
Cyril Zeller
NVIDIA Developer Technology

Tutorial CUDA

© NVIDIA Corporation 2008

Overview

Introduction and motivation
GPU computing: the democratization of parallel computing
Why GPUs?

CUDA programming model, language, and runtime
Break
CUDA implementation on the GPU

Execution model
Memory architecture and characteristics
Floating-point features
Optimization strategies

Memory coalescing
Use of shared memory
Instruction performance
Shared memory bank conflicts

Q&A

© NVIDIA Corporation 2008

GPU Computing:
The Democratization

of
Parallel Computing

© NVIDIA Corporation 2008

Parallel Computing’s Golden Age

1980s, early `90s: a golden age for parallel computing
Particularly data-parallel computing

Architectures
Connection Machine, MasPar, Cray
True supercomputers: incredibly exotic, powerful, expensive

Algorithms, languages, & programming models
Solved a wide variety of problems
Various parallel algorithmic models developed
P-RAM, V-RAM, circuit, hypercube, etc.

© NVIDIA Corporation 2008

Parallel Computing’s Dark Age

But…impact of data-parallel computing limited
Thinking Machines sold 7 CM-1s (100s of systems total)
MasPar sold ~200 systems

Commercial and research activity subsided
Massively-parallel machines replaced by clusters
of ever-more powerful commodity microprocessors
Beowulf, Legion, grid computing, …

Massively parallel computing lost momentum to
the inexorable advance of commodity technology

© NVIDIA Corporation 2008

Illustrated History of
Parallel Computing

© NVIDIA Corporation 2008

Enter the GPU

GPU = Graphics Processing Unit
Chip in computer video cards, PlayStation 3, Xbox, etc.
Two major vendors: NVIDIA and ATI (now AMD)

© NVIDIA Corporation 2008

Enter the GPU

GPUs are massively multithreaded manycore chips
NVIDIA Tesla products have up to 128 scalar processors
Over 12,000 concurrent threads in flight
Over 470 GFLOPS sustained performance

Users across science & engineering disciplines are
achieving 100x or better speedups on GPUs

CS researchers can use GPUs as a research platform
for manycore computing: arch, PL, numeric, …

© NVIDIA Corporation 2008

Enter CUDA

CUDA is a scalable parallel programming model and a
software environment for parallel computing

Minimal extensions to familiar C/C++ environment
Heterogeneous serial-parallel programming model

NVIDIA’s TESLA GPU architecture accelerates CUDA
Expose the computational horsepower of NVIDIA GPUs
Enable general-purpose GPU computing

CUDA also maps well to multicore CPUs!

© NVIDIA Corporation 2008

The Democratization
of Parallel Computing

GPU Computing with CUDA brings data-parallel
computing to the masses

Over 46,000,000 CUDA-capable GPUs sold
A “developer kit” costs ~$200 (for 500 GFLOPS)

Data-parallel supercomputers are everywhere!
CUDA makes this power accessible
We’re already seeing innovations in data-parallel
computing

Massively parallel computing has become a
commodity technology!

© NVIDIA Corporation 2008

Why GPUs?
110-240X

13–457x

45X 100X

35X

17X

© NVIDIA Corporation 2008

GPUs Are Fast

Theoretical peak performance: 518 GFLOPS

Sustained μbenchmark performance:
Raw math: 472 GFLOPS (8800 Ultra)
Raw bandwidth: 80 GB per second (Tesla C870)

Actual application performance:
Molecular dynamics: 290 GFLOPS
(VMD ion placement)

© NVIDIA Corporation 2008

GPUs Are Getting Faster, Faster

© NVIDIA Corporation 2008

G80 (launched Nov 2006 – GeForce 8800 GTX)
128 Thread Processors execute kernel threads
Up to 12,288 parallel threads active
Per-block shared memory (PBSM) accelerates processing

Manycore GPU – Block Diagram

Thread Execution Manager

Input Assembler

Host

PBSM

Global Memory

Load/store

PBSM

Thread Processors

PBSM

Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors

PBSM PBSM PBSM PBSM PBSM PBSM PBSM PBSM PBSM PBSM PBSM PBSMPBSM

© NVIDIA Corporation 2008

CUDA
Programming Model

© NVIDIA Corporation 2008

Some Design Goals

Enable heterogeneous systems (i.e., CPU+GPU)
CPU & GPU are separate devices with separate DRAMs

Scale to 100’s of cores, 1000’s of parallel threads

Let programmers focus on parallel algorithms
not mechanics of a parallel programming language
Use C/C++ with minimal extensions

© NVIDIA Corporation 2008

Parallel Kernel
KernelA (args);

Parallel Kernel
KernelB (args);

Serial Code

. . .

. . .

Serial Code

Device

Device

Host

Host

Heterogeneous Programming

CUDA = serial program with parallel kernels, all in C
Serial C code executes in a host thread (i.e. CPU thread)
Parallel kernel C code executes in many device threads
across multiple processing elements (i.e. GPU threads)

© NVIDIA Corporation 2008

Kernel = Many Concurrent Threads

One kernel is executed at a time on the device
Many threads execute each kernel

Each thread executes the same code…
… on different data based on its threadID

0 1 2 3 4 5 6 7

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

CUDA threads might be
Physical threads

As on NVIDIA GPUs
GPU thread creation and
context switching are
essentially free

Or virtual threads
E.g. 1 CPU core might execute
multiple CUDA threads

© NVIDIA Corporation 2008

Hierarchy of Concurrent Threads

Threads are grouped into thread blocks
Kernel = grid of thread blocks

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

Thread Block 0

…
…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block 1

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block N - 1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

By definition, threads in the same block may synchronize with
barriers
scratch[threadID] = begin[threadID];

__syncthreads();

int left = scratch[threadID - 1];

Threads
wait at the barrier
until all threads

in the same block
reach the barrier

© NVIDIA Corporation 2008

Transparent Scalability
Thread blocks cannot synchronize

So they can run in any order, concurrently or sequentially
This independence gives scalability:

A kernel scales across any number of parallel cores

2-Core Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

4-Core Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Implicit barrier between dependent kernels
vec_minus<<<nblocks, blksize>>>(a, b, c);

vec_dot<<<nblocks, blksize>>>(c, c);

© NVIDIA Corporation 2008

Memory Hierarchy

Thread
Per-thread

Local Memory

Block
Per-block

Shared
Memory

Kernel 0

. . .
Per-device

Global
Memory

. . .

Kernel 1

Sequential
Kernels

© NVIDIA Corporation 2008

Heterogeneous Memory Model

Device 0
memory

Device 1
memory

Host memory cudaMemcpy()

© NVIDIA Corporation 2008

CUDA Language:
C with Minimal Extensions
Philosophy: provide minimal set of extensions necessary to expose power

Declaration specifiers to indicate where things live
__global__ void KernelFunc(...); // kernel function, runs on device
__device__ int GlobalVar; // variable in device memory
__shared__ int SharedVar; // variable in per-block shared memory

Extend function invocation syntax for parallel kernel launch
KernelFunc<<<500, 128>>>(...); // launch 500 blocks w/ 128 threads each

Special variables for thread identification in kernels
dim3 threadIdx; dim3 blockIdx; dim3 blockDim; dim3 gridDim;

Intrinsics that expose specific operations in kernel code
__syncthreads(); // barrier synchronization within kernel

© NVIDIA Corporation 2008

CUDA Runtime

Device management:
cudaGetDeviceCount(), cudaGetDeviceProperties()

Device memory management:
cudaMalloc(), cudaFree(), cudaMemcpy()

Graphics interoperability:
cudaGLMapBufferObject(), cudaD3D9MapResources()

Texture management:
cudaBindTexture(), cudaBindTextureToArray()

© NVIDIA Corporation 2008 25

Example: Increment Array Elements

CPU program CUDA program

void increment_cpu(float *a, float b, int N)
{

for (int idx = 0; idx<N; idx++)
a[idx] = a[idx] + b;

}

void main()
{

.....
increment_cpu(a, b, N);

}

__global__ void increment_gpu(float *a, float b, int N)
{

int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N)

a[idx] = a[idx] + b;
}

void main()
{

…..
dim3 dimBlock (blocksize);
dim3 dimGrid(ceil(N / (float)blocksize));
increment_gpu<<<dimGrid, dimBlock>>>(a, b, N);

}

© NVIDIA Corporation 2008 26

Example: Increment Array Elements

Increment N-element vector a by scalar b

Let’s assume N=16, blockDim=4 -> 4 blocks

blockIdx.x=0
blockDim.x=4
threadIdx.x=0,1,2,3
idx=0,1,2,3

blockIdx.x=1
blockDim.x=4
threadIdx.x=0,1,2,3
idx=4,5,6,7

blockIdx.x=2
blockDim.x=4
threadIdx.x=0,1,2,3
idx=8,9,10,11

blockIdx.x=3
blockDim.x=4
threadIdx.x=0,1,2,3
idx=12,13,14,15

int idx = blockDim.x * blockId.x + threadIdx.x;
will map from local index threadIdx to global index

NB: blockDim should be >= 32 in real code, this is just an example

Common Pattern!

© NVIDIA Corporation 2008 27

Example: Host Code
// allocate host memory
unsigned int numBytes = N * sizeof(float)
float* h_A = (float*) malloc(numBytes);

// allocate device memory
float* d_A = 0;
cudaMalloc((void**)&d_A, numbytes);

// copy data from host to device
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// execute the kernel
increment_gpu<<< N/blockSize, blockSize>>>(d_A, b);

// copy data from device back to host
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// free device memory
cudaFree(d_A);

© NVIDIA Corporation 2008 28

More on Thread and Block IDs

Threads and blocks have
IDs

So each thread can decide
what data to work on

Block ID: 1D or 2D
Thread ID: 1D, 2D, or 3D

Simplifies memory
addressing when
processing
multidimensional data

Image processing
Solving PDEs on volumes

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

© NVIDIA Corporation 2008

More on Memory Spaces

Each thread can:
Read/write per-thread registers
Read/write per-block shared memory
Read/write per-grid global memory
Most important, commonly used

Each thread can also:
Read/write per-thread local memory
Read only per-grid constant memory
Read only per-grid texture memory
Used for convenience/performance

More details later

Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

The host can read/write global,
constant, and texture memory
(stored in DRAM)

© NVIDIA Corporation 2008

Features Available in Device Code

Standard mathematical functions
sinf, powf, atanf, ceil, min, sqrtf, etc.

Texture accesses in kernels
texture<float,2> my_texture; // declare texture reference
float4 texel = texfetch(my_texture, u, v);

Integer atomic operations in global memory
atomicAdd, atomicMin, atomicAnd, atomicCAS, etc.
e.g., increment shared queue pointer with atomicInc()
Only for devices with compute capability 1.1

1.0 = Tesla, Quadro FX5600, GeForce 8800 GTX, etc.
1.1 = GeForce 8800 GT, etc.

© NVIDIA Corporation 2008

Compiling CUDA for NVIDIA GPUs

Any source file containing
CUDA language
extensions must be
compiled with NVCC

NVCC separates code
running on the host from
code running on the device

Two-stage compilation:
1. Virtual ISA

Parallel Thread eXecution
2. Device-specific binary

object

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

G80 … GPU

PTX Code

CPU Code

Generic

Specialized

© NVIDIA Corporation 2008

Debugging Using the
Device Emulation Mode

An executable compiled in device emulation mode
(nvcc -deviceemu) runs completely on the host
using the CUDA runtime

No need of any device and CUDA driver
Each device thread is emulated with a host thread

When running in device emulation mode, one can:
Use host native debug support (breakpoints, inspection,
etc.)
Access any device-specific data from host code and vice-
versa
Call any host function from device code (e.g. printf) and
vice-versa
Detect deadlock situations caused by improper usage of
__syncthreads

© NVIDIA Corporation 2008

Device Emulation Mode Pitfalls

Emulated device threads execute sequentially, so
simultaneous accesses of the same memory
location by multiple threads potentially produce
different results
Dereferencing device pointers on the host or host
pointers on the device can produce correct results
in device emulation mode, but will generate an error
in device execution mode
Results of floating-point computations will slightly
differ because of:

Different compiler outputs
Different instruction sets
Use of extended precision for intermediate results

There are various options to force strict single precision on
the host

© NVIDIA Corporation 2008

Reduction Example

Reduce N values to a single one:
Sum(v0, v1, … , vN-2, vN-1)
Min(v0, v1, … , vN-2, vN-1)
Max(v0, v1, … , vN-2, vN-1)

Common primitive in parallel programming
Easy to implement in CUDA

Less so to get it right
Divided into 5 exercises throughout the day

Each exercise illustrates one particular optimization
strategy

© NVIDIA Corporation 2008

Reduction Exercise

At the end of each exercise, the result of the
reduction computed on the device is checked for
correctness

“Test PASSED” or “Test FAILED” is printed out to the
console

The goal is to replace the “TODO“ words in the code
by the right piece of code to get “test PASSED”

© NVIDIA Corporation 2008

Reduction Exercise 1

Open up reduce\src\reduce1.sln
Code walkthrough:

main.cpp
Allocate host and device memory
Call reduce() defined in reduce1.cu
Profile and verify result

reduce1.cu

CUDA code compiled with nvcc

Contains TODOs

Device emulation compilation configurations: Emu*

© NVIDIA Corporation 2008

Reduce 1: Blocking the Data

Split the work among the N multiprocessors (16 on
G80) by launching numBlocks=N thread blocks

Block IDs

b = numBlocks

…

……

0

…

b-1

Array of
the numValues values

to be reduced

© NVIDIA Corporation 2008

Reduce 1: Blocking the Data

Within a block, split the work among the threads
A block can have at most 512 threads
We choose numThreadsPerBlock=512 threads

Thread IDs

Block IDs

t = numThreadsPerBlock

b = numBlocks

…

…

0 … t-1

… … …

0

0 … t-1

… … …

b-1

© NVIDIA Corporation 2008

Reduce 1: Multi-Pass Reduction

Blocks cannot synchronize so reduce_kernel is
called multiple times:

First call reduces from numValues to numThreads

Each subsequent call reduces by half

Ping pong between input and output buffers
(d_Result[2])

© NVIDIA Corporation 2008

Reduce 1: Go Ahead!

Goal: Replace the TODOs in reduce1.cu to get
“test PASSED”

Thread IDs

Block IDs

t = numThreadsPerBlock

b = numBlocks

…

…

0 … t-1

… … …

0

0 … t-1

… … …

b-1

© NVIDIA Corporation 2008

CUDA Implementation
on the GPU

© NVIDIA Corporation 2008

CUDA Is Easy and Fast

CUDA can provide large speedups on data-parallel
computations straight out of the box!

Even higher speedups are achievable by
understanding hardware implementation and tuning
for it

What the rest of the presentation is about

© NVIDIA Corporation 2008

Hardware Implementation:
A Set of SIMT Multiprocessors
Each multiprocessor is a set of 32-
bit processors with a Single-
Instruction Multi-Thread
architecture

16 multiprocessors on G80
8 processors per multiprocessors

At each clock cycle, a
multiprocessor executes the same
instruction on a group of threads
called a warp

The number of threads in a warp is
the warp size (= 32 threads on G80)
A half-warp is the first or second
half of a warp

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Instruction
Unit

Processor 1 …Processor 2 Processor M

© NVIDIA Corporation 2008

Hardware Implementation:
Memory Architecture

The global, constant, and texture
spaces are regions of device
memory
Each multiprocessor has:

A set of 32-bit registers per
processor (8192 on G80)
On-chip shared memory (16 K on
G80)

Where the shared memory
space resides

A read-only constant cache
To speed up access to the
constant memory space

A read-only texture cache
To speed up access to the
texture memory space

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

© NVIDIA Corporation 2008

Hardware Implementation:
Execution Model

Each multiprocessor processes batches of blocks
one batch after the other

Active blocks = the blocks processed by one
multiprocessor in one batch
Active threads = all the threads from the active blocks

The multiprocessor’s registers and shared memory
are split among the active threads
Therefore, for a given kernel, the number of active
blocks depends on:

The number of registers the kernel compiles to
How much shared memory the kernel requires

If there cannot be at least one active block, the
kernel fails to launch

© NVIDIA Corporation 2008

Hardware Implementation:
Execution Model

Each active block is split
into warps in a well-
defined way

Warps are time-sliced

In other words:
Threads within a warp are
executed physically in
parallel
Warps and blocks are
executed logically in
parallel

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 0)

Thread
(31, 0)…Warp 0 Warp 1Thread

(32, 0)
Thread
(63, 0)…

Thread
(0, 1)

Thread
(31, 1)…Warp 2 Warp 3Thread

(32, 1)
Thread
(63, 1)…

Thread
(0, 2)

Thread
(31, 2)…Warp 4 Warp 5Thread

(32, 2)
Thread
(63, 2)…

© NVIDIA Corporation 2008

Host Synchronization

All kernel launches are asynchronous
control returns to CPU immediately
kernel executes after all previous CUDA calls have
completed

cudaMemcpy is synchronous
control returns to CPU after copy completes
copy starts after all previous CUDA calls have completed

cudaThreadSynchronize()
blocks until all previous CUDA calls complete

47

© NVIDIA Corporation 2008

Device Management

CPU can query and select GPU devices
cudaGetDeviceCount(int *count)
cudaSetDevice(int device)
cudaGetDevice(int *current_device)
cudaGetDeviceProperties(cudaDeviceProp* prop,

int device)
cudaChooseDevice(int *device, cudaDeviceProp* prop)

Multi-GPU setup:
device 0 is used by default
one CPU thread can control only one GPU

multiple CPU threads can control the same GPU
– calls are serialized by the driver

48

© NVIDIA Corporation 2008

Multiple CPU Threads and CUDA

CUDA resources allocated by a CPU thread can be
consumed only by CUDA calls from the same CPU
thread

Violation Example:
CPU thread 2 allocates GPU memory, stores address in p
thread 3 issues a CUDA call that accesses memory via p

49

© NVIDIA Corporation 2008

Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

Memory Latency and Bandwidth

Host memory
Device ↔ host memory bandwidth
is 4 GB/s peak (PCI-express x16)
Test with SDK’s bandwidthTest

Global/local device memory
High latency, not cached
80 GB/s peak, 1.5 GB
(Quadro FX 5600)

Shared memory
On-chip, low latency, very high
bandwidth, 16 KB
Like a user-managed per-
multiprocessor cache

Texture memory
Read-only, high latency, cached

Constant memory
Read-only, low latency, cached,
64 KB

© NVIDIA Corporation 2008

Performance Optimization

Expose as much parallelism as possible

Optimize memory usage for maximum bandwidth

Maximize occupancy to hide latency

Optimize instruction usage for maximum
throughput

© NVIDIA Corporation 2008

Expose Parallelism:
GPU Thread Parallelism

Structure algorithm to maximize independent
parallelism
If threads of same block need to communicate, use
shared memory and __syncthreads()
If threads of different blocks need to communicate,
use global memory and split computation into
multiple kernels

No synchronization mechanism between blocks
High parallelism is especially important to hide
memory latency by overlapping memory accesses
with computation

© NVIDIA Corporation 2008

Expose Parallelism:
CPU/GPU Parallelism

Take advantage of asynchronous kernel launches by
overlapping CPU computations with kernel execution
Take advantage of asynchronous CPU ↔ GPU memory
transfers (cudaMemcpyAsync()) that overlap with kernel
execution (only available for G84 and up)

Overlap implemented by using a CUDA stream
CUDA Stream = Sequence of CUDA operations that execute in order
Example:
cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst, src, size, stream1);

kernel<<<grid, block, 0, stream2>>>(…);

cudaMemcpyAsync(dst2, src2, size, stream2);

cudaStreamQuery(stream2);

overlapped

© NVIDIA Corporation 2008

Optimize Memory Usage:
Basic Strategies

Processing data is cheaper than moving it around
Especially for GPUs as they devote many more transistors to
ALUs than memory

And will be increasingly so
The less memory bound a kernel is, the better it will scale with
future GPUs

So you want to:
Maximize use of low-latency, high-bandwidth memory
Optimize memory access patterns to maximize bandwidth
Leverage parallelism to hide memory latency by overlapping
memory accesses with computation as much as possible

Kernels with high arithmetic intensity (ratio of math to memory
transactions)

Sometimes recompute data rather than cache it

© NVIDIA Corporation 2008

Minimize CPU ↔ GPU Data Transfers

CPU ↔ GPU memory bandwidth much lower than GPU
memory bandwidth

Use page-locked host memory (cudaMallocHost()) for maximum
CPU ↔ GPU bandwidth

3.2 GB/s common on PCI-e x16
~4 GB/s measured on nForce 680i motherboards (8GB/s for PCI-e 2.0)
Be cautious however since allocating too much page-locked memory
can reduce overall system performance

Minimize CPU ↔ GPU data transfers by moving more code
from CPU to GPU

Even if that means running kernels with low parallelism
computations
Intermediate data structures can be allocated, operated on, and
deallocated without ever copying them to CPU memory

Group data transfers
One large transfer much better than many small ones

© NVIDIA Corporation 2008

Optimize Memory Access Patterns

Effective bandwidth can vary by an order of
magnitude depending on access pattern

Optimize access patterns to get:
Coalesced global memory accesses
Shared memory accesses with no or few bank conflicts
Cache-efficient texture memory accesses
Same-address constant memory accesses

© NVIDIA Corporation 2008

Global Memory Reads/Writes

Global memory is not cached on G8x

Highest latency instructions: 400-600 clock cycles

Likely to be performance bottleneck

Optimizations can greatly increase performance

© NVIDIA Corporation 2008

Coalesced Global Memory Accesses

The simultaneous global memory accesses by each
thread of a half-warp (16 threads on G80) during the
execution of a single read or write instruction will
be coalesced into a single access if:

The size of the memory element accessed by each thread is
either 4, 8, or 16 bytes
The elements form a contiguous block of memory
The Nth element is accessed by the Nth thread in the half-warp
The address of the first element is aligned to 16 times the
element’s size

Coalescing happens even if some threads do not access
memory (divergent warp)

© NVIDIA Corporation 2008

Coalesced Global Memory Accesses

t0 t1 t2 t14 t15t3

132 136 184 192128 140 144 188

t0 t1 t2 t14 t15t3

132 136 184 192128 140 144 188

Coalesced float memory access

Coalesced float memory access
(divergent warp)

© NVIDIA Corporation 2008

Non-Coalesced Global Memory Accesses

t0 t1 t2 t14 t15t3

132 136 184 192128 140 144 188

t0 t1 t2 t14 t15t3

132 136 184 192128 140 144 188

Non-sequential float memory access

Misaligned starting address

t13

© NVIDIA Corporation 2008

Non-Coalesced Global Memory Accesses

t0 t1 t2 t14 t15t3

140 152 296 320128 164 176 308

t0 t1 t2 t14 t15t3

132 136 184 192128 140 144 188

Non-contiguous float memory access

Non-coalesced float3 memory access

12 bytes

t13

© NVIDIA Corporation 2008

Coalescing:
Timing Results

Experiment:
Kernel: read a float, increment, write back
3M floats (12MB)
Times averaged over 10K runs

12K blocks x 256 threads:
356µs – coalesced
357µs – coalesced, some threads don’t participate

3,494µs – permuted/misaligned thread access
4K blocks x 256 threads:

3,302µs – float3 non-coalesced
Conclusion:

Coalescing greatly improves throughput!
Critical to small or memory-bound kernels

© NVIDIA Corporation 2008

Avoiding Non-Coalesced Accesses

For irregular read patterns, texture fetches can be a better
alternative to global memory reads
If all threads read the same location, use constant memory
For sequential access patterns, but a structure of size ≠ 4, 8,
or 16 bytes:

Use a Structure of Arrays (SoA) instead of Array of Structures
(AoS)

Or force structure alignment
Using __align(X), where X = 4, 8, or 16

Or use shared memory to achieve coalescing
More on this later

x y z Point structure

AoS

SoA

x y z x y z x y z

x x x y y y z z z

© NVIDIA Corporation 2008

CUDA Visual Profiler

Helps measure and find potential performance
problem

GPU and CPU timing for all kernel invocations and
memcpys
Time stamps

Access to hardware performance counters

© NVIDIA Corporation 2008

Profiler Signals
Events are tracked with hardware counters on signals in the chip:

timestamp

gld_incoherent
gld_coherent
gst_incoherent
gst_coherent

local_load
local_store

branch
divergent_branch

instructions – instruction count

warp_serialize – thread warps that serialize on address conflicts to
shared or constant memory

cta_launched – executed thread blocks

Global memory loads/stores are coalesced
(coherent) or non-coalesced (incoherent)

Total branches and divergent branches
taken by threads

Local loads/stores

© NVIDIA Corporation 2008

Interpreting profiler counters

Values represent events within a thread warp

Only targets one multiprocessor
Values will not correspond to the total number of warps
launched for a particular kernel.
Launch enough thread blocks to ensure that the target
multiprocessor is given a consistent percentage of the total
work.

Values are best used to identify relative performance
differences between unoptimized and optimized code

In other words, try to reduce the magnitudes of
gld/gst_incoherent, divergent_branch, and warp_serialize

© NVIDIA Corporation 2008

Back to Reduce Exercise:
Profile with the Visual Profiler

© NVIDIA Corporation 2008

Thread IDs

Block IDs

t = numThreadsPerBlock

b = numBlocks

…

…

0 … t-1

… … …

0

0 … t-1

… … …

b-1

Back to Reduce Exercise:
Problem with Reduce 1

Non-coalesced memory reads!

Elements read by a warp
in one memory access

Thread IDs

…

0 …1

… …

0

31 … t-1

… … …

© NVIDIA Corporation 2008

Reduce 2

Distribute threads differently to achieve coalesced
memory reads

Bonus: No need to ping pong anymore

Thread IDs

Block IDs

t = numThreadsPerBlock

b = numBlocks

…0

0 t-1…

… b-1

0 t-1…

0

0 t-1…

… b-1

0 t-1…

… … … … … … …

Elements read by a warp
in one memory access

Thread IDs 0 …1

…

0

31 … t-1

…

© NVIDIA Corporation 2008

Reduce 2: Go Ahead!

Open up reduce\src\reduce2.sln
Goal: Replace the TODOs in reduce2.cu to get
“test PASSED”

Thread IDs

Block IDs

t = numThreadsPerBlock

b = numBlocks

…0

0 t-1…

… b-1

0 t-1…

0

0 t-1…

… b-1

0 t-1…

… … … … … … …

© NVIDIA Corporation 2008

Maximize Use of Shared Memory

Shared memory is hundreds of times faster than global
memory
Threads can cooperate via shared memory

Not so via global memory
A common way of scheduling some computation on the
device is to block it up to take advantage of shared memory:

Partition the data set into data subsets that fit into shared
memory
Handle each data subset with one thread block:

Load the subset from global memory to shared memory
__syncthreads()
Perform the computation on the subset from shared memory
– each thread can efficiently multi-pass over any data element

__syncthreads() (if needed)
Copy results from shared memory to global memory

© NVIDIA Corporation 2008

Example:
Square Matrix Multiplication

C = A · B of size N x N
Without blocking:

One thread handles one element of C
A and B are loaded N times from global
memory

A

B

C

N
N

N N

Wastes bandwidth

Poor balance of
work to bandwidth

© NVIDIA Corporation 2008

Example:
Square Matrix Multiplication Example

C = A · B of size N x N
With blocking:

One thread block handles one M x M
sub-matrix Csub of C
A and B are only loaded (N / M) times
from global memory

Much less
bandwidth

Much better
balance of
work to bandwidth

A

B

C

Csub

MM M M

M
M

M
M

N
N

N N

© NVIDIA Corporation 2008

Example: Avoiding Non-Coalesced
float3 Memory Accesses

__global__ void accessFloat3(float3 *d_in, float3 d_out)
{

int index = blockIdx.x * blockDim.x + threadIdx.x;
float3 a = d_in[index];

a.x += 2;
a.y += 2;
a.z += 2;

d_out[index] = a;
}

© NVIDIA Corporation 2008

Example: Avoiding Non-Coalesced
float3 Memory Accesses

float3 is 12 bytes
Each thread ends up executing 3 reads

sizeof(float3) ≠ 4, 8, or 16
Half-warp reads three 64B non-contiguous regions

t0 t1 t2 t3

First read

float3 float3 float3

© NVIDIA Corporation 2008

Example: Avoiding Non-Coalesced
float3 Memory Accesses

t255t2t1t0

GMEM

SMEM

SMEM

t2t1t0

…

… …St
ep

 2
St

ep
 1

…

…

…

Similarly, Step3 starting at offset 512

© NVIDIA Corporation 2008

Example: Avoiding Non-Coalesced
float3 Memory Accesses

Use shared memory to allow coalescing
Need sizeof(float3)*(threads/block) bytes of SMEM
Each thread reads 3 scalar floats:

Offsets: 0, (threads/block), 2*(threads/block)
These will likely be processed by other threads, so sync

Processing
Each thread retrieves its float3 from SMEM array

Cast the SMEM pointer to (float3*)
Use thread ID as index

Rest of the compute code does not change!

© NVIDIA Corporation 2008

Example: Avoiding Non-Coalesced
float3 Memory Accesses

__global__ void accessInt3Shared(float *g_in, float *g_out)
{

int index = blockIdx.x * blockDim.x + threadIdx.x;
__shared__ float s_data[256*3];
s_data[threadIdx.x] = g_in[index];
s_data[threadIdx.x+256] = g_in[index+256];
s_data[threadIdx.x+512] = g_in[index+512];
__syncthreads();
float3 a = ((float3*)s_data)[threadIdx.x];

a.x += 2;
a.y += 2;
a.z += 2;

((float3*)s_data)[threadIdx.x] = a;
__syncthreads();
g_out[index] = s_data[threadIdx.x];
g_out[index+256] = s_data[threadIdx.x+256];
g_out[index+512] = s_data[threadIdx.x+512];

}

Compute code
is not changed

Read the input
through SMEM

Write the result
through SMEM

© NVIDIA Corporation 2008

Example: Avoiding Non-Coalesced
float3 Memory Accesses

Experiment:
Kernel: read a float, increment, write back
3M floats (12MB)
Times averaged over 10K runs

12K blocks x 256 threads:
356µs – coalesced
357µs – coalesced, some threads don’t participate

3,494µs – permuted/misaligned thread access
4K blocks x 256 threads:

3,302µs – float3 uncoalesced
359µs – float3 coalesced through shared memory

© NVIDIA Corporation 2008

Maximize Occupancy to Hide Latency

Sources of latency:
Global memory access: 400-600 cycle latency
Read-after-write register dependency

Instruction’s result can only be read 11 cycles later

Latency blocks dependent instructions in the same
thread
But instructions in other threads are not blocked
Hide latency by running as many threads per
multiprocessor as possible!
Choose execution configuration to maximize
occupancy = (# of active warps) / (maximum # of active warps)

Maximum # of active warps is 24 on G8x

© NVIDIA Corporation 2008

Execution Configuration: Constraints

Maximum # of threads per block: 512
of active threads limited by resources:

of registers per multiprocessor (register pressure)
Amount of shared memory per multiprocessor

Use –maxrregcount=N flag to NVCC
N = desired maximum registers / kernel
At some point “spilling” into LMEM may occur

Reduces performance – LMEM is slow
Check .cubin file for LMEM usage

© NVIDIA Corporation 2008

Determining Resource Usage
Compile the kernel code with the -cubin flag to
determine register usage.
Open the .cubin file with a text editor and look for
the “code” section.

architecture {sm_10}
abiversion {0}
modname {cubin}
code {

name = BlackScholesGPU
lmem = 0
smem = 68
reg = 20
bar = 0
bincode {

0xa0004205 0x04200780 0x40024c09 0x00200780
…

per thread local memory
(used by compiler to spill

registers to device memory)

per thread block shared memory

per thread registers

© NVIDIA Corporation 2008

Execution Configuration: Heuristics

(# of threads per block) = multiple of warp size
To avoid wasting computation on under-populated warps

(# of blocks) / (# of multiprocessors) > 1
So all multiprocessors have at least a block to execute

Per-block resources (shared memory and registers) at most
half of total available
And: (# of blocks) / (# of multiprocessors) > 2

To get more than 1 active block per multiprocessor
With multiple active blocks that aren’t all waiting at a
__syncthreads(), the multiprocessor can stay busy

(# of blocks) > 100 to scale to future devices
Blocks stream through machine in pipeline fashion
1000 blocks per grid will scale across multiple generations

Very application-dependent: experiment!

© NVIDIA Corporation 2008

Occupancy Calculator

To help you: the CUDA occupancy calculator
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

ssormultiproceper warpsactive of # maximum
ssormultiproceper warpsactive of #

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

© NVIDIA Corporation 2008

Back to Reduce Exercise:
Problem with Reduce 2

Reduce 2 does not take advantage of shared memory!

Reduce 3 fixes this by implementing parallel
reduction in shared memory

Runtime shared memory allocation:
size_t SharedMemBytes = 64; // 64 bytes of shared memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

The optional SharedMemBytes bytes are:
Allocated in addition to the compiler allocated shared memory
Mapped to any variable declared as:

extern __shared__ float DynamicSharedMem[];

© NVIDIA Corporation 2008

Reduce 3:
Parallel Reduction Implementation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

Indices

Values

0 1 2 3 4 5 6 7

11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2Values

0 1 2 3

18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2Values

0 1

24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2Values

0

41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2Values

Thread
IDs

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Step 4
Stride 8

Thread
IDs

Thread
IDs

Thread
IDs

© NVIDIA Corporation 2008

Parallel Reduction Complexity

Takes log(N) steps and each step S performs N/2S

independent operations
Step complexity is O(log(N))

For N=2D, performs ∑S∈[1..D]2D-S = N-1 operations
Work complexity is O(N)
Is work-efficient (i.e. does not perform more operations
than a sequential reduction)

With P threads physically in parallel (P processors),
performs ∑S∈[1..D]ceil(2D-S/P) operations

∑S∈[1..D]ceil(2D-S/P) < ∑S∈[1..D](floor(2D-S/P) + 1) < N/P + log(N)
Time complexity is O(N/P + log(N))
Compare to O(N) for sequential reduction

© NVIDIA Corporation 2008

Reduce 3

Each thread stores its result in an array of
numThreadsPerBlock elements in shared memory

Each block performs a parallel reduction on this
array

reduce_kernel is called only 2 times:
First call reduces from numValues to numBlocks
Second call performs final reduction using one thread
block

© NVIDIA Corporation 2008

Reduce 3: Go Ahead!
Open up reduce\src\reduce3.sln
Goal: Replace the TODOs in reduce3.cu to get
“test PASSED”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

Indices

Values

0 1 2 3 4 5 6 7

11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2Values

0 1 2 3

18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2Values

0 1

Thread
IDs

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Thread
IDs

Thread
IDs

© NVIDIA Corporation 2008

Optimize Instruction Usage:
Basic Strategies

Minimize use of low-throughput instructions

Use high precision only where necessary

Minimize divergent warps

© NVIDIA Corporation 2008

Arithmetic Instruction Throughput

float add/mul/mad, int add, shift, min, max:
4 cycles per warp

int multiply (*) is by default 32-bit
Requires multiple cycles per warp
Use __[u]mul24() intrinsics for 4-cycle 24-bit int multiply

Integer divide and modulo are more expensive
Compiler will convert literal power-of-2 divides to shifts

But we have seen it miss some cases
Be explicit in cases where compiler can’t tell that divisor
is a power of 2!
Useful trick: foo%n == foo&(n-1) if n is a power of 2

© NVIDIA Corporation 2008

Arithmetic Instruction Throughput

Reciprocal, reciprocal square root, sin/cos, log, exp:
16 cycles per warp

These are the versions prefixed with “__”
Examples: __rcp(), __sin(), __exp()

Other functions are combinations of the above:
y/x==rcp(x)*y takes 20 cycles per warp
sqrt(x)==rcp(rsqrt(x)) takes 32 cycles per warp

© NVIDIA Corporation 2008

Runtime Math Library

There are two types of runtime math operations:
__func(): direct mapping to hardware ISA

Fast but lower accuracy (see prog. guide for details)
Examples: __sin(x), __exp(x), __pow(x,y)

func(): compile to multiple instructions
Slower but higher accuracy (5 ulp or less)
Examples: sin(x), exp(x), pow(x,y)

The -use_fast_math compiler option forces every
func() to compile to __func()

© NVIDIA Corporation 2008

Double Precision Is Coming…

Current NVIDIA GPUs support single precision only
IEEE 32-bit floating-point precision (“FP32”)

Upcoming NVIDIA GPUs will support double
precision

IEEE 64-bit floating-point precision (“FP64”)

© NVIDIA Corporation 2008

What You Need To Know

FP64 instructions will be slower than FP32
It takes more than just wider data paths to implement
double precision

For best performance, use FP64 judiciously
Analyze your computations
Use FP64 only for precision/range-sensitive computations
Use FP32 for computations that are accurate and robust
with 32-bit floating point

CUDA compiler supports mixed usage of float and
double

Supported since CUDA 1.0

© NVIDIA Corporation 2008

Float “Safety”

Don’t accidentally use FP64 where you intend FP32:
Standard math library and floating-point literals default to
double precision
float f = 2.0 * sin(3.14); // warning: double precision!
// fp64 multiply, several fp64 insts. for sin(), and fp32 cast

float f = 2.0f * sinf(3.14f); // warning: double precision!
// fp32 multiply and several fp32 instructions for sin()

On FP64-capable NVIDIA GPUs, the green code will
be much faster than the orange code

© NVIDIA Corporation 2008

Mixed Precision Arithmetic

Researchers are achieving great speedups at high
accuracy using mixed 32/64-bit arithmetic

“Exploiting Mixed Precision Floating Point Hardware
in Scientific Computations”

Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Julie Langou,
Julien Langou, Piotr Luszczek, and Stanimire Tomov.

November, 2007.
http://www.netlib.org/utk/people/JackDongarra/PAPERS/par_comp_iter_ref.pdf

Abstract: By using a combination of 32-bit and 64-bit floating point arithmetic,
the performance of many dense and sparse linear algebra algorithms can be
significantly enhanced while maintaining the 64-bit accuracy of the resulting
solution. The approach presented here can apply not only to conventional
processors but also to exotic technologies such as Field Programmable Gate
Arrays (FPGA), Graphical Processing Units (GPU), and the Cell BE
processor. Results on modern processor architectures and the Cell BE are
presented.

http://www.netlib.org/utk/people/JackDongarra/PAPERS/par_comp_iter_ref.pdf

© NVIDIA Corporation 2008

Single Precision IEEE Floating Point

Addition and multiplication are IEEE compliant
Maximum 0.5 ulp error

However, often combined into multiply-add (FMAD)
Intermediate result is truncated

Division is non-compliant (2 ulp)
Not all rounding modes are supported
Denormalized numbers are not supported
No mechanism to detect floating-point exceptions

© NVIDIA Corporation 2008

Single Precision Floating Point
8-Series GPU SSE IBM Altivec Cell SPE

Precision IEEE 754 IEEE 754 IEEE 754 near IEEE 754

Rounding modes for
FADD and FMUL

Round to nearest and
round to zero

All 4 IEEE, round to
nearest, zero, inf, -inf

Round to nearest
only

Round to
zero/truncate only

Denormal handling Flush to zero Supported,
1000’s of cycles

Supported,
1000’s of cycles Flush to zero

NaN support Yes Yes Yes No

Overflow and
Infinity support

Yes Yes Yes No infinity, only
clamps to max norm

Flags No Yes Yes Some

Square root Software only Hardware Software only Software only

Division Software only Hardware Software only Software only

Reciprocal estimate
accuracy 24 bit 12 bit 12 bit 12 bit

Reciprocal sqrt
estimate accuracy 23 bit 12 bit 12 bit 12 bit

log2(x) and 2^x
estimates accuracy 23 bit No 12 bit No

© NVIDIA Corporation 2008

Control Flow Instructions

Main performance concern with branching is
divergence

Threads within a single warp take different paths
Different execution paths must be serialized

Avoid divergence when branch condition is a
function of thread ID

Example with divergence:
If (threadIdx.x > 2) { }

Branch granularity < warp size
Example without divergence:

If (threadIdx.x / WARP_SIZE > 2) { }

Branch granularity is a whole multiple of warp size

© NVIDIA Corporation 2008

Instruction Predication

Comparison instructions set condition codes (CC)
Instructions can be predicated to write results only
when CC meets criterion (CC != 0, CC >= 0, etc.)
Compiler tries to predict if a branch condition is
likely to produce many divergent warps

If guaranteed not to diverge: only predicates if < 4
instructions
If not guaranteed: only predicates if < 7 instructions

May replace branches with instruction predication
ALL predicated instructions take execution cycles

Those with false conditions don’t write their output
Or invoke memory loads and stores

Saves branch instructions, so can be cheaper than
serializing divergent paths

© NVIDIA Corporation 2008

Shared Memory Implementation:
Banked Memory

In a parallel machine, many threads access
memory

Therefore, memory is divided into banks
Essential to achieve high bandwidth

Each bank can service one address per cycle
A memory can service as many simultaneous
accesses as it has banks

Multiple simultaneous accesses to a bank
result in a bank conflict

Conflicting accesses are serialized

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

© NVIDIA Corporation 2008

Shared Memory Is Banked

Bandwidth of each bank is 32 bits per 2 clock cycles

Successive 32-bit words are assigned to successive
banks

G80 has 16 banks
So bank = address % 16
Same as the size of a half-warp

No bank conflicts between different half-warps, only within a
single half-warp

© NVIDIA Corporation 2008

Bank Addressing Examples

No bank conflicts
Linear addressing
stride == 1

No bank conflicts
Random 1:1 permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

© NVIDIA Corporation 2008

Bank Addressing Examples

2-way bank conflicts
Linear addressing
stride == 2

8-way bank conflicts
Linear addressing
stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0x8

x8

© NVIDIA Corporation 2008

Shared Memory Bank Conflicts

Shared memory is as fast as registers if there are
no bank conflicts

The fast case:
If all threads of a half-warp access different banks, there is
no bank conflict
If all threads of a half-warp read the same word, there is
no bank conflict (broadcast)

The slow case:
Bank conflict: multiple threads in the same half-warp
access the same bank
Must serialize the accesses
Cost = max # of simultaneous accesses to a single bank

© NVIDIA Corporation 2008

Back to Reduce Exercise:
Problem with Reduce 3

Reduce 3 has shared memory bank conflicts!

Reduce 4 fixes this by modifying the mapping
between threads and data during parallel reduction

© NVIDIA Corporation 2008

Reduce 3: Bank Conflicts

Indices

Values

0 1 2 3 4 5 6 7Thread
IDsStride 1

Banks

8 9 10

Threads 0 and 8 access the same bank

Threads 1 and 9 access the same bank

Showed for step 1 below
First simultaneous memory access
sresult[2 * stride * threadID]

Threads 2 and 10 access the same bank, etc.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 ...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ...

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2 -1 4 11 -5 0 12 ...

© NVIDIA Corporation 2008

Reduce 3: Bank Conflicts

Indices

Values

0 1 2 3 4 5 6 7Thread
IDsStride 1

Banks

8 9 10

Threads 0 and 8 access the same bank

Threads 1 and 9 access the same bank

Showed for step 1 below
Second simultaneous memory access
sresult[2 * stride * threadID + stride]

Threads 2 and 10 access the same bank, etc.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 ...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ...

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2 -1 4 11 -5 0 12 ...

© NVIDIA Corporation 2008

Reduce 4:
Parallel Reduction Implementation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

Indices

Values

0 1 2 3 4 5 6 7

8 -2 10 6 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0 1 2 3

8 7 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0 1

21 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0

41 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

Thread
IDs

Step 1
Stride 8

Step 2
Stride 4

Step 3
Stride 2

Step 4
Stride 1

Thread
IDs

Thread
IDs

Thread
IDs

© NVIDIA Corporation 2008

Reduce 4: Go Ahead!
Open up reduce\src\reduce4.sln
Goal: Replace the TODOs in reduce4.cu to get
“test PASSED”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

Indices

Values

0 1 2 3 4 5 6 7

8 -2 10 6 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0 1 2 3

8 7 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0 1

Thread
IDs

Step 1
Stride 8

Step 2
Stride 4

Step 3
Stride 2

Thread
IDs

Thread
IDs

© NVIDIA Corporation 2008

Reduce 5:
More Optimizations through Unrolling

Parallel reduction inner loop:
for (int stride = numThreadsPerBlock / 2;

stride > 0; stride /= 2)
{

__syncthreads();
if (threadID < stride)

sresult[threadID] += sresult[threadID + stride];
}

There are only so many values for numThreadsPerBlock:
Multiple of 32, less or equal to 512

So, templatize on numThreadsPerBlock:
template <uint numThreadsPerBlock>
__global__ void reduce_kernel(const float* valuesIn,

uint numValues,
float* valuesOut)

And unroll:

© NVIDIA Corporation 2008

Reduce 5: Unrolled Loop
if (numThreadsPerBlock >= 512)
{ __syncthreads(); if (threadID < 256) sresult[threadID] += sresult[threadID + 256]; }
if (numThreadsPerBlock >= 256)
{ __syncthreads(); if (threadID < 128) sresult[threadID] += sresult[threadID + 128]; }
if (numThreadsPerBlock >= 128)
{ __syncthreads(); if (threadID < 64) sresult[threadID] += sresult[threadID + 64]; }
if (numThreadsPerBlock >= 64)
{ __syncthreads(); if (threadID < 32) sresult[threadID] += sresult[threadID + 32]; }
if (numThreadsPerBlock >= 32)
{ __syncthreads(); if (threadID < 16) sresult[threadID] += sresult[threadID + 16]; }

…
if (numThreadsPerBlock >= 4)
{ __syncthreads(); if (threadID < 2) sresult[threadID] += sresult[threadID + 2]; }
if (numThreadsPerBlock >= 2)
{ __syncthreads(); if (threadID < 1) sresult[threadID] += sresult[threadID + 1]; }

All code in blue will be evaluated at compile time!

© NVIDIA Corporation 2008

Reduce 5: Last Warp Optimization

As reduction proceeds, the number of “active”
threads decreases
When stride<=32, we have only one warp left
Instructions are synchronous within a warp
That means when stride<=32:

We don’t need to __syncthreads()
We don’t need “if (threadID < stride)” because
it doesn’t save any work

So, final version of unrolled loop is:

© NVIDIA Corporation 2008

Reduce 5: Final Unrolled Loop
if (numThreadsPerBlock >= 512)
{ __syncthreads(); if (threadID < 256) sresult[threadID] += sresult[threadID + 256]; }
if (numThreadsPerBlock >= 256)
{ __syncthreads(); if (threadID < 128) sresult[threadID] += sresult[threadID + 128]; }
if (numThreadsPerBlock >= 128)
{ __syncthreads(); if (threadID < 64) sresult[threadID] += sresult[threadID + 64]; }
__syncthreads();
if (threadID < 32) {

if (numThreadsPerBlock >= 64) sresult[threadID] += sresult[threadID + 32];
if (numThreadsPerBlock >= 32) sresult[threadID] += sresult[threadID + 16];
if (numThreadsPerBlock >= 16) sresult[threadID] += sresult[threadID + 8];
if (numThreadsPerBlock >= 8) sresult[threadID] += sresult[threadID + 4];
if (numThreadsPerBlock >= 4) sresult[threadID] += sresult[threadID + 2];
if (numThreadsPerBlock >= 2) sresult[threadID] += sresult[threadID + 1];

}

All code in blue will be evaluated at compile time!

© NVIDIA Corporation 2008

Conclusion
CUDA is a powerful parallel programming model

Heterogeneous - mixed serial-parallel programming
Scalable - hierarchical thread execution model
Accessible - minimal but expressive changes to C

CUDA on GPUs can achieve great results on data-
parallel computations with a few simple
performance optimization strategies:

Structure your application and select execution configurations
to maximize exploitation of the GPU’s parallel capabilities
Minimize CPU ↔ GPU data transfers
Coalesce global memory accesses
Take advantage of shared memory
Minimize divergent warps
Minimize use of low-throughput instructions
Avoid shared memory accesses with high degree of bank
conflicts

© NVIDIA Corporation 2008

Coming Up Soon

CUDA 2.0
Public beta this week
Support for upcoming new GPU:

Double precision
Integer atomic operations in shared memory

New features:
3D textures
Improved and extended Direct3D interoperability

CUDA implementation on multicore CPU
Beta in a few weeks

© NVIDIA Corporation 2008

Where to go from here

Get CUDA Toolkit, SDK, and Programming Guide:
http://developer.nvidia.com/CUDA
CUDA works on all NVIDIA 8-Series GPUs (and later)

GeForce, Quadro, and Tesla

Talk about CUDA http://forums.nvidia.com

Extra Slides

© NVIDIA Corporation 2008

Tesla Architecture Family
Number of

Multiprocessors
Compute
Capability

GeForce 8800 Ultra, 8800 GTX 16 1.0

GeForce 8800 GT 14 1.1

GeForce 8800M GTX 12 1.1

GeForce 8800 GTS 12 1.0

GeForce 8800M GTS 8 1.1

GeForce 8600 GTS, 8600 GT, 8700M GT,
8600M GT, 8600M GS

4 1.1

GeForce 8500 GT, 8400 GS, 8400M GT, 8400M GS 2 1.1

GeForce 8400M G 1 1.1

Tesla S870 4x16 1.0

Tesla D870 2x16 1.0

Tesla C870 16 1.0

Quadro Plex 1000 Model S4 4x16 1.0

Quadro Plex 1000 Model IV 2x16 1.0

Quadro FX 5600 16 1.0

Quadro FX 4600 12 1.0

Quadro FX 1700, FX 570, NVS 320M, FX 1600M,
FX 570M

4 1.1

Quadro FX 370, NVS 290, NVS 140M, NVS 135M,
FX 360M

2 1.1

Quadro NVS 130M 1 1.1

© NVIDIA Corporation 2008

Applications - Condensed

3D image analysis
Adaptive radiation therapy
Acoustics
Astronomy
Audio
Automobile vision
Bioinfomatics
Biological simulation
Broadcast
Cellular automata
Computational Fluid Dynamics
Computer Vision
Cryptography
CT reconstruction
Data Mining
Digital cinema/projections
Electromagnetic simulation
Equity training

Film
Financial - lots of areas
Languages
GIS
Holographics cinema
Imaging (lots)
Mathematics research
Military (lots)
Mine planning
Molecular dynamics
MRI reconstruction
Multispectral imaging
nbody
Network processing
Neural network
Oceanographic research
Optical inspection
Particle physics

Protein folding
Quantum chemistry
Ray tracing
Radar
Reservoir simulation
Robotic vision/AI
Robotic surgery
Satellite data analysis
Seismic imaging
Surgery simulation
Surveillance
Ultrasound
Video conferencing
Telescope
Video
Visualization
Wireless
X-ray

© NVIDIA Corporation 2008

New Applications
Real-time options implied volatility engine

Swaption volatility cube calculator

Manifold 8 GIS

Ultrasound imaging

HOOMD Molecular Dynamics

Also…
Image rotation/classification
Graphics processing toolbox
Microarray data analysis
Data parallel primitives
Astrophysics simulations

SDK: Mandelbrot, computer vision

Seismic migration

© NVIDIA Corporation 2008

Acceleware
GPU Electromagnetic Field simulation

Cell phone irradiation

MRI Design / Modeling

Printed Circuit Boards

Radar Cross Section (Military)

Seismic Migration
8X Faster than Quad Core alone

Pacemaker with Transmit
Antenna

1X

4 GPUs2 GPUs1 GPUCPU
3.2 GHz
Core 2

Duo

Pe
rf

or
m

an
ce

45X

11X

22X

© NVIDIA Corporation 2008

NAMD Molecular Dynamics

http://www.ks.uiuc.edu/Research/vmd/projects/ece498/lecture/

Three GeForce 8800GTX cards outrun ~300 CPUs

© NVIDIA Corporation 2008

EvolvedMachines
130X Speed up
Brain circuit simulation
Sensory computing: vision, olfactory

EvolvedMachines

© NVIDIA Corporation 2008

17X with MATLAB CPU+GPU

Pseudo-spectral simulation of 2D Isotropic turbulence

Matlab: Language of Science

http://www.amath.washington.edu/courses/571-winter-2006/matlab/FS_2Dturb.m

http://developer.nvidia.com/object/matlab_cuda.html

http://developer.nvidia.com/object/matlab_cuda.html

© NVIDIA Corporation 2008

nbody Astrophysics

http://progrape.jp/cs/

Astrophysics research

1 GF on standard PC

300+ GF on GeForce 8800GTX

Faster than GRAPE-6Af custom simulation computer

Video demo

© NVIDIA Corporation 2008 128

CUDA Advantages over Legacy GPGPU

Random access byte-addressable memory
Thread can access any memory location

Unlimited access to memory
Thread can read/write as many locations as needed

Shared memory (per block) and thread
synchronization

Threads can cooperatively load data into shared memory
Any thread can then access any shared memory location

Low learning curve
Just a few extensions to C
No knowledge of graphics is required

No graphics API overhead

© NVIDIA Corporation 2008

A quick review

device = GPU = set of multiprocessors
Multiprocessor = set of processors & shared
memory
Kernel = GPU program
Grid = array of thread blocks that execute a kernel
Thread block = group of SIMD threads that execute
a kernel and can communicate via shared memory

Memory Location Cached Access Who
Local Off-chip No Read/write One thread
Shared On-chip N/A Read/write All threads in a block
Global Off-chip No Read/write All threads + host
Constant Off-chip Yes Read All threads + host
Texture Off-chip Yes Read All threads + host

© NVIDIA Corporation 2008

Application Programming Interface

The API is an extension to the C programming
language
It consists of:

Language extensions
To target portions of the code for execution on the device

A runtime library split into:
A common component providing built-in vector types and a
subset of the C runtime library supported in both host and
device codes
A host component to control and access one or more
devices from the host
A device component providing device-specific functions

© NVIDIA Corporation 2008

Language Extensions:
Function Type Qualifiers

__global__ defines a kernel function
Must return void

__device__ and __host__ can be used together
__device__ functions cannot have their address taken
For functions executed on the device:

No recursion
No static variable declarations inside the function
No variable number of arguments

Executed
on the:

Only callable
from the:

__device__ float DeviceFunc() device device
__global__ void KernelFunc() device host
__host__ float HostFunc() host host

© NVIDIA Corporation 2008

Language Extensions:
Variable Type Qualifiers

__device__ is optional when used with __shared__ or
__constant__

Automatic variables without any qualifier reside in a register
Except for large structures or arrays that reside in local memory

Pointers can only point to memory allocated or declared in global
memory:

Allocated in the host and passed to the kernel:
__global__ void KernelFunc(float* ptr)

Obtained as the address of a global variable:
float* ptr = &GlobalVar;

Memory Scope Lifetime
__device__ __shared__ int SharedVar; shared block block

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

© NVIDIA Corporation 2008

Language Extensions:
Execution Configuration

A kernel function must be called with an execution
configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block

size_t SharedMemBytes = 64; // 64 bytes of shared memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

The optional SharedMemBytes bytes are:
Allocated in addition to the compiler allocated shared memory
Mapped to any variable declared as:

extern __shared__ float DynamicSharedMem[];

Any call to a kernel function is asynchronous
Control returns to CPU immediately

© NVIDIA Corporation 2008

Language Extensions:
Built-in Variables

dim3 gridDim;
Dimensions of the grid in blocks (gridDim.z unused)

dim3 blockDim;

Dimensions of the block in threads
dim3 blockIdx;

Block index within the grid
dim3 threadIdx;

Thread index within the block

© NVIDIA Corporation 2008

Common Runtime Component

Provides:
Built-in vector types
A subset of the C runtime library supported in both host
and device codes

© NVIDIA Corporation 2008

Common Runtime Component:
Built-in Vector Types

[u]char[1..4], [u]short[1..4], [u]int[1..4],
[u]long[1..4], float[1..4]

Structures accessed with x, y, z, w fields:
uint4 param;

int y = param.y;

dim3
Based on uint3

Used to specify dimensions

© NVIDIA Corporation 2008

Common Runtime Component:
Mathematical Functions

powf, sqrtf, cbrtf, hypotf
expf, exp2f, expm1f
logf, log2f, log10f, log1pf
sinf, cosf, tanf
asinf, acosf, atanf, atan2f
sinhf, coshf, tanhf
asinhf, acoshf, atanhf
ceil, floor, trunc, round
Etc.

When executed in host code, a given function uses the C
runtime implementation if available
These functions are only supported for scalar types, not
vector types

© NVIDIA Corporation 2008

Common Runtime Component:
Texture Types

Texture memory is accessed through texture
references:

texture<float, 2> myTexRef; // 2D texture of float values

myTexRef.addressMode[0] = cudaAddressModeWrap;

myTexRef.addressMode[1] = cudaAddressModeWrap;

myTexRef.filterMode = cudaFilterModeLinear;

Texture fetching in device code:
float4 value = tex2D(myTexRef, u, v);

© NVIDIA Corporation 2008

Host Runtime Component

Provides functions to deal with:
Device management (including multi-device systems)
Memory management
Texture management
Interoperability with OpenGL and Direct3D9
Error handling

Initializes the first time a runtime function is called

A host thread can execute device code on only one
device

Multiple host threads required to run on multiple devices

© NVIDIA Corporation 2008

Host Runtime Component:
Device Management

Device enumeration
cudaGetDeviceCount(), cudaGetDeviceProperties()

Device selection
cudaChooseDevice(), cudaSetDevice()

© NVIDIA Corporation 2008

Host Runtime Component:
Memory Management

Two kinds of memory:
Linear memory: accessed through 32-bit pointers
CUDA arrays: opaque layouts with dimensionality, only
readable through texture fetching

Device memory allocation
cudaMalloc(), cudaMallocPitch(), cudaFree(),
cudaMallocArray(), cudaFreeArray()

Memory copy from host to device, device to host,
device to device

cudaMemcpy(), cudaMemcpy2D(),
cudaMemcpyToArray(), cudaMemcpyFromArray(), etc.
cudaMemcpyToSymbol(), cudaMemcpyFromSymbol()

Memory addressing
cudaGetSymbolAddress()

© NVIDIA Corporation 2008

Host Runtime Component:
Texture Management

Texture references can be bound to:
CUDA arrays
Linear memory

1D texture only, no filtering, integer texture coordinate
cudaBindTexture(), cudaUnbindTexture()

© NVIDIA Corporation 2008

Host Runtime Component:
Interoperability with Graphics APIs

OpenGL buffer objects and Direct3D9 vertex buffers
can be mapped into the address space of CUDA:

To read data written by OpenGL
To write data for consumption by OpenGL
cudaGLMapBufferObject(),
cudaGLUnmapBufferObject()
cudaD3D9MapResources(),
cudaD3D9UnmapResources()

© NVIDIA Corporation 2008

Host Runtime Component:
Events

Events are inserted (recorded) into CUDA call streams
Usage scenarios:

measure elapsed time for CUDA calls (clock cycle precision)
query the status of an asynchronous CUDA call
block CPU until CUDA calls prior to the event are completed
asyncAPI sample in CUDA SDK

cudaEvent_t start, stop;
cudaEventCreate(&start); cudaEventCreate(&stop);
cudaEventRecord(start, 0);
kernel<<<grid, block>>>(...);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
float et;
cudaEventElapsedTime(&et, start, stop);
cudaEventDestroy(start); cudaEventDestroy(stop);

144

© NVIDIA Corporation 2008

Host Runtime Component:
Error Handling

All CUDA calls return error code:
except for kernel launches
cudaError_t type

cudaError_t cudaGetLastError(void)
returns the code for the last error (no error has a code)

char* cudaGetErrorString(cudaError_t code)
returns a null-terminted character string describing the
error

printf(“%s\n”, cudaGetErrorString(cudaGetLastError()));

145

© NVIDIA Corporation 2008

Device Runtime Component

Provides device-specific functions

© NVIDIA Corporation 2008

Device Runtime Component:
Mathematical Functions

Some mathematical functions (e.g. sin(x)) have a
less accurate, but faster device-only version (e.g.
__sin(x))

__pow

__log, __log2, __log10
__exp

__sin, __cos, __tan

© NVIDIA Corporation 2008 148

Device Runtime Component:
GPU Atomic Integer Operations

Atomic operations on integers in global memory:
Associative operations on signed/unsigned ints
add, sub, min, max, ...
and, or, xor
Increment, decrement
Exchange, compare and swap

Requires hardware with compute capability 1.1 or
higher

© NVIDIA Corporation 2008

Device Runtime Component:
Texture Functions

For texture references bound to CUDA arrays:
float u, v;

float4 value = tex2D(myTexRef, u, v);

For texture references bound to linear memory:
int i;

float4 value = tex2D(myTexRef, i);

© NVIDIA Corporation 2008

Device Runtime Component:
Synchronization Function

void __syncthreads();

Synchronizes all threads in a block
Once all threads have reached this point, execution
resumes normally
Used to avoid RAW / WAR / WAW hazards when
accessing shared or global memory
Allowed in conditional code only if the conditional is
uniform across the entire thread block

© NVIDIA Corporation 2008

Compilation

Any source file containing CUDA language
extensions must be compiled with nvcc
NVCC is a compiler driver

Works by invoking all the necessary tools and compilers
like cudacc, g++, cl, ...

NVCC can output:
Either C code (CPU Code)

That must then be compiled with the rest of the application
using another tool

Or PTX object code directly
Any executable with CUDA code requires two
dynamic libraries:

The CUDA runtime library (cudart)
The CUDA core library (cuda)

© NVIDIA Corporation 2008

NVCC & PTX Virtual Machine

EDG
Separate GPU vs. CPU code

Open64
Generates GPU PTX
assembly

Parallel Thread eXecution
(PTX)

Virtual Machine and ISA
Programming model
Execution resources and
state

EDG

C/C++ CUDA
Application

CPU Code

Open64

PTX Code

ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

float4 me = gx[gtid];
me.x += me.y * me.z;

© NVIDIA Corporation 2008

Role of Open64

Open64 compiler gives us

A complete C/C++ compiler framework. Forward looking. We
do not need to add infrastructure framework as our hardware
arch advances over time.

A good collection of high level architecture independent
optimizations. All GPU code is in the inner loop.

Compiler infrastructure that interacts well with other related
standardized tools.

© NVIDIA Corporation 2008

GeForce 8800 Series and
Quadro FX 5600/4600
Technical Specifications

Maximum number of threads per block: 512
Maximum size of each dimension of a grid: 65535
Warp size: 32 threads
Number of registers per multiprocessor: 8192
Shared memory per multiprocessor: 16 KB divided in 16 banks
Constant memory: 64 KB

Number of
multiprocessors

Clock frequency
(GHz)

Amount of device
memory (MB)

GeForce 8800 GTX 16 1.35 768

GeForce 8800 GTS 12 1.2 640

Quadro FX 5600 16 1.35 1500

Quadro FX 4600 12 1.2 768

© NVIDIA Corporation 2008

CUDA Libraries

CUBLAS
CUDA “Basic Linear Algebra Subprograms”
Implementation of BLAS standard on CUDA
For details see cublas_library.pdf and cublas.h

CUFFT
CUDA Fast Fourier Transform (FFT)
FFT one of the most important and widely used numerical
algorithms
For details see cufft_library.pdf and cufft.h

© NVIDIA Corporation 2008

CUBLAS Library

Self-contained at API level
Application needs no direct interaction with CUDA driver

Currently only a subset of CUBLAS core functions
are implemented

Simple to use:
Create matrix and vector objects in GPU memory
Fill them with data
Call sequence of CUBLAS functions
Upload results back from GPU to host

Column-major storage and 1-based indexing
For maximum compatibility with existing Fortran apps

© NVIDIA Corporation 2008

CUFFT Library

Efficient implementation of FFT on CUDA

Features
1D, 2D, and 3D FFTs of complex-valued signal data
Batch execution for multiple 1D transforms in parallel
Transform sizes (in any dimension) in the range [2, 16384]

	Tutorial CUDA
	Overview
	Parallel Computing’s Golden Age
	Parallel Computing’s Dark Age
	Illustrated History of �	Parallel Computing	
	Enter the GPU
	Enter the GPU
	Enter CUDA
	The Democratization �	of Parallel Computing
	GPUs Are Fast
	GPUs Are Getting Faster, Faster
	Manycore GPU – Block Diagram
	Some Design Goals
	Heterogeneous Programming
	Kernel = Many Concurrent Threads
	Hierarchy of Concurrent Threads
	Transparent Scalability
	Memory Hierarchy
	Heterogeneous Memory Model
	CUDA Language:�C with Minimal Extensions
	CUDA Runtime
	Example: Increment Array Elements
	Example: Increment Array Elements
	Example: Host Code
	More on Thread and Block IDs
	More on Memory Spaces
	Features Available in Device Code
	Compiling CUDA for NVIDIA GPUs
	Debugging Using the�Device Emulation Mode
	Device Emulation Mode Pitfalls
	Reduction Example
	Reduction Exercise
	Reduction Exercise 1
	Reduce 1: Blocking the Data
	Reduce 1: Blocking the Data
	Reduce 1: Multi-Pass Reduction
	Reduce 1: Go Ahead!
	CUDA Is Easy and Fast
	Hardware Implementation:�A Set of SIMT Multiprocessors
	Hardware Implementation:�Memory Architecture
	Hardware Implementation:�Execution Model
	Hardware Implementation:�Execution Model
	Host Synchronization
	Device Management
	Multiple CPU Threads and CUDA
	Memory Latency and Bandwidth
	Performance Optimization
	Expose Parallelism:�GPU Thread Parallelism
	Expose Parallelism:�CPU/GPU Parallelism
	Optimize Memory Usage:�Basic Strategies
	Minimize CPU GPU Data Transfers
	Optimize Memory Access Patterns
	Global Memory Reads/Writes
	Coalesced Global Memory Accesses
	Coalesced Global Memory Accesses
	Non-Coalesced Global Memory Accesses
	Non-Coalesced Global Memory Accesses
	Coalescing: �Timing Results
	Avoiding Non-Coalesced Accesses
	CUDA Visual Profiler
	Profiler Signals
	Interpreting profiler counters
	Back to Reduce Exercise:�Profile with the Visual Profiler
	Back to Reduce Exercise:�Problem with Reduce 1
	Reduce 2
	Reduce 2: Go Ahead!
	Maximize Use of Shared Memory
	Example:�Square Matrix Multiplication
	Example:�Square Matrix Multiplication Example
	Example: Avoiding Non-Coalesced float3 Memory Accesses
	Example: Avoiding Non-Coalesced float3 Memory Accesses
	Example: Avoiding Non-Coalesced float3 Memory Accesses
	Example: Avoiding Non-Coalesced float3 Memory Accesses
	Example: Avoiding Non-Coalesced float3 Memory Accesses
	Example: Avoiding Non-Coalesced float3 Memory Accesses
	Maximize Occupancy to Hide Latency
	Execution Configuration: Constraints
	Determining Resource Usage
	Execution Configuration: Heuristics
	Occupancy Calculator
	Back to Reduce Exercise:�Problem with Reduce 2
	Reduce 3:�Parallel Reduction Implementation
	Parallel Reduction Complexity
	Reduce 3
	Reduce 3: Go Ahead!
	Optimize Instruction Usage:�Basic Strategies
	Arithmetic Instruction Throughput
	Arithmetic Instruction Throughput
	Runtime Math Library
	Double Precision Is Coming…
	What You Need To Know
	Float “Safety”
	Mixed Precision Arithmetic
	Single Precision IEEE Floating Point
	Single Precision Floating Point
	Control Flow Instructions
	Instruction Predication
	Shared Memory Implementation:�Banked Memory
	Shared Memory Is Banked
	Bank Addressing Examples
	Bank Addressing Examples
	Shared Memory Bank Conflicts
	Back to Reduce Exercise:�Problem with Reduce 3
	Reduce 3: Bank Conflicts
	Reduce 3: Bank Conflicts
	Reduce 4:�Parallel Reduction Implementation
	Reduce 4: Go Ahead!
	Reduce 5:�More Optimizations through Unrolling
	Reduce 5: Unrolled Loop
	Reduce 5: Last Warp Optimization
	Reduce 5: Final Unrolled Loop
	Conclusion
	Coming Up Soon
	Where to go from here
	Extra Slides
	Tesla Architecture Family
	Applications - Condensed
	New Applications
	Acceleware
	NAMD Molecular Dynamics
	EvolvedMachines
	Matlab: Language of Science
	nbody Astrophysics
	CUDA Advantages over Legacy GPGPU
	A quick review
	Application Programming Interface
	Language Extensions:�Function Type Qualifiers
	Language Extensions:�Variable Type Qualifiers
	Language Extensions:�Execution Configuration
	Language Extensions:�Built-in Variables
	Common Runtime Component
	Common Runtime Component:�Built-in Vector Types
	Common Runtime Component:�Mathematical Functions
	Common Runtime Component:�Texture Types
	Host Runtime Component
	Host Runtime Component:�Device Management
	Host Runtime Component:�Memory Management
	Host Runtime Component:�Texture Management
	Host Runtime Component:�Interoperability with Graphics APIs
	Host Runtime Component:�Events
	Host Runtime Component:�Error Handling
	Device Runtime Component
	Device Runtime Component:�Mathematical Functions
	Device Runtime Component:�GPU Atomic Integer Operations
	Device Runtime Component:�Texture Functions
	Device Runtime Component:�Synchronization Function
	Compilation
	NVCC & PTX Virtual Machine
	Role of Open64
	GeForce 8800 Series and�Quadro FX 5600/4600�Technical Specifications
	CUDA Libraries
	CUBLAS Library
	CUFFT Library

