Phase cycling in pulse programs

Yusuke Nishiyama（RIKEN \＆JEOL）

คвинен

JEOL Ltd．
西山裕介

Phase cyclings

In the NMR pulse program, phases of pulses and acquisition are varied scan to scan.

$$
\begin{aligned}
& \text { ph1=0 } 123 \\
& \text { ph31=0 } 123
\end{aligned}
$$

$$
\text { obs_phs_prep }=\quad\{0,90,180,270\}
$$

$$
\text { obs_phs_acq }=\{0,90,180,270\}
$$

Phase cyclings

In the NMR pulse program, phases of pulses and acquisition are varied scan to scan.

references

Phase cycling:

G. Bodenhausen, H. Kogler, R.R. Ernst, J. Magn. Reson. 58 (1984) 370-388.
R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford (1988).

Cogwheel phase cycling:

M.H. Levitt, P.K. Madhu, C.E. Hughes, J. Magn. Reson. 155 (2000) 300-306.

Multiplex phase cycling:

N. Ivchenko, C.E. Hughes, M.H. Levitt, J. Magn. Reson. 160 (2003) 52-58.

contents

Background

Importance of coherence selection
Coherence pathway selection by phase cyclings
Multiple selection, multi-dimension
Multiplex and cogwheel phase cycling

Phase cycling in NMR

The same pulse trains are repeatedly applied with changing their phases, then FIDs are added.

To select coherence pathway

Background: What is coherence order?

Phase cyclings choose a specific coherence.

Coherence is defined by the response with respect to rotation along z-axis.

$$
\exp \left(-i \phi F_{z}\right) \sigma^{(p)} \exp \left(i \phi F_{z}\right)=\exp (-i p \phi) \sigma^{(p)}
$$

The order of coherence can be calculated by simply adding number of ladder operators. If the operator include $n I+, m I$-, and $q I z$, the coherence order p is $n-m$.

Examples:

$$
\begin{aligned}
& p=0 ; I z, I+I^{-}, I 1 z I 2 z \text { etc. } \\
& p=+1 ; I+, I+I z \text { etc. } \\
& p=-1 ; I-, I 1-I 2-I 1+\text { etc. } \\
& p=+2 ; I 1+I 2+\text { etc. }
\end{aligned}
$$

Background: How to change coherence order?

Coherence order does not changes without rf irradiations, (conservative quantity under free evolution)
Coherence can changes under rf irradiation. It can be converted to any coherence order, however, efficiency varies depending on pulses, initial states, spin systems, etc.

Why should coherence pathway be selected?

As the pulses can introduce any change in coherence order, the unwanted coherence could be involved. Even in a single pulse experiment, 1) initial magnetization could be other than Iz, and 2) $p=0,+1$ could be induced after single pulse excitation.

Why should coherence pathway be selected?

contents

Background

Importance of coherence selection
Coherence pathway selection by phase cyclings
Multiple selection, multi-dimension
Multiplex and cogwheel phase cycling

How to minimize the unwanted pathways?

Initial state should be Iz, if long enough repetition delay is applied. Coherences with $p \neq 0$ are suppressed.

Coherence transfer from $p=0$ to -1 is maximized when flip-angle is 90 degree.

How to minimize the unwanted pathways?

Example1: single pulse

As long as the repetition delay is longer enough than T_{2}, modern NMR spectrometer gives signal from desired coherence pathway.

Example2: spin echo

Even with sufficiently long repetition delay and modern NMR spectrometer, unwanted pathway can be observed.

Initial state should be Iz, if long enough repetition delay is applied.

Example2: spin echo

The unwanted coherence pathway results in phase distortion which cannot be corrected by the phiO and phil phasing.

Example2: spin echo

Phase distortion is minimized by adjusting 90 and 180 degree pulse length. However, it cannot be fully removed due to B_{1} inhomogeneity.

contents

Background

Importance of coherence selection

Coherence pathway selection by phase cyclings
Multiple selection, multi-dimension
Multiplex and cogwheel phase cycling

Phase cyclings to select coherence pathway.

A group of pulses are phase cycled according to the following equation, keeping the phases of the other pulses constant:

$$
\phi_{k}=\cdot \frac{2 \pi k}{N} \quad k=0,1,2, \ldots N-1
$$

Phase cyclings to select coherence pathway.

If he observation phase is incremented according to

$$
\phi_{a c q, k}=-2 \pi \frac{\Delta p}{N} k=-\Delta p \phi_{k} \quad k=0,1,2, \ldots N-1
$$

The coherence pathways which changes the coherence with $\Delta p+m N$ are chosen, where m is an integer.

$$
\Delta p=\ldots-3,+1,+5, \ldots \text { is chosen after } N=4 \text { scans }
$$

For example, $\varphi 1$

$$
\varphi \mathrm{acq}
$$

$1^{\text {st }}$ scan:	0°		0°	0°	0°	
$2^{\text {nd }}$ scan:	90°		0°	0°	$-90^{\circ}=270^{\circ}$	
$3{ }^{\text {rd }}$ scan:	180°		0°	0°	$-180^{\circ}=180^{\circ}$	
$4^{\text {th }}$ scan:	270°	($\mathrm{N}=4$)	0°	0°	$-270^{\circ}=90^{\circ}$	$\Delta \mathrm{p}=+1$

Phase cyclings to select coherence pathway.

Many different coherence pathways are allowed.

$$
\Delta p=\ldots-3,+1,+5, \ldots \text { is chosen after } N=4 \text { scans }
$$

Example 1: single pulse

Traditional CYCLOPS phase cycling chooses $\Delta=-1$.
Initial state should be lz, if long enough repetition delay is applied. Coherences with $p \neq 0$ are suppressed.

Example 1: single pulse

CYCLOPS phase cycling includes too much phase cycling than needed.

Initial state should be lz, if long enough repetition delay is applied. Coherences with $p \neq 0$ are suppressed.

Example 1: single pulse

Two step phase cycling introduces mirror image.
Initial state should be lz, if long enough repetition delay is applied. Coherences with $p \neq 0$ are suppressed.

$$
\phi_{a c q, k}=-\Delta p \phi_{k}
$$

Example2: spin echo

There is two way to implement phase cyclings for spin echo. If $\Delta \mathrm{p} 1=+1$ is chosen, desired pathway is automatically selected.

$$
\Delta \mathrm{p} 1=. .-2,+1,+4 \ldots(\mathrm{~N}=3)
$$

$$
\phi_{a c q, k}=-\Delta p \phi_{k}
$$

Example2: spin echo

Instead, $\Delta \mathrm{p} 2=-2$ can be chosen.

$$
\Delta \mathrm{p} 2=. .-5,-2,+1 \ldots(\mathrm{~N}=3)
$$

$$
\phi_{a c q, k}=-\Delta p \phi_{k}
$$

Example2: spin echo

Example2: spin echo

Example2: spin echo

Coherence pathway selection as well as optimization of pulses are required.

contents

Background

Importance of coherence selection
Coherence pathway selection by phase cyclings
Multiple selection, multi-dimension
Multiplex and cogwheel phase cycling

Phase cyclings to select multiple coherence pathway.

If transfer pathway at more than one set of pulses should be chosen, the phase cycling can be implemented by nested way (independently).

$$
\phi_{j, k_{j}}=\frac{2 \pi k_{j}}{N_{j}} \quad k_{j}=0,1,2, \ldots N_{j}-1
$$

The acquisition phase should be incremented according to

$$
\phi_{a c q, k}=-\sum_{j} 2 \pi \frac{\Delta p_{j}}{N_{j}} k_{j}=-\sum_{j} \Delta p_{j} \phi_{j, k_{j}} \quad k_{j}=0,1,2, \ldots N_{j}-1
$$

The coherence pathways which changes the coherence with $\Delta p_{j}+m N_{j}$ at j-th

甲acq

$1^{\text {st }}$ scan:	0°	0°	0°	$-\left((+1) 0^{\circ}+(+1) 0^{\circ}\right)=0^{\circ}$
$2^{\text {nd }}$ scan: 180°	0°	0°	$-\left((+1) 180^{\circ}+(+1) 0^{\circ}\right)=180^{\circ}$	
(3 $^{\text {rd }}$ scan:	$\left.0^{\circ}\right)$		180°	0°
$\left(4^{\text {th }}\right.$ scan: $\left.180^{\circ}\right)$	$(N 1=2)$	180°	0°	$-\left((+1) 0^{\circ}+(+1) 180^{\circ}\right)=180^{\circ}$
		$\left((+1) 180^{\circ}+(+1) 180^{\circ}\right)=0^{\circ}$		

Example3: DEPTH2 (background suppression)

PRRIIEN

Multi-dimensional measurements

Two way to implement phase sensitive detection in the indirect dimension.
Amplitude modulation:

$$
\begin{aligned}
& S_{R}\left(t_{1}, t_{2}\right)=\cos \left(\omega_{1} t_{1}\right) e^{-i \omega_{2} t_{2}} \\
& S_{I}\left(t_{1}, t_{2}\right)=\sin \left(\omega_{1} t_{1}\right) e^{-i \omega_{2} t_{2}}
\end{aligned}
$$

Cosine and sine modulation can be achieved by selecting symmetry pathways in the indirect dimension at the same time.

$$
\begin{aligned}
& \cos \left(\omega_{1} t_{1}\right)=\frac{1}{2}\left[e^{-i \omega_{1} t_{1}}+e^{i \omega_{1} t_{1}}\right] \\
& \sin \left(\omega_{1} t_{1}\right)=\frac{1}{2}\left[-e^{-i \omega_{1} t_{1}}+e^{i \omega_{1} t_{1}}\right]
\end{aligned}
$$

Example4: NOESY (2D exchange)

Example4: NOESY (2D exchange)

Example4: NOESY (2D exchange)

$$
\phi_{\text {acq,k }}=-\sum_{j} \Delta p_{i} \phi_{j, k}
$$

Example4: NOESY (2D exchange)

Example4: NOESY (2D exchange)

$1 \mathrm{H} / 1 \mathrm{H}$ exchange with $\mathrm{tm}=0 \mathrm{~ms}$
2 scans

Even with finite tm, pulses in mixing time may cause the same problem.

Example4: NOESY (2D exchange)

2. Define spin systems: $p=-1$ to 1 for isolated spin-1/2 systems.

$$
\phi_{a c q, k}=-\sum_{j} \Delta p_{j} \phi_{j, k_{j}}
$$

Example4: NOESY (2D exchange)

$$
\phi_{a c q, k}=-\sum_{j} \Delta p_{j} \phi_{j, k_{j}}
$$

Example4: NOESY (2D exchange)

$$
\phi_{a c q, k}=-\sum_{j} \Delta p_{j} \phi_{j, k_{j}}
$$

Example4: NOESY (2D exchange)

$$
\phi_{a c q, k}=-\sum_{j} \Delta p_{j} \phi_{j, k_{j}}
$$

Example4: NOESY (2D exchange)

$$
\phi_{a c q, k}=-\sum_{j} \Delta p_{j} \phi_{j, k_{j}}
$$

Example4: NOESY (2D exchange)

$$
\phi_{a c q, k}=-\sum_{j} \Delta p_{j} \phi_{j, k_{j}}
$$

Example4: NOESY (2D exchange)

$$
\phi_{a c q, k}=-\sum_{j} \Delta p_{j} \phi_{j, k_{j}}
$$

Example4: NOESY (2D exchange)

Example4: NOESY (2D exchange)

Example4: NOESY (2D exchange)

$\mathcal{P}_{\text {siliten }}$

Multi-dimensional measurements

Two way to implement phase sensitive detection in the indirect dimension.
Phase modulation (PN type, echo-antiech):

$$
\begin{aligned}
& S_{\text {echo }}\left(t_{1}, t_{2}\right)=e^{i \omega_{1} t_{1}} e^{-i \omega_{2} t_{2}} \\
& S_{\text {antiecho }}\left(t_{1}, t_{2}\right)=e^{i \omega_{2} t_{2}} e^{-i \omega_{2} t_{2}}
\end{aligned}
$$

Phase modulation can be achieved by selecting single pathways in the indirect dimension.

Example4: NOESY (2D exchange)

Example4: NOESY (2D exchange)

$1 \mathrm{H} / 1 \mathrm{H}$ exchange with $\mathrm{tm}=10 \mathrm{~ms}$
3 scans, PN-type

$\boldsymbol{R}_{\text {RוIIK=N }}$

Example5: DQ/SQ correlation

Example5: DQ/SQ correlation

1 H DQ/1H SQ correlation with $\mathrm{tm}=1 \mathrm{~ms}$
4 scans

Example5: DQ/SQ correlation

Example6: MQMAS

$$
\phi_{a c q, k}=-\sum_{j} \Delta p_{j} \phi_{j, k_{j}}
$$

Example6: MQMAS

Example7: MQMAS

Example7: MQMAS

Example7: MQMAS

Example8: MQMAS (shifted-echo whole echo acquisition)

When inhomogeneous broadening is much larger than homogeneous broadening, whole echo acquisition can be applied to obtain pure absorption lineshape.

contents

Background

Importance of coherence selection
Coherence pathway selection by phase cyclings
Multiple selection, multi-dimension
Multiplex and cogwheel phase cycling

Cogwheel phase cycling

Total cyclings $=$ N1 \times N2 \times N3 \times N4 \times N5 $=243$! For nested cycle $=11$ for cogwheel phase cyclings

Cogwheel phase cycling:
M.H. Levitt, P.K. Madhu, C.E. Hughes, J. Magn. Reson. 155 (2000) 300-306.

Practical implementation: A. Jerschow and R. Kumar, Calculation of Coherence Pathway Selection and Cogwheel Cycles,
J. Magn. Reson. 160, 59-64, (2003).https://wp.nyu.edu/jerschow/resources/cccp-complete-calculation-of-coherence-pathways/

Multiplex phase cycling

Journal of Magnetic Resonance

Volume 160, Issue 1, January 2003, Pages 52-58

ELSEVIER

Multiplex phase cycling

Natala Ivchenko ${ }^{9}$, Colan E Hughes ${ }^{\text {b, }}{ }^{1}$, Malcolm H Levitt ${ }^{\text {a }} \circ$ 区
田 Show more
https://doi.org/10.1016/S1090-7807(02)00108-8

contents

Background

Importance of coherence selection
Coherence pathway selection by phase cyclings
Multiple selection, multi-dimension
Multiplex and cogwheel phase cycling

references

Phase cycling:

G. Bodenhausen, H. Kogler, R.R. Ernst, J. Magn. Reson. 58 (1984) 370-388.
R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford (1988).

Cogwheel phase cycling:

M.H. Levitt, P.K. Madhu, C.E. Hughes, J. Magn. Reson. 155 (2000) 300-306.

Multiplex phase cycling:

N. Ivchenko, C.E. Hughes, M.H. Levitt, J. Magn. Reson. 160 (2003) 52-58.

Example11: DQ/SQ for half-integer quadrupolar nuclei

Example6: CPMAS

Example7: HMQC

مanken sumbinem veel

Example8: DQ HMQC

