Generalized Gradient Approximation (DFT)
GIAO	Gauge-Including Atomic Orbitals, also used: Gauge-Invariant or Gauge-Independent (ab initio)
GIPAW	Gauge-Including Projector-Augmented Waves (ab initio)
GTO	Gaussian Type atomic Orbital
HF	Hartree-Fock method for self-consistent fields
HFC(C)	HyperFine Coupling (Constant)
НМО	Hückel Molecular Orbitals
НОМО	Highest Occupied Molecular Orbital
IGAIM	Individual Gauge for Atoms In Molecules (ab initio)
IGLO	Individual Gauge for Localized Orbitals (ab initio)
INDO	Intermediate Neglect of Differential Overlap (semi-empirical)
INDO/S	INDU for Spectroscopy
JWKB	Jettreys-Wentzel-Kramers-Brillouin, a semiclassical approximation to quantum mechanics
K-LMG	split-valence basis set defined with K, L, M numbers of Gaussians

Acronyms and Abbreviations in Quantum Chemistry and Molecular Modeling

LCAO	Linear Combination of Atomic Orbitals (ab initio)
LDA	Local Density Approximation (DFT)
LUMO	Lowest Unoccupied Molecular Orbital (see HOMO)
MCSCF	MultiConfiguration Self Consistent Field (ab initio)
MD	Molecular Dynamics (with any method)
MINDO	Modified Intermediate Neglect to Differential Overlap (semi-empirical)
MINDO/n	Modified Intermediate Neglect of Differential Overlap (<i>n</i> = 1-3, semi-empirical)
MINDO/3H	MINDO/3 modified for hydrogen bonding
ММ	Molecular Mechanics (with empirical force field)
MMn	N. L. Allinger's empirical force field for small molecules (n = integer)
MNDO	Modified Neglect of Differential Overlap (semi-empirical)
MNDO/H	MNDO modified for hydrogen bonding
МО	Molecular Orbital
MP2	Møller-Plesset 2nd-order perturbation calc. (ab initio)
MR-CI	Multi-Reference Configuration Interaction
NDDO	Neglect of Diatomic Differential Overlap
NICS	Nucleus-Independent Chemical Shift (aromaticity)
OPLS	Optimized Potentials for Liquid Simulations, W. Jorgensen's empirical force field for biopolymers
PM3	Parameterized Method 3 (a modification of AM1)
PPP	Pariser-Parr-Pople method (semi-empirical)
QSAR	Quantitative Structure-Activity Relationship
REX	Relativistic EXtended Hückel MOs
RHF	Restricted Hartee-Fock method (for SCF calculations)
SCF	Self-Consistent Field
SCPT	Self-Consistent Perturbation Theory
SCRF	Self-Consistent Reaction Field for free radicals
SD	Spin-Dipolar term
SO	Spin-Orbit coupling
SOMO	Singly Occupied Molecular Orbital
SOS	Sum Over States perturbation theory
STO	Slater Type Orbital basis set (ab initio)
STO-nG	Slater Type Orbitals as a sum of <i>n</i> Gaussians
TFD	Thomas-Fermi-Dirac method, a statistical treatment of electron density
UCHF	UnCoupled Hartree-Fock perturbation method
UHF	Unrestricted Hartee-Fock method for SCF calculations
VB	Valence Bond theory
VSEPR	Valence-Shell Electron Pair Repulsion, a theory of molecular geometry
VWN	Vosko, Wilk, Nusair parameterization for LDA
WKB	Wentzel-Kramers-Brillouin method, a semiclassical approximation to quantum mechanics
ZDO	Zero Differential Overlap (semi-empirical)
ZFS	Zero-Field Splitting
ZINDO	Zerner's INDO method
ZORA	Zero-Order Regular Approximatio

IUPAC Periodic Table of Elements

1 (IA)								
Hydrogen								
$H_1 = \frac{259.34}{-252.87^{\circ}}$								
+1-1 1.00794 91.0%	2 (IIA)			Group				
Lithium	Beryllium			Element				
${}^{2}_{1}\mathbf{Li}_{3}$ ${}^{180.5^{\circ}}_{1342^{\circ}}$	${}^{2}_{2}\mathbf{Be}_{4}$ ${}^{1287^{\circ}}_{2471^{\circ}}$			$\begin{smallmatrix} {}^K_L & {}^{M.P.^\circ}_{B.P.^\circ} \\ {}^M_M & {}^{K}_Z & {}^{M.P.^\circ}_{C.P.^\circ} \end{smallmatrix}$				
$^{+1}_{6.941}$	$^{+2}_{9.012182}_{2.38: 10^{-9}\%}$			N Ox.States O At.Weight O Abundance%				
Sodium	Magnesium		-					
$\begin{bmatrix} 2\\8\\1 \end{bmatrix} \mathbf{Na_{11}} \begin{bmatrix} 97.80^{\circ}\\883^{\circ} \end{bmatrix}$	${}^{2}_{2}\mathbf{Mg_{12}}$ ${}^{650^{\circ}}_{1090^{\circ}}$		K	Ley to Tabl	le			
+1 22.98976928 0.000187%	+2 24.3050 0.00350%	3 (IIIB)	4 (IVB)	5 (VB)	6 (VIB)	7 (VIIB)	8 (VIII)	9 (VIII)
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt
$\begin{bmatrix} 2\\8\\8\\19\end{bmatrix} \mathbf{K_{19}} \begin{bmatrix} 63.38^{\circ}\\759^{\circ}\end{bmatrix}$	${}^{2}_{8}\mathbf{Ca}_{20}$ ${}^{842^{\circ}}_{1484^{\circ}}$	${}^{2}_{8}\mathbf{Sc}_{21}$ ${}^{1541^{\circ}}_{2836^{\circ}}$	${}^{2}_{8}\mathbf{Ti}_{22}$ ${}^{1668^{\circ}}_{3287^{\circ}}$	${}^{2}_{8}$ V ^{1910°} _{3407°}	$^{2}_{8}\mathbf{Cr}_{24}$ $^{1907^{\circ}}_{2671^{\circ}}$	$^{2}_{12}$ Mn ₂₅ $^{1246^{\circ}}_{2061^{\circ}}$	$^{2}_{8}$ Fe ₂₆ $^{1538^{\circ}}_{2861^{\circ}}$	$^{2}_{15}$ Co ₂₇ $^{1495^{\circ}}_{2927^{\circ}}$
1 +1 20 0082	⁶ +2 40.078	² +3	2 +2+3+4	2 +2+3+4+5	1 +2+3+6	2 +2+3+4+7	2 +2+3	¹³ ² +2+3 58 022105
0.0000123%	0.000199%	$1.12 \cdot 10^{-7}\%$	7.8·10 ⁻⁶ %	$9.6 \cdot 10^{-7}\%$	0.000044%	0.000031%	0.00294%	$7.3 \cdot 10^{-6}\%$
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium
$\begin{bmatrix} 2\\8\\18\end{bmatrix} \mathbf{Rb}_{37} \begin{bmatrix} 39.31^{\circ}\\688^{\circ}\end{bmatrix}$	${}^{2}_{18}\mathbf{Sr_{38}}$ 1382°	$\frac{2}{8}$ Y ₃₉ $\frac{1522^{\circ}}{3345^{\circ}}$	$\frac{^{2}_{8}}{^{18}_{18}}$ Zr ₄₀ $\frac{^{1855}_{4409^{\circ}}}{^{4409^{\circ}}}$	$\begin{bmatrix} 2\\8\\18\end{bmatrix} Nb_{41} \begin{bmatrix} 2477^{\circ}\\4744^{\circ}\end{bmatrix}$	${}^{2}_{18}\mathbf{Mo}_{42}$ ${}^{2623^{\circ}}_{4639^{\circ}}$	$^{2}_{18}$ Tc ₄₃ $^{2157^{\circ}}_{4265^{\circ}}$	$\frac{2}{8}_{18}^{28} \mathbf{Ru}_{44} + \frac{2334^{\circ}}{4150^{\circ}}$	${}^{2}_{8}\mathbf{Rh}_{45} {}^{1964^{\circ}}_{3695^{\circ}}$
	$\frac{8}{2}$ +2 87.62	9 +3 2 88.90585	$ \begin{array}{ccc} 10 & +4 \\ 2 & 91.224 \end{array} $	$ \begin{array}{r} 12 +3+5 \\ 1 92.90638 \end{array} $	${}^{13}_{1}$ ${}^{+6}_{95.96}$	$ \begin{array}{r} 13 +4+6+7 \\ 2 \\ 1981 \end{array} $	$ \begin{array}{ccc} 15 & +3 \\ 1 & 101.07 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$2.31 \cdot 10^{-8}\%$	7.7·10 ⁻⁸ %	1.51 · 10 -8%	3.72· 10 ⁻⁸ %	2.28· 10 ⁻⁹ %	8.3·10 ⁻⁹ %	[> 0]	6.1· 10 ⁻⁹ %	1.12. 10 -9%
Cesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium
$\begin{bmatrix} {}^{2}_{8}\mathbf{Cs}_{55} & {}^{26,44}\\ {}^{8}_{18}\mathbf{Cs}_{55} & {}^{671^{\circ}} \end{bmatrix}$	$\frac{2}{18}$ Ba ₅₆ 1897°	${}^{\frac{2}{8}}_{18}La_{57}^{\dagger}$	${}^{2}_{18}\text{Hf}_{72}$ ${}^{2255}_{4603^{\circ}}$	$\begin{bmatrix} \frac{2}{8} Ta_{73} & \frac{5017}{5458^{\circ}} \\ \end{bmatrix}$	${}^{2}_{8} \mathbf{W}_{74} {}^{5422}_{5555^{\circ}}$	$\frac{2}{18} \mathbf{Re}_{75}$ $\frac{5180}{5596^{\circ}}$	$\frac{2}{18}$ Os ₇₆ $\frac{5055}{5012^{\circ}}$	${}^{2}_{18}$ Ir ₇₇ ${}^{2446}_{4428^{\circ}}$
¹⁸ +1 ⁸ 132 0054510	18 +2 8 137 327	18 +3 9 138 00547	32 +4 10 178 40	32 +5 11 180 04788	$\frac{32}{12}$ +6 12 183.84	32 +4+6+7 13 186 207	32 +3+4 14 190 23	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$1.21 \cdot 10^{-9}\%$	2 1.46 \cdot 10 $^{-8}\%$	2 1.45 \cdot 10 $^{-9}\%$	2 5.02 \cdot 10 ⁻¹⁰ %	2 6.75 \cdot 10 ⁻¹¹ %	2 4.34 \cdot 10 ⁻¹⁰ %	2 1.69 \cdot 10 ⁻¹⁰ %	2 2.20 \cdot 10 ⁻⁹ %	2 2.16 $10^{-9}\%$
Francium	Radium	Actinium	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium
$\frac{2}{8}$ F r_{87} 27°	$\frac{2}{10}$ Ra ₈₈ ^{700°}	$^{2}_{19} Ac_{89}^{\ddagger 1051^{\circ}}_{3198^{\circ}}$	$^{2}_{104}$ Rf ₁₀₄	² ₈ Db ₁₀₅	$^{2}_{18}$ Sg ₁₀₆	${}^{2}_{10}\mathbf{Bh}_{107}$	$^{2}_{18}$ Hs ₁₀₈	$\frac{2}{10}$ Mt ₁₀₉
$\frac{18}{32}$ +1	$\frac{18}{32}$ +2	$\frac{18}{32}$ +3	$\frac{32}{32}$ +4	18 100 32 32	18 32 32	32 32	18 100 32 32	18 100 32 32
¹⁰ 8 [223]	¹⁰ 8 [226] 2	$\begin{bmatrix} 10 \\ 9 \\ 2 \end{bmatrix}$ [227]	10 [267] 2	$\begin{bmatrix} 32\\11\\2 \end{bmatrix}$ [268]	$\frac{12}{12}$ [271]	$\begin{bmatrix} 32\\13\\2 \end{bmatrix}$ [272]	$\begin{bmatrix} 32\\14\\2 \end{bmatrix}$ [277]	$\begin{bmatrix} 32\\15\\2 \end{bmatrix}$ [276]
								·]
		Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium
• • ·•		$^{2}_{18}$ Ce ₅₈ $^{798^{\circ}}_{3443^{\circ}}$	$^{2}_{8}\mathbf{Pr_{59}}$ $^{931^{\circ}}_{3520^{\circ}}$	$^{2}_{18}$ Nd ₆₀ $^{1021^{\circ}}_{3074^{\circ}}$	${}^{2}_{18}$ Pm ₆₁ ${}^{1042^{\circ}}_{3000^{\circ}}$	$^{2}_{18}$ Sm ₆₂ $^{1074^{\circ}}_{1794^{\circ}}$	$^{2}_{18}$ Eu ₆₃ $^{822^{\circ}}_{1596^{\circ}}$	${}^{2}_{18}$ Gd ₆₄ ${}^{1313^{\circ}}_{3273^{\circ}}$
r Lanth	anides	18 50 19 +3+4	18 21 +3	18 00 22 +3	18 01 23 +3	18 02 24 +2+3	18 03 25 +2+3	¹⁸ 25 +3
1		2^{2} 140.116 3.70· 10 ⁻⁹ %	$^{\circ}_{2}$ 140.90765 5.44 \cdot 10 ⁻¹⁰ %	$2^{\circ} 144.242$ 2.70· 10 ⁻⁹ %	° ₂ [145]	$ \begin{array}{c} 0 \\ 2 \\ $	$2^{\circ} 151.964$ $3.17 \cdot 10^{-10}\%$	2^{2} 157.25 1.076 · 10 ⁻⁹ %

	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium
‡ Actinides	$\begin{bmatrix} & 2 \\ & 8 \\ & 8 \\ & 18 \\ & 32 \\ & +4 \\ & 18 \\ & 232.03806 \\ & 2 \\ & 1.09 \cdot 10^{-10}\% \end{bmatrix}$	${}^{2}_{18} \mathbf{Pa_{91}}_{18} \\ {}^{32}_{20} \\ {}^{+5+4}_{20} \\ {}^{20}_{2} \\ {}^{231.03588}_{2} \\ {}^{2}$	$\begin{smallmatrix} 2 \\ 8 \\ 18 \\ 32 \\ 92 \\ 4131^{\circ} \\ 4131^{\circ} \\ 238.02891 \\ 2 \\ 2.94 \cdot 10^{-11}\%$	${}^{2}_{18} Np_{93} {}^{644^{\circ}}_{32} {}^{+3+4+5+6}_{9} {}^{22}_{2} {}^{237]}_{2}$	$\begin{smallmatrix} & & & & & & & & & & & & & & & & & & &$	$\begin{smallmatrix}&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&$	${}^{2}_{18} \mathbf{Cm}_{96}^{1345^{\circ}}_{18} \\ {}^{32}_{25} + 3 \\ {}^{9}_{2} [247]_{2}$

Key to Table: The IUPAC Group Numbers 1 to 18 are used (CAS group numbering in parentheses). Information presented: E_z = element symbol and nuclear charge (protons); melting, boiling, critical point (MP, BP, CP) in °C (sublimation or critical temp. marked with s or t); population of electron levels K - Q; possible oxidation states; **IUPAC mean atomic weights updated 2005** based on terrestrial isotope abundances ($^{12}C = 12.0000$); for unnatural elements atom. wt. of most abundant isotope is given in brackets; total element abundance (%) in the solar system.

18 (VIIIA)

						2 He, $^{-272.2^{\circ}}_{-268.93^{\circ}}$
						0 4 002602
	13 (IIIA)	14 (IVA)	15 (VA)	16 (VIA)	17 (VIIA)	8.9%
	Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
	$\begin{bmatrix} 3 & \mathbf{B}_5 & 4000^\circ \\ & \pm 3 & \end{bmatrix}$	$\tilde{4} C_{6}^{4} \tilde{3}642s^{\circ}$	5 N ₇ ${}^{-195.79^{\circ}}_{-146.94^{\circ}}$	6 O ₈ -182.95° -118.56°	${}^{\tilde{7}} \mathbf{F_{9}} {}^{-188.12^{\circ}}_{-129.02^{\circ}}$	⁸ Ne ₁₀ ^{-246.08°} -228.7°
	$ 10.811 \\ 6.9 \cdot 10^{-8}\% $	12.0107 0.033%	14.0067 0.0102%	15.9994 0.078%	18.9984032 2.7.10 ⁻⁶ %	20.1797 0.0112%
	Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
	${}^{2}_{3}\mathbf{Al}_{13}$ ${}^{660.32^{\circ}}_{2519^{\circ}}$	${}^{2}_{4}\mathbf{Si}_{14} $	${}^2_{8}_{5} \mathbf{P_{15}} {}^{44.15^{\circ}}_{280.5^{\circ}}_{721^{\circ}}$	$\begin{smallmatrix} 2 \\ 8 \\ 6 \end{smallmatrix} \mathbf{S_{16}} \begin{smallmatrix} 115.21^\circ \\ 444.60^\circ \\ 1041^\circ \end{smallmatrix}$	${}^2_8 \mathbf{Cl}_{17} {}^{-101.5^\circ}_{-34.04^\circ}_{143.8^\circ}$	${}^{2}_{8}\mathbf{Ar}_{18}^{-189.35^{\circ}}_{-185.85^{\circ}}_{-122.28^{\circ}}$
10 (VIII) 11 (IB) 12 (IIB)	+3 26.9815386 0.000277%	+2+4-4 28.0855 0.00326%	+3+5-3 30.973762 0.000034%	+4+6-2 32.065 0.00168%	+1+5+7-1 35.453 0.000017%	0 39.948 0.000329%
Nickel Conner Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \overset{33^{\circ}}{\overset{2}{_{17}^{\circ}}} \overset{2}{\overset{8}{_{18}}} \overset{2}{\mathbf{Ga}_{31}} \overset{29.76^{\circ}}{_{2204^{\circ}}} \overset{3}{_{13}} \overset{43}{_{2204^{\circ}}} \overset{43}{_{1.23^{\circ}}} \overset{43}{_{1.23^{\circ}}} \overset{69.723}{_{1.23^{\circ}}} \overset{1}{_{10}} \overset{-7}{_{7}} \% $	${}^{2}_{18} \mathbf{Ge}_{32} {}^{938.25^{\circ}}_{2833^{\circ}} {}^{4}_{4} {}^{+2+4}_{72.64} {}^{72.64}_{3.9^{\circ}} 10^{-7} \%$	$\begin{smallmatrix}&&&817t^{\circ}\\&&&&\\18\\5&&&+3+5-3\\&&&74.92160\\&&&2.1\cdot 10^{-8}\%\end{smallmatrix}$	${}^{8}_{0} Se_{34} {}^{221^{\circ}}_{1493^{\circ}} {}^{685^{\circ}}_{1493^{\circ}} {}^{+4+6-2}_{78.96} {}^{78.96}_{2.03 \cdot 10^{-7}\%}$	$\begin{smallmatrix} & & & & & & & & & & \\ & & & & & & & & $	${}^{8}_{18} \mathbf{Kr}_{36}^{-157.36^{\circ}}_{-63.74^{\circ}} \\ {}^{8}_{8} \mathbf{Kr}_{36}^{-153.22^{\circ}}_{-63.74^{\circ}} \\ {}^{8}_{8} 3.798_{1.5^{\circ}} 10^{-7} \\ {}^{7}_{8} \mathbf{Kr}_{3.798}^{-157.36^{\circ}}_{-157.37^{\circ}} \\ {}^{8}_{1.5^{\circ}} 10^{-7} \\ {}^{7}_{8} \mathbf{Kr}_{3.798}^{-157.36^{\circ}}_{-157.37^{\circ}} \\ {}^{8}_{1.5^{\circ}} \mathbf{Kr}_{3.798}^{-157.36^{\circ}}_{-157.37^{\circ}} \\ {}^{8}_{1.5^{\circ}} \mathbf{Kr}_{3.798}^{-157.36^{\circ}}_{-157.37^{\circ}} \\ {}^{8}_{1.5^{\circ}} \mathbf{Kr}_{3.798}^{-157.36^{\circ}}_{-157.37^{\circ}} \\ {}^{8}_{1.5^{\circ}} \mathbf{Kr}_{3.798}^{-157.37^{\circ}}_{-157.37^{\circ}} \\ {}^{8}_{1.5^{\circ}} \mathbf{Kr}_{3.798}^{-157.36^{\circ}}_{-157.37^{\circ}} \\ {}^{8}_{1.5^{\circ}} \mathbf{Kr}_{3.798}^{-157.37^{\circ}}_{-157.37$
Palladium Silver Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
$\begin{bmatrix} & \mathbf{Pd}_{46} & \frac{1554.9^{\circ}}{2963^{\circ}} & \frac{2}{8} \mathbf{Ag}_{47} & \frac{961.78^{\circ}}{1262^{\circ}} & \frac{2}{8} \mathbf{Cd}_{48} & \frac{321.4}{7} \\ & 18 & \frac{18}{18} & \frac{18}{18} & \frac{11}{107.8682} & \frac{1}{2} & \frac{112.411}{12.411} \\ & 4.5 \cdot 10^{-9}\% & 1.58 \cdot 10^{-9}\% & 5.3 \cdot 10^{-9}\% \end{bmatrix}$	$ \begin{array}{c} \frac{1}{100} \\ \frac{1}{57^{\circ}} \\ \frac{2}{8} \\ \frac{1}{18} \\ \frac{1}{18} \\ \frac{1}{18} \\ \frac{1}{3} \\ \frac{1}{114.818} \\ \frac{1}{6} \\ \frac{1}{10^{\circ}} \\ \frac{1}{10^{\circ}} \\ \end{array} $	$\begin{smallmatrix}&&&\\&8\\&8\\&&&\\&8\\&&&\\&8\\&&&\\&4\\&&&\\&&&\\&$	$\begin{smallmatrix}&&&\\&8\\&8\\&&&&\\18\\&&&&\\5\\&&&&&\\121.760\\&&&&&\\1.01\cdot 10^{-9}\%\end{smallmatrix}$	$\begin{smallmatrix} & & & \\ & & & \\ & & $	$\begin{smallmatrix} 2 \\ 8 \\ 18 \\ 7 \\ 7 \\ 126.90447 \\ 2.9 \cdot 10^{-9}\% \end{smallmatrix}$	$\begin{smallmatrix}&&&&\\&&&&&\\&8&&&&&\\&18&&&&\\&&&&&&\\&8&&&&&\\&&&&&&&\\&&&&&&&\\&&&&&&$
Platinum Gold Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
$\begin{array}{c} {}^2_{8} Pt_{78} {}^{2}_{3825^{\circ}} {}^2_{8} Au_{79} {}^{2}_{2856^{\circ}} {}^2_{8} Hg_{80} {}^{-36.3}_{35.5^{\circ}} \\ {}^{18}_{18} {}^{28}_{14^{\circ}} {}^{28}_{14^{\circ}} {}^{28}_{14^{\circ}} {}^{28}_{14^{\circ}} {}^{28}_{14^{\circ}} {}^{28}_{14^{\circ}} {}^{28}_{14^{\circ}} {}^{18}_{14^{\circ}} {}^{18}_{16^{\circ}} {}^{16.6^{\circ}}_{16^{\circ}} {}^{18}_{12^{\circ}} {}^{20.5^{\circ}}_{1.11^{\circ}} {}^{19}_{14^{\circ}} {}^{28}_{14^{\circ}} {}^{28}_$	$\begin{array}{c} \overset{33^{\circ}}{}_{8} & \overset{2}{8} \mathbf{Tl}_{81} & \overset{304^{\circ}}{}_{1473^{\circ}} \\ \overset{8}{}_{8} & \overset{1}{1473^{\circ}} \\ \overset{32}{}_{3} & \overset{+1+3}{}_{204,3833} \\ \overset{3}{}_{3} & \overset{6.0}{}_{0} \cdot 10^{-10} \% \end{array}$	${}^{2}_{18} \mathbf{Pb}_{82} {}^{327,46^{\circ}}_{1749^{\circ}}_{1749^{\circ}}_{1749^{\circ}}_{1749^{\circ}}_{18}_{4}_{207,2}_{207,2}_{1.03^{\circ}}_{1.03^{\circ}}_{10^{-8}\%}$	${}^{2}_{18} \mathbf{Bi}_{83} {}^{271.40^{\circ}}_{1564^{\circ}} \\ {}^{32}_{15} {}^{+3+5}_{18} {}^{208.98040}_{4.7^{\circ}} {}^{10^{-10}}_{10} \\ \end{array}$	${}^{2}_{18} \mathbf{P0}_{84} {}^{254^{\circ}}_{962^{\circ}} \\ {}^{32}_{18} {}^{+2+4}_{18} [209]$	$^{2}_{8}_{18}^{8} \mathbf{At}_{85}^{302^{\circ}}_{32}_{18}^{32}_{7}$ [210]	${\begin{smallmatrix}&&&-71^{\circ}\\8\\18\\18\\32\\0\\18\\8\end{smallmatrix}}{\begin{smallmatrix}&-61.7^{\circ}\\104^{\circ}\\104^{\circ}\\8\end{smallmatrix}}$
Darmstadtium Roentgenium Copernicium	n					
$\begin{vmatrix} \frac{2}{8} \mathbf{D} \mathbf{S}_{110} \\ \frac{18}{32} \\ $						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
Terbium Dysprosium Holmium	Erbium	Thulium	Ytterbium	Lutetium		
$\begin{bmatrix} & 2 \\ 8 \\ 18 \\ 18 \\ 27 \\ +3 \\ 28 \\ 18 \\ 28 \\ +3 \\ 28 \\ 1.97 \\ 1.97 \\ 1.0^{-1}0^{-10} \\ 1.28 \\ 1.$	$ \begin{array}{c} \overset{\prime 40^{\circ}}{18} & \overset{2}{8} \mathbf{Er_{68}} & \overset{1529^{\circ}}{2868^{\circ}} \\ \overset{1}{8} & \overset{1}{30} & \overset{1}{+3} \\ 2 & \overset{2}{8} & 167.259 \\ \% & 8.18 \cdot 10^{-10} \% \end{array} $	$\begin{smallmatrix} & 2 \\ & 8 \\ & 8 \\ & 18 \\ & 31 \\ & 2 \\ & 168.93421 \\ & 1.23 \cdot 10^{-10}\% \end{smallmatrix}$	${}^{2}_{18} \mathbf{Yb}_{70} {}^{819^{\circ}}_{1196^{\circ}}_{1196^{\circ}}_{2}_{2}_{2}_{+2+3}_{173.054}_{8.08 \cdot 10^{-10}\%}$	${}^{2}_{18} Lu_{71} {}^{1663^{\circ}}_{3402^{\circ}} \\ {}^{32}_{2} {}^{+3}_{174.9668} \\ 1.197 \cdot 10^{-10}\%$		

Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
$\frac{2}{8}\mathbf{Bk_{97}}^{1050^{\circ}}$	$^{2}_{18}\mathbf{Cf_{98}}^{900^{\circ}}$	² ₈ ES ₉₉ ^{860°}	${}^{2}_{8}_{18}\mathbf{Fm}_{100}^{1527^{\circ}}$	$\frac{2}{8}_{18}^{18} \mathbf{Md_{101}}^{827^{\circ}}$	$\frac{2}{8}$ No ₁₀₂ ^{827°}	$\frac{{}^{2}_{8}}{{}^{18}_{18}}$ Lr ₁₀₃ ^{1627°}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	${}^{32}_{8}$ ${}^{+3}_{[251]}_{2}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32 +3 9 [262] 2

Adapted by W. E. Hull from the Table prepared by Richard B. Firestone (rbf@lbl.gov), Isotopes Project, Lawrence Berkeley National Laboratory; see R. B. Firestone, C. M. Baglin, and S.Y. F. Chu, 1999 Update to the 8th Edition of the *Table of Isotopes*, John Wiley & Sons, (1999); for Atomic Wt. updates see T. B. Coplen, Pure Appl Chem 73 (2001) 667-683 and R. D. Loss, Pure Appl Chem 75 (2003) 1107-1122.

Properties of Selected Nondeuterated Solvents

Solvent	Formula	MWave	Density	Viscosity	MP	BP	Refrac.	Dielec.	Dipole	Chemic	al Shift
			d₄²⁰ [g/mL]	η²⁵ [mPa•s, cP]	[°C]	[°C]	Index nD ²⁰	Const. ε	Mom. [<i>D</i>]	 (ppm)	δ _c (ppm)
Acetic acid	$C_2H_4O_2$	60.05	1.049	1.13	16.5	118.1	1.3716	6.17	1.7	2.10 11.42	20.8 178.1
Acetone	C ₃ H ₆ O	58.08	0.788	0.306	-94.5	56.2	1.3587	20.7	2.8	2.05	30.50 205.4
Acetonitrile	C ₂ H ₃ N	41.05	0.784	0.35	-45.2	81.7	1.3441	37.5	3.44	1.93	1.6 117.8
Benzene	C ₆ H ₆	78.11	0.8789	0.604	5.5	80.2	1.5011	2.29	0	7.16	128.5
1-Butanol	C ₄ H ₁₀ O	74.12	0.8097	2.55	-89.5	117.6	1.3993	17.7	1.70	1.0-1.5 3.5	14, 19 34, 63
2-Butanone (methyl ethyl ketone)	C ₄ H ₈ O	72.11	0.805	0.378	-86.7	79.6	1.3788	18.5	2.77	1.1, <u>2.2</u> 2.5	7, 27.5 35, 207
Carbon disulfide	CS ₂	76.14	1.270	0.363	-111.8	46.1	1.628	2.6	0		192.8
Carbon tetrachloride	CCl ₄	153.82	1.590	0.908	-22.9	76.7	1.460	2.22	0		96.7
Chloroform	CHCl₃	119.38	1.480	0.537	-63.5	61.2	1.4458	4.81	1.08	7.26	77.2
Chloromethane	CH₃CI	50.49	0.916	0.24	-97.5	-24.1	1.3389	12.6	1.87	3.06	25.6
Cyclohexane	C ₆ H ₁₂	84.16	0.7786	0.894	6.5	80.8	1.4262	2.02	0	1.4	27.6
Cyclopentane	C ₅ H ₁₀	70.13	0.745	0.44	-94.0	49.3	1.4065	1.94	0	1.5	26.5
Dibromomethane	CH_2Br_2	173.84	2.485		-52.7	96.9	1.5419	7.5	1.43	5.0	21.6
o-Dichlorobenzene	$C_6H_4CI_2$	147.00	1.31	1.324	-17.2	180.3	1.5515	9.9	2.27	7.0-7.4	128-133
1,2-Dichloroethane	$C_2H_4CI_2$	98.96	1.253	0.79	-35.7	83.4	1.4448	10.4	1.83	3.7	51.7
cis-1,2-Dichloroethylene	$C_2H_2CI_2$	96.94	1.284		-80.0	60.6	1.4490	9.2	1.90	6.4	119.3
trans-1,2-Dichloroethylene	$C_2H_2CI_2$	96.94	1.257		-49.8	47.7	1.4462	2.1	0	6.3	121.1
1,1-Dichloroethylene	$C_2H_2CI_2$	96.94	1.213		-122.6	31.6	1.4254	4.6	1.34	5.5	115.5 128.9
Dichloromethane	CH ₂ Cl ₂	84.93	1.326	0.41	-96.7	39.9	1.424	9.0	1.60	5.31	53.73
Diethylether	$C_4H_{10}O$	74.12	0.713	0.230	-116.3	34.6	1.3526	4.30	1.25	1.2 3.5	17.1 67.4
Diethylene glycol dimethyl ether (diglyme)	$C_6H_{14}O_3$	134.18	0.947	0.989	-64.1	162.0	1.407	7.1		3.3-3.6	59.0 70.5 72
1,2-Dimethoxyethane (glyme)	$C_4H_{10}O_2$	90.12	0.868	0.46	-69 -58	85	1.379	7.20	1.71	3.3 3.5	59 72
Dimethoxymethane	$C_3H_8O_2$	76.10	0.866		-105.2	42.3	1.3563	2.6		3.3 4.4	54.8 97.9
N,N-Dimethylacetamide	$C_4H_9N_0$	87.12	0.9415	2.14	-20	166	1.437	37.8	3.75	2.1 3	21.5 34, 38 169.6
Dimethylcarbonate	$C_3H_6O_3$	90.08	1.069		3	90.5	1.3688			3.65	54.8 156.9
Dimethylether	C_2H_6O	46.07			-139	-24.5				1.3	59.4
N,N-Dimethyl- formamide	C3H ₇ NO	73.10	0.9487	0.92	-60.5	152.9	1.4305	36.7	3.86	2.8 2.9 8.0	30.10 35.2 162.5
Dimethylsulfoxide	C ₂ H ₆ OS	78.14	1.100	1.987	18.5	189.5	1.4783	46.7	4.0	2.49	39.50
1,4-Dioxane	$C_4H_8O_2$	88.11	1.034	1.18	11.9	101.2	1.4224	2.25	0.45	3.53	67.30
Ethanol	C_2H_6O	46.07	0.789	1.074	-114.4	78.4	1.3614	24.5	1.69	1.10	17.20 56.70
Ethyl acetate	C ₄ H ₈ O ₂	88.11	0.896	0.426	-83.8	77.1	1.3724	6.0	1.8	1.2 2.0 4.1	14.3 20.7 60.1 170.4
Ethylene carbonate	$C_3H_4O_3$	88.06	1.321	1.93	36.4	244	1.416	89.6	4.91	4.2	65.0 155.8
Ethylene glycol	$C_2H_6O_2$	62.07	1.115	21 (20 °C)	-12.6	197.5	1.431	37.7		3.7	63.4
Formamide	CH ₃ NO	45.04	1.133	3.3	2.6	210.5	1.4475	110	3.38	7.2 8.1	165.1
Glycerol	C ₃ H ₈ O ₃	92.10	1.26	940	17.9	290.1	1.474	42.5		3.4 3.7	64.5 73.7

Properties of Selected Nondeuterated Solvents

Solvent	Formula	MW _{ave}	Density	Viscosity	MP	BP	Refrac.	Dielec.	Dipole	Chemic	al Shift
			d₄²⁰ [g/mL]	η²⁵ [mPa•s, cP]	[°C]	[°C]	Index n _D ²⁰	Const. ε	Mom. [<i>D</i>]	∂ _н (ppm)	δ _c (ppm)
Hexamethyl- phosphoramide (HMPA)	C ₆ H ₁₈ N ₃ OP	179.20	1.027		7.2	233	1.4588	30.6	5.5	2.4 2.6	36.6
Hexane	C ₆ H ₁₄	86.18	0.6594	0.294	-95.4	68.8	1.3749	1.89	0.08		
Methanesulfonic acid	CH ₄ O ₃ S	96.11	1.48	10.52	18	168	1.430			2.8	39.6
Methanol	CH4O	32.04	0.791	0.544	-97.7	64.7	1.3284	32.6	1.70	3.31	49.0
Morpholine	C ₄ H ₉ NO	87.12	1.005	2.011	-3.1	128.9	1.4548	7.4	1.58	2.6 3.9	46.8 68.9
Nitromethane	CH ₃ NO ₂	61.04	1.137	0.61	-28.7	100.9	1.3817	35.9	3.46	4.33	62.8
Pentane	C ₅ H ₁₂	72.15	0.626	0.224	-129.7	36.1	1.3575	1.84	0.04		
2-Propanol	C ₃ H ₈ O	60.10	0.786	2.1	-87.9	82.4	1.3772	19	1.66	1.2 3.4	25.3 64.0
Pyridine	C_5H_5N	79.10	0.983	0.95	-41.8	115.4	1.510	12.4	2.3	7.21 7.57 8.72	123.5 135.5 149.5
Quinoline	C ₉ H ₇ N	129.16	1.098		-14.9	237.7	1.6293	9.0	2.2	7-8.8	121-151
1,1,2,2-Tetrachloroethane	$C_2H_2CI_4$	167.85	1.60	1.58	-43.5	146.2	1.486	8.2	1.3	6.0	74.0
Tetrachloroethylene	C_2CI_4	165.83	1.622	0.89	-22.2	121.1	1.504	2.3			120.4
Tetrahydrofuran	C ₄ H ₈ O	72.11	0.889	0.46	-108.6	66.0	1.407	7.5	1.68	1.72 3.57	25.26 67.2
Toluene	C ₇ H ₈	92.14	0.867	0.56	-95.0	110.7	1.4969	2.38	0.36	2.09 7.01 7.09	21.3 138.5
Trichloroethylene	C ₂ HCl ₃	131.39	1.465	0.545	-84.7	87.1	1.4767	3.4	0.81	6.4	116.7 124.0
Triethylamine	$C_6H_{15}N$	101.19	0.728	0.363	-114.7	89.2	1.401	2.42	0.87	1.0, 2.5	13, 51
Trifluoroacetic acid	$C_2HF_3O_2$	114.02	1.53	1.14	-15.4	72.5	1.285	42.1	2.26		115.7 163.8
2,2,2-Trifluoroethanol	C ₂ H ₃ F ₃ O	100.04	1.384	1.76	-44	74	1.291	8.55	2.52	3.9 5.0	62 126.3
Water	H ₂ O	18.02	0.9982	0.8909	0.0	100.0	1.3329	80.1	1.85	4.72	
o-Xylene	C ₈ H ₁₀	106.17	0.88	0.76	-25.2	144.5	1.505	2.57	0.5	2.4 6.9	18 125-137

Data were revised 2006 from a variety of sources; density and refractive index are at 20°C, other parameters mainly at 25°C; exceptions occur when the solvent is not liquid at these temperatures; MP and BP are means or best values from the NIST Chem WebBook.

Electronegativities according to Pauling

Main gr	Main group elements					d-block elements										
H 2.20							Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6
Li 0.98	Be 1.57	B 2.04	C 2.55	N 3.04	0 3.44	F 3.98	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7
Na 0.93	Mg 1.31	Al 1.61	Si 1.90	P 2.19	S 2.58	Cl 3.16	La 1.1	Hf 1.3	Ta 1.5	W 1.7	Re 1.9	Os 2.2	lr 2.2	Pt 2.2	Au 2.4	Hg 1.9
K 0.82	Ca 1.10	Ga 2.01	Ge 2.01	As 2.18	Se 2.55	Br 2.96	f-blo	ck elei	ments							
Rb 0.82	Sr 0.95	ln 1.78	Sn 1.96	Sb 2.05	Tr 2.1	l 2.66	All 1.1-1.3									
Cs 0.7	Ba 0.9	TI 1.8	Pb 1.8	Bi 1.9	Po 2.0	At 2.2	-									

Fundamental Physical Constants (CODATA 2010) *

Quantity	Symbol	SI Value
Speed of Light (vacuum)	<i>C</i> , <i>C</i> _o	2.997 924 58 \times 10 ⁸ m s ⁻¹ (defined)
Permeability of vacuum	μ_0	$4\pi \times 10^{-7}$ H m ⁻¹ or N A ⁻² (defined)
Permittivity of vacuum	$\varepsilon_0 = 1/(\mu_0 c_0^2)$	8.854 187 817 × 10 ⁻¹² F m ⁻¹ (defined)
Planck Constant	h	6.626 069 57 (29) × 10 ⁻³⁴ J s
	$\hbar = h / 2\pi$ (au)	1.0544 571 726 (47) × 10 ⁻³⁴ J s
Elementary Charge (au)	е	1.602 176 565 (35) × 10 ⁻¹⁹ C
Electron Rest Mass (au)	m _e	9.109 382 91 (40) × 10 ⁻³¹ kg
Proton Rest Mass	m _p	1.672 621 777 (74) × 10 ⁻²⁷ kg
Proton/Electron Mass Ratio	m _p / m _e	1836.152 672 45 (75)
Neutron Rest Mass	m _n	1.674 927 351 (74) × 10 ⁻²⁷ kg
Deuteron Rest Mass	m _d	3.343 583 48 (15) × 10 ⁻²⁷ kg
Atomic Mass Unit (¹² C/12)	$m_{\rm u} = 1 {\rm u} = 1 {\rm Da}$	1.660 538 921 (73) × 10 ⁻²⁷ kg
Avogadro's Number	N _A	6.022 141 29 (27) × 10 ²³ mol ⁻¹
Boltzmann Constant	k	1.380 6488 (13) × 10 ⁻²³ J K ⁻¹
Faraday Constant	F	9.648 533 65 (21) × 10 ⁴ C mol ⁻¹
Gas Constant	R	8.314 4621 (75) J mol ⁻¹ K ⁻¹
Molar Volume of ideal gas ^b	$V_{\rm m} = RT/p$	22.413 968 (20) × 10 ⁻³ m ³ mol ⁻¹
Standard Atmosphere	atm	101.325 kPa (defined)
Fine Structure Constant	$\alpha = \mu_0 e^2 c_0 / 2h$	7.297 352 5698 (24) × 10 ⁻³
Inverse Fine-Structure Constant	1/α	137.035 999 074 (44)
Bohr Radius (au)	$a_0 = 4\pi\varepsilon_0\hbar^2 / m_e e^2$	0.529 177 210 92 (17) × 10 ⁻¹⁰ m
Hartree Energy (au)	$E_{\rm h} = \hbar^2 / m_{\rm e} a_0^2$	4.359 744 34 (19) × 10 ⁻¹⁸ J
Rydberg Constant	$R_{\infty} = E_{\rm h} / 2hc_0$	10.973 731 568 539 (55) × 10 ⁷ m ⁻¹
Compton Wavelength (Electron)	$\lambda_{\rm C} = h / m_{\rm e} c_0$	2.426 310 2389 (16) × 10 ⁻¹² m
Bohr Magneton (β , β_{e})	$\mu_{\rm B} = e\hbar / 2m_{\rm e}$	927.400 968 (20) × 10 ⁻²⁴ J T ⁻¹
Electron Magnetic Moment	$\mu_{\rm e}$	–928.476 430 (21) × 10 ⁻²⁶ J T ⁻¹
Electron Magnetogyric Ratio	$\gamma_{\rm e} = 2 \ \mu_{\rm e} / \hbar$	1.760 859 708 (39) × 10 ¹¹ s ⁻¹ T ⁻¹
	γ _e / 2π	28.024 952 66 (62) GHz T ⁻¹
Free Electron Landé g factor	$g_{\rm e} = 2\mu_{\rm e}/\mu_{\rm B}$	-2.002 319 304 361 53 (53)
Nuclear Magneton (β_N)	$\mu_{\rm N} = (m_{\rm e} / m_{\rm p}) \mu_{\rm B}$	5.050 783 53 (11) × 10 ⁻²⁷ J T ⁻¹
Proton Magnetic Moment (free)	$\mu_{ m p}$	1.410 606 743 (33) × 10 ⁻²⁶ J T ⁻¹
(shielded, H ₂ O sphere, 25°C)	μ _p '	1.410 570 499 (35) × 10 ⁻²⁶ J T ⁻¹
Proton Magnetogyric Ratio (free)	γ _p	2.675 222 005 (63) × 10 ⁸ s ⁻¹ T ⁻¹
(shielded, H ₂ O sphere, 25°C)	γ _p '	2.675 153 268 (66) × 10 ⁸ s ⁻¹ T ⁻¹
Proton MR freq. in H ₂ O	γ _p '/2π	42.576 3866 (10) MHz T ⁻¹
Electron/Proton Magn. Mom. Ratio	μ_{e}/μ_{p}	-658.210 6848 (54)
Deuteron Magnetic Moment	μ_{d}	0.433 073 489 (10) × 10 ⁻²⁶ J T ⁻¹
Gravitation Constant (Newtonian)	G	6.673 84 (80) × 10 ⁻¹¹ m ³ kg ⁻¹ s ⁻²
Standard Acceleration (Earth gravity)	<i>g</i> _n	9.806 65 m s ⁻² (defined)
$\pi = 3.141\ 592\ 653\ 59$	e = 2.7180281 828 46	ln 10 = 2.302 585 092 99

^a au = atomic units; uncertainty of last digits shown in (); source: http://physics.nist.gov/constants ^b at STP of 273.15 K and 101.325 kPa = 1 atm.

SI Unit System (Système International) adapted from NIST Publication 330 (2001)

Fundamental SI Base Units	Unit Name	Symbol
length (I , λ)	meter	m
mass (<i>m</i>)	kilogram	kg
time (t)	second	S
electric current (<i>I</i>)	ampere	А
thermodynamic temperature (7)	kelvin	К
amount of substance (<i>n</i>)	mole	mol
luminous intensity (1,)	candela	cd
SI-derived Quantities	Unit Name	Symbol
area (A)	square meter	m ²
volume (V)	cubic meter	m ³
speed, velocity (v)	meter per second	m/s
acceleration (a)	meter per second squared	m/s ²
momentum (p = m v)	kilogram meter per second	kg m/s
moment or inertia (<i>I, J</i>)	kilogram square meter	kg m ²
mass density (ρ)	kilogram per cubic meter	kg/m ³
specific volume (v)	cubic meter per kilogram	m³/kg
molar mass (<i>M</i>)	kg per mole	kg/mol
molar volume (V _m)	cubic meter per mole	m³/mol
concentration (<i>c</i>)	mole per cubic meter	mol/m ³
molal concentration (<i>m</i>)	mole per kilogram	mol/kg
kinematic viscosity (v) diffusion coefficient (D)	square meter per second	m²/s
electric current density (J)	ampere per square meter	A/m ²
magnetic field strength (H)		
magnetization ($\mathbf{M} = \mathbf{B}/\mu_0 - \mathbf{H}$)	ampere per meter	A/m
magnetic dipole moment (m , μ)	ampere square meter	A m ²
wave number (\tilde{v})	reciprocal meter	m ⁻¹
luminance (L _v)	candela per square meter	cd/m ²
refractive index (n)	(dimensionless)	

01 D (1		
SI Prefix	Symbol	Factor
yocto	у	10-24
zepto	Z	10 ⁻²¹
atto	а	10-18
femto	f	10 ⁻¹⁵
pico	р	10 ⁻¹²
nano	n	10-9
micro	μ	10-6
milli	m	10 ⁻³
centi	С	10-2
deci	d	10-1
deka	da	10 ¹
hecto	h	10 ²
kilo	k	10 ³
mega	М	10 ⁶
giga	G	10 ⁹
tera	Т	1012
peta	Р	10 ¹⁵
exa	E	1018
zetta	Ζ	1021
yotta	Y	1024

Special SI-derived Quantities	Unit Name	Symbol	SI-derived and Base Units
plane angle ($\alpha = s/r$)	radian	rad	m m ⁻¹ = 1 $[2\pi \text{ rad} = 360^\circ],$
			1 rad = 57.2957795°
solid angle ($\Omega = A/r^2$)	steradian	sr	$m^2 m^{-2} = 1$ [4 π sr = sphere]
frequency (v, f)	hertz	Hz	S ⁻¹
force (F = m a)	newton	Ν	m kg s ⁻²
pressure, stress (<i>p</i> , <i>P</i> , $\sigma = F/A$)	pascal	Pa	$N/m^2 = m^{-1} \text{ kg s}^{-2}$
energy, work, heat (<i>E, W</i>)	joule	J	$N m = m^2 kg s^{-2}$
power, radiant flux (P)	watt	W	$J/s = m^2 kg s^{-3}$
electric charge, quantity (Q), flux (ψ)	coulomb	С	s A
electric potential (V, ϕ),			
pot. difference (U), emf (E)	volt	V	$W/A \text{ or } J/C = m^2 \text{ kg s}^{-3} A^{-1}$
capacitance (C)	farad	F	$CN = m^{-2} kg^{-1} s^4 A^2$
electric resistance (R), impedance (Z)	ohm	Ω	$V/A = m^2 \text{ kg s}^{-3} A^{-2}$
electric conductance ($G = 1/R$)	siemens	S	A/V or $\Omega^{-1} = m^{-2} kg^{-1} s^3 A^2$
magnetic flux (Φ)	weber	Wb	$V s = m^2 kg s^{-2} A^{-1}$
magnetic flux density, induction (B)	tesla	Т	$Wb/m^2 = V s m^{-2} = kg s^{-2} A^{-1}$
inductance (L)	henry	Н	Wb/A or V s $A^{-1} = m^2 \text{ kg s}^{-2} A^{-2}$
Celsius temperature (θ , t)	degree Celsius	°C	°C = K – 273.15

Special SI-derived Quantities	Unit Name	Symbol	SI-derived and Base Units
luminous flux (F)	lumen	lm	$cd sr = m^2 m^{-2} cd$
illuminance (E_v)	lux	lx	$Im/m^2 = m^2 m^{-4} cd = m^{-2} cd$
activity, radioactive decay (A)	becquerel	Bq	S ⁻¹
absorbed dose, specific energy	gray	Gy	$J/kg = m^2 s^{-2}$
dose equivalent (personal, organ)	sievert	Sv	$J/kg = m^2 s^{-2}$
catalytic activity	katal	kat	s ⁻¹ mol

Other SI-derived Quantities	Unit Name	SI Symbol	SI Base Units
angular velocity (<i>w</i>)	radian per second	rad/s	s^{-1} [1 Hz = 2 π rad s^{-1}]
angular acceleration	radian per second squared	rad/s ²	S ⁻²
moment of force (M),			
torque ($\mathbf{T} = \mathbf{r} \times \mathbf{F}$)	newton meter	Nm	m² kg s ⁻²
dynamic viscosity (η , μ)	pascal second	Pa s	$N s/m^2 = m^{-1} kg s^{-1}$
surface tension (γ , σ)	newton per meter	N/m	kg s ⁻²
specific energy	joule per kilogram	J/kg	m² s-2
molar energy	joule per mole	J/mol	m² kg s ⁻² mol ⁻¹
energy density	joule per cubic meter	J/m ³	m ⁻¹ kg s ⁻²
heat flux density (<i>I</i>)	watt per square meter	W/m ²	kg s ⁻³
thermal conductivity (λ , k)	watt per meter kelvin	W/(m K)	m kg s ⁻³ K ⁻¹
heat capacity (C_v , C_p), entropy (S)	joule per kelvin	J/K	m ² kg s ⁻² K ⁻¹
specific heat capacity (c) or entropy	joule per kilogram kelvin	J/(kg K)	m ² s ⁻² K ⁻¹
molar entropy, molar heat capacity (C_{m})	joule per mole kelvin	J/(mol K)	m² kg s ⁻² K ⁻¹ mol ⁻¹
electric field strength (E)	volt per meter	V/m	m kg s ⁻³ A ⁻¹
electric field gradient (q_{ab})	volt per square meter	V/m ²	kg s ⁻³ A ⁻¹
electric charge density (ρ)	coulomb per cubic meter	C/m ³	m⁻³ s A
electric flux density (D)	coulomb per square meter	C/m ²	m ⁻² s A
electric polarization ($\boldsymbol{P} = \boldsymbol{D} - \varepsilon_0 \boldsymbol{E}$)	coulomb per square meter	C/m ²	m ⁻² s A
electric dipole moment (µ)	coulomb meter	Cm	m s A
electric polarizability (α)		C ² m ² J ⁻¹	$F m^2 = kg^{-1} s^4 A^2$
electric quadrupole moment (<i>eQ</i>)	coulomb square meter	C m ²	m² s A
electric resistivity ($\rho = E/j$)	ohm meter	Ωm	m ³ kg s ⁻³ A ⁻²
electric conductivity ($\kappa = 1 / \rho$)	siemens per meter	S/m	m ⁻³ kg ⁻¹ s ³ A ²
molar conductivity (A)	siemens square meter		
	per mole	S m²/mol	kg ⁻¹ s ³ A ² mol ⁻¹
permittivity (ɛ)	farad per meter	F/m	m ⁻³ kg ⁻¹ s ⁴ A ²
permeability ($\mu = \mathbf{B}/\mathbf{H}$)	henry per meter	H/m	m kg s ⁻² A ⁻²
exposure (radiation), ion dose	coulomb per kilogram	C/kg	kg⁻¹ s A
absorbed dose rate	gray per second	Gy/s	m ² s ⁻³
rf specific absorption rate (SAR)	watt per kg	W/kg	m ² s ⁻³
radiant intensity (<i>I</i>)	watt per steradian	W/sr	m² kg s⁻³
radiance (L)	watt per square meter		
	steradian	W/(m ² sr)	kg s⁻³
irradiance (E)	watt per square meter	W/m ²	kg s⁻³
luminous energy (Q _v)	lumen second	lm s	s cd sr
catalytic activity concentration	katal per cubic meter	kat/m³	m ⁻³ s ⁻¹ mol

Accepted non-SI units	Unit Name	Symbol	Value in SI units
length	astronomical unit	ua, AU	1 ua = 1.495 978 70 (30) × 10 ¹¹ m
	nautical mile	nmi, NM	1 nautical mile = 1852 m
	Ångström	Å	1 Å = 10 ⁻¹⁰ m = 0.1 nm
area	are	а	$1 a = 1 dam^2 = 10^2 m^2$
	hectare	ha	$1 ha = 1 hm^2 = 10^4 m^2$
	barn	b	$1 \text{ b} = 100 \text{ fm}^2 = 10^{-28} \text{ m}^2$
volume	liter	L (I)	$1 L = 1 dm^3 = 10^{-3} m^3$
concentration	moles per liter (molar, M)	mol/L	$1 \text{ M} = 1 \text{ mol/dm}^3$
time	minute	min	1 min = 60 s
	hour	h	1 h = 60 min = 3600 s
	day	d	1 d = 24 h = 86 400 s
angular measure	degree	0	$1^{\circ} = (\pi/180) \text{ rad} = 60'$
	minute	I	$1' = (1/60)^{\circ} = (\pi/10800)$ rad
	second	П	1 ^{''} = (1/60) ['] = (π/648000) rad
mass	atomic mass unit	u	1 u = 1.660 538 86 (28) × 10 ⁻²⁷ kg
	metric ton	t	1 t = 1000 kg
velocity	knot = 1 naut. mile/h	kn	1 nmi/h = 0.51444444 m/s
energy	electronvolt	eV	1 eV = 1.602 176 53 (14) × 10 ⁻¹⁹ J
pressure	bar	bar	1 bar = 10 ⁵ Pa = 1000 hPa
nat. log. intensity scale	neper	Np	1 Np = 1 (= 8.6858896 dB)
base-10 log. intensity scale	bel, decibel	B, dB	1 dB = (1n 10)/20 Np

CGS Units	Symbol	SI Value	CGS Units	Symbol	SI Value
erg	erg	$1 \text{ g cm}^2 \text{ s}^{-2} = 10^{-7} \text{ J}$	dyne	dyn	$1 \text{ g cm s}^{-2} = 10^{-5} \text{ N}$
gal	Gal	$1 \text{ cm/s}^2 = 10^{-2} \text{ m/s}^2$	gauss	G	10 ⁻⁴ T = 0.1 mT
maxwell	Mx	10 ⁻⁸ Wb	oersted	Oe	(10³/4 <i>π</i>) A/m
phot	ph	10 ⁴ lx	poise	Р	1 dyn s /cm ² = 10 ⁻¹ Pa s
stilb	sb	$1 \text{ cd/cm}^2 = 10^4 \text{ cd/m}^2$	stokes	St	1 cm ² /s = 10 ⁻⁴ m ² s ⁻¹

non-SI Units	Symbol	SI Value	non-SI Units	Symbol	SI Value
acceleration	<i>g</i> _n	9.80665 m s ⁻²	atmosphere	atm	101325 Pa
bohr (au)	<i>a</i> ₀, b	5.29177 × 10 ⁻¹¹ m	calorie (therm.)	calth	4.184 J
calorie (intern.)	cal _{IT}	4.1868 J	carat (metric)	kt	200 mg
centipoise	сP	1 mPa s	curie	Ci	3.7 × 10 ¹⁰ Bq
dalton	Da, u	1.66053873 × 10 ⁻²⁷ kg	debye	D	3.33564 × 10 ⁻³⁰ C m
entropy unit	e.u.	4.184 J K ⁻¹ mol ⁻¹	fermi	f, fm	1 fm = 10 ⁻¹⁵ m
footcandle		10.76391 lx	gamma	γ	1 nT = 10 ⁻⁹ T
horsepower	hp	745.6999 W	jansky	Jy	$1 \text{ Jy} = 10^{-26} \text{ W m}^{-2} \text{ Hz}^{-1}$
lambert		$10^4/\pi = 3.183099 \text{ cd/m}^2$	light year	l.y.	9.46073047258 × 10 ¹⁵ m
mho		1 siemens	miles/gal. (US)	mpg	235.215/mpg = L/100 km
miles/h	mph	0.44704 m/s	parsec	рс	3.085677581 × 10 ¹⁶ m
point (1/72 in)	pt	0.3527778 mm	pound/in ²	psi	6.894757 kPa
quad (10 ¹⁵ Btu)		1.055056 × 10 ¹⁸ J	rad	rad	$1 \text{ cGy} = 10^{-2} \text{ Gy}$
rem	rem	$1 \text{ cSv} = 10^{-2} \text{ Sv}$	roentgen	R	1 R = 2.58 × 10 ⁻⁴ C/kg
svedberg	S, Sv	10 ⁻¹³ s	ton (TNT)		4.184 GJ
ton (register)		2.831685 m ³	torr (mm hg)	Torr	1/760 atm =
					133.322 3684 Pa
X unit		ca. 1.002 × 10 ⁻⁴ nm	year	а	365.2425 d
			(Gregorian)		31 556 952 s

SI Values of US and Imperial Measures

Linear Measures (1 m = 10^2 cm = 10^3 mm)					
Name	Symbol	Equivalents	Exact SI Value (m)		
mil; thou	mil	0.001 in	2.54 E-05		
point (font sizes)	pt	1/72 in	3.527778 E-04		
pica		12 pt	4.233333 E-03		
inch (international)	in	defined	0.0254		
inch (US survey)	in	defined: 39.3700 in = 1 m	0.0254000508001016		
hand		4 in	0.1016		
link (US survey)	li, Ink	33/50 ft	0.201168402336805		
foot (int.)	ft	12 in (int)	0.3048		
foot (US survey)	ft	defined: 1 ft = 12/39.37 m	0.304800609601219		
yard (int.)	yd	3 ft; 36 in (int)	0.9144		
yard (US survey)	yd	3 ft; 36 in	0.914401828803658		
fathom (US survey)	fm	6 ft	1.82880365760732		
rod (US survey)	rd	25 li; 5.5 yd; 16.5 ft	5.02921005842012		
chain (US survey)	ch	4 rd; 100 li; 22 yd; 66 ft	20.1168402336805		
furlong (US survey)	fur	10 ch; 40 rd; 220 yd; 660 ft	201.168402336805		
cable (US survey)		120 fm; 720 ft	219.456438912878		
mile (int.)	mi	1760 yd; 5280 ft (int)	1609.344		
statute mile (US survey)	mi	25 rd; 80 ch; 5280 ft; 8000 li	1609.347219		
nautical mile (int.)	nmi	defined	1852		
sea mile (US survey)		6080.20 ft	1853.24866649733		
league	lea	3 nautical miles	5556		
Area Measures $(1 \text{ m}^2 = 10^4 \text{ cm})$	$n^2 = 10^6 \text{ mm}^2$)				
Name	Symbol	Equivalents	Exact SI Value (m ²)		
square inch (int.)	sq in, in ²		6.4516 E-04		
square foot (int.)	sq ft, ft ²	144 in ²	0.09290304		
square yard (int.)	sq yd, yd ²	9 ft ² ; 1296 in ²	0.83612736		
square rod (US survey)	sq rd, rd ²	30.25 yd ² ; 272.25 ft ²	25.2929538117141		
acre (international)		4840 yd²; 43560 ft²; 0.40468564 ha	4046.8564224		
acre (US survey)		10 ch²; 160 rd²; 4840 yd²; 43560 ft²	4046.87260987425		
square mile (int.)	sq mi, mi²	3097600 yd ²	2.589988110336 E+06		
square mile (US survey)	sq mi, mi²	640 acre	2.58999847031952 E+06		
Volume Measures (1 L = 1 dm	1 ³ = 10 ⁻³ m ³ ; 1 mL =	$1 \text{ cm}^3 = 10^{-6} \text{ m}^3$; $1 \mu \text{l} = 1 \text{ mm}^3 = 10^{-6} \text{ m}^3$	⁹ m³)		
Name	Symbol	Equivalents	Exact SI Value (L, dm ³)		
cubic inch (int.)	cu in, in ³	0.554 fl oz	0.016387064		
cubic foot (int.)	cu ft, ft ³	1728 in ³	28.316846592		
cubic yard (int.)	cu yd, yd ³	27 ft ³ ; 46656 in ³	764.554857984		
displacement ton		defined as 35 ft ³	991.08963072		
register ton		defined as 100 ft ³	2831.6846592		
cubic mile (int.)	cu mi, mi ³	5.451776 E9 yd ³	4.168181825 E+12		
	Imperial dry and fluid	l measures (UK, Commonwealth)			
minim	min	1/480 fl oz	5.919388021 E-05		
drop	gtt	1/288 fl oz; 5/3 min	9.865646701 E-05		
dash		1/384 gi; 1/16 tsp	3.699617513 E-04		
pinch		2 dash; 1/192 gi; 1/8 tsp	7.399235026 E-04		
scruple	fl s	1/24 fl oz; 20 min	1.183877604 E-03		
drachm	fl dr	1/8 fl oz; 60 min	3.551633000 E-03		
teaspoon (Canada)	tsp	1/6 fl oz; 80 min	4.735510417 E-03		
teaspoon	tsp	1/24 gi; 5/3 fl dr; 100 min	5.919388021 E-03		
tablespoon (Canada)	tbsp	1/2 fl oz; 3 tsp; 240 min;	1.420653125 E-02		
tablespoon	tbsp	1/8 gi; 5/8 fl oz; 3 tsp; 5 fl dr; 300 min	1.775816406 E-02		
ounce (Imp)	fl oz (Imp)	8 fl dr; 480 min	0.0284130625		
gill	gi (Imp)	5 fl oz	0.1420653125		
cup (Canada)	c (CA)	8 fl oz	0.2273045		

Imperial dry and fluid measures (UK, Commonwealth)					
Name	Symbol	Equivalents	SI Value (L, dm ³)		
pint	pt (Imp)	4 gill; 20 fl oz	0.56826125		
guart	at (Imp)	2 pt; 40 fl oz	1.1365225		
gallon (Imperial)	gal (Imp)	defined as 160 oz av water at 62 °F;			
		4 at: 8 pt: 32 ai: 160 fl oz	4.54609		
peck	pk	2 gal	9.09218		
bucket	bkt	4 gal	18.18436		
bushel	bu	8 gal	36.36872		
barrel	bl	36 gal	163.65924		
	1	US fluid measures			
minim	min	1/480 fl oz	6.161151992 E-05		
drop	gtt	1/360 fl oz; 4/3 min	8.214869323 E-05		
dash		1/96 fl oz; 1/16 tsp	3.080575996 E-04		
pinch		2 dash; 1/48 fl oz; 1/8 tsp	6.161151992 E-04		
dram	fl dr	1/8 fl oz; 60 min	3.696691195 E-03		
teaspoon	tsp	1/6 fl oz	4.928921594 E-03		
tablespoon	tbsp	1/2 fl oz; 4 fl dr; 0.5 fl oz	1.478676478 E-02		
ounce (US)	fl oz (US)	1/128 gal; 8 fl dr; 480 min	0.0295735295625		
jigger		1.5 fl oz; 12 fl dr	0.044360294		
gill	gi (US)	4 fl oz	0.118294118		
quo	c (US)	8 fl oz	0.236588		
pint	pt (US)	2 c; 16 fl oz	0.473176473		
guart	at (US)	2 pt; 32 fl oz	0.946353		
gallon (US)	gal (US)	defined as 231 in ³ ; 4 qt; 128 fl oz	3.785411784		
barrel	fl bl (US)	defined as 31.5 gal	119.240471196		
barrel (oil)	bbl	defined as 42 gal (US)	158.987294928		
	1	US dry measures			
pint	pt	1/64 bu	0.5506104713575		
guart	at	1/32 bu; 2 pt	1.101220942715		
board-foot	fbm	defined as 144 in ³	2.359737216		
gal	gal	1/8 bu; 4 at	4.40488377086		
peck	pk	1/4 bu; 8 gt	8.80976754172		
bushel (dry level)	bu (US IvI)	defined as 2150.42 in ³ ; 4 pk; 32 gt;	35.23907016688		
barrel	bl	105 gt	115.628198985075		
seam		8 bu	281.91256133504		
cord	cd	128 ft ³	3624.556363776		
Mass (1 kg = 10^3 g = 10^6 mg)	1				
Name	Symbol	Equivalents	Exact SI Value (kg)		
avoirdupois	av				
grain	gr	1/7000 lb	6.479891 E-05		
dram	dr av	1/256 lb; 7000/256 gr	1.7718451953125 E-03		
ounce	oz av	1/16 lb; 16 dr	2.8349523125 E-02		
pound	lb av	defined	0.45359237		
stone (UK)		14 lb	6.35029318		
quarter (UK)		2 stone; 28 lb	12.70058636		
hundredweight (short, US)	net cwt	100 lb	45.359237		
hundredweight (long, UK)	gross cwt	8 stone; 112 lb	50.80234544		
short ton (US)	ton	20 cwt; 2000 lb	907.18474		
long ton (UK)	ton	20 cwt (UK); 2240 lb	1016.0469088		
troy or apothecary	t, ap				
grain	gr	same mass as in avoirdupois	6.479891 E-05		
scruple	s ap	1/24 oz t; 20 gr	1.2959782 E-03		
pennyweight	dwt, pwt	1/20 oz t; 24 gr	1.55517384 E-03		
dram	dr t	1/8 oz t; 60 gr	3.8879346 E-03		
ounce	oz t	1/12 lb t; 20 dwt; 8 dr t; 480 gr	3.11034768 E-02		
pound	lb t	12 oz t; 96 dr t; 5760 gr	0.3732417216		

Conversion Factors for Important Physical Units

Energy Equivalents

	Joule	Hertz	cm⁻¹	Kelvin	eV
Joule	1	1.5091905 E+33	5.03411762 E+22	7.242964 E+22	6.24150974 E+18
Hertz	6.62606876 E-34	1	3.335640952 E-11	4.7992374 E-11	4.13566727 E-15
cm⁻¹	1.98644544 E-23	2.99792458 E+10	1	1.4387752	1.239841857 E-04
Kelvin	1.3806503 E-23	2.0836644 E+10	0.6950356	1	8.6173432 E-05
eV	1.602176462 E-19	2.417989491 E+14	8.06554477 E+03	1.1604506 E+04	1

based on the Fundamental constants with E = mc² = hc/ λ = hv = kT and 1 eV = (e/C) J

Force Units: Si unit = Newton (N), cgs unit = dyne, Weight = mass $\times g_n$

	Ν	p (pond)	kp	dyne
Ν	1	101.9716	0.1019716	1.0 E+05
р	0.00980665	1	1.00 E-03	980.665
kp	9.80665	1000	1	980665
dyne	1.0 E-05	1.019716 E-03	1.019716 E-06	1

Energy and Work Units: SI unit = Joule (J), cgs unit: 1 erg = 10⁻⁷ Joule

	J = N m	kp m	kWh	kcal	BTU	eV
J	1	0.101972	2.777778 E-07	2.390057 E-04	9.478134 E-04	6.241512 E+18
kp m	9.80665	1	2.724069 E-06	2.343846 E-03	9.294874 E-03	6.120832 E+19
kWh	3.600 E+06	3.670978 E+05	1	860.4207	3412.128	2.246944 E+25
kcal	4184	426.6493	1.162222 E-03	1	3.965651	2.611448 E+22
BTU	1055.06	1.075862 E+02	2.930722 E-01	2.521654 E-01	1	6.585169 E+21
eV	1.602176 E-19	1.633765 E-20	4.450489 E-26	3.829293 E-23	1.518564 E-22	1

Power Units: SI unit = Watt (W)

	W = J s ⁻¹	kW	kpm/s	PS	cal/s	kcal/h
w	1	1.0 E-03	0.1019716	1.341022 E-03	0.2390057	0.8604207
kW	1.0 E+03	1	101.9716	1.341022	239.0057	860.4207
kpm/s	9.80665	9.80665 E-03	1	1.315093 E-02	2.343846	8.437844
PS	745.7	0.7457	76.04024	1	178.2266	641.6157
cal/s	4.184	4.184 E-03	0.4266493	5.610835 E-03	1	3.6
kcal/h	1.162222	1.162222 E-03	0.1185137	1.558565 E-03	0.2777778	1

Pressure Units: SI unit = Pascal

	Pa = N/m ²	kp/m ²	atm	bar	Torr = mmHg	at = kp/cm ²
Pa = N/m ²	1	0.1019716	9.86923 E-06	1.0 E-05	7.500617 E-03	1.019716 E-05
kp/m ²	9.80665	1	9.67841 E-05	9.80665 E-05	7.355592 E-02	1.0 E-04
atm	1.01325 E+05	1.033227 E+04	1	1.01325	760	1.033227
bar	1.0 E+05	1.019716 E+04	0.9869233	1	750.0617	1.019716
Torr	133.3224	13.59510	1.315789 E-03	1.333224 E-03	1	1.359510 E-03
at = kp/cm ²	9.80665 E+04	1.0 E+04	0.9678411	9.800665 E-01	735.5592	1

Time Units: SI unit = second

	S	min	h	d	week	year
s	1	1.666667 E-02	2.777778 E-04	1.157407 E-05	1.653439 E-06	3.168874 E-08
min	60	1	1.666667 E-02	6.944444 E-04	9.920635 E-05	1.901324 E-06
h	3600	60	1	4.166667 E-02	5.952381 E-03	1.140795 E-04
d	86400	1440	24	1	1.428571 E-01	2.737907 E-03
week	604800	10080	168	7	1	1.916535 E-02
year	31556952	525949.2	8765.82	365.2425	52.1775	1

Temperature Conversion: SI unit = Kelvin

	Kelvin (K)	Centigrade (°C)	Fahrenheit (°F)	Rankine (°R)
К	1	$T_c = T_K - 273.15$	$T_F = (9/5)T_K - 459.67$	$T_{R} = (9/5)T_{K}$
°C	$T_{K} = T_{C} + 273.15$	1	$T_F = (9/5)T_C + 32$	$T_R = (9/5)(T_C + 273.15)$
°F	$T_{K} = (5/9)(T_{F} + 459.67)$	$T_c = (5/9)(T_F - 32)$	1	$T_R = T_F + 459.67$
°R	$T_{K} = (9/5)T_{R}$	$T_{\rm C} = (5/9)T_{\rm R} - 273.15$	$T_F = T_R - 459.67$	1

Colour, Wave Length, Frequency, Wave Number and Energy of Light

Colour	λ [nm]	v [Hz]	ν [cm ⁻¹]	E [eV]	E [kJ mol ⁻¹]
Infrared	1000	3.00 · 1014	1.00 · 104	1.24	120
Red	700	$4.28 \cdot 10^{14}$	1.43 · 104	1.77	171
Orange	620	$4.84 \cdot 10^{14}$	1.61 · 104	2.00	193
Yellow	580	$5.17 \cdot 10^{14}$	$1.72\cdot 10^4$	2.14	206
Green	530	5.66 · 1014	1.89 · 104	2.34	226
Blue	470	$6.38 \cdot 10^{14}$	2.13 · 104	2.64	254
Violet	420	$7.14 \cdot 10^{14}$	2.38 · 104	2.95	285
Near Ultraviolet	300	1.00 · 10 ¹⁵	3.33 · 10 ⁴	4.15	400
Far Ultraviolet	200	1.50 · 10 ¹⁵	5.00 · 104	6.20	598

Density of Water (H₂O)

t [°C]	ρ[kg/dm³]	t [°C]	ρ[kg/dm³]	t [°C]	ρ[kg/dm³]
0	0.999841	11	0.999606	22	0.997772
1	0.999900	12	0.999498	23	0.997540
2	0.999941	13	0.999377	24	0.997299
3	0.999965	14	0.999244	25	0.997047
4	0.999973	15	0.999099	26	0.996785
5	0.999965	16	0.998943	27	0.996515
6	0.999941	17	0.998775	28	0.996235
7	0.999902	18	0.998596	29	0.995946
8	0.999849	19	0.998406	30	0.995649
9	0.999782	20	0.998205		
10	0.999701	21	0.997994		

Viscosity of Water, η in mPa \cdot s (cP)

t [°C]	η	t [°C]	η	t [°C]	η	t [°C]	η
0	1.7865	20	1.0019	50	0.5477	90	0.3155
5	1.5138	25	0.8909	60	0.4674	100	0.2829
10	1.3037	30	0.7982	70	0.4048	125	0.2200
15	1.1369	40	0.6540	80	0.3554	150	0.1830

Viscosities of Various Liquids, η in mPa \cdot s (cP)

Liquid	0°C	10°C	20°C	30°C	40°C	50°C	60°C	70°C	100°C
Acetic acid	-	-	1.219	1.037	0.902	0.794	0.703	0.629	0.464
Acetone	0.397	0.358	0.324	0.295	0.272	0.251	-	-	-
Aniline	-	6.53	4.39	3.18	2.40	1.91	1.56	1.29	0.76
Benzene	-	0.757	0.647	0.560	0.491	0.435	0.389	0.350	-
Bromobenzene	1.556	1.325	1.148	1.007	0.889	0.792	0.718	0.654	0.514
Carbon disulfide	0.436	0.404	0.375	0.351	0.329	-	-	-	-
Carbon dioxide (liq.)	0.099	0.085	0.071	0.053	-	-	-	-	-
Carbon tetrachloride	1.348	1.135	0.972	0.845	0.744	0.660	0.591	0.533	0.400
Chloroform	0.704	0.631	0.569	0.518	0.473	0.434	0.399	-	-
Diethyl ether	0.294	0.267	0.242	0.219	0.199	0.183	0.168	0.154	0.119
Ethanol	1.767	1.447	1.197	1.000	0.830	0.700	0.594	0.502	-
Ethyl acetate	0.581	0.510	0.454	0.406	0.366	0.332	0.304	0.278	-
Ethyl formate	0.508	0.453	0.408	0.368	0.335	0.307	-	-	-
Formic acid	-	2.241	1.779	1.456	1.215	1.033	0.889	0.778	0.547
Mercury	1.681	1.661	1.552	1.499	1.450	1.407	1.367	1.327	1.232
Methanol	0.814	0.688	0.594	0.518	0.456	0.402	0.356	-	-
<i>n</i> -Octane	0.710	0.618	0.545	0.485	0.436	0.494	0.358	0.326	0.255
Oil, castor	-	2420	986	451	231	125	74	43	16.9
Oil, olive	-	138	84	52	36	24.5	17	12.4	-
<i>n</i> -Pentane	0.278	0.254	0.234	0.215	0.198	0.184	0.172	0.161	0.130
Sulfuric acid	56	49	27	20	14.5	11.0	8.2	6.2	-
Toluene	0.771	0.668	0.585	0.519	0.464	0.418	0.379	0.345	0.268

Self-Diffusion Coefficients D of Various Liquids at 25°C

Liquid	D [10 ⁻⁹ m ² s ⁻¹]	Liquid	D [10 ⁻⁹ m ² s ⁻¹]	Liquid	D [10 ^{.9} m ² s ^{.1}]
Water (H ₂ O)	2.299	Acetonitrile	4.37	Cyclopentane	3.09
Water (D ₂ O)	1.872	Pyridine	1.54	Cyclooctane	0.55
Methanol (CH ₃ OH)	2.415	Nitromethane	2.39	n-Pentane	5.72
Methanol (CH ₃ OD)	2.30	Tetrahydrofuran	2.84	n-Hexane	4.26
Methanol (CD ₃ OH)	2.21	Benzene	2.21	n-Heptane	3.12
Methanol (CD ₃ OD)	2.11	Fluorobenzene	2.39	n-Octane	2.35 ₅
Ethanol	1.08	Hexafluorobenzene	1.46	<i>n</i> -Nonane	1.77
<i>t</i> -Butanol-d ₁	0.28	Toluene	2.27	N-Decane	1.37
Formamide	0.55	Carbon disulfide	4.32	<i>n</i> -Undecane	1.07 ₆
N,N-Dimethylformamide	1.63	Carbon Tetrachloride	1.30	<i>n</i> -Dodecane	0.81
N,N-Dimethylacetamide	1.35	Chloroform	2.35	<i>n</i> -Tridecane	0.70
Dimethyl sulfoxide	0.73	Acetic acid	1.08	n-Tetradecane	0.52
Dioxane	1.09	Formic acid	1.08	Pentan-1-ol	0.29
Acetone	4.57	Cyclohexane	1.42	Octan-1-ol	0.14

Table by courtesy of Dr. M. Holz (Institute of Phys. Chem., University of Karlsruhe, FRG) and Prof. A Sacco (Dept. Chem., University of Bari, Italy).

Temperature Dependence of the Self-Diffusion Coefficient D of Water (H₂O)

t [°C]	<i>D</i> [10 ⁻⁹ m ² s ⁻¹]	t [°C]	D [10 ⁻⁹ m ² s ⁻¹]	t [°C]	D [10 ⁻⁹ m ² s ⁻¹]	t [°C]	D [10 ⁻⁹ m ² s ⁻¹]
-5	0.913	20	2.023	50	3.956	80	6.557
0	1.099	25	2.299	55	4.344	85	7.056
2.5	1.199	30	2.594	60	4.748	90	7.574
5	1.303	35	2.907	65	5.172	95	8.111
10	1.525	40	3.238	70	5.615	100	8.667
15	1.765	45	3.588	75	6.078		

Table by courtesy of Dr. M. Holz, Institute of Phys. Chem., University of Karlsruhe, FRG.

International Dialing Codes / World Time Zones

Time Zones are listed as increment in hour:min relative to UTC / GMT for ST = standard time; DST = Daylight Savings (Summer) Time (where used). Provences or Cities are listed for countries with more than one time zone.

NB: DST runs approximately from March to October in the northern hemisphere and October to March in the southern hemisphere; exact period depends on country and may change from year to year. (data adapted by W.E. Hull from www.happyzebra.com and www.worldtimezone.com)

Country (Code) - Provinces / Cities	ST	DST
Afghanistan (+93)	+4:30	
Albania (+355)	+1	+2
Algeria (+213)	+1	
Angola (+244)	+1	
Argentina (+54) DST only in Buenos Aires and some	2	2
provinces in the northeast	-3	-2
Armenia (+374)	+4	+5
Australia (+61) - W. Austr. (Perth)	+8	
Australia (+61) - N. Terr. (Darwin),	+9:30	
Australia (+61) - Queensland (Brisbane)	+10	
Australia (+61) - Cap. Terr. (Canberra), N.S.W. (Sydney),	. 10	. 11
Victoria (Melbourne), S. Austr. (Adelaide), Tasmania (Hobart)	+10	+11
Austria (+43)	+1	+2
Azerbaijan (+994)	+4	+5
Bahamas (+1)	-5	-4
Bahrain (+973)	+3	
Bangladesh (+880)	+6	+7
Barbados (+1)	-4	
Belarus (+375)	+2	+3
Belgium (+32)	+1	+2
Belize (+501)	-6	
Benin (+229)	+1	
Bermuda (UK)	-4	-3
Bhutan (+975)	+6	
Bolivia (+591)	-4	
Bosnia-Herzegovina (+387)	+1	+2
Botswana (+267)	+2	
Brazil (+55) / Rio Branco	-5	
Brazil (+55) / Manaus	-4	
Brazil (+55) / Salvador, Recife	-3	
Brazil (+55) / Brasilia, Rio de Janeiro, Porto Alegre, Sao Paulo	-3	-2
Brazil (+55) / Fernando de Noronha	-2	
Brunei (+673)	+8	
Bulgaria (+359)	+2	+3
Burkina Faso (+226)	0	
Burundi (+257)	+2	
Cambodia (+855)	+7	
Cameroon (+237)	+1	
Canada (+1) - Newfoundland & Labrador	-3:30	-2:30
Canada (+1) - Pr. Edward Island, Nova Scotia,	_4	-3
New Brunswick		Ŭ
Canada (+1) - Ontario (Toronto, Ottawa),	-5	_4
Quebec (Montreal, Quebec)	Ŭ	
Canada (+1) - Manitoba (Winnipeg)	-6	-5
Canada (+1) - Alberta (Edmonton, Calgary), NW Territories	-7	-6
Canada (+1) - Saskatchewan	-7	
Canada (+1) - British Columbia (Vancouver), Yukon Terr.	-8	-7
Canary Islands (Spain)	0	+1
Central African Republic (+236)	+1	
Chad (+235)	+1	
Chile (+56)	-4	-3
China (+86)	+8	L
Colombia (+57)	-5	
Congo, Repub. (+242) / Kinshasa	+1	

Country (Code) - Provinces / Cities	ST	DST
Congo Dem Benub (+243)/Lubumbashi	+2	
Costa Bica (+506)	-6	
Cote dívoire (+225)	0	
Croatia (+385)	+1	+2
Cuba (+53)	-5	-4
Cyprus (+357)	+2	+3
Czech Republic (+420)	+1	+2
Denmark (+45)	+1	+2
Diibouti (+253)	+3	
Dominican Republic (+1)	-4	
Ecuador (+593)	-5	
Egypt (+20)	+2	+3
El Salvador (+503)	-6	
Eritrea (+291)	+3	
Estonia (+372)	+2	+3
Ethiopia (+251)	+3	
Fiji (+679)	+12	
Finland (+358)	+2	+3
France (+33)	+1	+2
French Guiana	-3	
Gabon (+241)	+1	
Galapagos Islands (Ecuador)	-6	
Gambia (+220)	0	
Gaza (+970)	+2	+3
Georgia (+995)	+4	
Germany (+49)	+1	+2
Ghana (+233)	0	
Gibraltar (UK)	+1	+2
Greece (+30)	+2	+3
Guatemala (+502)	-6	
Guadeloupe (France)	-4	
Guinea (+224)	0	
Guyana (+592)	-4	
Haiti (+509)	-5	
Honduras (+504)	-0	. 0
	+1	+2
lodia (+334)	15:20	
Indonesia (±62) - Papua	+0.50	
Indonesia (+62) - Tabua	+3	
Indonesia (±62) - Java Sumatra	10	
Iran (+98)	+3:30	+4:30
Irag (+964)	+3	1 1100
Ireland (+353)	0	+1
Israel (+972)	+2	+3
Italy (+39)	+1	+2
Jamaica (+1)	-5	
Japan (+81)	+9	
Jordan (+962)	+2	+3
Kazakhstan (+7) / Almaty, Astana	+6	
Kazakhstan (+7) / Aqtau, Aqtobe	+5	
Kenya (+254)	+3	
Kosovo (+381)	+1	+2
Kuwait (+965)	+3	

International Dialing Codes / World Time Zones

Country (Code) - Provinces / Cities	ST	DST
Kyrgyzstan (+996)	+6	
Laos (+856)	+7	
Latvia (+371)	+2	+3
Lebanon (+961)	+2	+3
Lesotho (+266)	+2	
Liberia (+231)	0	
Libya (+218)	+2	
Liechtenstein (+423)	+1	+2
Lithuania (+370)	+2	+3
Luxembourg (+352)	+1	+2
Macedonia (+389)	+1	+2
Madagascar (+261)	+3	
Malawi (+265)	+2	
Malaysia (+60)	+8	
Maldives (+960)	+5	
Mali (+223)	0	
Malta (+356)	+1	+2
Martinique (France)	-4	
Mauritania (+222)	0	
Mauritius (+230)	+4	
Mexico (+52) - Aguascalientes, Fed. District (Mexico City),		
Guanajuato, Guerrero, Jalisco, Nuevo Leon, Quintana Roo,	-6	-5
San Luis Potosi, Veracruz, Yucatan		
Mexico (+52) - Chihuahua, Sinaloa	-7	-6
Mexico (+52) - Sonorro	-7	
Mexico (+52) - Baja California (Tijuana)	-8	-7
Moldova (+373)	+2	+3
Monaco (+377)	+1	+2
Mongolia (+976) / Choibalsan, Ulaanbaatar	+8	
Mongolia (+976) / Hovd	+7	
Montenegro (+382)	+1	+2
Morocco (+212)	0	+1
Mozambique (+258)	+2	
Myanmar (+95)	+6:30	-
Namibia (+264)	+1	+2
Nepal (+9//)	+5:45	
Netherlands (+31)	+1	+2
New Zealand (+64)	+12	+13
Nicaragua (+505)	-6	
Niger (+227)	+1	
Nigeria (+234)	+1	
North Korea (+850)	+9	. 0
Norway (+47)	+1	+2
Offidit (+900)	+4	
Parama (+92)	+0	+0
Paniama (+507)	-0	
	+10	2
Paraguay (+595)	-4	-3
Philippings (162)	-0	
Poland (+48)	+0	+2
Portugal (+46)	+1	+2
Politugal (+351)	0	+1
Oatar (±97/)	^{−4}	
Reunion (±262)	±7	
Romania (+202)	++ +2	+3
Russia (+7) / Kaliningrad	+2	+3
Ruccia (+7) / Kaliningiau	τ∠	τJ
St. Petersburg	+3	+4
Russia (+7) / Samara	+4	+5
Russia (+7) / Chelyabinsk, Novosibirsk, Perm, Ufa, Yekaterinburg	+5	+6

Country (Code) - Provinces / Cities	ST	DST
Russia (+7) / Omsk	+6	+7
Russia (+7) / Krasnoyarsk	+7	+8
Russia (+7) / Irkutsk	+8	+9
Russia (+7) / Yakutsk	+9	+10
Russia (+7) / Vladivostok, Yuzhno-Sakhalinsk	+10	+11
Russia (+7) / Magadan	+11	+12
Russia (+7) / Anadyr, Kamchatka	+12	+13
Rwanda (+250)	+2	
Saudi Arabia (+966)	+3	
Senegal (+221)	0	
Serbia (+381)	+1	+2
Seychelles (+248)	+4	
Sierra Leone (+232)	0	
Singapore (+65)	+8	
Slovakia (+421)	+1	+2
Slovenia (+386)	+1	+2
Somalia (+252)	+3	
South Africa (+27)	+2	
South Korea (+82)	+9	
Spain (+34)	+1	+2
Sri Lanka (+94)	+5:30	
Sudan (+249)	+3	
Suriname (+597)	-3	
Swaziland (+268)	+2	
Sweden (+46)	+1	+2
Switzerland (+41)	+1	+2
Svria (+963)	+2	+3
Tahiti (France)	-10	
Taiwan (+886)	+8	
Tajikistan (+992)	+5	
Tanzania (+255)	+3	
Thailand (+66)	+7	
Timor-Leste (+670)	+9	
Togo (+228)	0	
Trinidad & Tobago (+1)	-4	
Tunisja (+216)	+1	
Turkey (+90)	+2	+3
Turkmenistan (+993)	+5	
LIAE - Abu Dhabi, Dubai (+971)	+4	
Uganda (+256)	+3	
Ukraine (+380)	±2	+3
United Kingdom (+44) - England Scotland Wales	12	10
N Ireland	0	+1
Uruguay (+598)	_3	-2
USA (+1) - Eastern Zone		2
(New York Boston Miami Philadelphia)	-5	-4
(Chicano Wichita New Orleans Pensicola)	-6	-5
USA (+1) - Mountain Zone (Helena, Denver, Santa Fe)	_7	-6
	-/	-0
	-,	
(Las Vegas, San Francisco, Los Angeles)	-8	-7
(Las vegas, Jain Hancisco, Los Angeles)	0	0
	_11	-0
Vatican City (+390)	+0 1	±0
	1+1	τ∠
Viotnam (+30)	-4.30	
Vietildiii (+04) Voman (+067)	+/	
Tambia (+ 307)	+3	
Zambabwa (+200)	+2	
ZIIIIDADWE (+203)	+2	