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Preface

Matrix eigenvalue problems arise in a large number of disciplines
of sciences and engineering� They constitute the basic tool used
in designing buildings� bridges� and turbines� that are resistent
to vibrations� They allow to model queueing networks� and to
analyze stability of electrical networks or uid ow� They also
allow the scientist to understand local physical phenonema or
to study bifurcation patterns in dynamical systems� In fact the
writing of this book was motivated mostly by the second class of
problems�

Several books dealing with numerical methods for solving eigen�
value problems involving symmetric �or Hermitian� matrices have
been written and there are a few software packages both public
and commercial available� The book by Parlett ���
� is an ex�
cellent treatise of the problem� Despite a rather strong demand
by engineers and scientists there is little written on nonsymmetric
problems and even less is available in terms of software� The ��	�
book by Wilkinson ��
�� still constitutes an important reference�
Certainly� science has evolved since the writing of Wilkinson�s
book and so has the computational environment and the demand
for solving large matrix problems� Problems are becoming larger
and more complicated while at the same time computers are able
to deliver ever higher performances� This means in particular that
methods that were deemed too demanding yesterday are now in
the realm of the achievable� I hope that this book will be a small
step in bridging the gap between the literature on what is avail�
able in the symmetric case and the nonsymmetric case� Both
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the Hermitian and the non�Hermitian case are covered� although
non�Hermitian problems are given more emphasis�

This book attempts to achieve a good balance between the�
ory and practice� I should comment that the theory is especially
important in the nonsymmetric case� In essence what di�erenti�
ates the Hermitian from the non�Hermitian eigenvalue problem is
that in the �rst case we can always manage to compute an ap�
proximation whereas there are nonsymmetric problems that can
be arbitrarily di�cult to solve and can essentially make any algo�
rithm fail� Stated more rigorously� the eigenvalue of a Hermitian
matrix is always well�conditioned whereas this is not true for non�
symmetric matrices� On the practical side� I tried to give a general
view of algorithms and tools that have proved e�cient� Many of
the algorithms described correspond to actual implementations
of research software and have been tested on realistic problems�
I have tried to convey our experience from the practice in using
these techniques�

As a result of the partial emphasis on theory� there are a few
chapters that may be found hard to digest for readers inexperi�
enced with linear algebra� These are Chapter III and to some
extent� a small part of Chapter IV� Fortunately� Chapter III is
basically independent of the rest of the book� The minimal back�
ground needed to use the algorithmic part of the book� namely
Chapters IV through VIII� is calculus and linear algebra at the
undergraduate level� The book has been used twice to teach a spe�
cial topics course� once in a Mathematics department and once in
a Computer Science department� In a quarter period represent�
ing roughly �� weeks of ��� hours lecture per week� Chapter I� III�
and IV� to VI have been covered without much di�culty� In a
semester period� �
 weeks of ��� hours lecture weekly� all chapters
can be covered with various degrees of depth� Chapters II and X
need not be treated in class and can be given as remedial reading�

Finally� I would like to extend my appreciation to a number
of people to whom I am indebted� Fran�coise Chatelin� who was
my thesis adviser� introduced me to numerical methods for eigen�
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value problems� Her inuence on my way of thinking is certainly
reected in this book� Beresford Parlett has been encouraging
throughout my career and has always been a real inspiration�
Part of the motivation in getting this book completed� rather
than �never �nished�� is owed to L� E� Scriven from the Chemical
Engineering department and to many others in applied sciences
who expressed interest in my work� I am indebted to Roland Fre�
und who has read this manuscript with great care and has pointed
out numerous mistakes�

Minneapolis� December ����
Youcef Saad
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Chapter I

Background in Matrix

Theory and Linear Algebra

This chapter reviews basic matrix theory and introduces some
of the elementary notation used throughout the book� Matrices
are objects that represent linear mappings between vector spaces�
The notions that will be predominantly used in this book are very
intimately related to these linear mappings and it is possible to
discuss eigenvalues of linear operators without ever mentioning
their matrix representations� However� to the numerical analyst�
or the engineer� any theory that would be developed in this man�
ner would be insu�cient in that it will not be of much help in
developing or understanding computational algorithms� The ab�
straction of linear mappings on vector spaces does however pro�
vide very concise de�nitions and some important theorems�



� Chapter I

�� Matrices

When dealing with eigenvalues it is more convenient� if not more
relevant� to manipulate complex matrices rather than real matri�
ces� A complex n � m matrix A is an n � m array of complex
numbers

aij� i � �� � � � � n� j � �� � � � � m�

The set of all n �m matrices is a complex vector space denoted
by Cn�m� The main operations with matrices are the following�

� Addition� C � A � B� where A�B and C are matrices of
size n�m and

cij � aij � bij �

i � �� �� � � � n� j � �� �� � � �m�

� Multiplication by a scalar� C � �A� where cij � � aij�

� Multiplication by another matrix�

C � AB�

where A � Cn�m� B � Cm�p� C � Cn�p� and

cij �
mX
k��

aikbkj�

A notation that is often used is that of column vectors and
row vectors� The column vector a�j is the vector consisting of the
j�th column of A� i�e�� a�j � �aij�i�������n� Similarly we will use the
notation ai� to denote the i�th row of the matrix A� For example�
we may write that

A � �a��� a��� � � � � a�m� �

or

A �

�
BBBBB�

a��
a��
�
�
an�

�
CCCCCA
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The transpose of a matrix A in Cn�m is a matrix C in Cm�n

whose elements are de�ned by cij � aji� i � �� � � � � m� j � �� � � � � n�
The transpose of a matrix A is denoted by AT � It is more rele�
vant in eigenvalue problems to use the transpose conjugate matrix
denoted by AH and de�ned by

AH � �AT � AT

in which the bar denotes the �element�wise� complex conjugation�

Finally� we should recall that matrices are strongly related to
linear mappings between vector spaces of �nite dimension� They
are in fact representations of these transformations with respect
to two given bases� one for the initial vector space and the other
for the image vector space�

�� Square Matrices and Eigenvalues

A matrix belonging to Cn�n is said to be square� Some notions
are only de�ned for square matrices� A square matrix which is
very important is the identity matrix

I � f�ijgi�j�������n

where �ij is the Kronecker symbol� The identity matrix satis�es
the equality AI � IA � A for every matrix A of size n� The
inverse of a matrix� when it exists� is a matrix C such that CA �
AC � I� The inverse of A is denoted by A���

The determinant of a matrix may be de�ned in several ways�
For simplicity we adopt here the following recursive de�nition�
The determinant of a �� � matrix �a� is de�ned as the scalar a�
Then the determinant of an n� n matrix is given by

det�A� �
nX

j��

����j��a�jdet�A�j�
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where A�j is an �n� ��� �n� �� matrix obtained by deleting the
��st row and the j� th column of A� The determinant of a matrix
determines whether or not a matrix is singular since A is singular
if and only if its determinant is zero� We have the following simple
properties�

� det�AB� � det�BA��

� det�AT � � det�A��

� det��A� � �ndet�A��

� det� �A� � det�A��

� det�I� � ��

From the above de�nition of the determinant it can be shown
by induction that the function that maps a given complex value
� to the value pA��� � det�A � �I� is a polynomial of degree n
�Problem P���	�� This is referred to as the characteristic polyno�
mial of the matrix A�

De�nition �� A complex scalar � is called an eigenvalue of the
square matrix A if there exists a nonzero vector u of Cn such that
Au � �u� The vector u is called an eigenvector of A associated
with �� The set of all the eigenvalues of A is referred to as the
spectrum of A and is denoted by ��A��

An eigenvalue of A is a root of the characteristic polynomial�
Indeed � is an eigenvalue of A i� det�A � �I� � pA��� � �� So
there are at most n distinct eigenvalues� The maximum modulus
of the eigenvalues is called spectral radius and is denoted by ��A��

��A� � max
����A�

j�j�

The trace of a matrix is equal to the sum of all its diagonal ele�
ments�

tr�A� �
nX
i��

aii�
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It can be easily shown that this is also equal to the sum of its
eigenvalues counted with their multiplicities as roots of the char�
acteristic polynomial�

Proposition �� If � is an eigenvalue of A then �� is an eigen�
value of AH� An eigenvector v of AH associated with the eigen�
value �� is called left eigenvector of A�

When a distinction is necessary� an eigenvector of A is often called
a right eigenvector� Thus the eigenvalue � and the right and left
eigenvectors� u and v� satisfy the relations

Au � �u � vHA � �vH

or� equivalently�

uHAH � ��uH � AHv � ��v �

�� Types of Matrices

The properties of eigenvalues and eigenvectors of square matrices
will sometimes depend on special properties of the matrix A� For
example� the eigenvalues or eigenvectors of the following types of
matrices will all have some special properties�

� Symmetric matrices� AT � A�

� Hermitian matrices� AH � A�

� Skew�symmetric matrices� AT � �A�

� Skew�Hermitian matrices� AH � �A�

� Normal matrices� AHA � AAH �

� Nonnegative matrices� aij � �� i� j � �� � � � � n �similar
de�nition for nonpositive� positive� and negative matrices��



	 Chapter I

� Unitary matrices� QHQ � I�

Often� a matrix Q such that QHQ is diagonal is called orthogonal�
It is worth noting that a unitary matrix Q is a matrix whose
inverse is its transpose conjugate QH �

Some matrices have particular structures that are often con�
venient for computational purposes and play important roles in
numerical analysis� The following list though incomplete� gives an
idea of the most important special matrices arising in applications
and algorithms�

� Diagonal matrices� aij � � for j �� i� Notation�

A � diag �a��� a��� � � � � ann� �

� Upper triangular matrices� aij � � for i � j�

� Lower triangular matrices� aij � � for i 	 j�

� Upper bidiagonal matrices� aij � � for j �� i or j �� i � ��

� Lower bidiagonal matrices� aij � � for j �� i or j �� i� ��

� Tridiagonal matrices� aij � � for any pair i� j such that
jj � ij��� Notation�

A � tridiag �ai�i��� aii� ai�i��� �

� Banded matrices� there exist two integers ml and mu such
that aij �� � only if i � ml � j � i � mu� The number
ml �mu � � is called the bandwidth of A�

� Upper Hessenberg matrices� aij � � for any pair i� j such
that i � j � �� One can de�ne lower Hessenberg matrices
similarly�

� Outer product matrices� A � uvH� where both u and v are
vectors�
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� Permutation matrices� the columns of A are a permutation
of the columns of the identity matrix�

� Block diagonal matrices� generalizes the diagonal matrix by
replacing each diagonal entry by a matrix� Notation�

A � diag �A��� A��� � � � � Ann� �

� Block tri�diagonal matrices� generalizes the tri�diagonal ma�
trix by replacing each nonzero entry by a square matrix�
Notation�

A � tridiag �Ai�i��� Aii� Ai�i��� �

The above properties emphasize structure� i�e�� positions of
the nonzero elements with respect to the zeros� and assume that
there are many zero elements or that the matrix is of low rank�
No such assumption is made for� say� orthogonal or symmetric
matrices�

�� Vector Inner Products and Norms

We de�ne the Hermitian inner product of the two vectors x �
�xi�i�������n and y � �yi�i�������n of Cn as the complex number

�x� y� �
nX
i��

xi�yi� �����

which is often rewritten in matrix notation as

�x� y� � yHx�

A vector norm on Cn is a real�valued function on Cn� which
satis�es the following three conditions�

kxk � � 	 x� and kxk � � i� x � ��

k�xk � j�jkxk� 	 x � Cn� 	� � C �

kx� yk � kxk� kyk� 	x� y � Cn �
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Associated with the inner product ����� is the Euclidean norm
of a complex vector de�ned by

kxk� � �x� x���� �

A fundamental additional property in matrix computations is the
simple relation

�Ax� y� � �x�AHy� 	x� y � Cn �����

the proof of which is straightforward� The following proposition
is a consequence of the above equality�

Proposition �	 Unitary matrices preserve the Hermitian inner
product� i�e�� �Qx�Qy� � �x� y� for any unitary matrix Q�

Proof Indeed �Qx�Qy� � �x�QHQy� � �x� y��

In particular a unitary matrix preserves the ��norm metric� i�e��
it is isometric with respect to the ��norm�

The most commonly used vector norms in numerical linear
algebra are special cases of the H�older norms

kxkp �

�
nX
i��

jxij
p

���p

� �����

Note that the limit of kxkp when p tends to in�nity exists and is
equal to the maximum modulus of the xi�s� This de�nes a norm
denoted by k�k�� The cases p � �� p � �� and p �
 lead to the
most important norms in practice�

kxk� � jx�j� jx�j� � � �� jxnj

kxk� �
h
jx�j

� � jx�j
� � � � �� jxnj

�
i���

kxk� � max
i������n

jxij �

A useful relation concerning the ��norm is the so�called Cauchy�
Schwartz inequality�

j�x� y�j � kxk�kyk��
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�� Matrix Norms

For a general matrix A in Cn�m we de�ne a special set of norms
of matrices as follows

kAkpq � max
x�Cm

� x ���

kAxkp
kxkq

� �����

We say that the norms k�kpq are induced by the two norms k�kp
and k�kq� These norms satisfy the usual properties of norms� i�e��

kAk � � 	A � Cn�m and kAk � � i� A � � �

k�Ak � j�jkAk� 	A � Cn�m� 	� � C �

kA�Bk � kAk� kBk� 	A�B � Cn�m �

Again the most important cases are the ones associated with
the cases p� q � �� ��
� The case q � p is of particular interest
and the associated norm k�kpq is simply denoted by k�kp�

A fundamental property of these norms is that

kABkp � kAkpkBkp�

which is an immediate consequence of the de�nition ������ Ma�
trix norms that satisfy the above property are sometimes called
consistent� As a result of the above inequality� for example� we
have that for any square matrix A�

kAnkp � kAknp �

which implies in particular that the matrix An converges to zero
if any of its p�norms is less than ��

The Frobenius norm of a matrix is de�ned by

kAkF �

�
� mX
j��

nX
i��

jaijj
�

�
A
���

� �����

This can be viewed as the ��norm of the column �or row� vector

in Cn� consisting of all the columns �resp� rows� of A listed from
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� to m �resp� � to n�� It can easily be shown that this norm is
also consistent� in spite of the fact that is not induced by a pair
of vector norms� i�e�� it is not derived from a formula of the form
������ see Problem P����� However� it does not satisfy some of the
other properties of the p�norms� For example� the Frobenius norm
of the identity matrix is not unity� To avoid these di�culties� we
will only use the term matrix norm for a norm that is induced by
two norms as in the de�nition ����	� Thus� we will not consider
the Frobenius norm to be a proper matrix norm� according to our
conventions� even though it is consistent�

It can be shown that the norms of matrices de�ned above
satisfy the following equalities that lead to alternative de�nitions
that are often easier to work with�

kAk� � max
j������m

nX
i��

jaijj � ���	�

kAk� � max
i������n

mX
j��

jaijj � �����

kAk� �
h
��AHA�

i���
�
h
��AAH�

i���
� ���
�

kAkF �
h
tr�AHA�

i���
�
h
tr�AAH�

i���
� �����

As will be shown in Section �� the eigenvalues of AHA are
nonnegative� Their square roots are called singular values of A
and are denoted by �i� i � �� � � � � m� Thus� the relation ���
�
shows that kAk� is equal to ��� the largest singular value of A�

Example �� From the above properties� it is clear that the spectral
radius ��A� is equal to the ��norm of a matrix when the matrix is
Hermitian� However� it is not a matrix norm in general� For example�
the �rst property of norms is not satis�ed� since for

A �

�
	 

	 	

�

we have ��A� � 	 while A �� 	� The triangle inequality is also not
satis�ed for the pair A� and B � AT where A is de�ned above� Indeed�

��A�B� � 
 while ��A� � ��B� � 	�
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�� Subspaces

A subspace of Cn is a subset of Cn that is also a complex vector
space� The set of all linear combinations of a set of vectors G �
fa�� a�� ���� aqg of Cn is a vector subspace called the linear span of
G�

spanfGg � span fa�� a�� � � � � aqg

�

�
z � Cn j z �

qX
i��

�iai � f�gi�������q � Cq

	
�

If the ai�s are linearly independent� then each vector of spanfGg
admits a unique expression as a linear combination of the ai�s�
The set G is then called a basis of the subspace spanfGg�

Given two vector subspaces S� and S�� their sum S is a sub�
space de�ned as the set of all vectors that are equal to the sum of a
vector of S� and a vector of S�� The intersection of two subspaces
is also a subspace� If the intersection of S� and S� is reduced to
f�g then the sum of S� and S� is called their direct sum and is
denoted by S � S�

L
S�� When S is equal to Cn then every vec�

tor x of Cn can be decomposed in a unique way as the sum of an
element x� of S� and an element x� of S�� The transformation P
that maps x into x� is a linear transformation that is idempotent
�P � � P �� It is called a projector� onto S� along S��

Two subspaces of importance that are associated with a ma�
trix A of Cn�m are its range de�ned by

Ran�A� � fAx j x � Cmg ������

and its kernel or null space

Ker�A� � fx � Cm j Ax � � g �

The range of A is clearly equal to the linear span of its columns�
The rank of a matrix is equal to the dimension of the range of A�

A subspace S is said to be invariant under a �square� matrix
A whenever AS � S� In particular for any eigenvalue � of A
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the subspace Ker�A � �I� is invariant under A� The subspace
Ker�A��I� is called the eigenspace associated with � and consists
of all the eigenvectors of A associated with � and the vector ��

�� Orthogonal Vectors and Subspaces

A set of vectors G � fa�� a�� � � � � arg is said to be orthogonal if

�ai� aj� � � when i �� j

It is orthonormal if in addition every vector of G has a ��norm
equal to unity� Every subspace admits an orthonormal basis which
is obtained by taking any basis and  orthonormalizing! it� The
orthonormalization can be achieved by an algorithm referred to
as the Gram�Schmidt process which we now describe� Given a set
of linearly independent vectors fx�� x�� � � � � xrg� we �rst normalize
the vector x�� i�e�� we divide it by its ��norm� to obtain the scaled
vector q�� Then x� is orthogonalized against the vector q� by
subtracting from x� a multiple of q� to make the resulting vector
orthogonal to q�� i�e��

x�  x� � �x�� q��q��

The resulting vector is again normalized to yield the second vec�
tor q�� The i�th step of the Gram�Schmidt process consists of
orthogonalizing the vector xi against all previous vectors qj�

Algorithm �� Gram�Schmidt

�� Start� Compute r�� �� kx�k�� If r�� � � stop� else q� ��
x�
r���

�� Loop� For j � �� � � � � r do�

�a� Compute rij �� �xj� qi� for i � �� �� � � � � j � ��

�b� "q �� xj �
j��P
i��

rijqi �
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�c� rjj �� k"qk� �

�d� If rjj � � then stop� else qj �� "q
rjj�

It is easy to prove that the above algorithm will not break
down� i�e�� all r steps will be completed� if and only if the family
of vectors x�� x�� � � � � xr is linearly independent� From ���b� and
���c� it is clear that at every step of the algorithm the following
relation holds�

xj �
jX

i��

rijqi �

If we let X � �x�� x�� � � � � xr�� Q � �q�� q�� � � � � qr�� and if R denotes
the r � r upper triangular matrix whose nonzero elements are
the rij de�ned in the algorithm� then the above relation can be
written as

X � QR � ������

This is called the QR decomposition of the n�r matrix X� Thus�
from what was said above the QR decomposition of a matrix exists
whenever the column vectors of X form a linearly independent set
of vectors�

The above algorithm is the standard Gram�Schmidt process�
There are other formulations of the same algorithm which are
mathematically equivalent but have better numerical properties�
The Modi�ed Gram�Schmidt algorithm �MGSA� is one such al�
ternative�

Algorithm �	 Modi�ed Gram�Schmidt

�� Start� de�ne r�� �� kx�k�� If r�� � � stop� else q� �� x�
r���

�� Loop� For j � �� � � � � r do�

�a� De�ne "q �� xj�

�b� For i � �� � � � � j � �� do

�
rij �� �"q� qi�
"q �� "q � rijqi

�c� Compute rjj �� k"qk��
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�d� If rjj � � then stop� else qj �� "q
rjj�

A vector that is orthogonal to all the vectors of a subspace
S is said to be orthogonal to that subspace� The set of all the
vectors that are orthogonal to S is a vector subspace called the
orthogonal complement of S and denoted by S�� The space Cn is
the direct sum of S and its orthogonal complement� The projector
onto S along its orthogonal complement is called an orthogonal
projector onto S� If V � �v�� v�� � � � � vr� is an orthonormal matrix
then V HV � I� i�e�� V is orthogonal� However� V V H is not
the identity matrix but represents the orthogonal projector onto
spanfV g� see Section � of Chapter III for details�

	� Canonical Forms of Matrices

In this section we will be concerned with the reduction of square
matrices into matrices that have simpler forms� such as diagonal
or bidiagonal� or triangular� By reduction we mean a transforma�
tion that preserves the eigenvalues of a matrix�

De�nition �	 Two matrices A and B are said to be similar if
there is a nonsingular matrix X such that

A � XBX��

The mapping B � A is called a similarity transformation�

It is clear that similarity is an equivalence relation� Similarity
transformations preserve the eigenvalues of matrix� An eigenvec�
tor uB of B is transformed into the eigenvector uA � XuB of A�
In e�ect� a similarity transformation amounts to representing the
matrix B in a di�erent basis�

We now need to de�ne some terminology�

�� An eigenvalue � of A is said to have algebraic multiplicity � if
it is a root of multiplicity � of the characteristic polynomial�
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�� If an eigenvalue is of algebraic multiplicity one it is said to
be simple� A nonsimple eigenvalue is said to be multiple�

�� An eigenvalue � of A is said to have geometric multiplicity �
if the maximum number of independent eigenvectors associ�
ated with it is �� In other words the geometric multiplicity
� is the dimension of the eigenspace Ker �A� �I��

�� A matrix is said to be derogatory if the geometric multiplic�
ity of at least one of its eigenvalues is larger than one�

�� An eigenvalue is said to be semi�simple if its algebraic mul�
tiplicity is equal to its geometric multiplicity� An eigenvalue
that is not semi�simple is called defective �

We will often denote by ��� ��� � � � � �p� �p � n�� all the distinct
eigenvalues of A� It is a simple exercise to show that the char�
acteristic polynomials of two similar matrices are identical� see
Exercise P����� Therefore� the eigenvalues of two similar matrices
are equal and so are their algebraic multiplicities� Moreover if v
is an eigenvector of B then Xv is an eigenvector of A and� con�
versely� if y is an eigenvector of A then X��y is an eigenvector of
B� As a result the number of independent eigenvectors associated
with a given eigenvalue is the same for two similar matrices� i�e��
their geometric multiplicity is also the same�

The possible desired forms are numerous but they all have the
common goal of attempting to simplify the original eigenvalue
problem� Here are some possibilities with comments as to their
usefulness�

� Diagonal� the simplest and certainly most desirable choice
but it is not always achievable�

� Jordan� this is an upper bidiagonal matrix with ones or
zeroes on the super diagonal� Always possible but not nu�
merically trustworthy�
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� Upper triangular� in practice this is the most reasonable
compromise as the similarity from the original matrix to a
triangular form can be chosen to be isometric and there�
fore the transformation can be achieved via a sequence of
elementary unitary transformations which are numerically
stable�

���� Reduction to the Diagonal Form�

The simplest form in which a matrix can be reduced is undoubt�
edly the diagonal form but this reduction is� unfortunately� not
always possible� A matrix that can be reduced to the diagonal
form is called diagonalizable� The following theorem characterizes
such matrices�

Theorem �� A matrix of dimension n is diagonalizable if and
only if it has n linearly independent eigenvectors�

Proof A matrix A is diagonalizable if and only if there exists
a nonsingular matrix X and a diagonal matrix D such that A �
XDX�� or equivalently AX � XD� whereD is a diagonal matrix�
This is equivalent to saying that there exist n linearly independent
vectors � the n column�vectors of X � such that Axi � dixi� i�e��
each of these column�vectors is an eigenvector of A�

A matrix that is diagonalizable has only semi�simple eigenvalues�
Conversely� if all the eigenvalues of a matrix are semi�simple then
there exist n eigenvectors of the matrix A� It can be easily shown
that these eigenvectors are linearly independent� see Exercise P�
���� As a result we have the following proposition�

Proposition �� A matrix is diagonalizable if and only if all its
eigenvalues are semi�simple�

Since every simple eigenvalue is semi�simple� an immediate
corollary of the above result is that when A has n distinct eigen�
values then it is diagonalizable�
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���� The Jordan Canonical Form

From the theoretical viewpoint� one of the most important canon�
ical forms of matrices is the well�known Jordan form� In what fol�
lows� the main constructive steps that lead to the Jordan canoni�
cal decomposition are outlined� For details� the reader is referred
to a standard book on matrix theory or linear algebra�

� For every integer l and each eigenvalue �i it is true that

Ker�A� �iI�
l�� � Ker�A� �iI�

l �

� Because we are in a �nite dimensional space the above property
implies that there is a �rst integer li such that

Ker�A� �iI�
li�� � Ker�A� �iI�

li�

and in fact Ker�A � �iI�
l � Ker�A � �iI�

li for all l � li� The
integer li is called the index of �i�

� The subspace Mi � Ker�A� �iI�
li is invariant under A� More�

over� the space Cn is the direct sum of the subspaces Mi�s� for
i � �� �� � � � � p� Let mi � dim�Mi��

� In each invariant subspace Mi there are �i independent eigen�
vectors� i�e�� elements of Ker�A � �iI�� with �i � mi� It turns
out that this set of vectors can be completed to form a basis
of Mi by adding to it elements of Ker�A � �iI�

�� then elements
of Ker�A � �iI�

�� and so on� These elements are generated by
starting separately from each eigenvector u� i�e�� an element of
Ker�A � �iI�� and then seeking an element that satis�es �A �
�iI�z� � u� Then� more generally we construct zi�� by solving
the equation �A � �iI�zi�� � zi when possible� The vector zi
belongs to Ker�A��iI�

i�� and is called a principal vector �some�
times generalized eigenvector�� The process is continued until no
more principal vectors are found� There are at most li principal
vectors for each of the �i eigenvectors�
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� The �nal step is to represent the original matrix A with respect
to the basis made up of the p bases of the invariant subspaces Mi

de�ned in the previous step�

The matrix representation J of A in the new basis described
above has the block diagonal structure�

X��AX � J �

�
BBBBBBBBB�

J�
J�

� � �

Ji
� � �

Jp

�
CCCCCCCCCA

where each Ji corresponds to the subspace Mi associated with
the eigenvalue �i� It is of size mi and it has itself the following
structure�

Ji �

�
BBB�
Ji�

Ji�
� � �

Ji�i

�
CCCA with Jik �

�
BBB�
�i �

� � � � � �

�i �
�i

�
CCCA �

Each of the blocks Jik corresponds to a di�erent eigenvector as�
sociated with the eigenvalue �i� Its size is equal to the number of
principal vectors found for the eigenvector to which the block is
associated and does not exceed li�

Theorem �	 Any matrix A can be reduced to a block diagonal
matrix consisting of p diagonal blocks� each associated with a dis�
tinct eigenvalue� Each diagonal block number i has itself a block
diagonal structure consisting of �i subblocks� where �i is the ge�
ometric multiplicity of the eigenvalue �i� Each of the subblocks�
referred to as a Jordan block� is an upper bidiagonal matrix of
size not exceeding li� with the constant �i on the diagonal and the
constant one on the super diagonal�
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We refer to the i�th diagonal block� i � �� � � � � p as the i�
th Jordan submatrix �sometimes  Jordan Box!�� The Jordan
submatrix number i starts in column ji � m��m��� � ��mi�����
From the above form it is not di�cult to see that Mi � Ker�A�
�iI�

li is merely the span of the columns ji� ji � �� � � � � ji�� � �
of the matrix X� These vectors are all the eigenvectors and the
principal vectors associated with the eigenvalue �i�

Since A and J are similar matrices their characteristic poly�
nomials are identical� Hence� it is clear that the algebraic multi�
plicity of an eigenvalue �i is equal to the dimension of Mi�

�i � mi � dim �Mi� �

As a result�
�i � �i�

Because Cn is the direct sum of the subspaces Mi� i � �� � � � � p
each vector x can be written in a unique way as

x � x� � x� � � � �� xi � � � �� xp�

where xi is a member of the subspace Mi� The linear transforma�
tion de�ned by

Pi � x� xi

is a projector onto Mi along the direct sum of the subspaces
Mj� j �� i� The family of projectors Pi� i � �� � � � � p satis�es the
following properties�

Ran�Pi� � Mi ������

PiPj � PjPi � �� if i �� j ������
pX

i��

Pi � I ������

In fact it is easy to see that the above three properties de�ne a
decomposition of Cn into a direct sum of the images of the projec�
tors Pi in a unique way� More precisely� any family of projectors
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that satis�es the above three properties is uniquely determined
and is associated with the decomposition of Cn into the direct
sum of the images of the Pi �s�

It is helpful for the understanding of the Jordan canonical
form to determine the matrix representation of the projectors Pi�
Consider the matrix "Ji which is obtained from the Jordan matrix
by replacing all the diagonal submatrices by zero blocks except
the ith submatrix which is replaced by the identity matrix�

"Ji �

�
BBBBB�

�
�

I
�

�

�
CCCCCA

In other words if each i�th Jordan submatrix starts at the column
number ji� then the columns of "Ji will be zero columns except
columns ji� � � � � ji�� � � which are the corresponding columns of
the identity matrix� Let "Pi � X "JiX

��� Then it is not di�cult to
verify that "Pi is a projector and that�

�� The range of "Pi is the span of columns ji� � � � � ji���� of the
matrix X� This is the same subspace as Mi�

�� "Pi "Pj � "Pj "Pi � � whenever i �� j

�� "P� � "P� � � � �� "Pp � I

According to our observation concerning the uniqueness of a fam�
ily of projectors that satisfy ������ � ������ this implies that

"Pi � Pi � i � �� � � � � p

Example �	 Let us assume that the eigenvalue �i is simple� Then�

Pi � Xeie
H
i X

�� � uiw
H
i �

in which we have de�ned ui � Xei and wi � X�Hei� It is easy to show
that ui and wi are right and left eigenvectors� respectively� associated
with �i and normalized so that wH

i ui � 
�
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Consider now the matrix "Di obtained from the Jordan form of
A by replacing each Jordan submatrix by a zero matrix except the
i�th submatrix which is obtained by zeroing its diagonal elements�
i�e��

"Di �

�
BBBBBBBBBB�

�
�

� � �

Ji � �iI
� � �

�

�
CCCCCCCCCCA

De�ne Di � X "DiX
��� Then it is a simple exercise to show by

means of the explicit expression for "Pi� that

Di � �A� �iI�Pi� ������

Moreover� Dli
i � �� i�e�� Di is a nilpotent matrix of index li� We

are now ready to state the following important theorem which can
be viewed as an alternative mathematical formulation of Theorem
��� on Jordan forms�

Theorem �� Every square matrix A admits the decomposition

A �
pX

i��

��iPi �Di� ����	�

where the family of projectors fPigi�������p satis�es the conditions
����
	� �����	� and �����	� and where Di � �A��iI�Pi is a nilpo�
tent operator of index li�

Proof From ������� we have

APi � �iPi �Di i � �� �� � � � � p

Summing up the above equalities for i � �� �� � � � � p we get

A
pX
i��

Pi �
pX

i��

��iPi �Di�
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The proof follows by substituting ������ into the left�hand�side�

The projector Pi is called the spectral projector associated with
the eigenvalue �i� The linear operator Di is called the nilpotent
associated with �i� The decomposition ����	� is referred to as
the spectral decomposition of A� Additional properties that are
easy to prove from the various expressions of Pi and Di are the
following

PiDj � DjPi � �ijPi ������

APi � PiA � PiAPi � �iPi �Di ����
�

AkPi � PiA
k � PiA

kPi �

Pi��iI �Di�
k � ��iI �Di�

kPi ������

APi � �xji� � � � � xji�����Bi�yji� � � � � yji�����
H ������

where Bi is the i�th Jordan submatrix and where the columns yj
are the columns of the matrix X�H �

Corollary �� For any matrix norm k�k� the following relation
holds

lim
k��

kAkk��k � ��A� � ������

Proof The proof of this corollary is the subject of exercise
P���
�

Another way of stating the above corollary is that there is a se�
quence k such that

kAkk � ���A� � k�
k

where limk�� k � ��
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���� The Schur Canonical Form

We will now show that any matrix is unitarily similar to an upper
triangular matrix� The only result needed to prove the following
theorem is that any vector of ��norm one can be completed by
n� � additional vectors to form an orthonormal basis of Cn�

Theorem �� For any given matrix A there exists a unitary ma�
trix Q such that QHAQ � R is upper triangular�

Proof The proof is by induction over the dimension n� The
result is trivial for n � �� Let us assume that it is true for n�� and
consider any matrix A of size n� The matrix admits at least one
eigenvector u that is associated with an eigenvalue �� We assume
without loss of generality that kuk� � �� We can complete the
vector u into an orthonormal set� i�e�� we can �nd an n� �n� ��
matrix V such that the n� n matrix U � �u� V � is unitary� Then
we have AU � ��u�AV � and hence�

UHAU �


uH

V H

�
��u�AV � �

�
� uHAV
� V HAV

�
������

We now use our induction hypothesis for the �n � �� � �n � ��
matrix B � V HAV � there exists an �n � �� � �n � �� unitary
matrix Q� such that QH

� BQ� � R� is upper triangular� Let us
de�ne the n� n matrix

"Q� �
�
� �
� Q�

�

and multiply both members of ������ by "QH
� from the left and "Q�

from the right� The resulting matrix is clearly upper triangular
and this shows that the result is true for A� with Q � "Q�U which
is a unitary n� n matrix�

A simpler proof that uses the Jordan canonical form and the QR
decomposition is the subject of Exercise P����� Since the matrix
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R is triangular and similar to A� its diagonal elements are equal
to the eigenvalues of A ordered in a certain manner� In fact
it is easy to extend the proof of the theorem to show that we
can obtain this factorization with any order we want for the
eigenvalues� One might ask the question as to which order might
be best numerically but the answer to the question goes beyond
the scope of this book� Despite its simplicity� the above theorem
has far reaching consequences some of which will be examined in
the next section�

It is important to note that for any k � n the subspace
spanned by the �rst k columns of Q is invariant under A� This is
because from the Schur decomposition we have� for � � j � k�

Aqj �
i�jX
i��

rijqi �

In fact� lettingQk � �q�� q�� � � � � qk� andRk be the principal leading
submatrix of dimension k ofR� the above relation can be rewritten
as

AQk � QkRk

which we refer to as the partial Schur decomposition of A� The
simplest case of this decomposition is when k � �� in which case
q� is an eigenvector� The vectors qi are usually referred to as
Schur vectors� Note that the Schur vectors are not unique and in
fact they depend on the order chosen for the eigenvalues�

A slight variation on the Schur canonical form is the quasi
Schur form� also referred to as the real Schur form� Here� diagonal
blocks of size � x � are allowed in the upper triangular matrix
R� The reason for this is to avoid complex arithmetic when the
original matrix is real� A � � � block is associated with each
complex conjugate pair of eigenvalues of the matrix�

Example �� Consider the �� � matrix

A �

�
B� 
 
	 	
�
 � 

�
 	 


�
CA
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The matrix A has the pair of complex conjugate eigenvalues

��	���� � i� ���

	��

and the real eigenvalue 	�
������ The standard �complex� Schur form
is given by the pair of matrices

V �

�
B� 	����
 � 	����i 	����� � 	�
	�
i 	�
��

	��
�� � 	�	
	�i �	����� � 	�����i �	���

	�
�� � 	�
���i �	����� � 	�����i 	�����

�
CA

and

S �

�
B� ��	�� � ���

	i ��	�� � ��	�	i ����
� � �����	i

	 ��	�� � ���

	i ���	��
 � 
��	
�i
	 	 	�
���

�
CA �

It is possible to avoid complex arithmetic by using the quasi�Schur
form which consists of the pair of matrices

U �

�
B� �	����� 	�
��� 	�
��
�	�	
�
 	���� �	���

	��
�� 	��	�
 	�����

�
CA

and

R �

�
B� 
��
�� ����	�� ��		�


���� ���		� �
����	
	 	 	�
���

�
CA �

We would like to conclude this section by pointing out that
the Schur and the quasi Schur forms of a given matrix are in no
way unique� In addition to the dependence on the ordering of the
eigenvalues� any column of Q can be multiplied by a complex sign
ei� and a new corresponding R can be found� For the quasi Schur
form there are in�nitely many ways of selecting the �� � blocks�
corresponding to applying arbitrary rotations to the columns of
Q associated with these blocks�
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� Normal and Hermitian Matrices

In this section we look at the speci�c properties of normal matri�
ces and Hermitian matrices regarding among other things their
spectra and some important optimality properties of their eigen�
values� The most common normal matrices that arise in practice
are Hermitian or skew�Hermitian� In fact� symmetric real ma�
trices form a large part of the matrices that arise in practical
eigenvalue problems�

���� Normal Matrices

By de�nition a matrix is said to be normal if it satis�es the rela�
tion

AHA � AAH � ������

An immediate property of normal matrices is stated in the fol�
lowing proposition�

Proposition �� If a normal matrix is triangular then it is nec�
essarily a diagonal matrix�

Proof Assume for example that A is upper triangular and
normal and let us compare the �rst diagonal element of the left
hand side matrix of ������ with the corresponding element of the
matrix on the right hand side� We obtain that

ja��j
� �

nX
j��

ja�jj
��

which shows that the elements of the �rst row are zeros except
for the diagonal one� The same argument can now be used for
the second row� the third row� and so on to the last row� to show
that aij � � for i �� j�

As a consequence of this we have the following important re�
sult�
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Theorem �� A matrix is normal if and only if it is unitarily
similar to a diagonal matrix�

Proof It is straightforward to verify that a matrix which is
unitarily similar to a diagonal matrix is normal� Let us now show
that any normal matrixA is unitarily similar to a diagonal matrix�
Let A � QRQH be the Schur canonical form of A where we recall
that Q is unitary and R is upper triangular� By the normality of
A we have

QRHQHQRQH � QRQHQRHQH

or�
QRHRQH � QRRHQH

Upon multiplication by QH on the left and Q on the right this
leads to the equality RHR � RRH which means that R is normal�
and according to the previous proposition this is only possible if
R is diagonal�

Thus� any normal matrix is diagonalizable and admits an or�
thonormal basis of eigenvectors� namely the column vectors of
Q�

Clearly� Hermitian matrices are just a particular case of nor�
mal matrices� Since a normal matrix satis�es the relation A �
QDQH � with D diagonal and Q unitary� the eigenvalues of A are
the diagonal entries of D� Therefore� if these entries are real it is
clear that we will have AH � A� This is restated in the following
corollary�

Corollary �	 A normal matrix whose eigenvalues are real is
Hermitian�

As will be seen shortly the converse is also true� in that a Hermi�
tian matrix has real eigenvalues�

An eigenvalue � of any matrix satis�es the relation

� �
�Au� u�

�u� u�
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where u is an associated eigenvector� More generally one might
consider the complex scalars�

��x� �
�Ax� x�

�x� x�
������

de�ned for any nonzero vector in Cn� These ratios are referred
to as Rayleigh quotients and are important both from theoretical
and practical purposes� The set of all possible Rayleigh quotients
as x runs over Cn is called the �eld of values of A� This set is
clearly bounded since each j��x�j is bounded by the the ��norm
of A� i�e�� j��x�j � kAk� for all x�

If a matrix is normal then any vector x in Cn can be expressed
as

nX
i��

�iqi

where the vectors qi form an orthogonal basis of eigenvectors� and
the expression for ��x� becomes�

��x� �
�Ax� x�

�x� x�
�

Pn
k�� �kj�kj

�Pn
k�� j�kj

�
�

nX
k��

�k�k ������

where

� � �i �
j�ij

�Pn
k�� j�kj

�
� � � and

nX
i��

�i � �

From a well�known characterization of convex hulls due to Haus�
dor�� �Hausdor��s convex hull theorem� this means that the set
of all possible Rayleigh quotients as x runs over all of Cn is equal
to the convex hull of the �i�s� This leads to the following theorem�

Theorem �� The �eld of values of a normal matrix is equal to
the convex hull of its spectrum�

The question that arises next is whether or not this is also true
for non�normal matrices and the answer is no� i�e�� the convex hull
of the eigenvalues and the �eld of values of a non�normal matrix
are di�erent in general� see Exercise P����� for an example� As a
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generic example� one can take any nonsymmetric real matrix that
has real eigenvalues only� its �eld of values will contain imaginary
values� It has been shown �Hausdor�� that the �eld of values of a
matrix is a convex set� Since the eigenvalues are members of the
�eld of values� their convex hull is contained in the �eld of values�
This is summarized in the following proposition�

Proposition �� The �eld of values of an arbitrary matrix is
a convex set which contains the convex hull of its spectrum� It
is equal to the convex hull of the spectrum when the matrix in
normal�

���� Hermitian Matrices

A �rst and important result on Hermitian matrices is the follow�
ing�

Theorem �� The eigenvalues of a Hermitian matrix are real�
i�e�� ��A� � R�

Proof Let � be an eigenvalue of A and u an associated eigen�
vector or ��norm unity� Then

� � �Au� u� � �u�Au� � �Au� u� � �

Moreover� it is not di�cult to see that if� in addition� the matrix
is real then the eigenvectors can be chosen to be real� see Exer�
cise P����	� Since a Hermitian matrix is normal an immediate
consequence of Theorem ��� is the following result�

Theorem �
 Any Hermitian matrix is unitarily similar to a real
diagonal matrix�
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In particular a Hermitian matrix admits a set of orthonormal
eigenvectors that form a basis of Cn�

In the proof of Theorem ��	 we used the fact that the inner
products �Au� u� are real� More generally it is clear that any
Hermitian matrix is such that �Ax� x� is real for any vector x �
Cn� It turns out that the converse is also true� i�e�� it can be shown
that if �Az� z� is real for all vectors z in Cn then the matrix A is
Hermitian� see Problem P������

Eigenvalues of Hermitian matrices can be characterized by op�
timality properties of the Rayleigh quotients ������� The best
known of these is the Min�Max principle� Let us order all the
eigenvalues of A in descending order�

�� � �� � � � � �n�

Here the eigenvalues are not necessarily distinct and they are
repeated� each according to its multiplicity� In what follows� we
denote by S a generic subspace of Cn� Then we have the following
theorem�

Theorem �� �Min�Max theorem� The eigenvalues of a Her�
mitian matrix A are characterized by the relation

�k � min
S� dim �S��n�k��

max
x�S�x���

�Ax� x�

�x� x�
����	�

Proof Let fqigi�������n be an orthonormal basis of Cn consisting
of eigenvectors of A associated with ��� � � � � �n respectively� Let
Sk be the subspace spanned by the �rst k of these vectors and
denote by ��S� the maximum of �Ax� x�
�x� x� over all nonzero
vectors of a subspace S� Since the dimension of Sk is k� a well�
known theorem of linear algebra shows that its intersection with
any subspace S of dimension n� k�� is not reduced to f�g� i�e��
there is vector x in S

T
Sk� For this x �

Pk
i�� �iqi we have

�Ax� x�

�x� x�
�

Pk
i�� �ij�ij

�Pk
i�� j�ij

�
� �k
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so that ��S� � �k �
Consider on the other hand the particular subspace S� of di�

mension n�k�� which is spanned by qk� � � � � qn� For each vector
x in this subspace we have

�Ax� x�

�x� x�
�

Pn
i�k �ij�ij

�Pn
i�k j�ij

�
� �k

so that ��S�� � �k� In other words� as S runs over all n� k � ��
dimensional subspaces ��S� is always � �k and there is at least
one subspace S� for which ��S�� � �k which shows the result�

This result is attributed to Courant and Fisher� and to Poincar#e
and Weyl� It is often referred to as Courant�Fisher min�max prin�
ciple or theorem� As a particular case� the largest eigenvalue of
A satis�es

�� � max
x���

�Ax� x�

�x� x�
� ������

Actually� there are four di�erent ways of rewriting the above
characterization� The second formulation is

�k � max
S� dim �S��k

min
x�S�x���

�
�Ax� x�

�x� x�
����
�

and the two other ones can be obtained from the above two for�
mulations by simply relabeling the eigenvalues increasingly in�
stead of decreasingly� Thus� with our labeling of the eigenvalues
in descending order� ����
� tells us that the smallest eigenvalue
satis�es�

�n � min
x ���

�Ax� x�

�x� x�
�

with �n replaced by �� if the eigenvalues are relabeled increasingly�
In order for all the eigenvalues of a Hermitian matrix to be

positive it is necessary and su�cient that

�Ax� x� � �� 	 x � Cn� x �� ��
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Such a matrix is called positive de�nite� A matrix that satis�es
�Ax� x� � � for any x is said to be positive semi�de�nite� In partic�
ular the matrix AHA is semi�positive de�nite for any rectangular
matrix� since

�AHAx� x� � �Ax�Ax� � � 	 x�

Similarly� AAH is also a Hermitian semi�positive de�nite matrix�
The square roots of the eigenvalues of AHA for a general rectan�
gular matrix A are called the singular values of A and are denoted
by �i� In Section ��� we have stated without proof that the ��
norm of any matrix A is equal to the largest singular value �� of
A� This is now an obvious fact� because

kAk�� � max
x���

kAxk��
kxk��

� max
x���

�Ax�Ax�

�x� x�
� max

x ���

�AHAx� x�

�x� x�
� ���

which results from �������
Another characterization of eigenvalues� known as the Courant

characterization� is stated in the next theorem� In contrast with
the min�max theorem this property is recursive in nature�

Theorem ��� The eigenvalue �i and the corresponding eigen�
vector qi of a Hermitian matrix are such that

�� �
�Aq�� q��

�q�� q��
� max

x�Cn
�x���

�Ax� x�

�x� x�

and for k � ��

�k �
�Aqk� qk�

�qk� qk�
� max

x����qH
�
x�����qH

k��
x��

�Ax� x�

�x� x�
� ������

In other words� the maximum of the Rayleigh quotient over a
subspace that is orthogonal to the �rst k�� eigenvectors is equal
to �k and is achieved for the eigenvector qk associated with �k�
The proof follows easily from the expansion ������ of the Rayleigh
quotient�
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��� Nonnegative Matrices

A nonnegative matrix is a matrix whose entries are nonnegative�

aij � � �

Nonnegative matrices arise in many applications and play a cru�
cial role in the theory of matrices� They play for example a key
role in the analysis of convergence of iterative methods for par�
tial di�erential equations� They also arise in economics� queuing
theory� chemical engineering� etc��

A matrix is said to be reducible if� there is a permutation ma�
trix P such that PAP T is block upper triangular� An important
result concerning nonnegative matrices is the following theorem
known as the Perron�Frobenius theorem�

Theorem ��� Let A be a real n�n nonnegative irreducible ma�
trix� Then � � ��A�� the spectral radius of A� is a simple eigen�
value of A� Moreover� there exists an eigenvector u with positive
elements associated with this eigenvalue�

Problems

P���� Show that two eigenvectors associated with two distinct eigen�
values are linearly independent� More generally show that a family of
eigenvectors associated with distinct eigenvalues forms a linearly inde�
pendent family�

P���� Show that if � is any eigenvalue of the matrix AB then it is
also an eigenvalue of the matrix BA� Start with the particular case
where A and B are square and B is nonsingular then consider the more
general case where A�B may be singular or even rectangular �but such
that AB and BA are square��

P���� Show that the Frobenius norm is consistent� Can this norm
be associated to two vector norms via �
��� What is the Frobenius
norm of a diagonal matrix� What is the p�norm of a diagonal matrix
�for any p��
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P���� Find the Jordan canonical form of the matrix�

A �

�
� 
 � �
	 
 �
	 	 �

�
A �

Same question for the matrix obtained by replacing the element a��
by 
�

P���� Give an alternative proof of Theorem 
� on the Schur form
by starting from the Jordan canonical form� �Hint� write A � XJX��

and use the QR decomposition of X��

P���� Show from the de�nition of determinants used in Section �
���
that the characteristic polynomial is a polynomial of degree n for an
n� n matrix�

P���	 Show that the characteristic polynomials of two similar matri�
ces are equal�

P���
 Show that
lim
k��

kAkk��k � ��A��

for any matrix norm� �Hint� use the Jordan canonical form or Theorem

���

P���� Let X be a nonsingular matrix and� for any matrix norm k�k�
de�ne kAkX � kAXk� Show that this is indeed a matrix norm� Is
this matrix norm consistent� Similar questions for kXAk and kY AXk
where Y is also a nonsingular matrix� These norms are not� in general�
associated with any vector norms� i�e�� they can�t be de�ned by a
formula of the form �
��� Why� What about the particular case
kAk� � kXAX��k�
P����� Find the �eld of values of the matrix

A �

�
	 

	 	

�

and verify that it is not equal to the convex hull of its eigenvalues�

P����� Show that any matrix can be written as the sum of a Hermi�
tian and a skew�Hermitian matrix �or the sum of a symmetric and a
skew�symmetric matrix��
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P����� Show that for a skew�Hermitian matrix S� we have

�e�Sx� x� � 	 for any x � Cn�

P����� Given an arbitrary matrix S� show that if �Sx� x� � 	 for all
x in Cn then we must have

�Sy� z� � �Sz� y� � 	 � y � z � Cn�

�Hint� expand �S�y � z�� y � z� ��

P����� Using the result of the previous two problems� show that if
�Ax� x� is real for all x in Cn� then A must be Hermitian� Would this
result be true if we were to replace the assumption by� �Ax� x� is real

for all real x� Explain�

P����� The de�nition of a positive de�nite matrix is that �Ax� x� be
real and positive for all real vectors x� Show that this is equivalent
to requiring that the Hermitian part of A� namely �

� �A � AH�� be
�Hermitian� positive de�nite�

P����� Let A be a real symmetric matrix and � an eigenvalue of A�
Show that if u is an eigenvector associated with � then so is �u� As a
result� prove that for any eigenvalue of a real symmetric matrix� there
is an associated eigenvector which is real�

P����	 Show that a Hessenberg matrix H such that hj���j �� 	� j �

� �� � � � � n� 
 cannot be derogatory�

Notes and References� For additional reading on the material presented
in this Chapter� see Golub and Van Loan ���� and Stewart ������ More details
on matrix eigenvalue problems can be found in Gantmacher	s book �
�� and
Wilkinson ������ Stewart and Sun	s recent book ���� devotes a separate
chapter to matrix norms and contains a wealth of information� Some of the
terminology we used is borrowed from Chatelin ���� �
� and Kato ��
�� For a
good overview of the linear algebra aspects of matrix theory and a complete
proof of Jordan	s canonical form we recommend Halmos	 book ����� �
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Sparse Matrices

The eigenvalue problems that arise in practice often involve very
large matrices� The meaning of �large� is relative and it is chang�
ing rapidly with the progress of computer technology� A matrix of
size a few hundreds can be considered large if one is working on a
workstation� while� similarly� a matrix whose size is in the millions
can be considered large if one is using a supercomputer� Fortu�
nately� many of these matrices are also sparse� i�e�� they have very
few nonzeros� Again� it is not clear how �few� nonzeros a matrix
must have before it can be called sparse� A commonly used de��
nition due to Wilkinson is to say that a matrix is sparse whenever
it is possible to take advantage of the number and location of its
nonzero entries� By this de�nition a tridiagonal matrix is sparse�
but so would also be a triangular matrix� which may not be as
convincing� It is probably best to leave this notion somewhat
vague� since the decision as to whether or not a matrix should be
considered sparse is a practical one that is ultimately made by
the user�
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�� Introduction

The natural idea of taking advantage of the zeros of a matrix
and their location has been exploited for a long time� In the sim�
plest situation� such as for banded or tridiagonal matrices� special
techniques are straightforward to develop� However� the notion
of exploiting sparsity for general sparse matrices� i�e�� sparse ma�
trices with irregular structure� has become popular only after the
��	��s� The main issue� and the �rst one to be addressed by
sparse matrix technology� is to devise direct solution methods for
linear systems� that are economical both in terms of storage and
computational e�ort� These sparse direct solvers allow to handle
very large problems that could not be tackled by the usual �dense�
solvers� We will briey discuss the solution of large sparse linear
systems in Section � of this Chapter�

Figure 	� A �nite element grid model



Sparse Matrices ��

There are basically two broad types of sparse matrices� struc�
tured and unstructured� A structured sparse matrix is one whose
nonzero entries� or square blocks of nonzero entries� form a regular
pattern� often along a small number of diagonals� A matrix with
irregularly located entries is said to be irregularly structured� The
best example of a regularly structured matrix is that of a matrix
that consists only of a few diagonals� Figure ��� shows a small
irregularly structured sparse matrix associated with the �nite el�
ement grid problem shown in Figure ����
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Figure 		 Sparse matrix associated with the �nite
element grid of Figure ���

Although the di�erence between the two types of matrices
may not matter that much for direct solvers� it may be important
for eigenvalue methods or iterative methods for solving linear sys�
tems� In these methods� one of the essential operations are matrix
by vector products� The performance of these operations on su�
percomputers can di�er signi�cantly from one data structure to
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another� For example� diagonal storage schemes are ideal for vec�
tor machines� whereas more general schemes� may su�er on such
machines because of the need to use indirect addressing�

In the next section we will discuss some of the storage schemes
used for sparse matrices� Then we will see how some of the sim�
plest matrix operations with sparse matrices can be performed�
We will then give an overview of sparse linear system solution
methods� The last two sections discuss test matrices and a set of
tools for working with sparse matrices called SPARSKIT�

�� Storage Schemes

In order to take advantage of the large number of zero elements
special schemes are required to store sparse matrices� Clearly� the
main goal is to represent only the nonzero elements� and be able
at the same time to perform the commonly needed matrix oper�
ations� In the following we will denote by Nz the total number
of nonzero elements� We describe only the most popular schemes
but additional details can be found in the book by Du�� Erisman�
and Reid ��
��

The simplest storage scheme for sparse matrices is the so�called
coordinate format� The data structure consists of three arrays�
a real array containing all the real �or complex� values of the
nonzero elements of A in any order� an integer array containing
their row indices and a second integer array containing their col�
umn indices� All three arrays are of length Nz� Thus the matrix

A �

�
BBBBBB�

�� �� �� �� ��
�� �� �� �� ��
	� �� �� 
� ��
�� �� ��� ��� ��
�� �� �� �� ���

�
CCCCCCA

�����

will be represented �for example� by
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AA �

JR �

JC �

��� �� �� �� �� �� ��� �� 	� �� 
� ���

� � � � � � � � � � � �

� � � � � � � � � � � �

In the above example we have� on purpose� listed the elements
in an arbitrary order� In fact it would have been more natural
to list the elements by row or columns� If we listed the elements
row�wise� we would notice that the array JC contains redundant
information� and may be replaced by an array that points to the
beginning of each row instead� This would entail nonnegligible
savings in storage� The new data structure consists of three arrays
with the following functions�

� A real array AA contains the real values aij stored row by
row� from row � to n� The length of AA is Nz�

� An integer array JA contains the column indices of the el�
ements aij as stored in the array AA� The length of JA is
Nz�

� An integer array IA contains the pointers to the beginning
of each row in the arrays AA and JA� Thus the content
of IA�i� is the position in arrays AA and JA where the i�
th row starts� The length of IA is n � � with IA�n � ��
containing the number IA��� � Nz� i�e�� the address in A
and JA of the beginning of a �ctitious row n � ��

Thus� the above matrix could be stored as follows�

AA �

JA �

IA �

�� �� �� �� �� 	� �� 
� �� ��� ��� ���

� � � � � � � � � � � �

� � 	 �� �� ��

This format is probably the most commonly used to store
general sparse matrices� We will refer to it as the Compressed
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Sparse Row �CSR� format� An advantage of this scheme over
the coordinate scheme is that it is often more amenable to perform
typical computations� On the other hand the coordinate scheme
is attractive because of its simplicity and its exibility� For this
reason it is used as the �entry� format in software packages such
as the Harwell library�

There are a number of variations to the Compressed Sparse
Row format� The most obvious variation is to store the columns
instead of the rows� The corresponding scheme will be called
the Compressed Sparse Column �CSC� scheme Another common
variation exploits the fact that the diagonal elements of many
matrices are usually all nonzero and$or that they are accessed
more often than the rest of the elements� As a result they can be
stored separately� In fact� what we refer to as the Modi�ed Sparse
Row �MSR� format� consists of only two arrays� a real array AA
and an integer array JA� The �rst n positions in AA contain the
diagonal elements of the matrix� in order� The position n�� of the
array AA is not used� or may sometimes be used to carry some
other information concerning the matrix� Starting at position
n��� the nonzero elements of AA� excluding its diagonal elements�
are stored row�wise� Corresponding to each element AA�k� the
integer JA�k� is the column index of the element A�k� in the
matrix AA� The n � � �rst positions of JA contain the pointer
to the beginning of each row in AA and JA� Thus� for the above
example the two arrays will be as follows�

AA �

JA �

�� �� �� ��� ��� % �� �� �� 	� 
� �� ���

� 
 �� �� �� �� � � � � � � �

The star denotes an unused location� Notice that JA�n� �
JA�n � �� � ��� indicating that the last row� is a zero row� once
the diagonal element has been removed�

There are a number of applications that lead to regularly struc�
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tured matrices� Among these matrices one can distinguish two
di�erent types� block matrices� and diagonally structured matri�
ces� Here we discuss only diagonally structured matrices which
are matrices whose nonzero elements are located along a small
number of diagonals� To store such matrices we may store the di�
agonals in a rectangular array DIAG�� � n� � � Nd� where Nd is
the number of diagonals� We also need to know the o�sets of each
of the diagonals with respect to the main diagonal� These will be
stored in an array IOFF �� � Nd�� Thus� in position �i� j� of
the array DIAG is located the element ai�i�IOFF�j� of the original
matrix� i�e��

DIAG�i� j� ai�i�io	�j��

The order in which the diagonals are stored in the columns of
DIAG is unimportant in general� If many more operations are
performed with the main diagonal there may be a slight advantage
in storing it in the �rst column� Note also that all the diagonals
except the main diagonal have fewer than n elements� so there
are positions in DIAG that will not be used�

For example the following matrix which has three diagonals

A �

�
BBBBBB�

�� �� �� �� ��
�� �� �� �� ��
�� 	� �� �� 
�
�� �� �� ��� ��
�� �� �� ��� ���

�
CCCCCCA

�����

will be represented the two arrays

DIAG �

% �� ��
�� �� ��
	� �� 
�
�� ��� %
�� ��� %

IOFF � �� � �

A more general scheme that has been popular on vector ma�
chines is the so�called Ellpack�Itpack format� The assumption in
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this scheme is that we have at most Nd nonzero elements per
row� where Nd is small� Then two rectangular arrays of dimen�
sion n�Nd each are required� one real and one integer� The �rst�
COEF � is similar to DIAG and contains the nonzero elements of
A� We can store the nonzero elements of each row of the matrix
in a row of the array COEF �� � n� � � Nd� completing the row
by zeros if necessary� Together with COEF we need to store an
integer array JCOEF �� � n� � � Nd� which contains the column
positions of each entry in COEF � Thus� for the above matrix� we
would have�

COEF �

�� �� ��
�� �� ��
	� �� 
�
�� ��� ��
�� ��� ��

JCOEF �

� � �
� � �
� � �
� � �
� � �

�

Note that in the above JCOEF array we have put a column
number equal to the row number� for the zero elements that have
been added to pad the rows of DIAG that correspond to shorter
rows in the matrix A� This is somewhat arbitrary� and in fact any
integer between � and n would be acceptable� except that there
may be good reasons for not putting the same integers too often�
for performance considerations�

�� Basic Sparse Matrix Operations

One of the most important operations required in many of the
algorithms for computing eigenvalues of sparse matrices is the
matrix�by�vector product� We do not intend to show how these
are performed for each of the storage schemes considered earlier�
but only for a few important ones�

The following Fortran 
�X segment shows the main loop of the
matrix by vector operation for matrices stored in the Compressed
Sparse Row stored format�
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DO I��� N

K� � IA�I�

K� � IA�I�����

Y�I� � DOTPRODUCT�A�K�	K���X�JA�K�	K����

ENDDO

Notice that each iteration of the loop computes a di�erent
component of the resulting vector� This has the obvious advan�
tage that each of these iterations can be performed independently�
If the matrix is stored column�wise� then we would use the fol�
lowing code instead�

DO J��� N

K� � IA�J�

K� � IA�J�����

Y�JA�K�	K��� � Y�JA�K�	K����X�J�
A�K�	K��

ENDDO

In each iteration of the loop a multiple of the j�th column is
added to the result� which is assumed to have been set initially to
zero� Notice now that the outer loop is no longer parallelizable�
Barring the use of a di�erent data structure� the only alternative
left to improve parallelization is to attempt to split the vector op�
eration in each inner loop� which has few operations� in general�
The point of this comparison is that we may have to change data
structures to improve performance when dealing with supercom�
puters�

We now consider the matrix�vector product in diagonal stor�
age�

DO J��� NDIAG

JOFF � IOFF�J�

DO I��� N

Y�I� � Y�I� � DIAG�I�J�
X�JOFF�I�

ENDDO

ENDDO
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Here� each of the diagonals is multiplied by the vector x and
the result added to the vector y� It is again assumed that the
vector y has been �lled with zero elements before the start of the
loop� From the point of view of parallelization and$or vectoriza�
tion the above code is probably the one that has the most to o�er�
On the other hand� its drawback is that it is not general enough�

Another important �kernel� in sparse matrix computations is
that of solving a lower or upper triangular system� The following
segment shows a simple routine for solving a unit lower triangular
system�

X��� � Y���

DO K � �� N

K� � IAL�K�

k� � IAL�K�����

X�K��Y�K��DOTPRODUCT�AL�K�	K���X�JAL�K�	K����

ENDDO

�� Sparse Direct Solution Methods

Solution methods for large sparse linear systems of equations
are important in eigenvalue calculations mainly because they are
needed in the context of the shift�and�invert techniques� described
in Chapter IV� In these techniques the matrix that is used in the
iteration process is �A � �I��� or �A � �B���B for the general�
ized eigenvalue problem� In this section we give a brief overview
of sparse matrix techniques for solving linear systems� The di��
culty here is that we must deal with problems that are not only
complex� since complex shifts are likely to occur� but also inde��
nite� There are two broad classes of methods that are commonly
used� direct and iterative� Direct methods are more commonly
used in the context of shift�and�invert techniques because of their
robustness when dealing with inde�nite problems�

Most direct methods for sparse linear systems perform an LU
factorization of the original matrix and try to reduce cost by mini�
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mizing �ll�ins� i�e�� non�zero elements introduced during the elim�
ination process in positions which were initially zeros� Typical
codes in this category include MA�
� see reference ��	�� from the
Harwell library and the Yale Sparse Matrix Package �YSMP�� see
reference ��	��� For a detailed view of sparse matrix techniques
we refer to the book by Du�� Erisman� and Reid ��
��

Currently� the most popular iterative methods are the precon�
ditioned conjugate gradient type techniques� In these techniques
an approximate factorization A � LU�E of the original matrix is
obtained and then the conjugate gradient method is applied to a
preconditioned system� a form of which is U��L��Ax � U��L��b�
The conjugate gradient method is a projection method related
to the Lanczos algorithm� which will be described in Chapter
VI� One di�culty with conjugate gradient�type methods is that
they are designed for matrices that are positive real� i�e�� matrices
whose symmetric parts are positive de�nite� and as a result they
will perform well for the types of problems that will arise in the
context of shift�and�invert�

�� Test Problems

When developing algorithms for sparse matrix computations it is
desirable to be able to use test matrices that are well documented
and often used by other researchers� There are many di�erent
ways in which these test matrices can be useful but their most
common use is for comparison purposes�

Two di�erent ways of providing data sets consisting of large
sparse matrices for test purposes have been used in the past� The
�rst one is to collect sparse matrices in a well�speci�ced format�
from various applications� This approach has is used in the well�
known Harwell�Boeing collection of test matrices� The second
approach is to collect subroutines or programs that generate such
matrices� This approach is taken in the SPARSKIT package which
we briey describe in the next section�

In the course of the book we will often use two test problems
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in the examples� These are described in detail next� While these
two examples are far from being representative of all the problems
that occur they have the advantage of being easy to reproduce�
They have also been extensively used in the literature�

� � � � � � �

i � 	 i � 
 i � � i � � i �  i � � i � �

� � � � � �

� � � � �

� � � �

� � �

� ��

j � �

j � �

j � 

j � �

j � �

j � 


j � 	

Figure 	� Random walk on a triangular grid

���� Random Walk Problem

The �rst test problem is issued from a Markov model of a random
walk on a triangular grid� It was proposed by G� W� Stewart
����� and has been used in several papers for testing eigenvalue
algorithms� The problem models a random walk on a �k � �� �
�k � �� triangular grid as is shown in Figure ����

We label by �i� j� the node of the grid with coordinates �ih� jh�
where h is the grid spacing� for i� j � �� �� ���k� A particle moves
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randomly on the grid by jumping from a node �i� j� into either of
its �at most �� neighbors� The probability of jumping from node
�i� j� to either node �i� �� j� or node �i� j � �� �down transition�
is given by

pd�i� j� �
i� j

�k

this probability being doubled when either i or j is equal to zero�
The probability of jumping from node �i� j� to either node �i��� j�
or node �i� j � �� �up transition� is given by

pu�i� j� �
�

�
� pd�i� j��

Note that there cannot be an up transition when i � j � k� i�e��
for nodes on the oblique boundary of the grid� This is reected
by the fact that in this situation pu�i� j� � ��

The problem is to compute the steady state probability dis�
tribution of the chain� i�e�� the probabilities that the particle be
located in each grid cell after a very long period of time� We
number the nodes from the bottom up and from left to right� i�e��
in the order�

��� ��� ��� ��� � � � � ��� k�� ��� ��� ��� ��� � � � ��� k � ��� ������ �k� ��

The matrix P of transition probabilities is the matrix whose
generic element pk�q is the probability that the particle jumps
from node k to node q� This is a stochastic matrix� i�e�� its ele�
ments are nonnegative and the sum of elements in the same row
is equal to one� The vector ��� �� ����� ��T is an eigenvector of P
associated with the eigenvalue unity� As is known the steady state
probability distribution vector is the appropriately scaled eigen�
vector of the transpose of P associated with the eigenvalue one�
Note that the number of di�erent states is �

�
�k����k���� which

is the dimension of the matrix� We will denote by Mark�k��� the
corresponding matrix� Figure ��� shows the sparsity pattern of
Mark���� which is a matrix of dimension n � ��� with nz � ���
nonzero elements�
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Figure 	� Sparsity pattern of the matrix Mark�����

���� Chemical Reactions

The second test example� models concentration waves in reaction
and transport interaction of some chemical solutions in a tubular
reactor� The concentrations x��� z�� y��� z� of two reacting and
di�using components� where � � z � � represents a coordinate
along the tube� and � is the time� are modeled by the system�

�x

��
�

Dx

L�

��x

�z�
� f�x� y�� �����

�y

��
�

Dy

L�

��y

�z�
� g�x� y�� �����
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with the initial condition

x��� z� � x��z�� y��� z� � y��z�� 	 z � ��� ���

and the Dirichlet boundary conditions�

x��� �� � x��� �� � �x

y��� �� � y��� �� � �y�

The linear stability of the above system is traditionally studied
around the steady state solution obtained by setting the partial
derivatives of x and y with respect to time to be zero� More
precisely� the stability of the system is the same as that of the
Jacobian of ����� � ����� evaluated at the steady state solution� In
many problems one is primarily interested in the existence of limit
cycles� or equivalently the existence of periodic solutions to ������
������ This translates into the problem of determining whether
the Jacobian of ������ ����� evaluated at the steady state solution
admits a pair of purely imaginary eigenvalues�

We consider in particular the so�called Brusselator wave model
in which

f�x� y� � A� �B � ��x� x�y

g�x� y� � Bx� x�y�

Then� the above system admits the trivial stationary solution
�x � A� �y � B
A� A stable periodic solution to the system
exists if the eigenvalues of largest real parts of the Jacobian of
the right�hand side of ������ ����� is exactly zero� To verify this
numerically� we �rst need to discretize the equations with respect
to the variable z and compute the eigenvalues with largest real
parts of the resulting discrete Jacobian�

For this example� the exact eigenvalues are known and the
problem is analytically solvable� The following set of parameters
have been commonly used in previous articles�

Dx � ����
� Dy �
�

�
Dx � ������

A � �� B � ���� �
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The bifurcation parameter is L� For small L the Jacobian has only
eigenvalues with negative real parts� At L � ������� a purely
imaginary eigenvalue appears�

We discretize the interval ��� �� using n� � points� and de�ne

the mesh size h � �
n� The discrete vector is of the form
�
x
y


where x and y are n�dimensional vectors� Denoting by fh and gh
the corresponding discretized functions f and g� the Jacobian is
a � x � block matrix in which the diagonal blocks ��� �� and ��� ��
are the matrices

�

h�
Dx

L�
tridiag f����� �g�

�fh�x� y�

�x

and
�

h�
Dy

L�
tridiag f����� �g�

�gh�x� y�

�y

respectively� while the blocks ��� �� and ��� �� are

�fh�x� y�

�y
and

�gh�x� y�

�x

respectively� Note that because the steady state solution is a
constant with respect to the variable z� the Jacobians of either fh
or gh with respect to either x or y are scaled identity matrices� We
denote by A the resulting �n x �n Jacobian matrix� The matrix
A has the following structure

A �
�
�T �I
�I �T

�
�

In which T � tridiag f����� �g� and �� �� �� and � are scalars�
The exact eigenvalues of A are readily computable� since there
exists a quadratic relation between the eigenvalues of the matrix
A and those of the classical di�erence matrix T �

���� The Harwell�Boeing Collection

This large collection of test matrices has been gathered over sev�
eral years by I� Du� �Harwell� and R� Grimes and J� Lewis �Boe�
ing� ����� The number of matrices in the collection at the time
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of this writing is ���� The matrices have been contributed by re�
searchers and engineers in many di�erent areas� The sizes of the
matrices vary from very small� such as counter example matrices�
to very large� One drawback of the collection is that it contains
few non�Hermitian eigenvalue problems� Many of the eigenvalue
problems in the collection are from structural engineering� which
are generalized eigenvalue problems� One the other hand the col�
lection provides a data structure which constitutes an excellent
medium of exchanging matrices�

The matrices are stored as ASCII �les with a very speci�c for�
mat consisting of a � or � line header and then the data containing
the matrix stored in CSC format together with any right�hand
sides� initial guesses� or exact solutions�

The collection is available for public distribution from the au�
thors�

�� SPARSKIT

SPARSKIT is a package aimed at providing subroutines and util�
ities for working with general sparse matrices� Its purpose is not
as much to solve particular problems involving sparse matrices
�linear systems� eigenvalue problems� but rather to make available
the little tools to manipulate and performs simple operations with
sparse matrices� For example there are tools for exchanging data
structures� e�g�� passing from the Compressed Sparse Row format
to the diagonal format and vice versa� There are various tools
for extracting submatrices or performing other similar manipula�
tions� SPARSKIT also provides matrix generation subroutines as
well as basic linear algebra routines for sparse matrices �such as
addition� multiplication� etc�����

A short description of the contents of SPARSKIT follows� The
package is divided up in six modules� each having a di�erent func�
tion� To refer to these six parts we will use the names of the
subdirectories where they are held in the package in its current
version�
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FORMATS This module contains essentially two sets of rou�
tines� The �rst set contained in the �le formats�f consists of the
routines needed to translate data structures� Translations from
the basic Compressed Sparse Row format to any of the other for�
mats supported is provided together with a routine for the reverse
transformation� This way one can translate from any of the data
structures supported to any other one with two transformation at
most� The formats currently supported are the following�

DNS Dense format

BND Linpack Banded format

CSR Compressed Sparse Row format

CSC Compressed Sparse Column format

COO Coordinate format

ELL Ellpack�Itpack generalized diagonal format

DIA Diagonal format

BSR Block Sparse Row format

MSR Modi�ed Compressed Sparse Row format

SSK Symmetric Skyline format

NSK Nonsymmetric Skyline format

JAD The Jagged Diagonal scheme

The second set of routines contains a number of routines� cur�
rently ��� called �unary�� to perform simple manipulation func�
tions on sparse matrices� such as extracting a particular diagonal
or permuting a matrix� or yet for �ltering out small elements� For
reasons of space we cannot list these routines here�
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BLASSM This module contains a number of routines for do�
ing basic linear algebra with sparse matrices� It is comprised of
essentially two sets of routines� Basically� the �rst one consists
of matrix�matrix operations �e�g�� multiplication of matrices� and
the second consists of matrix�vector operations� The �rst set al�
lows to perform the following operations with sparse matrices�
where A�B�C are sparse matrices� D is a diagonal matrix� and �
is a scalar� C � AB� C � A � B� C � A � �B� C � A � BT �
C � A� �BT � A �� A� �I� C � A�D�

The second set contains various routines for performing matrix
by vector products and solving sparse triangular linear systems
in di�erent storage formats�

INOUT This module consists of routines to read and write ma�
trices in the Harwell�Boeing format� For more information on this
format and the Harwell�Boeing collection see the reference �����
It also provides routines for plotting the pattern of the matrix or
simply dumping it in a nice format�

INFO There is currently only one subroutine in this module� Its
purpose is to provide as many statistics as possible on a matrix
with little cost� About �� lines of information are written� For
example� the code analyzes diagonal dominance of the matrix
�row and column�� its degree of symmetry �structural as well as
numerical�� its block structure� its diagonal structure� etc����

MATGEN The set of routines in this module allows one to
generate test matrices� For now there are generators for � di�erent
types of matrices�

�� Five�point and seven point matrices on rectangular regions
discretizing a general elliptic partial di�erential equation�

�� Same as above but provides block matrices �several degrees
of freedom per grid point in the PDE��
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�� Finite elements matrices for the heat condition problem�
using various domains �including user provided ones��

�� Test matrices from the paper by Z� Zlatev� K� Schaumburg�
and J� Wasniewski� ��
���

�� Markov chain matrices arising from a random walk on a
triangular grid� See Section ��� for details�

UNSUPP As is suggested by its name this module contains
various unsupported software tools that are not necessarily portable
or that do not �t in any of the previous modules� For example
software for viewing matrix patterns on some workstations will
be found here� For now UNSUPP contains subroutines for vi�
sualizing matrices and a preconditioned GMRES package �with
a �robust� preconditioner based on Incomplete LU factorization
with controlled �ll�in��

Problems

P���� Write a FORTRAN code segment to perform the matrix�vector
product for matrices stored in Ellpack�Itpack format�

P���� Write a small subroutine to perform the following operations
on a sparse matrix in coordinate format� diagonal format� and in CSR
format� a� count the number on nonzero elements in the main diagonal�
b� extract the diagonal whose o�set is k �which may be negative�� c�
add a nonzero element in position �i� j� of the matrix �assume that
this position may contain a zero or a nonzero element�� d� add a given
diagonal to the matrix� What is the most convenient storage scheme
for each of these operations�

P���� Generate explicitly the matrix Mark��� Verify that it is a
stochastic matrix� Verify that 
 and �
 are eigenvalues�
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Notes and References� Two good sources of reading on sparse matrix
computations are the books by George and Liu �
�� and by Du�� Erisman�
and Reid ����� Also of interest are ����� and ���� and the early survey by
Du� ��
�� For applications related to eigenvalue problems� see ��� and ����
For details on Markov Chain modeling see ���� ���� The SPARSKIT pack�
age is part of an ongoing project� Write to the author for information� Some
documentation is available in the technical report ��
��� Another manipula�
tion package for sparse matrices� similar to SPARSKIT in spirit� is SMMS
developed by Alvarado ���� �
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Chapter III

Perturbation Theory and

Error Analysis

This chapter introduces some elementary spectral theory for linear
operators on �nite dimensional spaces as well as some elements of
perturbation analysis� The main question that perturbation the�
ory addresses is� how does an eigenvalue and its associated eigen�
vectors� spectral projector� etc��� vary when the original matrix
undergoes a small perturbation� This information is important
both for theoretical and practical purposes� The spectral theory
introduced in this chapter is the main tool used to extend what is
known about spectra of matrices to general operators on in�nite
dimensional spaces� However� it has also some consequences in an�
alyzing the behavior of eigenvalues and eigenvectors of matrices�
The material discussed in this chapter is probably the most theo�
retical of the book� Fortunately� most of it is independent of the
rest and may be skipped in a �rst reading� The notions of condi�
tion numbers and some of the results concerning error bounds are
crucial in understanding the di�culties that eigenvalue routines
may encounter�
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�� Projectors and their Properties

A projector P is a linear transformation from Cn to itself which
is idempotent� i�e�� such that

P � � P�

When P is a projector then so is �I � P � and we have Ker�P � �
Ran�I � P �� The two subspaces Ker�P � and Ran�P � have only
the element zero in common� This is because if a vector x is in
Ran�P � then Px � x and if it is also in Ker�P � then Px � �
so that x � � and the intersection of the two subspaces reduces
to f�g� Moreover� every element of Cn can be written as x �
Px � �I � P �x� As a result the space Cn can be decomposed as
the direct sum

Cn � Ker�P � � Ran�P ��

Conversely� every pair of subspacesM and S that form a direct
sum of Cn de�ne a unique projector such that Ran�P � � M and
Ker�P � � S� The corresponding transformation P is the linear
mapping that maps any element x of Cn into the component x�
where x� is the M �component in the unique decomposition x �
x� � x� associated with the direct sum� In fact� this association
is unique in that a projector is uniquely determined by its kernel
and range� two subspaces that form a direct sum of Cn�

���� Orthogonal Projectors

An important particular case is when the subspace S is the or�
thogonal complement of M � i�e�� when

Ker�P � � Ran�P ���

In this case the projector P is said to be the orthogonal projector
onto M � Since Ran�P � and Ker�P � from a direct sum of Cn� the
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decomposition x � Px� �I � P �x is unique and the vector Px is
uniquely de�ned by the set of equations

Px �M and �I � P �x�M �����

or equivalently�

Px � M and ��I � P �x� y� � � 	y �M �

Proposition �� A projector is orthogonal if and only if it is
Hermitian�

Proof As a consequence of the equality

�PHx� y� � �x� Py� 	x � 	y �����

we conclude that

Ker�PH� � Ran�P �� �����

Ker�P � � Ran�PH�� � �����

By de�nition an orthogonal projector is one for which Ker�P � �
Ran�P ��� Therefore� by ������ if P is Hermitian then it is orthog�
onal�

To show that the converse is true we �rst note that PH is also
a projector since �PH�� � �P ��H � PH � We then observe that if
P is orthogonal then ����� implies that Ker�P � � Ker�PH� while
����� implies that Ran�P � � Ran�PH�� Since PH is projector this
implies that P � PH � because a projector is uniquely determined
by its range and its kernel�

Given any unitary n � m matrix V whose columns form an
orthonormal basis of M � Ran�P �� we can represent P by the
matrix P � V V H � Indeed� in addition to being idempotent� the
linear mapping associated with this matrix satis�es the charac�
terization given above� i�e��

V V Hx �M and �I � V V H�x � M��
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It is important to note that this representation of the orthogonal
projector P is not unique� In fact any orthonormal basis V will
give a di�erent representation of P in the above form� As a con�
sequence for any two orthogonal bases V�� V� of M � we must have
V�V

H
� � V�V

H
� � an equality which can also be veri�ed indepen�

dently� see Exercise P�����
From the above representation it is clear that when P is an

orthogonal projector then we have kPxk� � kxk� for any x� As
a result the maximum of kPxk�
kxk� for all x in Cn does not
exceed one� On the other hand the value one is reached for any
element in Ran�P � and therefore�

kPk� � �

for any orthogonal projector P �
Recall that the acute angle between two nonzero vectors of Cn

is de�ned by

cos ��x� y� �
j�x� y�j

kxk�kyk�
� � ��x� y� �

�

�
�

We de�ne the acute angle between a vector and a subspace S as
the smallest acute angle made between x and all vectors y of S�

��x� S� � min
y�S

��x� y� � �����

An optimality property of orthogonal projectors is the following�

Theorem �� Let P be an orthogonal projector onto the subspace
S� Then given any vector x in Cn we have�

min
y�S

kx� yk� � kx� Pxk� � ���	�

or� equivalently�
��x� S� � ��x� Px� � �����
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Proof Let y any vector of S and consider the square of its
distance from x� We have�

kx� yk�� � kx� Px� �Px� y�k�� � kx� Pxk�� � k�Px� y�k�� �

because x � Px is orthogonal to S to which Px � y belongs�
Therefore� kx�yk� � kx�Pxk� for all y in S and this establishes
the �rst result by noticing that the minimum is reached for y �
Px� The second equality is a simple reformulation of the �rst�

It is sometimes important to be able to measure distances
between two subspaces� If Pi represents the orthogonal projector
onto Mi� for i � �� �� a natural measure of the distance between
M� and M� is provided by their gap de�ned by�

��M��M�� � max

��
�max

x�M�
kxk���

kx� P�xk� � max
x�M�
kxk���

kx� P�xk�

��
�

We can also rede�ne ��M��M�� as

��M��M�� � maxfk�I � P��P�k� � k�I � P��P�k�g

and it can even be shown that

��M��M�� � kP� � P�k�� ���
�

���� Oblique Projectors

A projector that is not orthogonal is said to be oblique� It is
sometimes useful to have a de�nition of oblique projectors that
resembles that of orthogonal projectors� i�e�� a de�nition similar to
������ If we call L the subspace that is the orthogonal complement
to S � Ker�P �� it is clear that L will have the same dimension as
M � Moreover� to say that �I�P �x belongs to Ker�P � is equivalent
to saying that it is in the orthogonal complement of L� There�
fore� from the de�nitions seen at the beginning of Section �� the
projector P can be characterized by the de�ning equation

Px �M and �I � P �x � L � �����
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We say that P is a projector ontoM and orthogonal to L or along
the orthogonal complement of L� This is illustrated in Figure ����

M

L

�

x

Px�
Qx

Px � M� x� Px �M
Qx � M� x�Qx � L

Figure �� Orthogonal and oblique projectors P and
Q�

Matrix representations of oblique projectors require two bases�
a basis V � �v�� � � � � vm� of the subspace M � Ran�P � and the
other W � �w�� � � � � wm� for the subspace L� the orthogonal com�
plement of Ker�P �� We will say that these two bases are biorthog�
onal if

�vi� wj� � �ij ������

Given any pair of biorthogonal bases V�W the projector P can
be represented by

P � VWH ������

In contrast with orthogonal projectors� the norm of P is larger
than one in general� It can in fact be arbitrarily large� which
implies that the norms of P � Q� for two oblique projectors P
and Q� will not� in general� be a good measure of the distance
between the two subspaces Ran�P � and Ran�Q�� On the other
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hand� it may give an idea on the di�erence between their rank as
is stated in the next theorem�

Theorem �	 Let k�k be any matrix norm� and assume that two
projectors P and Q are such that kP �Qk 	 � then

rank�P � � rank�Q� ������

Proof First let us show that rank�Q� � rank�P �� Given a
basis fxigi�������q of Ran�Q� we consider the family of vectors G �
fPxigi�������q in Ran�P � and show that it is linearly independent�
Assume that

qX
i��

�iPxi � ��

Then the vector y �
Pq

i�� �ixi is such that Py � � and therefore
�Q� P �y � Qy � y and k�Q� P �yk � kyk� Since kQ� Pk 	 �
this implies that y � �� As a result the family G is linearly
independent and so rank�P � � q � rank�Q�� It can be shown
similarly that rank�P � � rank�Q��

The above theorem indicates that no norm of P � Q can be less
than one if the two subspaces have di�erent dimensions� More�
over� if we have a family of projectors P �t� that depends contin�
uously on t then the rank of P �t� remains constant� In addition�
an immediate corollary is that if the gap between two subspaces
is less than one then they must have the same dimension�

���� Resolvent and Spectral Projector

For any given complex z not in the spectrum of a matrix A we
de�ne the resolvent operator of A at z as the linear transformation

R�A� z� � �A� zI��� � ������

The notation R�z� is often used instead of R�A� z� if there is no
ambiguity� This notion can be de�ned for operators on in�nite
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dimensional spaces in which case the spectrum is de�ned as the
set of all complex scalars such that the inverse of �A � zI� does
not exist� see reference ���� 
�� for details�

The resolvent regarded as a function of z admits singularities
at the eigenvalues of A� Away from any eigenvalue the resolvent
R�z� is analytic with respect to z� Indeed� we can write for any
z around an element z� not equal to an eigenvalue�

R�z� � �A� zI��� � ��A� z�I�� �z � z��I�
��

� R�z���I � �z � z��R�z���
��

The term �I� �z�z��R�z���
�� can be expanded into the Neuman

series whenever the spectral radius of �z � z��R�z�� is less than
unity� Therefore� the Taylor expansion of R�z� in the open disk
jz � z�j 	 �
��R�zo�� exists and takes the form�

R�z� �
�X
k��

�z � z��
kR�z��

k���

It is important to determine the nature of the singularity of
R�z� at the eigenvalues �i� i � �� � � � � p� By a simple application
of Cramer�s rule it is easy to see that these singularities are not
essential� In other words� the Laurent expansion of R�z�

R�z� �
��X

k���

�z � �i�
kCk

around each pole �i has only a �nite number of negative powers�
Thus� R�z� is a meromorphic function�

The resolvent satis�es the following immediate properties�

First resolvent equality�

R�z��� R�z�� � �z� � z��R�z��R�z�� ������

Second resolvent equality�

R�A�� z��R�A�� z� � R�A�� z��A� � A��R�A�� z� ������
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In what follows we will need to integrate the resolvent over
Jordan curves in the complex plane� A Jordan curve is a simple
closed curve that is piecewise smooth and the integration will
always be counter clockwise unless otherwise stated� There is
not much di�erence between integrating complex valued functions
with values in C or in Cn�n� In fact such integrals can be de�ned
over functions taking their values in Banach spaces in the same
way�

Consider any Jordan curve &i that encloses the eigenvalue �i
and no other eigenvalue of A� and let

Pi �
��

��i

Z

i
R�z�dz ����	�

The above integral is often referred to as the Taylor�Dunford in�
tegral�

&i�
�i

��	 Relations with the Jordan form

The purpose of this subsection is to show that the operator Pi
de�ned by ����	� is identical with the spectral projector de�ned
in Chapter I by using the Jordan canonical form�

Theorem �� The linear transformations Pi� i � �� �� � � � � p� as�
sociated with the distinct eigenvalues �i� i � �� � � � � p� are such
that
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��	 P �
i � Pi� i�e�� each Pi is a projector�

�
	 PiPj � PjPi � � if i �� j �

��	
Pp

i�� Pi � I�

Proof ��� Let & and &� two curves enclosing �i with &� enclosing
&� Then

��i���P �
i �

Z



Z

�
R�z�R�z��dzdz�

�
Z



Z

�

�

z� � z
�R�z��� R�z��dz�dz

because of the �rst resolvent equality� We observe that

Z



dz

z� � z
� � and

Z

�

dz�

z� � z
� �i��

so that

Z



Z

�

R�z��

z� � z
dz�dz �

Z

�
R�z��

�Z



dz

z� � z

�
dz� � �

and�

Z



Z

�

R�z�

z� � z
dz�dz �

Z


R�z�

�Z

�

dz�

z� � z

�
dz � �i�

Z


R�z�dz

from which we get P �
i � Pi�

��� The proof is similar to ��� and is left as an exercise�

��� Consider

P �
��

�i�

pX
i��

Z

i
R�z�dz �

Since there are no poles of R�z� outside of the p Jordan curves�
we can replace the sum of the integrals by an integral over any
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curve that contains all of the eigenvalues of A� If we choose this
curve to be a circle C of radius r and center the origin� we get

P �
��

�i�

Z
C
R�z�dz �

Making the change of variables t � �
z we �nd that

P �
��

�i�

Z
C�
�

�A� ��
t�I���
�
�
dt

t�

�
�

��

�i�

Z
C�
�

�tA� I���
dt

t

where C �
� � resp� C �

� � is the circle of center the origin� radius
�
r run clock�wise �resp� counter�clockwise�� Moreover� because
r must be larger than ��A� we have ��tA� 	 � and the inverse of
I � tA is expandable into its Neuman series� i�e�� the series

�I � tA��� �
�X
k��

�tA�k

converges and therefore�

P �
�

�i�

Z
C�

�

�
k��X
k��

tk��Ak

�
dt � I

by the residue theorem�

The above theorem shows that the projectors Pi satisfy the
same properties as those of the spectral projector de�ned in the
previous chapter� using the Jordan canonical form� However� to
show that these projectors are identical we still need to prove
that they have the same range� Note that since A and R�z�
commute we get by integration that APi � PiA and this implies
that the range of Pi is invariant under A� We must show that
this invariant subspace is the invariant subspace Mi associated
with the eigenvalue �i� as de�ned in Chapter I� The next lemma
establishes the desired result�
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Lemma �� Let "Mi � Ran�Pi� and let Mi � Ker�A � �iI�
li be

the invariant subspace associated with the eigenvalue �i� Then we
have Mi � "Mi for i � �� �� � � � � p�

Proof We �rst prove that Mi � "Mi� This follows from the fact
that when x � Ker�A� �iI�

li � we can expand R�z�x as follows�

R�z�x � �A� zI���x

� ��A� �iI�� �z � �i�I�
��x

� �
�

z � �i

h
I � �z � �i�

���A� �iI�
i��

x

�
��

z � �i

liX
j��

�z � �i�
�j�A� �iI�

jx �

The integral of this over &i is simply ��i�x by the residue theo�
rem� hence the result�

We now show that "Mi �Mi� From

�z � �i�R�z� � �I � �A� �iI�R�z� ������

it is easy to see that

��

�i�

Z


�z � �i�R�z�dz �

��

�i�
�A� �iI�

Z


R�z�dz � �A� �iI�Pi

and more generally�

��

�i�

Z


�z � �i�

kR�z�dz �
��

�i�
�A� �iI�

k
Z


R�z�dz

� �A� �iI�
kPi � ����
�

Notice that the term in the left�hand side of ����
� is the coe�cient
A�k�� of the Laurent expansion of R�z� which has no essential
singularities� Therefore� there is some integer k after which all
the left�hand sides of ����
� vanish� This proves that for every
x � Pix in "Mi� there exists some l for which �A��iI�

kx � �� k � l�
It follows that x belongs to Mi�
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This �nally establishes that the projectors Pi are identical with
those de�ned with the Jordan canonical form and seen in Chap�
ter I� Each projector Pi is associated with an eigenvalue �i� How�
ever� it is important to note that more generally one can de�ne
a projector associated with a group of eigenvalues� which will be
the sum of the individual projectors associated with the di�erent
eigenvalues� This can also be de�ned by an integral similar to
����	� where & is a curve that encloses all the eigenvalues of the
group and no other ones� Note that the rank of P thus de�ned
is simply the sum of the algebraic multiplicities of the eigenvalue�
In other words� the dimension of the range of such a P would be
the sum of the algebraic multiplicities of the distinct eigenvalues
enclosed by &�

���� Linear Perturbations of A

In this section we consider the family of matrices de�ned by

A�t� � A� tH

where t belongs to the complex plane� We are interested in the
behavior of the eigenelements of A�t� when t varies around the
origin� Consider �rst the �parameterized� resolvent�

R�t� z� � �A� tH � zI����

Noting that R�t� z� � R�z��I � tR�z�H��� it is clear that if the
spectral radius of tR�z�H is less than one then R�t� z� will be
analytic with respect to t� More precisely�

Proposition �	 The resolvent R�t� z� is analytic with respect to
t in the open disk jtj 	 ����HR�z���

We wish to show by integration over a Jordan curve & that a
similar result holds for the spectral projector P �t�� i�e�� that P �t�
is analytic for t small enough� The result would be true if the
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resolvent R�t� z� were analytic with respect to t for each z on &i�
To ensure this we must require that

jtj 	 inf
z�


����R�z�H�� �

The question that arises next is whether or not the disk of all t �s
de�ned above is empty� The answer is no as the following proof
shows� We have

��R�z�H� � kR�z�Hk � kR�z�kkHk�

The function kR�z�k is continuous with respect to z for z � & and
therefore it reaches its maximum at some point z� of the closed
curve & and we obtain

��R�z�H� � kR�z�Hk � kR�z��kkHk � � �

Hence�

inf
z�


����R�z�H�� � ��� �

Theorem �� Let & be a Jordan curve around one or a few
eigenvalues of A and let

�a � inf
z�


���R�z�H���� �

Then �a�� and the spectral projector

P �t� �
��

��i

Z


R�t� z�dz

is analytic in the disk jtj 	 �a�

We have already proved that �a��� The rest of the proof is
straightforward� As an immediate corollary of Theorem ���� we
know that the rank of P �t� will stay constant as long as t stays
in the disk jtj 	 �a�
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Corollary �� The number m of eigenvalues of A�t�� counted
with their algebraic multiplicities� located inside the curve &� is
constant provided that jtj 	 �a�

In fact the condition on t is only a su�cient condition and it may
be too restrictive since the real condition required is that P �t� be
continuous with respect to t�

While individual eigenvalues may not have an analytic behav�
ior� their average is usually analytic� Consider the average

"��t� �
�

m

mX
i��

�i�t�

of the eigenvalues ���t�� ���t�� � � � � �m�t� of A�t� that are inside
& where we assume that the eigenvalues are counted with their
multiplicities� Let B�t� be a matrix representation of the restric�
tion of A�t� to the invariant subspace M�t� � Ran�P �t��� Note
that since M�t� is invariant under A�t� then B�t� is the matrix
representation of the rank m transformation

A�t�jM�t� � A�t�P �t�jM�t� � P �t�A�t�jM�t� � P �t�A�t�P �t�jM�t�

and we have

"��t� �
�

m
tr�B�t�� �

�

m
tr�A�t�P �t�jM�t��

�
�

m
tr�A�t�P �t�� ������

The last equality in the above equation is due to the fact that for
any x not in M�t� we have P �t�x � � and therefore the extension
of A�t�P �t� to the whole space can only bring zero eigenvalues in
addition to the eigenvalues �i�t�� i � �� � � � � m�

Theorem �� The linear transformation A�t�P �t� and its
weighted trace "��t� are analytic in the disk jzj 	 �a�
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Proof That A�t�P �t� is analytic is a consequence of the pre�
vious theorem� That "��t� is analytic� comes from the equivalent
expression ������ and the fact that the trace of an operator X�t�
that is analytic with respect to t is analytic�

Therefore� a simple eigenvalue ��t� of A�t� not only stays sim�
ple around a neighborhood of t � � but it is also analytic with
respect to t� Moreover� the vector ui�t� � Pi�t�ui is an eigenvector
of A�t� associated with this simple eigenvalue� with ui � ui��� be�
ing an eigenvector of A associated with the eigenvalue �i� Clearly�
the eigenvector ui�t� is analytic with respect to the variable t�
However� the situation is more complex for the case of a multiple
eigenvalue� If an eigenvalue is of multiplicitym then after a small
perturbation� it will split into at most m distinct small branches
�i�t�� These branches taken individually are not analytic in gen�
eral� On the other hand� their arithmetic average is analytic� For
this reason it is critical� in practice� to try to recognize groups
of eigenvalues that are likely to originate from the splitting of a
perturbed multiple eigenvalue�

Example �� That an individual branch of the m branches of eigen�
values �i�t� is not analytic can be easily illustrated by the example

A �

�
	 


	 	

�
� H �

�
	 	


 	

�
�

The matrix A�t� has the eigenvalues �pt which degenerate into the
double eigenvalue 	 as t 	 	� The individual eigenvalues are not
analytic but their average remains constant and equal to zero�

In the above example each of the individual eigenvalues behaves
like the square root of t around the origin� One may wonder
whether this type of behavior can be generalized� The answer is
stated in the next proposition�

Proposition �� Any eigenvalue �i�t� of A�t� inside the Jordan
curve & satis�es

j�i�t�� �ij � O �jtj��li�
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where li is the index of �i�

Proof Let f�z� � �z � �i�
li� We have seen earlier �proof of

Lemma ���� that f�A�Pi � �� For an eigenvector u�t� of norm
unity associated with the eigenvalue �i�t� we have

f�A�t��P �t�u�t� � f�A�t��u�t� � �A�t�� �iI�
liu�t�

� ���t�� �i�
liu�t� �

Taking the norms of both members of the above equation and
using the fact that f�A�Pi � � we get

j�i�t�� �ij
li � kf�A�t��P �t�u�t�k

� kf�A�t��P �t�k � kf�A�t��P �t�� f�A�Pik �

Since f�A� � f�A����� Pi � P ��� and P �t�� f�A�t�� are analytic
the right�hand�side in the above inequality is O�t� and therefore

j�i�t�� �ij
li � O �jtj�

which shows the result�

Example �	 A standard illustration of the above result is provided
by taking A to be a Jordan block and H to be the rank one matrix
H � ene

T
� �

A �

�
BBBBB�

	 

	 


	 

	 


	

�
CCCCCA H �

�
BBBBB�

	
	

	
	


 	

�
CCCCCA �

The matrix A has nonzero elements only in positions �i� i � 
� where
they are equal to one� The matrix H has its elements equal to zero
except for the element in position �n� 
� which is equal to one� For
t � 	 the matrix A � tH admits only the eigenvalue � � 	� The
characteristic polynomial of A� tH is equal to

pt�z� � det�A� tH � zI� � ��
�n�zn � t�
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and its roots are �j�t� � t��ne
�ij�
n j � 
� � � � � n� Thus� if n � �	 then

for a perturbation on A of the order of 
	���� a reasonable number if
double precision arithmetic is used� the eigenvalue will be perturbed
by as much as 	�
��� �

�� A�Posteriori Error Bounds

In this section we consider the problem of predicting the error
made on an eigenvalue$eigenvector pair from some a posteriori
knowledge on their approximations� The simplest criterion used
to determine the accuracy of an approximate eigenpair '�� 'u � is to
compute the norm of the so called residual vector

r � A'u� '�'u�

The aim is to derive error bounds that relate some norm of r�
typically its ��norm� to the errors on the eigenpair� Such error
bounds are referred to a posteriori error bounds� Such bounds
may help determine how accurate the approximations provided by
some algorithm may be� This information can in turn be helpful
in choosing a stopping criterion in iterative algorithms� in order
to ensure that the answer delivered by the numerical method is
within a desired tolerance�

���� General Error Bounds

In the non�Hermitian case there does not exist any �a posteriori�
error bounds in the strict sense of the de�nition� The error bounds
that exist are in general weaker and not as easy to use as those
known in the Hermitian case� The �rst error bound which we
consider is known as the Bauer�Fike theorem� We recall that the
condition number of a matrix X relative to the p�norm is de�ned
by Condp�X� � kXkpkX

��kp�

Theorem �� �Bauer�Fike� Let '�� 'u be an approximate eigen�
pair of A with residual vector r � A'u� '�'u� where 'u is of 
�norm
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unity� Moreover� assume that the matrix A is diagonalizable and
let X be the matrix that transforms it into diagonal form� Then�
there exists an eigenvalue � of A such that

j�� '�j � Cond��X�krk� �

Proof If '� � ��A� the result is true� Assume that '� is not
an eigenvalue� From A � XDX��� where D is the diagonal of
eigenvalues and since we assume that � 
� ��A�� we can write

'u � �A� '�I���r � X�D � '�I���X��r

and hence

� � kX�D � '�I���X��rk�

� kXk�kX
��k�k�D � '�I���k� krk� � ������

The matrix �D � '�I��� is a diagonal matrix and as a result its
��norm is the maximum of the absolute values of its diagonal
entries� Therefore�

� � Cond��X�krk� max
�i���A�

j�i � '�j��

from which the result follows�

In case the matrix is not diagonalizable then the previous re�
sult can be generalized as follows�

Theorem �� Let '�� 'u an approximate eigenpair with residual
vector r � A'u � '�'u� where 'u is of 
�norm unity� Let X be the
matrix that transforms A into its Jordan canonical form� A �
XJX��� Then� there exists an eigenvalue � of A such that

j�� '�jl

� � j�� '�j� � � �� j�� '�jl��
� Cond��X�krk�

where l is the index of ��
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Proof The proof starts as in the previous case but here the
diagonal matrix D is replaced by the Jordan matrix J � Because
the matrix �J � '�I� is block diagonal its ��norm is the maximum
of the ��norms of each block �a consequence of the alternative
formulation for ��norms seen in Chapter I�� For each of these
blocks we have

�Ji � '�I��� � ���i � '��I � E���

where E is the nilpotent matrix having ones in positions �i� i���
and zeros elsewhere� Therefore�

�Ji � '�I��� �
liX
j��

��i � '���j��E�j��

and as a result� setting �i � j�i � '�j and noting that kEk� � ��
we get

k�Ji � '�I���k� �
liX
j��

j�i � '�j�jkEkj��� �
liX
j��

��ji � ��lii

li��X
j��

�ji �

The analogue of ������ is

� � Cond��X�k�J � '�I���k�krk�� ������

Since�

k�J � '�I���k� � max
i�������p

k�Ji � '�I���k� � max
i�������p

��li

li��X
j��

�ji

we get

min
i�������p

��
� �liiPli��

j�� �
j
i

��
� � Cond��X�krk�

which is essentially the desired result�
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Corollary �	 �Kahan� Parlett� and Jiang� ��
��� Under the
same assumptions as those of theorem ���� there exists an eigen�
value � of A such that

j�� '�jl

�� � j�� '�j�l��
� Cond��X�krk�

where l is the index of ��

Proof Follows immediately from the previous theorem and the
inequality�

l��X
j��

�ji � �� � �i�
l���

For an alternative proof see �
��� Unfortunately� the bounds
of the type shown in the previous two theorems are not practical
because of the presence of the condition number ofX� The second
result even requires the knowledge of the index of �i� which is not
numerically viable� The situation is much improved in the partic�
ular case where A is Hermitian because in this case Cond��X� � ��
This is taken up next�

���� The Hermitian Case

In the Hermitian case� Theorem ��	 leads to the following corol�
lary�

Corollary �� Let '�� 'u be an approximate eigenpair of a Her�
mitian matrix A� with kuk� � � and let r be the corresponding
residual vector� Then there exists an eigenvalue of A such that

j�� '�j � krk� � ������
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This is a remarkable result because it constitutes a simple
yet general error bound� On the other hand it is not sharp as
the next a posteriori error bound� due to Kato and Temple �
��
����� shows� We start by proving a lemma that will be used to
prove Kato�Temple�s theorem� In the next results it is assumed
that the approximate eigenvalue '� is the Rayleigh quotient of the
approximate eigenvector�

Lemma �	 Let 'u be an approximate eigenvector of norm unity
of A� and '� � �A'u� 'u�� Let ��� �� be an interval that contains '�
and no eigenvalue of A� Then

�� � '���'�� �� � krk���

Proof This lemma uses the observation that the residual vector
r is orthogonal to 'u� Then we have

��A� �I�'u� �A� �I�'u�

� ��A� '�I�'u� �'�� �I�'u� ��A� '�I�'u� �'�� �I�'u�

� krk�� � �'�� �I��'�� �I��

because of the orthogonality property mentioned above� On the
other hand� one can expand 'u in the orthogonal eigenbasis of A
as

'u � ��u� � ��u� � � � �� �nun

to transform the left hand side of the expression into

��A� �I�'u� �A� �I�'u� �
nX
i��

j�ij
� ��i � ����i � �� �

Each term in the above sum is nonnegative because of the as�
sumptions on � and �� Therefore krk������ '���'���� � � which
is the desired result�
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Theorem �
 �Kato and Temple �
�� ����� Let 'u be an ap�
proximate eigenvector of norm unity of A� and '� � �A'u� 'u�� As�
sume that we know an interval �a� b� that contains '� and one and
only one eigenvalue � of A� Then

�
krk��
'�� a

� '�� � �
krk��
b� '�

�

Proof Let � be the closest eigenvalue to '�� In the case where
� is located at left of '� then take � � � and � � b in the lemma
to get

� � '�� � �
krk��
b� '�

�

In the opposite case where � � '�� use � � a and � � � to get

� � �� '� �
krk��
'�� a

�

This completes the proof�

A simpli�cation of Kato�Temple�s theorem consists of using a
particular interval that is symmetric about the approximation '��
as is stated in the next corollary�

Corollary �� Let 'u be an approximate eigenvector of norm unity
of A� and '� � �A'u� 'u�� Let � be the eigenvalue closest to '� and �
the distance from '� to the rest of the spectrum� i�e��

� � min
i
fj�i � '�j� �i �� �g�

Then�

j'�� �j �
krk��
�

� ������

Proof This is a particular case of the previous theorem with
a � '�� � and b � '�� ��
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It is also possible to show a similar result for the angle between
the exact and approximate eigenvectors�

Theorem �� Let 'u be an approximate eigenvector of norm unity
of A� '� � �A'u� 'u� and r � �A � '�I�'u� Let � be the eigenvalue
closest to '� and � the distance from '� to the rest of the spectrum�
i�e�� � � minifj�i� '�j� �i �� �g� Then� if u is an eigenvector of A
associated with � we have

sin ��'u� u� �
krk�
�

� ������

Proof Let us write the approximate eigenvector 'u as 'u �
u cos � � z sin � where z is a vector orthogonal to u� We have

�A� '�I�'u � cos � �A� '�I�u� sin � �A� '�I�z

� cos � ��� '�I�u� sin � �A� '�I�z �

The two vectors on the right hand side are orthogonal to each
other because�

�u� �A� '�I�z� � ��A� '�I�u� z� � ��� '���u� z� � � �

Therefore�

krk�� � k�A� '�I�'uk� � sin� � k�A� '�I�zk�� � cos� � j�� '�j� �

Hence�
sin� � k�A� '�I�zk�� � krk�� �

The proof follows by observing that since z is orthogonal to u
then k�A� '�I�zk� is larger than the smallest eigenvalue of A� '�I
restricted to the subspace orthogonal to u� which is precisely ��

Although the above bounds for the Hermitian case are sharp
they are still not computable since � involves a distance from the
�next closest� eigenvalue of A to '� which is not readily available�
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In order to be able to use these bounds in practical situations
one must provide a lower bound for the distance �� One might
simply approximate � by '�� '�j where '�j is some approximation
to the next closest eigenvalue to '�� The result would no longer
be an actual upper bound on the error but rather an �estimate�
of the error� This may not be safe however� To ensure that the
computed error bound used is rigorous it is preferable to exploit
the simpler inequality provided by Corollary ��� in order to �nd
a lower bound for the distance �� for example

� � j'�� �jj � j�'�� '�j� � ��j � '�j�j

� j'�� '�jj � j�j � '�jj

� j'�� '�jj � krjk��

where krjk� is the residual norm associated with the eigenvalue
�j� Now the above lower bound of � is computable� In order for
the resulting error bound to have a meaning� krjk� must be small
enough to ensure that there are no other potential eigenvalues �k
that might be closer to � than is �j� The above error bounds
when used cautiously can be quite useful�

Example �� Let

A �

�
BBBBB�


�	 ��	
��	 
�	 ��	

��	 
�	 ��	
��	 
�	 ��	

��	 
�	

�
CCCCCA �

The eigenvalues of A are f���
� 
� 
 � �
p
�� 
 � �

p
�g

An eigenvector associated with the eigenvalue � � � is

u �

�
BBBBB�

�	��
�	��
	�	
	��
	��

�
CCCCCA �
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Consider the vector

�u �

�
BBBBB�

�	��
�	��
	�	
	��
	��

�
CCCCCA �

The Rayleigh quotient of �u with respect to A is �� � ��������� The
closest eigenvalue is � � ��	 and the corresponding actual error is
��	� � 
	��� The residual norm is found to be

k�A� ��I��uk� 
 	�	�� �

The distance � here is

� � j������ � ��
	
���j 
 
���� �

So the error bound for the eigenvalue ������ found is

�	�	������


���

 ���
�� � 
	���

For the eigenvector� the angle between the exact and approximate
eigenvector is such that cos � � 	�������� giving an angle � 
 	�		��
and the sine of the angle is approximately sin � 
 	�		��� The error
as estimated by ����� is

sin � � 	�	��


���

 	�	
���

which is about twice as large as the actual error�

We now consider a slightly more realistic situation� There are
instances in which the o��diagonal elements of a matrix are small�
Then the diagonal elements can be considered approximations to
the eigenvalues of A and the question is how good an accuracy
can one expect( We illustrate this with an example�

Example �� Let

A �

�
BBBBB�


�		 	�		�� 	�
	 	�
	 	�		
	�		�� ��		 �	�	� 	�		 �	�
	
	�
	 �	�	� ��		 	�
	 	�	�
	�
	 	�		 	�
	 �		 	�		
	�		 �	�
	 	�	� 	�		 ��		

�
CCCCCA �
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The eigenvalues of A rounded to � digits are

��A� � f	���
��� 
����� �����	�� �	
���� ��		��g �

A natural question is how accurate is each of the diagonal elements of
A as an approximate eigenvalue� We assume that we know nothing
about the exact spectrum� We can take as approximate eigenvectors
the ei�s� i � 
� � � � � � and the corresponding residual norms are

	�

��� � 	�


���� � 	�
��

�� � 	�

�
 � 	�


�	�

respectively� The simplest residual bound ������ tells us that

j�� 
�	j � 	�

���� j�� ��	j � 	�


����
j�� ��	j � 	�
��

� j�� �	j � 	�

�
�
j�� ��	j � 	�


�	��

The intervals de�ned above are all disjoint� As a result� we can get a
reasonable idea of �i the distance of each of the approximations from
the eigenvalues not in the interval� For example�

�� � ja�� � ��j  j
� ���	� 	�


�����j 
 	����	�

and

�� � minfja�� � ��j� ja�� � ��jg
 minfj��	 � ���	� 	�
��

�j� j��	 � �
�	 � 	�

���jg
� 	��
����

We �nd similarly ��  	������ ��  	��
�� and �  	������
We now get from the bounds ������ the following inequalities�

j�� 
�	j � 	�	���� j�� ��	j � 	�	
��
j�� ��	j � 	�	��
� j�� �	j � 	�	����
j�� ��	j � 	�	
��

whereas the actual errors are

j�� 
�	j 
 	�		�	� j�� ��	j 
 	�		���
j�� ��	j 
 	�		�� j�� �	j 
 	�	
���
j�� ��	j 
 	�		��
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���� The Kahan�Parlett�Jiang Theorem

We now return to the general non�Hermitian case� The results
seen for the Hermitian case in the previous section can be very
useful in practical situations� For example they can help develop
e�cient stopping criteria in iterative algorithms� In contrast�
those seen in Section ��� for the general non�Hermitian case are
not too easy to exploit in practice� The question that one might
ask is whether or not any residual bounds can be established that
will provide information similar to that provided in the Hermi�
tian case� There does not seem to exist any such result in the
literature� A result established by Kahan� Parlett and Jiang �
���
which we now discuss� seems to be the best compromise between
generality and sharpness� However� the theorem is of a di�erent
type� It does not guarantee the existence of� say� an eigenvalue
in a given interval whose size depends on the residual norm� It
only gives us the size of the smallest perturbation that must be
applied to the original data �the matrix�� in order to transform
the approximate eigenpair into an exact one �for the perturbed
problem��

To explain the nature of the theorem we begin with a very
simple result which can be regarded as a one�sided version of the
one proved by Kahan� Jiang and Parlett� in that it only considers
the right eigenvalue � eigenvector pair instead of the eigen�triplet
consisting of the eingenvalue and the right and left eigenvectors�

Proposition �� Let a square matrix A and a unit vector u be
given� For any scalar � de�ne the residual vector�

r � Au� �u�

and let E � fE � �A� E�u � �ug� Then

min
E�E

kEk� � krk� � ������
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Proof From the assumptions we see that each E is in E if and
only if it satis�es the equality

Eu � r � ����	�

Since kuk� � � the above equation implies that for any such E

kEk� � krk��

which in turn implies that

min
E�E

kEk� � krk�� ������

Now consider the matrix E� � ruH which is a member of E since
it satis�es ����	�� The ��norm of E� is such that

kE�k
�
� � �maxfru

HurHg � �maxfrr
Hg � krk���

As a result the minimum in the left hand side of ������ is reached
for E � E� and the value of the minimum is equal to krk��

We now state a simple version of the Kahan�Parlett�Jiang the�
orem �
���

Theorem ��� �Kahan� Parlett� and Jiang� Let a square ma�
trix A and two unit vectors u� w with �u� w� �� � be given� For any
scalar � de�ne the residual vectors�

r � Au� �u s � AHw � ��w

and let E � fE � �A� E�u � �u� �A� E�Hw � ��wg� Then

min
E�E

kEk� � max fkrk�� ksk�g � ����
�
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Proof We proceed in the same way as for the proof of the
simpler result of the previous proposition� The two conditions
that a matrix E must satisfy in order to belong to E translate
into

Eu � r and EHw � s� ������

By the same argument used in the proof of Proposition ���� any
such E satis�es

kEk� � krk� and kEk� � ksk�� ������

which proves the inequality

min
E�E

kEk� � maxfkrk�� ksk�g� ������

We now de�ne�

� � sHu � wHr ������

x � r � � w

y � s� �� u

and consider the particular set of matrices of the form

E��� � ruH � wsH � � wuH � � xyH ������

where � is a parameter� It is easy to verify that these matrices
satisfy the constraints ������ for any ��

We distinguish two di�erent cases depending on whether ksk�
is larger or smaller than krk�� When ksk��krk� we rewrite E���
in the form

E��� � x�u� � y�H � wsH ������

and select � in such a way that

sH�u� � y� � � ������

which leads to

� �
�

ksk�� � j�j
�
�
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We note that the above expression is not valid when ksk� � j�j�
which occurs only when y � �� In this situation E��� � ruH for
any �� and the following special treatment is necessary� As in
the proof of the previous proposition E��� � krk�� On the other
hand we have

ksk� � j�j � jwHrj � krk�

which shows that maxfkrk�� ksk�g � krk� and establishes the
result that the minimum in the theorem is reached for E��� in
this very special case�

Going back to the general case where ksk� �� j�j� with the
above choice of � the two vectors x and w in the range of E��� as
de�ned by ������ are orthogonal and similarly� the vectors u� �y
and s are also orthogonal� In this situation the norm of E��� is
equal to �See problem P�������

kE���k� � maxfksk�� kxk�kku
H � � yk�g�

Because of the orthogonality of x and w� we have

kxk�� � krk�� � j�j
� �

Similarly� exploiting the orthogonality of the pair u� y� and using
the de�nition of � we get

ku� � yk�� � � � ��kyk��
� � � ���ksk�� � j�j

��

�
ksk��

ksk�� � j�j
�
�

The above results yield

kE���k�� � max

�
ksk��� ksk

�
�

krk�� � j�j
�

ksk�� � j�j�

	
� ksk���

This shows from ������ that the equality ����
� is satis�ed for the
case when ksk��krk��
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To prove the result for the case ksk�	krk�� we proceed in the
same manner� writing this time E��� as

E��� � ruH � ��w � � x�yH

and choosing � such that uH�w � � x� � �� A special treatment
will also be necessary for the case where krk� � j�j which only
occurs when x � ��

The actual result proved by Kahan� Parlett and Jiang is es�
sentially a block version of the above theorem and includes results
with other norms� such as the Frobenius norm�

Example �� Consider the matrix�

A �

�
BBBBB�


�	 ��


�� 
�	 ��



�� 
�	 ��


�� 
�	 ��



�� 
�	

�
CCCCCA �

which is obtained by perturbing the symmetric tridiagonal matrix of
Example ���� Consider the pair

� � ��	� v �

�
BBBBB�

�	��
�	��
	�	
	��
	��

�
CCCCCA �

Then we have
krk� � k�A� �I�uk� 
 	�

�

which tells us� using the one�sided result �Proposition ���� that we
need to perturb A by a matrix E of norm 	�

 to make the pair �� v
an exact eigenpair of A�

Consider now v as de�ned above and

w � 	 �	��� 	��� 	�	� 	�� 	��T �
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where 	 is chosen to normalize w to so that its ��norm is unity� Then�
still with � � �� we �nd

krk� 
 	�

 � ksk� 
 	��		 �

As a result of the theorem� we now need a perturbation E whose ��
norm is roughly 	��		 to make the triplet �� v� w an exact eigentriplet
of A� a much stricter requirement than with the one�sided result�

The outcome of the above example was to be expected� If
one of the left of right approximate eigen�pair� for example the
left pair ��� v�� is a poor approximation� then it will take a larger
perturbation on A to make the triplet �� v� w exact� than it would
to make the pair �� u exact� Whether one needs to use the one�
sided or the two�sided result depends on whether one is interested
in the left and right eigenvectors simultaneously or in the right
�or left� eigenvector only�

�� Conditioning of Eigen�problems

When solving a linear system Ax � b� an important question that
arises is how sensitive is the solution x to small variations of the
initial data� namely to the matrix A and the right�hand side b�
A measure of this sensitivity is called the condition number of A
de�ned by

Cond�A� � kAkkA��k

relative to some norm�
For the eigenvalue problem we raise a similar question but we

must now de�ne similar measures for the eigenvalues as well as
for the eigenvectors and the invariant subspaces�

���� Conditioning of Eigenvalues

Let us assume that � is a simple eigenvalue and consider the
family of matrices A�t� � A � tE� We know from the previous
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sections that there exists a branch of eigenvalues ��t� of A�t� that
is analytic with respect to t� when t belongs to a small enough
disk centered at the origin� It is natural to call conditioning of
the eigenvalue � of A relative to the perturbation E the modulus
of the derivative of ��t� at the origin t � �� Let us write

A�t�u�t� � ��t�u�t� ����	�

and take the inner product of both members with a left eigenvec�
tor w of A associated with � to get

��A � tE�u�t�� w� � ��t��u�t�� w�

or�

��t��u�t�� w� � �Au�t�� w� � t�Eu�t�� w�

� �u�t�� AHw� � t�Eu�t�� w�

� ��u�t�� w� � t�Eu�t�� w��

Hence�
��t�� �

t
�u�t�� w� � �Eu�t�� w�

and therefore by taking the limit at t � ��

����� �
�Eu�w�

�u� w�

Here we should recall that the left and right eigenvectors associ�
ated with a simple eigenvalue cannot be orthogonal to each other�
The actual conditioning of an eigenvalue� given a perturbation  in
the direction of E!is the modulus of the above quantity� In prac�
tical situations� one often does not know the actual perturbation
E but only its magnitude� e�g�� as measured by some matrix norm
kEk� Using the Cauchy�Schwartz inequality and the ��norm� we
can derive the following upper bound�

j�����j �
kEuk�kwk�
j�u� w�j

� kEk�
kuk�kwk�
j�u� w�j
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In other words the actual condition number of the eigenvalue � is
bounded from above by the norm of E divided by the cosine of the
acute angle between the left and the right eigenvectors associated
with �� Hence the following de�nition�

De�nition �� The condition number of a simple eigenvalue �
of an arbitrary matrix A is de�ned by

Cond��� �
�

cos ��u� w�

in which u and w are the right and left eigenvectors� respectively�
associated with ��

Example �� Consider the matrix

A �

�
B� �
� ��	 �
�

��� 
�	 ��
��� �� ���

�
CA

The eigenvalues of A are f
� �� �g� The right and left eigenvectors of
A associated with the eigenvalue �� � 
 are approximately

u �

�
B� 	��
��
�	����

	�	

�
CA and w �

�
B� 	���
	

	�����
	�����

�
CA ������

and the corresponding condition number is approximately

Cond���� 
 �	���

A perturbation of order 	�	
 may cause perturbations of magnitude
up to �� Perturbing a�� to �
��	
 yields the spectrum�

f	������ ������� �����g�

For Hermitian� or more generally normal� matrices every sim�
ple eigenvalue is well�conditioned� since Cond��� � �� On the
other hand the condition number of a non�normal matrix can be
excessively high� in fact arbitrarily high�
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Example �� As an example simply consider the matrix

�
BBBBB�

�� �

�� �


� �
� �


�n

�
CCCCCA ������

with �� � 	 and �i � 

�i�
� for i � 
� A right eigenvector associated
with the eigenvalue �� is the vector e�� A left eigenvector is the vector
w whose i�th component is equal to �i � 
�� for i � 
� � � � � n� A little
calculation shows that the condition number of �� satis�es

�n� 
�� � Cond���� � �n� 
��
p
n�

Thus� this example shows that the condition number can be quite large
even for modestly sized matrices�

An important comment should be made concerning the above
example� The eigenvalues of A are explicitly known in terms of the
diagonal entries of the matrix� whenever the structure of A stays
the same� One may wonder whether it is sensible to discuss the
concept of condition number in such cases� For example� if we per�
turb the ����� elements by ��� we know exactly that the eigenvalue
�� will be perturbed likewise� Is the notion of condition number
useless in such situations( The answer is no� First� the argument
is only true if perturbations are applied in speci�c positions of
the matrix� namely its upper triangular part� If perturbations
take place elsewhere then some or all of the eigenvalues of the
perturbed matrix may not be explicitly known� Second� one can
think of applying an orthogonal similarity transformation to A�
If Q is orthogonal then the eigenvalues of the matrix B � QHAQ
have the same condition number as those of the original matrix
A� �see Problem P������� The resulting matrix B may be dense
and the dependence of its eigenvalues with respect to its entries
is no longer explicit�
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���� Conditioning of Eigenvectors

To properly de�ne the condition number of an eigenvector we
need to use the notion of reduced resolvent� Although the resol�
vent operator R�z� has a singularity at an eigenvalue � it can still
be de�ned on the restriction to the invariant subspace Ker�P ��
More precisely� consider the restriction of the mapping A � �I
to the subspace �I � P �Cn � Ker�P �� where P is the spectral
projector associated with the eigenvalue �� This mapping is in�
vertible because if x is an element of Ker�P � then �A� �I�x � ��
i�e�� x is in Ker�A � �I� which is included in Ran�P � and this is
only possible when x � �� We will call reduced resolvent at �
the inverse of this linear mapping and we will denote it by S��� �
Thus�

S��� �
h
�A� �I�jKer�P �

i��
�

The reduced resolvent satis�es the relation�

S����A��I�x � S����A��I��I�P �x � �I�P �x 	 x ������

which can be viewed as an alternative de�nition of S����
We now consider a simple eigenvalue � of a matrix A with

an associated eigenvector u� and write that a pair ��t�� u�t� is an
eigenpair of the matrix A � tE�

�A� tE�u�t� � ��t�u�t� � ������

Subtracting Au � �u from both sides we have�

A�u�t��u��tEu�t� � ��t�u�t���u � ��u�t��u�����t����u�t�

or�
�A� �I��u�t�� u� � tEu�t� � ���t�� ��u�t� �

We then multiply both sides by the projector I � P to obtain

�I � P ��A� �I��u�t�� u� � t�I � P �Eu�t�

� ���t�� ���I � P �u�t�

� ���t�� ���I � P ��u�t�� u�
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The last equality holds because �I�P �u � � since u is in Ran�P ��
Hence�

�A� �I��I � P ��u�t�� u� �

�I � P � ��tEu�t� � ���t�� ���u�t�� u�� �

We now multiply both sides by S��� and use ������ to get

�I � P ��u�t�� u� � ������

S����I � P � ��tEu�t� � ���t�� ���u�t�� u��

In the above development we have not scaled u�t� in any way� We
now do so by requiring that its projection onto the eigenvector u
be exactly u� i�e�� Pu�t� � u for all t� With this scaling� we have

�I � P ��u�t�� u� � u�t�� u�

As a result� equality ������ becomes

u�t�� u � S��� ��t�I � P �Eu�t� � ���t�� ���u�t�� u�� �

from which we �nally get� after dividing by t and taking the limit�

u���� � �S����I � P �Eu � ������

Using the same argument as before� we arrive at the following
general de�nition of the condition number of an eigenvector�

De�nition �	 The condition number of an eigenvector u asso�
ciated with an eigenvalue � of an arbitrary matrix A is de�ned by

Cond�u� � kS����I � P �k�� ������

in which S��� is the reduced resolvent of A at ��

In the case where the matrix A is Hermitian it is easy to verify
that the condition number simpli�es to the following

Cond�u� �
�

dist��� ��A�� f�g�
� ������
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In the general non�Hermitian case� it is di�cult to assess the size
of Cond�u��

To better understand the nature of the operator S����I �P ��
consider its spectral expansion in the particular case where A is
diagonalizable and the eigenvalue �i of interest is simple�

S��i��I � Pi� �
pX

j��
j ��i

�

�j � �i
Pj

Since we can write each projector as a sum of outer product ma�
trices Pj �

P�i
k�� ukw

H
k where the left and right eigenvectors uk

and wk are normalized such that �uj� wj� � �� the expression �����
can be rewritten as

u���� �
nX

j��
j ��i

�

�j � �i
ujw

H
j Eui �

nX
j��
j ��i

wH
j Eui

�j � �i
uj

which is the standard expression developed in Wilkinson�s book
��
���

What the above expression reveals is that when eigenvalues get
close to one another then the eigenvectors are not too well de�ned�
This is predictable since a multiple eigenvalue has typically several
independent eigenvectors associated with it� and we can rotate
the eigenvector arbitrarily in the eigenspace while keeping it an
eigenvector of A� As an eigenvalue gets close to being multiple� the
condition number for its associated eigenvector deteriorates� In
fact one question that follows naturally is whether or not one can
de�ne the notion of condition number for eigenvectors associated
with multiple eigenvalues� The above observation suggests that
a more realistic alternative is to try to analyze the sensitivity of
the invariant subspace� This is taken up in the next section�

Example �
 Consider the matrix seen in example ���

A �

�
B� �
� ��	 �
�

��� 
�	 ��
��� �� ���

�
CA �
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The matrix is diagonalizable since it has three distinct eigenvalues and

A � X

�
B� 
 	 	

	 � 	
	 	 �

�
CA X�� �

One way to compute the reduced resolvent associated with �� � 
 is
to replace in the above equality the diagonal matrix D by the �inverse�
of D � ��I obtained by inverting the nonzero entries ��� �� and ��� ��
and placing a zero in entry �
� 
�� i�e��

S���� � X

�
B� 	 	 	

	 
 	
	 	 �

�

�
CA X�� �

�
B� �

��� ����� �
����

�
��� 
	��� �����

��� �� 
��

�
CA

We �nd that the ��norm of kS����k� is kS����k� � ������ Thus�
a perturbation of order 	�	
 may cause changes of magnitude up to
��� on the eigenvector� This turns out to be a pessimistic overes�
timate� If we perturb a�� from �
��		 to �
��	
 the eigenvec�
tor u� associated with �� is perturbed from u� � ��

�� 
� 	�T to
�u� � ��	��
�	� 
��	�	
��T � A clue as to why we have a poor esti�
mate is provided by looking at the norms of X and X���

kXk� � 
��	� and kX��k� � ���
		 �

which reveals that the eigenvectors are poorly conditioned�

���� Conditioning of Invariant Subspaces

Often one is interested in the invariant subspace rather than the
individual eigenvectors associated with a given eigenvalue� In
these situations the condition number for eigenvectors as de�ned
before is not su�cient� We would like to have an idea on how the
whole subspace behaves under a given perturbation�

We start with the simple case where the multiplicity of the
eigenvalue under consideration is one� and we de�ne some nota�
tion� Referring to ������� let Q�t� be the orthogonal projector
onto the invariant subspace associated with the simple eigenvalue
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��t� and Q��� � Q be the orthogonal projector onto the invariant
subspace of A associated with �� The orthogonal projector Q onto
the invariant subspace associated with � has di�erent properties
from those of the spectral projector� For example A and Q do not
commute� All we can say is that

AQ � QAQ or �I �Q�AQ � � �

leading to

�I �Q�A � �I �Q�A�I �Q� ������

�I �Q��A� �I� � �I �Q��A� �I��I �Q�

Note that the linear operator �A��I� when restricted to the range
of I � Q is invertible� This is because if �A � �I�x � � then x
belongs to Ran�Q� whose intersection with Ran�I�Q� is reduced
to f�g� We denote by S���� the inverse of �A � �I� restricted
to Ran�I � Q�� Note that although both S��� and S���� are
inverses of �A � �I� restricted to complements of Ker�A � �I��
these inverses are quite di�erent�

Starting from ������� we subtract �u from each side to get�

�A� �I�u�t� � �tEu�t� � ���t�� ��u�t�

Now multiply both sides by the orthogonal projector I �Q�

�I �Q��A� �I�u�t� � �t�I �Q�Eu�t� � ���t�� ���I �Q�u�t�

to obtain from �������

��I �Q��A� �I��I �Q���I �Q�u�t�

� �t�I �Q�Eu�t� � ���t�� ���I �Q�u�t��

Therefore�

�I �Q�u�t� � S���� ��t�I �Q�Eu�t� � ���t�� ���I �Q�u�t�� �


