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GPU Computing:
The Democratization

of
Parallel Computing
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Parallel Computing’s Golden Age

1980s, early `90s: a golden age for parallel computing
Particularly data-parallel computing

Architectures 
Connection Machine, MasPar, Cray
True supercomputers: incredibly exotic, powerful, expensive

Algorithms, languages, & programming models
Solved a wide variety of problems
Various parallel algorithmic models developed
P-RAM, V-RAM, circuit, hypercube, etc.
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Parallel Computing’s Dark Age

But…impact of data-parallel computing limited 
Thinking Machines sold 7 CM-1s (100s of systems total)
MasPar sold ~200 systems

Commercial and research activity subsided 
Massively-parallel machines replaced by clusters 
of ever-more powerful commodity microprocessors
Beowulf, Legion, grid computing, …

Massively parallel computing lost momentum to 
the inexorable advance of commodity technology
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Illustrated History of 
Parallel Computing
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Enter the GPU

GPU = Graphics Processing Unit
Chip in computer video cards, PlayStation 3, Xbox, etc.
Two major vendors: NVIDIA and ATI (now AMD)
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Enter the GPU

GPUs are massively multithreaded manycore chips
NVIDIA Tesla products have up to 128 scalar processors
Over 12,000 concurrent threads in flight
Over 470 GFLOPS sustained performance

Users across science & engineering disciplines are 
achieving 100x or better speedups on GPUs

CS researchers can use GPUs as a research platform 
for manycore computing: arch, PL, numeric, …



© NVIDIA Corporation 2008

Enter CUDA

CUDA is a scalable parallel programming model and a 
software environment for parallel computing

Minimal extensions to familiar C/C++ environment
Heterogeneous serial-parallel programming model 

NVIDIA’s TESLA GPU architecture accelerates CUDA
Expose the computational horsepower of NVIDIA GPUs 
Enable general-purpose GPU computing

CUDA also maps well to multicore CPUs!
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The Democratization 
of Parallel Computing

GPU Computing with CUDA brings data-parallel 
computing to the masses

Over 46,000,000 CUDA-capable GPUs sold
A “developer kit” costs  ~$200 (for 500 GFLOPS)

Data-parallel supercomputers are everywhere!
CUDA makes this power accessible
We’re already seeing innovations in data-parallel 
computing

Massively parallel computing has become a 
commodity technology!
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Why GPUs?
110-240X

13–457x 

45X 100X

35X

17X
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GPUs Are Fast

Theoretical peak performance: 518 GFLOPS

Sustained μbenchmark performance:
Raw math: 472 GFLOPS (8800 Ultra)
Raw bandwidth: 80 GB per second (Tesla C870)

Actual application performance:
Molecular dynamics: 290 GFLOPS
(VMD ion placement)
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GPUs Are Getting Faster, Faster



© NVIDIA Corporation 2008

G80 (launched Nov 2006 – GeForce 8800 GTX)
128 Thread Processors execute kernel threads
Up to 12,288 parallel threads active
Per-block shared memory (PBSM) accelerates processing

Manycore GPU – Block Diagram 

Thread Execution Manager

Input Assembler

Host

PBSM

Global Memory

Load/store

PBSM

Thread Processors

PBSM

Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors

PBSM PBSM PBSM PBSM PBSM PBSM PBSM PBSM PBSM PBSM PBSM PBSMPBSM
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CUDA
Programming Model
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Some Design Goals

Enable heterogeneous systems (i.e., CPU+GPU)
CPU & GPU are separate devices with separate DRAMs

Scale to 100’s of cores, 1000’s of parallel threads

Let programmers focus on parallel algorithms
not mechanics of a parallel programming language
Use C/C++ with minimal extensions
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Parallel Kernel
KernelA (args);

Parallel Kernel
KernelB (args);

Serial Code

. . .

. . .

Serial Code

Device

Device

Host

Host

Heterogeneous Programming

CUDA = serial program with parallel kernels, all in C
Serial C code executes in a host thread (i.e. CPU thread) 
Parallel kernel C code executes in many device threads 
across multiple processing elements (i.e. GPU threads) 
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Kernel = Many Concurrent Threads

One kernel is executed at a time on the device
Many threads execute each kernel

Each thread executes the same code…
… on different data based on its threadID

0 1 2 3 4 5 6 7

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

CUDA threads might be
Physical threads

As on NVIDIA GPUs
GPU thread creation and 
context switching are 
essentially free

Or virtual threads
E.g. 1 CPU core might execute 
multiple CUDA threads
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Hierarchy of Concurrent Threads

Threads are grouped into thread blocks
Kernel = grid of thread blocks

…
float x = 
input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

Thread Block 0

…
…
float x = 
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block 1

…
float x = 
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block N - 1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

By definition, threads in the same block may synchronize with 
barriers
scratch[threadID] = begin[threadID];

__syncthreads();

int left = scratch[threadID - 1];

Threads
wait at the barrier
until all threads

in the same block
reach the barrier
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Transparent Scalability
Thread blocks cannot synchronize

So they can run in any order, concurrently or sequentially
This independence gives scalability:

A kernel scales across any number of parallel cores

2-Core Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

4-Core Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Implicit barrier between dependent kernels
vec_minus<<<nblocks, blksize>>>(a, b, c);

vec_dot<<<nblocks, blksize>>>(c, c);
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Memory Hierarchy

Thread
Per-thread

Local Memory

Block
Per-block

Shared
Memory

Kernel 0

. . .
Per-device

Global
Memory

. . .

Kernel 1

Sequential
Kernels
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Heterogeneous Memory Model

Device 0
memory

Device 1
memory

Host memory cudaMemcpy()
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CUDA Language:
C with Minimal Extensions
Philosophy: provide minimal set of extensions necessary to expose power

Declaration specifiers to indicate where things live
__global__ void KernelFunc(...);  // kernel function, runs on device
__device__ int  GlobalVar; // variable in device memory
__shared__ int  SharedVar; // variable in per-block shared memory

Extend function invocation syntax for parallel kernel launch
KernelFunc<<<500, 128>>>(...);    // launch 500 blocks w/ 128 threads each

Special variables for thread identification in kernels
dim3 threadIdx;  dim3 blockIdx;  dim3 blockDim;  dim3 gridDim;

Intrinsics that expose specific operations in kernel code
__syncthreads(); // barrier synchronization within kernel
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CUDA Runtime

Device management:
cudaGetDeviceCount(), cudaGetDeviceProperties()

Device memory management:
cudaMalloc(), cudaFree(), cudaMemcpy()

Graphics interoperability:
cudaGLMapBufferObject(), cudaD3D9MapResources()

Texture management:
cudaBindTexture(), cudaBindTextureToArray()
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Example: Increment Array Elements

CPU program CUDA program

void increment_cpu(float *a, float b, int N)
{

for (int idx = 0; idx<N; idx++) 
a[idx] = a[idx] + b;

}

void main()
{

.....
increment_cpu(a, b, N);

}

__global__ void increment_gpu(float *a, float b, int N)
{

int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N)

a[idx] = a[idx] + b;
}

void main()
{

…..
dim3 dimBlock (blocksize);
dim3 dimGrid( ceil( N / (float)blocksize)  );
increment_gpu<<<dimGrid, dimBlock>>>(a, b, N);

}
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Example: Increment Array Elements

Increment N-element vector a by scalar b

Let’s assume N=16, blockDim=4   -> 4 blocks

blockIdx.x=0
blockDim.x=4
threadIdx.x=0,1,2,3
idx=0,1,2,3

blockIdx.x=1
blockDim.x=4
threadIdx.x=0,1,2,3
idx=4,5,6,7

blockIdx.x=2
blockDim.x=4
threadIdx.x=0,1,2,3
idx=8,9,10,11

blockIdx.x=3
blockDim.x=4
threadIdx.x=0,1,2,3
idx=12,13,14,15

int idx = blockDim.x * blockId.x + threadIdx.x;
will map from local index threadIdx to global index

NB: blockDim should be >= 32 in real code, this is just an example

Common Pattern!
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Example: Host Code
// allocate host memory
unsigned int numBytes = N * sizeof(float)
float* h_A = (float*) malloc(numBytes);

// allocate device memory
float* d_A = 0;
cudaMalloc((void**)&d_A, numbytes);

// copy data from host to device
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// execute the kernel
increment_gpu<<< N/blockSize, blockSize>>>(d_A, b);

// copy data from device back to host
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// free device memory
cudaFree(d_A);
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More on Thread and Block IDs

Threads and blocks have 
IDs

So each thread can decide 
what data to work on

Block ID: 1D or 2D
Thread ID: 1D, 2D, or 3D 

Simplifies memory
addressing when 
processing
multidimensional data

Image processing
Solving PDEs on volumes

Host

Kernel 
1

Kernel 
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)
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More on Memory Spaces

Each thread can:
Read/write per-thread registers
Read/write per-block shared memory
Read/write per-grid global memory
Most important, commonly used

Each thread can also:
Read/write per-thread local memory
Read only per-grid constant memory
Read only per-grid texture memory
Used for convenience/performance

More details later

Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

The host can read/write global, 
constant, and texture memory 
(stored in DRAM)
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Features Available in Device Code

Standard mathematical functions
sinf,  powf,  atanf,  ceil,  min,  sqrtf, etc.

Texture accesses in kernels
texture<float,2> my_texture;  // declare texture reference
float4 texel = texfetch(my_texture, u, v);

Integer atomic operations in global memory
atomicAdd,  atomicMin,  atomicAnd,  atomicCAS, etc.
e.g., increment shared queue pointer with atomicInc()
Only for devices with compute capability 1.1

1.0 = Tesla, Quadro FX5600, GeForce 8800 GTX, etc.
1.1 = GeForce 8800 GT, etc.
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Compiling CUDA for NVIDIA GPUs

Any source file containing 
CUDA language 
extensions must be 
compiled with NVCC

NVCC separates code 
running on the host from 
code running on the device

Two-stage compilation:
1. Virtual ISA

Parallel Thread eXecution
2. Device-specific binary 

object

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

G80 … GPU 

PTX Code

CPU Code

Generic

Specialized
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Debugging Using the
Device Emulation Mode

An executable compiled in device emulation mode
(nvcc -deviceemu) runs completely on the host 
using the CUDA runtime

No need of any device and CUDA driver
Each device thread is emulated with a host thread

When running in device emulation mode, one can:
Use host native debug support (breakpoints, inspection, 
etc.)
Access any device-specific data from host code and vice-
versa
Call any host function from device code (e.g. printf) and 
vice-versa
Detect deadlock situations caused by improper usage of 
__syncthreads
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Device Emulation Mode Pitfalls

Emulated device threads execute sequentially, so 
simultaneous accesses of the same memory
location by multiple threads potentially produce 
different results
Dereferencing device pointers on the host or host 
pointers on the device can produce correct results 
in device emulation mode, but will generate an error 
in device execution mode
Results of floating-point computations will slightly 
differ because of:

Different compiler outputs
Different instruction sets
Use of extended precision for intermediate results

There are various options to force strict single precision on 
the host
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Reduction Example

Reduce N values to a single one:
Sum(v0, v1, … , vN-2, vN-1)
Min(v0, v1, … , vN-2, vN-1)
Max(v0, v1, … , vN-2, vN-1)

Common primitive in parallel programming
Easy to implement in CUDA

Less so to get it right
Divided into 5 exercises throughout the day

Each exercise illustrates one particular optimization 
strategy
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Reduction Exercise

At the end of each exercise, the result of the 
reduction computed on the device is checked for 
correctness

“Test PASSED” or “Test FAILED” is printed out to the 
console

The goal is to replace the “TODO“ words in the code 
by the right piece of code to get “test PASSED”
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Reduction Exercise 1

Open up reduce\src\reduce1.sln
Code walkthrough:

main.cpp
Allocate host and device memory
Call reduce() defined in reduce1.cu
Profile and verify result

reduce1.cu

CUDA code compiled with nvcc

Contains TODOs

Device emulation compilation configurations: Emu*
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Reduce 1: Blocking the Data

Split the work among the N multiprocessors (16 on 
G80) by launching numBlocks=N thread blocks

Block IDs

b = numBlocks

…

……

0

…

b-1

Array of
the numValues values

to be reduced
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Reduce 1: Blocking the Data

Within a block, split the work among the threads
A block can have at most 512 threads
We choose numThreadsPerBlock=512 threads

Thread IDs

Block IDs

t = numThreadsPerBlock

b = numBlocks

…

…

0 … t-1

… … …

0

0 … t-1

… … …

b-1
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Reduce 1: Multi-Pass Reduction

Blocks cannot synchronize so reduce_kernel is 
called multiple times:

First call reduces from numValues to numThreads

Each subsequent call reduces by half

Ping pong between input and output buffers 
(d_Result[2])
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Reduce 1: Go Ahead! 

Goal: Replace the TODOs in reduce1.cu to get 
“test PASSED”

Thread IDs

Block IDs

t = numThreadsPerBlock

b = numBlocks

…

…

0 … t-1

… … …

0

0 … t-1

… … …

b-1
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CUDA Implementation 
on the GPU
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CUDA Is Easy and Fast

CUDA can provide large speedups on data-parallel 
computations straight out of the box!

Even higher speedups are achievable by 
understanding hardware implementation and tuning 
for it

What the rest of the presentation is about
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Hardware Implementation:
A Set of SIMT Multiprocessors
Each multiprocessor is a set of 32-
bit processors with a Single-
Instruction Multi-Thread
architecture

16 multiprocessors on G80
8 processors per multiprocessors

At each clock cycle, a 
multiprocessor executes the same 
instruction on a group of threads 
called a warp

The number of threads in a warp is 
the warp size (= 32 threads on G80)
A half-warp is the first or second 
half of a warp

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Instruction
Unit

Processor 1 …Processor 2 Processor M
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Hardware Implementation:
Memory Architecture

The global, constant, and texture 
spaces are regions of device 
memory
Each multiprocessor has:

A set of 32-bit registers per 
processor (8192 on G80)
On-chip shared memory (16 K on 
G80)

Where the shared memory 
space resides

A read-only constant cache
To speed up access to the 
constant memory space

A read-only texture cache
To speed up access to the 
texture memory space

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache
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Hardware Implementation:
Execution Model

Each multiprocessor processes batches of blocks 
one batch after the other

Active blocks = the blocks processed by one 
multiprocessor in one batch
Active threads = all the threads from the active blocks

The multiprocessor’s registers and shared memory 
are split among the active threads
Therefore, for a given kernel, the number of active 
blocks depends on:

The number of registers the kernel compiles to
How much shared memory the kernel requires

If there cannot be at least one active block, the 
kernel fails to launch
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Hardware Implementation:
Execution Model

Each active block is split 
into warps in a well-
defined way

Warps are time-sliced

In other words:
Threads within a warp are 
executed physically in 
parallel
Warps and blocks are 
executed logically in 
parallel

Host

Kernel 
1

Kernel 
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 0)

Thread
(31, 0)…Warp 0 Warp 1Thread

(32, 0)
Thread
(63, 0)…

Thread
(0, 1)

Thread
(31, 1)…Warp 2 Warp 3Thread

(32, 1)
Thread
(63, 1)…

Thread
(0, 2)

Thread
(31, 2)…Warp 4 Warp 5Thread

(32, 2)
Thread
(63, 2)…
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Host Synchronization

All kernel launches are asynchronous
control returns to CPU immediately
kernel executes after all previous CUDA calls have 
completed

cudaMemcpy is synchronous
control returns to CPU after copy completes
copy starts after all previous CUDA calls have completed

cudaThreadSynchronize()
blocks until all previous CUDA calls complete

47
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Device Management

CPU can query and select GPU devices
cudaGetDeviceCount( int *count )
cudaSetDevice( int device )
cudaGetDevice( int *current_device )
cudaGetDeviceProperties( cudaDeviceProp* prop, 

int device )
cudaChooseDevice( int *device, cudaDeviceProp* prop )

Multi-GPU setup:
device 0 is used by default
one CPU thread can control only one GPU

multiple CPU threads can control the same GPU 
– calls are serialized by the driver

48
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Multiple CPU Threads and CUDA

CUDA resources allocated by a CPU thread can be 
consumed only by CUDA calls from the same CPU 
thread

Violation Example:
CPU thread 2 allocates GPU memory, stores address in p
thread 3 issues a CUDA call that accesses memory via p

49
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Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

Memory Latency and Bandwidth

Host memory
Device ↔ host memory bandwidth 
is 4 GB/s peak (PCI-express x16)
Test with SDK’s bandwidthTest

Global/local device memory
High latency, not cached
80 GB/s peak, 1.5 GB  
(Quadro FX 5600)

Shared memory
On-chip, low latency, very high 
bandwidth, 16 KB
Like a user-managed per-
multiprocessor cache

Texture memory
Read-only, high latency, cached

Constant memory
Read-only, low latency, cached,  
64 KB
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Performance Optimization

Expose as much parallelism as possible

Optimize memory usage for maximum bandwidth

Maximize occupancy to hide latency

Optimize instruction usage for maximum 
throughput
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Expose Parallelism:
GPU Thread Parallelism

Structure algorithm to maximize independent 
parallelism
If threads of same block need to communicate, use 
shared memory and __syncthreads()
If threads of different blocks need to communicate, 
use global memory and split computation into 
multiple kernels

No synchronization mechanism between blocks
High parallelism is especially important to hide 
memory latency by overlapping memory accesses 
with computation
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Expose Parallelism:
CPU/GPU Parallelism

Take advantage of asynchronous kernel launches by 
overlapping CPU computations with kernel execution
Take advantage of asynchronous CPU ↔ GPU memory 
transfers (cudaMemcpyAsync()) that overlap with kernel 
execution (only available for G84 and up)

Overlap implemented by using a CUDA stream
CUDA Stream = Sequence of CUDA operations that execute in order
Example:
cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst, src, size, stream1);

kernel<<<grid, block, 0, stream2>>>(…);

cudaMemcpyAsync(dst2, src2, size, stream2);

cudaStreamQuery(stream2);

overlapped
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Optimize Memory Usage:
Basic Strategies

Processing data is cheaper than moving it around
Especially for GPUs as they devote many more transistors to 
ALUs than memory

And will be increasingly so
The less memory bound a kernel is, the better it will scale with
future GPUs

So you want to:
Maximize use of low-latency, high-bandwidth memory
Optimize memory access patterns to maximize bandwidth
Leverage parallelism to hide memory latency by overlapping 
memory accesses with computation as much as possible

Kernels with high arithmetic intensity (ratio of math to memory 
transactions)

Sometimes recompute data rather than cache it
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Minimize CPU ↔ GPU Data Transfers

CPU ↔ GPU memory bandwidth much lower than GPU 
memory bandwidth

Use page-locked host memory (cudaMallocHost()) for maximum 
CPU ↔ GPU bandwidth

3.2 GB/s common on PCI-e x16
~4 GB/s measured on nForce 680i motherboards (8GB/s for PCI-e 2.0)
Be cautious however since allocating too much page-locked memory 
can reduce overall system performance

Minimize CPU ↔ GPU data transfers by moving more code 
from CPU to GPU

Even if that means running kernels with low parallelism 
computations
Intermediate data structures can be allocated, operated on, and 
deallocated without ever copying them to CPU memory

Group data transfers
One large transfer much better than many small ones
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Optimize Memory Access Patterns

Effective bandwidth can vary by an order of 
magnitude depending on access pattern

Optimize access patterns to get:
Coalesced global memory accesses
Shared memory accesses with no or few bank conflicts
Cache-efficient texture memory accesses
Same-address constant memory accesses
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Global Memory Reads/Writes

Global memory is not cached on G8x

Highest latency instructions: 400-600 clock cycles

Likely to be performance bottleneck

Optimizations can greatly increase performance
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Coalesced Global Memory Accesses

The simultaneous global memory accesses by each 
thread of a half-warp (16 threads on G80) during the 
execution of a single read or write instruction will 
be coalesced into a single access if:

The size of the memory element accessed by each thread is 
either 4, 8, or 16 bytes
The elements form a contiguous block of memory
The Nth element is accessed by the Nth thread in the half-warp
The address of the first element is aligned to 16 times the 
element’s size

Coalescing happens even if some threads do not access 
memory (divergent warp)
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Coalesced Global Memory Accesses

t0 t1 t2 t14 t15t3

132 136 184 192128 140 144 188

t0 t1 t2 t14 t15t3

132 136 184 192128 140 144 188

Coalesced float memory access

Coalesced float memory access
(divergent warp)
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Non-Coalesced Global Memory Accesses

t0 t1 t2 t14 t15t3

132 136 184 192128 140 144 188

t0 t1 t2 t14 t15t3

132 136 184 192128 140 144 188

Non-sequential float memory access

Misaligned starting address

t13
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Non-Coalesced Global Memory Accesses

t0 t1 t2 t14 t15t3

140 152 296 320128 164 176 308

t0 t1 t2 t14 t15t3

132 136 184 192128 140 144 188

Non-contiguous float memory access

Non-coalesced float3 memory access

12 bytes

t13



© NVIDIA Corporation 2008

Coalescing: 
Timing Results

Experiment: 
Kernel: read a float, increment, write back
3M floats (12MB)
Times averaged over 10K runs

12K blocks x 256 threads:
356µs – coalesced
357µs – coalesced, some threads don’t participate

3,494µs – permuted/misaligned thread access
4K blocks x 256 threads:

3,302µs – float3 non-coalesced
Conclusion:

Coalescing greatly improves throughput!
Critical to small or memory-bound kernels
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Avoiding Non-Coalesced Accesses

For irregular read patterns, texture fetches can be a better 
alternative to global memory reads
If all threads read the same location, use constant memory
For sequential access patterns, but a structure of size ≠ 4, 8, 
or 16 bytes:

Use a Structure of Arrays (SoA) instead of Array of Structures 
(AoS)

Or force structure alignment
Using __align(X), where X = 4, 8, or 16

Or use shared memory to achieve coalescing
More on this later

x y z Point structure

AoS

SoA

x y z x y z x y z

x x x y y y z z z
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CUDA Visual Profiler

Helps measure and find potential performance 
problem

GPU and CPU timing for all kernel invocations and 
memcpys
Time stamps

Access to hardware performance counters 
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Profiler Signals
Events are tracked with hardware counters on signals in the chip:

timestamp

gld_incoherent
gld_coherent
gst_incoherent
gst_coherent

local_load
local_store

branch
divergent_branch

instructions – instruction count

warp_serialize – thread warps that serialize on address conflicts to 
shared or constant memory

cta_launched – executed thread blocks

Global memory loads/stores are coalesced 
(coherent) or non-coalesced (incoherent)

Total branches and divergent branches 
taken by threads

Local loads/stores
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Interpreting profiler counters

Values represent events within a thread warp

Only targets one multiprocessor
Values will not correspond to the total number of warps 
launched for a particular kernel.
Launch enough thread blocks to ensure that the target 
multiprocessor is given a consistent percentage of the total 
work.

Values are best used to identify relative performance 
differences between unoptimized and optimized code

In other words, try to reduce the magnitudes of 
gld/gst_incoherent, divergent_branch, and warp_serialize
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Back to Reduce Exercise:
Profile with the Visual Profiler
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Thread IDs

Block IDs

t = numThreadsPerBlock

b = numBlocks

…

…

0 … t-1

… … …

0

0 … t-1

… … …

b-1

Back to Reduce Exercise:
Problem with Reduce 1

Non-coalesced memory reads!

Elements read by a warp
in one memory access

Thread IDs

…

0 …1

… …

0

31 … t-1

… … …
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Reduce 2

Distribute threads differently to achieve coalesced 
memory reads

Bonus: No need to ping pong anymore

Thread IDs

Block IDs

t = numThreadsPerBlock

b = numBlocks

…0

0 t-1…

… b-1

0 t-1…

0

0 t-1…

… b-1

0 t-1…

… … … … … … …

Elements read by a warp
in one memory access

Thread IDs 0 …1

…

0

31 … t-1

…
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Reduce 2: Go Ahead! 

Open up reduce\src\reduce2.sln
Goal: Replace the TODOs in reduce2.cu to get 
“test PASSED”

Thread IDs

Block IDs

t = numThreadsPerBlock

b = numBlocks

…0

0 t-1…

… b-1

0 t-1…

0

0 t-1…

… b-1

0 t-1…

… … … … … … …
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Maximize Use of Shared Memory

Shared memory is hundreds of times faster than global 
memory
Threads can cooperate via shared memory

Not so via global memory
A common way of scheduling some computation on the 
device is to block it up to take advantage of shared memory:

Partition the data set into data subsets that fit into shared 
memory
Handle each data subset with one thread block:

Load the subset from global memory to shared memory
__syncthreads()
Perform the computation on the subset from shared memory
– each thread can efficiently multi-pass over any data element

__syncthreads() (if needed)
Copy results from shared memory to global memory
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Example:
Square Matrix Multiplication

C = A · B of size N x N
Without blocking:

One thread handles one element of C
A and B are loaded N times from global 
memory

A

B

C

N
N

N N

Wastes bandwidth

Poor balance of
work to bandwidth
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Example:
Square Matrix Multiplication Example

C = A · B of size N x N
With blocking:

One thread block handles one M x M
sub-matrix Csub of C
A and B are only loaded (N / M) times
from global memory

Much less 
bandwidth

Much better 
balance of
work to bandwidth

A

B

C

Csub

MM M M

M
M

M
M

N
N

N N
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Example: Avoiding Non-Coalesced 
float3 Memory Accesses

__global__ void accessFloat3(float3 *d_in, float3 d_out)
{

int index = blockIdx.x * blockDim.x + threadIdx.x;
float3 a = d_in[index];

a.x += 2;
a.y += 2;
a.z += 2;

d_out[index] = a;
}
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Example: Avoiding Non-Coalesced 
float3 Memory Accesses

float3 is 12 bytes
Each thread ends up executing 3 reads

sizeof(float3) ≠ 4, 8, or 16
Half-warp reads three 64B non-contiguous regions

t0 t1 t2 t3

First read

float3 float3 float3
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Example: Avoiding Non-Coalesced 
float3 Memory Accesses

t255t2t1t0

GMEM

SMEM

SMEM

t2t1t0

…

… …St
ep

 2
St

ep
 1

…

…

…

Similarly, Step3 starting at offset 512
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Example: Avoiding Non-Coalesced 
float3 Memory Accesses

Use shared memory to allow coalescing
Need sizeof(float3)*(threads/block) bytes of SMEM
Each thread reads 3 scalar floats:

Offsets: 0, (threads/block), 2*(threads/block)
These will likely be processed by other threads, so sync

Processing
Each thread retrieves its float3 from SMEM array

Cast the SMEM pointer to (float3*)
Use thread ID as index

Rest of the compute code does not change!
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Example: Avoiding Non-Coalesced 
float3 Memory Accesses

__global__ void accessInt3Shared(float *g_in, float *g_out)
{

int index = blockIdx.x * blockDim.x + threadIdx.x;
__shared__ float s_data[256*3];
s_data[threadIdx.x] = g_in[index];
s_data[threadIdx.x+256] = g_in[index+256];
s_data[threadIdx.x+512] = g_in[index+512];
__syncthreads();
float3 a = ((float3*)s_data)[threadIdx.x];

a.x += 2;
a.y += 2;
a.z += 2;

((float3*)s_data)[threadIdx.x] = a;
__syncthreads();
g_out[index] = s_data[threadIdx.x];
g_out[index+256] = s_data[threadIdx.x+256];
g_out[index+512] = s_data[threadIdx.x+512];

}

Compute code
is not changed

Read the input
through SMEM

Write the result
through SMEM
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Example: Avoiding Non-Coalesced 
float3 Memory Accesses

Experiment: 
Kernel: read a float, increment, write back
3M floats (12MB)
Times averaged over 10K runs

12K blocks x 256 threads:
356µs – coalesced
357µs – coalesced, some threads don’t participate

3,494µs – permuted/misaligned thread access
4K blocks x 256 threads:

3,302µs – float3 uncoalesced
359µs – float3 coalesced through shared memory
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Maximize Occupancy to Hide Latency

Sources of latency:
Global memory access: 400-600 cycle latency
Read-after-write register dependency

Instruction’s result can only be read 11 cycles later

Latency blocks dependent instructions in the same 
thread
But instructions in other threads are not blocked
Hide latency by running as many threads per 
multiprocessor as possible!
Choose execution configuration to maximize
occupancy = (# of active warps) / (maximum # of active warps)

Maximum # of active warps is 24 on G8x
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Execution Configuration: Constraints

Maximum # of threads per block: 512
# of active threads limited by resources:

# of registers per multiprocessor (register pressure)
Amount of shared memory per multiprocessor

Use –maxrregcount=N flag to NVCC
N = desired maximum registers / kernel
At some point “spilling” into LMEM may occur

Reduces performance – LMEM is slow
Check .cubin file for LMEM usage
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Determining Resource Usage
Compile the kernel code with the -cubin flag to 
determine register usage.
Open the .cubin file with a text editor and look for 
the “code” section.

architecture {sm_10}
abiversion {0}
modname {cubin}
code  {

name = BlackScholesGPU
lmem = 0
smem = 68
reg = 20
bar = 0
bincode  {

0xa0004205 0x04200780 0x40024c09 0x00200780 
…

per thread local memory
(used by compiler to spill 

registers to device memory)

per thread block shared memory

per thread registers
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Execution Configuration: Heuristics

(# of threads per block) = multiple of warp size
To avoid wasting computation on under-populated warps

(# of blocks) / (# of multiprocessors) > 1
So all multiprocessors have at least a block to execute

Per-block resources (shared memory and registers) at most 
half of total available
And: (# of blocks) / (# of multiprocessors) > 2

To get more than 1 active block per multiprocessor
With multiple active blocks that aren’t all waiting at a 
__syncthreads(), the multiprocessor can stay busy

(# of blocks) > 100 to scale to future devices
Blocks stream through machine in pipeline fashion
1000 blocks per grid will scale across multiple generations

Very application-dependent: experiment!
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Occupancy Calculator

To help you: the CUDA occupancy calculator 
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

ssormultiproceper   warpsactive of # maximum
ssormultiproceper   warpsactive of #

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
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Back to Reduce Exercise:
Problem with Reduce 2

Reduce 2 does not take advantage of shared memory!

Reduce 3 fixes this by implementing parallel 
reduction in shared memory

Runtime shared memory allocation:
size_t SharedMemBytes = 64; // 64 bytes of shared memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

The optional SharedMemBytes bytes are:
Allocated in addition to the compiler allocated shared memory
Mapped to any variable declared as:

extern __shared__ float DynamicSharedMem[];
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Reduce 3:
Parallel Reduction Implementation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

Indices

Values

0 1 2 3 4 5 6 7

11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2Values

0 1 2 3

18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2Values

0 1

24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2Values

0

41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2Values

Thread 
IDs

Step 1 
Stride 1

Step 2 
Stride 2

Step 3 
Stride 4

Step 4 
Stride 8

Thread 
IDs

Thread 
IDs

Thread 
IDs
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Parallel Reduction Complexity

Takes log(N) steps and each step S performs N/2S

independent operations
Step complexity is O(log(N))

For N=2D, performs ∑S∈[1..D]2D-S = N-1 operations
Work complexity is O(N)
Is work-efficient (i.e. does not perform more operations 
than a sequential reduction)

With P threads physically in parallel (P processors), 
performs ∑S∈[1..D]ceil(2D-S/P) operations

∑S∈[1..D]ceil(2D-S/P) < ∑S∈[1..D](floor(2D-S/P) + 1) < N/P + log(N)
Time complexity is O(N/P + log(N))
Compare to O(N) for sequential reduction
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Reduce 3

Each thread stores its result in an array of 
numThreadsPerBlock elements in shared memory

Each block performs a parallel reduction on this 
array

reduce_kernel is called only 2 times:
First call reduces from numValues to numBlocks
Second call performs final reduction using one thread 
block
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Reduce 3: Go Ahead! 
Open up reduce\src\reduce3.sln
Goal: Replace the TODOs in reduce3.cu to get 
“test PASSED”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

Indices

Values

0 1 2 3 4 5 6 7

11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2Values

0 1 2 3

18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2Values

0 1

Thread 
IDs

Step 1 
Stride 1

Step 2 
Stride 2

Step 3 
Stride 4

Thread 
IDs

Thread 
IDs
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Optimize Instruction Usage:
Basic Strategies

Minimize use of low-throughput instructions

Use high precision only where necessary

Minimize divergent warps
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Arithmetic Instruction Throughput

float add/mul/mad, int add, shift, min, max:            
4 cycles per warp

int multiply (*) is by default 32-bit
Requires multiple cycles per warp
Use __[u]mul24() intrinsics for 4-cycle 24-bit int multiply

Integer divide and modulo are more expensive
Compiler will convert literal power-of-2 divides to shifts

But we have seen it miss some cases
Be explicit in cases where compiler can’t tell that divisor 
is a power of 2!
Useful trick: foo%n == foo&(n-1) if n is a power of 2
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Arithmetic Instruction Throughput

Reciprocal, reciprocal square root, sin/cos, log, exp: 
16 cycles per warp

These are the versions prefixed with “__”
Examples: __rcp(), __sin(), __exp()

Other functions are combinations of the above:
y/x==rcp(x)*y takes 20 cycles per warp
sqrt(x)==rcp(rsqrt(x)) takes 32 cycles per warp
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Runtime Math Library

There are two types of runtime math operations:
__func(): direct mapping to hardware ISA

Fast but lower accuracy (see prog. guide for details)
Examples: __sin(x), __exp(x), __pow(x,y)

func(): compile to multiple instructions
Slower but higher accuracy (5 ulp or less)
Examples: sin(x), exp(x), pow(x,y)

The -use_fast_math compiler option forces every 
func() to compile to __func()
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Double Precision Is Coming…

Current NVIDIA GPUs support single precision only
IEEE 32-bit floating-point precision (“FP32”)

Upcoming NVIDIA GPUs will support double 
precision

IEEE 64-bit floating-point precision (“FP64”)
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What You Need To Know

FP64 instructions will be slower than FP32
It takes more than just wider data paths to implement 
double precision

For best performance, use FP64 judiciously
Analyze your computations 
Use FP64 only for precision/range-sensitive computations
Use FP32 for computations that are accurate and robust 
with 32-bit floating point

CUDA compiler supports mixed usage of float and 
double

Supported since CUDA 1.0
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Float “Safety”

Don’t accidentally use FP64 where you intend FP32:
Standard math library and floating-point literals default to 
double precision
float f = 2.0 * sin(3.14);   // warning: double precision!
// fp64 multiply, several fp64 insts. for sin(), and fp32 cast

float f = 2.0f * sinf(3.14f);   // warning: double precision!
// fp32 multiply and several fp32 instructions for sin()

On FP64-capable NVIDIA GPUs, the green code will 
be much faster than the orange code



© NVIDIA Corporation 2008

Mixed Precision Arithmetic

Researchers are achieving great speedups at high 
accuracy using mixed 32/64-bit arithmetic

“Exploiting Mixed Precision Floating Point Hardware 
in Scientific Computations”

Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Julie Langou, 
Julien Langou, Piotr Luszczek, and Stanimire Tomov. 

November, 2007.
http://www.netlib.org/utk/people/JackDongarra/PAPERS/par_comp_iter_ref.pdf

Abstract: By using a combination of 32-bit and 64-bit floating point arithmetic, 
the performance of many dense and sparse linear algebra algorithms can be 
significantly enhanced while maintaining the 64-bit accuracy of the resulting 
solution. The approach presented here can apply not only to conventional
processors but also to exotic technologies such as Field Programmable Gate 
Arrays (FPGA), Graphical Processing Units (GPU), and the Cell BE
processor. Results on modern processor architectures and the Cell BE are 
presented.

http://www.netlib.org/utk/people/JackDongarra/PAPERS/par_comp_iter_ref.pdf
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Single Precision IEEE Floating Point

Addition and multiplication are IEEE compliant
Maximum 0.5 ulp error

However, often combined into multiply-add (FMAD)
Intermediate result is truncated

Division is non-compliant (2 ulp)
Not all rounding modes are supported
Denormalized numbers are not supported
No mechanism to detect floating-point exceptions
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Single Precision Floating Point 
8-Series GPU SSE IBM Altivec Cell SPE

Precision IEEE 754 IEEE 754 IEEE 754 near IEEE 754

Rounding modes for 
FADD and FMUL

Round to nearest and 
round to zero

All 4 IEEE, round to 
nearest, zero, inf, -inf

Round to nearest 
only

Round to 
zero/truncate only

Denormal handling Flush to zero Supported,
1000’s of cycles

Supported,
1000’s of cycles Flush to zero

NaN support Yes Yes Yes No

Overflow and
Infinity support

Yes Yes Yes No infinity, only 
clamps to max norm

Flags No Yes Yes Some

Square root  Software only Hardware Software only Software only

Division  Software only Hardware Software only Software only

Reciprocal estimate 
accuracy 24 bit 12 bit 12 bit 12 bit

Reciprocal sqrt
estimate accuracy 23 bit 12 bit 12 bit 12 bit

log2(x) and 2^x 
estimates accuracy 23 bit No 12 bit No
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Control Flow Instructions

Main performance concern with branching is 
divergence

Threads within a single warp take different paths
Different execution paths must be serialized

Avoid divergence when branch condition is a 
function of thread ID

Example with divergence: 
If (threadIdx.x > 2) { }

Branch granularity < warp size
Example without divergence:

If (threadIdx.x / WARP_SIZE > 2) { }

Branch granularity is a whole multiple of warp size



© NVIDIA Corporation 2008

Instruction Predication

Comparison instructions set condition codes (CC)
Instructions can be predicated to write results only 
when CC meets criterion (CC != 0, CC >= 0, etc.)
Compiler tries to predict if a branch condition is 
likely to produce many divergent warps

If guaranteed not to diverge: only predicates if < 4 
instructions
If not guaranteed: only predicates if < 7 instructions

May replace branches with instruction predication
ALL predicated instructions take execution cycles

Those with false conditions don’t write their output
Or invoke memory loads and stores

Saves branch instructions, so can be cheaper than 
serializing divergent paths
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Shared Memory Implementation:
Banked Memory

In a parallel machine, many threads access 
memory

Therefore, memory is divided into banks
Essential to achieve high bandwidth

Each bank can service one address per cycle
A memory can service as many simultaneous 
accesses as it has banks

Multiple simultaneous accesses to a bank
result in a bank conflict

Conflicting accesses are serialized

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0
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Shared Memory Is Banked 

Bandwidth of each bank is 32 bits per 2 clock cycles

Successive 32-bit words are assigned to successive 
banks

G80 has 16 banks
So bank = address % 16
Same as the size of a half-warp

No bank conflicts between different half-warps, only within a 
single half-warp
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Bank Addressing Examples

No bank conflicts
Linear addressing 
stride == 1

No bank conflicts
Random 1:1 permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0
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Bank Addressing Examples

2-way bank conflicts
Linear addressing 
stride == 2

8-way bank conflicts
Linear addressing 
stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0x8

x8
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Shared Memory Bank Conflicts

Shared memory is as fast as registers if there are 
no bank conflicts

The fast case:
If all threads of a half-warp access different banks, there is 
no bank conflict
If all threads of a half-warp read the same word, there is 
no bank conflict (broadcast)

The slow case:
Bank conflict: multiple threads in the same half-warp 
access the same bank
Must serialize the accesses
Cost = max # of simultaneous accesses to a single bank
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Back to Reduce Exercise:
Problem with Reduce 3

Reduce 3 has shared memory bank conflicts!

Reduce 4 fixes this by modifying the mapping 
between threads and data during parallel reduction
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Reduce 3: Bank Conflicts

Indices

Values

0 1 2 3 4 5 6 7Thread 
IDsStride 1

Banks

8 9 10

Threads 0 and 8 access the same bank

Threads 1 and 9 access the same bank

Showed for step 1 below
First simultaneous memory access
sresult[2 * stride * threadID]

Threads 2 and 10 access the same bank, etc.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 ...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ...

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2 -1 4 11 -5 0 12 ...
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Reduce 3: Bank Conflicts

Indices

Values

0 1 2 3 4 5 6 7Thread 
IDsStride 1

Banks

8 9 10

Threads 0 and 8 access the same bank

Threads 1 and 9 access the same bank

Showed for step 1 below
Second simultaneous memory access
sresult[2 * stride * threadID + stride]

Threads 2 and 10 access the same bank, etc.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 ...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ...

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2 -1 4 11 -5 0 12 ...



© NVIDIA Corporation 2008

Reduce 4:
Parallel Reduction Implementation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

Indices

Values

0 1 2 3 4 5 6 7

8 -2 10 6 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0 1 2 3

8 7 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0 1

21 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0

41 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

Thread 
IDs

Step 1 
Stride 8

Step 2 
Stride 4

Step 3 
Stride 2

Step 4 
Stride 1

Thread 
IDs

Thread 
IDs

Thread 
IDs
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Reduce 4: Go Ahead! 
Open up reduce\src\reduce4.sln
Goal: Replace the TODOs in reduce4.cu to get 
“test PASSED”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

Indices

Values

0 1 2 3 4 5 6 7

8 -2 10 6 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0 1 2 3

8 7 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0 1

Thread 
IDs

Step 1 
Stride 8

Step 2 
Stride 4

Step 3 
Stride 2

Thread 
IDs

Thread 
IDs
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Reduce 5:
More Optimizations through Unrolling

Parallel reduction inner loop:
for (int stride = numThreadsPerBlock / 2;

stride > 0; stride /= 2)
{

__syncthreads();
if (threadID < stride)

sresult[threadID] += sresult[threadID + stride];
}

There are only so many values for numThreadsPerBlock:
Multiple of 32, less or equal to 512

So, templatize on numThreadsPerBlock:
template <uint numThreadsPerBlock>
__global__ void reduce_kernel(const float* valuesIn,

uint numValues,
float* valuesOut)

And unroll:
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Reduce 5: Unrolled Loop
if (numThreadsPerBlock >= 512)
{ __syncthreads(); if (threadID < 256) sresult[threadID] += sresult[threadID + 256]; }
if (numThreadsPerBlock >= 256)
{ __syncthreads(); if (threadID < 128) sresult[threadID] += sresult[threadID + 128]; }
if (numThreadsPerBlock >= 128)
{ __syncthreads(); if (threadID <   64) sresult[threadID] += sresult[threadID +   64]; }
if (numThreadsPerBlock >= 64)
{ __syncthreads(); if (threadID <   32) sresult[threadID] += sresult[threadID +   32]; }
if (numThreadsPerBlock >= 32)
{ __syncthreads(); if (threadID <   16) sresult[threadID] += sresult[threadID +   16]; }

…
if (numThreadsPerBlock >=   4)
{ __syncthreads(); if (threadID <     2) sresult[threadID] += sresult[threadID +     2]; }
if (numThreadsPerBlock >=   2)
{ __syncthreads(); if (threadID <     1) sresult[threadID] += sresult[threadID +     1]; }

All code in blue will be evaluated at compile time!
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Reduce 5: Last Warp Optimization

As reduction proceeds, the number of “active”
threads decreases
When stride<=32, we have only one warp left
Instructions are synchronous within a warp
That means when stride<=32:

We don’t need to __syncthreads()
We don’t need “if (threadID < stride)” because 
it doesn’t save any work

So, final version of unrolled loop is:
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Reduce 5: Final Unrolled Loop
if (numThreadsPerBlock >= 512)
{ __syncthreads(); if (threadID < 256) sresult[threadID] += sresult[threadID + 256]; }
if (numThreadsPerBlock >= 256)
{ __syncthreads(); if (threadID < 128) sresult[threadID] += sresult[threadID + 128]; }
if (numThreadsPerBlock >= 128)
{ __syncthreads(); if (threadID <   64) sresult[threadID] += sresult[threadID +   64]; }
__syncthreads();
if (threadID <   32) {

if (numThreadsPerBlock >= 64) sresult[threadID] += sresult[threadID +   32];
if (numThreadsPerBlock >= 32) sresult[threadID] += sresult[threadID +   16];
if (numThreadsPerBlock >= 16) sresult[threadID] += sresult[threadID +     8];
if (numThreadsPerBlock >=   8) sresult[threadID] += sresult[threadID +     4];
if (numThreadsPerBlock >=   4) sresult[threadID] += sresult[threadID +     2];
if (numThreadsPerBlock >=   2) sresult[threadID] += sresult[threadID +     1];

}

All code in blue will be evaluated at compile time!
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Conclusion
CUDA is a powerful parallel programming model

Heterogeneous - mixed serial-parallel programming
Scalable - hierarchical thread execution model
Accessible - minimal but expressive changes to C 

CUDA on GPUs can achieve great results on data-
parallel computations with a few simple 
performance optimization strategies:

Structure your application and select execution configurations 
to maximize exploitation of the GPU’s parallel capabilities
Minimize CPU ↔ GPU data transfers 
Coalesce global memory accesses
Take advantage of shared memory
Minimize divergent warps
Minimize use of low-throughput instructions
Avoid shared memory accesses with high degree of bank 
conflicts
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Coming Up Soon

CUDA 2.0
Public beta this week
Support for upcoming new GPU:

Double precision
Integer atomic operations in shared memory

New features:
3D textures
Improved and extended Direct3D interoperability

CUDA implementation on multicore CPU
Beta in a few weeks
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Where to go from here

Get CUDA Toolkit, SDK, and Programming Guide:
http://developer.nvidia.com/CUDA
CUDA works on all NVIDIA 8-Series GPUs (and later)

GeForce, Quadro, and Tesla

Talk about CUDA http://forums.nvidia.com



Extra Slides
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Tesla Architecture Family
Number of 

Multiprocessors
Compute 
Capability

GeForce 8800 Ultra, 8800 GTX 16 1.0

GeForce 8800 GT 14 1.1

GeForce 8800M GTX 12 1.1

GeForce 8800 GTS 12 1.0

GeForce 8800M GTS 8 1.1

GeForce 8600 GTS, 8600 GT, 8700M GT, 
8600M GT, 8600M GS

4 1.1

GeForce 8500 GT, 8400 GS, 8400M GT, 8400M GS 2 1.1

GeForce 8400M G 1 1.1

Tesla S870 4x16 1.0

Tesla D870 2x16 1.0

Tesla C870 16 1.0

Quadro Plex 1000 Model S4 4x16 1.0

Quadro Plex 1000 Model IV 2x16 1.0

Quadro FX 5600 16 1.0

Quadro FX 4600 12 1.0

Quadro FX 1700, FX 570, NVS 320M, FX 1600M, 
FX 570M

4 1.1

Quadro FX 370, NVS 290, NVS 140M, NVS 135M, 
FX 360M

2 1.1

Quadro NVS 130M 1 1.1
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Applications - Condensed

3D image analysis
Adaptive radiation therapy
Acoustics
Astronomy
Audio
Automobile vision
Bioinfomatics
Biological simulation
Broadcast
Cellular automata
Computational Fluid Dynamics
Computer Vision
Cryptography
CT reconstruction
Data Mining
Digital cinema/projections
Electromagnetic simulation
Equity training

Film
Financial - lots of areas
Languages
GIS
Holographics cinema
Imaging (lots)
Mathematics research
Military (lots)
Mine planning
Molecular dynamics
MRI reconstruction
Multispectral imaging
nbody
Network processing
Neural network
Oceanographic research
Optical inspection
Particle physics

Protein folding
Quantum chemistry
Ray tracing
Radar
Reservoir simulation
Robotic vision/AI
Robotic surgery
Satellite data analysis
Seismic imaging
Surgery simulation
Surveillance
Ultrasound
Video conferencing
Telescope
Video
Visualization
Wireless
X-ray
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New Applications
Real-time options implied volatility engine

Swaption volatility cube calculator

Manifold 8 GIS

Ultrasound imaging

HOOMD Molecular Dynamics

Also…
Image rotation/classification
Graphics processing toolbox
Microarray data analysis
Data parallel primitives
Astrophysics simulations

SDK: Mandelbrot, computer vision 

Seismic migration
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Acceleware
GPU Electromagnetic Field simulation

Cell phone irradiation

MRI Design / Modeling

Printed Circuit Boards 

Radar Cross Section (Military)

Seismic Migration 
8X Faster than Quad Core alone

Pacemaker with Transmit 
Antenna

1X

4 GPUs2 GPUs1 GPUCPU
3.2 GHz 
Core 2 

Duo

Pe
rf

or
m

an
ce

 

45X

11X

22X
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NAMD Molecular Dynamics

http://www.ks.uiuc.edu/Research/vmd/projects/ece498/lecture/

Three GeForce 8800GTX cards outrun ~300 CPUs
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EvolvedMachines
130X Speed up
Brain circuit simulation 
Sensory computing: vision, olfactory

EvolvedMachines
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17X with MATLAB CPU+GPU

Pseudo-spectral simulation of 2D Isotropic turbulence

Matlab: Language of Science

http://www.amath.washington.edu/courses/571-winter-2006/matlab/FS_2Dturb.m

http://developer.nvidia.com/object/matlab_cuda.html

http://developer.nvidia.com/object/matlab_cuda.html
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nbody Astrophysics

http://progrape.jp/cs/

Astrophysics research

1 GF on standard PC

300+ GF on GeForce 8800GTX

Faster than GRAPE-6Af custom simulation computer

Video demo
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CUDA Advantages over Legacy GPGPU

Random access byte-addressable memory
Thread can access any memory location

Unlimited access to memory
Thread can read/write as many locations as needed

Shared memory (per block) and thread 
synchronization

Threads can cooperatively load data into shared memory
Any thread can then access any shared memory location

Low learning curve
Just a few extensions to C
No knowledge of graphics is required

No graphics API overhead
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A quick review

device = GPU = set of multiprocessors 
Multiprocessor = set of processors & shared 
memory
Kernel = GPU program
Grid = array of thread blocks that execute a kernel
Thread block = group of SIMD threads that execute 
a kernel and can communicate via shared memory

Memory Location Cached Access Who
Local Off-chip No Read/write One thread
Shared On-chip N/A Read/write All threads in a block
Global Off-chip No Read/write All threads + host
Constant Off-chip Yes Read All threads + host
Texture Off-chip Yes Read All threads + host
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Application Programming Interface

The API is an extension to the C programming 
language
It consists of:

Language extensions
To target portions of the code for execution on the device

A runtime library split into:
A common component providing built-in vector types and a 
subset of the C runtime library supported in both host and 
device codes
A host component to control and access one or more 
devices from the host
A device component providing device-specific functions
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Language Extensions:
Function Type Qualifiers

__global__ defines a kernel function
Must return void

__device__ and __host__ can be used together
__device__ functions cannot have their address taken
For functions executed on the device:

No recursion
No static variable declarations inside the function
No variable number of arguments

Executed 
on the:

Only callable 
from the:

__device__ float DeviceFunc() device device
__global__ void  KernelFunc() device host
__host__ float HostFunc() host host
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Language Extensions:
Variable Type Qualifiers

__device__ is optional when used with __shared__ or 
__constant__

Automatic variables without any qualifier reside in a register
Except for large structures or arrays that reside in local memory

Pointers can only point to memory allocated or declared in global 
memory:

Allocated in the host and passed to the kernel:
__global__ void KernelFunc(float* ptr)

Obtained as the address of a global variable:
float* ptr = &GlobalVar;

Memory Scope Lifetime
__device__ __shared__ int SharedVar; shared block block

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application
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Language Extensions:
Execution Configuration

A kernel function must be called with an execution 
configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50);    // 5000 thread blocks

dim3 DimBlock(4, 8, 8);   // 256 threads per block

size_t SharedMemBytes = 64; // 64 bytes of shared memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

The optional SharedMemBytes bytes are:
Allocated in addition to the compiler allocated shared memory
Mapped to any variable declared as:

extern __shared__ float DynamicSharedMem[];

Any call to a kernel function is asynchronous
Control returns to CPU immediately
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Language Extensions:
Built-in Variables

dim3 gridDim;
Dimensions of the grid in blocks (gridDim.z unused)

dim3 blockDim;

Dimensions of the block in threads
dim3 blockIdx;

Block index within the grid
dim3 threadIdx;

Thread index within the block
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Common Runtime Component

Provides:
Built-in vector types
A subset of the C runtime library supported in both host 
and device codes
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Common Runtime Component:
Built-in Vector Types

[u]char[1..4], [u]short[1..4], [u]int[1..4], 
[u]long[1..4], float[1..4]

Structures accessed with x, y, z, w fields:
uint4 param;

int y = param.y;

dim3
Based on uint3

Used to specify dimensions
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Common Runtime Component:
Mathematical Functions

powf, sqrtf, cbrtf, hypotf
expf, exp2f, expm1f
logf, log2f, log10f, log1pf
sinf, cosf, tanf
asinf, acosf, atanf, atan2f
sinhf, coshf, tanhf
asinhf, acoshf, atanhf
ceil, floor, trunc, round
Etc.

When executed in host code, a given function uses the C 
runtime implementation if available
These functions are only supported for scalar types, not 
vector types
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Common Runtime Component:
Texture Types

Texture memory is accessed through texture 
references:

texture<float, 2> myTexRef; // 2D texture of float values

myTexRef.addressMode[0] = cudaAddressModeWrap;

myTexRef.addressMode[1] = cudaAddressModeWrap;

myTexRef.filterMode     = cudaFilterModeLinear;

Texture fetching in device code:
float4 value = tex2D(myTexRef, u, v);
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Host Runtime Component

Provides functions to deal with:
Device management (including multi-device systems)
Memory management
Texture management
Interoperability with OpenGL and Direct3D9
Error handling

Initializes the first time a runtime function is called

A host thread can execute device code on only one 
device

Multiple host threads required to run on multiple devices



© NVIDIA Corporation 2008

Host Runtime Component:
Device Management

Device enumeration
cudaGetDeviceCount(), cudaGetDeviceProperties()

Device selection
cudaChooseDevice(), cudaSetDevice()
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Host Runtime Component:
Memory Management

Two kinds of memory:
Linear memory: accessed through 32-bit pointers
CUDA arrays: opaque layouts with dimensionality, only 
readable through texture fetching

Device memory allocation
cudaMalloc(), cudaMallocPitch(), cudaFree(), 
cudaMallocArray(), cudaFreeArray()

Memory copy from host to device, device to host, 
device to device

cudaMemcpy(), cudaMemcpy2D(), 
cudaMemcpyToArray(), cudaMemcpyFromArray(), etc. 
cudaMemcpyToSymbol(), cudaMemcpyFromSymbol()

Memory addressing
cudaGetSymbolAddress()
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Host Runtime Component:
Texture Management 

Texture references can be bound to:
CUDA arrays
Linear memory

1D texture only, no filtering, integer texture coordinate
cudaBindTexture(), cudaUnbindTexture()
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Host Runtime Component:
Interoperability with Graphics APIs 

OpenGL buffer objects and Direct3D9 vertex buffers
can be mapped into the address space of CUDA:

To read data written by OpenGL
To write data for consumption by OpenGL
cudaGLMapBufferObject(), 
cudaGLUnmapBufferObject() 
cudaD3D9MapResources(), 
cudaD3D9UnmapResources()
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Host Runtime Component:
Events

Events are inserted (recorded) into CUDA call streams
Usage scenarios:

measure elapsed time for CUDA calls (clock cycle precision)
query the status of an asynchronous CUDA call
block CPU until CUDA calls prior to the event are completed
asyncAPI sample in CUDA SDK

cudaEvent_t start, stop;
cudaEventCreate(&start); cudaEventCreate(&stop);
cudaEventRecord(start, 0);
kernel<<<grid, block>>>(...);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
float et;
cudaEventElapsedTime(&et, start, stop);
cudaEventDestroy(start); cudaEventDestroy(stop);

144
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Host Runtime Component:
Error Handling

All CUDA calls return error code:
except for kernel launches
cudaError_t type

cudaError_t cudaGetLastError(void)
returns the code for the last error (no error has a code)

char* cudaGetErrorString(cudaError_t code)
returns a null-terminted character string describing the 
error

printf(“%s\n”, cudaGetErrorString( cudaGetLastError() ) );

145
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Device Runtime Component

Provides device-specific functions
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Device Runtime Component:
Mathematical Functions

Some mathematical functions (e.g. sin(x)) have a 
less accurate, but faster device-only version (e.g. 
__sin(x))

__pow

__log, __log2, __log10
__exp

__sin, __cos, __tan
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Device Runtime Component:
GPU Atomic Integer Operations

Atomic operations on integers in global memory:
Associative operations on signed/unsigned ints
add, sub, min, max, ...
and, or, xor
Increment, decrement
Exchange, compare and swap

Requires hardware with compute capability 1.1 or 
higher
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Device Runtime Component:
Texture Functions

For texture references bound to CUDA arrays:
float u, v;

float4 value = tex2D(myTexRef, u, v);

For texture references bound to linear memory:
int i;

float4 value = tex2D(myTexRef, i);
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Device Runtime Component:
Synchronization Function

void __syncthreads();

Synchronizes all threads in a block
Once all threads have reached this point, execution 
resumes normally
Used to avoid RAW / WAR / WAW hazards when 
accessing shared or global memory
Allowed in conditional code only if the conditional is 
uniform across the entire thread block
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Compilation

Any source file containing CUDA language 
extensions must be compiled with nvcc
NVCC is a compiler driver

Works by invoking all the necessary tools and compilers 
like cudacc, g++, cl, ...

NVCC can output:
Either C code (CPU Code)

That must then be compiled with the rest of the application 
using another tool

Or PTX object code directly
Any executable with CUDA code requires two 
dynamic libraries:

The CUDA runtime library (cudart)
The CUDA core library (cuda)
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NVCC & PTX Virtual Machine

EDG
Separate GPU vs. CPU code 

Open64
Generates GPU PTX 
assembly

Parallel Thread eXecution 
(PTX)

Virtual Machine and ISA
Programming model
Execution resources and 
state

EDG

C/C++ CUDA
Application

CPU Code

Open64

PTX Code

ld.global.v4.f32  {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32           $f1, $f5, $f3, $f1;

float4 me = gx[gtid];
me.x += me.y * me.z;
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Role of Open64

Open64 compiler gives us

A complete C/C++ compiler framework. Forward looking. We 
do not need to add infrastructure framework as our hardware 
arch advances over time.

A good collection of high level architecture independent 
optimizations.  All GPU code is in the inner loop.

Compiler infrastructure that interacts well with other related 
standardized tools. 
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GeForce 8800 Series and
Quadro FX 5600/4600
Technical Specifications

Maximum number of threads per block: 512
Maximum size of each dimension of a grid: 65535
Warp size: 32 threads
Number of registers per multiprocessor: 8192
Shared memory per multiprocessor: 16 KB divided in 16 banks
Constant memory: 64 KB

Number of 
multiprocessors

Clock frequency 
(GHz)

Amount of device 
memory (MB)

GeForce 8800 GTX 16 1.35 768

GeForce 8800 GTS 12 1.2 640

Quadro FX 5600 16 1.35 1500

Quadro FX 4600 12 1.2 768
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CUDA Libraries

CUBLAS
CUDA “Basic Linear Algebra Subprograms”
Implementation of BLAS standard on CUDA
For details see cublas_library.pdf and cublas.h

CUFFT
CUDA Fast Fourier Transform (FFT)
FFT one of the most important and widely used numerical 
algorithms
For details see cufft_library.pdf and cufft.h
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CUBLAS Library

Self-contained at API level
Application needs no direct interaction with CUDA driver

Currently only a subset of CUBLAS core functions 
are implemented

Simple to use:
Create matrix and vector objects in GPU memory
Fill them with data
Call sequence of CUBLAS functions
Upload results back from GPU to host

Column-major storage and 1-based indexing
For maximum compatibility with existing Fortran apps
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CUFFT Library

Efficient implementation of FFT on CUDA

Features
1D, 2D, and 3D FFTs of complex-valued signal data
Batch execution for multiple 1D transforms in parallel
Transform sizes (in any dimension) in the range [2, 16384]
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